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INTERNAL ENERGY IN DISSIPATIVE RELATIVISTIC FLUIDS

PÉTER VÁN

Liu procedure is applied to special relativistic fluids. It is shown that a reasonable relativistic theory
is an extended one, where the basic state space contains the momentum density. This property follows
from the structure of the energy-momentum balance and the Second Law of thermodynamics. Moreover,
we derive that the entropy depends on both the energy density and the momentum density in a specific
way, indicating that the local rest frame energy density cannot be interpreted as the internal energy, and
that the local rest frame momentum density should be considered, too. The corresponding constitutive
relations for the stress and the energy flux are derived.

1. Introduction

Nonrelativistic nonequilibrium thermodynamics separates the dissipative and nondissipative parts of the
evolving physical quantities. This separation is based on the construction of the internal energy balance
[Eckart 1940a; Groot and Mazur 1962; Gyarmati 1970]. According to the classical interpretation, the
internal energy is the difference of the total energy and the special energies of known type. The en-
tropy function depends directly on the internal energy. The internal energy is distributed equally among
the molecular degrees of freedom. The process by which other energy types are converted to internal
energy is called dissipation. This approach is common in all theories of nonequilibrium thermodynam-
ics, including classical irreversible thermodynamics, where the hypothesis of local equilibrium applies.
However, there is no internal energy in this sense in relativistic irreversible thermodynamics. In fact,
there is practically no relativistic irreversible thermodynamics at all because the local equilibrium theory
is plagued by serious inconsistencies. Only extended theories, theories beyond local equilibrium, are
considered as viable. The reason for this is that the classical theory of Eckart [1940b] is for relativistic
fluids simple and elegant, but produces generic instabilities [Hiscock and Lindblom 1985]. The more
developed extended theories incorporate the theory of Eckart, but suppress the instabilities [Hiscock and
Lindblom 1987; Geroch 1995; Lindblom 1996].

In this paper we investigate the possibility of local equilibrium in relativistic hydrodynamics by
methods of continuum thermodynamics. In Section 2 the balances of energy-momentum and entropy
are introduced. In Section 3, we calculate the dissipation inequality for first-order (local equilibrium)
relativistic hydrodynamics using the Liu procedure. The need of second-order (extended, or weakly
nonlocal) theories is indicated by the emergent structure. A new concept of relativistic internal energy
follows. Based on these results, Section 4 shows the constitutive equations of the simplest extended
theory by the heuristic arguments of irreversible thermodynamics.
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2. Basic balances of relativistic fluids

For the metric (Lorentz form) we use gµν
= diag(−1, 1, 1, 1), employing the usual convention that the

speed of light c = 1. Therefore, for a four-velocity uα we have uαuα
= −1. 1α

β = gα
β + uαuβ denotes

the u-orthogonal projection. With these conventions in mind, we proceed to form the basic balances of
energy-momentum and entropy.

The energy-momentum density tensor is given with the help of the rest-frame quantities

T αβ
= euαuβ

+ uαqβ
+ uβqα

+ Pαβ, (1)

where e = uαuβT αβ is the density of the energy, qβ
= −uα1

β
γ T αγ is the energy flux or heat flow,

qα
=−uβ1α

γ T γβ is the momentum density, and Pαβ
=1α

γ 1
β
µT γµ is the pressure tensor. The momentum

density, energy flux, and pressure are spacelike in the comoving frame, therefore uαqα
= 0, uβqβ

= 0,
and uα Pαβ

= uα Pβα
= 0β . The energy-momentum tensor is symmetric, because we assume that the

internal spin of the material is zero. In this case, the energy flux and the momentum density are equal.
Let us emphasize that the form (1) of the symmetric energy-momentum tensor is completely general for
one-component fluids, but it is expressed by the local rest frame quantities.

