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RELIABILITY OF FIRST-ORDER SHEAR DEFORMATION MODELS
FOR SANDWICH BEAMS

LORENZO BARDELLA

We are interested in sandwich beams whose skin may be thick (as defined by H. G. Allen) and whose core
stiffness along the sandwich longitudinal axis may be large enough to influence the deflection (that is,
we also account for nonantiplane sandwiches), whereas the core is such that it is allowed to disregard its
deformability along its height (the direction of the applied load). For such sandwiches we are particularly
interested in investigating the reliability of simple models, such as the first-order shear deformation mod-
els, for accurate computation of the deflection in the linear elastic range. We therefore compare different
theories on the basis of finite element simulations and focus on the case of a propped cantilever beam
supporting a uniform load. In fact, this boundary value problem leads to slightly different conclusions
than those previously drawn based on statically determinate cases, such as in three-point bending. The
analysis suggests that known models may be largely inaccurate in predicting sandwich behaviour under
bending and shear, depending on a peculiarity of the actual sandwich kinematics indirectly describing
the interaction between skins and core, in turn due both to material and geometrical properties and to
boundary conditions.

1. Introduction

We focus on the reliability of simple models for the accurate computation of the macroscopic deflection of
sandwich beams, subjected to bending and shear, in the linear elastic range. We use the term macroscopic,
as in [Mai et al. 2007], to indicate that part of the deformation that in a homogeneous beam would be
described by the Timoshenko theory; this means that we neglect the deformation due to local stress
concentrations, which may be extremely important, under certain boundary conditions, in sandwiches
having extremely soft cores along the thickness direction [Frostig et al. 1992]. In particular, in the
analytical models presented, we will always consider cores able to keep skin distance constant during
deformation, besides, of course, being able to transmit shear stresses between the skins. Finite element
simulations will show that this is true for quite a large ratio between the elastic moduli of skins and
core, provided that the boundary conditions are properly modelled. We will also consider sandwiches
whose core stiffness along the longitudinal axis may be relevant, as this may happen in some important
applications [Bunn and Mottram 1993; Bardella and Genna 2001]; in other words, the sandwiches here
analysed are not necessarily antiplane, a term introduced by Allen [1969] to mean a sandwich whose
core has negligible normal stress along the longitudinal axis, so that the shear stresses may be taken as
uniform.

Keywords: sandwich beam, total potential energy, Ritz method, Allen’s superposition theory, Timoshenko beam theory,
Jourawsky shear theory, Saint-Venant principle, finite element method.
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1188 LORENZO BARDELLA

Figure 1. Parameters used for modelling the kinematics of a sandwich beam having
identical skins.

We restrict our attention to sandwiches whose skins have identical geometrical and mechanical prop-
erties.1 Also, the load is symmetric with respect to the width of the beam, so that there is no torsion.

It is well known that the relatively high shear compliance of sandwich beams makes an important
contribution to their macroscopic deflection [Allen 1969]. Unfortunately, because of the complex kine-
matics involved, the analytical computation of such a deflection is quite a difficult task, even in the
linear elastic range. The relevant kinematics can be approximately represented as in Figure 1. It consists
of a piecewise linear warping described by three unknown functions v, λc, and λs , such that v(x) is
the deflection of the sandwich longitudinal axis x and, denoting with ′ a derivative with respect to x ,
λc(x)v′(x) and λs(x)v′(x) are the total cross section rotations of the core and of the skins, respectively.
This description has been used in [Bardella and Genna 2000] as an extension of the kinematics adopted
by Allen [1969] (who assumed λs = 1), in order to also account for the effect of not-so-thin skins. Yu
[1959] and Krajcinovic [1971] also used the same piecewise linear kinematics for the flexural problem,2

but they described it in terms of different sets of independent functions of x . Krajcinovic choice allows
one to uncouple the Euler–Lagrange equations obtained by minimising the total potential energy (TPE)
functional, but the further differentiation required to obtain such a simplification makes things harder
concerning the specification of the boundary conditions.

1The extension of the methods described to the case of unequal skins is conceptually simple, albeit analytically entangled.
2The kinematics employed in [Krajcinovic 1971] also account for the core compressibility along y and for the bulging;

however, these modes of deformation turn out to be related to the axial problem (for which the beam remains straight), uncoupled
to the bending problem.
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A considerable amount of literature exists on laminate beam models based on kinematics richer than
the linear along y involved in the Timoshenko beam model, where transverse normal lines remain straight
during deformation, but inclined with respect to the longitudinal axis depending on the amount of shear;
this simple model for laminate beams is referred to as first-order shear deformation (FOSD) theory (see,
for example, the review of Ghugal and Shimpi [2001]). The zigzag kinematics described in Figure 1 is
the base for the so-called discrete-layer theories, often more accurate, but computationally more difficult
to deal with than the equivalent single-layer theories; the latter define the displacement field along the
longitudinal axis x as a C∞ continuous polynomial function of y. Examples of single-layer theories
are the third-order model of Silverman [1980], which applies to thick-skinned and nonantiplane sand-
wiches as those here concerned, or the second and third-order shear deformation theories of Khdeir and
Reddy [1997], applied to cross-ply laminated beams. More insight on the distinctions among different
approaches for the analysis of laminate structures, albeit for plates, can be found in [Yu et al. 2008] and
references therein.

Here, in order to test, discuss, and get insight on the reliability of FOSD models (the simplest among
the equivalent single-layer models), we compare their predictions with those of models based on the
piecewise linear kinematics of Figure 1 and the results of finite element simulations.

In particular, we focus on a propped cantilever sandwich beam supporting a uniform transversal load.
This example is of particular interest since, contrary to some statically determinate structures (such as
the three-point bending [Bardella and Genna 2000], the four-point bending, and the simply-supported
beam subjected to uniform load [Minelli 2007]), its deflection is inaccurately represented by all of the
following models:

(i) The model ensuing from the analytical procedure put forward by Bardella and Genna [2000] in order
to minimise the TPE, written in terms of the zigzag kinematics of Figure 1, based on the assumption
that λc and λs are constant (that is, independent upon x).

(ii) The model for thick skins and nonantiplane core deriving from Allen’s superposition theory [Allen
1969] (still one of the most quoted models for sandwiches).

(iii) The FOSD theory in which the shearing rigidity [Timoshenko and Gere 1990] is evaluated on the
basis of the Jourawsky approach [1856] and an energy principle, as accomplished by Bardella and
Genna [2000; 2001] (see also [Bert 1973]).

Instead, the finite element solution of the propped cantilever sandwich beam is pretty well represented by
the TPE approach in which the variation of λc and λs along x is accounted for, and this can be recognised
by resorting to the Ritz method.

This notwithstanding, the third method listed above, which can be reasonably assumed to be the best
possible FOSD model, may be extremely useful in the design because of its simplicity and accuracy (as
already been shown for a few cases in [Bardella and Genna 2001; Minelli 2007]; see also [Gordaninejad
and Bert 1989]). On the basis of our analysis, we then put forward that this method can be successfully
employed when the structure is such that λc and λs are approximately independent on x , so that, in our
opinion, one of the main goals becomes reaching a deep insight on this topic.

Outline of the paper. The paper is organised as follows. In Section 2 we provide and discuss the formulae
relevant for the examples concerned in the paper, and also summarise the theory related to the methods
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(i) and (iii) listed above, originally developed in [Bardella and Genna 2000]. In particular, Section 2.1
deals with the approach based on the TPE, in Section 2.2 we give the relevant results related to Allen’s
superposition method, and Section 2.3 summarises the FODT exploiting Jourawsky’s approximate theory
of shear and, for the sake of completeness, also considers other possible FOSD methods, including the
“thin skin” approximation [Allen 1969]. In Section 3 we compare the results obtained from the application
of the above theoretical models with those of finite element simulations. We close, in Section 4, with a
discussion and some remarks.

2. The linear elastic deflection of a sandwich beam

We consider a sandwich beam of total length l and width b, consisting of three homogeneous layers.
The sandwich has skins with identical thickness, t , and identical mechanical properties, whose relevant
Young and shear moduli are denoted by Es and Gs , respectively. The thickness of the core is indicated
with the symbol c, so that the distance between the centres of the two skins is d = c + t . The relevant
Young and shear moduli of the core are Ec and Gc. Let us recall that, with reference to the terminology
used in [Allen 1969], we are interested in a sandwich with thick skins and a nonantiplane core.

2.1. The total potential energy approach. The TPE minimum principle requires the choice of an admis-
sible displacement field over the sandwich. This approach leads rapidly to quite involved computations.
In [Allen 1969] it is used only in conjunction with the Ritz method, to obtain approximate solutions
for sandwiches with antiplane core and skins whose shear deformability turns out to be negligible. As
said, we refer our calculations to the kinematics sketched in Figure 1, from which it is straightforward
to compute the longitudinal strain εx and the engineering shear strain γxy , then the relevant normal and
shear stresses,3 and write the TPE functional 9 for a sandwich beam subjected to a transversal (meaning
acting along y) force P and a transversal distributed load q(x) as

9(v, λc, λs)=
Gcbc

2

∫ l

0

[
(1 − λc)v

′
]2dx +

Ecbc3

24

∫ l

0

[(
λcv

′
)′]2

dx + Gsbt
∫ l

0

[
(1 − λs)v

′
]2dx

+
Esbt3

12

∫ l

0

[(
λsv

′
)′]2

dx +
Esbt

4

∫ l

0

{[
(cλc + tλs)v

′
]′}2

dx − Pδ−

∫ l

0
q(x)v(x)dx, (1)

in which δ is the displacement of the point where P is applied.4 The actual solution of the problem
corresponds to

min
(v,λc,λs)∈K

9(v, λc, λs),

3The computed normal and shear stresses are respectively σ (i)x = Ei ε
(i)
x and τ (i)xy = Giγ

(i)
xy , with i = s in the skins and i = c

in the core. For isotropic materials the correct constitutive law would be σ (i)x = [Ei/(1 − ν2
i )]ε

(i)
x , where νi is the Poisson

ratio, which links the longitudinal strain with the longitudinal stress for the beam plane stress state characterised by the further
kinematic constraint of imposing a vanishing direct strain component along y. Anyway, since the use of that relation would
make the beam too stiff, we replace it with the Young modulus Ei , as usual in the engineering calculations for homogeneous
beams. This is actually based on the hypothesis of taking a zero direct stress component along y, so σy = 0; such a stress
assumption is incompatible with the kinematic approach which the TPE principle is based on, but, as is well known, works for
homogeneous beams. The removal of this assumption is a key point in the higher-order theory proposed by Frostig et al. [1992],
in which the sandwich core is treated as a plane stress continuum.

4If the sandwich were subjected also to axial loading (by, for instance, a distributed load r(x)), 9 would also be dependent on
the centre displacement component along x, uc (see [Krajcinovic 1971] about how to account also for the bulging deformation



RELIABILITY OF FIRST-ORDER SHEAR DEFORMATION MODELS FOR SANDWICH BEAMS 1191

where K is the set enclosing all the compatible fields. Usually the only requirement on λc and λs is that
they be suitably smooth, whereas v must always satisfy some essential boundary conditions, because in
any constrained section x0 at least one of the values v(x0) and v′(x0) is preassigned. A case in which
one also has to impose essential boundary conditions on λc and λs is that of a simply-supported beam
end with no warping allowed, for which λc(x0) = λs(x0) (or even λc(x0) = λs(x0) = 1); however, this
case, which has been shown to lead to an unfavourable sandwich behaviour [Krajcinovic 1971], will not
be considered here.

Within this approach, the bending moment M(x) and the shear force V (x) are given by

M =
1
6 Esbt3(λsv

′)′ + 1
2 Esbtd

[
(cλc + tλs)v

′
]′

+
1

12 Ecbc3(λcv
′)′, (2)

and
V = [Gcbc(1 − λc)+ 2Gsbt (1 − λs)]v

′. (3)

The TPE approach proposed by Allen [1969] is characterised by neglecting the shear compliance of the
skins, Gs → ∞. In this case, it is immediately recognisable from the functional (1) that the minimum of
9(v, λc, λs) is attained when λs = 1 and λc ∈ [−t/c, 1], the limits of this range corresponding to both
Gc → 0 and Ec → 0 or Gc → ∞, respectively. The fact that λc can be either positive or negative implies
that this modelling allows the core to be subjected to normal stresses, σx , whose moment resultant Mc

has opposite sign with respect to the moment M applied to the whole cross section, even though, under
this circumstance, Mc is usually far smaller than M . This behaviour, here and henceforth called “normal
stress inversion”, will be appreciated in discussing the finite element simulation described in Section 3.2.

Moreover, let us note that even though the same elastic moduli are chosen for skins and core, the
resulting model remains richer than that described by the Timoshenko theory for homogeneous beams
since in this case, as well as in general, λc 6= λs , and the warping still occurs. On the other hand, by
taking the limit t → 0, the model approximates that of Timoshenko in which the shearing rigidity, equal
to Gcbc, is, as is well known, overestimated.

Only by imposing λc(x)= λs(x) it is possible to single out from (2) the effective bending stiffness

D = Es

(
bt3

6
+

btd2

2

)
+ Ec

bc3

12
. (4)

Although λc(x)= λs(x) seems to be a crude approximation, for it means neglecting the warping, (4) is
a completely standard and widely accepted result for a thick skinned and nonantiplane sandwich (see,
for example, [Allen 1969; Zenkert 1997], and the methods of Sections 2.2 and 2.3). Hence, in the TPE
approach the hidden bending stiffness should be lower than D.

Setting to zero the first variation of (1) provides a nonlinear differential system of three Euler–Lagrange
equations in the three unknown functions v(x), λc(x), and λs(x), and the natural boundary conditions.
Solving the Euler–Lagrange equations is complicated, so we skip it, whereas it is of some interest to

mode), as

9(v, λc, λs , uc)=
1
2 Gcbc

∫ l
0(1 − λc)

2(v′)2dx +
1
24 Ecbc3 ∫ l

0(λ
′
cv

′
+ λcv

′′)2dx

+Gsbt
∫ l

0(1 − λs)
2 (v′)2dx +

1
4 Esbt

∫ l
0
[
(cλ′

c + tλ′
s)v

′
+ (cλc + tλs)v

′′
+ u′

c
]2dx

+Ecbc
∫ l

0(u
′
c)

2dx +
1

12 Esbt3 ∫ l
0(λ

′
sv

′
+ λsv

′′)2dx − Pδ−
∫ l

0 q(x)v(x)dx −
∫ l

0 r(x)uc(x)dx .
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consider the natural boundary conditions related to λc and λs . In fact, in the case of a simply-supported,
free to warp, and moment-free beam end (for example, in x = x0), a plausible set of conditions satisfying
the natural boundary conditions reads

v′′(x = x0)= 0, λ′

c(x = x0)= 0, λ′

s(x = x0)= 0. (5)

In particular, in the three-point bending, such conditions hold both in x = 0 and x = l.

The λ-constrained method. As proposed in [Bardella and Genna 2000], the TPE can be simplified if λc

and λs are assumed to be constant (that is, independent upon x). This is a compatible restriction and,
also, it is at least consistent with the natural boundary conditions (5) for the case of a simply-supported
beam section. This approximation, whose reliability will be discussed later on, allows the derivation of
analytical solutions. The TPE functional (1) becomes

9C(v, λc, λs)=
Gcbc

2
(1 − λc)

2
∫ l

0
(v′)2dx +

Ecbc3

24
λ2

c

∫ l

0
(v′′)2dx + Gsbt (1 − λs)

2
∫ l

0
(v′)2dx

+
Esbt

4
(cλc + tλs)

2
∫ l

0
(v′′)2dx +

Esbt3

12
λ2

s

∫ l

0
(v′′)2dx −

∫ l

0
q(x)v(x)dx − Pδ.

By imposing the stationarity of 9C with respect to the kinematic parameters, v, λc, and λs , one obtains

(i) an ordinary fourth-order differential equation governing the deformed shape v(x),

(ii) the natural boundary conditions on v(x), and

(iii) two optimum integral equations furnishing the values of both λc and λs , in terms of v(x), as

λc =
12Gc

∫ l
0 (v

′)2dx − 6Es t2λs
∫ l

0 (v
′′)2dx

12Gc
∫ l

0 (v
′)2dx + (6Es tc + Ecc2)

∫ l
0 (v

′′)2dx
, λs =

12Gs
∫ l

0 (v
′)2dx − 3Es tcλc

∫ l
0 (v

′′)2dx

12Gs
∫ l

0 (v
′)2dx + 4Es t2

∫ l
0 (v

′′)2dx
. (6)

Here and henceforth we will refer to this strategy for modelling the sandwich deflection as the “λ-
constrained method based on the TPE”. In the following, for the simple structures of interest here, we
will provide analytical solutions for v(x), to be coupled with (6) and given in terms of the parameter

α =

√
12Gcc(1 − λc)2 + 24Gs t (1 − λs)2

2Es t
[
t2λ2

s + 3(cλc + tλs)2
]
+ Ecc3λ2

c
, (7)

conveniently defined in integrating the Euler–Lagrange equation governing v(x). From the complexity
of these solutions, it is evident that this method becomes much too cumbersome for more complicated
structures.

Now we try to estimate the effective bending stiffness within this method. The assumed independence
of λc and λs on x allows one to define an average curvature

χ =
λcc + λs t

d
v′′,

so that (2) can be rewritten as

M =

(
D +

btc
12
(λs − λc)

2Es t2
− Ecc2

λcc + λs t

)
χ. (8)
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In regular sandwiches the skins are stiffer than the core, so that λs > λc and the sign of the term added
to D in the above relation coincides with the sign of

2Es t2
− Ecc2

λcc + λs t
.

This is difficult to foresee, although it easily turns out to be negative if the skins are very thin or the core
is almost as stiff as the skins.

Three-point bending. In this case δ = v(x = l/2) is the maximum deflection, v(x = 0)= v(x = l)= 0,
and q(x)= 0. The integration of the Euler–Lagrange equation for v furnishes

v(x)=


P
[
αx−sech(αl/2) sinh(αx)

]
α3
[
Esbt3λ2

s/3+Esbt (cλc+tλs)2+Ecbc3λ2
c/6
] , x ∈ [0, l/2],

v(l − x), x ∈ [l/2, l].
(9)

The system constituted by (6)–(7) and (9) can be solved numerically using as initial guesses for α, λc,
and λs the solutions furnished by the Ritz method, by, for instance, approximating v(x) with v̂(x) =

δ̂ sin (xπ/ l). The results of Bardella and Genna [2000; 2001] on three-point bending show a satisfac-
tory accuracy for this method. This therefore gives ground to the hypothesis, also corroborated by the
observation (5) about the natural boundary conditions, that in this case λc and λs are almost constant.

Propped cantilever beam supporting a uniform load p. This case is characterised by q(x)= p, P = 0,
v(x = 0)= 0, v′(x = 0)= 0, and v(x = l)= 0. The integration of the Euler–Lagrange equation for v(x),
to be coupled with (6)–(7), reads

v(x)=
pl2

α2
[
Esbt3λ2

s/3 + Esbt (cλc + tλs)2 + Ecbc3λ2
c/6
]{2

sech (αl)
α2l2 [cosh(αx)− 1] −

( x
l

)2

+
2[sech (αl)− 1] +α2l2

α2l2[αl − tanh (αl)]

[
tanh (αl)[cosh(αx)− 1] +αx − sinh(αx)

]}
. (10)

When discussing the results for this case, we will also consider the reaction force R within the support,
whose estimate is obtained by evaluating (3) at x = l.

The Ritz method. The Ritz method allows the direct, albeit approximated, minimisation of the functional
(1), without any constraint on the functions λc and λs . By exploiting this method, Minelli [2007] has
verified that assuming the independence of λc and λs on x seems to be numerically appropriate for some
simply-supported beams subjected to symmetric loading (including three and four-point bending).

Propped cantilever beam subjected to a uniform load. In this paper, we show that the “λ-constrained
method based on the TPE” is quite inaccurate for this case, where we can obtain accurate results only
by applying the Ritz method to the TPE, by choosing a discretisation dependent on 15 weights, to be
determined by setting to zero the first variation of the TPE functional, (1). In particular, λs and λc are free
from essential boundary conditions and have been approximated by means of a third-order polynomial (4
weights) and a seventh-order polynomial (8 weights), respectively, whereas the approximate deflection
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v̂(x) has been chosen to depend on 3 weights (w1 ≡ v̂(l/2), w2, and w3) in such a way that the natural
boundary condition imposing zero overall moment at the support is a priori fulfilled5, as

v̂(x)= 4w1

[
3
( x

l

)2
− 5

( x
l

)3
+ 2

( x
l

)4
]

+w2

[
−

5
8

( x
l

)2
+

19
8

( x
l

)3
−

11
4

( x
l

)4
+

( x
l

)5
]

+w3

[
−

27
16

( x
l

)2
+

93
16

( x
l

)3
−

41
8

( x
l

)4
+

( x
l

)6
]
. (11)

2.2. The Allen superposition method. We give the formulae for the Allen superposition method [Allen
1969], applied to the cases we are concerned with here. The method was formulated for antiplane
sandwiches and then extended to the nonantiplane case by adopting the further approximation that the
displacement field along the sandwich core be linear.

Three-point bending. The maximum deflection [Allen 1969] is given by

δ =
Pl3

48D
+

Pl

4Ĝ Â

(
1 −

Esbt3

6D

)2 (
1 −

2
αAl

tanh
αAl
2

)
,

in which D is the bending stiffness as given by (4),

Â =
bd2

c
, Ĝ =

Gc

1 +
c2

6nt (t+c)

, n =
Es

Ec
, αA =

√
6Ĝ Â

Esbt3
(

1−
1

1+3(d/t)2
) .

Note that for the antiplane case Ĝ = Gc.

Propped cantilever beam supporting a uniform load. For this case we have derived the relevant results
as follows. Allen’s method gives the deflection as the superposition of two transversal displacements as
v(x)= v1(x)+ v2(x), where, for the case concerned here,

v1(x)=−
6

Esbt (t2+3d2)

[
C1

α3
A

sinh (αAx)+
C2

α3
A

cosh (αAx)+
p
6

(
lx3

−
x4

4

)
− R

x3

6

]
+C4

x2

2
+C5x +C6,

v2(x)=
6

α2
A Esbt3

[
C1

αA
sinh (αAx)+

C2

αA
cosh (αAx)+

p
2
(2lx − x2)− Rx

]
+ C3,

in which R is the reaction force within the support (at x = l) that, together with the six integration
constants Ci (i = 1, . . . , 6) must be obtained by imposing seven independent boundary conditions. In
Allen’s method some boundary conditions are arbitrary. Based on the finite element model employed in
order to test the various theories presented, we have chosen the boundary conditions

v1(x = 0)= 0, v′

1(x = 0)= 0, v1(x = l)= 0,

v2(x = 0)= 0, v′

2(x = 0)= 0, v2(x = l)= 0,(
1 +

3d2

t2

)
v′′

1 (x = l)+ v′′

2 (x = l)= 0,

5The λ-constrained method is useful also because it could be exploited to obtain good shape functions, such as (10) for
the propped cantilever beam. However, finding the optimum discretisation for the functions involved in the TPE is beyond the
scope of this paper.
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the last one imposing that the overall moment must vanish at x = l. In solving this system a limit of this
model immediately emerges: the estimate of the reaction R turns out to be equal to the classical value
of the homogeneous Bernoulli beam theory, R = 3pl/8, independently upon the sandwich geometry and
material constants. We obtain for the midspan displacement

v
( l

2

)
=

pl4

32Esbt (t2 + 3d2)

{
1 +

18
(αAl)2

(d
t

)2
[

6 −

(
1 +

10
αAl

sinh
αAl
2

)
sech2 αAl

4

]}
,

where, by the way, we would find it artificial to single out a “pure bending term” involving the bending
stiffness D given by (4).

2.3. First-order shear deformation models. Beside their analytical complication, both the Allen and
the total potential energy methods have other drawbacks, most notably that of failing to yield accurate
(or, even, correct) results for special cases, such as that of thin skins, or that of a homogeneous beam.
For this reason FOSD models are developed in order to try and obtain the simplest possible models
able to predict the sandwich deflection. Within this framework, the deflection of a sandwich beam is
computed, under general loading and constraint conditions, by exploiting the well known formulae for
the homogeneous Timoshenko beam. Each different FOSD model is characterised by a different choice
of the shearing rigidity S [Timoshenko and Gere 1990], whereas there seems to be complete agreement
among researchers about the use of the bending stiffness D provided by (4).

For statically determinate beams, the maximum deflection reads

δ =
Ql3

ω1 D
+

Ql
ω2S

,

where l is the beam length, Q is a proper combination of the transversal loads applied to the beam (Q is
the magnitude of their resultant if they are all equally oriented), and ω1 and ω2 are numerical constants
which depend on both loading and constraint conditions.6

Instead, in the case of a propped cantilever beam supporting a uniform transversal load p, the formulae
for the midspan displacement and the reaction force within the support, respectively, read

v
( l

2

)
=

pl4

24D + 8l2S

(
21
16

+
l2S
24D

+
3D
l2S

)
, R =

12D + 3l2S
24D + 8l2S

pl.

In general, a complicated problem arises from the need to evaluate the sandwich shearing rigidity S.7 In
fact, as already pointed out, the presence of a relatively soft core and of thick skins makes the kinematics
of a sandwich beam much different from that of a standard homogeneous beam. Hence, one of the limits
of this approach is that it cannot predict local stress concentrations, that, in sandwich beams in which the

6For instance, for a simply-supported beam subjected to four-point bending,

ω1 =
32(

1 − l p/ l
)[

1 −
1
3
(
1 − l p/ l

)2 ] , ω2 =
4

1 − l p/ l
, (12)

where l p is the distance between the two symmetrically applied concentrated loads, each of magnitude P/2, and Q = P . Of
course the particular case of three-point bending is obtained by setting l p = 0 in (12), so that ω1 = 48 and ω2 = 4.

7Even for homogeneous beams there is a body of literature, starting with Timoshenko [1921], about how to evaluate the
shearing rigidity; see [Renton 1991; Hutchinson 2001] and references therein.
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stiffness of the core is much lower than that of the skins, are amplified due to the inapplicability of Saint-
Venant’s principle. For instance, this approach neither can account for the stiffening due to overhangs
(which is instead qualitatively describable with Allen’s superposition theory [Allen 1969]), nor has any
chance to capture the “normal stress inversion” in the core (as defined in Section 2.1).

A FOSD model based on an energy principle and Jourawsky’s theory. Bardella and Genna [2000] have
put forward a FOSD model based on the classical approximate shear force treatment by Jourawsky [1856]
and on an energy principle by which it is possible to obtain the estimate SE of the shearing rigidity S by
equating the external and internal works of deformation,

V 2

2SE
=

1
2

∫
Ac

τ 2
c

Gc
d A +

1
2

∫
As

τ 2
s

Gs
d A, (13)

where V is the shear force applied to the sandwich cross section, τc and τs are the total shear stresses in
the core and skins, respectively, and Ac and As are the surfaces occupied by the core and the skins (of
areas cb and 2tb, respectively).

By initially assuming that plane sandwich sections remain plane during the deformation, one can
develop the classical beam analysis for shear stresses to evaluate them over the sandwich cross section
[Jourawsky 1856]. This allows the shear stresses to be estimated by some averages of them.8 By consid-
ering the shear stress components along the shear force direction y and its normal z, Jourawsky’s theory
estimates τ xz = 0 everywhere, whereas

τ (s)xy =
V Es

2D
(td + c2/4 − y2),

τ (c)xy =
V

2D
[Es td + Ec(c2/4 − y2)],

so that we take τs ≈ τ (s)xy and τc ≈ τ (c)xy in (13) and, after some lengthy algebra, we can approximate SE

with the following shear rigidity SJ , that can be written by singling out the form factor of a rectangular
homogeneous beam as

SJ =
5
6

(
1

bcGc(1 +αc)
+

4
2btGs(1 +αs)

)−1

, (14)

in which the interaction coefficients αs and αc, whose values provide a measure of the deviation from
the Reuss bound of the shear stiffness, turn out to be, with n = Es/Ec,

αc =

c3t
3n

+ c2t2
(

1 +
7

3n

)
+ 2ct3

(
7 +

4
3n

)
+ 35t4

+
32t5

c
+

32t6

3c2

c4

6n2 +
5c2td

3n
+ 5t2d2

, (15)

8Accounting for the exact linear elastic solution for the shear stresses (for example, provided in [Pagano 1970]) would lead
to a much too cumbersome algebraic problem.
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αs =

c6

n2t4 +
12c5

nt3 +
12c4

t2

(
3 +

2
n

)
+

16c3

t

(
9 +

1
n

)
+ 230c2

+ 167ct + 48t2

10c2 + 25ct + 16t2
. (16)

The formulae (14)–(16) particularise nicely to the case of homogeneous beams, obtainable in various
ways (for example, t → 0, or c → 0, or n → 1 and Gc/Gs → 1). This result turns out to be an
explicit particularisation of the procedure proposed by Bert [1973] for the simplified treatment of the
shear deformation in beams with heterogeneous cross section.

We finally note that the shearing rigidity (14)–(16) evaluated by the Jourawsky theory is related to a
cubic displacement field that can be somehow richer than the piecewise linear warping the TPE approach
is based on (see Figure 1). Therefore, contrary to what was pointed out about the bending stiffness (see
Section 2.2), the shearing rigidity hidden behind the TPE minimisation can be higher than (14)–(16).
Therefore, between these two methods, we find it difficult to a priori establish which is the most accurate.

The FOSD model based on thin skins and antiplane core. For the sake of completeness, in the dis-
cussion we will also consider a simpler model, in which the shearing rigidity is estimated under the
assumptions of thin skins and antiplane core [Allen 1969], ST A = Gcbd.

Discussion of other FOSD models. In order to avoid the lengthy computation required to obtain (14)–
(16), which can be seen to be equivalent to the computation of the so-called form factor, some authors, for
some other heterogeneous beams [Mai et al. 2007], prefer a less accurate estimate of the shearing rigidity.
This is obtained by scaling the Voigt bound of the shear stiffness by the shear coefficient, defined as the
ratio between the maximum shear strain and the shear strain average over the section, still evaluated
through Jourawsky’s theory [Timoshenko and Gere 1990]. This procedure may lead to highly inaccurate
estimates of S (and in fact this is what happens in our benchmark) if the shear moduli of skins and core
are very different from each other. In fact, under this circumstance, the Voigt bound is much too large.
For this reason, we do not report the expression for the estimate of S related to this scheme, that could
instead be appropriate for composite beams whose homogeneous parts all have their centre lying on the
neutral axis.

Instead, we found out that multiplying the Reuss bound of the shear stiffness by the ratio between the
maximum shear stress and its average turns into a better estimate of S, that reads

SR =
Gc

1 + 2Gc/Gs

b2(c + 2t)2

2D

(
Es td + Ec

c2

4

)
.

Even though the use of SR will be shown provide better results than those obtainable by employing SJ

for the particular example of Section 3.2, in general, SR is expected to be a worse estimate than SJ , and
this is evident from the inadequate particularisation of SR to the homogeneous case.

3. Comparison with finite element simulations

In order to verify the accuracy of the methods reported in Section 2, we have run some finite element
simulations by means of the code ABAQUS [2006], on an arbitrary geometry of sandwich beam for
several values of the ratios n = Es/Ec and t/c.
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The mesh (recognisable in the deformed shape of Figure 2, related to a propped cantilever beam sup-
porting a uniform load) consists of eight-noded plane stress continuum elements with reduced integration.
The accuracy of the results has been checked by properly refining the mesh. How concentrated loads
and constraints are modelled is extremely important when n becomes large, because of the lack of Saint-
Venant’s principle for these beams. Depending on the way concentrated loads are actually applied, there
may be, for instance, the need to account for the core deformation along y [Frostig et al. 1992]. Since we
are here interested in the macroscopic beam deflection (that neglecting the effects of the load diffusion,
as explained in Section 1), in our analyses, concentrated external loads are modelled by applying four
equal concentrated forces in the following four points of the section concerned: the top point of the upper
skin (y = − c/2 − t), both the upper and the lower interface points between skin and core (y = ±c/2),
and the bottom of the lower skin (y = c/2+ t). Any support is modelled by constraining the displacement
along y of all the nodes of the section concerned. Analogously, the encastré condition is enforced by
pinning all the section nodes; the deflection is taken as the displacement of the section centre (y = 0).

Figure 2. Finite element simulation of the deflection of a propped cantilever beam
supporting a uniform load, deformed shape. The relevant geometrical and material
parameters are l = 200 mm, t = 5 mm, c = 20 mm, Es = 16000 MPa, Gs = 6154 MPa,
Ec = 100 MPa, and Gc = 50 MPa.

3.1. Three-point bending and other statically determinate cases. The results found in [Bardella and
Genna 2000; 2001] are shown in Figure 3 for four relevant approaches among those considered in
the previous section. The results are given in terms of the percentage error on the midspan deflection,
computed using the finite element solution as a reference solution, and plotted against the ratio t/c for
four different values of n. In the nonantiplane cases the relevant shear modulus of each layer is obtained
by dividing the Young modulus by 2.6, whereas the antiplane case is approximated by n = 1600000,
Gs = Es/2.6, and Gc = Es/6.4.

It is apparent that the Jourawsky-based FOSD method of page 1196 is the only one exhibiting ac-
ceptable accuracy over the whole range of variable considered; also, beside the inaccurate thin skin
approximation, it is the only one whose equations particularise without relevant problems to both t/c → 0
and n → ∞.

Beside the fact that the complicated λ-constrained method of minimizing the TPE functional becomes
too stiff when the skins are very thin,9 it is not as accurate as expected. Since Minelli [2007] has verified,

9This does not hold if the core is antiplane, the case in which the TPE approach becomes difficult to deal with from the
numerical viewpoint if t/c � 1.
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(a) Antiplane sandwich
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(b) n=4

Figure 3. Comparison among different methods for evaluating the maximum deflection
of a three-point bending sandwich beam with respect to finite element results, for the
antiplane sandwich (upper left) and for n = 4, n = 2, and n =

4
3 .

by exploiting the Ritz method, that assuming λc and λs constant is numerically quite appropriate for three-
point bending, we argue that the reason for the not-so-good accuracy lies in the inconsistency between the
use of a trilinear kinematic model and the strain field ensuing from the shear stress distribution. Hence,
the source of error is mostly due to the TPE approach itself, not to the approximated way the minimum
is attained with the λ-constrained scheme.

In [Bardella and Genna 2000; 2001] similar results are given for a even larger range of t/c, in particular
t/c ∈ (0, 3]. Also, for such unrealistic geometries, the FOSD method based on Jourawsky’s theory turns
out to be the most accurate, overall.

Similar conclusions as those above have been drawn by Minelli [2007] for other cases, such as those
of simply-supported beams subjected to uniform load and four-point bending.

Gordaninejad and Bert [1989], based on [Bert 1973], developed and implemented into finite elements
a FOSD model also suitable for sandwiches of unequal skins and layers with bimodular materials, whose
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particularisation to the case of a symmetric cross section turns out to be coincident with the Jourawsky-
based FOSD method of page 1196. For three different types of cross section, Gordananinejad and Bert
successfully tested the method for the cases of cantilever and simply-supported beams subjected to uni-
form loads, even though they just compared the results with the classical ones, consisting of a FOSD
theory in which the shearing rigidity is given by the Voigt upper bound of the shear stiffness.

3.2. Propped cantilever beam supporting a uniform load. We consider a sandwich beam characterised
by the following relevant geometrical and material parameters: l = 200 mm, t = 5 mm, c = 20 mm,
Es = 16000 MPa, Gs = Es/2.6, Ec = 100 MPa, and Gc = Ec/2. Many other combinations of parameters
have been tested without finding any other relevant results beside those emerging from the quite realistic
situation underlined by the given data. The finite element deformed shape is given in Figure 2, where,
by the way, one can observe the trilinear warping at the simply-supported right end (x = l). Moreover,
we note that in this case the effect of the core deformation along its thickness is negligible, even though
n = 160; of course, this is also due to the way in which the constraints have been modelled.

For the models considered, Table 1 reports the percentage errors computed with respect to the finite
element solution, referring to the midspan displacement v(l/2), the reaction force R at the right end
support (x = l), and the moment within the encastré (x = 0), computed as M0 = pl2/2 − Rl. Moreover,
we consider the following global percentage errors on the discrepancy between the finite element and
theoretical deformed shapes,

E1 =

∑N
i=1

∣∣v(F E)
i − v

(T H)
i

∣∣∑N
i=1

∣∣v(F E)
i

∣∣ × 100, E2 =

∑N
i=1
(
v
(F E)
i − v

(T H)
i

)2∑N
i=1
(
v
(F E)
i

)2 × 100, (17)

where v(F E)
i is the displacement evaluated by means of the finite element simulation in the i node on the

beam longitudinal axis x , v(T H)
i is the corresponding displacement predicted by the theory considered,

and N is the number of nodes lying on x in the mesh employed (N = 41, in the case concerned here).
The sole method providing results accurate enough is the direct Ritz method, with the discretisation

described in Section 2.1, whose weights for the deflection (11) turn out to be w1 ≈ 2.9585(p/b)mm3/N,

Percentage errors Error on v(l/2) Error on R Error on M0 E1, (17)1 E2, (17)1

TPE: Ritz (15 weights) −3.23 −1.21 6.72 3.62 0.137
TPE: Ritz (λs constant) −3.35 4.39 −24.4 3.73 0.142

TPE: λ-constrained −6.40 7.16 −39.9 7.46 0.518
Scaled Reuss bound 12.4 3.84 −21.4 18.6 3.58
Jourawsky approach 21.6 4.50 −25.1 28.5 7.64

Allen’s method 26.9 −11.5 64.2 38.6 17.1
Thin skin method 51.2 6.28 −35.0 60.0 33.0

Table 1. Percentage errors, with respect to the results of a finite element simulation, of
various models in predicting the midspan deflection v(l/2), the support reaction force R,
the encastré moment M0, and the global deformed shape of a propped cantilever beam
subjected to a uniform load. Geometric and material parameters: l = 200 mm, t = 5 mm,
c = 20 mm, Es = 16000 MPa, Gs = 6154 MPa, Ec = 100 MPa, and Gc = 50 MPa.
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Figure 4. Ritz method for the variation of λc along the longitudinal axis of a propped
cantilever beam supporting a uniform load. Geometric and material parameters: l =

200 mm, t = 5 mm, c = 20 mm, Es = 16000 MPa, Gs = 6154 MPa, Ec = 100 MPa, and
Gc = 50 MPa.

w2 ≈ −229.9(p/b)mm3/N, and w3 ≈ 64.57(p/b)mm3/N. Such a solution highlights that for this case λc

varies between a minimum value a little bit greater than −t/c ≡ −0.2 (which, as observed in Section 2.1,
corresponds to an inefficient core if λs ≡ 1; see also [Allen 1969]) attained at the encastré (x = 0)
and a maximum close to 0 in x ≈ 0.7l (see Figure 4). Even though λs varies within a quite limited
range, as shown in Figure 5, its variation, too, has to be accounted for if one wants to be accurate
in the stress computation. In fact, assuming λs constant (without changing the discretisation adopted
for v and λc, so that the minimisation now depends on 12 weights) leads to an error on the reaction
force R equal to 4.39%, producing a largely incorrect value of the moment M0 at the encastré, which
turns out to be underestimated by 24.4%. We have also verified that this discrepancy remains almost
unaltered by improving the discretisations for v and λc while keeping λs constant (its value turns out to
be λs ≈ 0.9915). As it can be observed from Figures 4 and 5, the natural boundary conditions (5), in
x = l, are approximately well met by the chosen discretisation (recall that we have a priori imposed the
natural boundary conditions on v(x) only).

Also the λ-constrained method to minimise the TPE provides a perhaps acceptable approximation of
the deformed shape, but it is quite inaccurate in the reaction force computation. We note that an error of
7.16% on R leads to an underestimation of M0 of about 40%, and, of course, this strongly and negatively
affects the normal stress evaluation. This method gives in this case the stiffest response; this is confirmed
by computing the estimate (8), by which the effective bending stiffness is larger than D by about 13%.

The actual inefficiency of the core at the encastré is confirmed in Figure 6, where, given a load
p = 1 N/mm and a width b = 50 mm, we report the contour of the normal stress σx obtained by means
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Figure 5. Ritz method for the variation of λs along the longitudinal axis of a propped
cantilever beam supporting a uniform load. Geometric and material parameters: l =

200 mm, t = 5 mm, c = 20 mm, Es = 16000 MPa, Gs = 6154 MPa, Ec = 100 MPa, and
Gc = 50 MPa.
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Figure 6. Finite element simulation of the deflection of a propped cantilever beam
supporting a uniform load: normal stresses along the longitudinal axis at the encastré.
The relevant data are p = 1 N/mm, l = 200 mm, t = 5 mm, c = 20 mm, b = 50 mm,
Es = 16000 MPa, Gs = 6154 MPa, Ec = 100 MPa, and Gc = 50 MPa.



RELIABILITY OF FIRST-ORDER SHEAR DEFORMATION MODELS FOR SANDWICH BEAMS 1203

of the finite element analysis. Each skin mostly bends locally around its own midaxis parallel to z, both
skins being subjected to substantial compression and tension in their lower and upper parts, respectively.

The foregoing observations imply that in this case the only procedure, among those presented, able to
describe the stress distribution is the TPE minimisation accounting for the variations of both λc and λs .
However, the chosen 15 parameter discretisation could be improved to obtain more accurate values for
the stresses. In fact, for example, the normal stress in the skins is given by

σx = Es
[
(λ′

cv
′
+ λ′′

cv)c/2 + (λ′

sv
′
+ λ′′

s v)(y − c/2)
]
, y ∈ [−c/2 − t,−c/2] ∪ [c/2, c/2 + t],

and, at the encastré, the employed discretisation allows one to predict, for both skins,

−2.23 MPa ≤ σx ≤ +3.20 MPa,

to be compared with the contour of Figure 6; to this purpose, note that the maximum value reported in
the legend is an approximated extrapolation, whereas the relevant maximum stress computed in a Gauss
point is σx = + 3.54 MPa. We also note that computing the bending moment M0 by evaluating Equation
(2) in x = 0 leads to a value different by about 10% from pl2/2 − Rl. Even though such a discrepancy
diminishes as the discretisation is improved, in order to describe phenomena such as the slightly different
bending behaviour of the two skins, due to the fact that in the finite element model the load is actually
applied on the upper sandwich surface, one should also account for the core deformability along y (see,
for example, [Krajcinovic 1971; Frostig et al. 1992]). On the other hand, one could obtain results closer
to those predicted by the beam theory adopted if the distributed load were uniformly applied as a body
force in the finite element simulation; in this case, for the normal stress computed at the Gauss points at
the encastré section, we obtain −2.73 ≤ σx ≤ +3.28 MPa, equally distributed on both skins.

Finally, we note that the FOSD order model based on Jourawsky’s theory is much more accurate than
Allen’s superposition model, mostly concerning the support reaction force. In this regard, the accuracy of
the Jourawsky approach is far better even than that obtained by means of the TPE λ-constrained method.
The results of the scaled Reuss bound (the FOSD model described just before Section 3) are believed to
be so good by chance, and are reported just for the sake of curiosity. The thin skin approximation fails
badly, also because here the skins are quite thick.

4. Discussion and concluding remarks

We have considered various methods for computing the deflection v(x) of sandwich beams, of identical
skins, subjected to bending moment and shear, mostly aiming at finding insight on the reliability of
FOSD models, that is, those making use of the standard formulae for displacements of the homogeneous
Timoshenko beam.

A simple and often accurate FOSD method, put forward in [Bardella and Genna 2000] (see also [Bert
1973]), consists of estimating the shearing rigidity by means of an energy principle and the Jourawsky
approximate treatment [Jourawsky 1856] of the shear problem for beams. The only difference between
this Jourawsky approach and other FOSD theories, such as the well known method based on the approx-
imation of thin skins and antiplane core [Allen 1969], lies in the evaluation of the shearing rigidity S.
Instead, all these methods estimate the bending stiffness D by assuming that plane sandwich sections
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remain plane during deformation, corresponding to a linear displacement field, whereas the estimation
of S by means of Jourawsky’s theory turns out to be based on a cubic displacement field.

The FOSD method based on the Jourawsky approach has been shown to furnish accurate results for
the cases of three and four-point bending and for simply-supported beams subjected to uniform load
[Gordaninejad and Bert 1989; Bardella and Genna 2000; 2001; Minelli 2007], all statically determinate,
symmetrically loaded structures in which the bending moment does not change sign along the beam
length. Concerning the interlaminar shear stress computation, Heller [1969] determined the conditions
under which there is a satisfactory agreement between the results of Yu’s model [1959] (based, as our
TPE approach, on the kinematics of Figure 1) and those obtained by means of Jourawsky’s formulae,
still in sandwich beams whose shear force is statically determinate. In particular, Heller exploited the
cases of a cantilever beam with a concentrated load at the free end and of a beam with both ends fixed,
subjected to a uniform load. This allowed Heller to skip the crucial problem of choosing a FOSD model
for the deflection evaluation. For such particular cases, Heller concluded that the Jourawsky theory is
accurate enough if n < 100 or if t/c � 1 (see also [Allen 1969]).

Clearly, one of the advantages of any FOSD method consists of allowing the use of the classical formu-
lae for the deflection of homogeneous beams to compute the deflection of sandwich beams, whereas both
the Allen superposition method and the TPE approach may require, for every different set of boundary
conditions, a new ad hoc integration that may be quite complicated.

The TPE approach is rigorously based on a suitable kinematics describing the warping. Here, we
have considered the trilinear warping represented in Figure 1, known to provide an accurate description
of the sandwich behaviour. Because of the chosen kinematics, hidden behind the minimisation of the
TPE functional there has to be a bending stiffness lower than, and, probably, a shearing rigidity larger
than those employed in the FOSD model based on the Jourawsky approach. We think that this is the
main reason why it is a priori uncertain which of these methods provides more accurate results.

Moreover, the analytical minimisation of the TPE functional based on the trilinear kinematics of
Figure 1 is unfeasible, even for the simplest sandwich structures. Bardella and Genna [2000] have found
a closed-form solution based on the hypothesis that both the ratio between the rotations of the core and
of the longitudinal axis, λc, and the ratio between the rotations of the skins and of the longitudinal axis,
λs , are constant (or independent on the position along the longitudinal axis x). This hypothesis turns out
to be appropriate for the cases mentioned above, in which the Jourawsky approach also exhibits good
accuracy, often also in terms of stresses.

