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A CONTINUOUS MODEL FOR AN ARTERIAL TISSUE, INCORPORATING
REMODELING AND VOLUMETRIC GROWTH

FONS VAN DE VEN AND IHOR MACHYSHYN

A continuum-mechanics approach for the derivation of a model for the behavior, that is, the growth and
remodeling, of an arterial tissue under a mechanical load is presented. This behavior exhibits an interplay
between two phenomena: continuum mechanics and biology. The tissue is modeled as a continuous
mixture of two components: elastin and collagen. Both components are incompressible, but the tissue
as a whole can show volumetric growth due to the creation of collagen. Collagen is a fibrous structure,
having a strain-induced preferred orientation. Remodeling of the tissue incorporates degradation of
elastin and strain-induced creation and degradation of collagen fibers. Both elastin and collagen are
considered to be nonlinear elastic media; elastin as a neo-Hookean material and collagen fibers behaving
according to an exponential law. The modeling is based on the classical balance laws of mass and
momentum.

1. Introduction

An aneurysm is a localized dilatation or ballooning of blood vessels. The size of an aneurysm was
considered to be a critical indicator of the rupture potential and need for medical intervention. However,
size is no longer considered to be an accurate parameter as there have been incidents of small aneurysms
rupturing and large ones remaining intact. It is now believed that aneurysms rupture when the hemody-
namically induced wall stress exceeds the wall strength. This necessitates a mechanical analysis of the
biological tissue.

In modeling aneurysms and other cardiovascular pathologies, we will encounter the interplay of two
phenomena: continuum mechanics and biology. Whereas traditional engineering materials passively
respond to a change in their environment, biological tissues adapt to their environment by changing their
configuration and material properties.

In this paper (originally presented at the TRECOP’07 conference on continuum physics) we will not
aim at a physiological justification of our tissue model, but when needed we will use partial results from
existing models in the literature. In contrast to many of these models, we will base our model strictly on
the basic principles of continuum mechanics. Moreover, we refrain from giving an extensive literature
review; for this we refer to the forthcoming [Machyshyn 2008]. Here, we only mention [Humphrey and
Rajagopal 2002; Kroon and Holzapfel 2007; Baek et al. 2005; 2006].

We will present a continuous model for a tissue based on the basic laws of continuum mechanics
coupled with considerations on the biological behavior of arterial vessels. A tissue of an arterial vessel is
mainly built up of two components: elastin and collagen. Elastin behaves as an isotropic nonlinear elastic
solid medium, and has as a special feature that it degrades (vanishes) during the formation of an aneurysm.

Keywords: arterial tissue, volumetric growth, strain-induced orientation, elastin, collagen.
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Collagen has an anisotropic fibrous structure that can take up stresses in a nonlinear elastic way. Collagen
remodels in two ways. On one hand collagen fibers can weaken, in that they elongate or disappear. On
the other, new collagen can be laid down or passive fibers can become active, strengthening the collagen
as a whole. We will propose a continuous mixture model for an arterial tissue in which remodeling is
modeled by taking into account degradation of elastin, local changes of mass of collagen and elastin –
resulting in volumetric growth of the tissue – and stress- or strain-induced preferred directions for the
lay-down of collagen fibers. In order to more basically incorporate the idea of a distributed lay-down of
fibers, Muschik et al. [2000] introduced the concept of mesoscopic continuum physics. This is a very
elegant concept that also accounts for thermodynamical effects. However, these effects are not considered
in this paper.

2. Basic model of a tissue

Our basic model for an arterial tissue is a three-dimensional continuous mixture of two components:
elastin and collagen. These two components are both intrinsically incompressible, but the mixture as a
whole can show volumetric growth caused by mass production. This is due to the degradation of elastin,
modeled as vanishing of elastin particles, and the continuous creation (or lay-down) of new collagen
fibers and degradation (removal) of old ones. By these processes, the total amount, or mass, of elastin
and collagen continuously changes in time, which can result in growth or shrinkage of the tissue.

Two important state variables for the analysis to come are the volumetric fractions, ne and nc, of
elastin and collagen, respectively. They are defined as the relative amount of elastin or collagen in the
mixture; they are dimensionless and they sum up to one, so

ne + nc = 1. (1)

The elastin is modeled as an isotropic nonlinear elastic solid, and its elastic constitutive behavior is
described by an incompressible neo-Hookean model. As elastin can only degrade, the amount of elastin
is monotone decreasing once degradation has started.