Now the conservation of energy-momentum ∂βT αβ
= 0 is expanded to

∂βT αβ
= ėuα

+ euα∂βuβ
+ eu̇α

+ uα∂βqβ
+ qβ∂βuα

+ q̇α
+ qα∂βuβ

+ ∂β Pαβ, (2)

where ė =
d

dτ
e = uα∂αe denotes the derivative of e by the proper time τ . Its timelike part in a local rest

frame gives the balance of the energy

−uα∂βT αβ
= ė + e∂αuα

+ ∂αqα
+ qαu̇α + Pαβ∂βuα = 0. (3)

The spacelike part in the local rest frame describes the balance of the momentum

1α
γ ∂βT γβ

= eu̇α
+ qα∂βuβ

+ qβ∂βuα
+ 1α

γ q̇γ
+ 1α

γ ∂β Pγβ
= 0α. (4)

The entropy density and flux can also be combined into a four-vector, using local rest frame quantities:

Sα
= suα

+ Jα, (5)

where s = −uα Sα is the entropy density and Jα
= Sα

−uαs = 1α
β Sβ is the entropy flux. The entropy flux

is u-spacelike, therefore uα Jα
= 0. In this framework, the Second Law of thermodynamics is expressed

by the following inequality
∂α Sα

= ṡ + s∂αuα
+ ∂α Jα

≥ 0. (6)

3. Thermodynamics

The thermodynamical background in relativistic theories is usually based on analogies with nonrelativis-
tic thermostatics. However, nonequilibrium thermodynamics has developed beyond the simple, ‘let us
substitute everything into the entropy balance and see what happens’ theory since Eckart. It is important
to check the dynamic consistency of the Second Law, considering the evolution equations as constraints
for the entropy balance. This method of nonequilibrium thermodynamics is constructive, gives important
information for new theories, and reveals some deeper interrelations. Here we exploit the Second Law
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by Liu’s procedure [Liu 1972], introducing a first-order weakly nonlocal state space in all basic variables,
and thus restricting ourselves to a local equilibrium theory. One can find a general treatment of nonrela-
tivistic classical and extended irreversible thermodynamics from this point of view in [Ván 2003]. Our
aim here is to investigate the relativistic fluids with similar methods, and to get the relativistic equivalent
of the classical Fourier–Navier–Stokes system of equations for one component fluids.

Our most important assumption regarding relativistic thermodynamics is that the constitutive equations
are local rest frame expressions. As material interactions are local, this is natural from a physical point
of view.

The basic state space of the theory is spanned by the energy density e and by the velocity field
uα. The constitutive state space is spanned by the basic state variables and their first derivatives, is
therefore first-order weakly nonlocal. Hence, the constitutive functions depend on the variable set C =

(e, uα, ∂αe, ∂αuβ). The constitutive functions are the energy flux/momentum density qα, the pressure
Pαβ , the entropy density s and the entropy flux Jα. The derivatives of the constitutive functions are
denoted by the number of the corresponding variable in the constitutive space, for example, ∂s

∂(∂αe) = ∂3s.
With this notation we can distinguish easily between the derivatives by the constitutive and spacetime
variables. A nonequilibrium thermodynamic theory is considered to be solved if all other constitutive
quantities are expressed by the entropy density and its derivatives.

According to the procedure of Liu, the balance of energy-momentum (2) is a constraint to the entropy
balance (6) with the Lagrange–Farkas multiplier 3α,

∂α Sα
− 3α∂βT αβ

≥ 0. (7)

Let us remember that here, the spacelike components of the four quantities and the entropy density are
the constitutive quantities depending on the introduced constitutive variables C . Therefore, in the above
inequality we can develop the derivatives of the composite functions. The coefficients of the derivatives
that are not in the constitutive space must be zero. As a result, we get the following Liu-equations:

∂αβe : (∂3Sα)β − 3µ(∂3T µα)β = 0αβ,

∂αβuγ : (∂4Sα)βγ
− 3µ(∂4T µα)βγ

= 0αβγ .
(8)

The simple structure of the Liu equations suggests the assumption that the Lagrange multiplier is a
local function, and does not depend on the derivatives of the basic state variables

3γ = 3γ (n, e). (9)

A general solution of (8) is

Sα
− 3γ T γα

− Aα
= 0α, (10)

where Aα
= Aα(n, e) is an arbitrary local function.