We have found that in the case of a propped cantilever beam supporting a uniform load, for a par-
ticular but not totally unrealistic choice of geometrical and material parameters, the direct numerical
minimisation of the TPE functional (by a proper approximation of the unknown functions — v, λc, λs —
involving 15 weights to be computed by imposing stationarity) is the only way, among those presented,
to provide accurate results in terms of both displacement and bending moment, having also shown that
the assumption of independence of both λc and λs upon x is inappropriate in this case. In particular,
even though λs turns out to vary within a limited range (λs ∈ (0.968, 1) in the benchmark considered),
we have observed that assuming λs to be constant (in the literature it is even often set λs = 1) in the TPE
minimisation can be acceptable for the deflection computation, but may lead to quite inaccurate values
for the stresses.
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Finally, based on all above, we put forward that the convenient FOSD method based on Jourawsky’s
theory should always be able to describe the deflection v when λc and λs turn out to be approximately
constant over the sandwich length, which seems to happen mostly when the bending moment does not
change sign along the sandwich length. Getting a better insight on this could be extremely useful for
engineering practice.
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PERIODIC CONTACT PROBLEMS IN PLANE ELASTICITY

JOSEPH M. BLOCK AND LEON M. KEER

Various methods for solving the partial contact of surfaces with regularly periodic profiles — which
might arise in analyses of asperity level contact, serrated surfaces or even curved structures — have
previously been employed for elastic materials. A new approach based upon the summation of evenly
spaced Flamant solutions is presented here to analyze periodic contact problems in plane elasticity. The
advantage is that solutions are derived in a straightforward manner without requiring extensive experi-
ence with advanced mathematical theory, which, as it will be shown, allows for the evaluation of new
and more complicated problems. Much like the contact of a single indenter, the formulation produces
coupled Cauchy singular integral equations of the second kind upon transforming variables. The integral
equations of contact along with both the boundary and equilibrium conditions provide the necessary
tools for calculating the surface tractions, often found in closed-form for regularly periodic surfaces.
Various loading conditions are considered, such as frictionless contact, sliding contact, complete stick,
and partial slip. Solutions for both elastically similar and dissimilar materials of the mating surfaces are
evaluated assuming Coulomb friction.

1. Introduction

Understanding the microscopic interaction of real rough surfaces in contact is difficult. Mathematical
solutions for the contact of real rough surfaces are complicated and closed form solutions are limited.
One simplifying assumption is to approximate asperities or even smooth wavy surfaces as sinusoidal,
which allows for greater analytic feasibility, assuming the wavelength is much larger than the amplitude
of the wave. Physically, the sine wave represents the first term in a Fourier decomposition of an actual
rough surface. Asperity contact and geometrically wavy surfaces are the centerpieces of tribological
phenomena such as friction, wear and fracture. Other periodic geometries are of particular tribological
and mechanical interest as well. In addition to the normal contact of periodic surfaces, other modes of
contact such as sliding, partial slip, and complete stick of mating surfaces become increasingly important
when studying different types of failure, such as fretting fatigue, creep failure, and crack nucleation.

The problem of smooth, elastic periodic surfaces in contact has been solved using various methods and
in many different contexts; many of the contributions to the area of regularly wavy contact are described
below. The first solution is credited to Westergaard [1939], who found a closed form solution for the
contact problem of an elastic half-space with a wavy surface by utilizing complex stress functions for a
sinusoidal normal pressure. Westergaard derived expressions for the surface tractions and the dependence
of the contact area on applied pressure. He also showed that for light loading, that is, for a small area of
contact, Hertzian contact of cylinders is recovered. England and Green [1963] also employed complex

Keywords: periodic contact, plane elasticity, Cauchy singular integral equations, elastic wavy surfaces.
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potential functions to solve the problem of an infinite row of punches upon a half-space. Their formulation
reduces to an integral of the Abel type to determine the extent of contact.

Using a stress function approach, Dundurs et al. [1973] solved an integral of the Abel type for two
wavy surfaces with aligned peaks of the same amplitude. The mixed boundary conditions for the contact
and stress free regions lead to a set of dual series equations [Sneddon 1966]. Exploiting the orthogonality
of Legendre polynomials and the Mehler–Laplace integral yields closed form solutions for the extent of
contact for a given level of loading and distribution of contact pressure. Johnson [1985b] obtained closed
form asymptotic results for light loading and nearly complete contact of surfaces having orthogonal two-
dimensional waves of equal amplitude and wavelength.

Two books on contact mechanics, [Hills et al. 1993] and [Johnson 1985b], dedicate entire chapters to
periodic contact problems. Starting with the Flamant solution for a concentrated force on a half-space,
both sources derive integral equations with a Hilbert kernel to determine surface stresses. Analytical solu-
tions for periodic contact are limited in both books; they cite the Westergaard solution and then statistical
and numerical methods for rough contact. A recent book by Cai and Lu [2000] extended Muskhelishvili’s
approach [Muskhelishvili 1992] to periodic plane elasticity. Expressed as Riemann–Hilbert boundary
value problems, they are solved using complex variables and Hilbert kernels. Systematically, the authors
work out solutions for periodic contact problems, crack problems, anisotropic surfaces, moving loads,
and finally doubly periodic problems. Frictionless normal contact and sliding contact with Coulomb
friction are worked out for flat, inclined, and circular punches.

Kryshtafovych and Martynyak [2000] considered frictional contact of elastic half-spaces with periodic
surface relief for isotropic and anisotropic solid surfaces. The method of interface gaps reduces the
problem to a singular integral equation, which is numerically solved. The authors also derived a cotangent
kernel for periodic profiles in a general form, which is reduced to a Hilbert kernel. A closed form solution
was obtained for an anisotropic half-plane in contact with a rigid wavy body [Krishtafovich et al. 1994].
A series of papers by Kuznetsov on periodic contact with friction [Kuznetsov 1975], with a fluid lubricant
[Kuznetsov 1985], for a polymeric material [Kuznetsov and Gorokhovsky 1978], and with depth-varying
Poisson’s ratio [Kuznetsov 1983] have been published, in which he utilizes the theory of automorphic
functions. Panek [1975] solved the normal contact of an elastic, regularly wavy strip pressed between
flat surfaces by reposing the problem as an infinite, straight strip indented by regularly wavy surfaces.
He determined the local contact stress and heat conduction of the wavy strip by means of dual series
equations and a Fredholm integral equation of the second kind.

Nosonovsky and Adams [2000] studied the dry, steady-state frictional sliding of elastic, wavy bodies
in two dimensions. A Cauchy singular integral equation of the second kind is derived from integral trans-
forms and Fourier series and then numerically solved using Jacobi polynomials. Based on Staierman’s
general solutions for periodic contact [Schtaierman 1949], Ciavarella [1998a; 1998b] provided Cattaneo–
Mindlin partial slip results for a few periodic geometries with two bodies of the same material. Ciavarella
assumes that the periodic profiles chosen demonstrate self-similarity and thus the correction term in the
shear traction is of the same form as the normal traction. He also explains why flat punches must either
completely stick or slip entirely and cannot undergo partial slip for elastically similar materials. Manners
[1998] analyzed more complicated periodic half-space profiles in partial contact with a flat rigid plane.
The crux of the analysis is based on a cotangent transform, which allows for a simple method of finding
the surface pressure for wavy surfaces with a finite number of harmonics. Manners later extended his
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analytical method to a numerical one for random rough profiles in order to determine the extent of contact,
which is not known a priori [Manners 2003].

Carbone and Mangialardi [2004] recently published a paper on the adhesion and friction between an
elastic half-plane and a rigid wavy surface which has application to tire-road contact. By imposing a
sliding velocity that is much smaller than the sound velocity in the solids, an eccentricity, e, is created.
The authors also require the large-scale viscoelastic behavior to be neglected so that linear elasticity
theory can be employed. The eccentricity gives rise to an antisymmetric contribution to the surface stress.
The adhesion is modeled by superposing Koiter’s solution for an infinite row of collinear cracks with the
contact problem, as was first performed by Johnson [1995]. Linear elastic fracture mechanics provides
equilibrium values for the eccentricity and contact region of the adhered surfaces. Friction coefficients
and conditions for the surfaces to jump in and out of contact are evaluated. Carbone and Decuzzi [2004]
solved the solution for an infinitely long elastic beam adhered to a wavy foundation. It was found that
the surface energy, amplitude, and thickness of the beam are the main contributors to the deformation of
the strip. Adams [2004] considered the adhesive contact of two elastic wavy surfaces assuming Maugis’
model of adhesion [Maugis 2000]. Papkovich–Neuber potentials transform the boundary conditions into
a triple series, which leads to a singular integral equation that is solved numerically. A loading cycle is
developed, which is characterized by discontinuities in the form of a hysteresis.

As shown above, periodic contact problems have received much attention and analysis. At the same
time, many rather simple periodic problems in plane elasticity remain unsolved. This fact is partly due
to the complicated nature of the mathematical techniques previously used and partly due to a misun-
derstanding of the capability of the Flamant solution. It will be shown here that for periodic contact, a
summation of periodically spaced Flamant solutions must be used. The resulting integral equations result
in a cotangent kernel, which can be transformed to a Hilbert kernel by a simple change of variables. This
cotangent kernel was first derived by Schtaierman [1949] for a very general case of periodic contact and
later by Schmueser and Comninou [1979] for a periodic array of interface cracks. The advantage of this
formulation is that solutions can be solved in a closed form in a rather straightforward manner and reduced
to the single contact solution in the limit as the period approaches infinity. Moreover, the formulation
has a simple physical explanation, as opposed to a gap function [Kryshtafovych and Martynyak 2000],
Riemann–Hilbert approach [Cai and Lu 2000] or complex potential approach [England and Green 1963].

The governing equations of elastic contact mechanics and assumptions used are discussed. A periodic
array of Flamant solutions on a half-space is used to derive a cotangent kernel for periodic contact
problems. Following the general nomenclature and methodology outlined by Hills et al. [1993], an
integral equation approach for periodic contact problems is developed. A modification to the kernel to
ensure moment equilibrium is introduced and finally the governing equations for periodic plane elasticity
are laid out.

Numerous periodic contact problems are solved. A few known solutions are corroborated from the
coupled integral equations in order to demonstrate the method. New and more complicated solutions are
derived for various periodic profiles, elastically dissimilar materials and types of contact, such as sliding,
partial slip and complete stick.
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2. Theory of periodic contact in plane elasticity

Assumptions. It will be assumed throughout that the bodies involved are linear elastic, isotropic mate-
rials. For isotropic bodies, Poisson’s ratio νand shear modulus µ are used. A small strain theory of
elasticity is assumed, where the contact area is significantly smaller than the radii of curvature of the
undeformed surfaces. Under these assumptions, the stresses of each surface can be calculated with good
accuracy by treating each contacting body as a semiinfinite body bounded by a plane surface, also called
a half-space. Such an idealization was first introduced by Hertz [1881].

Contact mechanics. For a distribution of normal and shear tractions — p(x) and q(x) respectively —
on a half-space’s free surface and depicted in Figure 1, it was shown in [Johnson 1985b] that a pair of
coupled integral equations result:

1
A
∂h
∂x

=
1
π

∫
p(ξ)
x − ξ

dξ −βq(x), (1)

1
A
∂g
∂x

=
1
π

∫
q(ξ)
x − ξ

dξ +βp(x), (2)

where h(x)= v1(x)− v2(x) and g(x)= u1(x)− u2(x) are the differences in displacements between the
upper and lower surfaces, represented by the subscripts 1 and 2 respectively. The integral equations were
derived using the Flamant solution. Also, the mismatch in material parameters between the two surfaces
couples the two integral equations and results in

A =
κ1 + 1
4µ1

+
κ2 + 1
4µ2

, β =
0(κ1 − 1)− (κ2 − 1)
0(κ1 + 1)+ (κ2 + 1)

, (3)

where A is the compliance between the bodies, β is Dundur’s parameter representing the elastic mismatch,
and 0 = µ2/µ1, as defined in [Hills et al. 1993]. The bulk modulus, κ , is defined as κ = 3 − 4ν for
plane strain and κ = (3 − ν)/(1 + ν) for plain stress, with subscripts for the respective surfaces. When
both bodies are of the same materials, Dundur’s parameter is zero. When one body is rigid, it becomes
β = (1 − 2ν)/2(1 − ν).

  
 
Fig. 1.  An elastic half-space a) under a concentrated normal and tangential line force and b) 
under an arbitrary distributed normal and tangential pressure. 
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Fig. 1.  An elastic half-space a) under a concentrated normal and tangential line force and b) 
under an arbitrary distributed normal and tangential pressure. 
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Figure 1. An elastic half-space (a) under a concentrated normal and tangential line force
and (b) under an arbitrary distributed normal and tangential pressure.
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Lastly, equilibrium of the external forces, P and Q, needs to be ensured and is done so with

P =

∫
p(ξ)dξ, Q =

∫
q(ξ)dξ.

Equations (1) and (2) are the foundations of plane elastic contact mechanics. Many well-known
solutions are obtained using them; see [Hills et al. 1993] and [Johnson 1985b].

Periodic contact mechanics. The solution for periodic regions of distributed normal and shear tractions
can be derived in a similar fashion to that of a single region. Taking the Flamant solution as the starting
point, consider infinitely many evenly-spaced concentrated normal, compressive forces on a half-space’s
free surface depicted in Figure 2a. On the free surface, the normal displacements in Cartesian coordinates
are

v(x)= − P
(
κ + 1
4πµ

)
ln |x | −

∞∑
n=1

P
(
κ + 1
4πµ

)
ln |nL + x | −

∞∑
n=1

P
(
κ + 1
4πµ

)
ln |nL − x | +

C2

2µ
, (4)

where C2 is an arbitrary rigid body displacement. Taking the derivative of (4) to remove C2 gives

dv(x)
dx

= − P
(
κ + 1
4πµ

)
1
x

−

∞∑
n=1

P
(
κ + 1
4πµ

)
1

nL + x
−

∞∑
n=1

P
(
κ + 1
4πµ

)
1

nL − x
. (5)

Using the identity
∞∑

n=−∞

1
x + nL

=
π

L
cot

πx
L
,

 

 
 

 
Fig. 2.  A half-space loaded by a) an array of evenly spaced concentrated normal and tangential 
line forces and b) periodic distributions of normal and shear surface tractions. 
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Fig. 2.  A half-space loaded by a) an array of evenly spaced concentrated normal and tangential 
line forces and b) periodic distributions of normal and shear surface tractions. 
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Figure 2. A half-space loaded by (a) an array of evenly spaced concentrated normal and
tangential line forces and (b) periodic distributions of normal and shear surface tractions.
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allows the displacement derivative in (5) to be rewritten as

dv(x)
dx

= − P
(
κ + 1
4Lµ

)
cot

πx
L
. (6)

Equation (6) gives the normal displacement due to evenly spaced concentrated forces on a half-space.
This result can now be extended to periodic regions of distributed normal and shear tractions on the
half-space’s flat free surface, as shown in Figure 2b. The resulting integral equations for contact are

dv(x)
dx

=
κ + 1
4Lµ

∫
p(ξ) cot

(
π

L
(x − ξ)

)
dξ −

κ − 1
4µ

q(x), (7)

du(x)
dx

=
κ + 1
4Lµ

∫
q(ξ) cot

(
π

L
(x − ξ)

)
dξ +

κ − 1
4µ

p(x), (8)

where the following result was used for the displacements normal to the surface in order to determine
the second term in the right hand side of (7),

dv(x)
dx

= −
κ − 1
4µ

∞∑
n=−∞

∫
q(ξ)δ(x − ξ + nL)dξ = −

κ − 1
4µ

q(x),

and similarly for the tangential displacements in (8). If the relative difference in displacements between
two elastic bodies in contact is considered, the integral equations become

1
A
∂h
∂x

=
1

2π

∫ a

b
p(ξ) cot

x − ξ

2
dξ −βq(x), (9)

1
A
∂g
∂x

=
1

2π

∫ a

b
q(ξ) cot

x − ξ

2
dξ +βp(x), (10)

where L = 2π has been chosen for simplicity. The integral is taken over only a single contact region,
[b, a], since the periodicity of the problem guarantees that each period will produce the same result. The
equations are easily modified for an arbitrary period, so long as the amplitude of the contacting surface
is small compared to the wavelength, L , an assumption critical to the elasticity theory approximation.

Equations (9) and (10) are the foundations of elastic periodic contact mechanics in Cartesian coordi-
nates; accordingly, the equations and their cotangent kernel will be referred to regularly and taken as the
starting point of the physical problem to be solved. Before solving specific problems, a few comments
should be made. The periodic integral equations resemble those for a single region of contact, (1) and
(2), except that the kernel is now a cotangent kernel instead of a Hilbert kernel, whose solutions and
transforms have been studied extensively. However, an appropriate change of variables transforms the
cotangent kernel into a Hilbert kernel. That is, let

u = tan ξ/2, v = tan x/2, and α = tan a/2. (11)

Note that for the rest of the paper, u and v will only be used to represent these transformations and
not the normal and tangential displacements defined above. Then (9) becomes

1
A
∂h
∂x

=
1
π

∫ α

−α

p(u)(1 + uv)
(v− u)(1 + u2)

du −βq(v), (12)
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where the contact region has been centered on the interval [−a, a]. The derivative displacement term is
kept in terms of x , but typically needs to be changed to the transformed variables to solve for the surface
tractions. The change of variables in (11) will be used and referred to regularly. To simplify the integral
in (12) and the corresponding one for the tangential displacements, add and subtract u2 in the numerator
to get

1
A
∂h
∂x

=
1
π

∫ α

−α

p(u)
v− u

du +
1
π

∫ α

−α

up(u)
1 + u2 du −βq(v), (13)

1
A
∂g
∂x

=
1
π

∫ α

−α

q(u)
v− u

du +
1
π

∫ α

−α

uq(u)
1 + u2 du +βp(v). (14)

The first integral on the right-hand side is a Cauchy singular integral and will also be referred to as the
Hilbert kernel. The second integral is a constant which represents physically the moment on the surface
due to periodic tractions, p(u), given by

M =
1
L

∫ a

−a
p(x) tan

πx
L

dx =
1
π

∫ α

−α

up(u)
1 + u2 du.

When p(u) is symmetric, it is seen that M = 0 and only the Hilbert kernel integral remains in (13). If
p(u) is asymmetric however, M 6= 0 and the cotangent kernel can sometimes be modified to eliminate
the unprescribed moment on the surface. The shear tractions however cannot produce a moment and
must therefore be removed. This issue is discussed by Cai and Lu [2000, pp. 57–60], who comment that
an extra term must be included in the kernel

1
A
∂h
∂x

=
1

2π

∫ a

b
p(ξ)

(
cot

x − ξ

2
− tan

ξ

2

)
dξ −βq(x), (15)

1
A
∂g
∂x

=
1

2π

∫ a

b
q(ξ)

(
cot

x − ξ

2
− tan

ξ

2

)
dξ +βp(x). (16)

It is seen that the change of variables from (11) removes the moment term. Thus, (15) and (16) will
sometimes be the starting point for solving problems when equilibrium requires removing the unwanted
moment. Furthermore, equilibrium is achieved by balancing the total normal and tangential loads

P =

∫ a

−a
p(x)dx =

∫ α

−α

2p(u)
1 + u2 du, (17)

Q =

∫ a

−a
q(x)dx =

∫ α

−α

2q(u)
1 + u2 du. (18)

The integral equations (15)–(16) and the conditions (17)–(18) form the basis of solving periodic con-
tact problems. Using the change of variables (11), some well-known solutions will be derived in simpler
ways and new solutions will be solved in a closed form in the next sections.

3. Problems in periodic contact: frictionless contact

Normal frictionless contact of periodic profiles. The simplest problems in contact mechanics are in-
dentations without friction in normal contact with the free surface of a half-space. The no-friction
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assumption decouples the integral equations of periodic contact, thus increasing the availability of closed-
form solutions. In this section, various periodic profiles, such as periodic flat punches and sinusoids,
are considered. The surface geometry provides the necessary boundary conditions to solve the mixed
boundary value problem in order to determine the surface stresses.

Sinusoids: Westergaard’s solution. The solution of a wavy surface in contact with a flat surface, as
shown in Figure 3, has practical importance in tribology and solid mechanics. The first mathematical
solution was credited to Westergaard [1939], who used complex stress functions to obtain the contact
stress. Later, Dundurs et al. [1973] employed a stress function approach, which required solving a set of
dual series equations. Using the approach delineated in the previous section, the Westergaard solution is
rederived here.

The surface profile for a sinusoidal surface with period 2π is

h(x)= δ−1(1 − cos x), (19)

where h(x) is the difference in the normal displacements, δ is the approach and 1 is the amplitude
of the undeformed surface profile. Physically, h(x) represents the amount of interpenetration of the
bodies and is a geometrical constraint condition. Differentiating Equation (19) to remove the rigid body
displacement gives

∂h(x)
∂x

=1 sin x . (20)

Transforming (20) using (11) and then substituting into (13) yields

1

A
2v

1 + v2 =
1
π

∫ α

−α

p(u)
v− u

du +
1
π

∫ α

−α

up(u)
1 + u2 du −βq(v).

It should be noted that the axes are positioned at the center of the contact region to exploit symmetry;
this assumption will be employed throughout the paper unless otherwise specified. For frictionless con-
tact or contact of smooth surfaces, q(x)= 0, and the integral equations are uncoupled. For two bodies
with elastically similar materials, β = 0, which also removes the coupling term. The symmetry of the
problem removes the second integral term on the right-hand side (since p(u) is even) and gives

21
A

v

1 + v2 =
1
π

∫ α

−α

p(u)
v− u

du,

 
Fig. 3.  Normal contact of a sinusoidal profile without friction. 
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Figure 3. Normal contact of a sinusoidal profile without friction.
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which is a Cauchy singular integral equation of the first kind for determining p(u). Section A.1 provides
inversion that is nonsingular at both endpoints,

p(u)=
21
π A

√
α2 − u2

∫ α

−a

v

1 + v2

1
√
α2 − v2

1
v− u

dv.

Using partial fractions and evaluating the resulting integrals gives

p(u)= −
21
A

√
α2 − u2

(1 + u2)
√

1 +α2
.

Reverting to original variables produces

p(x)= −

√
21
A

cos
x
2

√
cos x − cos a. (21)

If one requires the solution for an arbitrary period L instead of 2π , Equation (21) becomes

p(x)= −
2
√

21π
AL

cos
πx
L

√
cos

2πx
L

− cos
2πa

L
.

It is sometimes convenient to express the normal traction in terms of a peak pressure, p0, in order to
find the contact length, a. Let p0 = 21/A and invoking equilibrium from (18) gives

P =
2p0

√
1 +α2

∫ α

−α

√
α2 − u2

(1 + u2)2
du.

Evaluating the integral results in

p0 =
P(1 +α2)

πα2 =
21
A
. (22)

In original variables,

p(x)= −
P

√
2 cos(x/2)

√
cos x − cos a

2π sin2(a/2)
,

which reproduces the Westergaard solution with p̄ = P/2π . It has been previously shown [Dundurs et al.
1973] that, for light loading, the Hertz line contact solution is recovered.

Periodic inclined punches. The problem of evenly spaced indenters on a half-space, shown in Figure
4, was originally studied by England and Green [1963] using complex potential functions. A general
result for symmetric and/or antisymmetric loading was developed and the particular case of inclined flat
punches was solved. The problem was later solved by Cai and Lu [2000]. Their solution is rederived
here using the method of the previous section. As the slope of the punches approaches zero, the result
for periodic flat punches is recovered.

For an inclined punch, the derivative of the surface profile is given by

∂h(x)
∂x

= ε, (23)
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Fig. 4.  Frictionless normal contact of evenly spaced blunt wedges. 
 

L 

2a 2a 2a 

y 

x δ

… … 

P P P 

η

L 

Figure 4. Frictionless normal contact of evenly spaced blunt wedges.

where ε is the slope of the punch. Substituting Equation (23) into (13) for frictionless contact (q(u)= 0)
where now p(u) is not symmetric gives

ε

A
=

1
π

∫ α

−α

p(u)
(v− u)

du +
1
π

∫ α

−α

up(u)
(1 + u2)

du.

[Söhngen 1954] suggested solving this type of integral equation by decomposing p(u) into a homo-
geneous part, ph(u), and an inhomogeneous part, pi (u), which results in two integral equations

1
2π

∫ α

−α

ph(u)
v− u

du = 0, (24)

1
π

∫ α

−α

pi (u)
v− u

du +
1
π

∫ α

−α

upi (u)
1 + u2 du =

ε

A
. (25)

The first integral is recognized as the periodic flat punch solution, or the homogenous case of the integral
equation. The second integral represents the contribution due to the slope of the indenter. Inverting (24)
according to the appropriate formula in Section A.1 (with singularities at both endpoints) gives

ph(u)=
C√

1 − (u/α)2
. (26)

The equilibrium (18) gives

C = −
P

√
1 +α2

2απ
. (27)

Putting (27) into (26) gives the solution for the complete contact of periodic flat punches on an elastic
half-space without friction

ph(x)= −
P

√
2 cos(x/2)

2π
√

cos x − cos a
, |x |< a. (28)

Refer to (25) for the inhomogeneous solution and let C1 = ε/A − C2. Recognizing that the second
integral only produces a constant

1
π

∫ α

−α

upi (u)
1 + u2 du = C2,
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then the integral equation is rewritten as

1
π

∫ α

−α

pi (u)
v− u

du = C1.

Inverting for pi (u) (see Section A.1) produces

pi (u)=
C1

π
√
α2 − u2

∫ α

−α

√
α2 − s2

u − s
ds = −

C1u

π
√
α2 − u2

.

To solve for C1, insert pi (u) into (25), obtaining

C1 =
πε

A

√
α2 + 1.

Returning to original variables gives

p(x)= pi + ph = −
ε
√

2 sin(x/2)
A
√

cos x − cos a
−

P
√

2 cos(x/2)
2π

√
cos x − cos a

, (29)

which is the result in [England and Green 1963; Cai and Lu 2000]. It is seen that for ε = 0, (29) is the
flat punch solution in (28). For incomplete penetration, the pressure must be positive, in which case it is
required that for period L and contact length 2a,

P ≥ −
Lε
A

tan
πa
L
.

Now that the method has been verified against some well-known solutions, new solutions in periodic
contact are solved in the following sections.

Indentation by blunt periodic wedges. In Figure 4, the problem of a periodic array of wedges is shown.
To ensure that the small strain assumption is valid, the wedge must be blunt, which means that the angle
η is small. The normal displacement derivative is

∂h(x)
∂x

= − η sgn(tan x/2).

The function changes sign as necessary for periodic wedges with period 2π . Anticipating a symmetric
stress distribution, p(u), the governing integral equation is

1
π

∫ α

−α

p(u)
v− u

du =
η

A
sgn(v). (30)

This integral can be found in [Hills et al. 1993] with solution

p(u)= −
2η
π A

cosh−1 α

|u|
,

or in original variables with arbitrary period, L , is

p(x)= −
2η
Aπ

cosh−1 tan(πa/L)
tan(π |x |/L)

.
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Figure 5. Normal surface tractions for single (dotted lines) and periodic (solid lines)
blunt wedge indenters for wavelength L = 2π , for a = 1 and a = 3.

In the limit as L → ∞, the solution for a single blunt wedge (see [Truman et al. 1995] for instance) is
recovered. The normal surface tractions are plotted in Figure 5 to compare the single wedge to the peri-
odic array of wedges. When the contact region is small compared to the wavelength, the two results are
almost indistinguishable. As the contact length approaches the wavelength, the plots become noticeably
different. The normalization factor is chosen for convenience, but could easily be adjusted in terms of
the total load, P , by evaluating the equilibrium of surface tractions. The main feature of the blunt wedge
indenter is the singularity at the tip due to the discontinuity in the displacement derivative.

4. Problems in periodic contact: sliding contact

Sliding contact of elastically dissimilar materials. It was assumed that either the bodies in contact were
elastically similar or that the contact was frictionless. As a result, the integral equations were uncoupled
and solved using standard techniques. In this section, the sliding contact of elastically dissimilar materials
with friction is considered. The empirical Coulomb friction law is used here, which states:

(i) the frictional force is proportional to the normal force multiplied by the coefficient of friction;

(ii) the frictional force opposes the direction of relative motion;

(iii) neither the apparent contact area nor the velocity during gross sliding affects the magnitude of the
frictional force;

(iv) the motion is assumed to be quasistatic.

While these observations typically apply to rigid bodies, it is reasonable to extend the model to the
analysis of frictional elastic contacts in two dimensions. More complicated studies suggest a nonlinear
relationship between normal loading and frictional force [Urbakh et al. 2004]; however only Coulomb
friction will be considered here.

By assuming that the shear tractions are proportional to the normal force, limited everywhere by
friction and independent of the speed, except for sign, one obtains

q(x)= − f p(x), (31)
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where f is the coefficient of friction. Substituting Equation (31) into (16) yields

1
A
∂h
∂x

=
1

2π

∫ a

b
p(ξ)

(
cot

x − ξ

2
− tan

ξ

2

)
dξ +β f p(x), (32)

which is a Cauchy singular integral equation of the second kind, where the solution technique is outlined
in Section A.2. Another consequence of introducing friction is that the contact patch, 2a, is no longer
expected to be centered. Instead, an eccentricity, e, is introduced into the displacement derivative, which
corresponds to the rotation due to the sliding of elastically dissimilar materials. Equation (32) is used as
the starting point for much of the problems solved below.

Sliding contact of periodic flat punches. For periodic flat punches sliding on an elastic half-space, the
derivative of the surface profile is proportional to a constant, which represents a rotation due to the sliding
of elastically dissimilar materials. However, the problem has more practical relevance when the periodic
punches are rigid, which means that the punch is not free to rotate and the resulting boundary condition
becomes

∂h(x)
∂x

= 0. (33)

Since there is no rotation, (32) must be used. Substituting (33) leads to

1
π

∫ α

−α

p(u)
(v− u)

du +βp(v)= 0.

For a rigid punch in contact with an elastic half-space in plane strain contact, the Dundurs’ parameter, β,
is

β =
1 − 2ν

2(1 − ν)
,

although the definition in (3) can be still be used without much loss of generality. Returning to the Cauchy
singular integral equation of the second kind, Section A.2 gives an inversion for p(u) that is singular at
both endpoints, namely p(u)= C(α− u)m−1(α+ u)−m, where tan mπ = 1/β f and 0< m < 1. To find
C , equilibrium of the total load, (18), gives

P = 2C
∫ α

−α

(α− u)m−1(α+ u)−m

1 + u2 du.

The integral is solved using complex variables and is given in Appendix B. Solving for C ,

C = −
P

√
1 +α2 sin mπ

2π sin
[
mπ −φ(2m − 1)

] ,
where tanφ = 1/α. Returning to original variables,

p(x)= −
P sin mπ

(
tan(a/2)− tan(x/2)

)m−1(tan(a/2)+ tan(x/2)
)−m

2π cos(a/2) sin
[
mπ −φ(2m − 1)

] ,

where tanφ = cot(a/2). When m = 1/2, the result for frictionless contact in Equation (28) is recovered.
The equation is singular at both end points, x = ± a, as expected for complete contact.
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Figure 6. The surface pressure for a evenly spaced rigid flat punches with f = 0.5,
ν = 0.3 and L = 2π , for frictionless (dotted curve) and sliding (solid curve) contact for
a = 1, sliding from left to right.

The normal tractions are no longer symmetric, as shown in Figure 6. However, the frictionless result
is not very different from the sliding one for the given parameters. If however the punch were no longer
rigid but elastic, the material mismatch would lead to greater discrepancy between the results, as would an
increase in the coefficient of friction. It is also seen that the corners of the flat punch lead to singularities
in the pressure distribution at the edge of the contact.

Sliding contact of sinusoids. The sliding of elastically dissimilar sinusoidal surfaces was studied by
Nosonovsky and Adams [2000], who numerically solved the dry steady-state frictional sliding incorpo-
rating wave speeds, and later by Carbone and Mangialardi [2004], who used linear fracture mechanics
to determine the coefficient of friction due to the adhesive forces.

For a given coefficient of friction, the sliding of elastically dissimilar sinusoids is solved here in
a closed-form for the first time. This new result is compared to the frictionless case, except for an
eccentricity, e, due to the dissimilar elastic constants. The difference of the displacement derivatives for
two wavy surfaces is

∂h(x)
∂x

=1 sin(x − e), (34)

where e represents the phase shift due to sliding and 1 is a function of the gap and amplitude(s) to ensure
that the displacements are continuous at the edge of the contact region. Substituting (34) into (32) with
the usual change of variables (and with an eye toward the integrals in Appendix B) yields

1
π

∫ α

−α

p(u)
v− u

du +βp(v)=
1

A
w(v), (35)

where e1 = cos e, e2 = sin e and w(v)=

(
e1

2v
1+v2 − e2

1−v2

1+v2

)
; this determines the eccentricity, e, from

the consistency condition ∫ α

−α

w(v)(α− v)−m(α+ v)m−1 dv = 0.
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This integral may seem different from those in Appendix B with respect to their powers; however, setting
m = 1 − n transforms the powers to the desired form. The eccentricity is found to be

e = tan−1
(

cos λ

sin λ−α2
√

1 +α2m(1 − m)

)
,

where λ= (mπ −φ(2m − 1)) and tanφ = 1/α. For m = 1/2 the eccentricity vanishes, as expected from
the absence of sliding.

The integral equation in Equation (35) is now inverted for p(u) according to the appropriate formula
in Section A.2 as

p(u)=
1

A

[
β fw(u)−

1
π

∫ α

−α

w(v)
(α− v)−m(α+ v)m−1

v− u
dv
]
(α− v)m(α+ v)1−m .

Using partial fractions and evaluating the Cauchy integrals which cancel with the β f terms above
results in

p(u)= −
21

Aπ(1 + u2)
(α− v)m(α+ v)1−m

∫ α

−α

(
e1(1 − uv)+ e2(v+ u)

)(α− v)−m(α+ v)m−1

1 + v2 dv.

Calculating the integrals according to Appendix B, the surface stress is

p(u)= −
21

A(1 + u2)

1
√

1 +α2

[
sin(λ+ e)− u cos(λ+ e)

]
sinπm

(α− v)m(α+ v)1−m .

In dimensional variables, the final result for the normal surface tractions is

p(x)= −
21
A

cos(a/2) cos(x/2)
sinπm

sin
[
λ+ e −

x
2

](
tan a

2
− tan x

2

)m(
tan a

2
+ tan x

2

)1−m
. (36)

The surface stress can also be expressed in terms of the total load, P , by substituting (31) into the
equilibrium equation in (17) and exploiting the solutions given in Appendix B. For m = 1/2, (36) reduces
to the frictionless contact of sinusoids given in (21) as expected.

Equation (36) is the first closed form solution for the sliding of an elastic wavy surface. It may prove
useful in analyzing real rough surface whose average amplitude and wavelength have been evaluated in or-
der to obtain pressure approximations or even to back-out the coefficient of friction of the mating surfaces.

The Coulomb friction again causes the sliding result to be asymmetric, but it is only slightly different
from the frictionless result; see Figure 7. The friction reduces the pressure at the front edge of the indenter
but increases it at the rear. The plots become more disparate by considering two elastic bodies or increas-
ing the coefficient of friction. The smooth nature of the wavy profiles does not produce singularities in
the surface stress and vanishes at the edge of the contact.

5. Problems in periodic contact: partial slip contact of similar materials

Partial slip contact: similar materials. In the previous section, sliding contact problems of various
periodic geometries — in which the entire surface of the indenter moves in the same direction — were
solved in a closed-form. The elastically dissimilar materials produced asymmetry in the solutions.

A different type of contact is considered in this section, namely partial slip contact of elastically
similar materials. Typically in partial slip problems, the normal load is held fixed and the tangential load
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Figure 7. The surface pressure for a rigid wavy surface with f = 0.5, ν = 0.3 and
L = 2π for frictionless (dotted curve) and sliding (solid curve) contact for a = 3.

is increased from zero causing two types of contact regions. One region consists of a contact area that
is a stick region, and the other region of the contact area slips such that, shear tractions remain bounded.
This requires the region to undergo “microslip.” Partial slip analyses are particularly useful for analyzing
fretting fatigue problems [Hills and Nowell 1994].

A comprehensive examination of partial slip theory and problems for similar materials was undertaken
by Ciavarella [1998a; 1998b], who based his analysis on Cattaneo and Mindlin’s solution. Their method
was to write the shear tractions, q(x), in the contact region as a linear combination of the normal traction
and a correction term, that is,

q(x)= − f p(x)+ q∗(x), (37)

where f is the coefficient of friction, p(x) is the normal traction, and q∗(x) is a correction to the shear
traction to ensure a finite coefficient of friction at the edge of contact. It should be noted that q∗(x) is
zero in the slip zones, meaning the shear traction is simply given by Coulomb’s friction law.

Based on this approach, Ciavarella derived closed form solutions for many indenter geometries, in-
cluding a few involving periodic indenters. More importantly, he summarized his findings on the theory
in a few rules which are quoted exactly below:

(1) If the indenter profile is symmetric and self-similar, the corrective solution is of the same shape as
the normal pressure in the contact area for any load.

(2) No partial slip solution can be predicted where the stick zone lies entirely within a flat region of the
punch; in other words, flat regions are either entirely in full stick or are in full slip conditions.

(3) If in normal indentation there is no change of relative rotation, then the points that come into contact
last are the first to slip.

(4) If the indenter profile has discontinuities, these affect the tangential load, stick area dimension
relation in the same was as they affect the normal load, contact area dimension.

When solving periodic problems, Ciavarella does not differentiate between a single indenter and peri-
odic indenters; he presupposes that the shear correction term has the same form as the normal pressure
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Fig. 8.  Partial slip contact of a sinusoidal profile for elastically similar materials. 
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Figure 8. Partial slip contact of a sinusoidal profile for elastically similar materials.

solution. In (1) above, surfaces are assumed self-similar. Periodic solutions are not necessarily self-
similar, because they have a wavelength which introduces a length scale.

In this section Ciavarella’s solution for periodic contact of similar materials will be derived using the
previous technique. The standard change of variables changes the periodic problem to a single contact
patch.

Sinusoids in partial slip. Since elastically similar bodies are considered here, it means that the governing
integral equations are uncoupled (β = 0 ). As opposed to the sliding contact problems in the previous
section, symmetric surface tractions are once again expected, as shown in Figure 8.

For a sinusoidal indenter, the stick zone is anticipated at the center of the contact, since the loading,
geometry and material properties are symmetric about the x and y axes. The slip zones occur at the
edges of contact region and are the points which are last to come into contact. The shear tractions can
be expressed by (37) in the stick zone and (31) in the slip zone and the governing integral equation for
the shear tractions is

1
2π

∫ a

−a
q(ξ) cot

x − ξ

2
dξ =

1
A
∂g(x)
∂x

, |x |< b, (38)

which is (10) for similar materials. Also, since the relative tangential displacements due to the normal
load, P , are constant, it follows that ∂g(x)/∂x = 0 in the stick zone. Thus, substituting (37) into (38)
gives

1
2π

∫ b

−b
q∗(ξ) cot

x − ξ

2
dξ =

f
2π

∫ a

−a
p(ξ) cot

x − ξ

2
dξ, |x |< b, (39)

where p(x) is the Westergaard solution found in Equation (21). In order to solve for the shear correction
term in (39), the change of variables in (28) is used as well as γ = tan(b/2) to get

1
π

∫ γ

−γ

q∗(u)
v− u

du +
1
π

∫ γ

−γ

uq ′(u)
1 + u2 du = −

2 f1
Aπ

∫ α

−α

(1 + uv)
√
α2 − u2

(1 + u2)2(v− u)
√

1 +α2
, |v|< γ. (40)

Noting the symmetry of q∗(x) eliminates the second term on the left-hand side of (40). The right-hand
side is simplified by first adding and subtracting v2 in the numerator and yields

1
π

∫ γ

−γ

q∗(u)
v−u

du = −
2 f1

Aπ
√

1+α2

(
(1+v2)

∫ α

−α

√
α2−u2

(1+u2)2(v−u)
du+v

∫ α

−α

√
α2−u2

(1+u2)2
du
)
, |v|< γ. (41)
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The second term on the right-hand side of (41) is easily evaluated. The remaining term on the right-
hand side is simplified by using partial fractions, which gives

1
π

∫ γ

−γ

q∗(u)
v− u

du = −
2 f1

A
v

1 + v2 , |v|< γ.

Inverting for q∗(x) (Section A.1) and again using partial fractions results in

q∗(u)= −
2 f1

√
γ 2 − u2

A(1 + u2)
√

1 + γ 2
, |u|< γ.

Reverting to original variables gives the final result for the shear correction term

q∗(x)= −

√
2 f1
A

cos
x
2

√
cos x − cos b. (42)

It is seen that indeed the shear correction term (42) has the same form as the normal tractions, (21),
which is also revealed upon inspection of (39). But it has been shown that it indeed has the same form
for regularly periodic indenters. Lastly, satisfying equilibrium requires that

Q∗
=

2q∗

0√
1 + γ 2

∫ γ

−γ

√
γ 2 − u2

(1 + u2)2
du.

Evaluating the integral results in

q∗

0 =
Q(1 + γ 2)

πγ 2 = −

√
2 f1
A

. (43)

Combining (22) with (43) gives the result in a convenient form to determine the stick zone

Q
f P

= 1 −
sin2(πb/L)

sin2(πa/L)
, (44)

which is the result in [Ciavarella 1998b] for sinusoidal indenters. The result is expressed in terms of
period, L , for practicality. Here, Q and P are understood to be the total normal and shear loads.

Other periodic profiles under partial slip. Other new results can be obtained for various periodic in-
denter profiles. For instance, Ciavarella [1998b] provides the result for a single wedge, power-law or
polynomial punch

Q
f P

= 1 −

(b
a

)k
, (45)

where k = 1, 2, 4, 6 is a power representing a wedge, parabolic (Hertzian) and high-order polynomial
indenters respectively. His method is easily extended to periodic indenters as well. Starting with Equation
(9) with β = 0,

1
A
∂h
∂x

=
1

2π

∫ a

−a
p(ξ) cot

x − ξ

2
dξ. (46)

Changing variables and inverting for p(u) gives

p(u)=
1
π A

√
α2 − u2

∫ α

−α

h′(x)
√
α2 − v2(v− u)

dv, |u|< α, (47)
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where h′(t)= ∂h/∂x is the derivative of the indenter profile in terms of the original variable x . Substi-
tuting (47) into the equilibrium equation, (30), gives the total load, P as

P = −
1

Aπ

∫ α

−α

h′(x)
√
α2 − v2

dv
∫ α

−α

√
α2 − u2

(1 + u2)(v− u)
du.

Interchanging the order of integration and then using partial fractions results in

P = −

√
1 +α2

A

∫ α

−α

vh′(x)
√
α2 − v2(1 + v2)

dv. (48)

Equation (48) directly relates the surface profile to the total load. A similar calculation is done for the
shear correction load, Q∗, by first substituting (46) into (39) to get

1
2π

∫ b

−b

q∗(ξ)

f
cot

x − ξ

2
dξ =

1
A
∂h(x)
∂x

. (49)

Inverting (49) for q∗(u) with changed variables, invoking equilibrium and finally solving for Q∗ gives

Q∗/ f =

√
1 + γ 2

A

∫ γ

−γ

vh′(x)√
γ 2 − v2(1 + v2)

dv. (50)

Integrating (37) over the contact region and substituting (50) yields

Q = f P +
f
√

1 + γ 2

A

∫ γ

−γ

vh′(x)√
γ 2 − v2(1 + v2)

dv. (51)

Combining (51) with (48) produces the final result for the ratio of the shear load to the normal load for
periodic indenters

Q
f P

= 1 −

√
1 + γ2

∫ γ

−γ

vh′(x)√
γ 2 − v2 (1 + v2)

dv

√
1 +α2

∫ α

−α

vh′(x)
√
α2 − v2 (1 + v2)

dv

. (52)

Depending on the nature of h′(x), other closed-form solutions for periodic indenters can be derived
from Equation (52). For instance, the partial slip of periodic blunt wedges is solved by first noting

h′(x)= η sgn(x). (53)

Substituting (53) into (52) and integrating yields

Q
f P

= 1 −
tanh−1(γ /√1 + γ 2

)
tanh−1(α/√1 +α2

) = 1 −
tanh−1 sin(πb/L)

tanh−1 sin(πa/L)
, (54)

where L is the period of the indenters. For a small contact region, a/L � 1, (54) reduces to (45) for
k = 1 as anticipated. For a general power-law profile, the displacement derivative is

h′(x)= − ηk|x |
k−1 sgn(x). (55)
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Figure 9. Ratio of shear force to normal load as a function of slip zone, c, for a = 1, 3
and various power-law profiles. Curves from top to bottom: k = 6 profile, quadratic
profile, parabolic profile, wedge profile, simple profile.

For k = 2, which physically corresponds to evenly spaced Hertzian indenters, the ratio of shear to normal
loads is

Q
f P

= 1 −

√
γ 2 + 1 − 1

√
α2 + 1 − 1

. (56)

Returning to original variables with period, L , changes (56) into

Q
f P

= 1 −
cos(πa/L)
cos(πb/L)

1 − cos(πb/L)
1 − cos(πa/L)

.

When the contact region is small, a/L � 1, the result for k = 2 in (54) is recovered. In a similar
fashion, higher order power-law and polynomial indenter profiles can be solved. For k = 4 in (55), the
ratio of the transmitted forces is found to be

Q
f P

= 1 −
cos(πa/L)
cos(πb/L)

(
tan2(πb/L)+ 2 cos(πb/L)− 2

)(
tan2(πa/L)+ 2 cos(πa/L)− 2

) .
For k = 6, the solution is

Q
f P

= 1 −
cos(πa/L)
cos(πb/L)

(
3 tan4(πb/L)− 4 tan2(πb/L)− 8 cos(πb/L)+ 8

)(
3 tan4(πa/L)− 4 tan2(πa/L)− 8 cos(πa/L)+ 8

) .
Further higher-order power-law indenters can be calculated in a similar manner. The results for the partial
slip of elastically similar profiles are plotted below in Figure 9. As the power of the profile increases,
the slip zone size varies weakly under small loads and strongly under larger loads, which is the same
observation made in [Ciavarella 1998b]. The higher order polynomial indenters are close to a flat punch
profile, which must either completely stick or slip and is discussed next.

Another solution of interest is the partial slip of evenly spaced flat punches on a half-space of similar
material. Ciavarella notes that elastically similar flat punches must either completely slip or completely
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stick. The shear tractions are always proportional to the normal tractions, which are given by

q(x)= −
Q

√
2 cos(πx/L)

L
√

cos(2πx/L)− cos(2πa/L)
, |x |< a. (57)

It should not be surprising then that Equation (57) resembles (28), which is the frictionless normal
contact solution for flat punches. When |Q| = f P , full slip occurs throughout the contact region. The
solution is singular at the edge of the contact area, as expected for flat punch indenters.

6. Problems in periodic contact: partial contact of dissimilar materials

Partial slip contact: dissimilar materials. The partial slip contact of elastically dissimilar materials is
considered here, which means that the governing integral equations are coupled. Before solving the
partial slip problem, which is mathematically complicated, the no slip or complete stick problem is
solved for periodic profiles. Physically, complete stick occurs when the friction force is large enough to
prevent any slip. Even though the integral equations are still coupled for complete stick, some closed-
form solutions are calculated in this section.

One simplifying assumption to uncouple the integral equations is to assume the effect of the shear
tractions on the normal displacements is negligible, the Goodman approximation [Goodman 1962]. This
simplification removes the coupling in (15). The advantage is that the normal contact solutions are known
and as a first approximation can then be substituted into the shear traction (16). Solutions for flat punches
and sinusoidal profiles are worked out for this type of analysis.

Lastly, partial slip solutions for elastically dissimilar periodic flat punches and sinusoids are solved
based upon the procedure of Spence [1973], who used a self-similarity argument when evaluating the
displacement derivatives. In light of the previous section, it is now known that even though regularly
periodic profiles are not self-similar, the appropriate transformation of variables changes the problem
to a single contact patch which is self-similar; then the solution techniques for a single indenter can
be exploited. Although the materials are dissimilar, the removal of the coupling term ensures that the
normal tractions are symmetric for symmetric indenters, which in turn causes the shear tractions to also
be symmetric about the centerline of the contact region. The stick region is anticipated in the center of
the contact region with slip regions at the edges.