On the other hand, collagen is an anisotropic fibrous medium. The elastic fibers can only take up
stresses in their fiber direction. As constitutive equation for these elastic stresses we will adapt a nonlinear
exponential law. Important fiber properties are their orientation (direction) and prestretch. At each
moment in time, and thus at each configuration of the tissue, the fiber directions are described by a
distribution function for the fiber orientations. This distribution function changes continuously in time,
governed by the state of stretch of the tissue. A specific choice for this distribution function (see Section
6), which was first introduced by Baek et al. [2005; 2006], will be given further on.

Initially in an unloaded state, the collagen fibers are crimped, in which state they do not contribute to
the strength of the tissue. When the tissue is loaded, the elastin will be stretched, and there will come a
state in which the collagen fibers become uncrimped; the tissue stretch in this state in the direction of a
collagen fiber is called the recruitment stretch. Here, we will consider the recruitment stretch as a state
variable, which in some sense governs the adaptation of the newly created collagen fibers to the state of
stretch of the tissue. This adaptation is modeled such that a newly laid-down collagen fiber is always in
the same state of preferred stretch, called the attachment stretch. In contrast to the variable recruitment
stretch, the attachment stretch is a constant material parameter in our model.
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Before degradation of elastin starts, the tissue is in its healthy state. This is a loaded equilibrium state,
in which the tissue is stretched and in which the collagen is always stretched to its attachment stretch
λa . The total amount of elastin (no degradation) and collagen do not change, and thus there is no mass
production or volumetric growth in this state. However, also in this state there is a continuous turnover
(creation and degradation) of collagen, but in such a way that the amount of degraded collagen is always
equal to that of newly created collagen, thus keeping the total mass (and volume) of collagen constant.

Finally, for later use, we define the metabolic equilibrium state as the state in which the stretch in each
collagen fiber is equal to the attachment stretch λa .

3. Basics of volumetric growth for a one-component medium

In this section, we try to explain the peculiar behavior of a medium with internal mass production and
volumetric growth by considering, as an example, a simple or single-component medium (not a mixture,
as this case will be dealt with in the remainder of this paper). In so doing, we follow the approach of
Kuhl et al. [2007].

To introduce volumetric growth due to mass production, we consider a one-component intrinsic in-
compressible medium having as reference configuration: Gr with reference position vector X, and as
deformed current configuration: G = G(t) with current (at time t) position vector x = x(X, t). The
density ρ of the medium is contant and uniform. The deformation gradient is F(X, t) = ∂x/∂X, and the
associated Jacobian is J = det F = J (X, t).

A material partial volume b with configuration g = g(t) at the current time t , and reference configu-
ration gr , is defined as a part of the whole body across the boundary of which no mass flux takes place.
However, inside b, mass sources can be active, causing changes of the total mass contained in b.

The volume of b is
V (t) =

∫
g(t)

dv =

∫
gr

J (X, t)dvr , (2)

and its mass is
M(t) =

∫
g(t)

ρdv = ρ

∫
gr

J (X, t)dvr . (3)

Since this mass M = M(t) is not constant, the balance of mass yields

d
dt

M(t) =
d
dt

[
ρ

∫
gr

J (X, t)dvr

]
= ρ

∫
gr

J̇ (X, t) dvr = ρ

∫
g(t)

J̇
J

dv =

∫
g(t)

ṁ dv , (4)

where ṁ = ṁ(X, t) is the mass source, the rate of mass production per unit of current volume (in
kg/m3sec). This leads to the local mass equation

ρ
dJ
dt

= J ṁ . (5)

The balance of momentum for a medium with volumetric growth reads

d
dt

∫
g(t)

ρvdv =

∫
∂g(t)

tdS +

∫
g(t)

ρbdv , (6)
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where now, however, the total body force must be split up into a purely mechanical part, ρ bm , (the
external body force) and a part due to the growth of mass, according to

ρ b = ρ bm + ṁ v , (7)

where v is the velocity.
Using successively the equalities

d
dt

∫
g(t)

ρvdv =
d
dt

∫
gr

ρvJ dvr =

∫
gr

ρ(v̇J + v J̇ ) dvr =

∫
g(t)

(ρv̇ + ṁv) dv , (8)

Cauchy’s stress law
t = Tn , (9)

and (7), we obtain the local momentum balance

ρv̇ + ṁv = divT + ρbm + ṁv , (10)

or
ρv̇ = divT + ρbm , (11)

revealing that the effect of mass production in the local momentum balance has disappeared, and that
the local momentum equation takes its classical form.