Let us introduce the splitting of the vector multiplier and the four-vector Aα into spacelike and timelike
parts in the local rest frame as

3α
= −3uα

+ lα,

Aα
= Auα

+ aα,
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where for the spacelike components uαlα = uαaα
= 0. Now, Equation (10) gives

uα(s − 3e − lγ qγ
− A) + (Jα

− 3qα
− lγ Pγα

− aα) = 0α. (11)

Here both the timelike and spacelike parts are zero, resulting in

s = 3e + lγ qγ
+ A, (12)

Jα
= 3qα

+ lγ Pγα
+ aα. (13)

After the identification of the Liu equations, we expand the dissipation inequality as

∂αe
[
(∂1s)uα

+ ∂1 Jα
− 3uα

− 3∂1qα
− lγ ∂1 Pγα

− lγ ∂1qγ uα
]

+ ∂αuβ

[(
s − 3e − lγ qγ

)
1αβ

+ (∂2s)βuα
+ (∂2 Jα)β

− lβeuα
− lβqα

− 3(∂2qβ)α − 3γ (∂2 Pγα)β − 3γ uα(∂2qγ )β
]
≥ 0. (14)

Here we exploited the fact that partial differentiation by e can be exchanged with a multiplication by
the four velocity uα.

In the dissipation inequality one should consider the solution of the Liu equations. Substituting (12)
and (13) into (14) we get

∂αe
[
(∂1s − 3 − lγ ∂1qγ )uα

+ qα∂13 + Pγα∂1lγ + ∂1aα
]

+∂αuβ

[
A1αβ

+ qα(∂23)β + Pγα(∂2lγ )β + (∂2aα)β

+uα
(
(∂2s)β − lγ (∂2qγ )β − lβe − 3qβ

)
− lβqα

− 3Pαβ
]
≥ 0, (15)

where the following identities

uγ ∂uβ
qγ

= ∂uβ
(uγ qγ ) − qγ ∂uβ

uγ = −qγ 1 β
γ = −qβ,

uγ ∂uβ
Pγα

= ∂uβ
(uγ Pγα) − Pγα∂uβ

uγ = −Pγα1 β
γ = −Pβα.

were applied to simplify the last term (∂2 = ∂uβ
).

Observing the first term in the last form of the dissipation inequality, one can eliminate the direct
velocity dependence of the entropy function, recognizing that the entropy may depend on the energy flux
in the form

s(e, uα, ∂αe, ∂αuβ) = ŝ(e, qγ (e, uα, ∂αe, ∂αuβ)). (16)

Therefore, the entropy is local, and is independent of the derivatives of the basic state space variables
and the velocity field. Entropy does, however, depend on the energy flux, which can depend on the
derivatives because it is, according to our initial assumptions, a constitutive function. Taking this into
account, the Lagrange–Farkas multipliers are determined by the entropy derivatives

∂e ŝ = 3, ∂qα ŝ = lα. (17)

We introduce a temperature T as

∂e ŝ = 3 =
1
T

. (18)



INTERNAL ENERGY IN DISSIPATIVE RELATIVISTIC FLUIDS 1165

We recognize that a full thermostatic compatibility requires that in (12), A :=
p
T , where p is the pressure.

This consequence is completely analogous to the results of the nonrelativistic nonequilibrium thermody-
namic theory, where thermostatics arises from the structure of the balance form evolution equations used
as constraints to the Second Law.