No slip contact of periodic flat punches: coupled. In this section, the problem of elastically dissimilar
flat punches in contact with an elastic half-space is solved for the completely coupled case. It may be
more practical to assume that the flat punches are rigid, but the solution here is solved more generally in
terms of Dundur’s parameter. For flat punches, the displacement derivates are

∂h(x)
∂x

=
∂g(x)
∂x

= 0. (58)

This reduces the integral equations of contact, (15)–(16), in changed variables to

1
π

∫ α

−α

p(u)
(v− u)

du −βq(v)= 0,
1
π

∫ α

−α

q(u)
(v− u)

du +βp(v)= 0.
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The solution technique for the above coupled integral equations is described in [Johnson 1985b], where
the solution is

F(v)= −
λ

√
1 − λ2

C

π
√
α2 − v2

(
α− v

α+ v

)iη

, (59)

where F(u)= p(u)+ iq(u), i =
√

−1, λ= − i/β, and

η =
1

2π
ln

1 +β

1 −β
.

Note that η is a constant based on the material parameter β here and not the slope for a blunt wedge used
above. The constant, C , in (59) is determined from the equilibrium equation∫ α

−α

2F(v)
1 + v2 dv = P + i Q.

The final result for the surface tractions in terms of the original variable is

p(x)+ iq(x)=
P + i Q√

1 −β2

√
2 cos(x/2)

2π
√

cos x − cos a

(
tan(a/2)+ tan(x/2)
tan(a/2)− tan(x/2)

)iη

. (60)

It is seen that the singularities at x = ±a are complex for the completely coupled case. As the wavelength
of the periodic punches becomes infinite, the result for a single flat indenter given in [Johnson 1985b] is
recovered. When P = 0, (57) for the shear tractions due to a tangential force, Q, is recovered.

No slip contact of periodic flat punches: approximation. Because of the limited availability of closed-
form solutions for the completely coupled integral equations, it is often convenient to introduce the
Goodman approximation, which neglects the contributions of the shear stress on the normal displace-
ments. The advantage is that the frictionless normal contact solutions developed in previous section can
be used to derive the shear tractions without much loss of accuracy. Recalling the solution for frictionless
normal contact of a flat punch

p(x)= −
P

√
2 cos(x/2)

2π
√

cos x − cos a
,

and using Equation (58) causes the integral equation for the shear traction, (14), to be

1
π

∫ α

−α

q(u)
(v− u)

du −
βP

√
1 +α2

2π
√
α2 − v2

= 0. (61)

Inverting (61) for q(u) according to the formula in Section A.1 with singularities at both endpoints
gives

q(u)=
βP

√
1 +α2

2π2
√
α2 − u2

∫ α

−α

dv
v− u

+
Q

√
2
√

1 +α2

2π
√
α2 − u2

, (62)

where the second term corresponds to the shear traction solution for a flat punch, (57). Evaluating the
integral in (62) yields

q(u)=
βP

√
1 +α2

2π2
√
α2 − u2

ln
(
α+ u
α− u

)
+

Q
√

2
√

1 +α2

2π
√
α2 − u2

.
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Figure 10. Normal (left) and tangential (right) tractions for the slipless contact of peri-
odic rigid flat punches, for ν = 0.3, f = 0.215, L = 2π , and a = 3. On the left, the solid
curves is for the coupled normal force and the dashed curve for the frictionless normal
force. On the right panel, the curves for the coupled tangential force and the Goodman
tangential force are confounded.

Returning to original variables, the shear traction with the Goodman approximation is

q(x)= −
βP

√
2 cos(x/2)

2π2
√

cos x − cos a
ln

tan(a/2)+ tan(x/2)
tan(a/2)− tan(x/2)

+
Q

√
2 cos(x/2)

2π
√

cos x − cos a
. (63)

As the period goes to infinity, the result for a single flat indenter is recovered. The coupled normal and
shear traction solutions in the previous section, (60), are compared below with the frictionless, (28), and
Goodman approximation, (63), respectively.

Figure 10 demonstrates that the Goodman approximation is not very different than that for the coupled
case, even as the contact length approaches the period. In fact, the shear tractions are essentially indis-
tinguishable. One interesting thing to note about the solution is the symmetry about the origin. Because
of the symmetric normal tractions and symmetric indenter, the shear tractions are also symmetric about
the center line of the contact region, although the materials are dissimilar. This is a consequence of
neglecting the coupling term in the normal displacement governing integral equation, which was not
done in the sliding contact solutions.

No slip contact of sinusoids: Goodman approximation. The no slip problem for a sinusoidal surface in
contact with an elastic half-space is developed in a similar manner to the flat punch solution. However,
the tangential displacement derivative is

∂g(x)
∂x

= C1| sin x |,

where C is an unknown constant to be determined. The absolute value function comes from the self-
similarity argument made by Spence [1973]. The premise is that the stick zone is proportional to the slip
zone; see (44). Thus, as the shear load is steadily increased from zero, the particles entering the stick
zone undergo a prestrain that is proportional to | sin x |, which is the absolute distance from the center of
the contact region. For a single indenter, the prestrain is proportional to x , which is recovered for small
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x (or large L) in the periodic problem. It is also noted that the tangential displacement derivative must
be an even function in order to ensure the symmetry of the solution.

Recalling from (21) the normal tractions for a sinusoidal profile, the integral (18) upon changing
variables becomes

1
π

∫ α

−α

q(u)
(v− u)

du −
βp0

√
α2 − v2

√
1 +α2(1 + v2)

=
21C

A
|v|

1 + v2 , |v|< α. (64)

Inverting (64) for q(u) with no singularities at the endpoints gives

q(u)=

√
α2 − u2

π

∫ α

−α

F(v)
√
α2 − v2(v− u)

dv, (65)

with consistency condition ∫ α

−α

F(v)
√
α2 − v2

dv = 0,

where

F(v)=
βp0

√
α2 − v2

√
1 +α2(1 + v2)

+
21C

A
|v|

1 + v2 .

The consistency condition is evaluated, and it is found that

C =
−p0βA

21
tan−1(α)

tanh−1(α/
√

1 +α2)
.

The integral equation, (65), is solved using partial fractions. After some work, the result is

q(u)=
p0β

π(1 + u2)

[√
α2 − u2

√
1 +α2

ln
∣∣∣∣α+ u
α− u

∣∣∣∣+ u tan−1(α)

tanh−1(α/
√

1 +α2)
ln
(
α+

√
α2 − u2

α−
√
α2 − u2

)]
, (66)

where α = tan(a/2) and u = tan(x/2) are in terms of the original variables. The solution for a single
Hertzian indenter is provided by Johnson [1985b] and corresponds to when the period between the
sinusoids approaches infinity and the contact region is small in the above solution.

Partial slip contact of periodic flat punches: Goodman approximation. The next step is to evaluate
the partial slip solution with the Goodman approximation. This type of partial slip analysis with the
Goodman approximation was first done for a single flat indenter [Spence 1973] and then Hertz contact
[Spence 1975; Hills and Sackfield 1985]. The main difference from the complete stick analyses above
are that the shear tractions are now split into stick and slip regions with∫ α

−α

q(u)
(v− u)

du = 2 f
∫ α

γ

up(u)
v2 − u2 du + 2

∫ γ

0

uq(u)
v2 − u2 du, (67)

where γ = tan(b/2) and q(u)= f p(u) sgn(βu) in the slip region but is unknown within the stick region.
The symmetry about the centerline has also been exploited. For periodic flat punches, Equation (67) is
substituted into (66) to get

2
π

∫ γ

0

uq(u)
v2 − u2 du = G(v), |v|< γ, (68)
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where

G(v)=
2 f p0

√
1 +α2

π

∫ α

γ

u du

(v2 − u2)
√
α2 − v2

+
βp0

√
1 +α2

√
α2 − v2

, (69)

which has the flat punch solution, (28), substituted for p(u) with p0 = P/2π . Inverting (68) for q(u)
gives

q(u)=
2u

π
√
γ 2 − u2

∫ γ

0

√
γ 2 − v2G(v)

u2 − v2 dv. (70)

Upon substituting (69) into (70) and interchanging the order of integration in the first term, q(u)
becomes

q(u)=
2u

√
1 +α2

π
√
γ 2 − u2

[
f p0

∫ α

γ

√
v2 − γ 2

(v2 − u2)
√
α2 − v2

dv−βp0

∫ γ

0

√
γ 2 − v2

(u2 − v2)
√
α2 − v2

dv
]
.

It is necessary that q(u) be bounded at u = γ , which requires that

f K ′

(γ
α

)
= βK

(γ
α

)
, (71)

which relates the friction coefficient, f , to the elastic mismatch, β, through the complete elliptic in-
tegrals of the first kind, which are defined in Appendix B. The ′ notation on K ′(γ /α) refers to the
complementary argument, which means replacing γ /α with

√
1 − (γ /α)2. Once the singularity at u = γ

is removed by assuming (71), the integral (68) can be inverted according to the formula in Section A.1
for nonsingular endpoints. After some lengthy calculations, the shear tractions in the stick region are
found to be

q(x)=
f P

√
2 cos(x/2)

2π
√

cos x − cos a

F
(

sin−1 tan(x/2)
tan(b/2)

,
tan(b/2)
tan(a/2)

)
K
(

tan(b/2)
tan(a/2)

) sgn
(
β tan

x
2

)
, |x |< tan

b
2
, (72)

where F(φ, k) is an incomplete elliptic integral of first kind, which is defined in Appendix B.
The shear tractions for the partial slip of evenly spaced rigid flat punches are plotted in Figure 11. For

aesthetics, the coefficient of friction is chosen to be f = 0.215, so that b ≈ 0.5, which is half of the entire
contact length. The shear tractions are symmetric about the center of the contact region and transition
from the partial slip result, Equation (72), in the stick region to Coulomb friction, (28), in the slip region
at x = b, producing a discontinuity in the shear tractions. It is interesting to note the continuity of the
plot despite the abrupt change from stick to slip at x = b; that is because the partial slip solution contains
the normal traction solution, but is corrected by the elliptic functions, the coefficient of friction and the
sign function.

As another interesting side note, it turns out that (71) is valid for all regularly periodic profiles that
display self-similarity in a single contact patch, that is, in a single period.

Partial slip contact of sinusoids: Goodman approximation. In this section, the partial slip problem for
elastically dissimilar wavy surfaces with Coulomb friction is solved with the Goodman approximation.
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Figure 11. Partial slip of a periodic rigid flat punch with f = 0.215, ν = 0.3, L = 2π
for a = 1.

The shear tractions are again divided into stick and slip regions. Thus, substituting (67) into (64) for a
sinusoidal profile gives

2
π

∫ γ

0

uq(u)
v2 − u2 du = G(v), |v|< γ, (73)

with consistency condition ∫ γ

0

G(v)√
γ 2 − v2

dv = 0, (74)

where

G(v)=
2 f p0

π
√

1 +α2

∫ α

γ

u
√
α2 − u2

(1 + u2)(v2 − u2)
du +

βp0
√
α2 − v2

√
1 +α2(1 + v2)

+
21C

A
|v|

1 + v2 , (75)

and C is an unknown constant. To solve for C , change the order of integration∫ α

γ

s
√
α2 − s2 ds
(1 + s2)

∫ γ

0

dv

(v2 − s2)
√
γ 2 − v2

= −
π

2

∫ α

γ

√
α2 − s2 ds

(1 + s2)
√

s2 − γ 2
. (76)

Equation (75) is then substituted into (74) in light of (76), resulting in

f p0
√

1+α2

∫ α

γ

√
α2 −v2 dv

(1+v2)
√
v2 −γ 2

−
βp0

√
1+α2

∫ γ

0

√
α2 −v2 dv

(1+v2)
√
γ 2 −v2

+
2C1

A

∫ γ

0

vdv

(1+v2)
√
γ 2 −v2

= 0. (77)

The integrals in (77) can now all be evaluated analytically. Returning now to the integral equation,
the shear tractions are found by first substituting (75) into (73). Then, using partial fractions and (77),
q(u) becomes

q(u)= −
2u
π

√
γ 2 − u2

(1 + u2)

[
− f p0

√
1 +α2

∫ α

γ

√
α2 − v2 dv

(v2 − u2)
√
v2 − γ 2

+
βp0

√
1 +α2

∫ γ

0

√
α2 − v2 dv

(v2 − u2)
√
γ 2 − v2

+
21C

A

∫ γ

0

vdv

(v2 − u2)
√
γ 2 − v2

]
.

Evaluating the integrals gives

q(u)=

[
f p0

(1 + u2)

√
α2 − u2

√
1 +α2

F(φ, γ /α)
K (γ /α)

+
1Cu

π A(1 + u2)
ln
(
α+

√
α2 − u2

α−
√
α2 − u2

)]
sgn(βu),
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Figure 12. Partial slip of a sinusoidal surface on an elastic half-space for a = 1 with
f = 0.215, ν = 0.3, and L = 2π .

where φ = sin−1(u/γ ) and F(φ, k) is an incomplete elliptic integral of first kind. Returning to original
variables, the shear tractions are

q(x)=

(
f p0
√

2
cos

x
2

√
cos x − cos a

F
(
φ, tan(b/2)/ tan(a/2)

)
K
(
tan(b/2)/ tan(a/2)

)
+

Cp0 sin(x/2)
2π

ln
tan(b/2)+

√
tan(b/2)2 − tan(x/2)2

tan(b/2)−
√

tan(b/2)2 − tan(x/2)2

)
sgn

(
β tan

x
2

)
, |x |< tan

b
2
,

where C is determined from (77) with (71) and φ = sin−1(tan(x/2)/ tan(b/2)).
The partial slip contact of an elastically dissimilar wavy surface and a half-space is compared with

the complete stick solution, (61), and normal traction solution, (21), in Figure 12. Again, the coefficient
of friction is chosen such that the stick and slip regions are equal. The dotted line above represents the
normal traction solution multiplied by the coefficient of friction, meaning Coulomb friction, whereas the
dash-dot line represents the no-slip solution.

For the partial slip solution, the transition of the shear traction from the stick region to the slip region
is much more drastic than that for the flat punch for the same parameters. When the contact length
approaches the wavelength, the Goodman approximation is no longer valid. Not surprisingly, increasing
the coefficient of friction can also have the same effect, since greater shear tractions are required to
maintain the large contact region. The no slip solution is indistinguishable from the partial slip curve
initially, but later overshoots the normal traction plot, as was the case for the single indenter [Johnson
1985b]. The complete stick solution however does not violate the Coulomb friction law as the contact
region approaches the wavelength, although the curve no longer is approximately equivalent to the partial
slip curve for small x .
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Conclusion

The contact mechanics solutions derived in the paper may prove useful for validating computational ap-
proaches and are convenient for benchmarking numerical calculations or analyzing experimental results.
Because of the systematic nature of the theory presented, more complicated problems can also be solved
starting with the fundamental integral equations of contact.

The findings of the paper are summarized below:

(1) Based on a periodic array of Flamant solutions, the contact integral equations were derived. The
equilibrium equations were also provided for periodic profiles.

(2) Previously known solutions for the frictionless contact of a sinusoidal profile, flat punch and inclined
punch were derived from the integral equations of contact in order to demonstrate the validity of
the method.

(3) New closed-form results for sliding contact with Coulomb friction for evenly-spaced flat punches
and sinusoidal profiles were derived.

(4) Partial slip results for elastically similar materials were rederived using the contact integral equations
and extended to periodic power law indenters.

(5) The first solution for the complete stick of periodic flat punches using the coupled integral equation
was derived; the Goodman approximation was applied to complete stick and partial slip problems
for both periodic flat punches and a sinusoidal profile to obtain new closed-form solutions and its
applicability commented upon.
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Appendix A: Integral equation inversions

Hills et al. [1993] provide straightforward solutions of Cauchy singular integral equations of the first
and second kind. Since these solution techniques are regularly used throughout the paper and in view of
the limited availability of the book, the results are reproduced exactly in this appendix, for the reader’s
convenience.

A.1 Cauchy singular integral equations of the first kind

Equation to be solved:
1
π

∫ a

−a

f (s)
x − s

ds = g(x), |x |< a

Solution: f (x)= −
w(x)
π

∫ a

−a

g(s)
w(s)(s − x)

ds + Cw(x),

where the solution is required to have the following characteristics:
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Singular at both ends: w(x)= 1/
√

a2 − x2, C 6= 0

Nonsingular at x = a: w(x)=
√
(a − x)/(a + x), C 6= 0

Nonsingular at x = −a: w(x)=
√
(a + x)/(a − x), C = 0

Nonsingular at x = ±a: w(x)=
√

a2 − x2, C = 0, with the consistency condition
∫ a

−a

g(s)
w(s)

ds = 0

A.2 Cauchy singular integral equations of the second kind

Equation to be solved: R f (x)+
P
π

∫ a

−a

f (s)
s − x

ds = g(x), |x |< a

Solution: f (x)=
1

R2 + P2

(
Rg(x)−

P
π
w(x)

∫ a

−a

g(s)
w(s)(s − x)

ds
)

+ Cw(x),

assuming the functions involved are wholly real and that tanπB = −P/R.

The solution is required to have the following characteristics:

Singular at both ends: w(x)= (a − x)B−1(a + x)−B, C 6= 0

Nonsingular at x = a: w(x)= (a − x)B(a + x)−B, C = 0

Nonsingular at x = −a: w(x)= (a − x)B−1(a + x)1−B, C = 0

Nonsingular at x = ±a: w(x)= (a−x)B(a+x)1−B, C =0, with consistency condition
∫ a

−a

g(s)
w(s)

ds=0

Appendix B: Integrals of importance

Below are a few of the complex integrals that were derived to solve periodic problems in plane elasticity.
Elliptic integrals are also provided since their solutions prove useful as well.

Complex integrals for 0< m < 1 and tanφ = 1/a∫ a

−a

(a − u)m−1(a + u)−m

1 + u2 du =
π

√
1 +α2

sin[πm −φ(2m − 1)]
sinπm∫ a

−a

u(a − u)m−1(a + u)−m

1 + u2 du =
π

√
1 +α2

cos[πm −φ(2m − 1)]
sinπm∫ a

−a

(a − u)m(a + u)1−m

1 + u2 du =
π

sinπm
{

√
1 + a2 sin[πm −φ(2m − 1)] − 1}

∫ a

−a

u(a − u)m(a + u)1−m

1 + u2 du =
π

sinπm
{

√
1 + a2 cos[πm −φ(2m − 1)] − a(2m − 1)}

∫ a

−a

(a − u)m(a + u)1−m

(1 + u2)2
du =

απ(2m − 1)
√

1 + a2

sinπm
cos[πm −φ(2m − 1)]

∫ a

−a

u(a − u)m(a + u)1−m

(1 + u2)2
du = −

π
√

1 + a2

sinπm
cos[πm −φ(2m − 1)]
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Elliptic integrals of the first, second and third kinds

Incomplete integrals:

F(φ,k)=
∫ φ

0

dθ√
1−k2sin2θ

E(φ,k)=
∫ φ

0

√
1−k2sin2θ dθ 5(n;φ,k)=

∫ φ

0

dθ

(1−n2θ)
√

1−k2sin2θ

Complete integrals: K (k)= F(π/2, k) E(k)= E(π/2, k) 5(n, k)=5(n;π/2, k)
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DETERMINATION OF MODE I STRESS INTENSITY FACTORS OF COMPLEX
CONFIGURATIONS USING STRAIN GAGES

S. SWAMY, M. V. SRIKANTH, K. S. R. K. MURTHY AND P. S. ROBI

Among techniques for the determination of the mode I stress intensity factors (SIFs), strain gage pro-
cedures are the simplest and most straightforward. We report here on an experimental investigation
of the determination of opening mode stress intensity factors using the single strain gage method. Our
approach overcomes certain drawbacks and greatly widens the applicability of strain gage methods in the
determination of static SIFs of complex configurations. The approach was tested through experiments
on specimens of finite width and finite height edge-cracked plates (fully finite plates) subjected to tensile
stress. We compared the experimentally determined mode I stress intensity factors of fully finite plates
with the computed values using finite element analysis, obtaining good agreement between the present
approach and computed values.

1. Introduction

Cracks frequently initiate and grow at stress concentration zones such as notches, holes, reentrant corners
and welded joints in structural components. Because such elements occur frequently in structural compo-
nents, understanding the severity of cracks is important in the development of static strength, fatigue crack
growth and fatigue life prediction methodologies. The stress intensity factor (SIF) is the key parameter
in linear elastic fracture mechanics (LEFM) for quantifying the severity of cracks. It reflects the effect
of loading, crack size, crack shape and component geometry in life and strength prediction methods.

An accurate knowledge of the stress intensity factor is essential for the prevention of brittle fractures
arising from cracks; in particular, the use of the LEFM principles in preventing the fracture of engineering
components depends largely on the availability of accurate SIFs. As a result, analytical, numerical and
experimental methods for SIF determination in cracked bodies have been developed for several decades
[Sanford 2003]. Analytical methods are limited to simple configurations due to mathematical difficulties,
and one must resort to numerical or experimental methods for more complex situations. The experimental
determination of stress intensity factors is also needed as a way to validate theoretical and numerical
results, and provides a valuable aid to their application. Approaches include the compliance method
[Bonesteel et al. 1978; Jr 1981], photoelasticity [Gdoutos and Theocaris 1978; Hyde and Warrior 1990],
caustics [Theocaris 1970; Konsta-Gdoutos 1996] and strain gage methods [Dally and Berger 1993].

Of all these techniques, the most straightforward is the use of electrical resistance strain gages [Sanford
2003]. It has received much attention because it can measure surface strains accurately and directly within
strain gradient zones, allowing the subsequent determination of SIFs. Irwin [1957] first suggested the use
of strain gages to determine SIFs; however, the local yielding effect at the crack tip of metallic materials,
high strain gradients, the three-dimensional state of stress at the crack tips and the finite size of the strain

Keywords: stress intensity factor, strain gage, finite width, PMMA, edge crack, finite height.
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gages are the primary issues for establishing a valid approach for accurate measurement of SIFs using
the strain gage techniques. Earlier attempts to measure SIFs using strain gages were reported in [Broek
1982].

A practical method to tackle the issues mentioned in the previous paragraph, providing an effec-
tive strain gage technique for measuring the static opening mode stress intensity factor (K I ) in two-
dimensional bodies, was first proposed by Dally and Sanford [1987] for linear elastic isotropic materials.
In this method the strains are represented by three/four parameter series. The generalized Westergaard
approach [Sanford 1979] is employed to determine the strain series and subsequently K I . The chief
advantage of the Dally–Sanford approach is that only a single strain gage is sufficient to determine the
mode I SIF, which can be placed at distances far away from the crack tip. Their numerical results reveal
that the zone of three-parameter strain series is sufficiently large. Further, an analysis of the error due
to strain gradient effects was presented, to suggest possible locations for the finite-sized strain gages.
Experiments were conducted on aluminum compact tension (CT) specimens with small strain gages
(active grid size 0.76 × 0.76 mm2) at different distant radial locations from the crack tip. The authors
noticed that the gage readings at all locations were affected by the formation of a plastic zone and the
subsequent redistribution of stresses and strains. A methodology has been suggested based on Irwin’s
method of shifting the elastic field [Sanford 2003] by a distance equal to the plastic zone radius ry to
correct the measured strains, and hence the SIFs. However, a major limitation of this approach is that
one should know the exact SIF of the selected configuration a priori in order to calculate the plastic zone
size.

Parnas and Bilir [1996] employed the Dally–Sanford single strain gage method to determine the SIFs
of CT specimens made of steel and aluminum. Their investigation included the effect of plate thickness.
The accuracy of the measured SIFs was observed to depend on the thickness of the specimen. The results
clearly show that in the case of thin plates the linearity between applied load and measured strain is not
achieved at all loads: beyond a certain load the relationship is found to be nonlinear. However, the linear
relation is observed for thick plates. Parnas and Bilir attributed these effects to the formation of plastic
zones in the specimens.

Other strain gage methods designed specifically for measuring static mode I SIFs have been proposed
by Wei and Zhao [1997] and Kuang and Chen [1995]. Unlike Dally and Sanford, Wei and Zhao used
two strain gages, and adopted Williams’ [1957] eigenfunction expansion to determine the truncated strain
series. These authors tested their theory on three-point bend steel (TPBS) specimens using 0.5 × 0.5 mm2

active-grid strain gages and reported inaccuracies in the measured SIFs due to the formation of plastic
zones. However, the locations of the strain gages were suggested empirically and require knowing a
priori knowledge about the plastic zone size, which depends on the unknown exact stress intensity factor
of the configuration.

Kuang and Chen [1995], in contrast, approached the problem using near-field strain equations and
asymptotic strain expressions. They suggested that strain gages can be placed at distances greater than
half the thickness of the specimen from the crack tip despite the fact that at distances larger from the crack
tip, the measured strains cannot be accurately represented by asymptotic terms alone. They conducted
experiments on steel CT specimens using strip gages containing 10 strain sensors each of 0.5 × 0.5 mm2

active grid size. Contrary to theoretical predictions, the normalized mode I SIF was found to be a
function of the applied loads and the thickness of the specimen. The measured SIF was also found to
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depend on the angular position relative to the crack axis. However these authors demonstrated that highly
inaccurate SIF results are obtained if the strain gages are placed at distances below half the thickness of
the specimen. Their measurements at locations away from the crack tip are also affected by plasticity
effects. Corrections to the measured strains were suggested, in a manner similar to that of [Dally and
Sanford 1987], but contrary to earlier works, no improvement of the measured SIFs was accomplished,
even after incorporating plastic zone corrections.

Of these various strain gage methods for measuring opening mode static SIFs, the procedure of Dally
and Sanford enjoys the greatest practicability and a solid mathematical background. By contrast, very
large numbers of strain gages are needed to measure opening mode SIFs in the overdetermined method
proposed by Berger and Dally [1988]. Dally and Sanford’s technique has been extended to mixed mode
cases [Dally and Berger 1986], which requires four strain gages for determination of the SIFs. A pro-
portional extrapolation technique for determining mixed mode SIFs using strain gages has also been
proposed [Itoh et al. 1988]. However, a special strain gage pattern is needed in this technique.

An advantage of strain gage techniques is that they can be employed directly on metallic engineering
components to determine the SIF of their configurations. Also important is that numerical and analytical
solutions of static SIFs of complex domains can be corroborated via strain gage procedures to provide
reliability of the results/methods. For example, many researchers have reported on the application of
photoelastic methods [Marloff et al. 1971; Chan and Chow 1979; Amir et al. 1989; Nurse et al. 1994]
and caustics [Biak et al. 1995; Lee and Hong 1993] to the determination of static SIFs or the corroboration
of analytical and numerical solutions for important configurations. Such application investigations using
existing procedures are useful in establishing the experimental methods and make them into a viable
alternative in real design situations of great complexity.

In spite of these important applications of strain gage methods, no work has been reported to date on
the application of the Dally–Sanford single strain gage procedure to the validation of accurate mode I
static SIFs of the complex configurations, so as to establish the usefulness of this technique in real design
situations. This is true also of the other strain gage methods.

A critical review of earlier work [Dally and Sanford 1987; Parnas and Bilir 1996; Wei and Zhao 1997;
Kuang and Chen 1995] in this field discloses the various drawbacks that prevented further utilization of
these methods in the determination of SIFs for important complex configurations: (a) the normalized
SIF is found to be function of thickness of the specimen and the applied loads which is obstinate to the
theory; (b) the measured strains are severely affected by plastic zone formation and subsequent strain
redistribution; (c) while certain approximate procedures have been proposed to correct the measured
strains (and hence SIFs), these procedures depend on the unknown exact stress intensity factor of the
configuration; (d) there are indications that at times no significant improvements can be achieved even
after plastic zone corrections are applied. The last three works referenced at the start of this paragraph
employed theoretical values of SIFs for CT and TPBS specimens to correct measured SIFs for plasticity
effects. Clearly such corrections are not possible in the case of configurations for which no SIF solutions
are available.

These difficulties arise mainly from the use of the metallic specimens in strain gage procedures, al-
though the SIF is independent of the material. The preparation of complex configurations, particularly of
cracked specimens, is relatively difficult with metallic materials; great care has to be exercised in creating
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sharp natural cracks with intricate orientations. Thus methods such as Dally and Sanford’s, which have
a sound mathematical basis, may be more effectively exploited by using materials other than metals.

The fact that the SIF is independent of the material is exploited in photoelastic and other experimental
methods [Gdoutos 1990; Dally and Riley 1991]. As is well known, polymethylmethacrylate (PMMA),
known commercially as Perspex or Plexiglas, is a homogeneous, isotropic and brittle material at room
temperatures [Maccagno and Knott 1989]. This material has long been used in studies of many aspects
of linear elastic fracture mechanics [Maccagno and Knott 1989; Mukherjee and Burns 1972; Katsamanis
and Delides 1988; Xu et al. 2004]. One advantage it offers is that it is relatively easy to introduce sharp
natural cracks by pressing a razor blade into the bottom of a notch. PMMA is also inexpensive and easy
to fabricate in complex cracked configurations, making it an excellent model material for experimental
fracture mechanics. (See [Maccagno and Knott 1989] for details and a historical account of the use of
PMMA for this purpose.)

In view of the shortcomings arising to the use of metallic specimens in strain gage procedures and
of the availability of excellent strain gage technology, we suggest that the use of the specimens made
of PMMA material will greatly broaden the applications of these methods. All of aforesaid drawbacks
of use of the metallic specimens can be overcome with the use of this material. However, to the best
of our knowledge no published report is available on use of the PMMA in conjunction with strain gage
methods, in particular with the single gage technique of Dally and Sanford.

The proximity of component boundaries to the crack tip has an effect on SIFs [Sanford 2003; Gdoutos
1990]. In general, as the boundaries come close to the crack tip, the magnitude of the SIF increases. An
edge-cracked plate subjected to uniform tensile stress is a widely used benchmark problem [Pang 1993].
Analytical and numerical solutions for the mode I SIF of this configuration are available only for finite
width plates [Murakami 1987; Tada et al. 2000], that is, for large values of a/w and h/w ≥ 1, where a is
the crack length, w is the width of the plate and h is the height of the plate from the crack axis. However,
to our knowledge no report in the open literature, whether using analytical, experimental or numerical
methods, is available on SIFs for edge-cracked plates of finite width and finite height (large a/w and
h/w ≤ 1) subjected to uniform tension. In this situation both the width and the height of the plate are
close to the crack tip. We call such plates fully finite.

In this work we investigate the feasibility of experimental determination of accurate opening mode
stress intensity factors using the Dally–Sanford method and cracked polymethylmethacrylate (PMMA)
specimens. In the Dally–Sanford procedure, gages can be placed at low strain gradient zones; as a
consequence larger gages can be employed. In contrast with [Dally and Sanford 1987; Wei and Zhao
1997; Kuang and Chen 1995], our work attempts to measure accurate SIFs using relatively large strain
gages (active gage length 3 mm) and monotonically increasing loads with continuous measurement of the
strain. Our goal is to accurately determine opening mode SIFs of fully finite edge-cracked plates subject
to uniform tension. To validate the proposed method for the determination of SIFs, we compare our
experimental results with computer-calculated values obtained using ANSYS finite-element software.

2. Theoretical background

In the Dally and Sanford method [1987], the strain field adjacent to a crack tip is represented by an infinite
series solution. The area around a crack tip can be divided into three regions (Figure 1) to identify valid
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Figure 1. Different regions at the crack tip.

locations for accurate strain measurements. The very near field region (region I in Figure 1) is the zone
where the singular term in the series or asymptotic expression is sufficient to represent this region. This
is a singularity dominated zone. Due to yielding of material and three-dimensional nature of stress state,
this is not a valid region for accurate strain measurements.

Region II is the near-field region, defined as the area beyond region I where the strain field can be
represented within a specified accuracy by a small number of series terms, both singular and nonsingular.
Region III, the far-field region, corresponds to large values of the radial distance r from the crack tip;
in that region a very large number of unknowns are needed in the series for an accurate representation
of the strain field, so strain measurements are not appropriate there. Thus region II is the optimum zone
for accurate strain measurements: it can be represented by few terms and is sufficiently away from the
crack tip. Dally and Sanford [1987] adopted a three-parameter approach; that is, they assumed that the
strain field in region II can be represented with sufficient accuracy by three series terms. The strain field
in this region for plane stress conditions is then written as (see also [Sanford 2003])

Eεxx = A0r−1/2 cos θ
2

(
(1−ν)−(1+ν) sin θ

2
sin 3θ

2

)
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2
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where A0, A1 and B0 are unknown coefficients that can be determined using the geometry of the specimen
and the boundary conditions. Using the definition of KI one can easily show that it is related to A0 by

KI =
√

2π A0. (2)

A single strain gage is sufficient to measure the constant A0 (hence KI ) by placing and orienting the
strain gage as given below. Using the strain transformation equations, the strain component εx ′x ′ at the
point P located by r and θ (Figure 2) is given by

2Gεx ′x ′ = A0r−1/2
(

k cos θ
2

−
1
2

sin θ sin 3θ
2

cos 2α+
1
2

sin θ cos 3θ
2

sin 2α
)

+ B0(k + cos 2α)+ A1r1/2 cos
θ
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(
k + sin2 θ

2
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1
2
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)
, (3)

where κ =
1−ν

1+ν
.
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Figure 2. Strain gage location and orientation.

The coefficient B0 term in (3) can be eliminated by selecting the angle α so that

cos 2α = −κ = −
1−ν

1+ν
. (4)

The coefficient A1 can also be made zero if the angle θ is selected so that

tan
θ

2
= −cot 2α. (5)

Thus by placing a single strain gage (Figure 2) with α and θ as defined by (4) and (5) one can measure
the strain εx ′x ′ , which in turn is related to KI by

2Gεx ′x ′ =
K I

√
2πr

(
k cos θ

2
−

1
2

sin θ sin 3θ
2

cos 2α+
1
2

sin θ cos 3θ
2

sin 2α
)
. (6)

The angles α and θ depend only on the Poisson’s ratio of the specimen material. The selection of the
radius r for locating the strain gage can be obtained by considering strain gradient effects, as explained
in [Dally and Sanford 1987]. Since the gages can be located far from high strain gradient zones, the
measurements can be taken with relatively large, hence inexpensive, strain gages.

3. Numerical evaluation of the SIFs of fully finite edge-cracked plates

The SIFs of finite width and finite height edge-cracked plates is given by

K I = σ
√
πa FI

( a
w
,

h
w

)
, (7)

where FI
( a
w
, h
w

)
is the configuration factor or normalized SIF, which shows the effect of geometry of the

body on the SIF [Sanford 2003; Gdoutos 1990].
Finite element analyses using ANSYS 9.0 were carried out to determine accurate opening mode SIFs

of fully finite edge-cracked plates (with various values of a/w and h/w) subject to uniform tension
(Figure 3). The displacement extrapolation method of ANSYS [2005] was employed to compute the
normalized opening mode SIFs. It is known (see [Swain 2007]) that this method is consistent and yields
very accurate SIFs. In our investigation we chose two values of a/w, 0.3 and 0.5, and values of h/w
ranging from 0.2 to 1.1 in steps of 0.1. It is well known that semi-infinite plates can be represented
approximately by h/w ≥ 1, while h/w < 1 represents fully finite edge-cracked configurations.
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Figure 3. Problem domain: Edge cracked plate subjected to uniform tension.

Natural isoparametric quadratic triangular elements (T6) and the corresponding quarter point singular
elements [Barsoum 1976; Freese and Tracey 1976] were used. We assume plane stress conditions, σ =

1.0 MPa, a Young’s modulus E = 10000 MPa and a Poisson’s ratio of 0.3. Because of symmetry, only
half the plate was considered in the analysis. Figure 4 shows a typical unstructured mesh pattern (without
gradation) used in the determination of the normalized SIFs. Such meshes were used for all values of
a/w and h/w. No significant improvements in the SIFs were observed when the meshes were refined
further [Swamy 2007].

The computed normalized opening mode SIFs for different values of a/w and h/w are presented in
Table 1. As expected, the SIF increases as the a/w ratio increases and the h/w ratio decreases, that is,

 

 

Figure 4. Typical meshes for SIF determination for the problem domain.
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h/w
FI = K I /σ

√
πa

a/w = 0.3 a/w = 0.5

0.2 3.5979 6.0343
0.3 2.5390 4.0308
0.4 2.0736 3.2898
0.5 1.8496 3.0060
0.6 1.7420 2.8954

h/w
FI = K I /σ

√
πa

a/w = 0.3 a/w = 0.5

0.7 1.6938 2.8514
0.8 1.6733 2.8342
0.9 1.6649 2.8277
1.0 1.6622 2.8250
1.1 1.6613 2.8249

Table 1. FE-computed normalized SIFs of semi-infinite and finite edge-cracked plates.

when the surrounding boundaries approach the crack tip. It may also be noticed from Table 1 that FI

remains almost constant for h/w ≥ 0.9, indicating semi-infinite cases.

4. Experimental details

As stated, our goal was to determine the SIFs of fully finite edge-cracked panels with the shape shown
in Figure 3, using the single strain gage technique of [Dally and Sanford 1987]. The configuration
of the experimental specimens representing the problem domain is shown in Figure 5. The specimens
were made from commercially available PMMA (Perspex sheet) with a thickness of 6 mm. Plane stress
condition is anticipated in the specimens. The width of all the specimens was kept at w = 150 mm, while
the crack length a and the height h of the specimen were varied to create semi-infinite and fully finite
edge-cracked specimens.

 

Figure 5. Details of the experimental PMMA specimen.
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All specimens were monotonically loaded with a closed loop, servohydraulic INSTRON 8801 machine
(100 kN capacity) under displacement control with actuator speed 0.05 mm/min. The whiffletree tech-
nique (Figure 5) was employed to transform the point load from the INSTRON to a uniformly distributed
load on the specimen. The whiffletree plates were made from mild steel, and mild steel pins were used to
connect them with the specimens. Five holes were used to connect each whiffletree to the corresponding
specimen. As shown in Figure 5, each hole lies 10 mm from the top or bottom edge of the specimen.
It was assumed that the point load applied by the machine is equally divided between the five holes as
shown in Figure 5.

To imitate the sharp crack form the model (Figure 3), we made a 3 mm wide notch with a jigsaw, of
length (a−2) mm, and further created a fine slit, 2 mm long, by means of a razor blade. Very sharp cracks
can be made in this way: the crack tip root radius is less than 0.0035 mm (see [Srikanth 2006]). Two
a/w ratios (0.3 and 0.5) and four h/w ratios (0.3, 0.5, 0.7 and 1.0) were chosen for the experimental
study. Only one specimen each was tested for a/w = 0.3 and various values of h/w, and two specimens
each for a/w = 0.5 and various h/w. Strain measurements on the loaded specimens were carried out
using a single electrical strain gage (HBM type 1-LY11-3/120) with an active grid of 3 × 1.4 mm2. A
Young’s modulus of 2300 MPa and Poisson’s ratio of 0.37 have been measured for the PMMA material
in a tensile test [Swamy 2007]. Thus α and θ in (4) and (5) equal respectively 58.69◦ and 54.76◦. The
radial position of the strain gage r = 10 mm was chosen in all experiments based on the strain gradient
analysis presented in [Dally and Sanford 1987].

The measured strains were processed and digitized using a National Instruments Data Acquisition
Board (PXI 1052) and an eight-channel universal strain gage module (SCXI 1520). Continuous strain
measurements was made by interfacing the INSTRON machine’s load cell with a NI Data Acquisition
Board (DAQ). Figure 6 depicts a specimen attached to the INSTRON with whiffletree plates.

 

Figure 6. A typical PMMA specimen with whiffletree plates.
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5. Finite element simulation of the experimental specimens

Since the experimental specimen (Figure 5) differs from the original problem domain (Figure 3) espe-
cially in the matter of loading, a finite element simulation of the experimental specimen with assumed
magnitude of point loads at the five holes was carried out using ANSYS. Such simulations before the ex-
periments are vital in establishing whether or not the selected configuration of the experimental specimen
mimics the actual problem domain. The specimens were modeled with T6 elements and quarter-point
singular elements were placed at the crack tips. Figure 7 shows a representative mesh with loading and
boundary conditions employed in the numerical simulation studies.

Figure 7. Typical mesh of an experimental specimen, computed by ANSYS.

A few results of computed SIFs of the experimental specimens and that of original problem domain
are presented in Table 2. It also presents the percent relative error (in absolute value) considering SIFs
in Table 1 as exact values. It may be noticed from table that, the expected SIFs from the specimens are
in very good agreement with the SIFs of the original problem (Figure 3). Although not presented here,
similar simulations were carried out for other values of h/w and exceptional agreement between the two
set of SIFs was observed [Swamy 2007]. Thus the numerical results clearly indicate that experimental
specimen as designed in Figure 5 can accurately imitate the original problem (Figure 3).

h/w 0.4 0.6 1.0

speciment FI (Figure 5) 2.0652 1.7427 1.6655
problem domain FI (Figure 3) 2.0736 1.7420 1.6622

relative error 0.41% 0.04% 0.20%

Table 2. Experimental and computed normalized SIFs for a/w= 0.3 and selected values
of h/w.
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Figure 8. Variation of the measured strain with applied load for a/w = 0.3.

6. Experimental results and discussion

Figure 8 shows the experimentally measured strain data on PMMA specimens as a function of the applied
load for a/w = 0.3 and h/w = 0.3, 0.5, 0.7, 1.0. A linear fit was made to the data points of all the
specimens. A very good linear relationship can be noticed between the measured strain and the applied
load in the figure for all four specimens. The coefficient of determination R2 in all the graphs is also
close to unity, indicating good fits. A slight deviation from linearity in Figure 8(a) is probably due to
the improper settlement of the pins in the holes of the whiffletree. From the linear equations presented
in each of the four graphs, measured strains were calculated at different loads. Subsequently, using the
computed strains the opening mode SIFs were determined using (6) at different values of applied load.

Table 3 presents the measured opening mode SIFs (K I ) at different loads for semi-infinite and fully
finite edge-cracked plates of a/w = 0.3. The experimental results of Table 3 are presented in graphical
form in Figure 9 to show the dependency of K I on the applied load and proximity to the boundaries.
Since the measured strains are linearly proportional to the applied load so are the measured SIFs. Besides
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Figure 9. Variation of the measured K I with applied load for a/w = 0.3.

this, the trend that the magnitude of the measured SIF is increasing with the increase in load is also in
agreement with the theoretical predictions [Sanford 2003; Gdoutos 1990]. Further, the magnitude of
SIF increases with decreasing h/w. Table 3 also provides normalized SIFs (FI ), which are found to be
independent of applied loads. Therefore a single value corresponding to a configuration is presented in
the table.

Plots of the measured strain data as a function of the applied load for a/w = 0.5 and h/w = 0.3,
0.5, 0.7, 1.0 were found to be very similar to the case of a/w = 0.3, and the corresponding averaged

Load (N)
K I (MPa

√
m)

a/w = 0.3 a/w = 0.5 a/w = 0.7 a/w = 1.0

100 0.1132 0.0827 0.0757 0.0687
200 0.2265 0.1653 0.1513 0.1374
300 0.3397 0.2480 0.2270 0.2061
400 0.4529 0.3307 0.3027 0.2748
500 0.5662 0.4133 0.3783 0.3434
600 0.6794 0.4960 0.4540 0.4121
700 0.7926 0.5787 0.5297 0.4808
800 0.9059 0.6613 0.6053 0.5495
900 1.0191 0.7440 0.6810 0.6182

1000 1.1323 0.8267 0.7567 0.6869

FI 2.7098 1.9783 1.8108 1.6438

Table 3. Measured K I values at different loads for a/w = 0.3, and load-independent
normalized SIFs (last row).
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Figure 10. Variation of the measured K I with applied load for a/w = 0.5.

measured SIFs at different applied loads are shown in Table 4. Figure 10 shows the graph of averaged
measured SIFs as function of the applied load. As in the case of a/w = 0.3, the increase of the SIF with
decreasing h/w and increasing values of the applied loads are in line with the theory. The normalized
SIFs for h/w = 0.3, 0.5, 0.7, and 1.0 also appear in Table 4.

The measured FI using strain gages and the computed normalized SIFs using FEA of semi-infinite and
fully finite edge-cracked plate appear in Table 5. For comparison, the table also shows the analytical val-
ues of normalized SIFs [Tada et al. 2000] for semi-infinite plates (h/w = 1.0). The discrepancy between

Load (N)
K I (MPa

√
m)

a/w = 0.3 a/w = 0.5 a/w = 0.7 a/w = 1.0

100 0.2031 0.1654 0.1540 0.1520
200 0.4063 0.3308 0.3081 0.3040
300 0.6094 0.4962 0.4621 0.4560
400 0.8126 0.6616 0.6162 0.6080
500 1.0157 0.8270 0.7702 0.7600
600 1.2189 0.9923 0.9242 0.9120
700 1.4220 1.1577 1.0783 1.0639
800 1.6252 1.3231 1.2323 1.2159
900 1.8283 1.4885 1.3864 1.3679

1000 2.0315 1.6539 1.5404 1.5199

FI 3.7666 3.0665 2.8561 2.8181

Table 4. Measured K I values at different loads for a/w = 0.5, and load-independent
normalized SIFs (last row).
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h/w
FI (a/w = 0.3) FI (a/w = 0.5)

numerical experimental analytic numerical experimental analytic

0.3 2.5390 2.7098 (6.7%) ------ 4.0308 3.7666 (6.6%) ------
0.5 1.8486 1.9783 (7.0%) ------ 3.0060 3.0665 (2.0%) ------
0.7 1.6938 1.8108 (6.9%) ------ 2.8514 2.8561 (0.2%) ------
1.0 1.6622 1.6438 (1.1%) 1.6624 2.8250 2.8181 (0.2%) 2.8291

Table 5. FE-computed, experimentally measured, and (where available) analytic values
of FI for edge-cracked plate and two choices of a/w. Bracketed values are absolute
values of relative error. Analytic solutions are from [Tada et al. 2000].

the experimentally determined and FE-computed values, ranging from 0.2% to 7%, shows (assuming the
FE-computed values to be exact) that the experimental method is substantially accurate in spite of the
relatively large gage (3 mm active length). Excellent agreement is also observed between the measured
and the theoretical normalized SIFs of semi-infinite plates.

Probable reasons for the somewhat larger errors (up to 7%) appearing in Table 5 are: (a) In all cases
the cracks (fine slits) were made by pressing a razor blade through a distance of 2 mm; although great
care was taken, it is difficult to control this length precisely. (b) When the razor blade is employed,
the crack front at times is not precisely normal to the sheet surface. Similar observations were made in
[Williams and Ewing 1972].

The measured and computed SIFs are shown in Figure 11, in order to assess the usefulness of the
strain gage method of Dally and Sanford [1987] in combination with PMMA specimens for measuring
the accurate SIFs. We see that either the results of Table 1 or the graphs in Figure 11 may be employed
for SIFs of finite width and finite height edge-cracked plates subject to uniform tension.