In (9), t is the stress vector, or traction, T is the stress tensor, and n is the unit outward normal vector
on the boundary ∂g of g.

4. Configurations and deformations

In this section, we consider the four different configurations depicted in Figure 1:

(1) The unloaded state Gr,0: in this state both the elastin and the collagen are unloaded, but it is assumed
that the collagen is not crimped, meaning that λrec,0 = 1.

(2) The healthy state Gr : this state is an equilibrium state under a given external load; equilibrium
implies here that the collagen stretch is equal to the attachment stretch λa; this healthy state is
assumed to be known, and this state is in our further analysis considered as the reference state (note

X0 X ξ x

Gr,0 Gr G(τ) G = G(t)

unloaded state healthy state intermediate state current state

t = 0 time τ ∈ [0, t] time t

Figure 1. Configurations of tissue body B.
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that this is not an undeformed or stress-free state). At the initial time t = 0, the tissue is in its healthy
state and then the degradation followed by remodeling and volumetric growth starts.

(3) The intermediate state G(τ ): the intermediate time τ ranges from t = 0 to the current time t , and at
each τ new collagen fibers are laid down.

(4) The current state G = G(t): this is the final deformed state we wish to determine.

To describe the deformation of the tissue B, we consider an infinitesimal material volume element
containing the material point P. The position of P in Gr,0 is given by its position vector X0, and further
by X in Gr , by ξ in G(τ ), and by x in G. Here, we consider ξ and x as functions of X and τ , and of X
and t , respectively,

ξ = ξ(X, t) , x = x(X, t) . (12)

Recalling that the total deformation gradient of the tissue, or the elastin, from Gr,0 to G is Ftot, then

Ftot =
∂x
∂X0

=
∂x
∂X

∂X
∂X0

= FF0 , (13)

where F = F(X, t).
The partial deformation from ξ to x is described by

F̂(X, t, τ ) =
∂x
∂ξ

=
∂x
∂X

∂X
∂ξ

= F(X, t)F−1(X, τ ) , (14)

or

F(X, t) = F̂(X, t, τ )F(X, τ ) . (15)

Consider a collagen fiber created at time τ in direction γ with initial stretch λa , having the initial
direction vector

e(0)
c (X, τ, γ ) = cos γ v1(X, τ )+ sin γ v2(X, τ ) , (16)

with v1,2 in the principal directions of F(X, τ ). How the distribution of e(0)
c depends on the state of

deformation at τ will be explained further on. The unit vectors v1 and v2 span a surface in which the
main stretching takes place; in the third direction there is only shrinking. For instance, for an arterial
tissue modeled as a tube under internal pressure and axial stretch, v1 and v2 are in the azimuthal and
axial direction, while the radial direction is the third direction in which compression takes place.

Let ec,0 be the direction vector representing e(0)
c in the unloaded state Gr,0, then

ec,0(X, τ, γ ) =
F−1

tot (X, τ )e(0)
c (X, τ, γ )

‖F−1
tot (X, τ )e(0)

c (X, τ, γ )‖
. (17)

The elastin stretch λ at time τ in the direction e(0)
c is

λ(X, τ, γ ) = ‖Ftot(X, τ ) ec,0(X, τ, γ )‖ =
1

‖F−1
tot (X, τ ) e(0)

c (X, τ, γ )‖
, (18)

where in the latter step we have used (17).
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Since the collagen stretch λc at the moment it is laid down is equal to λa , we obtain for the recruitment
stretch

λrec(X, τ, γ ) =
λ(X, τ, γ )

λa
=

1

λa ‖F−1
tot (X, τ ) e(0)

c (X, τ, γ )‖
. (19)

Hence, λrec is not a function of the current time t , and we will use the above relation to eliminate λrec

from our further calculations.
The collagen stretch λc(X, t, τ, γ ) at the current time t of the fiber laid down at time τ in the direction

e(0)
c is thus

λc(X, t, τ, γ ) =
λ(X, t, γ )