Finally, we assume that entropy flux is classical, and the additional term aα [Müller 1967] is zero

aα
= 0α. (19)

The dissipation inequality, then, reduces to the following simple form

qα∂α

1
T

−
1
T

(
Pαβ

+ T lβqα
− p1αβ

)
∂αuβ − Pαγ ∂αlγ −

(qα

T
+ elα

)
u̇α ≥ 0. (20)

As we do not want an acceleration-dependent entropy production, we require that the last term vanishes.
According to (17) and (18)

e∂qα
ŝ + qα∂e ŝ = 0. (21)

The general solution of (21) can be given as

ŝ = s̃(e2
− qαqα) + B, (22)

where B=const. The entropy must depend on the energy density e and the momentum density qα in a
very particular but simple way. As a consequence of this functional form of the entropy function, the
Gibbs relation can be given with the help of the entropy derivatives (17) as

de −
qα

e
dqα = T ds. (23)

We may require first-order homogeneity of the entropy density (extensivity) in (22) without loss of
generality. To do so, we introduce E =

√
|e2 − qαqα| as a variable of the entropy density. In this way, the

entropy is a first-order homogeneous functions both of the energy density e and the momentum density
qα. With this property, it is unique.

The corresponding potential relation can be constructed according to the first-order homogeneity (ex-
tensivity) of the physical quantities as

e −
qαqα

e
= T s − p. (24)

The previous thermostatic relations require the interpretation of E as internal energy. On the other
hand, let us recognize that E is the absolute value of the energy vector

E = ‖Eα
‖ = ‖ − uβT βα

‖ = ‖euα
+ qα

‖ =

√
|e2 − qαqα|. (25)

One should note that the 1/T introduced in (18) is not the derivative of the entropy function according
to E .

Finally, the entropy flux from (13) and (19) is

Jα
=

1
T

qα
−

qγ

eT
Pγα. (26)
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The final form of the dissipation inequality is

qα∂α

1
T

−
1
T

(
Pαβ

+
qβqα

e
− p1αβ

)
∂αuβ − Pαγ ∂α

qγ

T e
≥ 0. (27)

The last term in this expression with a derivative of one of the constitutive quantities indicates that
we cannot give proper thermodynamic fluxes and forces as a solution of the inequality. Another problem
appears with (21), because lα, the spacelike part of the Lagrange multiplier in a local rest frame, was
assumed independent of the derivatives of e and uα. Thus, the Fourier heat conduction is excluded as a
possible constitutive function. Both problems indicate that a complete theory may exist only either in an
enlarged constitutive space or in an extended basic state space. One possible means of resolution is to
introduce higher order derivatives of the basic state space into the constitutive state space, and construct a
second-order weakly nonlocal theory. Another possibility is to enlarge the basic state space and construct
an extended theory. In both cases, the key that may lead beyond the traditional Müller–Israel–Stewart
theory is the new internal energy E .

4. Extended irreversible thermodynamics of relativistic fluids

Motivated by the results of the previous section we calculate the entropy production by a direct substi-
tution of the balance of the energy into the entropy balance. We are to construct an extended theory,
introducing qα as an independent variable, but exploiting the fact that the entropy depends both on the
energy and momentum densities in the specific way derived above.

The entropy flux is assumed to have the essentially classical form

Jα
=

1
T

qα. (28)

Substituting the energy balance (3) into the entropy balance equation, we arrive at the following
entropy production formula:

∂α Sα
= ṡ(e2

+ qαqα, s) + s∂αuα
+ ∂α Jα

= −
1
T

(e∂αuα
+ ∂αqα

+ qαu̇α + Pαβ∂βuα) +
qα

T e
q̇α + s∂αuα

+ ∂α

( 1
T

qα
)

= −
1
T

(
Pαβ

− (−e + sT )1αβ
)
∂αuβ + qα

(
∂α

1
T

−
u̇α

T
−

q̇α

eT

)
≥ 0. (29)

In isotropic continua, the above entropy production results in constitutive functions assuming a linear
relationship between the thermodynamic fluxes and forces. The thermodynamic fluxes are the viscous
stress 5αβ

=
(
Pαβ

− (sT − e)1αβ
)
, and the energy flux qα. For these, we get

5αβ
= Pαβ

− 1αβ
(

p −
qβqβ

e

)
= −2η(1αγ 1βµ∂γ uµ)s0

− ηv∂γ uγ 1αβ, (30)

qα
= −λ

1
T 2 1αγ

(
∂γ T + T u̇α

+
T q̇α

e

)
, (31)

where s0 denotes the symmetric traceless part of the corresponding second order tensor, for example