Figure 11. Comparison of measured and computed values of the normalized SIF.
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7. Conclusions

The present investigation outlines various reasons which prevented the extensive application of the strain
gage methods in determination of the accurate mode I SIFs. An experimental program is devised
which includes the use of PMMA specimens so as to make the single strain gage method of [Dally
and Sanford 1987] a more powerful and attractive experimental technique. The effectiveness of use of
PMMA specimens in conjunction with the Dally and Sanford technique in measuring accurate opening
mode stress intensity factors was demonstrated in the present investigation. Monotonically increasing
load experiments were performed on the finite width and finite height PMMA edge-cracked specimens
and strains were measured using 3 mm active length strain gages. Various trends of the experimental
results are in excellent agreement with the LEFM theory. Moreover, a good agreement has also been
observed between computed SIFs using FEA and the measured SIFs using the relatively large strain
gages. The present investigation attempts to suggest accurate SIFs of the fully finite edge-cracked plates
and subjected to uniform tension. The results of the present work clearly demonstrate that the single
strain gage technique of Dally and Sanford can be used more effectively in combination with the PMMA
specimens and can become a very useful tool for measurement of accurate opening mode SIFs of the
complex configurations yet with relatively large gages.
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PLASTIC YIELD AND COLLAPSE MECHANISM OF PLANAR LATTICE
STRUCTURES

YIHUI ZHANG, ZHENYU XUE, XINMING QIU AND DAINING FANG

Lattice structures possess a huge potential for energy absorbing applications, and the postinitial collapse
region should be analyzed with respect to design principles in such cases. This paper presents an ana-
lytical method to calculate the ultimate yield surfaces of statically indeterminate planar lattice structures,
based on the assessment of static equilibrium of the unit cell before and after initial yielding. The
material of the unit cell wall is assumed to be elastic, perfectly plastic. Three statically indeterminate
planar lattice structures: the diamond cross cell, the statically-indeterminate square cell (SI-square cell),
the new Kagome cell (N-Kagome), are analyzed. The parametric studies reveal the roles of various
geometrical parameters on the performance of each structure. The SI-square cell is utilized as an example
to demonstrate the evolution of structural yielding, thus providing an insight into the collapse mode of
lattice structures. Furthermore, the stress-strain relationships of the SI-square and N-Kagome cells are
also calculated, and the effective constitutive relations of both lattices are found to be linearly hardening,
which is validated by finite element (FE) simulations.

1. Introduction

Recently, lightweight structures, including metal foams, metallic sandwiches with various core topolo-
gies, and lattice structures, have been widely used in engineering applications [Gibson and Ashby 1997;
Ashby et al. 2000; Smith et al. 2001; Xue and Hutchinson 2003; 2004; 2006; Hutchinson and Xue 2005]
for their superior properties of high specific stiffness and strength, most effective energy absorption, shock
mitigation, and heat insulation. A lattice structure consists of periodically patterned trusses or sheets
which provide large interstructural spaces, thus significantly enhancing the mechanical performance
of the structure compared with the equivalent solid plate of same weight. Furthermore, the periodic
cellular structures possess far superior specific strengths compared with disordered structures such as
Voronoi honeycombs [Fazekas et al. 2002] or less ordered open or closed cell metallic foams [Doyoyo and
Wierzbicki 2003]. Two-dimensional lattice structures possess configurations with regular and periodic
microstructures in a plane and remain the same along the normal direction of the plane. Because two-
dimensional lattice structures are attractive for use as cores in lightweight sandwich beams or plates, for
load carrying, energy-absorption, and packaging applications, various aspects of their mechanical and
thermal behaviors have received significant attention [Gibson and Ashby 1997; Chen et al. 1999; Evans
et al. 2001; Hayes et al. 2004; Fleck and Qiu 2007].

Keywords: planar lattice structures, plasticity, yield surface, structural collapse.
The authors are grateful for the support by National Natural Science Foundation of China under grants #10632060 and
#10502027. Supported by the Special Funds for the Major State Basic Research Projects of China (#G2003CB615603,
#G2006CB601202) is also acknowledged.
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Yielding is generally premonitory of structural collapse for lattice structures, and so a comprehensive
understanding of lattice yielding behavior is indispensable for engineering applications. Previous studies
on yielding behavior of cellular structures were mainly focused on the yielding criterion and the con-
tinuum constitutive relations, and employed the phenomenological and micromechanics methods in the
analysis of the periodic unit cell. Deshpande and Fleck [2000] proposed two phenomenological isotropic
constitutive models for the plastic behavior of metallic foams, and good agreement was found between
their experimental results and analytical predictions. Xue et al. [2005] presented a phenomenological
plastic constitutive model for compressible orthotropic materials and extended the model for applications
to metal core structures in sandwich plates. This plastic constitutive model was also implemented in
a finite element program to study the dynamic mechanical behavior of metal cores [Vaziri and Xue
2007]. From investigations of the representative periodic units, Gibson and Ashby [1997] presented
basic mechanical results about ideal and commercial hexagonal honeycombs. Mohr [2005] suggested a
mechanism-based multisurface plasticity model for ideal truss lattice materials. Standard homogenization
techniques were employed to develop a general micromechanics-based finite-strain constitutive model for
truss lattice materials. Wang and McDowell [2005] systematically calculated the initial yield surfaces of
five different types of planar lattice patterns by analysis of the periodic unit cells, considering both the in-
plane and triaxial stress states. Doyoyo and Mohr [2003] experimentally investigated the microstructural
response of aluminum honeycomb under combined normal and shear out-of-plane loading. Zhang et al.
[2008] designed two novel statically indeterminate planar lattice structures and calculated their initial
yield surfaces and buckling surfaces.

It should be noted that the previous studies about yield surfaces of lattice structures were mainly
based on numerical or experimental methods. These methods are commonly complicated and often
cannot provide simple explicit results which are more convenient for engineering applications. However,
it must be noted that high accuracy results can be obtained by utilizing these methods, especially for
the case where buckling of the microstructure is evident. For most stretching dominated structures
composed of moderately flexible struts (that is, when the relative density is larger than 0.06), comparison
of the yield strengths and elastic strengths indicates that elastic buckling generally does not occur before
yielding [Wang and McDowell 2004; Zhang et al. 2008]. In this case, the analytical method based on
the micromechanics method, through analysis of the periodic unit cell, is capable of deriving explicit
yield surface results with enough accuracy. Since the statically indeterminate lattice structure is still
dominated by stretching after the initial yielding, it can still sustain comparatively large additional load
after initial yielding. Besides, this category of lattices is expected to possess higher specific strengths
than that of statically determinate lattices such as the triangular and Kagome lattices. Therefore, for
practical applications of the statically indeterminate lattice structures in engineering conditions, it is
crucial to investigate their ultimate yield behavior in detail. The results concerning the ultimate yielding
of statically indeterminate cells have not been reported so far.

In this paper, a simple analytical method based on analysis of the equilibrium of the periodic unit cell
before and after initial yielding is put forward to calculate the ultimate yield equations of planar lattice
structures whose degree of static indeterminacy are one, which is introduced in Section 2.

In Section 3, the ultimate yield surfaces of three statically indeterminate planar lattices are calculated
using this method. Comparison of yield strengths among these lattice structures are made in Section 4.
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Finally, in Section 5, the whole stress-strain relationships of two statically indeterminate lattice struc-
tures in the principal directions are analyzed.

2. Formulation of ultimate yield surface

We consider a representative statically indeterminate lattice structure so that its periodic unit cell, com-
prised of eight struts fastened to each other, has a parallelogram shape as depicted in Figure 1. The
structure undergoes in-plane deformation under multiaxial stressing. The applied normal stresses in the
x1 and x2 directions are denoted as σ1 and σ2, respectively, and the shear stress is τ12. It is noted that the
pair of struts having the same orientation must exhibit identical mechanical behavior, so analyzing only
one strut is sufficient for each pair. For convenience, each selected strut in the four pairs is numbered by
i th, i = 1, . . . , 4 respectively and the length of the i th strut is li .

The onsets of yielding of the four pairs of struts are generally not concurrent. As the applied stresses
increase up to a set of particular values, a certain pair of struts starts to yield. This state is considered the
initial yielding of the lattice structure. After initial yielding, the unit cell of the structure is still capable
of withstanding further loading. Continuously increasing the loads results in at least one more pair of
struts also yielding. Consequently, the structural unit cell will become a mechanism and eventually
collapse. We name such behavior the ultimate yielding of the lattice structure. After the initial yielding
of the statically indeterminate lattice structure, the load is mainly supported by the original configuration
(excluding the initially yielding struts) although the initial yielding struts still increase in strength to some
extent when the material possesses a strain hardening effect. The strain hardening effect of the parent
material will make the solution of the ultimate yielding equation very complicated. Therefore, all struts
are assumed to be made of elastic, perfectly plastic material in this paper. Basically, once the ultimate
yielding occurs, the structure cannot bear additional loads any more in this case. It is also possible that

Figure 1. Sketch of a representative statically indeterminate lattice structure (a) and its
unit cell (b).
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two or more pairs of struts simultaneously start to yield, in which case we consider that the structure is
undergoing the ultimate yielding without experiencing the initial yielding. The evolution of structural
yielding will be addressed again later, while the emphasis in this section is to establish the equations for
identifying the initial and ultimate yielding conditions of the structure.

According to the criteria proposed by Deshpande et al. [2001], the lattice pattern in Figure 1 is a
stretching dominated structure. Furthermore, the unit cell in Figure 1 without one pair of struts is still
statically determinate, and each strut still undergoes mainly stretching or compressing; that is to say,
the structure is still stretching dominant after initial yielding. Therefore, the deformation of the lattice
structure is still very small compared with the dimension of the lattice unit cell. The analytical results
in Section 5 also demonstrate that the effective ultimate yielding strain of the lattice structures are both
within 5εys , where εys denotes the strain of the solid material. For the typical value of εys = 0.001, for a
metal material, the effective ultimate yielding strain of the lattice structure is only 0.005. Therefore, the
assumption of “small deformation” is still reasonable after initial yield. The agreement of the analytical
and Finite Element (FE) results on the stress-strain relationships of the SI-square and N-Kagome cells
in Section 5 also demonstrate that the “small deformation” assumption can be accepted. Besides, the
bending deformation of each strut in the lattice structure is still small enough so that they cannot contact
each other. The results of finite element method (FEM) calculations also support this statement. As shown
in Figure 2, when ultimate yielding in the SI-square lattice structure occurs under uniaxial loading in
the x1 and diagonal directions, the bending deformations and rotational angles of each strut are both
comparatively small. Therefore, the assumption that the structural elements do not contact each other is
precise for describing the deformation mode before the ultimate yielding of the lattice structure, and the
equilibrium equations established on the original configuration of the lattice are also accurate enough.

Due to the dominance of cell wall stretching, the internal force of the i th strut is proportional to each
applied stress component, thus the initial yielding condition of the i th strut can be written in nondimen-
sional terms as

|Ni/(σysbt)| = |piσ
◦

1 /σys + qiσ
◦

2 /σys + riτ
◦

12/σys | = 1, i = 1, . . . , 4, (1)

where Ni denotes the internal force of the i th strut, and σys is the yield strength of strut material; b and t
are the in-plane wall thickness and out-of-plane dimensions, respectively; σ ◦

1 , σ ◦

2 and τ ◦

12 are the applied
stresses leading to initial yielding of the unit cell. The coefficients pi , qi , and ri can be considered as
the contributing fraction of each stress component to the internal force of the i th strut, depending on the

Figure 2. The deformation sketches of the SI-square cell under uniaxial loading in the
x1 and diagonal directions with the deformations magnified by 100 times.
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initial structural geometry. For the case in which a single stress component exists (that is, σ1), the related
coefficient (that is, pi ) can be determined straightforwardly (that is, pi = Ni/(σ1bt)).

It is noted that after initial yielding (that is, the i th strut is yielding), the structure is still stretching
dominant. Assuming that the j th ( j = 1, . . . , 4, j 6= i) strut yields subsequently after the i th strut, then
the corresponding ultimate yield equation of the unit cell can be given by

|N (i)
j /(σysbt)| = |(N (i)◦

j +1N (i)
j )/σysbt |

=

∣∣∣∣∣∣∣∣
p jσ

◦

1 /σys + q jσ
◦

2 /σys

+ r jτ
◦

12/σys + P (i)j 1σ1/σys

+ Q(i)
j 1σ2/σys + R(i)j 1τ12/σys

∣∣∣∣∣∣∣∣= 1, i, j = 1, . . . , 4, j 6= i ,
(2)

where N (i)◦
j denotes the internal force of the j th strut at the onset of initial yielding of the i th strut. 1N (i)

j
denotes the additional internal force within the j th strut thereafter, and correspondingly 1σ1, 1σ2, and
1τ12 are the additional applied stresses thereafter. By definition, the additional stresses can be written
by

1σ1 = σ1 − σ ◦

1 , (3)

1σ2 = σ2 − σ ◦

2 , (4)

1τ12 = τ12 − τ ◦

12, (5)

where σ1, σ2, and τ12 are the final applied stresses. Analogous to pi , qi , and ri , the coefficients P (i)j ,

Q(i)
j , and R(i)j can be considered as the contribution fraction of each stress component increment to the

additional internal force of the j th strut after the initial yielding of the structure. They are determined
by the geometrical configuration, which excludes the initially yielding struts (the i th strut), and this
configuration is named the postyielding configuration. Assuming that an additional stress is exerted to
such postyielding configuration, (1σ1), the related coefficients (that is, P (i)j ) can be determined straight-

forwardly (P (i)j = N (i)
j /(1σ1bt)).

Substituting Equation (3) into (2) gives∣∣∣∣∣∣∣∣
(p j − P (i)j )σ

◦

1 /σys + (q j − Q(i)
j )σ

◦

2 /σys

+ (r j − R(i)j )τ
◦

12/σys + P (i)j σ1/σys

+ Q(i)
j σ2/σys + R(i)j τ12/σys

∣∣∣∣∣∣∣∣= 1, i, j = 1, . . . , 4, j 6= i. (6)

Through analyzing, in detail, the equilibrium of the structural unit cell under the specified uniaxial stress-
ing, we find that the parameters (p j − P (i)j ), (q j − Q(i)

j ), (r j − R(i)j ), and pi , qi , ri satisfy the following
generalized relation:

p j − P (i)j

pi
=

q j − Q(i)
j

qi
=

r j − R(i)j

ri
= s(i)j , (i, j = 1, . . . , 4, i 6= j), (7)
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where s(i)j is introduced as the scale parameter, depending only on the geometry of the unit cell. The
details of the procedure for getting Equation (7) will be given in Appendix A. For the special struc-
ture depicted in Figure 1, the parameter s(i)j can be further related to the length ratios. By introducing
the effective lengths, defined as l ′1 = l1, l ′2 = 2l2, l ′3 = 2l3, and l ′4 = l4, s(i)j can be simply written in a
generalized form as

s(i)j =

{
l ′j/l

′

i i + j = 5,

−l ′j/l
′

i i + j 6= 5,
(i, j = 1, . . . , 4, i 6= j). (8)

The term |(p j − P (i)j )σ
◦

1 /σys + (q j − Q(i)
j )σ

◦

2 /σys + (r j − R(i)j )τ
◦

12/σys | can be simplified by combin-
ing Equations (1) and (7), that is,∣∣∣(p j − P (i)j )σ

◦

1 /σys + (q j − Q(i)
j )σ

◦

2 /σys + (r j − R(i)j )τ
◦

12/σys

∣∣∣= |s(i)j |. (9)

Substituting (9) into (6), the ultimate yield equation is written as:

maxi, j=1,...,4,i 6= j {|s
(i)
j + P (i)j σ1/σys + Q(i)

j σ2/σys + R(i)j τ12/σys |} = 1(
when maxi=1,...,4

{
piσ1/σys + qiσ2/σys + riτ12/σys

}
≥ 1, i = 1, . . . , 4

)
,

(10a)

maxi, j=1,...,4,i 6= j {|−s(i)j + P (i)j σ1/σys + Q(i)
j σ2/σys + R(i)j τ12/σys |} = 1(

when min
i=1,...,4

{
piσ1/σys + qiσ2/σys + riτ12/σys

}
≤ −1, i = 1, . . . , 4

)
.

(10b)

Equation (10a) is related to the i th strut’s initial yielding under tension, while Equation (10b) is related
to its initial yielding under compression. It should be pointed out that the above equations are applicable
for any kind of statically indeterminate structures whose degrees of static indeterminacy are one even
though their derivation is based on the particular configuration shown in Figure 1.

Here we make a simple comparison of the present analytical method with the methods adopted in
the previous investigations on the yield surfaces of the lattice structures. Xue et al. [2005] proposed a
phenomenological ellipsoidal yield surface for lattice materials based on the six initial yield strengths in
the orthotropic axes. This kind of closed-form yield surface is advantageous in establishing the hardening
rule and the plastic constitutive relations similar to that of the isotropic metal material. The deformation
of each strut within the lattice cell is not detailed analyzed in this model, so this phenomenological
method is not capable of presenting an explicit ultimate yielding equation beyond the initial yielding.
Mohr [2005] suggested a mechanism-based multisurface plasticity model for ideal truss lattice materials.
Standard homogenization techniques were employed to develop a general micromechanics-based finite-
strain constitutive model for truss lattice materials. In their integration algorithm, an iterative numerical
method needs to be adopted to check the yield condition and calculate the plastic strain step by step, and
thus an explicit analytical ultimate equation also cannot be obtained using their method.

3. Ultimate yield surfaces of three types of lattice structures

Utilizing the equations presented in Section 2, we explore the ultimate yield surfaces of several lattice
structures, including the diamond cross cell, SI-square cell and N-Kagome cell. The configurations of
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Figure 3. Configurations of the diamond cross (a), the SI-square (b), and the N-Kagome
(c) lattice structures.

these lattice structures are shown in Figure 3. Figure 3(a) presents a diamond cross cell having a half
top angle of α, which can be specified by setting the lengths of all four outside struts of the unit cell
structure shown in Figure 1 to be equal. The statically indeterminate square (SI-square) cell, as shown
in Figure 3(b), is considered to be a special diamond cross cell having the half top angle of α = π/4.
The N-Kagome cell, proposed by Zhang et al. [2008], is presented in Figure 3(c). Compared with the
original Kagome cell, the N-Kagome cell has three short struts inside the triangle. Zhang et al. [2008]
indicated that, for a given relative density and wall thickness, the N-Kagome cell has larger hexagon
cavities, which are convenient for oil storage, disposal of heat exchanger, battery deploying and for other
functions..

In this section, the procedure of gaining the ultimate yield surfaces is explained in detail by exempli-
fying that of the diamond cross cell. The similar descriptions for the SI-square and N-Kagome cells are
omitted and only the results of the ultimate yield surfaces for these two cells are listed in Appendix B.
By employing an energy method, the statically indeterminate problem of the diamond cross cell under
a general stress state can be solved, and the internal forces of each strut can be expressed in terms of
the applied stress components. Then the initial yield equation of the diamond cross cell is obtained as
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follows:

max



l
tσys

∣∣ sin 2α(σ1 sinα+σ2 cosα)
1+2 sin3 α+2 cos3 α

− τ12
∣∣− 1

l
tσys

∣∣−σ1 sin2 2α+2σ2 sinα(1+2 sin3 α)

1+2 sin3 α+2 cos3 α

∣∣− 1

l
tσys

∣∣ 2σ1 cosα(1+2 cos3 α)−σ2 sin2 2α
1+2 sin3 α+2 cos3 α

∣∣− 1

l
tσys

∣∣ sin 2α(σ1 sinα+σ2 cosα)
1+2 sin3 α+2 cos3 α

+ τ12
∣∣− 1


= 0. (11)

According to Equation (8), the values of s(i)j are calculated and written in form of an array as following,

[
s(i)j

]
=


/ −2 cosα −2 sinα 1

−
1

2 cosα / sinα
cosα −

1
2 cosα

−
1

2 sinα
cosα
sinα / −

1
2 sinα

1 −2 cosα −2 sinα /

 , (12)

where i and j are the row index and column index, respectively and i 6= j .
Based on the methods briefed in the previous section, the parameters, P (i)j , Q(i)

j , and R(i)j , are identified
by

[
P (i)j

]
=


/ 0 2bl cosα 0

0 / 2bl cosα 0

bl cosα
sinα −2bl cos2 α

sinα / bl cosα
sinα

0 0 2bl cosα /

 ,
[
Q(i)

j

]
=


/ 2bl sinα 0 0

bl sinα
cosα / −2bl sin2 α

cosα 0

0 2bl sinα / 0

0 2bl sinα 0 /

 ,

[
R(i)j

]
=


/ 0 −2bl cosα −2bl cosα

−bl / 2bl cosα bl

−bl 0 / bl

−2bl 2bl cosα 2bl sinα /

 . (13)
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Substituting Equations (11), (12) and (13) into Equations (10a) and (10b) gives the ultimate yield
equations of the diamond cross cell, that is,

max



2 l
tσys

|− sinα+ σ1 cosα± τ12 sinα| − 1

2 l
tσys

|− cosα+ σ2 sinα± τ12 cosα| − 1

l
tσys

|1 ± 2τ12 cosα| − 1

l
tσys

∣∣ sinα
cosα + 2σ1 cosα− 2σ2

sin2 α
cosα

∣∣− 1

l
tσys

∣∣ cosα
sinα − 2σ1

cos2 α
sinα + 2σ2 sinα

∣∣− 1


= 0, when

max



l
tσys

sin 2α(σ1 sinα+σ2 cosα)
1+2 sin3 α+2 cos3 α

− τ12 − 1

l
tσys

−σ1 sin2 2α+2σ2 sinα(1+2 sin3 α)

1+2 sin3 α+2 cos3 α
− 1

l
tσys

2σ1 cosα(1+2 cos3 α)−σ2 sin2 2α
1+2 sin3 α+2 cos3 α

− 1

l
tσys

sin 2α(σ1 sinα+σ2 cosα)
1+2 sin3 α+2 cos3 α

+ τ12 − 1


> 0, (14a)

max



2 l
tσys

|sinα+ σ1 cosα± τ12 sinα| − 1

2 l
tσys

|cosα+ σ2 sinα± τ12 cosα| − 1

l
tσys

|−1 ± 2τ12 cosα| − 1

l
tσys

∣∣− sinα
cosα + 2σ1 cosα− 2σ2

sin2 α
cosα

∣∣− 1

l
tσys

∣∣− cosα
sinα − 2σ1

cos2 α
sinα + 2σ2 sinα

∣∣− 1


= 0, when

min



−
l

tσys

sin 2α(σ1 sinα+σ2 cosα)
1+2 sin3 α+2 cos3 α

− τ12 + 1

−
l

tσys

−σ1 sin2 2α+2σ2 sinα(1+2 sin3 α)

1+2 sin3 α+2 cos3 α
+ 1

−
l

tσys

2σ1 cosα(1+2 cos3 α)−σ2 sin2 2α
1+2 sin3 α+2 cos3 α

+ 1

−
l

tσys

sin 2α(σ1 sinα+σ2 cosα)
1+2 sin3 α+2 cos3 α

+ τ12 + 1


< 0. (14b)
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(a) (b)

(c) (d)

Figure 4. The initial (a) and ultimate (b) yield surfaces of the SI-square cell, and the
initial (c) and ultimate (d) yield surfaces of the N-Kagome cell.

Since the SI-square lattice structure can be considered as a special diamond cross lattice structure,
only the results for the SI-square and N-Kagome lattice structures are discussed herein. Figures 4(a)
and 4(b) show the initial and ultimate yield surfaces of the SI-square cell in the space of normalized
effective stresses respectively, while Figures 4(c) and 4(d) are corresponding to the N-Kagome cell. All
four yield surfaces are closed, convex, and anisotropic. By comparison, the ultimate yield surfaces of
both structures are entirely outside their initial yield surfaces, indicating that the structures still have
capabilities of bearing extra loads after the onset of initial yielding. It is also demonstrated that the
magnitude of the residual carrying capacity depends on the loading conditions. The initial and ultimate
yield surfaces consist of only planar facets. This is the common feature of the stretching dominated
structures.

Representations of yield surfaces in the stress spaces of σ1 and σ2, σ1 and τ12, and σ2 and τ12 are
illustrated in Figures 5(a), (b) and (c) respectively. In all three stress spaces, the ultimate yield surfaces
of the SI-square cell embrace those of the N-Kagome cell with a large extra area, although the sizes of
their initial yield surfaces are comparative with those of the N-Kagome cell. Therefore, we may draw a
conclusion that the SI-square cell has much larger ultimate load-carrying capacity than the N-Kagome
cell.
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Figure 5. The initial and ultimate yield surfaces of the SI-square cell and N-Kagome
cell in the stress spaces of σ1, σ2 (a), σ1, τ12 (b) and σ2, τ12 (c).

4. Yielding responses of the lattice structures under uniaxial loading

In order to estimate the structural load carrying capacity, we analyze the ultimate yield strength of each
aforementioned lattice patterns subjected to uniaxial loads. Assume that the angle between the loading
direction and x1 direction is θ (0 ≤ θ < π). The resultant stress can be decomposed into two normal
stress components and a shear stress component such that

σ1 = σ cos2 θ, σ2 = σ sin2 θ, τ12 = σ sin θ cos θ. (15)

Thus, the ultimate yield equations obtained before can be easily exploited to calculate the yielding re-
sponses of the structures to given stresses in any loading directions.

4.1. The ultimate yield strengths of three lattice structures under uniaxial loading. From (14a), (14b),
and (15), the ultimate yield strength of the diamond cross cell related to the loading direction of θ is
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obtained as

σ ∗
ut(θ)

σys
= min



∣∣ sinα+cosα
2 cos2 θ cos2 α−2 sin2 θ sin2 α

t
l

∣∣
∣∣ 1

sin θ cos θ
t
l

∣∣
∣∣ 1+2 sinα

2 cos θ cos(α±θ)
t
l

∣∣
∣∣ 1+2 cosα

2 sin θ cos(α±θ)
t
l

∣∣


. (16)

For the SI-square cell, its ultimate yield strength as a function of θ is given by

σ ∗
ut(θ)

σys
=

{√
2−1

cos 2θ r (0 ≤ θ ≤ 0.0541π),
1

2 cos θ(sin θ+cos θ)r
(
0.0541π ≤ θ ≤

π
4

)
.

(17)

where r is the relative density of the lattice structure. Furthermore, the values of the maximum and
minimum ultimate yield strengths for the SI-square cell are as follows,

σ ∗
ut max

σys
= 0.5r,

(
θ =

nπ
2

±
π

4
, n = 1, . . . , 4

)
, (18a)

σ ∗

ut min

σys
= 0.414r,

(
θ =

nπ
2
, n = 1, . . . , 4

)
. (18b)

For the N-Kagome cell, the relationship between the ultimate strength and the loading direction is
calculated according to the ultimate yield equation (Equation (A.4)), that is,

σ ∗
ut(θ)

σys
=


r

4 cos2 θ−1

(
0 ≤ θ < π

12

)
,

(
√

3−1)r
√

3 cos 2θ+sin 2θ

(
π
12 ≤ θ < π

6

)
,

0.388r
(
θ =

π
6

)
.

(19)

Its maximum and minimum values of normalized ultimate strengths are given by

σ ∗
ut max

σys
= 0.423r, θ =

nπ
3

+
π

6
(n = 0, . . . , 5), (20a)

σ ∗

ut min

σys
= 0.333r, θ =

nπ
3

+
π

3
(n = 0, . . . , 5). (20b)

4.2. Comparison of yield strength for various cell patterns. The yield strengths of four types of cell
patterns, including the diamond, Kagome, SI-square, and diamond cross cells, are compared in Figure
6. Among them, the former two, as representatives of the statically determinate lattice structures, are
excellent structures for high specific stiffness and specific strength [Wang and McDowell 2004; 2005].
Different from the SI-square and diamond cross cells, they are not able to sustain further load after initial
yielding. Therefore, their initial yield strengths are adopted to identify their maximum load-carrying
capability. For the latter two statically indeterminate structures, the SI-square and diamond cross cells, the
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Figure 6. Comparison of yield strength among four different cell patterns.

ultimate yield strengths are employed to weigh their maximum load-carrying capabilities. The diamond
cross cell that we analyze has the half top angle of α = π/6. Basically, the yield strengths of the
structures vary as the loading direction changes. The ultimate yield strength of the SI-square cell stays
at a higher level relative to that of the Kagome cell over almost the whole range of loading directions,
indicating that the SI-square cell has an advantage with respect to withstanding loads. For both the
diamond and diamond cross cells, their strengths depend on the applied loading direction. The minimum
yield strengths of both patterns occur when θ = 0◦ while the maximum values are higher than 0.6 at
θ = 90◦. On the whole, the ultimate yield strengths of the diamond cross cell (α = π/6) are slightly
higher than that of the diamond cell. It is usual in estimation of the structural performance to adopt the
worst case scenario so that the structure is considered to be a better one if it is able to survive relatively
longer under any loading conditions. By comparison, the SI-square cell, the minimum yield strength of
which is much higher than the others, is recommended as the best two-dimensional lattice structure for
its superior load carrying capability among those aforementioned lattice patterns.

For the diamond cross cell with different half top angle α, the uniaxial ultimate yield strength is also
calculated and plotted in Figure 7. It is noted that if rotated an angle of π/2, the diamond cross cell of the
half top angle α will be the same as that of the half top angle π/2−α. Therefore, the top angle considered
in the analysis is restricted in the range of 0 < α ≤ π/4. As shown in Figure 7, as the half top angle
decreases from π/7, the maximum yield strength is elevated and the minimum yield strength is lowered
slightly. Therefore, the structure exhibits more obvious anisotropy. When the half top angle α is less
than π/6, each of the corresponding curves is composed of three segments, and value of the normalized
strength (σ ∗

ut(θ)/σy)(1/r) increases with load direction θ . For α in the range of π/6 < α < π/4, the
corresponding curve consists of four parts. It is noted that the anisotropy of the structural response is not
always a disadvantage. Particularly, for the case where the applied load is fixed at a determined direction,
the half top angle of the structure can be well designed to ensure that its corresponding yield strength is
as high as possible. The structure with the half top angle of π/4 evolves into the SI-square one, which
displays a more isotropic yielding behavior.
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Figure 7. The ultimate yield strength of the diamond cross cells with different half top angles.

4.3. Evolution of the yield modes for the SI-square cell. As discussed before, the SI-square cell, as a
statically indeterminate structure, undergoes initial yielding followed by the ultimate yielding. Its initial
yield strength and ultimate yield strength are presented in Figure 8 as a function of θ . As the loading
direction θ varies, both the initial yield strength and the ultimate yield strength are changed. It is seen
that there exist several sharp peaks on the curves. Careful analysis exposes that each sharp peak actually
corresponds to the transition of the yielding modes from one to another. Corresponding to each marked
point on the curves, the yield modes are demonstrated in Figure 8. The curved segment between A and
E on the initial yield curve arises from the fact that the horizontal struts experience yielding; the curved
segment between E and F is related to the case where the inclined struts yield first. Initial yielding of a
pair of struts usually does not mark the limit of its load-carrying resistance. Rather, it signifies a change
in the way in which the structure responds to further loads. The structural unit cell does not collapse until
additional plastic yielding struts have formed to convert it into a mechanism. The collapse modes are
different for different loading directions. For θ = 0◦, after the horizontal struts yield initially, the vertical
struts will yield finally as the applied effective stress increases up to σ ∗(θ)/rσys = 0.414. For either
θ = 9.7◦ or θ = 45◦, three pairs of struts, including the horizontal, the vertical, and the inclined struts,
all yield together once the applied load increases beyond the corresponding values of the ultimate yield
strength. It is also noted that at θ = 27.3◦ the horizontal and inclined struts will yield simultaneously,
resulting in direct structural collapse without initial yielding. The maximum load carrying capacity of
the SI-square structure occurs when the load is applied to the unit cell along the angle of θ = 45◦, while
the structure is relatively weaker to the horizontally applied load.

5. Stiffness analysis under uniaxial loading

For the struts made of the elastic, perfectly plastic material, the stress-strain relationships and stiffness
characteristics of the SI-square and N-Kagome cells are also solved analytically and presented in this
section.
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Figure 8. The initial and ultimate yield strength of the SI-square cell (a) along with the
evolution of the yielding mode (b).

Considering the stress-strain relationship of the SI-square cell loaded in the x1 direction (θ = 0◦),
with increase of the effective stress, σ1, from zero to the initial yield strength, the effective stress is
proportional to the effective strain, with the slope just equal to the effective modulus. If the stress still
increases after the initial yielding, the horizontal strut will yield (see yielding mode A in Figure 8), and
the additional stress, 1σ1, will be proportional to the additional strain 1ε1. In this case, the stress is still
linearly dependent on the strain, while the slope becomes the effective modulus of the unit cell without
the horizontal strut. This is presented in Figure 9. The second pair of struts will occur yielding when the
stress reaches the ultimate yield strength. After onset of the ultimate yielding, the unit cell is not able
to support additional stress any more. The effective modulus and initial yield strength of the SI-square
cell have been obtained by Zhang et al. [2008]. The effective stiffness of the unit cell without the initial
yielding strut can also be easily calculated, thus the normalized stress-strain relationship can be gained,
that is,

σ1

rσys
=


2−

√
2

2
ε1
εys
, 0 ≤

ε1
εys

≤ 1,

2−
√

2
2 +

3−2
√

2
2

(
ε1
εys

− 1
)
, 1< ε1

εys
≤

√
2 + 1,

√
2 − 1, ε1

εys
>

√
2 + 1,

(21)

where εys is the yield strain of the material, and the stiffness of the material is Es = σys/εys . Similarly, the
normalized stress-strain relationship of the SI-square cell in the diagonal direction can also be obtained,

σdiag

rσys
=


4−

√
2

7
εdiag
εys
, 0 ≤

εdiag
εys

≤ 1,

4−
√

2
7 +

5
√

2−6
14

( εdiag
εys

− 1
)
, 1< εdiag

εys
≤

4+
√

2
2 ,

1
2

εdiag
εys

> 4+
√

2
2 .

(22)
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Figure 9. The stress-strain relationships of the SI-square cell in the three typical directions.

The normalized stress-strain relationship of the N-Kagome cell in the x1 and x2 directions could also
be calculated,

σ1

rσys
=


9−2

√
3

23
ε1
εys
, 0 ≤

ε1
εys

≤ 1,

9−2
√

3
23 +

11
√

3−15
138

(
ε1
εys

− 1
)
, 1< ε1

εys
≤

9+2
√

3
3 ,

1
3 ,

ε1
εys
> 9+2

√
3

3 .

(23)

σ2

rσys
=


9−2

√
3

23
ε2
εys
, 0 ≤

ε2
εys

≤
16+

√
3

11 ,

6−
√

3
11 +

111−45
√

3
694

ε2
εys
, 16+

√
3

11 < ε2
εys

≤ 2.345,

3−
√

3
3 , ε2

εys
> 2.345.

(24)

According to Equations (21)–(24), the normalized stress-normalized strain curves are plotted in Fig-
ures 9 and 10 for the SI-square and the N-Kagome cells respectively. Each change in slope corresponds
to the formation of plastic struts which produces progressive flexibility of the structure. In Figure 9, each
marked transition point is corresponding to the yielding mode marked with the same letter in Figure 8.
Collapse occurs when enough struts have undergone plastic yielding to transform the structure into a
mechanism with no inherent stiffness, corresponding to the final horizontal segments of the curves.

Corresponding FE simulations are performed to verify the analytical stress-strain relations. In the
calculation, the material is linear elastic with linear hardening plasticity. A small linearly hardening
coefficient, E ′/E = 0.001, is adopted for the cell wall material, where E and E ′ are the elastic modulus
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Figure 10. The stress-strain relationships of the N-Kagome cell in the principle directions.

and the tangential modulus. As shown in Figures 9 and 10, good agreements are found between the FE
results and the analytical stress-strain predictions, thus verifying the analytical solutions.

6. Concluding remarks

Based on the analysis of the equilibrium of a unit cell before and after initial yielding, a simple analytical
method is put forward to calculate the ultimate yield equation of statically indeterminate planar lattice
structures for the elastic, perfectly plastic parent material. The ultimate yield surfaces and yield strengths
of several indeterminate unit cells are assessed using the proposed method, and the residual loading
capacity after the onset of initial yielding can be quantitatively predicted. The stress-strain relationships
of the SI-square and N-Kagome cells are also calculated for the elastic, perfectly plastic materials, and
the effective constitutive relations of both lattices are found to be linearly hardening, which is validated
by finite element (FE) simulations. Comparison of the initial and ultimate yield surfaces indicates that
these lattice structures possess considerable residual loading capacities which depend on the loading
conditions. It is found that the ultimate yield strength of the SI-square cell is nearly isotropic, possesses
a higher ultimate yield strength, and therefore is an excellent lightweight structure for load carrying. The
ultimate yield strengths of the diamond cross cell (α = π/6) are slightly higher than that of the diamond
cell on the whole.

Appendix A: the deduction of the relationship given by Equation (7)

In order to obtain the relationships between the parameters (p j − P (i)j ), (q j − Q(i)
j ), (r j − R(i)j ), and pi ,

qi , ri , the equilibrium of the unit cell is analyzed. The anticlockwise angle of the i th strut and the x1

direction is assumed to be θi . For the case where the first strut yields first, that is, i = 1, we simply
take the values of applied stresses to be unit, that is, σ1 = 1 or 1σ1 = 1, which can be equivalent to two
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concentrated loads exerted on the connecting nodes of the struts, PA andPB , as shown in Figure 11. (We
note that the stress quantities σ and 1σ are reference stresses that can be chosen arbitrarily; they are
simply scaling factors.) The equilibrium equations of points A and B before initial yielding are

−p1 cos θ1 + p3 cos θ3 + p4 cos θ4 = PA/bt,

−p1 sin θ1 + p3 sin θ3 + p4 sin θ4 = 0,

p1 sin θ1 + p2 sin θ2 + p4 sin θ4 = 0,

p1 cos θ1 + p2 cos θ2 + p4 cos θ4 = −PB/bt.

(A.1)

The equilibrium equations of points A and B after initial yielding are:

P (1)3 cos θ3 + P (1)4 cos θ4 = PA/bt,

P (1)3 sin θ3 + P (1)4 sin θ4 = 0,

P (1)2 sin θ2 + P (1)4 sin θ4 = 0,

P (1)2 cos θ2 + P (1)4 cos θ4 = −PB/bt.

(A.2)

Subtracting each equation of Equation (A.2) from Equation (A.1) gives:

(p3 − P (1)3 ) cos θ3 + (p4 − P (1)4 ) cos θ4 = p1 cos θ1,

(p3 − P (1)3 ) sin θ3 + (p4 − P (1)4 ) sin θ4 = p1 sin θ1,

(p2 − P (1)2 ) sin θ2 + (p4 − P (1)4 ) sin θ4 = −p1 sin θ1,

(p2 − P (1)2 ) cos θ2 + (p4 − P (1)4 ) cos θ4 = −p1 cos θ1.

(A.3)

Taking these parameters, (p2 − P (1)2 ), (p3 − P (1)3 ), (p4 − P (1)4 ) and p1, as unknown quantities, the rank
of the coefficient matrix of Equation (A.3) is three, which indicates that those four equations in Equation

(A.3) are not independent, and the value of
p j −P(1)j

p1
( j = 2, 3, 4) can be uniquely determined as follows,

p2 − P (1)2

p1
=

sin(θ4 − θ1)

sin(θ2 − θ4)
,

p3 − P (1)3

p1
=

sin(θ4 − θ1)

sin(θ4 − θ3)
,

p4 − P (1)4

p1
=

sin(θ1 − θ3)

sin(θ4 − θ3)
. (A.4)

Analogously, if the first strut yields first, and only the unit applied stress σ2 = 1 or τ12 = 1 exists, the
following relationships can be obtained:

q2 − Q(1)
2

q1
=

sin(θ4 − θ1)

sin(θ2 − θ4)
,

q3 − Q(1)
3

q1
=

sin(θ4 − θ1)

sin(θ4 − θ3)
,

q4 − Q(1)
4

q1
=

sin(θ1 − θ3)

sin(θ4 − θ3)
, (A.5)

r2 − R(1)2

r1
=

sin(θ4 − θ1)

sin(θ2 − θ4)
,

r3 − R(1)3

r1
=

sin(θ4 − θ1)

sin(θ4 − θ3)
,

r4 − R(1)4

r1
=

sin(θ1 − θ3)

sin(θ4 − θ3)
. (A.6)
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Figure 11. The unit cell under uniaxial compression in the x1 direction (a) before and
(b) after the initial yield of the first strut.

Similar deduction can be performed for the cases that the second, third, and fourth struts yield first by
using the same method, and the results can be concluded as:

p j − P (i)j

pi
=

q j − Q(i)
j

qi
=

r j − R(i)j

ri
= s(i)j =

{
l ′j/l

′

i i + j = 5,

−l ′j/l
′

i i + j 6= 5,
(i, j = 1, . . . , 4, i 6= j), (A.7)

where the definition of s(i)j and l ′i can be seen in Section 2.

Appendix B: the initial and ultimate yield equations of the SI-square and N-Kagome lattice
structures

The SI-square cell can be considered as a special diamond cross cell having the half top angle of α = π/4.
By taking α = π/4 in Equation (11) and Equation (14), the initial and ultimate yield equations of the
SI-square cell are respectively given by

max



(
|
(
σ1/rσys + σ2/rσys

)
− (2 +

√
2)(τ12/rσys)| − 1

)
,(

|−
√

2σ1/rσys + (2 +
√

2)(σ2/rσys)| − 1
)
,(

|
(
σ1/rσys + σ2/rσys

)
+ (2 +

√
2)(τ12/rσys)| − 1

)
,(

|(2 +
√

2)(σ1/rσys)−
√

2(σ2/rσys)| − 1
)


= 0, (A.1)
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max



∣∣2( σ1
rσys

+
τ12

rσys

)∣∣− 1 = 0,∣∣2( σ1
rσys

−
τ12

rσys

)∣∣− 1 = 0,∣∣(√2 + 1)
(
σ1

rσys
−

σ2
rσys

)∣∣− 1 = 0,∣∣2( σ2
rσys
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τ12
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)∣∣− 1 = 0,∣∣2( σ2
rσys

−
τ12

rσys

)∣∣− 1 = 0,∣∣(√2 + 2) τ12
rσys

∣∣− 1 = 0



= 0, (A.2)

where r is the relative density of the SI-square lattice, that is, r = (2 +
√

2)t/ l.
Exploiting the method introduced in Section 2, the initial and ultimate yield equations of the N-

Kagome cell are respectively obtained as follows:

max


∣∣−√

3
3
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+
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√
3

3
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− 2(1 +
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= 0, (A.3)
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= 0, (A.4)

where the relative density of the N-Kagome cell is r = (
√

3 + 1) t
l .
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NUMERICAL CHARACTERIZATION OF MATERIAL ELASTIC PROPERTIES
FOR RANDOM FIBER COMPOSITES

LUCIAN IORGA, YI PAN AND ASSIMINA PELEGRI

This paper presents a numerical investigation of the material elastic properties for short-length mostly
in-plane random fiber composites, based on microscale geometrical modeling. The particular case con-
sidered is that of materials in which the majority of fibers’ orientations are contained or slightly deviate
from a dominant plane. Representative volume elements for two types of random fiber composite ma-
terial geometries with different fiber aspect ratios and volume fractions are generated using a novel
technique. The elastic properties of the equivalent homogeneous material are determined using direct
three-dimensional finite element analysis. A windowing-type analysis is employed to investigate the
influence of the fiber distribution homogeneity on the homogenized elastic properties. The results are
compared and validated using two alternative approaches — first, by orientation averaging of the stiffness
tensor of the equivalent unidirectional composite determined by direct FEM analysis and, second, by
employing the laminated random strand method.

1. Introduction

With the maturing of the preforming technologies, random fiber composites have received increased
attention in recent years as potential replacements for traditional structural materials, especially steel,
given the significant weight savings they offer. Already, such materials, particularly chopped glass fiber
composites, have been adopted in the automotive industry for manufacturing nonstructural components
[Dahl et al. 2005], and a significant effort is under way towards the utilization of carbon reinforced
random composites, which offer weight savings of 50–70% relative to steel.

The utilization of such novel materials for safety critical applications requires, first, reliable estimates
of the overall material properties following a homogenization process that allows for efficient analysis of
large scale structures and, second, good predictions of the microlevel properties for predefined macroscale
loadings.

The traditional approach in composite continuum micromechanics analysis is to employ a mean field
model which, for the case of random fiber composites can be used together with an orientation averaging
procedure to account for the fiber orientation randomness. Mean field models allow the estimation
of material properties based on Eshelby’s field solution for single ellipsoidal inclusions in an infinite
medium (matrix) [Eshelby 1957]. Despite their approximate nature, given the specific assumptions,
such methods offer the advantage of analytical or semianalytical results which require only a reduced

Keywords: random fiber reinforced composite, representative volume element, homogenization, finite element analysis.
This work was funded by NSF through the CMS-0409282 Grant and partially supported by the Department of Energy Cooper-
ative agreement No. DE-FC05-950R22363. Such support does not constitute an endorsement by the Department of Energy of
the views expressed herein.
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computational effort. The extension to the family of effective field methods based on the original work by
Mori and Tanaka [1973] has enjoyed substantial interest, particularly following the clarifications offered
by Benveniste [1987]. The Mori–Tanaka approach is based on the fundamental assumption that within a
concentrated composite with many identical inclusions, that is, fibers, each inclusion experiences a far-
field strain equal to the average matrix strain. This allows the determination of the Mori–Tanaka strain
concentration tensor as a function of the Eshelby’s strain concentration tensor obtained for the dilute
case.

A substantially different approach consists in evaluating highly resolved fields for specific micro-
geometries representing the analyzed material. A volume element has to be generated and must be
sufficiently large to statistically represent the material and completely characterized in the microgeometry
sense. The microlevel stress and strain fields due to a macroscopic loading are resolved using numerical
analysis, for example, using an FEM approach.

For the case of mostly in-plane oriented random fiber composites, only relatively few studies based
on direct numerical analysis can be documented in the literature [Gusev et al. 2002; Duschlbauer et al.
2006]. In this study we propose to investigate the elastic properties of two composite materials consisting
of an epoxy matrix reinforced by short glass fibers. First, we investigate the corresponding representative
volume elements via a homogenization scheme based on the direct three-dimensional FEM solution of the
stress and strain fields. Second, we investigate the material homogeneity for relatively large structures,
meaning at the macroscopic scale, in order to evaluate the applicability of the representative volume
element (RVE) based homogenized model.

2. Microscale geometry generation

The microscale geometry generation algorithm used in this work is essentially a random sequential ad-
sorption (RSA) technique, widely used in the literature for studies of particle reinforced composites.
Various particle shapes have been considered for this type of geometry generation, including spherical or
spherocylindrical particles [Coelho et al. 1997; Williams and Philipse 2003] or cylindrical rods [Williams
and Philipse 2003; Duschlbauer et al. 2006; Kari et al. 2007; Pan et al. 2007]. The specific algorithm’s
application and implementation on random chopped fiber composites are described in detail elsewhere
[Pan et al. 2007] and we will only briefly outline it here, for the sake of completeness.

The RSA technique for generating a RVE geometry implies iteratively adding cylinders in the pre-
scribed rectangular parallelepiped volume occupied by the RVE. In the current approximation, each
cylinder represents the volume occupied by one fiber bundle. The center point C(x), the in-plane orien-
tation angle φ, and the out-of-plane orientation angle θ (see Figure 1) of each newly generated cylinder
are chosen randomly. The orientation angle selection can be done with a probability defined by a fiber
orientation distribution function, f (φ, θ). Following the definition of a new cylinder, an intersection test,
based on the algorithm presented by Eberly [2001], is carried out to determine any possible intersections
with the cylinders previously accepted in the configuration. No intersection between two cylinders is
accepted, with the minimum distance between cylinders being set to 5% of the cylinder radius, to avoid
both the generation of excessively steep stress gradients and meshing difficulties. An investigation of the
influence of the minimum distance on the local stress fields is detailed in [Pan et al. 2007].
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Figure 1. Fiber bundle location and orientation definition.