λrec(X, τ, γ )
= λa

‖F−1
tot (X, τ ) e(0)

c (X, τ, γ )‖

‖F−1
tot (X, t) e(0)

c (X, τ, γ )‖
. (20)

Let the initial direction at τ , e(0)
c (X, τ, γ ), deform to the current direction vector ec at time t , then

ec(X, t, τ, γ ) =
F̂(X, t, τ ) e(0)

c (X, τ, γ )

‖F̂(X, t, τ ) e(0)
c (X, τ, γ )‖

. (21)

5. Mass balances

The tissue is here considered as a mixture of two components: elastin and collagen. Let b be a material
partial volume of B containing both elastin and collagen particles. In a material volume there is no
mass flux across the boundaries of the volume, but due to the degradation and production of elastin
and collagen, the mass of b is not necessarily conserved. Moreover, although both elastin and collagen
are modeled as intrinsically incompressible, the volume of b is not conserved: there is a volumetric
growth due to the mass production. This volumetric growth is represented by the value of the Jacobian
J = det F, which is greater than one in case of positive volumetric growth, and less than one in case of
tissue resorption. Because J is related to the volumetric growth, we replace J by Jg = Jg(X, t). Since
no volumetric growth takes place in the healthy phase, J0 = det F0 = 1.

Let g = g(t) be the configuration of b at time t , with gr its reference configuration in Gr . The volume
of b is given by

V (t) =

∫
g(t)

dv =

∫
gr

Jg(X, t)dvr , (22)

which is comparable to Section 3.
The total mass of b consists of the mass of elastin, Me, and that of collagen, Mc. With ρe and ρc the

constant intrinsic densities of elastin and collagen, respectively, and ne and nc their volume fractions, we
have for the total mass of b

M(t) = Me(t) + Mc(t), (23)

where

Me(t) =

∫
g(t)

ρene(X, t)dv = ρe

∫
gr

ne(X, t)Jg(X, t)dvr , (24)

and

Mc(t) =

∫
g(t)

ρcnc(X, t)dv = ρc

∫
gr

nc(X, t)Jg(X, t)dvr . (25)
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We denote the rates of mass production per unit of current volume for elastin and collagen by ṁe and
ṁc (kg/m3sec), respectively. The change of elastin mass is only due to degradation, meaning that ṁe is
negative, and is given by

Ṁe(t) =

∫
g(t)

ṁe(X, t)dv =

∫
gr

ṁe(X, t)Jg(X, t)dvr . (26)

For collagen, the situation is somewhat more complex: here, we have collagen production at every
time τ from t = 0 to the current time t , but meanwhile the collagen produced at τ is monotone decreasing
during the period from τ to t , which is described by the monotone decreasing degradation function of
collagen qc = qc(t). Here, we have assumed that the degradation function qc is uniform over B.

Let us introduce a new rate of production of volume fraction of collagen νc = νc(X, t, τ ), such that
νc(X, t, τ )dτ is the volume fraction of collagen in V (t) at t produced from τ to τ + dτ in V (τ ) and still
surviving at t . Thus, equating the rate of change of the collagen in V (t) due to the production in V (τ )

from τ to τ + dτ multiplied by the collagen degradation function from τ to t , we obtain

ρc

∫
g(t)

νc(X, t, τ )dv dτ = ρc

∫
gr

νc(X, t, τ )Jg(X, t)dvr dτ

=

∫
g(τ )

ṁc(X, τ )dv(τ) dτ qc(t − τ)

=

∫
gr

ṁc(X, τ )Jg(X, τ )dvr qc(t − τ) dτ , (27)

which, after localization, yields

νc(X, t, τ ) =
ṁc(X, τ )Jg(X, τ )

ρc Jg(X, t)
qc(t − τ) . (28)

The latter relation implies that the total collagen mass of b at the current time t is given by

Mc(t) = Mc,r +

∫ t

0
ρc

∫
g(t)

νc(X, t, τ )dv dτ

= Mc,r +

∫ t

0

∫
gr

ṁc(X, τ )qc(t − τ)Jg(X, τ )dvr dτ , (29)

where Mc,r is the collagen mass in b in the healthy state Gr .
Differentiating this relation with respect to t and using that, by normalization, q(0) = 1, we find that

the change of the collagen mass in b from t = 0 to the current time t is given by