(Ai j )s0
=

1
2(Ai j

+ A j i ) −
1
3 Allδi j ,
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and we have introduced the scalar thermostatic pressure according to (24), making p 6= Pα
α /3. Equations

(30) and (31) are the relativistic generalizations of the Newtonian viscous stress function and the Fourier
law of heat conduction. The shear and bulk viscosity coefficients, η and ηv, and the heat conduction
coefficient, λ, are nonnegative according to the inequality of the entropy production (29).

Equations (3) and (4) are the evolution equations of a relativistic, heat conducting ideal fluid, together
with the constitutive functions (30) and (31). As special cases we can get the relativistic Navier–Stokes
equation by substituting (30) into (4) and assuming qα

= 0, or the relativistic heat conduction equation
by substituting (31) into (3) and assuming that 5αβ

= 0. The heat conduction part results in a special
extended theory, where only the energy flux appears as an independent variable.

5. Summary and discussion

In the first part of the paper we investigated the local equilibrium theory of special relativistic fluids. We
saw that there may be no such theory that could give a complete solution of the entropy inequality with
the conditions that there be

(i) local Lagrange–Farkas multipliers;

(ii) local entropy (16);

(iii) no additional term in the entropy flux (19).

The first two assumptions were necessary to get a particular solution of the Liu equations and the
dissipation inequality. On the other hand, they are natural in local equilibrium.

We conclude that either an extension of the basic state space or an enlargement of the constitutive state
space may give a complete solution. Our investigations indicate a particular dependence of the entropy
on the energy and momentum densities, leading to a distinction of internal and total energy densities of
relativistic fluids.

The local rest frame energy density e = uαT αβuβ is usually interpreted as internal energy in ther-
modynamic theories. However, the symmetry of the energy-momentum tensor can hide fact that while
energy flux is related to dissipation, momentum density is not. This is a property of the relativistic theory,
and not apparent in the nonrelativistic case because the nonrelativistic limit results in asymmetric energy-
momentum. According to the previous investigations, the total energy density e (minus the time-timelike
part of the energy-momentum tensor) is not a suitable internal energy, and the entropy density should
be a function of the absolute value of the energy vector Eα

= −uβT αβ , the timelike part of the energy
momentum.

To compare our proposal to the traditional Müller–Israel–Stewart theory [Israel 1976; Israel and Stew-
art 1980], it is instructive to expand the internal energy into the series, assuming that e2 > qαqα:

E =

√
|e2 − qαqα| ≈ e −

q2

2e
+ . . . . (32)

The last, quadratic term in the above expression is what appears in the Müller–Israel–Stewart theory.
However, in our case the corresponding relaxation time is fixed τ = 1/e; the quadratic term is only the
first approximation; and only the energy flux is introduced as an independent variable in our extended
theory, with no need for viscous stress.
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The series expansion is an instructive comparison to nonrelativistic hydrodynamics. Therein, the
internal energy is the difference of the total energy and the relative kinetic energy. In (32) the quadratic
expression is what one could consider as a kind of energy of the flow, considering only the local rest
frame momentum density without any connection to an external observer. In a sense, our expression
shows that by introducing E as internal energy, we declared that the momentum of the flow does not
make a dissipative contribution.

The extension of the present calculations considering the balance of particle number is straightforward.
Moreover, one can show that the above system of equations gives a stable homogeneous equilibrium in
linear stability investigations, contrary to the theory of Eckart [Ván and Bı́ró 2008], and can therefore be
considered as a minimal viable extension of the local equilibrium theory. The advantages of our approach
over the Müller–Israel–Stewart one are that there are no additional material parameters compared to the
Eckart theory and the stability of the homogeneous equilibrium does not require additional assumptions
beyond the inequalities of thermodynamic stability.

Acknowledgment

We gratefully acknowledge enlightening discussions with Professor László Csernai.
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