A provision is made in the current algorithm for the generation of periodic RVE geometries, that is,
fiber arrangements that ensure material continuity across the boundaries when multiple RVEs are aggre-
gated for the generation of a macrostructure. Specifically, when a newly generated cylinder intersects
the boundaries of the RVE parallelepiped, a clone cylinder with the same orientation angles φ and θ is
created on the opposite side of the parallelepiped in order to ensure geometry periodicity. This amounts
to the inclusion of the volume of a full cylinder but doubles the number of intersection checks required.
The flowchart of the RSA is shown in Figure 2.

Figure 2. Random sequential adsorption flowchart.
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We consider in this study two random glass-fiber material configurations and the associated micro-
geometries, with predominantly in-plane fiber distributions. The configurations qualitatively represent
a composite panel manufactured using the programmable powdered preform process. As such, no fiber
intersections are accepted with the upper and lower parallelepiped surfaces, which correspond to the panel
surfaces. However we do not account for variations in fiber length, fiber contact and fiber agglomerations
observed to occur in practice, which help significantly increase the maximum achievable fiber volume
fraction up to 35%–40%.

The first configuration is that of a short fiber composite with fiber aspect ratio AR = 10 and fiber
volume fraction of v f = 15%. Geometry periodicity conditions are enforced and the out-of-plane fiber
orientation angle is limited to ±10◦(θ ∈ [80◦, 100◦

]), while the in-plane angle φ is selected with uniform
probability in the full-circle interval, φ ∈ [0◦, 360◦

], per fabrication restrictions. The second geometry
configuration considers fibers with aspect ratio AR = 20 and fiber volume fraction v f = 20% but with
the out-of-plane orientation angle limited to ±5◦(θ ∈ [85◦, 95◦

]), while uniform probability in-plane
orientation is maintained.

The RVEs generated using the RSA technique will be named, for the remainder of the paper, RVE1 and
RVE2, for the first (v f = 15%) and the second (v f = 20%) configuration respectively. They are defined
using 124 and 227 cylinders, respectively, contained in cuboids of dimensions 3.00 × 3.00 × 0.60 and
2.00 × 2.00 × 0.40, where the dimensions are normalized to the fiber length. The cylinder arrangements
are shown in Figure 3.

The statistics of the fiber orientation for the two RVEs are presented in terms of the probability density
distribution of the orientation angles φ and θ . Figure 4 shows the RVE1 cylinder probability distributions
for the in-plane orientation angle φ in 5◦ intervals and for the out-of-plane orientation angle θ in intervals
of 2◦. The corresponding results for RVE2 are shown in Figure 5, where the probability distribution for θ
is given in 1◦ intervals. We note that a certain tendency towards fiber aggregation on preferred orientations
can be noticed for both RVEs, being more evident in the case of RVE2. This can be explained through the
natural tendency towards fiber aggregation in high fiber volume fraction composites and is a phenomenon
also noticed in other studies such as [Duschlbauer et al. 2006]. However, we note that the imposition of
the geometry periodicity requirements in the RSA generation algorithm usually tends to exacerbate this
tendency.

(a) (b)

Figure 3. RVE microscale geometries for (a) RVE1 (v f = 15%, AR = 10) and (b) RVE2
(v f = 20%, AR = 20).
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Figure 4. RVE 1: Cylinder orientation distribution (a) in-plane angle φ and (b) out-of-
plane angle θ .

The two material models considered in this paper will be analyzed using the two generated RVEs and
following the approach outlined in the next section.

3. Homogenization scheme

Homogenization approach. The basics of the homogenization procedure are briefly reviewed. In order
to determine the properties of an equivalent homogeneous medium that accurately represents, at the
macroscopic level (that is, the RVE volume, in this study), the response of the microscopically hetero-
geneous one, we consider the equivalent macro stress and strain, σ and ε, defined as the mean values of
the respective fields in the RVE [Sun 2006],

σ i j =
1
V

∫
V
σi j (x)dV, εi j =

1
V

∫
V
εi j (x)dV, i, j = 1, 2, 3, x ∈ V . (1)
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Figure 5. RVE 2: Cylinder orientation distribution (a) in-plane angle φ and (b) out-of-
plane angle θ .
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The effective elastic constants of the homogeneous material can then be defined by the linear constitutive
equation,

σ i j = C i jklεkl . (2)

We note that the equivalence of the strain energy between the random composite material and the homo-
geneous one is ensured through the Hill condition [Hill 1971],

1
2V

∫
V
σi jεi j dV =

1
2
σ i jεi j .

Boundary conditions. The components of the stiffness tensor of the equivalent homogeneous material,
C i jkl , can be completely determined by solving the state equilibrium solution for six independent loading
cases. To this end, we employ kinematic boundary conditions [Sanchez-Palencia and Zaoui 1985; Kanit
et al. 2006] that correspond to three pure axial and three pure shear deformations of the RVE. The
boundary conditions are specified by imposing a displacement u at a point x on the boundary ∂V , such
that ui = ε0

i j x j ,∀x ∈ ∂V, where the second order tensor ε0 is independent of x and represents, in effect,
a uniformly applied strain. The six loading cases considered here correspond to specifying the nonzero
elements of ε0 as follows: ε0

11 = 10−5, ε0
22 = 10−5, ε0

33 = 10−5, ε0
12 = 10−5, ε0

13 = 10−5 and ε0
23 = 10−5.

We note here that kinematic uniform boundary conditions lead to upper estimates of the stiffness
tensors [Hazanov and Huet 1994]. It must also be noted that although the boundary conditions imposed
in this study are of the uniform strain type, the rationale for the generation of periodic geometries is to
provide the means for a future comparison of the numerical results obtained through the imposition of
periodic and homogeneous boundary conditions.

Following the simulation of the material response under the load due to the above values of the uniform
strain, the average stress and strain in the RVE can be computed using Equation (1). Thus, the use of (2)
for each of the loading cases will yield the system of 36 equations from which the values of the stiffness
tensor C can be readily determined. The symmetry requirements for the stiffness tensor, which effectively
reduce the number of unknowns to 21, are used solely to verify the correctness of the numerical results.

An alternative approach is to directly estimate the average stress in the RVE via an elementary me-
chanics of materials definition of stress,

σ i j = F j
i /A, (3)

where F j
i is the i-direction component of the reaction force on the boundary face of area A, which

develops in the loading case j (for shear-loading cases j = 4, 5, 6, the force is tangential to the face
A). Despite its simplicity this approach yields results of comparable accuracy to the actual application
of (1), while proving to be significantly faster. The practical aspects of direct FEM implementation
and alternative solution approaches employed for validating the direct numerical simulation results are
discussed next.

4. RVE numerical simulations

The modeling approach towards solving the six static problems corresponding to the loading cases re-
quired for the determination of tensor C , as well as the alternative approaches used for comparison of
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results, namely an orientation averaging approach and the laminated random strand (LRS) method are
discussed next.

For the purpose of this work, the fiber and matrix materials for the two composite configurations are
considered as E-glass and epoxy, respectively. No particular production composite is analyzed, but the
procedure and results are considered to be representative for the material design and selection phase. For
E-glass, the Young’s modulus and Poisson ratio values used are E f = 70 GPa and ν f = 0.2, while for the
matrix material, Em = 3 GPa and νm = 0.35. Furthermore, the E-glass fibers and matrix are isotropic.

4.1. Finite element modeling. A three-dimensional solid model is built in the commercial FEA package
ABAQUS (version 6.7) by importing the fiber positions and orientation angles. The RVEs are meshed
with linear C3D4 4-node tetrahedral elements, with total node counts of approximately 250,000 for
RVE1 and 750,000 for RVE2. Node sharing at the fiber-matrix interface is ensured by modeling the
RVE as a single part solid. The FEA discretization is restricted primarily by the memory limitations
on the available computers. The evaluation of the average stress and strain in the RVEs (see Equation
(1)) can be performed approximately using the ABAQUS feature of returning the value of the volume
associated with the element integration node. Thus, volume integration of functions can be performed
by summing the function values at the integration points, multiplied by the respective elemental volumes.
The application of Equation (3) is carried out directly by summation of the nodal reaction forces on the
boundary surfaces.

4.2. Validation approaches. In order to validate the three-dimensional FEM analysis, two alternative
approaches are considered. First, we rely on the orientation averaging scheme of Advani and Tucker
[1987] to determine the elastic constants of the random composite based on those of the equivalent
material with fully aligned fibers. Second, we employ the LRS method recently proposed by Ionita and
Weitsman [2006] as a way of rapidly evaluating the properties of large numbers of fiber arrangements.

Orientation averaging. This approach was validated by Gusev et al. [2002] by an analysis of composites
with 15% fiber volume fraction, for different orientation states, which led to the conclusion that orienta-
tion averaging offers good engineering predictions. We follow here a similar approach, first constructing
RVEs with perfectly aligned, but randomly positioned, cylindrical fibers, and determining by direct FEM
analysis their respective stiffness tensor. Next, orientation averaging is performed to obtain an estimate of
the equivalent composite with randomly oriented fibers. We will briefly present here the basic concepts
of the method.

The orientation of a fiber is fully described by the direction unit vector p, that is

p1 = sin(θ) cos(φ) p2 = sin(θ) sin(φ) p3 = cos(θ),

while the orientation of a whole set of fibers is defined by an infinite series of orientation tensors, a.
Since the fiber orientation is periodic, meaning a fiber oriented at angles (φ, θ) is indistinguishable from
one with angles (φ+π, π − θ), due to symmetry considerations, only the even second and fourth order
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tensors a2, a4 are relevant. These are defined as

ai j = 〈pi p j 〉 =

∫ 2π

0

∫ π

0
pi p jψ(φ, θ) sin(θ)dθdφ,

ai jkl = 〈pi p j pk pl〉 =

∫ 2π

0

∫ π

0
pi p j pk plψ(φ, θ) sin(θ)dθdφ,

where ψ(φ, θ) is the probability distribution function characterizing the fiber orientations in the compos-
ite. For the cases of mostly in-plane fiber orientations considered in this work, the probability distribution
function ψ(φ, θ) can be written as

ψ(φ, θ)=
1
n

[
H(θ − θ1)− H(θ − θ2)

]
,

where H(θ) denotes the Heaviside step-function and θ1 and θ2 are the limits of the interval of variation
for the out-of-plane angle θ , that is, θ1 = 80◦, θ2 = 100◦ and θ1 = 85◦, θ2 = 95◦ for RVE1 and RVE2,
respectively. The scalar n is a scaling factor such that∫ 2π

0

∫ π

0
ψ(φ, θ) sin(θ)dθdφ = 1.

As mentioned, due to symmetry considerations, the orientation averaged stiffness tensor C ′
can be

completely determined only in terms of the tensors a2 and a4 and the five elastic constants B correspond-
ing to the stiffness tensor of the aligned composite

C
′

i jkl = B1ai jkl + B2(ai jδkl +aklδi j )+ B3(aikδ jl +ailδ jk +a jkδil +a jlδik)+ B4δi jδkl + B5(δikδ jl +δilδ jk),

where δi j denotes the Kronecker delta function and the constants B are given by:

B1 = C1111 + C2222 − 2C1122 − 4C1212, B2 = C1122 − C2233,

B3 = C1212 +
1
2 (C2233 − C2222), B4 = C2233,

B5 =
1
2 (C2222 − C2233).

Unidirectional composite analysis. Two alternate unidirectional RVEs, namely RVE1 and RVE2, are
generated using the RSA procedure, with constraints φ = 0◦ and θ = 90◦. RVE1a, which corresponds
to the composite configuration with fiber aspect ratio AR = 10 and volume fraction v f = 15.13%, is
composed of 128 cylinders enclosed in a cuboid of dimensions 3l f × 3l f × 0.6l f , where l f is the fiber
length. Similarly, for the configuration with fiber aspect ratio AR = 20 and volume fraction v f = 20%,
RVE2a has dimensions 1.5l f × 1.5l f × 0.4l f and includes a total of 132 cylinders. For both RVE1a and
RVE2a, a geometry periodicity requirement was imposed on the parallelepiped faces normal to the fiber
directions. As in the aforementioned random orientation cases, both RVEs are meshed using 4-node
tetrahedron elements, with mesh densities similar to those used for RVE1 and RVE2.

The laminated random strand method. The laminated random strand (LRS) method was recently pro-
posed by Ionita and Weitsman [2006] as an alternative, approximate, approach that allows for the rapid
evaluation of a large number of fiber arrangements in a mostly in-plane random fiber orientation. Based
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on the composite laminate theory, and approximating the geometry as a series of pseudolayers of ran-
domly oriented strands, the method does not account explicitly for out-of-plane fiber orientations or
for strand overlaps. However, it does account for the strand stiffness reduction due to kinks at contact
points, by statistically determining the average number of contact points and kink size and considering
the corresponding average strand stiffness reduction.

The LRS method is, essentially, a windowing-type method. Windowing methods seek to determine
lower and upper property estimates as well as bounds through varying the analysis window size [Jiang
et al. 2001]. In the LRS method, a rectangular window of size L is selected and in each pseudolayer, N
strands are considered such that

∑N
i=1 Ai = L2, where Ai = liwi is the area covered by the i-th strand

in the sampling window, of width wi and length li . Since the elastic properties of the strand, Qi j , as
well as the orientation of each strand are known, the transformed properties Qi j can be computed in the
reference system attached to the sample window. The contribution of each strand stiffness to the total
stiffness of the layer in which it is contained is considered proportional to the area ratio µi = Ai/L2.
This allows for immediate evaluation of the individual layer stiffnesses and, in turn, the total random
laminate elastic properties can be readily estimated using the classical laminate theory.

The evaluation of strand elastic properties is done using the well-known Halpin–Tsai equations. Al-
though initially derived for long-fiber composites, and semiempirical in nature, they are based, as pointed
out by Hine et al. [2002] on the self-consistent ideas of Hill [1971]. In this work, the parameter ξ in the
Halpin–Tsai equations was assigned the widely used value ξ = 2, which is known to correctly predict
the transverse modulus, while slightly overestimating the Poisson ratio [Hine et al. 2002].

In the present study, a number of 4 pseudolayers was considered for the case of the v f = 15.13%,
AR = 10 composite, while 7 pseudolayers were considered for the v f = 20%, AR = 20 material. For
the first material, the evaluation is performed for 50 different windows sizes chosen in the interval
[0.5l f , 7.5l f ]. The windows are chosen randomly from a 9l f × 9l f × 0.6l f box, and 50 strand con-
figurations are analyzed for each window size. Similarly, for the second material, sets of 50 strand
configurations are analyzed for each of the 50 sampling windows considered for the second material. In
this case, the sampling windows are selected randomly from a 9l f × 9l f × 0.4l f box.

Numerical results. The static analyses corresponding for the loading cases and the homogenization pro-
cedure described in Section 3 are performed for RVE1 and RVE2. For RVE1 (v f = 15.13%, AR = 10),
the direct three-dimensional numerical analysis yields the stiffness tensor (in contracted notation, in GPa)

C =



7.95 3.59 3.20 0 0 0
3.59 7.41 3.16 0 0 0
3.20 3.16 5.93 0 0 0

0 0 0 1.55 0 0
0 0 0 0 1.55 0
0 0 0 0 0 2.14


, (4)
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while for the unidirectional composite characterized by RVE1a,

C =



10.58 3.07 2.95 0 0 0
3.07 5.94 3.10 0 0 0
2.95 3.10 5.97 0 0 0

0 0 0 1.56 0 0
0 0 0 0 1.56 0
0 0 0 0 0 1.45


, (5)

which, after orientation averaging yields

C ′
=



7.74 3.65 3.10 0 0 0
3.65 7.54 3.10 0 0 0
3.10 3.10 5.94 0 0 0

0 0 0 1.51 0 0
0 0 0 0 1.52 0
0 0 0 0 0 2.14


. (6)

We note that in Equations (4)–(6) the null entries correspond to nonzero numerical results. These are,
however, three or four orders of magnitude lower than the nonzero ones and, for all practical reasons,
can be taken as null. The relative error between the components of the stiffness tensor for the three-
dimensional FEM simulation, (4), and the one obtained by orientation averaging, (6), are presented in
Figure 6.

We note that the results obtained from RVE1, by direct three-dimensional FEM analysis, indicate
that the material approaches a transversely isotropic one, with the axis of symmetry in the 3-direction, as
expected. Transverse isotropy requires that C11 =C22, C44 =C55, and C66 = (C11−C12)/2. Consequently,
the following departures from transverse isotropy are computed,

2
C11 − C22

C11 + C22
= 0.7%, 2

C11 − C12 − 2C66

C11 − C12 + 2C66
= 8.7%,

C44 = C55, 2
C13 − C23

C13 + C23
= 1%,

and are considered small for all practical purposes.
For RVE2 (v f = 20%, AR = 20), the stiffness tensor results are

C =



9.52 4.49 3.32 0 0 0
4.49 10.04 3.33 0 0 0
3.32 3.33 6.41 0 0 0

0 0 0 1.67 0 0
0 0 0 0 1.67 0
0 0 0 0 0 3.02


,
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Figure 6. Relative error of stiffness tensor components: RVE1 three-dimensional simu-
lation compared to orientation averaging, ‖C i j − C

′

i j‖/C
′

i j .

while for RVE2a we obtain

C =



15.82 3.20 3.15 0 0 0
3.20 6.48 3.21 0 0 0
3.15 3.21 6.60 0 0 0

0 0 0 1.64 0 0
0 0 0 0 1.63 0
0 0 0 0 0 1.47


.

The orientation averaged stiffness tensor, for the orientation state characterized by a2 and a4 is

C ′
=



9.62 4.65 3.21 0 0 0
4.65 9.72 3.21 0 0 0
3.21 3.21 6.48 0 0 0

0 0 0 1.64 0 0
0 0 0 0 1.64 0
0 0 0 0 0 2.99


.

The results of the departure from transverse isotropy tests,

2
C11 − C22

C11 + C22
= 5.34%, 2

1
2(C11 + C22)− C12 − 2C66
1
2(C11 + C22)− C12 + 2C66

= 13.29%,

C44 = C55, C13 = C23,

display the significant effect of the preferred fiber orientations on the values of C11,C22, and C12. Figure 7
shows the relative error between the components of the stiffness tensor for the two approaches considered.
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Figure 7. Relative error of stiffness tensor components: RVE2 three-dimensional simu-
lation compared to orientation averaging, ‖C i j − C

′

i j‖/C
′

i j .

5. Automated FEM analysis

With the solution of the RVE geometry and analysis procedure in place, we are interested in the material
properties variations that occur locally in a large structure, due to the microscale inhomogeneities —
particularly the variation of the fiber volume fraction, caused by fiber aggregation. Consequently, we
generate the microgeometry for large panels for each of the materials considered in this study, glass/epoxy
AR = 10 and AR = 20, and we employ a windowing-type analysis. For several sizes of the selected
window, a parallelepiped is selected at a random location in the plate. The process is repeated 10 times for
each window size and the three-dimensional FEM analysis described earlier is performed for each case.
The process, including window selection, meshing and postprocessing of the results, is fully automated
and is implemented in ABAQUS via the Python scripting interface. A flowchart of the whole process
is illustrated in Figure 8. We note that due to the completely automated nature of the analysis meshing
may fail in regions of high geometric complexity, which requires that the model is also automatically
checked for complete meshing of all components, as well as for the existence of distorted elements, as
shown by the failed meshing check block in Figure 8.

In order to analyze the transverse isotropy of the material we consider a measure similar to the one
adopted by Ionita and Weitsman [2006]:

1=

√
12

1 +12
2,

where

11 =
2(C11 − C22)

C11 + C22
and 12 =

2(C11 − C12 − 2C66)

C11 + C22 + 2C66
.
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Figure 8. Flowchart of automated three-dimensional FEM windowing analysis.

We also propose a measure of statistical inhomogeneity in the material,

3=
‖C M

− C K
‖

‖C‖
,

where M and K , M 6= K , denote two nonidentical realizations of a window with the same size, and
‖ · ‖ is the matrix 2-norm of the tensor C computed by orientation averaging for an ideally random fiber
distribution.

For the first material (v f = 15.13%), the windowing analysis is performed on a 9l f ×9l f ×0.6l f box. A
number of 20 window sizes Lw are considered in the interval 0.5l f ≤ L ≤ 3l f and 10 samples are selected
for each value of Lw. The results for the Young’s modulus and Poisson ratio are compared to those
obtained from LRS in Figures 9 and 10. The departure from isotropy and the statistical inhomogeneity
are shown in Figures 11 and 12. It can be noticed that the departure from isotropy becomes smaller with
increasing window size, an effect also noticed by Ionita and Weitsman and is explained by the presence
of a larger number of fibers in larger samples. An additional explanation lies in the increasing variations
in fiber volume fractions, when reducing the sampling window size. This also justifies the larger average
values of the Young’s modulus for small values of Lw. We note that, while more consistent averages
of E may be obtained by increasing the number of sampling windows, at the expense of increased
computational time, the evolution of 1 and 3 indicates that, for the materials considered, the use of
RVEs of dimensions up to approximately 1.5l f may not be representative.

For the second case analyzed (v f = 20%), the initial box has dimensions 4l f × 4l f × 0.4l f , limited by
the very slow convergence of the generation algorithm at high fiber volume fraction and large dimensions.
An analysis similar to the previous one is performed for 10 random samples selected for 16 windows
sizes in the interval [0.5l f , 2l f ]. The results for the Young’s modulus, Poisson ratio, as well as for the
two statistical measures 1 and 3 are shown in Figures 13–16. We note that, unlike in this case of
AR = 10, while the statistical inhomogeneity 3 reduces with increasing window size, this tendency is
not as pronounced for the departure of isotropy 1. We explain this as an effect of the much smaller
domain from which the sampling windows are chosen, which in effect leads to an increased probability
of repeatedly including much of the same material subdomains in different analysis windows. We expect
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Figure 9. Comparison of predicted equivalent in-plane Young’s modulus E versus win-
dows size normalized to strand length, v f = 15.13%.
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Figure 13. Comparison of predicted equivalent in-plane Young’s modulus E versus
windows size normalized to strand length, v f = 20%.

that a steeper reduction can be observed if the dimensions of the initial box are increased, as well as
following an increase in the number of samples for each window size. However, we believe the observed
behavior of 1 underlines the significant variations in material property that can be observed at the local
(micro) level. We also note that the results for the Poisson ratio show, for both LRS and FEM analysis, a
remarkable independence with respect to the window size in an average sense. The higher average value
in the case of the LRS is due primarily to the choice of the Halpin–Tsai parameter used in computing
the strand stiffness.

6. Conclusions

We presented a micromechanical analysis for the determination of the elastic material properties for two
types of composite materials with random cylindrical, mostly in-plane oriented short fibers. A random
sequential adsorption algorithm was employed for the generation of the microscale geometries and a
homogenization technique is employed to determine the equivalent macroscale material properties. The
generated RVEs display a tendency towards fiber aggregation on preferred directions due to the geometry
periodicity conditions imposed, an effect also noticed in other works. The primary effect is the deviation
from the transverse isotropy expected in a composite with an ideally random fiber orientation state.
While the RVEs are considered representative for all practical purposes, this emphasizes the difficulty
of generating accurate random microscale geometries and the need for more sustained research in this
field.
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Figure 16. Statistical inhomogeneity 3 versus window size normalized to strand length,
v f = 20%.

Moreover, an evaluation of the material homogeneity for large scale structures was performed. Rel-
atively large plates were generated for the two materials considered and a windowing technique was
employed to evaluate the local material properties for different analysis window sizes, using the homog-
enization technique employed earlier. Although somewhat limited by the reduced number of windows
considered, due to the significant computational costs, this analysis indicates that representative volume
elements with the side equal to one and a half fiber bundle lengths can be expected to reasonably ap-
proximate the homogeneous material properties. We note that the local departure from isotropy can be
significant even at higher RVE dimensions, particularly at higher fiber volume fractions, due to the fiber
aggregation behavior inherent to the geometry generation algorithm. However, we note that the variations
in material properties at the local level, length scales smaller than 1.5l f , are significant, as indicated by
the values of the departure from isotropy measure 1 and the statistical inhomogeneity 3. While this
can be justified by the already mentioned tendency for preferred fiber orientations, we must also note
that no restriction on the local fiber volume fraction of the analysis windows has been imposed, leading
to variations of the actual volume fraction in the analyzed windows. Thus, the analysis is indicative of
an interval of confidence for the local material properties, offering designers an insight on the limits of
applicability of the homogenized model and, implicitly, the choice of safety coefficients.
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VIBRATIONS OF HIGHLY INHOMOGENEOUS SHELLS OF REVOLUTION
UNDER STATIC LOADING

ELENA BESPALOVA AND GALINA URUSOVA

An approach to determining natural frequencies of middle-thickness inhomogeneous shells of revolution
acted upon by static axisymmetrical loads is proposed. The approach is based on application of the
nonclassic shell model that takes into account transverse shears and reduction across the wall thickness.
In solving the problem posed, decomposition into two interconnected problems is used. The first problem
is related to determination of the initial stress-strain state of shells under static axisymmetrical loads.
The second problem is related to determination of natural frequencies of shells relative to this state that
appears in the form of parametric terms. To solve the problems, the numerical-analytical technique
developed by the authors is used. The efficiency of allowance for reduction across the wall thickness
is illustrated on the example of an inhomogeneous middle-thickness cylindrical shell under local loads.
Analysis of natural frequencies of the shell having the form of a pneumatic tire is presented depending
on the value of internal pressure.

1. Introduction

Shell structures in real conditions operate, as a rule, in the fields of static actions, such as heat or
radioactive emanation, aggressive environment, mechanical loading, and so on. These fields cause in
shells some initial stress-strain state. Allowance for this state makes it possible to study correctly more
complex processes in shells such as processes of stationary and nonstationary dynamics, stability, contact
interaction, and so on.

The present paper addresses the problem on small vibrations of middle-thickness essentially inhomo-
geneous across the thickness anisotropic shells of revolution with a meridian of arbitrary form acted upon
by axisymmetric mechanical and heat loads of a general kind.

A large body of publications in this field deals with the study of free vibrations of shells of revolution
without taking into account the initial stresses. In the case of thin shells, it can be judged by references
of different years, for example, by [Xi et al. 1996; Tan 1998; Wang and Redekop 2005; Grigorenko et al.
2006]. Detailed analysis of studies on vibrations of some classes of thick shells of revolution is presented
in [Redekop 2006; Kang 2007].

A number of works, where vibrations of shells of revolution have been studied with allowance for
preliminary stresses, are rather limited. Only publications [Rao et al. 1974; Karmishin et al. 1975;
Grigorenko et al. 1986; Bespalova et al. 1991; Sivadas 1995; Lam and Hua 1997; 1998; 2000; Hua
and Lam 2000; Wang et al. 1997; Yuan and Liu 2007] directly refer to the object of the given paper.
These works mostly consider, based on the Love model, homogeneous across the thickness isotropic

Keywords: shells of revolution, inhomogeneity, preliminary stresses, natural frequencies, nonclassic model,
numerical-analytical technique.
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and orthotropic shells acted upon by initial pressure. In [Lam and Hua 1997; 1998; 2000; Hua and
Lam 2000], initial pressure in rotating cylindrical and conical shells is caused by centrifugal forces and
coriolis accelerations. The effect of boundary conditions, geometrical parameters, and rotating speeds on
frequency characteristics of shells was studied. Inhomogeneous across the thickness orthotropic shells
of revolution are addressed in [Karmishin et al. 1975] using the same Love model. Such classes of
inhomogeneous shells of revolution and classes of cylindrical shells with arbitrary cross-section have
been considered in [Grigorenko et al. 1986; Bespalova et al. 1991] based on the classic and Timoshenko–
Reissner–Mindlin shear models. The purely shear first-order model has been used in [Sivadas 1995] to
analyze vibrations of thick cones.

It should be noted that the distinguishing features of the class of shells being considered here are char-
acterized by such factors as thick-walledness, essential inhomogeneity across the thickness (particularly,
lamination), a complex pattern of distribution of the initial stresses caused by static loads of general form
(particularly, localized ones). Owing to these complicating factors, vibrations of such shells should be
studied based on the three-dimensional statement of the elasticity theory or on the shell models, taking
into account all the kinds of transverse strain.

The present paper employs the nonclassic shell model with allowance for transverse shears and re-
duction. This makes it possible, in contrast to purely shear shell models, to take into account spatial
effects of the chosen class of shells without increasing, in contrast to three-dimensional statement, the
dimensionality of appropriate boundary-value problems. The last fact is rather important at the stage
of realization of the chosen model of deformation, since the order of the resolving system of equations
(algebraic or ordinary differential ones) rises by the power law with the problem dimensionality.

Note that the present-day tendency in analysis of compound deformable systems is connected in
the majority of cases with employing finite-element and boundary-element methods. Allowing for the
peculiarity of the class of shells under consideration, the authors propose the semianalytical approach,
which is based on the accurate reduction of the dimensionality of an initial two-dimensional problem by
analytical means and on the numerical solution of one-dimensional problems that makes it possible to
obtain results with high accuracy.

2. The problem formulation and initial guidelines

Let us consider the class of inhomogeneous middle-thickness shells, which can be referred to the some
surface of revolution. This surface in a general case is chosen by informal way and is known as a coor-
dinate or reference surface (in particular, it is a median surface) [Ambartsumyan 1961]. Let this surface
be generated by rotation of a some plane piecewise-smooth curve about the Oz-axis. It is convenient to
describe the shell geometry in a spatial curvilinear orthogonal system of coordinates α, β, and γ , where
the coordinate α changes along the generatrix (meridian), β is the angle in the cross-sectional plane
α = const, and γ varies across the shell thickness and is reckoned from the coordinate surface γ = 0 (see
Figure 1a and b).

In the general case, the shell is inhomogeneous across the thickness and may be composed of an
arbitrary number M of layers with constant or variable thickness along the α-axis. The interface of the
adjacent mth and (m + 1)th layers is specified by the equation γ = γm(α) (m = 1,M − 1) (see Figure
1c and d). The material of each of the layers may be both isotropic or anisotropic with three planes of
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Figure 1. Schematic drawing of a laminated shell of revolution: (a) the overall view of
the generatrix in the section β = const; (b) the view of the shell in the section α = const;
(c), (d) the structure of the shell across the thickness in the sections β = const and
α = const, respectively.

elastic symmetry and with principal directions of elastic symmetry coinciding with the lines of principal
curvatures α = const and β = const.

To describe the given class of shells, we divide their generatrix into J segments (see Figure 1a).
Within the limits of each of the segments, geometrical parameters, values of the thickness, and physical-
mechanical properties of the material are specified by smooth functions of the variable α. Besides, any
kinds of boundary conditions, which take into account the character of loading and displacement of a
contour, are admitted at the shell ends α = α0 and α = αJ .

The static axisymmetrical fields imposed on the shell can be caused by the following actions: the
normal qγ (α) and meridional qα(α) loads applied at the points of the coordinate surface γ = 0; contour
forces-moments, which act at the ends α = α0 and α = αJ ; concentrated forces-moments applied at
the meridional sections α = α j = const ( j = 1, J − 1); and heating, which is described by the function
T = T (α, γ ).

To study vibrations of the prestressed shells, we will use the following assumptions:

(a) The problem on vibrations of statically loaded shells is formulated based on the geometrically non-
linear theory in the quadratic approximation [Mushtari and Galimov 1957; Grigorenko and Mukoed
1983].



1302 ELENA BESPALOVA AND GALINA URUSOVA

(b) Vibrations of the shells are treated as small perturbations relative to the initial state caused by the
static loading.

(c) Material of the layers is linearly elastic and obeys the generalized Hooke’s law within the whole
range of applied loads.

(d) Separation and sliding of the shell layers are absent.

(e) The nonclassic deformation model taking into account transverse shears and reduction in linear
approximation of all components of a displacement vector across the thickness is adopted for the
whole package of layers [Grigorenko et al. 1987] in the form

um
α (α, β, γ, t)= u(α, β, t)+ γψα(α, β, t),

um
β (α, β, γ, t)= v(α, β, t)+ γψβ(α, β, t) (m = 1,M),

um
γ (α, β, γ, t)= w(α, β, t)+ γψγ (α, β, t),

where um
α , um

β , and um
γ are the displacements of points of the mth layer, u, v, and w are the displace-

ments of points of the coordinate surface γ = 0 in the directions α, β, and γ, respectively, ψα and
ψβ are the total rotation angles of a straight element, ψγ is the transverse normal strain, and t is the
time variable.

(f) The inertial forces related to the shell translation, rotation of the straight element and its reduction
are taken into account.

(g) Temperature actions are allowed for based on the Duhamel–Neumann hypothesis.

According to the assumptions adopted, the following basic relations are used:
• Motion equations

∂(B Nα)
∂α

−
∂B
∂α

Nβ +
∂(ANβα)
∂β

+ ABk1 Qα + AB
(

qα − I0
∂2u
∂t2 − I1

∂2ψα

∂t2

)
= 0,

∂(B Nαβ)
∂α

+
∂(ANβ)
∂β

+
∂B
∂α

Nβα + ABk2 Qβ + AB
(

qβ − I0
∂2v

∂t2 − I1
∂2ψβ

∂t2

)
= 0,

∂(B Qα)

∂α
+
∂(AQβ)

∂β
− ABk1 Nα − ABk2 Nβ + AB

(
qγ − I0

∂2w

∂t2 − I1
∂2ψγ

∂t2

)
= 0,

∂(B Mα)

∂α
−
∂B
∂α

Mβ +
∂(AMβα)

∂β
− AB Qα − AB

[
(Nα + k1 Mα)ϑα + Nαβϑβ

]
−AB

(
−mα + I1

∂2u
∂t2 + I2

∂2ψα

∂t2

)
= 0,

∂(B Mαβ)

∂α
+
∂(AMβ)

∂β
+
∂B
∂α

Mβα − AB Qβ − AB
[
(Nβ + k2 Mβ)ϑβ + Nβαϑα

]
−AB

(
−mβ + I1

∂2v

∂t2 + I2
∂2ψβ

∂t2

)
= 0,

∂(B Pα)
∂α

+
∂(APβ)
∂β

− ABk1 Mα− ABk2 Mβ− AB(C13εα+C23εβ+C33ψγ + K13κα+ K23κβ− Nγ T )

−AB
(
−γMq+

γ − γ0q−

γ + I1
∂2w

∂t2 + I2
∂2ψγ

∂t2

)
= 0. (1)
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• Expressions for strains in terms of displacements

εα =
1
A
∂u
∂α

+ k1w+
1
2
ϑ2
α, εβ =

1
B
∂v

∂β
+

1
AB

∂B
∂α

u + k2w+
1
2
ϑ2
β,

εαβ =
1
B
∂u
∂β

−
1

AB
∂B
∂α
v+

1
A
∂v

∂α
+ϑαϑβ, κα =

1
A
∂ψα

∂α
+ k1(ψγ − εα),

κβ =
1
B
∂ψβ

∂β
+

1
AB

∂B
∂α
ψα + k2(ψγ − εβ),

2καβ =
1
A
∂ψβ

∂α
+

1
B
∂ψα

∂β
−

1
AB

∂B
∂α
ψβ − k1

1
A
∂v

∂α
− k2(

1
B
∂u
∂β

−
1

AB
∂B
∂α
v),

ϕα = ψα −ϑα, ϕβ = ψβ −ϑβ,

ϑα = −
1
A
∂w

∂α
+ k1u, ϑβ = −

1
B
∂w

∂β
+ k2v.

(2)

• Elasticity relations

Nα = C11εα + C12εβ + C13ψγ + K11κα + K12κβ − NαT ,

Nβ = C12εα + C22εβ + C23ψγ + K11κα + K12κβ − NβT ,

Nαβ = C66εαβ + K662καβ + k2(K66εαβ + D662καβ)− NαβT ,

Nβα = C66εαβ + K662καβ + k1(K66εαβ + D662καβ)− NβαT ,

Mα = K11εα + K12εβ + K13ψγ + D11κα + D12κβ − MαT ,

Mβ = K12εα + K22εβ + K23ψγ + D12κα + D22κβ − MβT ,

Mαβ = Mβα = K66εαβ + D662καβ − MαβT ,

Nγ = C13εα + C23εβ + C33ψγ + K13κα + K23κβ − Nγ T ,

Qα = K1ϕα + D1
1
A
∂ψγ

∂α
− QαT , Qβ = K2ϕβ + D2

1
B
∂ψγ

∂β
− QβT ,

Pα = D1ϕα + C1
1
A
∂ψγ

∂α
− PαT , Pβ = D2ϕβ + C2

1
B
∂ψγ

∂β
− PβT . (3)

Here A and B and k1 and k2 are the coefficients of the first quadratic form and the principal curvatures
of the chosen coordinate surface, Nα, Nαβ, and Qα are the normal, shearing, and transverse forces in
the section α = const, Mα and Mαβ are the bending and twisting moments, Pα is the first-order moment
caused by the tangential stress of transverse shear in the same section, Nβ, Nβα, Qβ,Mβ , Mβα, and Pβ
are the same factors in the section β = const, qα, qβ, qγ ,mα, and mβ are the components of the intensity
of the distributed load and bending moments statically equivalent to the body forces and forces, which are
applied to the bounding surfaces γ = γ0 and γ = γM , q+

γ and q−
γ are the intensities of the normal force on

outer and inner shell surfaces, εα, εβ, and εαβ are the tensile and shear strains of the coordinate surface,
κα, κβ, and 2καβ are the bending and twisting strains, ϑα and ϑβ are the rotation angles of the normal in
the planes α = const and β = const, ϕα and ϕβ are the rotation angles attributed to the transverse shears,
NαT , NβT , . . . , PβT are the integral characteristics of the temperature field T = T (α, β), Ik (k = 0, 1, 2)
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are the kth-order moments of the material density, and C11, . . . , K11, . . . , D66, K1, . . . , D1, . . . ,C2 are
the integral characteristics of the shell stiffness determined in terms of the thickness of layers and their
elastic properties, for example

C11 =

M∑
m=1

∫ γm

γm−1

Eα
1 − νανβ

dγ, . . . , K11 =

M∑
m=1

∫ γm

γm−1

Eα
1 − νανβ

γ dγ, . . . , D66 =

M∑
m=1

∫ γm

γm−1

Gαβγ
2 dγ,

K1 =

M∑
m−1

∫ γm

γm−1

Gβγ (1 − k1γ )dγ, . . . , D1 =

M∑
m−1

∫ γm

γm−1

Gβγ γ dγ, . . . , C2 =

M∑
m−1

∫ γm

γm−1

Gαγ γ
2 dγ.

In these expressions, Eα, Eβ and Eγ are the elastic moduli in the directions α, β and γ, respectively,
Gβγ , Gαγ , and Gαβ are the shear moduli for the planes parallel to the coordinate surfaces α = const,
β = const, and γ = const, and να and νβ are Poisson’s ratios.

Relations (1)–(3) make it possible to describe the shell state under consideration in the form of a two-
dimensional nonlinear boundary-value problem. In the given paper, components of a vector-function
N = {Nn(α, β, t), n = 1, 12} = { Q,U} are chosen as basic unknowns. They include static,

Q = {Nα, Nαβ, Qα,Mα,Mαβ, Pα}T , (4)

and kinematic,
U = {u, v, w,ψα, ψβ, ψγ }T , (5)

characteristics of the stress state [Grigorenko et al. 1987]. Then, expressing the functions Nβ,Mβ ,
εα, κα, εαβ, and 2καβ with the help of Equations (2) and (3) through the functions Nα,Mα , Mαβ, εβ, κβ,

and ψγ and the functions ψα, ∂ψγ /∂α, Qβ, and Pβ through the functions Qα , Pα, ψβ, and ∂ψγ /∂β, after
linear but sufficiently cumbersome transformations, we arrive at the formulation of a two-dimensional
problem in the form

∂N
∂α

= LN + G + q0
+ C

∂2 N
∂t2 , α ∈ (α j−1, α j ) ( j = 1, J ), β ∈ [0, 2π ],

S j N = S j+1 N + F0
j , α = α j ( j = 1, J − 1),

B j N = b0
j , α = α j ( j = 0; J ),

N(α, β + 2π, t)= N(α, β, t). (6)

Here

L =

{
lm,n =

1
A

(
A0

m,n + A1
m,n

∂

∂β
+ A2

m,n
∂2

∂β2

)}
(m, n = 1, 12),

is the matrix differential second-order operator with respect to the variable β, constructed with the help
of relations (1)–(3) of the deformation model adopted. Components of the vector G = {gm} are the
quadratic functions of the components of the stress-strain state according to the geometrically nonlinear
shell theory in the quadratic approximation; C is the matrix whose elements characterize the inertial
properties of the shell; S j and B j are the matrices allowing for the discontinuities in representation of
physical-mechanical and geometrical parameters of the shell in the section α = α j ( j = 1, J − 1), as well
as the type of boundary conditions at the contour α = α j ( j = 0; J ); and q0, F0

j , and b0
j are the vectors
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characterizing the axisymmetrical distributed loads and temperature fields, concentrated forces-moments
in the section α = α j ( j = 1, J − 1) and contour actions at α = α j ( j = 0; J ).

Note that choice of unknowns in Equations (4) and (5) makes it possible to formulate arbitrary bound-
ary conditions at edges α = α0 and α = αJ in the simplest form.

According to assumption (b), the state of the shell being analyzed can be presented as

N = Nst
+ Nd (

|Nd
| � |Nst

|
)
,

where the vector-function Nst characterizes the stress-strain state of the shell under static actions (initial
state), and Nd are the small undamping vibrations about this state. Correspondingly, initial nonlinear
problem (6) is reduced to the following two coupled problems:

(i) The problem on deformation of a shell under specified axisymmetrical loads; this is formulated
relative to the vector Nst as

d Nst

dα
= L0 Nst

+ G(α, Nst, . . .)+ q0, α ∈ (α j−1, α j ) ( j = 1, J ),

S j Nst
= S j+1 Nst

+ F0
j , α = α j ( j = 1, J − 1),

B j Nst
= b0

j , α = α j ( j = 0; J ),

(7)

(here L0 is the matrix zeroth-order differential operator).

(ii) The problem on vibrations of a prestressed shell; this is formulated relative to the vector Nd as

∂Nd

∂α
= L̃Nd

+ C
∂2 Nd

∂t2 , α ∈ (α j−1, α j ) ( j = 1, J ), β ∈ [0, 2π ],

S j Nd
= S j+1 Nd, α = α j ( j = 1, J − 1),

B j Nd
= 0, α = α j ( j = 0; J ),

Nd(α, β + 2π, t)= Nd(α, β, t). (8)

Here L̃ is the matrix differential operator corresponding to the operator L in (6). It was obtained as
the result of linearization of the function G relative to the vector Nd and includes components of
the vector Nst as parametric terms.

3. Problem-solving technique

Problems (7) and (8) methodically may be considered as two successive stages of solving the initial
problem. At the first stage, we determine the stress-strain state of a shell under specified axisymmetrical
loads. In the case of finite strains, the one-dimensional problem is nonlinear, and for its solving we can
employ methods of quasilinearization or simple iteration [Bellman and Kalaba 1965]. One-dimensional
linearized problems are solved numerically. In the present work, the study is limited by loads which
cause small strains. For this reason problem (7) can be considered in the linear formulation. To solve
it, we will use the numerical orthogonal-sweep method [Godunov 1961]. This method proved itself to
be effective in solving the stationary problems of the shell theory by using different deformation models
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[Grigorenko et al. 1986; 1987]. Detailed description of this method is presented in [Grigorenko and
Rozhok 2003].

For the second stage, to solve the problem on small vibrations of the shell with allowance for the initial
stress state Nd , we use a numerical-analytical approach. This approach includes the method of separation
of variables, the method of reverse iterations with constructing the Rayleigh ratio, and numerical solving
of one-dimensional boundary-value problems by the orthogonal-sweep method.

The first step in solving problem (8) is separation of the time multiplier eiωt for components of the
vector-function Nd and their representation in the form of the single trigonometric Fourier series along
the circumferential coordinate β by

Nd
=

{
N d

n (α, β, t)=

∞∑
k=0

N d
nk(α)

[
sin kβ
cos kβ

]
eiωt , n = 1, 12

}
. (9)

Here ω is the natural frequency of shell vibrations, k is the parameter characterizing the shape of a
wave along the circumference (this parameter is equal to the number of waves, which go fully in this
direction). The expression in square brackets indicates that one part of the components of the vector-
function Nd, namely, (N d

α , Qd
α,Md

α , Pd
α , ud , wd , ψd

α , ψ
d
γ ) is represented in cos kβ, whereas the other

part (N d
αβ,Md

αβ, v
d , ψd

β ) is represented in sin kβ. As a result, the two-dimensional problem (8) is reduced
exactly to the following sequence of uncoupled single-parametric one-dimensional problems with respect
to the functional coefficients Nd

k = {N d
nk(α), n = 1, 12} in (9):

d Nd
k

dα
= (Ak − λC)Nd

k , α ∈ (α j−1, α j ) ( j = 1, J ),

S j Nd
k = S j+1 Nd

k , α = α j ( j = 1, J − 1),

B j Nd
k = 0, α = α j ( j = 0; J ) (k = 0, 1, 2, . . .),

(10)

where Ak is the squared 12th-order matrix defined by the operator L̃ in (8) in accordance with approx-
imation (9), and λ = ω2 is the unknown numerical parameter. Expressions for elements of matrices
Ak,S j ,S j+1 ( j = 1, J − 1), and B j ( j = 0; J ) are presented in [Grigorenko et al. 1987]. Nonzero
elements of the matrix C are

c1,7 = c2,8 = c3,9 = I0 =

M∑
m=1

∫ γm

γm−1

ρm(α, γ )dγ,

c1,10 = c2,11 = c3,12 = c4,7 = c5,8 = c6,9 = I1 =

M∑
m=1

∫ γm

γm−1

ρm(α, γ )γ dγ,

c4,10 = c5,11 = c6,12 = I2 =

M∑
m=1

∫ γm

γm−1

ρm(α, γ )γ
2 dγ,

(11)

where ρm(α, γ ) is the density of the mth layer.
To solve the eigenvalue problem (10), we employ the method of reverse iterations with the shift of the

spectrum of eigenvalues [Kollatz 1963]. Application of this method to the problems of the given class
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for the classic and Timoshenko–Mindlin type models is outlined in [Grigorenko et al. 1986; Bespalova
et al. 1991].

According to the method of reverse iterations, the minimum eigenvalue of the shifted spectrum is
determined as the limit of the numeric sequence λn constructed by the Rayleigh ratio

λn =

(
Ud,(n),C∗Ud,(n−1))(

Ud,(n),C∗Ud,n) , n = 1, 2, . . . , (12)

where Ud,(n) is the vector of kinematic characteristics of the deformed state (5), C∗ is the nonsingular ma-
trix with elements (11), n is the iteration number, and (. . . , . . .) is the scalar product. The vector-function
Ud,(n) being the component of the vector-function Nd,(n) at each nth step of the iteration (n = 1, 2, . . .)
is determined from the solution of the nonuniform problem

d Nd,(n)
k

dα
= (Ak − τC)Nd,(n)

k − CNd,(n−1)
k , α ∈ (α j−1, α j ) ( j = 1, J ),

S j Nd,(n)
k = S j+1 Nd,(n)

k , α = α j ( j = 1, J − 1),

B j Nd,(n)
k = 0, α = α j ( j = 0; J ) (k = 0, 1, 2, . . .).