Ṁc(t) =

∫
gr

ṁc(X, t)Jg(X, t)dvr +

∫ t

0

∫
gr

ṁc(X, τ )q̇c(t − τ)Jg(X, τ )dvr dτ . (30)

Taking the time derivatives of Me(t) and Mc(t) according to (26) and (30) in terms of the integrals over
gr , equating the results to (25) and (26), respectively, and realizing that these results hold for arbitrary b,
we arrive at the local mass balance equations

ρe
d
dt

(
Jgne

)
= Jgṁe , (31)



1178 FONS VAN DE VEN AND IHOR MACHYSHYN

for elastin, and

ρc
d
dt

(
Jgnc

)
= Jgṁc +

∫ t

0
ṁc(X, τ )q̇c(t − τ)Jg(X, τ )dτ , (32)

for collagen. Note that d/dt stands for the material time derivative, so

d
dt

f =
∂ f (X, t)

∂t
, (33)

where f is arbitrary.
The initial conditions for (31) and (32) are ne(X, 0) = ne,r and nc(X, 0) = nc,r . Dividing (31) by ρe

and (32) by ρc, adding them together and using the trivial relation

ne(X, t) + nc(X, t) = 1, (34)

we obtain the integro-differential equation for Jg:

J̇g =
1
ρe

Jgṁe +
1
ρc

Jgṁc +
1
ρc

∫ t

0
ṁc(X, τ )q̇c(t − τ)Jg(X, τ )dτ , (35)

with the initial condition Jg(X, 0) = 1.
At this point, we have derived four equations for the four unknowns Jg, ne, nc, and νc, successively

(35), (31), (32), and (28), under the momentary assumption that the production rates ṁe and ṁc are given.
Inspection, especially with use of (30), shows us that

nc(X, t) = nc,r +

∫ t

0
νc(X, t, τ ) dτ . (36)

However, in contrast to what we said above, the production rates ṁe and ṁc are not explicitly given;
we need constitutive equations for these quantities. We will not derive these constitutive equations herein,
but rather use constitutive equations found in the literature; see specifically [Driessen 2006; Baek et al.
2005; 2006].

The elastin rate we choose here is constant and uniform, that is,

ṁe(X, t) = −µe, (37)

for t running from t = 0 to the final time t = t f ; before t = 0 and after t f there is no degradation of
elastin. Here, µe is a given constant material parameter.

The collagen rate we split into two parts as

ṁc(X, t) = ṁh
c (X, t) + ṁe

c(X, t), (38)

where the superindices ‘h’ and ‘e’ stand for ‘healthy’ and ‘extra’, respectively.
For the first term we take

ṁh
c (X, t) =

ρc

Qc
nc(X, t) , Qc =

∫ t

−∞

qc(t − τ) dτ =

∫
∞

0
qc(τ ) dτ . (39)

This term is chosen in such a way that the net collagen mass production in the healthy state is zero.
The ‘extra’ production term can be related to either the state of stress or stretch of the collagen. Baek

et al. [2005, Eq. (16)] use a stress-induced growth-rate relation, while the same authors discuss [2006]
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three possible cases, the last of which is a stretch-induced growth-rate relation. In this study, we opt for
the latter, and take for this the specific relation

ṁe
c(X, t) = Kg

(
λ̄c(X, t) − λa

)
, (40)

where λ̄c is a kind of averaged collagen stretch, averaged over the set of collagen fibers in the current
state G = G(t) and defined as

λ̄c(X, t) − λa =
1

πnc(X, t)

∫ t

0
νc(X, t, τ )

∫ π/2

−π/2
λc(X, t, τ, γ ) dγ dτ . (41)

We see that the constitutive equation contains the unknown collagen stretch λc, which is in turn related
to the unknown deformation gradient F according to (20). For the determination of F, we need the
momentum equation as derived in Section 3. However, we will first discuss how to model the distribution
of the collagen fibers over their different directions.

Finally, we make the following choice for the collagen degradation function qc:

qc(t) = e−t/T , (42)

where T (in sec) is a time constant that is characteristic for the rate of degradation of the collagen. We
note that the time scale t f for the elastin degradation is much larger than that of remodeling, so T � t f .

For this choice, the coefficient Qc becomes

Qc =

∫
∞

0
e−τ/T dτ = T . (43)

6. Distribution of collagen fibers

At each intermediate time τ a new generation of collagen fibers is continuously created. These fibers are
laid down in a plane spanned by the two unit vectors v1 and v2, the principal directions of the deformation
gradient F = F(X, τ ) (see Equation (16)), such that for λ ∈ R,

Fv = λv. (44)

The direction of each individual fiber is given by γ , the angle between the fiber direction and the v1-axis.
The distribution of these directions is assumed to be governed by a kind of double normal distribution
D(X, τ, γ ) defined as

D(X, τ, γ ) = e−1/σ

(
exp

cos[2(γ − µ)]

σ
+ exp

cos[2(γ + µ)]

σ

)
, (45)

where ±µ = ±µ(X, τ ) are the mean fiber directions, and σ = σ(X, τ ) is the width of the distribution.
The value of γ runs from −π/2 to π/2; γ = 0 corresponds with the v1-direction, and γ = ±π/2 with
the ±v2-direction. A plot of a specific distribution function of the type (45) is shown in Figure 2.

Let Nc(X, t, τ, γ )dτ denote the volume fraction of collagen at time t that is created at time τ , from τ

to τ + dτ , having the direction γ and surviving at t (hence, Nc is not so much the volume fraction, but
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Figure 2. Distribution function D as function of γ for µ = 0.8 and σ = 0.2.

rather the rate of change thereof). Then, clearly,

νc(X, t, τ ) =

∫ π/2

−π/2
Nc(X, t, τ, γ ) dγ . (46)

Since the distribution of Nc is governed by D, the latter relation implies that

Nc(X, t, τ, γ ) = D̄(X, τ, γ )νc(X, t, τ ) , (47)

with

D̄(X, τ, γ ) =
D(X, τ, γ )∫ π/2

−π/2 D(X, τ, γ ) dγ
. (48)

The mean µ and width σ are related to the principal stretches of F(X, τ ) in the state G(τ ). The larger
principle stretch λ1 = λ1(X, τ ) corresponds to the first principle direction v1 = v1(X, τ ), while smaller
one, λ2, corresponds to v2. Moreover, since we only consider tissues that are principally stretched, we
always have λ1 > 1. Following [Driessen 2006, Sect. 8.2.2], we take

µ(X, τ ) = arctan
(g2

g1

)
, σ (X, τ ) =

k
g1/g2 − 1

, (49)

where the so-called stimulus functions g1 and g2 are related to their corresponding principle stretches as

g1(X, τ ) = λ1(X, τ )− 1, and g2 =

{
λ2(X, τ )− 1, λ2 > 1,

0, λ2 < 1.
(50)

The volume fraction due to the distribution Nc, as given in (47), will turn up in a constitutive equation
for the stress given in the next section.

7. Momentum equation and stresses

Following Humphrey and Rajagopal [2002, p. 421] and many others in this field, we assume that we may
consider the mixture of elastin and collagen as a constrained mixture that is homogenized with regard
to the stresses. This implies that we only need to satisfy the overall momentum law for the mixture as
a whole, and not the two partial momentum laws for the components separately. As we have shown in
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Section 3, this relation keeps its classical form; see (11). In the following, we shall neglect inertia terms
(the deformations we consider are extremely slow) and we exclude external body forces, by which the
local momentum equation reduces to the simple equilibrium equation

divT = 0. (51)

We now need a constitutive equation for the stress tensor T. For the constrained mixture we consider
here, we may adapt a rule-of-mixture relation for the stress, stating that the partial stresses due to elastin
or collagen are proportional to their volumetric fractions ne or nc, respectively. Accordingly, we assume
that the total stress in the tissue in the current configuration at time t is built up of elastin stress and
collagen stress according to

T(X, t) = −p(X, t)I + Te(X, t) + Tc(X, t) , (52)

where p is a pressure term, needed to account for the incompressibility of elastin and collagen, and I is
the unit tensor. The elastin is modeled as an incompressible isotropic neo-Hookean material with

Te(X, t) = ce(B(X, t) − I) , (53)

where ce is the elastin shear modulus and B = FFT is the left Cauchy–Green tensor.
For the collagen stress, we follow van Oijen [2003, Sect. 3.2.4]. The collagen fibers can only take

up tensile stress in their fiber direction, and the nonlinear stress-strain behavior of the collagen fibers is
captured by an exponential form for the fiber stress. This leads to the formulation

Tc(X, t) =

∫ t

0

∫ π/2

−π/2

{
Nc

[
τ f (λc) − ec · Te ec

]
ec ⊗ ec

}
(X, t, τ, γ ) dγ dτ , (54)

where
τ f (λc) = 2k1λ

2
c(λ

2
c − 1) exp[k2(λ

2
c − 1)2

] , (55)

with k1 and k2 as material constants and λc = λc(X, t, τ, γ ) given by (20). For the Te in the integral in
(54) one must read Te(X, τ ).