(13)

According to [Kollatz 1963], the sequence of such problems (n = 1, 2, . . .) is obtained from (10) by
adding the term which characterizes the shift of a frequency spectrum of value τ , and by changing the
term with the coefficient λ to Nd,(n−1)

k . As in the first stage, problems (13) are solved numerically by the
orthogonal-sweep method. If the sequence Nd,(n)

k (n = 1, 2, . . .) converges, the vector-functions Ud,(n)
k

will tend to the eigenvector-functions and the numerical sequence λn in (12) will tend to the sought for
eigenvalue λ. Fulfillment of the condition |1 − λn+1/λ(n)|< ε is the natural criterion for the finish of the
iterative process. The issue of the selection of the initial approximation and convergence of the process
in the problems of the shell theory has been considered in [Grigorenko et al. 1986].

4. Vibration analysis of prestressed inhomogeneous shells

As an example of employment of the approach developed, we will solve two problems. The first one is
a model problem and demonstrates the efficiency of the variant, in which reduction and transverse shear
are taken into account, in contrast to the Kirchhoff–Love and Timoshenko–Mindlin theories. The second
problem concerns analysis of natural frequencies of the shell similar to the real structure having the form
of a pneumatic tire.

Problem 1. Here, using as an example a shell with a simple geometric shape which is homogeneous along
the generatrix, we will estimate the validity of the technique depending on two factors: inhomogeneity
of physical-mechanical properties across the thickness and localization of the acting load.

Let us consider a sandwich cylindrical shell of length 2l(s ∈ [−l, l]) with the radius of a median
surface R0 and general thickness h (s is the arc length of the generatrix). Layers of the shell are isotropic
with different elastic properties and are placed symmetrically relative to the median surface. The elastic
modulus and density of outer layers are E = E0 and ρ = ρ0, respectively, and Poisson’s ratio is ν. These
characteristics for the inner layer are E = E0/d and ρ = ρ0/d with the same Poisson’s ratio. The volume
of the inner layer is equal to that of two outer ones. The inhomogeneity of such laminated structures is
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characterized by the parameters d or η = lg d. The case η = 0 corresponds to a homogeneous isotropic
shell made of a material of outer layers. Note that with η being varied, the velocity of propagation of
elastic waves for the cylinder as a whole remains the same. The shell is under the action of the normal
axisymmetrical load with intensity q. The load is applied on the circular ring of the length 2l∗ with a
center in the section s = 0 (s ∈ [−l∗, l∗]). To characterize the level of its localization, we will use the
parameter δ = l∗/ l. As the limiting case of the load localization, we will consider the circular radial
force Qs (for δ = 0) concentrated in the section s = 0. It is assumed that both cylinder ends s = ± l are
hinged. In this case, the prestressed state is defined mainly by the circumferential force Nβ .

Natural frequencies ω of the shell are analyzed depending on two parameters: the degree of the inho-
mogeneity across the thickness (parameter η ∈ [0; 3]) and the degree of the load localization (parameter
δ ∈ [0; 0.2]). We will compare the results obtained by different shell models using the load value q∗, for
which the minimum frequency becomes equal to zero (ωmin(q)' 0). Note that in accordance with the
dynamic criterion of the shell stability, the value q∗ can be adopted as the upper quantity of a critical
load.

To calculate the magnitudes of the critical load, we will employ the following shell models: the classic
model (transverse strains are neglected), the Timoshenko–Mindlin type model (transverse shears are
regarded), and nonclassic model (transverse shears and reduction across the wall thickness are regarded).
Comparison of corresponding solutions makes it possible to evaluate the contribution of each type of the
transverse strain into correction of the results obtained by the classic theory. These results are presented
in Figure 2 for the relative value of the critical load χ = q∗(η)/q∗

c (0), where q∗
c (0) is the q∗ which is

obtained for an homogeneous shell by the classic model.
The dependencies χ = χ(η) are presented for the above-mentioned shell models and for different

kinds of load localization δ = 0.2, 0.1, and 0. Data accepted for calculations are R0 = 100l0, 2l/R0 = 2,
and h/R0 = 1/5, where l0 is the typical linear dimension of the cylinder. It should be noted, that, as

Figure 2. Dependency of the critical load χ = χ(η) on the parameter of inhomogeneity
η for different shell models: classic (�), shear (�), and with allowance for reduction (M),
and different values of the load localization: (a) δ = 0.2; (b) δ = 0.1; and (c) δ = 0.
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applied to these data, the calculation error, which takes place in determining the natural frequencies of
unloaded shell by the nonclassic theory with reduction being taken into account, is not more then 2% in
comparison with the results obtained by the three-dimensional theory [Bespalova and Urusova 2007].

Let us analyze in detail the dependencies χ = χ(η).
In the case of a homogeneous shell (η = 0) and weak load localization (for example, at δ = 0.2,

see Figure 2a), the allowance for transverse shears makes it possible to refine the results obtained by the
classic theory by 15%. The complementary allowance for the reduction does not result in any appreciable
changes. For this reason, in the case of a homogeneous shell with small localization, we can limit
ourselves to transverse shears only. The correct use of classic and purely shear models as applied to the
inhomogeneous shells (η > 0) is possible only if η < 1 and (d < 10), that is, when the difference in
properties of the material of layers is within the limit of one order.

When the inhomogeneity is considerable (η > 1, d > 10), both models do not depict variation in shell
properties. The allowance for transverse shears yields only insignificant refinement (approximately for
20%) of results in comparison with a homogeneous shell. At the same time, the allowance for reduction
results in considerable refinement for essentially inhomogeneous shells even if the localization of a load
is insignificant. So, for η= 3, the magnitude of a critical load is refined by 40% compared with the classic
theory and by 25% compared with the shear theory. With the localization increasing (δ = 0.1, see Figure
2b) and especially in the limiting case of the point action (δ = 0), the influence of allowance for reduction
increases considerably. In the case of a concentrated load (δ = 0, see Figure 2c) and homogeneous shell
(η = 0), the effect of the allowance for transverse shears and reduction refines the magnitude of the
critical load by 25% and reduction proper by 15%. For an inhomogeneous shell (η = 3) such refinement
is more than 60% and 50%, respectively.

Thus, in determining the critical loads for essentially inhomogeneous shells (η > 1) and considerable
localization of actions (δ < 0.2), the allowance only for transverse shears may be inadequate. In these
cases, for analysis to be correct, the shell models, which take into attention all kinds of the transverse
strain including reduction, should be employed.

Problem 2. As an example, let us determine natural frequencies of such standard shell construction as a
pneumatic tire, which, as a preliminary, was loaded with internal pressure. This example in full measure
represents the class of problems being considered. The shell has laminated structure and complicated
geometric shape, variable thickness and inhomogeneous physical-mechanical properties both along the
generatrix and across the thickness. These factors provoke the complex initial stress state even under the
uniform action.

As the reference surface we will chose the inside surface of the shell. This surface has the shape of a
torus with an elliptical cross-section, its half-axes are a and b, and distance to the axis of revolution is R0.
The shell can be divided conditionally into two segments with different thicknesses and different physical-
mechanical properties: α ∈ [0, α1] and α ∈ [α1, α2], where the angle α characterizes the current position
on the generatrix. On the first segment, the shell is composed of three layers. The inner layer with the
thickness h1 is made of orthotropic material with the characteristics Eα = 5.8E0, Eβ = Eγ = 0.12E0,

Gαβ = Gαγ = 0.043E0, Gβγ = 0.031E0, να = 0.42, and ρ = ρ0. The outer layer with the thickness h3 is
isotropic and has E = 0.05E0, ν = 0.49. The middle layer is composed of two orthotropic sublayers with
the same thickness h2, whose orthotropy axes in the sublayers are oriented relative to the shell generatrix
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at angles of ±700. Its properties are E1 = 18.4E0, E2 = E3 = 0.074E0, G12 = G13 = 0.021E0,

G23 = 0.019E0, ν12 = 0.47, and ρ = 1.54ρ0, where indices 1 and 2 denote the principal elasticity
directions of the orthotropic material. This layer as a whole is considered as structurally orthotropic and
its characteristics are determined by the known formulas which are related to the turn of coordinate axes
[Lechnitskii 1977]. In this case the rigidities connecting the tension-compression strains with twisting
strains can be neglected due to the symmetric location of the orthotropic axes of the material in sublayers.
The general thickness of the shell on this segment is h = h1+2h2+h3. On the second segment α∈ [α1, α2],
the shell is composed of one orthotropic layer with the thickness h1 and characteristics Eα = 5.8E0, Eβ =

Eγ = 0.12E0, Gαβ = Gαγ = 0.043E0,Gβγ = 0.031E0, να = 0.42, and ρ = ρ0.
An initial stress-strain state of the shell is caused by the normal axisymmetric pressure of the intensity

q .
Let us analyze the natural frequencies for the shell in the case of R0 = 217l0, h1 = 0.75l0, h2 = 1.4l0,

h3 = 6.45l0, α1 = 0.95 rad, α2 = 2.168 rad (l0 = 10−3 m, E0 = 102 MPa, and ρ0 = 103 kg·m−3) as applied
to the two following variants of geometric parameters: variant I, where a = 84.6l0, and b = 43.0l0

(elliptic-section torus), and variant II, where a = b = 60.3l0 (circular-section torus).
The internal pressure causes in the shell the complex stress state. So, Figure 3a shows the distribution

of dimensionless circumferential Ñβ = Nβ(α)/g and meridional Ñα = Nα(α)/g forces along the shell gen-
eratrix for two configurations (I, the elliptic cross-section, and II, the circular cross-section, g = 103ql0).
In the case of an elliptic cross-section, the circumferential forces Ñβ are dominating, moreover on the
first segment they are two order higher then on the second one. At the point of the segment conjugation
(α/α2 = 0.49), we observe the jump attributed to the stepwise variation in the shell structure across

Figure 3. Effect of the initial stress state on the natural frequencies of the toroidal shell.
(a) The forces Ñα, I and Ñβ , I for an elliptic torus and the forces Ñα, II and Ñβ, II for
a circular torus. (b) The dependency of minimum frequencies ω∗ for elliptic (i = I) and
circular (i = II) toruses on the internal pressure q.
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the thickness. The meridional forces Ñα are distributed along the generatrix nearly uniformly. The
qualitative pattern of the force distribution for the circular torus is kept the same.

The natural frequencies of such a prestressed shell are determined depending on the value of the
internal pressure q, which varies through the range [0; 0.3] MPa. The values of minimum frequencies
for elliptic ωI(q) and circular ωII(q) toruses referred to the minimum frequency of the unloaded circular
torus ωII(0) (ω∗

= ωi (q)/ωII(0), i = I, II) are presented in Figure 3b.
For both variants of the geometry, the dependencies ω∗

= ω∗(q) are the monotonous piecewise smooth
curves. Here inflection points correspond to the mode change at minimum frequency. If the internal
pressure is low, difference in natural frequencies of both shells is negligibly small. With the pressure
increasing (q > 0.1 MPa), difference in frequencies also increases and for q = 0.3 MPa frequencies of
the elliptic torus exceed those for the circular one approximately by 70%.

5. Conclusions

The paper presents a numerical-analytical approach to the analysis of natural frequencies for middle-
thickness inhomogeneous shells of revolution under axisymmetric loads. The approach includes the
following points:

(i) Formulation of the problem based on the nonclassic two-dimensional model of shells with allowance
for transverse shears and reduction within the frame of the geometrically nonlinear theory.

(ii) Decomposition of the problem into two interconnected problems: the problem on preliminary
stresses in a shell under static loading and the problem on small shell vibrations with allowance
for the preliminary stress-strain state.

(iii) Numerical-analytical technique for solving both problems using the following procedures:

(a) Trigonometric Fourier series expansion along circumferential coordinate.
(b) Inverse iterations method for solving eigenvalue problems.
(c) Numerical orthogonal-sweep method for solving one-dimensional boundary-value problems.

The efficiency of the approach proposed is illustrated by the example of the inhomogeneous across the
thickness nonthin cylindrical shell under localized loading in comparison with classical and shear models.
It is shown that in analyzing the natural frequencies of a shell with the essential difference in physical-
mechanical properties across the shell thickness (more than one order) and appreciable localization of
static actions, it would be desirable to take into account not only transverse shears but also reduction.

We have analyzed the natural frequencies of a complicated pneumatic-tire shell system for two variants
of cross-sectional configuration depending on the value of internal pressure. Calculation results are
physically justified [Buchin 1988].
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QUASISTATIC DEFORMATION AND FAILURE MODES OF COMPOSITE
SQUARE HONEYCOMBS

BENJAMIN P. RUSSELL, VIKRAM S. DESHPANDE AND HAYDN N. G. WADLEY

Carbon fibre epoxy matrix composite honeycombs have been fabricated by slotting, assembling and
adhesively bonding composite laminate sheets with various fibre architectures. Their out-of-plane com-
pressive and in-plane shear responses were measured as a function of relative density, ratio of the cell
height to width and the number of cells in the specimen. The measurements indicate that the response is
relatively insensitive to the ratio of the cell height to cell width and number of cells in the specimen but
is strongly dependent on the laminate type and fibre orientation. For example, the compressive strength
of the honeycombs made from 0 − 90◦ laminates with fibres aligned with the compression direction was
greater than that of honeycombs made from a woven material with fibres at ±45◦. However, the shear
strengths exhibited the opposite trend. These differences were attributed to a change in failure mode. In
compression the honeycombs failed by either elastic buckling or plastic microbuckling while in shear the
two main failure modes were elastic buckling or shear failure of the composite sheet material. Analytical
models are derived for these collapse modes and used to predict the strength of the honeycomb structure.
The predicted strengths are substantially higher than the measurements due to the presence of manufactur-
ing imperfections in the honeycombs that are not accounted for in the analytical models. A limited finite
element (FE) investigation is also reported to quantify the effects of imperfections on the compressive
strength of the composite honeycombs. The measurements and analytical predictions reported here
indicate that composite cellular materials such as honeycombs reside in a gap in the strength versus
density material property space, providing new opportunities for lightweight, high strength structural
design.

1. Introduction

The failure strength of sandwich panel structures depends upon many factors including the strength and
thickness of the face sheets, the core topology and the parent material. A variety of polymeric foams
and honeycombs are used for the cores of stiffness dominated designs. The need for higher strength,
impact energy dissipating structures has stimulated the development of stronger metallic foams, see for
example [Ashby et al. 2000]. These are mostly produced by the introduction of gas bubbles into the metal
[Wadley 2002]. The bubble expansion process leads to random cellular structures, and minimization of
surface energy leads to a low nodal connectivity, with typically three to four struts per joint. The resulting
mechanical properties are far from optimal due to the fact that the cell walls deform by local bending
[Deshpande et al. 2001a]. This led to a search for open-cell microstructures which have high nodal
connectivities and deform by the stretching of constituent cell members, giving a much higher stiffness
and strength per unit mass. These cellular solids, known as lattice materials — a term we define to

Keywords: mattice materials, composites, microbuckling, honeycomb, carbon fiber, carbon fibre.

1315



1316 BENJAMIN P. RUSSELL, VIKRAM S. DESHPANDE AND HAYDN N. G. WADLEY

mean any micro-architectured cellular solid with straight webs or struts — have a stiffness and strength
which scale linearly with relative density ρ̄; in contrast, the Young’s modulus and yield strength of
metallic foams scale with ρ̄2 and ρ̄3/2, respectively. An example of a lattice material is the octet-truss
structure with a face-centred cubic microstructure [Deshpande et al. 2001b]. Its joint connectivity is
12, and this spatially periodic material has the feature that the cell members deform by local stretching
for all macroscopic loading states. Consequently, the specific mechanical properties (stiffness, strength,
toughness and energy absorption) of the Octet-truss far exceed those of open-cell foams. Many variants
of this structure have been explored and novel methods for their fabrication and multifunctional properties
have been recently reviewed [Wadley 2006].

Examination of the modified Ashby material property chart [Ashby and Bréchet 2003] shown in Figure
1, indicates that aluminium foams and lattices occupy the low density region of material strength- density
space. It also reveals a gap between the strength of existing lattice materials and the theoretical attainable
material limit. Lattices fabricated from aluminium alloys have begun to extend the range of cellular
materials into this gap in the material property space but it is clear that there remains much room for
further improvements. Figure 1 illustrates how the combination of optimized lattice topology and parent
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material properties can be combined to expand material property space by creating new engineering
materials or cellular structures. For instance, suppose composites containing fibres configured to provide
high uniaxial specific strengths were used for the trusses or webs of a lattice structure. If buckling does
not occur, the resulting lattice structures have anticipated compressive strengths that fill the gap in the
strength versus density space for densities less than about 100 kgm−3.

Continuous fibre polymer matrix composites such as carbon-epoxy systems have found extensive use
as face-sheets in sandwich construction, particularly in aerospace and sports equipment applications.
Typically carbon-epoxy laminate face-sheets are combined with an aluminium hexagonal honeycomb
core: the high strength and stiffness per unit mass of carbon-fibre materials boost their ranking in face-
sheet materials selection for light-weight structural applications. The use of composites as a core material
is a natural progression for increasing the specific strength and stiffness of sandwich structures. The main
examples include the Z-fiber and X-Cor1 truss structures fabricated by angled carbon fibre rods embedded
in a polymeric foam; and Nomex-phenolic resin honeycombs which find application in flooring panels
for passenger aircraft. There exists little data on such sandwich core materials and that data suggests
that the strength per unit mass of these sandwich cores is only marginally better than metallic structures
[Marasco et al. 2006].

It is clear that topologically structuring composite materials shows promise for filling gaps in the
strength versus density map of all known materials. The aim of the present study is to begin to investigate
the expansion of the strength – density material space at low densities by using carbon fibre composites to
build lattice materials. A related study explored the behaviour of carbon fibre composite lattice structures
with an open cell pyramidal truss topology [Finnegan et al. 2007]. The measured peak compressive
strengths from that study are included in Figure 1. Clearly the composite pyramidal lattices begin to fill
a gap in the known material property space in that they have a strength greater than most known materials
at densities less than 100 kgm−3. However, the designs of the composite pyramidal cores in [Finnegan
et al. 2007] do not achieve the full potential of composite lattice materials primarily due to the inefficient
utilization of material in the nodes.

In general three classes of sandwich core architecture have been proposed: (i) prismatic cores, (ii) 3D
trusses and (iii) honeycombs. The most suitable choice of sandwich core architecture depends upon the
specific application. For example, trusses with their open celled architecture are ideal for multifunctional
applications involving heat transfer in addition to load carrying capacity [Evans et al. 1998]. On the other
hand, these sandwich cores have a low in-plane stretching strength. Thus, for panels subjected to large
bending loads (where in in-plane core stretching is important), stretch resistant cores are superior to the
truss cores. Traditionally, hexagonal honeycombs have been extensively employed in sandwich construc-
tion; see for example [Gibson and Ashby 1997]. However, hexagonal honeycombs also suffer from a low
in-plane stretching strength. Square honeycombs overcome this drawback (at least for loadings along
the directions of the cell walls) and thereby have promise for sandwich construction as demonstrated
in a number of studies [Côté et al. 2004; Xue and Hutchinson 2004; Fleck and Deshpande 2004]. The
out-of-plane compressive and shear deformation of carbon fibre composite square honeycombs is the
focus of this study.

1Z-fiber and X-core are registered trademarks of Aztex Inc., Waltham, MA, USA.
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The outline of the paper is as follows. First the composite sheet materials are described along with
the route for fabricating the square-honeycombs cores from these materials. Second, the measured com-
pressive and shear responses of the cores are detailed along with the observed failure modes. Analytical
and finite element models are then developed for the elastic stiffness and collapse strengths of the com-
posite honeycombs and these are compared with measurements. Finally, the measured strengths of the
composite honeycombs are plotted on a map of density versus strength of all known materials in order
to gauge the performance of these materials in terms of their strength to weight ratio.

2. Materials and manufacture

Square-honeycombs were manufactured from prefabricated composite sheet materials. The methodology
follows closely that developed for metallic honeycombs by [Côté et al. 2004].

2.1. Parent materials. Two types of carbon fibre composite sheet material with an average sheet thick-
ness t = 0.355 mm were employed in this study. One was a ±45◦, 2 × 2 twill weave (3.7 tows per
centimetre and 6000 fibres per tow) panel and the second was a laminate with a 4-ply symmetric balanced
[0◦, 90◦

] lay-up. These two types of materials are referred to as the woven and laminate materials, respec-
tively. In both cases, the composite sheets were made from T300-6k fibres (6–7.5µm fibre diameter) and
a high-heat resistant epoxy matrix (Fiberite 934). The as-fabricated densities of the woven and laminate
composites were 1370 kgm−3 and 1590 kgm−3, respectively.

2.2. Manufacturing route. Square-honeycombs were manufactured from composite sheets with a thick-
ness t = 0.355 mm using a procedure similar to that developed for metallic honeycombs by [Côté et al.
2004]. The sheets were cropped into rectangles of height H in the range 26.0 to 124.8 mm and length
of 37.8 mm to 256.2 mm. Cross-slots (Figure 2) of width 1t = 0.40 mm and spacing L in the range
5.2 mm to 41.6 mm, were cut using a 2-axis micromill with a mill head capable of cutting slots widths
1t ≥ 200µm. The 45µm difference between sheet thickness and slot width facilitated assembly while
providing a sufficiently tight fit to assure stability. The slotted rectangles were assembled into the square-
honeycomb configuration (Figure 2) and adhesively bonded using a low viscosity epoxy resin (Opti-tec
50012). The assembly was then cured at 65◦ C for 1 hour. Mild steel face sheets of thickness 3 mm were
finally bonded to the top and bottom faces of the honeycomb using a nylon backed film epoxy (Redux
3193 with an areal density 400 gm−2) and the entire assembly again oven cured at 175◦ C for 1 hour.

The relative density ρ̄ of the square-honeycomb is to first order given by

ρ̄ =
2t
L
, (1)

and honeycomb specimens of different densities were manufactured by varying the cell size L while
keeping the wall thickness always fixed at the sheet thickness t = 0.355 mm. An example of a manufac-
tured square-honeycomb (without the steel face-sheets) made from the woven material with ρ̄ = 0.05,
comprising 6 × 6 cells and a cell aspect ratio H/L = 3 is shown in Figure 3.

2Intertronics, 17 Station Field Industrial Estate, Banbury Road, Kidlington, Oxfordshire, OX5 1JD, UK.
3Hexcel Composites, Duxford UK.
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Figure 2. Sketch of the square-honeycomb manufacturing technique. The coordinate
system associated with the honeycomb and the notation used to indicate the dimensions
of the honeycomb are also shown.

Figure 3. Photograph of the ρ̄ = 0.05 square-honeycomb made from the 0–90◦ woven
material and comprising 6 × 6 cells with a cell aspect ratio H/L = 3.
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±45°  ±45°  

(b) 

Figure 4. Sketch illustrating the 0–90◦ and ±45◦ orientations in which compression and
tensile tests were conducted on the parent (a) woven and (b) laminate materials.

3. Mechanical measurements

3.1. The parent materials. Tensile and compression tests were conducted on the woven and laminate
materials in two directions, labelled 0–90◦ and ±45◦ in Figure 4. The angles denote the directions along
which the fibres lie with respect to the tensile or compression axes.

Rectangular tensile specimens of dimension 20 mm × 140 mm were cut from the composite sheets
and aluminium tabs of dimension 20 mm × 40 mm were bonded to the ends of the specimens to facilitate
gripping. Tensile tests were conducted in a screw driven test machine at an applied nominal strain rate
10−3 s−1 with the applied load measured via the load cell of the test machine and the strain inferred from
displacements measured using a laser interferometer. The measured tensile responses in the 0–90◦ and
±45◦ directions are plotted in Figure 5. In the 0–90◦ direction the composites exhibit an approximately
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Figure 5. The measured uniaxial tensile responses of the woven and laminate composite
materials in the 0–90◦ and ±45◦ orientations.
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linear response prior to failure. The peak strengths of the woven and laminate materials were 558 MPa
and 1.05 GPa, respectively and their corresponding tensile ductilities 2.98% and 0.97%. Both materials
exhibited significantly greater ductility when loaded in the ±45◦ direction with failure strains of 12% and
19% for the woven and laminate materials, respectively. However, this was accompanied by significantly
reduced peak strengths of 161 MPa (woven) and 294 MPa (laminate). These differences arise from the
fibre orientation: in the ±45◦ direction, matrix deformation dominates the response, while in the 0–90◦

direction the is load primarily sustained by the fibres.
The small sheet thickness of the composites employed in this study meant that it was difficult to

conduct standard Celanese type compression tests on these materials while avoiding macrobuckling of
the specimens. Thus, the specimens were tested using a sandwich column configuration as sketched
in Figure 6a. The sandwich specimens were constructed by epoxy bonding the composite sheets to
an aluminium hexagonal honeycomb core of relative density 6%, cell size 6.35 mm and wall thickness
0.381 mm. These specimens were then cut into a dog-bone configuration with dimensions as sketched
in Figure 6a. This configuration had a high bending stiffness to obviate the possibility of macrobuckling.
Moreover, the in-plane compression of the hexagonal honeycomb core had a negligible contribution to
the measured loads. Strain gauge rosettes were bonded to both face-sheets of the sandwich column to
measure the compressive strains in the face-sheets (and their Poisson expansion) and the stress in each
of the composite sheets was deduced from the load cell of the test machine. The compression tests were
conducted at an applied nominal strain rate 10−3 s−1. The strains in both face-sheets were observed to
be within 10% of each other. This confirmed that the sandwich columns underwent negligible bending
and thus the measurements are representative of the compressive responses of the composite sheets. The
compressive stress versus strain responses of the woven and laminate sheet materials in the 0–90◦ and
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Figure 6. (a) Sketch of the sandwich column configuration used to conduct compression
tests on the composite sheet materials. All dimensions are in mm. (b) The measured
uniaxial compressive responses of the woven and laminate composite materials in the
0–90◦ and ±45◦ orientations.
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±45◦ directions are plotted in Figure 6b. Similar to the tensile responses, the composite sheets have a high
strength but low failure strain in the 0–90◦ direction and vice-versa in the ±45◦ direction. Interestingly,
both the woven and laminate materials have approximately the same compressive strength in the 0–90◦

direction suggesting that fibre waviness even in the laminates significantly reduces its peak compressive
strength. We note that in the 0–90◦ direction, the composite sheets have a lower compressive strength
compared to the tensile strength due to the fact that the tensile strength is governed by the failure strength
of the fibres while the compressive strength of the materials is governed by fibre waviness which causes
microbuckling failure of the composite materials.

3.2. Compressive response of the honeycombs. Compressive tests were conducted on the composite
square honeycombs to investigate the effects of (i) relative density ρ̄, (ii) parent material type and ori-
entation, (iii) cell geometry as characterized by the aspect ratio H/L and (iv) number of cells in the
compressive test specimen. The compression tests were conducted in a screw driven test machine at a
nominal applied strain rate 10−3 s−1. The compressive stress was inferred from the load cell output of the
test machine while the average compressive strain was deduced from laser inferometer measurements of
the relative approach of the two steel face sheets of the test specimens. A few loading-unloading cycles
were conducted during each test in order to infer the compressive Young’s modulus of the honeycombs.
At least one repeat test was conducted on each of the specimens in order to confirm the repeatability of
the results presented subsequently.

3.2.1. Effect of specimen geometry. The majority of the tests were conducted on square-honeycomb
specimens manufactured from the woven composite material oriented such that one set of fibres was
aligned with the compression direction; such square-honeycombs are referred to as the 0–90◦ woven
honeycombs and the effect of specimen geometry is investigated using these types of honeycombs. The
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Figure 7. Measured compressive stress versus strain response of the honeycombs made
from the 0–90◦ woven composite material for selected values of the specimen relative
densities ρ̄. All measurements are reported on specimens with 6 × 6 cells and H/L = 3.



QUASISTATIC DEFORMATION AND FAILURE MODES OF COMPOSITE SQUARE HONEYCOMBS 1323

ρ̄
aspect ratio (H/L)

1 3 5

0.025 6×6 4×4, 6×6 –

0.05 6×6 4×4, 6×6, 12×12 –

0.075 6×6 4×4, 6×6, 12×12 –

0.1 6×6 4×4, 6×6, 12×12 6×6

0.15 – 4×4, 6×6, 12×12 6×6

0.2 – 4×4, 6×6, 12×12 6×6

Table 1. List of the types of square-honeycomb specimens made from the woven com-
posite material (0–90◦ orientation) that were manufactured and tested in compression in
this study. The number of cells in each of the specimen types is indicated in the table.

range of 0–90◦ woven honeycomb specimens investigated here are summarized in Table 1 (the table lists
the number of cells in the specimen for each value of H/L and ρ̄ investigated). The range of samples
tested was limited by the use of sheets with a thickness t = 0.355 mm to make all specimens. This implies
that (i) low density specimens with a high value of H/L are extremely large and thus impractical to test
in a laboratory setting (e.g. ρ̄ = 0.025 and H/L = 5) and (ii) high density specimens with a low value
of H/L are too small to manufacture with any degree of accuracy (e.g. ρ̄ = 0.2 and H/L = 1). Even
so, a sufficiently wide range of specimen geometries were tested to make the necessary inferences about
the effects of specimen geometry. The reference test geometry comprised 6 × 6 cells with an aspect ratio
H/L = 3. Unless otherwise specified, this reference geometry was employed in all tests.

The measured compressive stress versus strain response of the 0–90◦ woven honeycombs is plotted
in Figure 7 for selected values of the relative density ρ̄. The response is reasonably linear up to the peak
stress. The subsequent softening beyond the peak stress is rather dramatic for the ρ̄ = 0.2 case suggesting
a microbuckling failure of the composite sheets. By contrast, the stress falls more gradually for the lower
density honeycombs suggesting a failure by elastic buckling of the honeycomb webs.

Evidence for buckling is seen in the montage of photographs of the ρ̄ = 0.05 specimen at selected
levels of applied compressive strain (Figure 8a). The associated compressive stress versus strain curve is
plotted in Figure 8b. The deformation of the cell walls is essentially uniform for strains less than about
0.3%. Distinct wrinkling of the cell walls is observed at larger strains due to the onset of buckling. Now
consider the ρ̄ = 0.2 honeycomb. As discussed above we anticipate that the high density honeycombs
(ρ̄ = 0.2) undergo microbuckling failure. However, this mode of failure is not evident in the image shown
in Figure 9a, as the cell walls towards the edge of the specimen are unconstrained and thus undergo a
macrobuckling collapse mode. However, we expect the constrained cell walls in the interior of the
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Figure 8. (a) Photographs at selected values of the compressive strain ε showing the
compressive deformation mode of the ρ̄ = 0.05 honeycomb made from the 0–90◦ woven
composite material. (b) Associated measured compressive stress versus strain response.

specimen to fail by microbuckling. In order to test this hypothesis we used X-ray tomography to observe
the failure mechanism in the ρ̄ = 0.2 (H/L = 3) specimen comprising 4 × 4 cells. The specimen was
compressed using the fixture sketched in Figure 10. The specimen was first compressed to the required
strain in the screw-driven test machine and the bolts on the fixture tightened so that the specimen did not
unload upon removal from the test machine. The specimen was then scanned using a X-ray tomography
system. This procedure was repeated for four values of applied strain as marked on the measured stress
versus strain response included in Figure 9b. The X-ray images along the two sections marked in Figure
9a are shown in Figure 11 at the four levels of applied strain indicated in Figure 9b. The contrast between
the middle and edge of the specimen is evident in Figure 11: (i) the cell walls bend near the edge of
the specimen, prior to the peak stress, while they remain straight in the middle of the specimen; (ii) just
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Figure 9. Compressive deformation modes of the ρ̄ = 0.2 honeycomb made from the 0–
90◦ woven composite material. The specimen comprised 4 × 4 cells. (a) Photograph of
the specimen deformed to a strain ε = 0.12. The sections along which the X-ray images
are taken are also marked. (b) The measured compressive stress versus strain response
with the strains at which X-ray images were taken labelled on the plot.
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Figure 10. Sketch of the fixture used to compress the specimen used and then scan in
X-ray tomography system. The fixture prevents unloading of the specimen when it is
removed from the test machine.

beyond the peak stress a small kink is seen to develop in the cell walls in the middle of the specimen
that is reminiscent of a microbuckle failure.

The measured unloading modulus E and peak stresses σp of the honeycomb specimens with 6 × 6
cells are plotted in Figure 12 as a function of the relative density ρ̄, for three values of H/L . Note that for
H/L = 1 and H/L = 5 data does not exist for some values of ρ̄, as detailed in Table 1. Nevertheless the
trends are clear: both E and σp increase approximately linearly with increasing ρ̄ while the cell aspect
ratio H/L has a negligible effect for the range of aspect ratios considered here.
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(c) 

Figure 11. X-ray images of the honeycomb specimen along the two sections marked in
Figure 9a and strain values indicated in Figure 9b.
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Figure 12. The measured Young’s modulus E (left) and peak strength σp (right) of
the honeycombs made from the 0–90◦ woven composite material as a function of the
relative density ρ̄. Measurements are shown for specimens comprising 6 × 6 cells and
selected values of the aspect ratio H/L . The predictions of the analytical models are
also included as solid lines.
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Figure 13. Measured peak strength σp of the honeycombs made from the 0–90◦ woven
composite material as a function of the relative density ρ̄. Measurements are shown for
specimens with a cell aspect ratio H/L = 3 and for specimens with 4 × 4, 6 × 6 and
12 × 12 cells. Predictions of the analytical model are also included.

The X-ray tomographs in Figure 11 show that the deformation modes of the cell walls in the middle
of the specimen and towards the specimen edge differ substantially. This suggests that the measured
compressive response of the honeycombs might be sensitive to the number of cells in the specimens. In
addition to the reference value of 6 × 6 cells, tests were conducted on honeycomb specimens comprising
4×4 and 12×12 cells, all with an aspect ratio H/L = 3. The measured peak stresses σp from these tests
are plotted in Figure 13 as a function of ρ̄. The measurements from specimens with 6 × 6 and 12 × 12
cells are almost identical confirming that the reference specimen employed in this study provides data
that is reasonably independent of the number of cells in the specimens. However, the measured peak
strengths from the specimens with 4 × 4 cells were slightly lower than those of the 6 × 6 and 12 × 12 cell
specimens suggesting that edge effects play a more dominant role in the deformation of the 4 × 4 (and
smaller) cell specimens.

3.2.2. Effect of material type and orientation. The measured compressive stress σ versus strain ε re-
sponse of the composite square honeycombs made from the laminate material with fibres at 0–90◦ with
respect to the compression axis and the woven composite material oriented in the ±45◦ direction (such
that the fibres were at ±45◦ with respect to the compression direction) are plotted in Figure 14 for selected
values of ρ̄. These measurements were conducted on the reference specimen geometry comprising 6 × 6
cells with H/L = 3. Consistent with the measured compressive responses of the materials (Figure 7), the
honeycombs made from ±45◦ weave have a lower strength compared to the 0–90◦ laminate honeycombs.
On the other hand, the ±45◦ woven honeycombs display a more gradual softening beyond the peak stress
compared to the 0–90◦ laminate honeycombs. This is because the compressive response of the 0–90◦

laminate is dominated by the compression of the fibres, while that of the ±45◦ weave is dominated by
matrix deformation.
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Figure 14. The measured compressive stress versus compressive strain responses of the
honeycombs made from the ±45◦ woven material (left) and the 0–90◦ laminate material
(right). Results are shown for selected values of ρ̄ for specimens comprising 6 × 6 cells
and a cell aspect ratio H/L = 3.
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Figure 15. A comparison of the measured (a) peak compressive strengths σp and (b)
energy absorption capacities per unit volume Wv of the honeycombs made from the ±45◦

woven, 0–90◦ woven and 0–90◦ laminate materials as a function of ρ̄. The measurements
are for specimens comprising 6 × 6 cells and a cell aspect ratio H/L = 3, compressed to
a strain of 40%.

The measured peak compressive strengths of honeycombs (reference geometry) made from the 0–90◦

weave, 0–90◦ laminate and ±45◦ weave are compared in Figure 15a for relative densities in the range
0.025 ≤ ρ̄ ≤ 0.2. Consistent with our expectations from the measured compressive responses of these
materials (Figure 7) we observe that for a given value of ρ̄ the 0–90◦ laminate has the highest value of
σp followed by the 0–90◦ weave with the honeycomb made from the ±45◦ having the lowest value of
peak strength. However, recall that honeycombs made from materials with the 0–90◦ fibre orientation
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typically undergo a catastrophic collapse beyond the peak stress and loose all energy absorption capacity,
while the honeycombs made from the ±45◦ woven materials have a more benign response beyond the
peak stress. These differences are expected to alter the rankings of the materials in terms of their energy
absorption capacity per unit volume Wv defined as

Wv =

∫ ε̄

0
σ dε. (2)

Wv is plotted in Figure 15b with the choice of strain ε̄= 0.4 as a function of ρ̄ for the three configurations
considered in Figure 15a. The results indicate that honeycombs made from the 0–90◦ weave, 0–90◦

laminate and ±45◦ weave all have approximately the same energy absorption capacity per unit volume
over the range of ρ̄ investigated here. This is rationalised by noting that the lower peak strength of the
±45◦ woven honeycomb is compensated by its higher energy absorption beyond its peak stress compared
to the honeycombs with a 0–90◦ fibre orientation.

3.3. Shear response of the honeycombs. A more limited study was conducted to investigate the out-
of-plane shear stress τ31 versus shear strain γ31 response of the composite honeycombs made from the
woven material with a cell aspect ratio H/L = 1. The shear tests were conducted using a single-lap
shear set-up (Figure 16) in accordance with the ASTM standard C273-00 [ASTM 2000] for shear tests
on sandwich cores. The standard demands a specimen aspect ratio `/H ≥ 12, where ` is the length of
the specimen as shown in Figure 16. The shear specimens investigated here comprised 14 and 4 cells
along the length and width, respectively. Thus, in line with the requirements of the ASTM standard, the
shear specimens employed here have an aspect ratio `/H = 14. The shear tests were performed on a
screw driven test machine at an applied macroscopic nominal shear strain-rate of 10−3 s−1. The load was
measured by the load cell of the test machine and was used to define the nominal shear stress, while a clip
gauge mounted on the single-lap shear test fixture was employed to measure the relative displacement
between the two faces of the square honeycomb specimens and thereby give the applied shear strain.
Load/unload cycles were also conducted during these tests in order to extract the unloading shear moduli
of the specimens.

The measured shear responses of the honeycombs made from the 0–90◦ and ±45◦ woven materials
are plotted in Figure 17. Again, in the 0–90◦ orientation one set of fibres are aligned with the plane
of shear while in the ±45◦ orientation the fibres are at ±45◦ with respect to this plane. Three relative
densities ρ̄ = 0.025, 0.05 and 0.1, were investigated. The 0–90◦ specimens display a ductile response

A = 14 H

Pin-joint

Aluminium Shear Platen Load Line Core

H

Figure 16. Sketch of the single-lap shear set-up with the critical dimensions labelled.
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Figure 17. The measured shear stress versus shear strain response of the honeycombs
made from the 0–90◦ (left) and ±45◦ (right) woven materials at selected values of ρ̄. All
the shear specimens comprised 14 × 4 cells with a cell aspect ratio H/L = 1.
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Figure 18. The measured shear modulus (left) and peak shear strength τp (right) of the
honeycombs made from the 0–90◦ and ±45◦ woven materials. The predictions of the
analytical model are also included as solid lines.

reminiscent of the tensile and compressive response of the ±45◦ woven material (Figures 5 and 6b). By
contrast, the ±45◦ specimens display a stiff linear response up to their peak strength similar to the tensile
and compressive responses of the woven material in the 0–90◦ orientation; post-peak a strongly softening
response is observed. Moreover, the ±45◦ specimens have a significantly higher peak shear strengths
compared to equal density 0–90◦ honeycomb specimens. These results clearly indicate that the shear
response of the 0–90◦ specimens is dominated by the deformation of the matrix of the woven composites
while the fibres govern the shearing of ±45◦ specimens. The measured shear moduli and peak shear
strengths are plotted in Figure 18 as a function of ρ̄. The modulus and strength of both the 0–90◦ and
±45◦ specimens increases with increasing ρ̄ with the ±45◦ honeycombs being stiffer and stronger than
the 0–90◦ honeycombs.
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4. Analytical models for the compressive and shear response

Approximate expressions can be derived for the elastic properties and collapse strengths of the composite
honeycombs subject to the compressive and shear loadings described above. The properties for the
composite sheet are denoted by a subscripted s.

4.1. Compression response. Under compressive loading, all cell walls of the honeycomb are equally
loaded. Thus, when the honeycomb is subjected to an out-of-plane compressive stress, σ , each cell wall
is subjected to a line load P per unit length

P = σ
L
2
, (3)

where L is the cell width (Figure 2). The Young’s modulus E of the square honeycombs then follows as

E
E3s

= ρ̄, (4)

where E3s is the Young’s modulus of the composite sheet material in the x3-direction.
The peak compressive strength of the honeycombs is governed by a competition between (i) elastic

buckling and (ii) plastic microbuckling of the cell walls. We consider each of these modes in turn.
A recent experimental study [Côté et al. 2004] on the compressive collapse of square honeycombs

made from type 304 stainless steel suggests that the elastic buckling mode resembles torsional-axial
buckling of a square tube, as shown in Figure 19 representing a view of a section through the plane
normal to x3. We expect this mode to exist for the composite honeycombs investigated here. This
buckling mode is modelled by the buckling of a single plate with fully clamped top and bottom edges
and simply supported sides. [Ericksen and March 1958] have analysed this reduced problem for a plate

Figure 19. Sketch of the torsional buckling mode of the square honeycombs used in de-
riving the analytical models for the elastic buckling of the honeycombs. The undeformed
honeycomb is shown by the solid lines and the buckle shape sketched with dashed lines.
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made from orthotropic faces, and use their analytical results directly. The bifurcation line load reads

Pbuck =
Kπ2 D

L2 , (5)

where K is a buckling coefficient as prescribed by [Ericksen and March 1958] and D is the bending
stiffness of the composite cell wall. In our problem, we assume the composite to be an orthotropic
material and the appropriate bending stiffness D is given as

D =

√
E1s E3s

1 − ν13sν31s

t3

12
,

where Eis and νi js are the Young’s modulus and Poisson’s ratios of the orthotropic faces along the
xi = (x1, x3) directions as defined in Figure 2. For both the 0–90◦ and ±45◦ materials the Young’s
moduli are equal along directions x1 and x3.

The formula for the buckling coefficient K is explicit and for the assumed buckling mode sketched in
Figure 19 is given by

K =

(
3H 2

4L2

√
E1s

E3s
+ 2β +

41L2

5H 2

√
E3s

E1s

)
, (6)

where β is given in terms of the shear modulus G13s as

β =
1 − ν13sν31s
√

E1s E3s

(
E1sν31s

1 − ν13sν31s
+ 2G13s

)
. (7)

The elastic buckling stress of the honeycomb then follows from Equation (3) as

σbuck =
2Pbuck

L
=

Pbuckρ̄

t
. (8)

The cell walls of the square honeycombs can also fail by plastic microbuckling. With the plastic
microbuckling stress of the cell wall material in the x3-direction given by σc, collapse stress of the
honeycomb is given by

σmb = ρ̄σc. (9)

The operative collapse mode of the honeycombs is the one associated with the lowest load, and thus the
peak stress σp of the honeycombs is

σp = min(σmb, σbuck). (10)

4.2. Shear response. Under a shear stress τ31, the cell walls of the square honeycomb in the plane
normal to x2 undergo shear straining while the walls in the plane normal to x1 deform by bending and
carry a negligible fraction of the load. Thus neglecting the contribution of the cell walls in the plane
normal to x1, the overall shear modulus of the square honeycombs is given as

G
G31s

=
ρ̄

2
, (11)

in terms of the shear modulus G31s of the composite sheet material. The peak shear strength of the
honeycombs is again governed either by the elastic buckling of the cell walls or by the shear strength
τ31s of the composite sheet material when subjected to a shear stress τ31. We consider each of these
mechanisms in turn.
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Consider the elastic buckling of the cell walls that lie along the x1-direction direction. The principal
bending rigidities of this cell wall are given as

D1 =
E1s t3

12(1 − ν13sν31s)
, D3 =

E3s t3

12(1 − ν31sν13s)
, D31 =

G31s t3

12
. (12)

The elastic shear buckling stress of a plate clamped along the edges x3 = 0 and x3 = H and simply
supported along the other two edges is given in terms of the above rigidities as [Seydel 1930]

τb = Ks
π2

t L2
4
√

D1 D3
3 . (13)

In this case the factor Ks is only a function of the nondimensional group

η ≡
D31

√
D1 D3

, (14)

and lies in the range 7 ≤ Ks ≤ 14 for η in the range 0 to 2.0 as specified in [Krivetsky 1959]. The elastic
buckling strength of the honeycomb then follows as

τbuck = τb
ρ̄

2
. (15)

When the peak stress of the honeycomb is governed by the shear failure of the composite material,
the strength τs of the honeycombs is given in terms of the strength τ13s of the cell wall material as

τs = τ31s
ρ̄

2
. (16)

Combining, Equations (15) and (16), the peak shear strength of the honeycombs is

τp = min(τs, τbuck). (17)

Note that this analysis remains unchanged for shear loading τ32.

4.3. Extraction of material properties. The compressive tests on the sandwich specimen described in
Section 3.1 were used to extract the material properties required to use in the models discussed above.
The moduli E1s = E3s , and peak compressive strength σc for the woven and laminate materials follow
directly from the measurements plotted in Figure 7 for the materials in the 0–90◦ and ±45◦ orientations.
The Poisson’s ratios ν13s = ν31s were also measured in these tests using strain gauge rosettes (see Section
3.1). These measured material properties for the woven and laminate materials are listed in Table 2.

The required shear elastic properties of the composite sheets were estimated from compression tests
conducted by rotating the composite sheet material through 45◦ as described subsequently. In order to
determine the shear modulus G31s of the woven material in the 0–90◦ orientation, consider the compres-
sion test on the ±45◦ woven material plotted in Figure 7. Write the applied compressive stress as σx ,
and the corresponding axial strain and transverse strains as εx and εy , respectively. Then, the required
shear stress τ versus shear strain γ relation is obtained via the connections τ = σx/2 and γ = εx − εy .
The shear modulus G31s follows immediately as the initial slope of the τ versus γ response and we take
the shear strength of the material to be given as τ31s = σc/2, where σc is the peak measured values of
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Property Woven
0–90◦ orient.

Woven
±45◦ orient.

Laminate
0–90◦ orient.

E1s = E3s 63 GPa 16 GPa 65 GPa

G31s 4.7 GPa 27 GPa 4.7 GPa

ν13s 0.16 0.70 0.10

σc 331 MPa 80 MPa 356 MPa

τ31s 40 MPa 166 MPa 45 MPa

ρ 1370 kgm−3 1590 kgm−3

Table 2. Measured material properties of the woven and laminate composite materials.