In (52)–(54), the contribution of neTe is split into Te and −ncTe, with the latter taken up in (54).
However, in (54) this is only done in the fiber direction and not in the transverse direction. The reason
for this is that the stress perpendicular to the fiber direction is uncoupled from the fiber fraction, which
would mean that the transversal properties of the tissue are not affected by the fibers. This is not logical,
as then the tissue would become unnaturally weak in the transverse direction leaving only the elastin to
contribute to its stiffness. Oijen [2003] compensated for this by taking in the transverse direction the
full Te, and not the partial neTe. Mechanically, this means that he gives the collagen fibers a transverse
stiffness that is equal to that of the elastin. The stress perpendicular to the fiber direction is uncoupled
from the fiber fraction, meaning that the transversal properties of the tissue are not affected by the fibers.

8. One-dimensional example

We consider as a first example a one-dimensional problem for a slender circular rod loaded by a fixed
uniaxial tensile stress. Let e3 be the axial direction of the rod, then the axial normal stress T33 = S is
given, while all other stresses are zero, that is, Ti j = 0, (i, j) 6= (3, 3). All collagen fibers are in the
e3-direction, so the distribution of the fibers does not play a role here.
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In the unloaded state G0 the tissue is unstretched, whereas in the healthy state the rod is loaded and
stretched such that the collagen stretch λc,r is equal to its attachment stretch λa . By the (not very relevant)
assumption that λrec = 1 in the healthy state, we see that the stretch of the tissue, and the elastin, in the
e3-direction is equal to λa . Since there is no volumetric growth in the healthy state, det F0 = 1 and thus
the matrix of F0 is of the form (also accounting for rotational symmetry of the problem)

F0 =

 λ
−1/2
a 0 0
0 λ

−1/2
a 0

0 0 λa

 . (56)

We consider next the current state G = G(t). This state is here a homogeneous state, so there is no
dependence on X in this example. The total deformation gradient is Ftot(t) = F(t)F0, implying that the
tissue stretch in the e3-direction is

λ(t) = ‖Ftot(t)e3‖ = ‖F(t)F0e3‖ = ‖F(t)λae3‖ = λa F33 . (57)

Due to the rotational symmetry: F11 = F22, and thus the matrix of F(t) is

F(t) =

 F11(t) 0 0
0 F11(t) 0
0 0 λ(t)/λa

 . (58)

Since det F0 = 1, the Jacobian in G is equal to

Jg(t) = det F(t) =
λ(t)
λa

F2
11(t) , (59)

yielding

F11(t) =

√
λa

λ(t)
Jg(t) . (60)

In the intermediate state G(τ ) we have

F̂(t, τ ) = F(t)F−1(τ ) =

 F11(t)/F11(τ ) 0 0
0 F11(t)/F11(τ ) 0
0 0 λ(t)/λ(τ)

 . (61)

Moreover, the collagen stretch of a fiber created at time τ is

λc(t, τ ) = λa
λ(t)
λ(τ )

. (62)

From (35), we obtain with ṁe(t) = −µe and ṁc(t) = ṁh
c (t)+ ṁe

c(t), where ṁh
c (t) = ρcnc(t)/T , and

ṁe
c(t) = Kg(λ̄c(t) − λa). The ordinary differential equation for Jg(t) is

J̇g(t) = −
µe

ρe
Jg(t) +

1
T

Jg(t)nc(t) +
Kg

ρc
(λ̄c(t) − λa) Jg(t) −

1
T

Jg(t)nc(t)

=

[
−

µe

ρe
+

Kg

ρc
(λ̄c(t) − λa)

]
Jg(t) . (63)



A CONTINUOUS MODEL FOR AN ARTERIAL TISSUE 1183

For this one-dimensional problem, λ̄c follows from (41) as

λ̄c(t) − λa =
1

nc(t)