σx . Similar procedures are followed to determine the shear properties of the woven material in the ±45◦

orientation and the laminate in the 0–90◦ orientation. These shear properties are also listed in Table 2.

4.4. Comparison of measurements and predictions. Predicted values of the moduli and peak strengths
of the square honeycombs are included as continuous lines in Figures 12–15 for compressive loading and
in Figure 18 for shear loading. Reasonable agreement is observed between measurements and predictions
of the moduli and strength in the ±45◦ orientation for compression and 0–90◦ orientation for shear. By
contrast, the analytical models over-predict the moduli and strengths of the honeycombs in the 0–90◦

and ±45◦ orientations for compression and shear, respectively. These results indicate that when the
deformation of the honeycombs is primarily governed by the deformation of the matrix in the composite
materials the models give reasonable predictions, while when fibre deformation is the primary defor-
mation mode the analytical models significantly over-predict the measurements. We rationalise this by
recalling that the compression of fibre composites along the fibre direction is very imperfection sensitive.
An imperfection such as wavy cell walls results in a reduction in strength and stiffness of the honeycomb
for two reasons: a geometric effect that induces bending moments in the cell walls, and an additional
misalignment of the fibres with respect to the loading direction. The geometric effect is investigated by
a limited finite element (FE) investigation reported in the Appendix but the effect of fibre misalignment
is not included in the continuum cell wall models analysed here but can be summarised as follows. The
microbuckling strength σc of composite is given as [Rosen 1965; Argon 1972; Budiansky 1983]

σc =
k
φ̄

(18)

in terms of the matrix shear strength k and misalignment angle φ̄ between the fibres and loading direction.
The misalignment angle φ̄ in case of the honeycombs has two contributions; the initial misalignment of
the fibres in the laminate and the additional misalignment caused by the wavy cell walls of the honeycomb.
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5. Comparison with competing metallic cellular sandwich cores

The performance of the composite square-honeycombs is compared with that of metallic sandwich cores
in Figure 20, which includes data for stainless steel pyramidal cores [Côté et al. 2007], diamond cores and
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Figure 20. A comparison between the measured (a) peak compressive strengths σp and
(b) energy absorption capacities per unit mass (up to a compressive strain ε̄ = 0.4) of
competing metallic and composite sandwich cores as a function of the density ρ ≡ ρ̄ρs .
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corrugated cores [Côté et al. 2006] as well as aluminium egg-boxes [Zupan et al. 2003]. This comparison
is presented for the compressive peak strength in Figure 20a and the compressive energy absorption per
unit mass Wv/ρ up to a strain ε̄ = 0.4 in Figure 20b. For a given core density ρ ≡ ρ̄ρs , where ρs is
the density of the solid cell wall material, the composite square honeycombs outperform metallic cores
both in terms of their peak strength and energy absorption capacity. More significantly, the composite
materials appear to lie in an area of material space where metallic materials do not seem to exist at all.

To further explore the potential of composite cellular materials, consider the Ashby material property
chart [Ashby and Bréchet 2003] shown in Figure 1. Aluminium foams and lattices occupy the low density
region of material strength – density space. It also reveals a gap between the strength of existing lattice
materials and the unattainable materials limit. The compressive strengths of composite honeycombs
measured in the current study are included in Figure 1 and clearly show that cellular composite materials
explored here reside in the gap in the material strength versus density space. Also included in Figure
1 is the theoretical prediction of the compressive strength of the 0–90◦ laminate (solid line). It is clear
that topologically structuring composite materials in configurations such as the square honeycomb show
promise for filling gaps in the strength versus density map of all known materials; the challenge is found
in manufacturing these materials with minimum imperfections so as to attain their ideal strengths.

6. Concluding remarks

A preliminary investigation of the mechanical properties of square-honeycomb sandwich structures man-
ufactured from carbon fibre reinforced polymers has been conducted. Honeycomb cores with relative
densities ρ̄ in the range 2.5% to 20% were manufactured by slotting, assembling and adhesively bonding
composite sheets. Their out-of-plan compressive and shear response are measured as a function of
relative density, ratio of the specimen height to cell width, and number of cells in the specimen. The
effect of the composite material type (laminate and woven) and material orientation on the compressive
and shear responses of the honeycombs is also reported. The measurements indicate that the response is
relatively insensitive to the ratio of the specimen height to cell width and number of cells in the specimen,
but strongly dependent on the material type and orientation. In particular, the compressive strength of
the honeycombs made from laminates with fibres aligned with the compression direction (i.e., 0-90◦

honeycombs) was greater than that of the honeycombs made from the woven material with fibres at
±45◦ with respect to the compression direction. However, the energy absorption capacities of these two
types of honeycombs were almost equal. The role of material orientation reversed for shear loading with
the shear strength of the ±45◦ honeycombs exceeding that of the 0–90◦ honeycombs.

In compression the honeycombs failed by either elastic buckling or plastic microbuckling while in
shear the two main failure modes were elastic buckling or shear failure of the composite sheet material.
Analytical models are derived for both collapse modes. The predicted strengths are substantially higher
than the measurements especially when fibre deformation dominates the deformation of the composite
sheets. These discrepancies result from imperfections arising in the manufacturing of the honeycombs
and not accounted for in the analytical models. A limited finite element investigation quantified the
significant effects of geometric imperfections on the compressive strength of the composite honeycombs.

The measurements and predictions reported here indicate that composite cellular materials with a
square honeycomb topology reside in a gap in the strength versus density material property space, pro-
viding new opportunities for lightweight, high strength structural design.
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Appendix A. Finite element calculations of the compressive response of the square honeycombs

The measured values of the peak strengths of the composite honeycombs are substantially below the
analytical predictions. We have attributed this discrepancy to the presence of imperfections in the man-
ufactured honeycombs that are not accounted for in the analytical model. In this Appendix we report a
limited set of finite element (FE) calculations in order to gauge the effect of geometrical imperfections
on the compressive response of the honeycombs.

A1. Details of the FE calculations. Finite deformation FE calculations were performed using the stan-
dard version of the commercial FE package ABAQUS (version 6.5). Calculations were performed on the
honeycomb specimens comprising 6 × 6 cells with a cell aspect ratio H/L = 3 and made from the 0–90◦

woven material. In the honeycombs used in the experiments, cell wall thickness t was kept constant
whilst varying the cell size L . However, in the FE model the cell size of the honeycombs was fixed at
L = 10 mm and the relative density varied by changing the cell wall thickness t . The honeycomb were
discretised using 8-noded shell elements with reduced integration (S8R in the ABAQUS notation) with
5 integration points across the shell thickness. In all the calculations presented here square elements
of length L/10 = 1 mm were employed; further mesh refinements gave no appreciable change to the
results reported. The FE model assumed perfect bonding along the cell edges and so did not account
for the slotting and gluing procedure employed to manufacture the honeycombs. In all the calculations
presented here geometrical imperfections were introduced into the FE model in the form of the eigen-
mode shown in Figure 21a. This eigen-mode is in close agreement with the observed elastic collapse
mode (Figure 8) and that of the analytical model. The magnitude of the imperfections is characterized by
the maximum amplitude of the displacements of the cell walls from their original configuration: for each
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Figure 21. (a) The eigen-mode used to introduce geometrical imperfections in the FE
models. (b) Comparison of the FE predictions and measured values of the peak com-
pressive strengths of the honeycombs. FE predictions for 4 selected values of the imper-
fection magnitude are included along with the analytical predictions. All results are for
the honeycombs made from the 0 − 90◦ woven material with 6 × 6 cells and a cell aspect
ratio H/L = 3.
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value of the relative density ρ̄, we shall report calculations with imperfection amplitudes L/10, L/20,
L/40 and L/80.

The top and bottom surfaces of the honeycomb were tied to two rigid surfaces with all degrees of
freedom of the bottom surface constrained. A displacement rate δ̇ = 0.002 ms−1 in the x3 direction was
applied to the top surface with displacements of that surface in the x1 and x2 directions prevented. The
applied stress on the honeycomb was inferred from the work conjugate force to the applied displacement
in the x3 direction.

Unless otherwise specified, the cell wall material was modelled as an elastic-plastic solid. While the
elastic response was assumed to be orthotropic (elastic properties listed in Table 2) for the 0–90◦ woven
composite, the failure of the composite material under compression was assumed to be approximately
captured by a nonhardening J2 flow theory plastic response with a yield strength given by the compressive
strength σc listed in Table 2.

A2. Summary of findings. The FE predictions of the compressive peak strength of the honeycombs are
plotted in Figure 21b as a function of ρ̄ for selected values of the imperfection magnitude. The measured
values of the peak strengths and the corresponding analytical predictions are also included in Figure 21b.
We observe that the imperfections not only significantly reduce the peak strengths of the honeycombs
but also affect the form of the variation of the peak strength σp with relative density ρ̄ when compared
with the analytical predictions. Reasonable agreement between the measurements and FE predictions,
especially at high values of ρ̄, is observed for the largest imperfection magnitude of L/10.

Recall that under compression, the composite displays a strongly softening response; while in the FE
results presented in Figure 21b, the material was assumed to be ideally plastic. In order to explore the
validity of the material model, we conducted some additional FE calculations with the material described
by a softening post-yield material response as sketched in Figure 22a. In particular the material was
assumed to be orthotropic elastic up to the yield strength σc. Subsequently the material was again assumed
as a J2 flow theory material but with a linearly softening post-yield response. The softening rate in terms
of the uniaxial stress versus strain response was assumed −dσ/dε = 0.5E3s . FE predictions of the peak
strengths with this new material model are plotted in Figure 22b (for an imperfection magnitude L/10)
along with the corresponding FE calculations assuming nonhardening plasticity from Figure 21b and
the experimental measurements. Including the softening post-yield response of the composite material
appears to have a negligible effect on the peak strength of the honeycombs and thus suggesting that
a nonhardening plasticity model is an adequate representation of the composite material in terms of
modelling the peak strength of the honeycombs.

In addition to the FE calculations presented here, we also performed the following FE calculations in
order to further explore the origins of the rather low measured strengths of the honeycombs:

(i) In order to investigate the effect of loading asymmetry in the experiments, a loading rate δ̇+ωx2

was imposed on the top rigid surface with the rotation rate ω = 0.03 rad s−1. This had a negligible
effect on the predicted peak strengths.

(ii) Recall that the honeycombs were manufactured by slotting together sheets and gluing the assembly.
The effect of this manufacturing process was modelled in the FE calculations by detaching the
cells walls along half the height of the honeycomb (using the “seams” option in ABAQUS). FE
predictions using this model gave results very similar to those presented in Figure 22b.
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Figure 22. (a) Sketch of the nonhardening and softening uniaxial stress versus strain
responses employed to model the solid composite material in the FE calculations. (b)
Comparison of the FE predictions of the peak compressive strengths of the honeycombs
with measurements. FE predictions for the nonhardening and softening material models
with an imperfection magnitude L/10 are included along with the analytical predictions.
All results are for the honeycombs made from the 0–90◦ woven material with 6 × 6 cells
and a cell aspect ratio H/L = 3.

We conclude that imperfections in terms of wavy cell walls seem to be the main source of the dis-
crepancy between the measured values and analytical predictions of the peak strength of the composite
honeycombs, of which both geometrical effects and fibre misalignment effects contribute to the reduction
in peak stress.
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SHAPE OPTIMIZATION IN AN ELASTIC PLATE UNDER REMOTE SHEAR:
FROM SINGLE TO INTERACTING HOLES

SHMUEL VIGDERGAUZ

An elastic plate with two closely spaced identical holes of fixed area is taken as a two-dimensional
sample geometry to find the interface shape which minimizes the energy increment in a homogeneous
shear stress field given at infinity. This is a transient model between a single energy-minimizing hole
and a regularly perforated plate, both numerically solved by a genetic optimization algorithm together
with a fast and accurate fitness evaluation scheme using the complex-valued elastic potentials which are
specifically arranged to incorporate a traction-free hole boundary. Here the scheme is further enhanced
by a novel shape-encoding procedure through a conformal mapping of a single hole rather than both
holes simultaneously as is done in standard practice. The optimized shapes appear to be slightly rounded
elongated quadrangles aligned with the principal load axes. Compared to the single (square-like) optimal
hole, they induce up to 12% less energy depending on the hole spacing. Qualitatively, it is also shown that
the local stresses, computed along the optimal shapes as a less accurate by-product of the optimization,
exhibit a tendency to be piecewise constant with no local concentration.

1. Introduction

Multiple closely spaced holes are widely employed in engineering design. Fulfilling technological
functions, they weaken the structure and hence may substantially reduce its mechanical performance.
This happens due to high local stresses and energy concentration induced by the holes in an applied
external field. The resulting stress state of the structure depends on the holes’ shapes, areas and mutual
arrangement. Amongst these geometrical factors, the shapes are of less technological importance and
can be used by designers to achieve a more favorable stress state of the construction.

Quantitatively, the state is assessed by any of three interrelated criteria:

(A) the maximum of the von Mises stresses along the hole shapes;

(B) the maximum of the squared tangential stress variations. In the ideal case of zero variations (a
constant or piecewise constant stress distribution) no stress concentrations occur along the boundary;

(C) the energy increment brought by the holes into a given outer stress field.

Minimization of A, B or C gives some optimal properties to the perforated plate. Here, we deal with
the energy criterion C. The following considerations weigh in favor of our choice. First, for a finite
number of holes, this increment is the zeroth-order approximation of the measurable effective moduli of
an elastic perforated structure and hence has a clear physical meaning. The lesser the energy, the stiffer
the plate. Second, the tangential stress constancy (criterion B) is the necessary condition of the energy

Keywords: plane elasticity problem, Kolosov–Muskhelishvili potentials, shape optimization, effective energy, extremal elastic
structures, genetic algorithm.
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minimum (criterion C) as shown by Banichuk [1977] through variation of the energy integral. In other
words, the energy-minimizing holes simultaneously smooth the stress distribution. At the same time, the
integral criterion C is computationally much easier than A and B, both of local nature.

Finally, there is the strong practical correlation between the criteria A and C. For a single hole under
remote shear, it was semianalytically found in [Vigdergauz 2006] that the energy-minimizing hole pro-
vides almost the global minimum of the stresses (criterion A). Moreover, in the opposite case of uniform
loads of the same sign, we proved analytically in [Vigdergauz 1976] that all three criteria are minimized
for the same holes, called equistress holes (in accordance with criterion B). They are found by applying
the equistress principle [Cherepanov 1974], which says that the tangential stresses along the optimal
traction-free boundary are uniform. At a given number of holes this allows us to obtain the parametric
equations of the equistress shapes depending on the ratio between the far loads and on a number of
geometrical parameters which govern the mutual hole arrangement. We note in passing that Waldman
et al. [2003] questioned this finding. Their assertion that ”it turns out that Cherepanov’s solution is for
(two) holes that do not interact to any appreciable degree” is simply caused by confusing the parameters.
Namely, the modulus of the elliptic integrals in Cherepanov’s solution is specifically taken as 1/2, while
actually it varies between zero and one, thus covering any holes separation distance. In particular, with the
modulus tending to one, the optimal holes come closer and closer together. Further, Waldman et al. [2003]
misinterpreted our paper [Vigdergauz 1982] as dealing with two equistress holes in a plane. Actually, a
distinctly different case of the equistress hole in a half-plane is considered there in an attempt to study the
interaction between the hole and the traction-free edge. Nevertheless, the cited paper contains an infor-
mative variety of numerical results related to criterion B optimization, which we use later for reference.

Returning to criterion C we note that the increment divided by the total area of the holes depends
only on the geometry. The corresponding shape optimization problem reads: Given a uniform far-field
loading, an area of two traction-free identical holes in a thin infinite elastic plate and their spacing, find,
among all admissible continuous curves, the hole shape which minimizes the induced energy increment.

For concreteness, we restrict discussion to only two interacting holes, though most derivations are
easily generalized.

From the above it follows that this shape optimization problem is yet unsolved only for remote loads
of opposite signs when the equistress principle is no longer valid, as explained in Section 3. In this case,
numerical optimization required.

Any optimization process includes an iteration scheme and a repetitively used direct problem solver,
both of great importance for converging to true optimum. Generally, the iteration process employs gradi-
ent or nongradient methods which perform directional and nondirectional searching, respectively. As in
our previous papers [Vigdergauz 2001a; 2001b; 2006] we use here a nondirectional genetic optimization
algorithm (GA). The feasibility of GA-based shape optimization in continuum mechanics has firstly
been witnessed by Schoenauer et al. [1996]. The major advantage of this approach is that it explores the
solution space by testing parameter combinations simultaneously to avoid local minima and requires no
derivative information [Osyczka 2001].

We couple GA with the direct problem solver based on the one-potential formulation given in [Vigder-
gauz 2001a] of the complex-valued Kolosov–Muskhelishvili (KM) functions [Muskhelishvili 1963]. The
forward problem is then reduced to solving a system of linear algebraic equations where only the first
unknown is needed for the energy evaluation of a given hole shape. The main difficulty here is evaluating
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the shape integrals which enter into the system coefficients. Within the GA optimization, it induces
the question of how to effectively encode an arbitrary hole shape. The serious disadvantage of the
commonly used nodal points discretization is that the nodes simultaneously serve as design variables
and as integration points. As a consequence, the number of nodes should be large enough (typically
several tens or hundreds) for both adequate shape description and accurate integration. This impairs the
convergence of the optimization process because it needlessly enlarges the problem size and hence raises
the computation time.

Here we suggest an alternative approach which separates the design variables and the integration
points. To this end, the fact is employed that the exterior of a unit circle can be conformally mapped
holomorphically onto the exterior of any closed shape [Alfors 1979]. We use the first several coefficients
of its Laurent expansion as the design variables while the integration is performed over a circle at fixed
points independent of the optimization. This novelty drastically reduces the computational efforts and
permits us to obtain detailed results at reasonable accuracy.

In contrast to common practice, neither the elastic domain nor the stress-strain equations are really
transformed. The mapping is used for the pure geometrical purpose of encoding the searched shapes.

Our contribution is thus twofold: (i) a new, effective, and easily adaptive shape-decoding scheme for
gradientless searching algorithms is proposed, and (ii) the energy-minimizing interacting holes in an
elastic plane are numerically found on this basis.

Of course, the proposed scheme is not the only possible one. Good results have recently been obtained
by Waldman et al. [2003]. They use the finite element analysis within a specific gradientless shape
optimization method to identify the stress-constant holes (criterion B). In our opinion, both methods
complement each other. Numerical examples show that the finite element method (FEM) gives the
stresses with better accuracy, especially under a pure shear loading. The reason for this is explained
in Section 7. On the other hand, the KM functions can easily tackle an infinite domain and hence are
more suitable for the current purpose of minimizing the energy increment. It would thus be interesting to
combine the direct FEM solver with the proposed shape encoding scheme within a gradientless searching
to solve the stress minimization problem. However, this is beyond the scope of our paper.

Following is the outline of the rest of the paper. In Section 2 the two-dimensional boundary value
elastostatic problem for a multiconnected infinite region is formulated in complex-variable terms for
further references and the inverse shape identification problem is stated in detail. In Section 3 some
closed-form identities are derived for assessing the future numerical results. The forward problem solver
is described in Section 4 which is also concerned with the numerical validation of the proposed solver
by comparison with alternatively obtained results available in literature. A key Section 5 presents the
novel shape encoding scheme based on conformal mapping. Section 6 displays the GA framework
specifically designed for our current purposes. In Section 7 numerical results are presented in detail and
the capabilities of the scheme are tested, depending on the quantitative parameters involved. The paper
ends with some concluding remarks in Section 8.

2. Basic relations in two-dimensional elastostatics

Consider the setup in Figure 1. Let a thin infinite plate be weakened by two identical holes, each of
area F , symmetrically located on the X-axis of the complex plane E : z = x + iy. The hole boundary



1344 SHMUEL VIGDERGAUZ

P

Q

L1

S

X

Y

T1

P

Q
L2

T2

Figure 1. Schematic of the problem: an infinite plate with two identical holes under
uniform stresses, the cases P = Q and P = −Q correspond to remote bulk and shear,
respectively. The piecewise smooth hole shape is symmetric about the x-axis and may
have a finite number of angular points.

L = L2 + L1 divides E into the isolated regions {T1, T2 : T1 + T2 = T } inside the holes and the outer
connected region S = E − T occupied by a linearly elastic material with bulk and shear moduli K and
µ, respectively. The half-spacing d0 between the holes is measured as the minimal distance of the right
hole to the y-axis:

d0 = min x : x + iy ≡ t ∈ L1; d0 ≥ 0. (2.1)

Furthermore, let the plate be remotely loaded by uniform nontangential stresses:

σ∞

xx = P0, σ∞

yy = Q0, σ∞

xy = 0. (2.2)

The cases P0 = Q0 and P0 = −Q0 correspond to remote bulk and shear, respectively. Both settings
preserve twofold geometrical symmetry, by which the regions S and T go into themselves when rotating
around the origin through the angle π .

The resulting stresses in S are governed by the biharmonic Airy function which, though useful as a
theoretical tool, is numerically ineffective. Far more advantageous is the complex variable approach of
replacing the Airy function with a pair of holomorphic functions ϕ0(z), ψ0(z), z ∈ S + L (the KM poten-
tials [England 1971; Muskhelishvili 1963, Sections 47–51]) with the remote field asymptotics governed
by (2.2):

ϕ0(z)= B0z +ϕ(z), ψ0(z)= 00z +ψ(z) for z ∈ S + L , (2.3a)

ϕ(z)=
2a1
z

+ O
(
|z|−2) , ψ(z)=

2b1
z

+ O
(
|z|−2) as z → ∞, (2.3b)

4B0 = Tr{σ∞
} = Q0 + P0, 200 = Dev{σ∞

} = Q0 − P0, Im B0, Im00 = 0. (2.3c)

The leading asymptotic terms 2a1, 2b1 with the multiplier 2 are written thus for later convenience.
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Due to the setup symmetry, the potentials ϕ(z), ψ(z) are uneven:

ϕ(−z)= −ϕ(z), ψ(−z)= −ψ(z) for z ∈ S + L , (2.4)

and take conjugate values at complex conjugate points [Muskhelishvili 1963]:

ϕ(z)= ϕ(z), ψ(z)= ψ(z) for z ∈ S + L . (2.5)

With this in view, the following Laurent expansions are valid in S + L [Alfors 1979]:

ϕ(z)=

∞∑
k=1

ak

( 1
(z − c)k

−
(−1)k

(z + c)k

)
, ψ(z)=

∞∑
k=1

bk

( 1
(z − c)k

−
(−1)k

(z + c)k

)
,

Im ak = Im bk = 0 for k = 1, 2, . . . , (2.6)

where c is a fixed point on the X -axis inside the hole T1 (Im c = 0, c > d0). In conformity with (2.3b),
we have

lim
z→∞

zϕ(z)= 2a1, lim
z→∞

zψ(z)= 2b1. (2.7)

By residue theory [Alfors 1979], the first coefficients a1, b1 in (2.6) are equally expressed as

2a1 = −
1

2π i

∫
L
ϕ(t) dt, 2b1 = −

1
2π i

∫
L
ψ(t) dt. (2.8)

Dimensionally, they are proportional to the hole area F [Muskhelishvili 1963]

a1 = α1 F, b1 = β1 F, (2.9)

where, in turn, F is given by the contour integral [Alfors 1979]

2F =
1
2i

∫
L

t dt =
1
i

∫
L j

t dt for j = 1, 2, (2.10)

while
1

2π i

∫
L j

tndt = 0,
1

2π i

∫
L j

dt
(t − z)n

= δn,1 for n = 0, 1, . . . , z ∈ L j , j = 1, 2. (2.11)

Here δ is the Kronecker delta. All the integrals above are traversed counterclockwise.
For simplicity in further manipulations, suppose that the hole boundary L is traction-free:

σρρ(t)= σρτ (t)= 0 for all t ∈ L , (2.12)

where σ(t) = {σρρ, σττ , σρτ } represents the stress tensor in a local system of curvilinear orthogonal
coordinates (ρ, τ ) at a point t ∈ L . With the KM potentials, (2.12) possesses the form

ϕ(t)+ tϕ′(t)+ψ(t)= −2B0t −00t + C j for t ∈ L j , j = 1, 2. (2.13)

Here the C j are free complex-valued constants not affecting the stress field. Identity (2.13) forms a bound-
ary value problem in the holomorphic functions ϕ(z), ψ(z) with first-order vanishing conditions (2.3) at
infinity. For a proper choice of the constants C j , this problem is uniquely solvable [Muskhelishvili 1963]
in a broad class {L} of continuous hole shapes. The solved functions ϕ(z), ψ(z) completely describe
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the hole-induced distortion of the homogeneous field (2.2). Remarkably, the Cartesian displacements
ux(t), u y(t) of the boundary points t ∈ L are expressed only through ϕ(z) [Vigdergauz 2001a]:

ux(t)+ iu y(t)=

( 1
K

+
1
µ

)
(B0t +ϕ(t)) for t ∈ L , (2.14)

as is the nonzero stress component σττ (t) [Muskhelishvili 1963]:

σττ (t)= 4B0 + 4 Reϕ′(t) for t ∈ L . (2.15)

Combining (2.14) and (2.15), we arrive at an interesting identity which holds only at a traction-free hole
boundary

σττ (t)= 4
( 1

K
+

1
µ

)−1
Re(u′

x(t)+ iu′

y(t)). (2.16)

Application of the maximum principle to the harmonic function Reϕ0(z) provides (after some algebra)
the interesting lower bound [Vigdergauz 1976]

max | Reϕ0(t)| ≥ |ϕ0(∞)| H⇒ M ≡ max |σττ (t)| ≥ 4|B0| for t ∈ L , (2.17)

which turns out to be attainable (see the next section). At a free boundary |σττ (t)| coincides with the
von Mises stresses.

The stresses at any point inside S are also expressed in ϕ(z), ψ(z). We omit the corresponding for-
mulae to save room.

At a given loading, the potentials ϕ(z), ψ(z) and hence the stress distortion depend only on the hole
shapes and their mutual location defined by the dimensionless parameter λ= d0

√
π/F (the multiplier

π serves for convenient comparison with the literature data where a unit circle with F = π is usually
considered). This one-parameter dependence brings up the optimization problem:

To find the hole shapes that minimize the stress distortion as measured through the induced strain energy
increment 1W divided by the total hole area 2F.

1W (B0, 00, λ, L)−−−−−−−−−−→
{L}

min(B0, 00, λ), (2.18)

The lesser the increment, the stiffer the plate weakened by the holes. Mathematically, 1W takes
the form of the first-order approximation to the effective moduli of a regularly perforated plate when
the volume fraction of the hole is vanishingly small. Due to its averaging nature, the energy increment
involves only the first terms (2.9) of the expansion (2.6) [Jasiuk 1995; Vigdergauz 2001a]

1W = 8π(200α1 + B0β1)
( 1

K
+

1
µ

)
. (2.19)

Nevertheless, 1W can be extracted and optimized only from the full-size solution of the problem (2.13).
The optimization strategy depends on whether the ratio

∣∣Dev{σ∞
}/Tr{σ∞

}
∣∣ in (2.3c) is less than 1.

Physically, this ratio measures the far-field anisotropy.
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3. Bulk load: analytical relations for the equistress shapes

When the deviatoric part of σ∞ is no larger than its trace

|δ0| ≤ 1; δ0 ≡
Dev{σ∞

}

Tr{σ∞}
=

Q0 − P0

Q0 + P0
=
00

2B0
, (3.1)

or, equivalently, the far loads are of the same sign, the inverse problem (2.18) admits a remarkable
solution dating back to the pioneering work by Cherepanov [1974]. Namely, if ϕ(z) is identical to zero,

ϕ(z)≡ 0, z ∈ S + L , (3.2)

then the traction-free condition (2.13) goes into the resolving equation for ψ(z) :

ψ(t)= −2B0t −00t + C j for t ∈ L j , j = 1, 2. (3.3)

Actually, identity (3.3) presents the inverse problem of finding the shapes which bear the given values
of a holomorphic function vanishing at infinity. With (3.1) and, possibly, nonzero constants C j , this
problem is proven to be uniquely solvable under the necessary condition

‖00‖ ≤ 2‖B0‖. (3.4)

Indeed, differentiating (3.3) with respect to t and taking the real parts of both sides we arrive at

Reψ ′(t)= −00 − 2B0 Re
∂t
∂t

for t ∈ L j , j = 1, 2, (3.5)

where the harmonic function u(x, y)≡ Reψ ′(t) vanishes at infinity. The Mean Value theorem [Alfors
1979] implies that u(x, y) has at least one zero on L , so that

00 = −2B0 Re
∂t0
∂t0

for t0 ∈ L . (3.6)

The well-known inequality ‖∂t/∂t‖ ≤ 1 [Alfors 1979] makes (3.6) equivalent to (3.4). The corresponding
function ψ(z) is further referred to as the domain characteristic function �0(z)≡ψ(z) [Vigdergauz 1988].
The resultant holes exist for any mutual arrangement, up to their touching. They simultaneously possess
some analytically derived optimal properties:

• First, substitution of (3.2) into (2.15) shows that the stress distribution along the hole shapes (3.3) is
uniform:

σττ (t)= Const = 4B0 for t ∈ L , (3.7)

with no local concentration potentially harmful for the plate strength. Because of (3.7) these are called
equistress or equistrength holes [Cherepanov 1974].

• Second, the equistress condition (3.2) saturates inequality (2.17), thus giving the global minimum to
the maximum von Mises stresses over all possible hole shapes:

min
{L}

max
t∈L

|σττ (t)| = min
{L}

max
t∈L

M = 4B0 for δ0 ≤ 1. (3.8)
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• Finally, substituting (3.3) into (2.19) and making use of (2.10), (2.11) we arrive at the energy increment
value

1W = 4B2
( 1

K
+

1
µ

)
, (3.9)

which again turns out to be the global minimum [Gibiansky and Cherkaev 1984].
All three criteria (3.7)–(3.9) are independent of the far stresses deviator 00 and the relative distance

between the holes, while the equistress shapes do depend on both, as dictated by (3.3). Particularly, the
equistress isolated hole is simply an ellipse [Cherepanov 1974] with eccentricity δ0 elongated along the
far field eigendirection of the maximum |P0|, |Q0|. Some specific arrangements of the optimal interacting
holes are found in [Cherepanov 1974; Vigdergauz 1976; Grabovsky and Kohn 1995; Vigdergauz 1996].
Commonly, the equistress shapes are smooth with no angular points.

Pairs of equistress holes are numerically reproduced in [Waldman et al. 2003]. As compared to the
analytical shape equation derived in [Cherepanov 1974] (and generalized as explained in the Introduc-
tion), these findings bring no novelty to the equistress solutions but they help to verify the proposed
FEM-based stress optimization scheme.

With the properties we have shown, we are now in a position to derive a guiding inequality for 1W
outside the interval (3.1). Indeed, let a plate with equistress holes be subject to an arbitrary far load:
P, Q with 4B = P + Q, 20 = Q − P . Integration of the traction-free condition (2.13) over L separately
with respect to dt and dt gives:∫

L
ϕ(t)dt +

∫
L

tϕ′(t)dt +

∫
L
ψ(t)dt = −2B

∫
L

tdt −0

∫
L

tdt + C1

∫
L1

dt + C2

∫
L2

dt, (3.10a)∫
L
ϕ(t)dt +

∫
L

tϕ′(t)dt +

∫
L
ψ(t)dt = −2B

∫
L

tdt −0

∫
L

tdt + C1

∫
L1

dt + C2

∫
L2

dt . (3.10b)

Consider the first identity (3.10a). With (2.10) and (2.11), all integrals, excepting the first two, are taken
in the form independent of the holes shapes. For the equistress boundaries, the remaining integrals can
also be written explicitly. To this end, separately differentiating the characteristic Equation (3.3) with
respect to t and t ,

dt = (−2B0)
−1(�′

0(t)+00
)

dt; B0 6= 0, (3.11a)

dt = (−2B0)
−1(�′

0(t)+00
)

dt, (3.11b)

we have ∫
L
ϕ(t) dt = (−2B0)

−1
∫

L
ϕ(t)(�′

0(t)+00) dt . (3.12)

The first integral on the right-hand side of (3.12) is the conjugate value of the residue at infinity of the
holomorphic function ϕ(z)�′

0(z). It vanishes because, in view of (2.3b), we have ϕ(z)�0(z)′ = O(|z|−3)

as z → ∞. Finally, from (2.8) we get∫
L
ϕ(t) dt = (−2B0)

−100

∫
L
ϕ(t)dt = 2π i

00

B0
a1 = 4π iδ0a1. (3.13)
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Similarly, in view of (3.11b), the remaining integral in (3.10a) takes the form∫
L

tϕ′(t) dt = −

∫
L
ϕ(t)dt = 2π i

00

B0
a1 = 4π iδ0a1. (3.14)

The second identity (3.10b) is treated in same manner so that (3.10) goes into a (2 × 2) system of linear
algebraic equations in the unknown residues a1, b1 of the potentials ϕ(z), ψ(z):

2δ0a1 + b1 =
2B
π

F, (1 + δ2
0)a1 + δ0b1 =

0

π
F, (3.15)

with the solution

a1 =
0− 2Bδ0

π(1 − δ2
0)

F, b1 =
B(1 + δ2

0)−0δ0

π(1 − δ2
0)

2F, (3.16)

substitution of which into (2.19) yields

1W =
4
(
B2(1 + δ2

0)+0
2
− 3δ0 B0

)
1 − δ2

0

( 1
K

+
1
µ

)
. (3.17)

Of course, (3.17) returns to (3.9) for the initial load parameters: B = B0, 0 = 00.
Again, this equistress relation involves neither the number of holes nor their arrangement and hence

may serve as a geometry-independent upper assessment of min1W under predominating shear when
the equistress necessary condition (3.1) is not valid or, equivalently, the far loads are of opposite signs.
In particular, taken at the bulk-type initial load (00, δ0 = 0), the equistress holes induce the following
increment under pure shear (B = 0, 0 = 1):

1W (0, 1, λ, L)= 4
( 1

K
+

1
µ

)
, (3.18)

which is larger than the global minimum:

1W (0, 1, λ, L)≈ 3.71449
( 1

K
+

1
µ

)
, (3.19)

known in the limiting case λ→ ∞ of a single hole and attained at the square-like shape [Vigdergauz
and Cherkayev 1986]. Though not sharp, the upper bound (3.18) is useful in assessing numerical results
(Section 7).

4. Pure shear: fast direct solver

In contrast, a shear-dominated remote loading (outside interval (3.1)) admits no closed-form optimal
solution and hence must be treated numerically. Any numerical optimization involves, in one way or
another, repeated solving of the direct problem (2.13), (2.3). The more accurate and faster the direct
solver is, the better the optimization scheme works as a whole. Besides, the solver should match stringent
requirements of the computer memory, speed and computational stability.

Particularly relevant here is the approach first proposed and implemented by the author for a single
hole [Vigdergauz 2001a;2006] and for a regularly perforated plate [Vigdergauz 2001b]. The key idea is
to solve the KM potentials in tandem rather than in parallel. Since the basic features of the approach are
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covered in the above-referenced papers, here we specifically focus on its application to a multiconnected
region.

Identity (2.13) resolved for ψ(t) and differentiated with respect to t

−ψ ′(t)= 2
∂t
∂t

Reϕ′(t)+ tϕ
′′

(t)+ 2B0
∂t
∂t

+00, t ∈ L , (4.1)

implies that the right hand-side of (4.1) is the boundary value of a function holomorphic in S and van-
ishing at infinity. Then the Cauchy-type integral

∫
L1+L2

2
∂t
∂t

Reϕ′(t)+ tϕ
′′

(t)+ 2B0
∂t
∂t

+00

t − z
dt (4.2)

is identically zero at any point z ∈ T [Muskhelishvili 1963]. The symmetry relations (2.4) reduce the
integration path in (4.2) to only L1. With (2.11), some algebra yields

2
∫

L1

Reϕ′(t)ρ0(t, z) dt +

∫
L1

tϕ
′′

(t)ρ0(t, z) dt = −4B0

∫
L1

ρ0(t, z)dt − 200,

ρ0(t, z)≡
1

t − z
+

1
t + z

for z ∈ T .
(4.3)

Cauchy-type integrals in (4.3) are holomorphic functions of z in the hole’s region T . Consequently, this
identity holds everywhere in T if and only if it holds for all derivatives with respect to z at a given point
z = c ∈ T1 [Muskhelishvili 1963]:

2
∫

L1

Reϕ′(t)ρk(t, c)dt +

∫
L1

tϕ
′′

(t)ρk(t, c)dt = −4B0

∫
L1

ρk(t, c)dt − 200δk,0,

ρk(t, c)≡
1
k!

∂kρ0(t, z)
∂zk |z=c =

1
(t − c)k+1 +

(−1)k

(t + c)k+1 for k = 0, 1, 2 . . .
(4.4)

As one would expect, the Laurent expansion (2.6) for ϕ(z) and its derivatives similarly involve the kernels
ρk(z, c). Substitution of them into the left-hand side of (4.4) gives an infinite system of linear algebraic
equations in the desired unknowns {a1, a2, . . .} from (2.6) with the matrix A = {Akl}:

Akl = 2l
∫

L1

Re(ρl+1(t, c))ρk(t, c) dt + l(l + 1)
∫

L1

tρl+2(t, c)ρk(t, c) dt. (4.5)

Due to the adopted symmetry, the system is purely real. For computation purposes it is necessarily
truncated to a finite order N . This is all the more relevant since the first coefficient a1 alone appears
in the energy increment for pure shear. As mentioned in Section 2, the displacements (2.14) and the
tangential stresses (2.15) along a free boundary are also expressed only through ϕ(z). In other words,
the second potential ψ(z) is not involved in the current solution process, thus halving the computational
efforts as compared to more traditional approaches. This feature is particularly appealing for repetitive
use within evolutionary optimization algorithms.

For a circular hole L1 : |t − c| = 1

t = c +
1

t − c
,

∂t
∂t

= −
1

(t − c)2
for t ∈ L1, (4.6)
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the integrals in (4.5) are expressed analytically. Indeed, with (4.6), the conjugates ρk(t, c) can be ex-
panded around the point t = c as

ρk(t, c)=
1

(t − c)k+1 +
(−1)k

(t + c)k+1 = (t − c)k+1
+
(−1)k

2c

∞∑
j=0

(
−m

j

)( t − c
2c

) j
, (4.7)

where (
−m

j

)
= (−1) j (m + j)!

m! j !
.

The series (4.7) converges absolutely since 2c > 1. Substituting (4.6) and (4.7) into (4.5) and computing
the integrand’s residue at the isolated pole z = a we obtain the similar series for Akl and, when necessary,
for the bulk-related right-hand side (4.4) of the system. The resultant expressions are not displayed here
to save room.

It is interesting to verify the derived formulae by comparing the results against alternatively obtained
solutions of the boundary value problem (2.13). The literature suggest various approaches to find the
stress distribution along two interacting circular holes under remote loading. In parallel with rapid ex-
pansion in computer capabilities, the numerical schemes progressed from a closed-form solution with
infinite sums in the bipolar coordinates [Ling 1948] and the alternative iterations [Ting et al. 1999] to
the advanced FE analysis [Waldman et al. 2003] and to the highly accurate solution of the Sherman-type
integral equation [Helsing and Jonsson 2000]. Tables 1 and 2 compare literature data against our results

[Ting et al. 1999] [Helsing and Jonsson 2000] Present

x-axial tension Max 2.611 2.61038805
(P = 1, Q = 0) Min −0.918 −0.91768252
y-axial tension Max 6.107 6.106040764542 6.10604077
(P = 0, Q = 1) Min −0.962 −0.96154890

Table 1. Maximum and minimum tangential stresses (2.15) for two equal circular holes
aligned with the x-axis at λ= 0.2.

λ [Ling 1948]
[Waldman
et al. 2003] Present

0.0200 — — 12.475899
0.2101 — 3.955 3.9153632
0.2500 — 3.682 3.6561422
0.3500 — 3.259 3.2374789
0.4568 — 2.990 2.9684777

λ [Ling 1948]
[Waldman
et al. 2003] Present

0.5000 2.887 2.906 2.8874965
1.0000 2.411 2.426 2.4108275
2.0000 2.155 2.172 2.1545912
4.0000 2.049 — 2.0488101
7.0000 2.018 — 2.0177007

Table 2. Maximum tangential stresses (2.15) for two equal circular holes aligned with
the x-axis under biaxial loading B0 = 1, 00 = 0 as a function of λ. The relative error of
approximation. 1% in [Waldman et al. 2003] can be attributed to taking a finite region
instead of an infinite plate.
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obtained at N = 30 for different load modes and separation distance between holes. The values show
close agreement, which should be even better for the less sensitive energy increment.

5. The design variables: an efficient shape parameterization

In contrast to circles, general hole shapes must be treated numerically. Usually, they are presented by
equally spaced nodal points whose role is twofold. First, they form a discretization set to compute the
integrals (4.5). Second, they serve as optimized design variables. However, this results in a contradiction
in the goals, inasmuch as the number of nodes should be sufficiently large to perform an accurate integra-
tion but rather small to carry out an efficient optimization over the pool of shapes. In [Vigdergauz 2006]
we proposed a much more economic alternative which separates the design variables and the integration
points by using for the first purpose the finite-term conformal mapping of a centrally located unit circle
γ onto the hole shape L1. At a given normalized distance λ we have

t ∈ L1 : t = c +ω(ξ), ω(ξ)≡ ξ +

M∑
m=1

dmξ
−m, (5.1a)

F = π
(

1 −

K∑
k=1

kd2
k

)
, (ξ = eiϑ

∈ γ : |ξ | = 1), (5.1b)

dt = iω′(ξ)ξdϑ, dt = iω′(ξ)ξ−1dϑ, (5.1c)

where the contour displacement c is defined in conformity with (2.1) as

c = −λ
√

F/π min
t

Re(ω(t)). (5.2)

Because of the setup symmetry, {dm} are real. As design variables, the mapping coefficients offer sub-
stantial numerical advantages enumerated in [Vigdergauz 2006]. For clarity, we display them here:

(A) They are ”naturally” ordered, in the sense that the higher the coefficient, the lesser its global im-
pact on the inclusion shape. This means that even a small number of the first coefficients form a
practically representative searching pool — in contrast to the nodal points.

(B) Each mapping coefficient falls into the successively narrowed interval

−
1

√
m

≤ dm ≤
1

√
m
, m = 1, 2, . . . , (5.3)

as it follows from the nonnegativeness of the area F inside L1 [Alfors 1979].

(C) With (5.1c), the path L1 in (4.5) is transformed into the circle γ where the discrete points for
numerical evaluation of the integrals can be taken in the irreducible interval [0, π] independently
of the design variables {dm}. For simplifying further computations we use a trapezoidal rule at
Nint equal subintervals [nπ/(Nint ; (n + 1)π/Nint ], n = 0, 1, . . . , Nint − 1 which remain unchanged
during the optimization.

(D) Specifically, for interacting holes, the hole displacement a is explicitly expressed by (5.2).

Items (B) and (D) are hard to realize in a more traditional approach when the exterior of all holes is
simultaneously mapped onto the plane minus the same number of circles.
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We are in a position to verify the proposed approach for noncircular holes. The relevant comparison
here is with the stress constancy (3.7) of the analytically known equistress shapes. At λ= 0.3 the solver
gives, after term-by-term differentiation, the stress distribution oscillating around the true value with
the maximum relative deviation of 0.9% located along the interacting parts of the holes. However, for
rectangle-like shapes the stress computations get worse drastically, because this leads to a very unfavor-
able situation. The first KM potential ϕ(z) is presented through the polar angle ϑ , small increments
of which lead to large increments along the straight line portions of the curves. With term-by-term
differentiation, this manifests itself in very large stress oscillations which are further amplified by the
fact that all the Laurent coefficients ak but the first one remain outside the energy optimization. For a
single hole this was first reported in [Cherkaev et al. 1998]. In other words, the one-potential scheme,
especially structured for the energy assessment, is ineffective (in its current form) in computing the
stresses along quadrangle-like holes, be it at M = 5 or M = 100 first mapping terms. Here, another
stress solver should be used for optimization. Exclusively for illustration purposes, we will once again
consider the local stresses at the end of Section 7.

6. Outline of the genetic algorithm

The optimization problem (2.18) typically has many local minima, and this fact precludes the use of
gradient-based descendent methods. An integer-encoded simple GA was chosen as the global shape
optimization approach in the previous author’s papers and in the present work.

The GA operates by constructing sets of candidate shapes and solving the forward problem for each.
The design variables dm , m = (1,M), are encoded using a discrete 16-bit procedure when each coefficient
dm is approximated in view of (5.3) only by 216

− 1 separate values in the continuous search space
[−1/

√
m, 1/

√
m]. These values are decoded from a randomly generated integer p ∈ [−215, 215

] as
dm = p/215/

√
m. The genes for different coefficients are concatenated into a 16N binary chromosome

that encodes a shape to be evaluated with the proposed approach. A randomly generated chromosome
population of constant size is subject to bitwise crossover and mutations [Osyczka 2001] to produce the
next generation. Then the process is repeated. This mimics the natural process where better members of
a population tend to outperform others in the long run. In our situation, “better” means a lower fitness
value. When the heuristic probability levels of genetic operations are adjusted correctly, they tend to
bias towards better individuals in the population so that better genes are passed down to offspring. To
enhance this effect, the best chromosome(s) from one generation are passed, unchanged, to the next (the
elitism option). So the generations evolve, and if the optimization process is successful, the shapes in
each generation are better, in a broad sense, than those in the previous one.

The stopping criterion is a problematic issue in GA, as there no practical means to assess the actual
error in real applications. Instead, the optimization is stopped after the first Ni ter iterations — in the
belief that the process really converges. However, at specific stochastic combinations, GAs may become
“embedded” far from the global optimum. This is prevented by multiple GA runs performed in the
current work for each given problem. Practically, Niter is chosen so that the optimization criterion remains
unchanged in successive iterations well before reaching this limit.

In contrast to many other applications, here we have an opportunity to calibrate the GA heuristic
parameters by numerically reproducing the optimal equistress shapes with the known global minimum
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λ M = 3 M = 5 M = 7 M = 9

0.01 1.22×10−2 2.96×10−3 8.18×10−4 2.33×10−4

0.25 5.69×10−3 2.21×10−4 7.76×10−5 4.60×10−5

0.50 1.39×10−3 9.28×10−5 1.94×10−5 1.94×10−5

1.0 7.15×10−5 1.42×10−5 1.42×10−5 1.42×10−5

2.0 3.67×10−6 3.66×10−6 3.66×10−6 3.66×10−6

Table 3. Relative deviations of the energy increment 1W from the exact value (3.9) for
two holes under the bulk type loading P = Q = 1 (equistress shapes) versus the number
M of the mapping terms and the normalized distance λ.

(3.9). The results are grouped in Table 3 as a function of the distance λ and on the number M of the
mapping coefficients.

In practice, each genetic operator has a lot of various modifications advanced in the literature for
different applied purposes. However, a relatively small number M of required design variables permits
a fairly simple GA configuration as detailed in Table 4. A typical convergence characteristic for the GA
scheme is shown in Figure 2.