∫ t

0
νc(t, τ )λc(t, τ ) dτ , (64)

where, according to (28)

νc(t, τ ) =
Jg(τ )

ρc Jg(t)

[ρc

T
nc(τ ) + Kg(λ̄c(τ ) − λa)

]
e−(t−τ)/T . (65)

Substituting (65) and (62) into (64), we obtain the following integral equation for λ̄c(t):

λ̄c(t) − λa =
λaλ(t)

ρc Jg(t)nc(t)

∫ t

0

[ρc

T
nc(τ ) + Kg(λ̄c(τ ) − λa)

] Jg(τ )

λ(τ )
e−(t−τ)/T dτ . (66)

Further, we find from (36) that

nc(t) = nc,r +
1

ρc Jg(t)

∫ t

0

[ρc

T
nc(τ ) + Kg(λ̄c(τ ) − λa)

]
Jg(τ ) e−(t−τ)/T dτ . (67)

At this point, we have with (63), (66) and (67) three equations for the four unknowns J̇g(t), λ̄c(t), nc(t)
and λ(t). The missing equation for λ(t) will follow from the equations for the stresses. Since we have
here a homogeneous stress situation, the equilibrium equations are trivially satisfied. The pressure p
will follow from the condition that T11 = T22 = 0, while the remaining equation T33 = S will yield the
equation for λ(t) we are looking for.

The stresses T11 and T22 do not contain a collagen part, and they are give by

T11 = T22 = −p(t) + ce(F2
11(t) − 1) = −p(t) + ce

( λa

λ(t)
Jg(t) − 1

)
, (68)

Hence, T11 = T22 = 0 yields

p(t) = ce

( λa

λ(t)
Jg(t) − 1

)
. (69)

Next, T33 follows from (52)–(54) as

T33(t) = −p(t) + ce(F2
33(t) − 1) +

∫ t

0
νc(t, τ )

[
τ f (λc) − Te,33

]
(t, τ ) dτ

= ce

[λ2(t)
λ2

a
−

λa

λ(t)
Jg(t)

]
+

∫ t

0
νc(t, τ )

[
τ f (λc(t, τ ))− τe(τ )

]
dτ , (70)

with νc as given by (65), τ f (λc) by (55), and λc by (62), while τe stands for

τe(τ ) = Te,33(t) = ce

(λ2(τ )

λ2
a

− 1
)

. (71)

The missing equation for λ(t) is the simple one

T33(t) = S. (72)

Hence, we now have three equations for our three fundamental unknowns: Jg(t), nc(t) and λ(t); the
auxiliary variables νc(t, τ ), λc(t, τ ) and λ̄c(t) are determined by (65), (62), and (66), respectively.
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However, even for this most simple example this set of equations is already very complex and cannot
be solved analytically. Therefore, this set, which has only one independent variable, the time t , must
be solved by numerical integration. At this stage, we refrain from doing this; it remains an option for
further research.

9. Discussion and perspectives

In this paper, we have constructed a model for remodeling and volumetric growth in an arterial tissue,
considered as a constrained mixture of elastin and collagen and based on a continuum-mechanics ap-
proach. This is in contrast to several other approaches, for example, [Machyshyn 2008] and [Driessen
2006], who built their models in a more discrete way, both in time and space, directly aiming at a finite
element implementation. As far as we could compare the present continuous model with the discrete
model developed in [Machyshyn 2008], we found complete correspondence.

We established a complete system for the four essential unknowns in the problem of a loaded tissue:
the volumetric fraction of collagen, the Jacobian of the deformation (characteristic for the volumetric
growth), the stretch of the collagen fibers, and the stretch of the tissue. The derivation is based on the
classical balance laws of mass and momentum. Our model incorporates mass production, volumetric
growth, degradation of elastin, strain-induced preferred fiber orientation and collagen creation, isotropic
nonlinear (neo-Hookean) elastic behavior of elastin, and anisotropic (fibrous) nonlinear (exponential)
elastic behavior of collagen.

In this paper, we gave the general derivation of the continuous model, but only applied it to a simple
one-dimensional example. We did not perform explicit numerical calculations. This, together with a
treatment of more complex examples, was beyond the scope of this article. In the near future, we hope to
apply this model to more complex (tube-like) structures, and to do the necessary numerical calculations,
with the ultimate goal of an adequate model for the growth of aneurysms in cerebral blood vessels.
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