7. Numerical results

The GA-based simulations aim to numerically solve the optimization problem (2.18) in the representative
interval of the normalized parameter λ. The proximity to the true minimum values can be only evaluated
through the internal convergence of the results for successively increasing mapping size M of the problem

GA Parameter Parameter value(s)

Gene Integer [−32767; 32767]
Individual Interface shape
Population size 800
Number of genes up to 9
Initial population 800 random individuals
Selection Tournament
Elitism Four best individuals
Crossover 1-point
Crossover rate 0.90
Creep mutation By randomly changing a bit
Creep mutation rate 0.35
Jump mutation By adding a random integer,

typically in the range [−4; 4]
Jump mutation rate 0.35
Stopping criterion After 1200 iterations
Resolving system size 24
Number of integration points 720 (in the interval [0, π])

Table 4. GA operator types, their probability rates and related parameters typically used
in further optimizations.
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Figure 2. Hole shape identification: progress of a typical genetic optimization run.

as presented in Figure 3 and 4. For convenience, the increment is normalized by its value (3.18) for a
circular hole under pure shear. It is seen that the approximants converge remarkably fast for any λ.
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Figure 3. Minimum of 1W as a function of the distance λ as a function of the problem
mapping size M beginning with a circle (M = 0). The values are normalized by the
equistress-related energy increment (3.18) (the dashed line) added here for comparison.
The inset recalls the problem schematic. An enlarged view of the dotted rectangular is
given in Figure 4.
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Figure 4. Enlarged fragment of Figure 3 around the global minima of min1W at λ≈ 0.45.

In the limiting case of a single hole (λ → ∞) the curves tend asymptotically to either the global
minimum (3.19) for M ≥ 3 or to the bound (3.18) when the given (M + 1)-fold symmetry (M ≤ 2)
allows for only the equistress circle instead of the truly optimal square-like shape.

The most remarkable finding is that the shear-related optimized energy depends on the separation
distance λ between the holes attaining the minimum at λmin ≈ 0.45. In contrast to equistress holes, whose
mutual arrangement has no impact on the induced energy, shear-optimal shapes exhibit a significant
collective effect, conjectured and qualitatively explained in [Cherkaev n.d.]. Interaction of the simplest
circular holes gives only 3.3% less energy at λmin than the optimal isolated square-like hole. More
markedly, the optimized shapes conserve ≈ 12% of the perturbed energy for M = 9. This percentage
consists of two quite unequal parts: 12% = 10.7% + 1.3%; the dominating one relates to the first three
coefficients while the contribution of the rest is much less. It is pictorially explained by

Figure 5 which shows the optimal shape evolution against the number M of mapping terms begin-
ning with a circle (M = 0). One can see that the quadrangle-like optimal shape is formed already
at M = 3 whereas the higher coefficients only flatten its sides and sharpen the angles. Such local
improvements have less effect on the integral-type energy criterion. The analogy with the single optimal
hole [Vigdergauz and Cherkayev 1986] suggests that the appearing angular points of the hole shape bring
no singularities in the tangential stress distribution.

Figure 6 exemplifies the shape elongation as a function of the distance λ as resulting from the holes
interaction. We note in parallel that the square-like single optimal hole also transforms into a rectangle
as a function of a nonzero trace component in the remote shear-dominating load −1< Q0/P0 < 0. Both
elongations present the optimal response in the absence of the setup square symmetry caused by either
the holes’ location or the applied load. A marked feature of the optimal shapes is that they are vertically
symmetric. In other words, the even coefficients dm,m = 2, 4, . . . are invariably optimized to zero values.
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Figure 5. Evolution of the energy-minimizing hole with the number of the mapping
terms M at the distance λ= 0.4.
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Figure 6. Evolution of the energy-minimizing hole with the distance λ at M = 9.

This is in contrast to the horizontal symmetry of the holes as predefined by taking only real values of
dk, k = 0, 1, 2 . . . before the optimization process.

Table 5 presents the edge separation ratio λ/h introduced in [Waldman et al. 2003] (here h is the half
height of the quadrangle) for the optimal shapes at M = 9 for different values of λ together with the
mapping coefficients. The parametric equation of the shapes then has the form

x(θ)=
λ− Reω(π)+ Reω(θ)

F
, y(θ)=

Imω(θ)

F
for 0 ≤ θ ≤ 2π, (7.1)
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λ d1 d3 d5 d7 d9 1W λ/h

0.2 −0.2067 −0.1144 0.0240 0.0067 −0.0033 0.8409 0.2195
0.4 −0.1600 −0.1222 0.0187 0.0081 −0.0033 0.8261 0.4425
0.6 −0.1567 −0.1244 0.0167 0.0086 −0.0022 0.8268 0.6643
0.8 −0.1533 −0.1244 0.0160 0.0090 −0.0022 0.8341 0.8850
1.0 −0.1167 −0.1333 0.0080 0.0090 −0.0015 0.8434 1.1108
1.5 −0.1033 −0.1378 0.0047 0.0071 −0.0015 0.8651 1.6717
2.0 −0.0667 −0.1378 0.0033 0.0071 −0.0007 0.8822 2.2350
3.0 −0.0267 −0.1378 0.0013 0.0071 −0.0004 0.9010 3.3529

Table 5. Mapping coefficients, energy increment and the separation ratio λ/h for the
optimal shapes at M = 9. The even terms d2m,m = 1, 2, . . . go to zero.

where

ω(θ)= t +

M∑
m=1,3,...

dm t−m, F = 1 −

M∑
m=1,3,...

md2
m, t = exp iθ.

The displacements (2.14) and the stresses (2.15) along the optimal shape can also be obtained through
ϕ(t) and ϕ′(t), respectively, as a by-product of the energy optimization. The remaining figures show
them as a function of the contour arc length s:

ds = |ω′(ξ)||dξ | = |ω′(ϑ)|dϑ; ξ = eiϑ
∈ γ, (7.2)

normalized by the length s0 of the upper half of the optimal rectangle. Let the contour be traversed in
the counterclockwise direction and let s = 0 correspond to the right point on the x-axis. Let also s1,2

denote the arc length at the upper right and upper left corner points, respectively, so that with a certain
approximation we have, setting t = x + iy ∈ L ,

0 ≤ s < s1 : ds = dy, dt = i dy,
s1 < s < s2 : ds = −dx, dt = −dx,
s2 < s ≤ s0 : ds = −dy, dt = idy.

(7.3)

In stating (7.3) the optimal shape is supposed to be a true rectangle. From Figure 7 we may conserva-
tively conclude that the Cartesian displacements of the optimal shape tend to piecewise linear functions
in the corresponding coordinates:

0 ≤ s < s1 : ux(t)= α1,

s1 < s < s2 : ux(t)= α2x +α3,

s2 < s ≤ s0 : ux(t)= α4,

0 ≤ s < s1 : u y(t)= β1 y +β2,

s1 < s < s2 : u y(t)= β3,

s2 < s ≤ s0 : u y(t)= β4 y +β5,

(7.4)

where the constants α j , β j provide the continuity of displacement at the corners s1, s2. Now, referring
back to the displacement-stress relation (2.16) and making use of (7.3) and (7.4), we conclude that the
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Figure 7. Boundary displacements ux(s) (top) and u y(s) (bottom) along the energy-
minimizing hole shape as a function of the mapping size M , for λ = 0.4. The dashed
piecewise linear trend line is also added for comparison.

tangential stresses should be then piecewise constant:

0 ≤ s < s1 : σττ (s)= 4qβ1,

s1 < s < s2 : σττ (s)= −4qα2,

s2 < s ≤ s0 : σττ (s)= 4qβ4,

(7.5)
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Figure 8. Tangential stresses σττ (s) along the energy-minimizing hole shape as a func-
tion of the mapping size M at λ= 0.4.

where we introduced the symbol

q =

( 1
K

+
1
µ

)−1
.

However, the stress distributions obtained through (2.15) independently of the linearity assumption (7.4)
on the displacements exhibit, for M ≥ 2, unacceptable oscillations (Figure 8) that mask the piecewise
constancy trend. They result from numerical term-by-term differentiation, as explained at the end of
Section 4.

To improve the situation, we smooth the stresses so computed by numerical expansion in Fourier series
followed by convolution with the Feier kernel. Though crude, this analysis shows that the filtered stresses
(Figure 9) tend to a piecewise distribution. These numerical conjectures are in keeping with the already
known analytical facts that the Cartesian displacements of equistress boundaries are proportional to the
corresponding coordinate [Vigdergauz 1988] and that the stress distribution along the optimal shape of
a single hole under pure shear is piecewise constant [Vigdergauz and Cherkayev 1986]. Further, Figures
8 and 9 show that the energy minimization with increasing M is accompanied by decreasing the stress
concentration. This favors our choice of the energy optimization.

In this context, very interesting results have been independently obtained by Waldman et al. [2003]
through FEM analysis within an effective gradientless optimization searching. The quadrangle-like inter-
acting holes were numerically shown to keep the stress constancy which was taken as the optimization
criterion. Figure 10 shows a quantitative agreement between the stress distribution along the stress-
minimizing [Waldman et al. 2003] and the energy-minimizing holes at shear type (but not pure shear)
loading 00/2B0 = 3 and at approximately the same hole separation. The observed stress concentration
error of 8-9% stems not only from the lesser accuracy of the KM energy solver in computing the stresses
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Figure 9. Filtered stress distributions σττ (s) along the energy-minimizing hole shape as
a function of the mapping size M at λ= 0.4.
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λ/h ≈ 0.322 and 00/2B0 = 3 against the stress constancy optimization levels (the dashed
lines) along the quadrangle sides [Waldman et al. 2003].
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but also, to some extent, from comparing the energy-minimizing hole in an infinite plane to the stress-
constant hole in a finite plate. For reference, we also note that the constant-stress value |σ | = 2.84
reported in [Waldman et al. 2003] for a single hole under pure shear deviates by approximately 2% from
the semianalytical value 2.779. . . [Vigdergauz 2006].

8. Concluding remarks

The essential points in this paper are, first, the novel utilization of the conformal mapping technique to
encode the optimized shapes within an evolutionary algorithm and, second, the effective application of
this scheme to the rather difficult optimization problem of two-dimensional elastostatics.

In our opinion, the proposed mapping-based shape representation can be a competitive alternative to
the nodal points in numerically treating both forward and optimization boundary-value problems of con-
tinuum mechanics. This computation-saving technique is easily adapted to evaluate appearing boundary
integrals in a variety of direct solvers, from ideally suited integral equations to less open FEMs.

The specific results obtained show that interacting holes under pure shear store less energy and hence
are stiffer than a single hole of the same area. Though known as rule-of-thumb, this fact has not yet been
investigated numerically. It is of special interest that the stress concentration on the stress-constant holes
is numerically shown to be independent of the separation distances [Waldman et al. 2003].
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MULTIFIELD MODEL FOR COSSERAT MEDIA

ALEKSEY A. VASILIEV, ANDREY E. MIROSHNICHENKO AND MASSIMO RUZZENE

We construct a two-field higher-order gradient micropolar model for Cosserat media on the basis of
a square lattice of elements with rotational degrees of freedom. This model includes equations of
single-field higher-order gradient micropolar theory, and additional ones, which allow modelling of
short wavelength phenomena. We demonstrate an example of short wavelength spatially localized static
deformations in a structural system, which could not be obtained in the classical single-field framework,
but which are captured by the proposed two-field model.

1. Introduction

Field theories are effectively used for modeling structural systems. In particular, they help to define gener-
alized macrocharacteristics of systems, find analytical solutions by using well-developed mathematical
methods, and in cases when it is impossible to make computational investigation by using effective
numerical methods and packages based on artificial discretization. There are however structural effects,
which are not captured through classical continuum models. This may lead to essential errors in appli-
cation. The study of such effects within the framework of the field theories requires the development of
generalized continuum models. One approach to the development of such models consists in the analysis
and evaluation of key physical hypotheses of existing models and, further, their rejection or generalization
[Lomakin 1970; Rogula 1985]. For example, in Cosserat and micropolar models [Cosserat and Cosserat
1909; Eringen 1999; Askar 1986; Maugin 1999] rotational degrees of freedom of structural elements are
taken into consideration in addition to displacements, while higher derivatives of the fields are taken into
account in higher-order gradient models [Triantafyllidis and Bardenhagen 1993; Fleck and Hutchinson
1997; 2001; Peerlings et al. 2001; Askes et al. 2002; Bažant and Jirásek 2002; Aifantis 2003].

For bodies with periodic microstructure, homogenized models are constructed on the basis of an
elementary cell of periodicity by using a single vector function of the generalized displacements, defining
the degrees of freedom of the elementary cell. Methods of obtaining continuum models from lattice
models, comparison between discrete lattice and continuum models, their advantages and applications
for solving different problems have been discussed in earlier articles [Noor 1988; Triantafyllidis and
Bardenhagen 1993; Pasternak and Mühlhaus 2000; Askes et al. 2002; Suiker and de Borst 2005; Pavlov
et al. 2006] and monographs [Born and Huang 1954; Askar 1986; Maugin 1999]. The derivation and
analysis of generalized models starting from microstructural models is one of the key approaches to
develop, explore, and find practical interpretations of corresponding phenomenological theories. By
using a macrocell, comprised of several elementary unit cells, and, accordingly, by increasing the number

Keywords: Cosserat media, generalized continuum models, microstructure, wave propagation, short wave solution, multifield
models.
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of vector fields in order to describe the deformations of the system we come to models of multifield theory
[Vasiliev and Miroshnichenko 2005; Vasiliev et al. 2005], which is discussed here.

Underlying hypotheses used in the construction of the above-mentioned theories are mutually inde-
pendent, complementary, and can be used in various combinations. Single-field higher-order gradient
micropolar models and their applications were considered in [Mühlhaus and Oka 1996; Suiker and
de Borst 2005; Pavlov et al. 2006]. A nonlocal continuum Cosserat model was presented in [Pasternak
and Mühlhaus 2000]. The hierarchical system of multifield micropolar models was derived in [Vasiliev
and Miroshnichenko 2005]. In the present article, we derive the higher-order gradient generalization of
the two-field micropolar model introduced in [Vasiliev and Miroshnichenko 2005] and compare different
models in order to define possible applications of multifield theory.

The article is organized as follows. The discrete model of a square lattice of elements with rotational
degrees of freedom and its single-field higher-order gradient micropolar model are presented in Sections 2
and 3. In Section 4 we derive a two-field higher-order gradient micropolar model for a Cosserat medium.
In Section 5 the comparative analysis of models for a two-dimensional case is carried out by using plane
wave solutions. Particular cases of the models presented in Sections 2–4 for the study of one-dimensional
deformations are derived in Section 6. The comparative analysis of the models in the description of
spatially localized dynamic and static deformations is presented in Sections 7 and 8. In Section 9 we
briefly summarize our results, outline possible fields of applications, and describe further investigations.

2. Cosserat lattice

We consider a Cosserat lattice, that is, a lattice whose deformations are described by displacements un ,
vn , and by rotations ϕn of its elements. The elements are placed at the nodes of a square lattice as
shown in Figure 1a. The potential energy associated with the elastic connection of elements m, k has the

Figure 1. (a) An example of a square lattice consisting of elements with rotational de-
grees of freedoms. (b) Variant of numeration of identical elements, used for deriving the
two-field model. The unit cell and macrocell consisting of two elements are shown by
dashed lines.
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following form

2Ek,m
pot = K k,m

n (um − uk)
2
+ K k,m

s

[
vm − vk − rk,m

ϕm +ϕk

2

]2

+ Gk,m
r (ϕm −ϕk)

2, (1)

where rk,m is a length parameter, K k,m
n , K k,m

s , and Gk,m
r characterize the stiffness of the connections in the

longitudinal and transverse directions, and the resistance to rotations of elements. This form of potential
energy is used in models of granular media [Limat 1988; Pasternak and Mühlhaus 2000; Suiker et al.
2001]. The potential energy of beam finite elements which is often used in lattice models of constructions
and materials [Noor 1988], can be considered as a particular case of Equation (1). We use the notations
Kn , Ks , and Gr for the elastic constants of the axial connections, while K d

n is the axial stiffness of the
diagonal connections, and we assume that K d

s = 0, Gd
r = 0. The last assumptions mean that we assume a

string type model for connections of elements in a diagonal direction. Such a model of interactions was
assumed in the models of structural media proposed in [Pavlov et al. 2006]. As it was shown in [Suiker
et al. 2001] it is required for the long-wave approximation for equation of motion of the square lattice to
be equal to the equations of motion of the Cosserat continuum model. Very often, for example in beam
lattice constructions, there are no diagonal connections at all, that is, additionally we should assume that
K d

n = 0. The parameter rk,m is equal to h and h
√

2 for the axial and diagonal connections, respectively.
The expression for the kinetic energy of elements has the standard form

Ek
kin =

1
2 Mu̇2

k +
1
2 M v̇2

k +
1
2 I ϕ̇2

k ,

where M is the mass and I is the moment of inertia of kth element.
The equations of motion are obtained by using Lagrange’s equations and have the form

Mük,m = Kn1xx uk,m + Ks
(
1yyuk,m +

1
2 h1yϕk,m

)
+

1
2 K d

n (1uk,m +1xyvk,m),

M v̈k,m = Kn1yyvk,m + Ks
(
1xxvk,m −

1
2 h1xϕk,m

)
+

1
2 K d

n (1vk,m +1xyuk,m),

I ϕ̈k,m =
(
Gr −

1
4 Ksh2)(1yyϕk,m +1xxϕk,m)+

1
2 Ksh(1xvk,m −1yuk,m − 4hϕk,m),

(2)

where the following notations are used

1xwk,m = wk+1,m −wk−1,m, 1xxwk,m = wk+1,m − 2wk,m +wk−1,m,

1ywk,m = wk,m+1 −wk,m−1, 1yywk,m = wk,m+1 − 2wk,m +wk,m−1,

1xywk,m = wk+1,m+1 −wk+1,m−1 −wk−1,m+1 +wk−1,m−1,

1wk,m = wk+1,m+1 +wk+1,m−1 +wk−1,m+1 +wk−1,m−1 − 4wk,m .

3. Higher-order gradient micropolar model

In the micropolar model it is assumed that deformations of a discrete system can be described by using
the single vector function {u(x, y, t), v(x, y, t), ϕ(x, y, t)}, which has the same components of the vec-
tor of generalized displacements {uk,m(t), vk,m(t), ϕk,m(t)} of the unit cell. Accordingly, the following
equalities are assumed at the nodes of the lattice

{u(x, y, t), v(x, y, t), ϕ(x, y, t)}
∣∣∣ x=kh

y=mh
= {uk,m(t), vk,m(t), ϕk,m(t)}.
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The substitution wk±1,m±1(t)→w(x ± h, y ± h, t) in the finite difference equations (2) leads to the
functional difference nonlocal equations in spatial variables. Using Taylor series expansions

w(x ± h, y ± h, t)= e±h∂x±h∂yw(x, y, t)=

Nx∑
r=0

Ny∑
p=0

(±h)r

r !

(±h)p

p!

∂r+pw(x, y, t)
∂xr∂y p (3)

gives a set of equations, which are differential with respect to spatial and temporal variables. The ex-
pansion (3) is exact and the continuum equations are exact if the Taylor series expansions include all
derivatives, that is, Nx = ∞ and Ny = ∞. Truncation of the series to the N th order, that is, up to
Nx + Ny ≤ N , yields the formulation of approximated continuum models.

Keeping derivatives up to the fourth order leads to the following single-field higher-order gradient
micropolar model

Mut t = (Kn + K d
n )h

2uxx + (Ks + K d
n )h

2u yy + 2K d
n h2vxy + Ksh2ϕy

+
1

12(Kn + K d
n )h

4uxxxx +
1

12(Ks + K d
n )h

4u yyyy +
1
2 K d

n h4uxxyy

+
1
3 K d

n h4(vxyyy + vxxxy)+
1
6 Ksh4ϕyyy,

Mvt t = (Ks + K d
n )h

2vxx + (Kn + K d
n )h

2vyy + 2K d
n h2uxy − Ksh2ϕx

+
1
12(Ks + K d

n )h
4vxxxx +

1
12(Kn + K d

n )h
4vyyyy +

1
2

K d
n h4vxxyy

+
1
3 K d

n h4(uxyyy + uxxxy)−
1
6 Ksh4ϕxxx ,

Iϕt t =
(
Gr −

1
4 Ksh2)h2(ϕxx +ϕyy)+ Ksh2(vx − u y − 2ϕ)

+
1
12

(
Gr −

1
4 Ksh2)h4(ϕxxxx +ϕyyyy)+

1
6 Ksh4(vxxx − u yyy).

(4)

The single-field model with derivatives up to the second order and its comparison with a conventional
micropolar model are presented in [Suiker et al. 2001].

4. Two-field higher-order gradient micropolar model

The method of deriving a hierarchical system of multifield models was proposed in [Vasiliev and Mirosh-
nichenko 2005]. In the present article, only some basic ideas will be presented, and the two-field higher-
order gradient micropolar model will be obtained.

The single-field micropolar model was derived on the basis of the discrete equations of motion for
the particles of the unit cell by using the single vector function {u(x, y, t), v(x, y, t), ϕ(x, y, t)}. The
two-field model is derived by considering as a basis a macrocell consisting of two elementary cells.
Although, all elements of the system are identical, they are marked with different numbers as shown in
Figure 1b. Also, the generalized displacements are denoted as u[n]

k,m , v[n]

k,m , ϕ[n]

k,m where the superscript
n = 1, 2 identifies the generalized displacements of the elements included in the macrocell. Two vector
functions {u[n](x, y, t), v[n](x, y, t), ϕ[n](x, y, t)}, n = 1, 2, are used in the two-field theory to describe
the displacements and rotations of the particles marked by numbers n = 1, 2, respectively. The behavior of
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the macrocell is governed by six discrete equations of motion. The application of Taylor series expansions
leads to six continuum equations of the multifield model.

The following new field functions are introduced:

u[n](x, y, t)= u(x, y, t)+ (−1)n ũ(x, y, t),

v[n](x, y, t)= v(x, y, t)+ (−1)n ṽ(x, y, t),

ϕ[n](x, y, t)= ϕ(x, y, t)+ (−1)nϕ̃(x, y, t), n = 1, 2,

in order to decouple the six equations of the two-field model onto two subsystems.
The equations for the vector function {u(x, y, t), v(x, y, t), ϕ(x, y, t)} coincide with Equations (4).

The other three equations for {ũ(x, y, t), ṽ(x, y, t), ϕ̃(x, y, t)} have the following form

Mũt t = (−Kn + K d
n )h

2ũxx + (−Ks + K d
n )h

2ũ yy + 2K d
n h2ṽxy − 4(Kn + Ks)ũ

−Ksh2ϕ̃y −
1
12
(Kn − K d

n )h
4ũxxxx −

1
12(Ks − K d

n )h
4ũ yyyy +

1
2 K d

n h4ũxxyy

+
1
3 K d

n h4(ṽxxxy + ṽxyyy)−
1
6 Ksh4ϕ̃yyy,

M ṽt t = 2K d
n h2ũxy + (−Ks + K d

n )h
2ṽxx + (−Kn + K d

n )h
2ṽyy − 4(Kn + Ks)ṽ

+Ksh2ϕ̃x −
1

12(Ks − K d
n )h

4ṽxxxx −
1

12(Kn − K d
n )h

4ṽyyyy +
1
2 K d

n h4ṽxxyy

+
1
3 K d

n h4(ũxxxy + ũxyyy)+
1
6 Ksh4ϕ̃xxx ,

I ϕ̃t t = −
(
Gr −

1
4 h2Ks

)
h2(ϕ̃xx + ϕ̃yy)+ Ksh2(ũ y − ṽx)− 8Gr ϕ̃

−
1
12

(
Gr −

1
4 Ksh2)h4(ϕ̃xxxx + ϕ̃yyyy)+

1
6 Ksh4(ũ yyy − ṽxxx). (5)

Thus, the two-field model consists of Equation (4) of the single-field theory and Equation (5), the
meaning of which will be clarified by the following analysis.

5. Plane wave solutions: the comparative analysis of the models

We are looking for solutions of the discrete equations of motion (2) in the following form

uk,m = Ũ exp
[
i(ωt − kKx − mK y)

]
,

vk,m = Ṽ exp
[
i(ωt − kKx − mK y)

]
,

ϕk,m = 8̃ exp
[
i(ωt − kKx − mK y)

]
,

(6)

where Kx = kx h, K y = kyh, kx and ky are wave numbers, Ũ , Ṽ , and 8̃ are amplitudes, and ω is the
angular frequency.

By substituting the expressions in Equation (6) into (2) we obtain a system of three linear equations

(a11 + Mω2)Ũ + a12Ṽ + a13 i8̃= 0,

a12Ũ + (a22 + Mω2)Ṽ + a23 i8̃= 0,

a13Ũ + a23Ṽ + (a33 + Iω2)i8̃= 0,

(7)
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with coefficients

a11 = 2(cos Kx − 1)Kn + 2(cos K y − 1)Ks + 2(cos Kx cos K y − 1)K d
n ,

a12 = −2K d
n sin Kx sin K y,

a13 = −hKs sin K y,

a23 = hKs sin Kx ,

a22 = 2(cos K y − 1)Kn + 2(cos Kx − 1)Ks + 2(cos Kx cos K y − 1)K d
n ,

a33 = −(2 + cos Kx + cos K y)h2Ks/2 + 2(cos Kx + cos K y − 2)Gr .

(8)

In the continuum models, the following plane-wave solution is considered

u(x, y, t)= Ũ exp
[
i(ωt − kx x − ky y)

]
, (9)

v(x, y, t)= Ṽ exp
[
i(ωt − kx x − ky y)

]
, (10)

ϕ(x, y, t)= 8̃ exp
[
i(ωt − kx x − ky y)

]
, (11)

which is the continuum analog of the discrete solution (6).
Substituting (9)–(11) into Equations (4) leads to (7) with coefficients

c11 = (−K 2
x + K 4

x /12)Kn + (−K 2
y + K 4

y/12)Ks

+ (−K 2
x − K 2

y + K 4
x /12 + K 2

x K 2
y/2 + K 4

y/12)K d
n ,

c12 = (−2Kx K y + Kx K 3
y/3 + K 3

x K y/3)K d
n ,

c13 = −(K y − K 3
y/6)hKs,

c23 = −c13(x ↔ y),

c22 = c11(x ↔ y),

c33 = (−8 + K 2
x + K 2

y − K 4
x /12 − K 4

y/12)h2Ks/4 + (−K 2
x − K 2

y + K 4
x /12 + K 4

y/12)Gr .

(12)

These coefficients essentially can be recognized as the Taylor series expansions of the coefficients
(8) of the discrete system around the point (Kx , K y) = (0, 0) up to the fourth order. In the case of
classical micropolar model, the coefficients (12) include the terms of the Taylor series expansion of the
coefficients in Equation (8) up to the second order. Accordingly, the dispersion curves of the conventional
and higher-order gradient single-field models coincide with the dispersion curves of the discrete system
at the point (Kx , K y)= (0, 0) and approximate them around this point. The higher-order gradient model
improves the accuracy of the approximation at this point in comparison with the classical micropolar
model. However, for short wavelength waves both single-field micropolar models produce results with
an essential error.

The two-field model includes the equations of the single-field model, Equations (4), and additional
(5). Six dispersion surfaces for the two-field model are defined in the area |Kx ± K y| ≤ π . They can be
split into two groups.

The surfaces of the first group correspond to those of the single-field model defined in the area
|Kx ± K y| ≤ π . Thus, two-field models possess the properties of single-field models and provide a
good approximation of the dispersion surfaces for the discrete system for long wavelength waves.



MULTIFIELD MODEL FOR COSSERAT MEDIA 1371

The dispersion relations of the second group of surfaces correspond to Equations (5) of the two-field
model. The substitution of expressions (9)–(11) into these equations leads to a system of Equations (7)
with coefficients

c̃11 =
(
−4 + K 2

x − K 4
x /12

)
Kn +

(
−4 + K 2

y − K 4
x /12

)
Ks

+
(
−K 2

x − K 2
y + K 4

x /12 + K 2
x K 2

y/2 + K 4
y/12

)
K d

n ,

c̃12 =
(
−6Kx K y + K 3

x K y + Kx K 3
y
)
K d

n /3,

c̃13 = (K y − K 3
y/6)hKs,

c̃23 = −c̃13(x ↔ y),

c̃22 = c̃11(x ↔ y),

c̃33 =
(
−K 2

x − K 2
y + K 4

x /12 + K 4
y/12

)
h2Ks/4

+
(
−8 + K 2

x + K 2
y − K 4

x /12 − K 4
y/12

)
Gr .

(13)

These coefficients can be obtained by replacing Kx → −π + Kx and K y → −π + K y in the co-
efficients in Equation (8) for the discrete system and their Taylor series expansions around the point
(Kx , K y)= (0, 0) up to fourth order terms. Because of invariance of the dispersion relations under the
transformation of variables (Kx , K y) ↔ (−Kx ,−K y), the dispersion surfaces of the two-field model
plotted for the coefficients (13) in the area Kx + K y ≤ π , Kx ≥ 0, K y ≥ 0 being reflected about the line
Kx = π/2, K y = π/2 coincide with the dispersion surfaces of the discrete system at (Kx , K y)= (π, π)

and approximate them in the area Kx + K y ≥ π , Kx ≤ π , K y ≤ π around this point. The inclusion of
higher-order derivatives into the model improves the accuracy.

Figure 2 illustrates the results of the comparative analysis of the models, the accuracy of the approx-
imation of the dispersion surfaces of the discrete system through the dispersion surfaces of single-field
(Figure 2a) and two-field (Figure 2b) models, and the influence on accuracy of the order of derivatives
in the models. The dispersion curves for the discrete system in sections K y = 0, Kx = π , Kx = K y are
represented by solid lines. The same curves obtained for the field models with derivatives up to second
and fourth orders are represented by dotted and dashed lines, respectively. We fix the parameters Kn , h, M
and consider dimensionless quantities K̄s = Ks/Kn = 1/3, K̄ d

n = K d
n /Kn = 0.74, Ḡr = Gr/Knh2

= 1/3,
Ī = I/Mh2

= 1/8. Frequency is also presented in dimensionless form according to the following
expression ω̄ = ω

√
M/Kn . The curves for the single-field and the two-field models coincide in the area

Kx + K y ≤ π and give a good approximation of the curves for the discrete system in the area of the long
wavelength waves with wave numbers around the 0-point. The two-field models give additionally good
approximation for short waves in area around the M-point, where the single-field models give significant
inaccuracy. The models containing the derivatives up to fourth order improve the approximation in
comparison with the models with derivatives up to the second order.

6. One-dimensional models

We consider the one-dimensional deformations of a lattice placed between two rigid components (see
Figure 3). Assuming that the generalized displacements are constant for elements along the diagonals,
that is, for k +m = const, we denote components Uk,m , Vk,m , and 8k,m by using the abbreviated notations
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Figure 2. The dispersion curves in the sections K y = 0, Kx = π , Kx = K y of the
dispersion surfaces for discrete system (solid lines). The same curves obtained by using
the single-field (a) and two-field (b) models with derivatives up to second (dotted lines)
and fourth orders (dashed lines).

Um , Vm , and 8m . The equations for Um and Vm , 8m are decoupled, and we will concentrate on the
solutions for Um only.

By introducing the new coordinates Oξη and performing a change of variables in Equation (2), one
obtains the discrete equation of motion for one-dimensional deformations:

MÜm = (Kn + Ks)(Um−1 − 2Um + Um+1)+ K d
n (Um−2 − 2Um + Um+2). (14)

By changing the variables (x, y)→ (ξ, η) in Equation (4) and considering one-dimensional displace-
ments, we obtain the single-field higher-order gradient variant of Equation (14)

MUt t = (Kn + Ks + 4K d
n )H

2Uξξ +
1

12(Kn + Ks + 16K d
n )H

4Uξξξξ , (15)

  y  v

  u
   x

  U
ξ

  U
  m

η
  V

ξ  m+1

  m-1

Figure 3. Representation of a thin lattice layer in a problem of tension between two
rigid parts in different coordinate systems.
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where H =
√

2h/2 is distance between layers. Equation (15) can be obtained independently by using
Taylor series expansions in Equation (14).

Similarly, changing the variables (x,y)→ (ξ, η) in Equation (5) and considering one-dimensional
displacements leads to the second equation of the two-field model

MŨt t = −4(Kn + Ks)Ũ − (Kn + Ks − 4K d
n )H

2Ũξξ −
1
12(Kn + Ks − 16K d

n )H
4Ũξξξξ . (16)

In order to explain the notations and to illustrate the method of derivation of the multifield models,
we will obtain Equations (15) and (16) of the two-field model directly from Equation (14).

Although the unit cell in the problem under consideration consists of the single layer, we assume
that a cell of periodicity consists of two layers and use the notations U [1]

2n (t) and U [2]

2n+1(t) with different
superscripts [1] and [2] for displacements of the layers with coordinates ξ = 2nH and ξ = (2n + 1)H ,
respectively. Equation (14) can thus be rewritten in the form

MÜ [1]

2n = (Kn + Ks)
(
U [2]

2n−1 − 2U [1]

2n + U [2]

2n+1

)
+ K d

n
(
U [1]

2n−2 − 2U [1]

2n + U [1]

2n+2

)
, (17)

MÜ [2]

2n+1 = (Kn + Ks)
(
U [1]

2n − 2U [2]

2n+1 + U [1]

2n+2

)
+ K d

n
(
U [2]

2n−1 − 2U [2]

2n+1 + U [2]

2n+3

)
. (18)

We use two functions U [1](x, t) and U [2](x, t) in order to describe displacements of odd and even
layers

U [1](ξ, t)|ξ=2nH = U [1]

2n (t), U [2](ξ, t)|ξ=(2n+1)H = U [2]

2n+1(t).

The Taylor series expansions of the displacements in Equations (17) and (18) up to fourth order terms
around the points for which these equations were obtained, gives the system of coupled equations for the
two-field model

MU [1]

t t = L̄U [1]
− L̃(U [1]

− U [2]), (19)

MU [2]

t t = L̄U [2]
+ L̃(U [1]

− U [2]), (20)

where we separate the operator for the single-field model, Equation (15),

L̄ = (Kn + Ks + 4K d
n )H

2 ∂
2

∂ξ 2 +
1
12(Kn + Ks + 16K d

n )H
4 ∂

4

∂ξ 4

from the additional operator

L̃ = (Kn + Ks)

(
2 + H 2 ∂

2

∂ξ 2 +
1
12

H 4 ∂
4

∂ξ 4

)
,

which describes the interaction of the fields. This representation of the model can be useful for the
interpretation and the generalization of two-field models, in particular in the presence of nonlinearities.
In the linear case, it is convenient to split the system of coupled equations (19) and (20) in two independent
equations (15) and (16) by introducing the new field functions

U =
1
2

(
U [2]

+ U [1]
)
, Ũ =

1
2

(
U [2]

− U [1]
)
. (21)
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7. One-dimensional dynamic problem: comparative analysis of models

7.1. Discrete model. We consider solutions of the discrete equation of motion (14) of the form

Um(t)= Ũeiωt−K m (22)

with complex values K = KRe + i KIm. Substituting Equation (22) into (14) leads to the relation

ω̄2
= 2(1 − cosh K )+ 2γ (1 − cosh 2K ), (23)

where ω̄ = ω
√

M/(Kn + Ks) and γ = K d
n /(Kn + Ks).

Substituting K = i KIm into Equation (23), and letting �= ω̄2, Z = 4 sin2(KIm/2) gives

�= (1 + 4γ )Z − γ Z2. (24)

The analog (24) of the dispersion relation (23) is useful for the analysis of the dispersion curves of the dis-
crete system because there is a remarkable correspondence between the curves ω̄= ω̄(KIm, KRe) in three-
dimensional space ω ≥ 0, 0 ≤ KIm ≤ π , KRe ≥ 0 and the curve �=�(Z) in the two-dimensional space
�≥ 0, −∞< Z <∞. Namely, the dispersion curves ω = ω(KIm, KRe) in the planes KIm = 0, KRe = 0,
and KIm = π correspond to parts of the parabola �=�(Z) in the intervals Z < 0, 0< Z < 4, and Z > 4,
respectively. The branch ω = ω(KIm, KRe) defined in the area of complex values (KIm 6= 0, KRe 6= 0) is
located at frequencies �, at which there are no points of the curve �=�(Z).

The complex dispersion relation (23) determines three dispersion curves of qualitatively different
solutions.

The curve in the plane KRe = 0 is defined by the relation

ω̄2
= 2(1 − cos KIm)+ 2γ (1 − cos 2KIm). (25)

It corresponds to points of the parabola inside the interval 0< Z < 4. This is the branch corresponding
to harmonic solutions ω̄ = ω̄(KIm, 0).

The curve in the plane KIm = π

ω̄2
= 2(1 + cosh KRe)+ 2γ (1 − cosh 2KRe) (26)

corresponds to points of parabola for the values Z > 4. This is the branch associated with rapidly varying
spatially localized solutions, which correspond to evanescent waves.

The branch ω̄ = ω̄(KIm, KRe) for the complex values KRe 6= 0, KIm 6= 0 is defined in the parametric
form KRe = KRe(ω̄), KIm = KIm(ω̄) by the equations

cos KIm cosh KRe = −1/4γ, cos2 KIm + cosh2 KRe = (ω̄2
− 2)/4γ. (27)

It is located in the area of frequencies � above the value �̄max = (2
√
γ + 1/2

√
γ )2. This value cor-

responds to the maximum of the parabola, located at Zmax = 2 + 1/2γ , which belong to the interval
2< Zmax < 4 for γ > 1/4 or to the half-line Zmax > 4 for γ < 1/4. Hence, the curve (27) begins at the
point of maximum of the curve defined by Equation (25) for γ > 1/4 or (26) for γ < 1/4.

Since the parabola is not defined for Z < 0, � > 0, there are no dispersion curves of the discrete
system in the plane KIm = 0, and, accordingly, Equation (14) does not possess slowly varying spatially
localized solutions of the form (22).
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7.2. Single-field models. The analysis of the single- and two-field models is based on the following
solution

U (ξ, t)= Ūeiωt−K ξ/H , (28)

which is the analog of the discrete solution (22) in the continuum case.
The substitution of expression (28) into Equation (15) of the single-field model with derivatives up

to the second order leads to the dispersion relation for harmonic solutions ω̄2
= (1 + 4γ )K 2

Im. The
corresponding curve belongs to the plane KRe = 0 and defines the tangent line to the dispersion curve of
the discrete system defined by Equation (25) at the point ω = 0, KIm = 0. For short wavelength waves
in the area KIm ≈ π the model shows considerable inaccuracy.

In the case KRe = 0, the single-field model with derivatives up to fourth order, Equation (15), gives
the following dispersion relation ω̄2

= (1 + 4γ )K 2
Im − (1 + 16γ )K 4

Im/12, which corresponds to a Taylor
series expansion up to the fourth order of the dispersion relation of the discrete system (25) around
KIm = 0. From a physical point of view, this means that the higher-order gradient model describes the
dispersive behavior. This model has better accuracy over a larger range of wavelengths with respect to
the model with derivatives up to the second order, but still suffers from severe inaccuracies in the short
wavelength limit.

The single-field model with derivatives up to the fourth order, Equation (15), characterized by disper-
sion curve in the complex plane (KIm 6= 0, KRe 6= 0) similar to the dispersion curve of the discrete system
defined by Equation (27). However, inaccuracy in the description of this curve is large because it begins
at the point of maximum of the curve, defined by Equation (25) or (26). This point belongs to the area
of middle and short waves. As previously discussed, the single-field model for these waves is affected
by considerable inaccuracy.

It should be noted that both single-field models do not provide dispersion curves in the plane KIm = π

which are similar to those of the discrete system defined by Equation (26). Hence, single-field models
do not capture the spatially localized short wavelength solutions.

7.3. Two-field models. The two-field model, Equations (15) and (16), includes the equation of the single-
field model, Equation (15). Therefore, like the single-field model, the two-field model is able to capture
the properties of the discrete system in the range 0 ≤ KIm < π/2, where the single-field model has a
good accuracy.

Equations (16) of the two-field model in the case when only derivatives up to the second order are
taken into account leads to ω̄2

= 4 + (1 − 4γ )K 2. This complex dispersion relation gives two branches

ω̄2
= 4 − (1 − 4γ )K 2

Im, (29)

ω̄2
= 4 + (1 − 4γ )K 2

Re (30)

in the area 0 ≤ KIm < π/2, KRe ≥ 0.
The relation (29) defines dispersion curve in the plane KRe = 0. It can be obtained by replacing

KIm → π − KIm in Equation (25) and its Taylor series expansion around the point KIm = 0 up to second
order terms. Hence, the dispersion curve defined by Equation (29), reflected about the line KIm = π/2,
approximates the branch of harmonic wave solutions of the discrete system, Equation (25), in the area
of short wavelength around the point KIm = π .
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The relation (30) defines the dispersion curve in the plane KIm = 0, which, after reflection about the
plane KIm = π/2, approximates the curve for short wavelength localized solutions of the discrete system,
Equation (26), in the plane KIm = π around the point KRe = 0.

By taking into consideration derivatives up to the fourth order in the additional Equation (16) for the
two-field model, we can improve approximation for the branches of the harmonic, Equation (25), and
spatially localized, Equation (26), short wavelength solutions of the discrete system at (KIm, KRe) =

(π, 0) up to the fourth-order terms. The corresponding approximate relations have the form

ω̄2
= 4 − (1 − 4γ )(KIm −π)2 + (1 − 16γ )(KIm −π)4/12,

ω̄2
= 4 + (1 − 4γ )K 2

Re + (1 − 16γ )K 4
Re/12.

Thus, the two-field model has the properties of the single-field model in the area of long waves
(KIm ≈ 0) and additionally demonstrates a good accuracy for the short wavelength harmonic wave so-
lutions (KIm ≈ π, KRe = 0) and for short wavelength solutions with weak spatial localization (KIm =

π, KRe ≈ 0). Taking into account derivatives up to the fourth order in the equations of the two-field
model improves the accuracy around (KIm, KRe) = (0, 0) and (KIm, KRe) = (π, 0). For γ > 1/16 the
two-field model with derivatives up to the fourth order gives also the dispersion curve in the area of
complex values, KIm 6= 0, KRe 6= 0, similar to the curve defined by Equation (27) for the discrete system.

Spatially localized short-wavelength, high frequency excitations, which exist and propagate in nonlin-
ear discrete systems, are known as intrinsic localized modes, or discrete breathers [Sievers and Takeno
1988; Flach and Willis 1998]. The development of continuum models capable of providing good descrip-
tions for both long and short wavelength phenomena gives an opportunity to study them separately and
to investigate their potential interactions.

Figure 4 illustrates the results of the analysis. The dispersion curves in the planes of the harmonic
(KRe = 0) and spatially localized short wavelength (KIm ≈ π) solutions for the discrete system (solid

20 11.5
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0
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KK Re
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0 Z
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Figure 4. Dispersion curves of discrete system for harmonic, KRe = 0, and localized
short-wave solutions, KIm = π , are shown by solid lines. The same curves obtained by
using two-field models with derivatives up to second and fourth orders are presented by
dotted and dashed lines, respectively.
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lines), the two-field models KRe = 0, KIm = π with derivatives up to the second (dotted lines) and
fourth (dashed lines) orders are presented for γ = 1/2. In the area of long wavelength solutions
(KIm < π/2, KRe = 0), the dispersion curves of the two-field model coincide with the dispersion curves
of the single-field model and give a good approximation of the dispersion curves of the discrete system
in the area of long waves (KIm ≈ 0). Moreover, the two-field model produces branches that approximate
the dispersion curves of the discrete system corresponding to the short wavelength harmonic and spatially
localized solutions around the point (KIm, KRe)= (π, 0). The points of intersection of the dispersion
curses with the axis ω̄ = 0 for different models are depicted by small circles. These points correspond
to static solutions, which are analyzed in the next section.

8. Static one-dimensional solutions

8.1. Discrete model. The parabola defined by Equation (24) intersects the axis � = 0 at Z1 = 0 and
Z2 = 4+1/γ . Since Z2> 4, the point where the dispersion curve intersects the plane ω̄= 0 belongs to the
line KIm = π and, hence, the corresponding static solution has rapidly varying exponentially localized
form.

The characteristic equation of the discrete Equation (14) in the static problem has roots

KIm = 0, KRe = 0 (31)

and
KIm = π, KRe = ±λ, (32)

where λ= ln
[
(1 + 1/2γ )+

√
(1 + 1/2γ )2 − 1

]
is the solution of the equation

1 + cosh λ+ γ (1 − cosh 2λ)= 0. (33)

The general static solution of Equation (14) has the form

Um = C0 + mC1 + (−1)meλmC2 + (−1)me−λmC3. (34)

This solution consists of linear and rapidly varying terms that are defined by the roots (31) and (32),
respectively. The parameter λ defines the degree of localization of the solution, and the constants Cn are
defined by the particular set of assigned boundary conditions.

8.2. Single-field models. The results of the comparative analysis between discrete and field models for
dynamic solutions (Section 7) will be used here for comparison of the static solutions.

Single-field models with derivatives up to second and fourth orders both approximate the branch of
the discrete system defined by Equation (25) for long waves, KRe = 0, KIm ≈ 0, at low frequencies,
ω̄ ≈ 0. Therefore, the characteristic polynomial for the static equations of the single-field models has
trivial solution KRe = 0, KIm = 0, Equation (31), of the second order. Consequently, both single-field
models give the linear slowly varying part of the solution (34).

Due to the fact that the Equation (15) in case when derivatives up to fourth order are taken into
account gives a polynomial of the fourth order for static solutions, additional roots are found in the plane
ω̄ = 0. Because of that, one may expect that the single field model in this case gives the rapidly varying
exponentially localized part of the static solution of the discrete system. However, as it was established
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during the previous analysis on the dynamic solutions, Section 7.2, the single-field models do not predict
the branch of spatially localized solutions (26) with root (32). The additional roots of the model belong
to the branch of the harmonic solutions in the plane KRe = 0.

Thus, single-field models allow us to find only the linear slowly varying part of the static solution, but
they do not predict the rapidly varying spatially localized solutions.

8.3. Two-field model. The continuum approximation for the static solution for the discrete system (34)
can be found through Equations (15) and (16) obtained for the two-field model with derivatives up to
the second order. Equation (15) gives the following linear static solution U (ξ)= c0 + c1ξ/H . By using
Equation (16) it is possible to find the localized part of the solution Ũ (ξ)= e3ξ/H c2 + e−3ξ/H c3, where
3 is found from Equation (30) in the case ω̄ = 0, that is,

4 + (1 − 4γ )32
= 0. (35)

This equation gives the point KRe of the intersection of the plane ω̄ = 0 by the dispersion curve of the
two-field model defined by Equation (30) in the plane KIm = π .

From Equation (21), U [n](ξ)= U (ξ)+ (−1)nŨ (ξ), we obtain a static solution

U [n](ξ)= c0 + c1ξ/H + (−1)ne3ξ/H c2 + (−1)ne−3ξ/H c3, (36)

where n = 1, 2.
Thus, the continuum solution (36), obtained by using the two-field model is qualitatively similar to

the discrete solution (34). It contains the linear part as well as the localized one with rapidly varying
envelope. In regards to the quantitative comparison, let us note that the parameters λ in the discrete and
3 in the continuum solutions are equal to the values KRe of intersections of the plane ω = 0 with the
dispersion curves defined by Equations (26) and (30), respectively. As established in Section 7.3, the
curve defined by Equation (30) of the two-field model approximates the curve defined by Equation (26)
of the discrete model at the point (KIm, KRe)= (π, 0). Furthermore, Equation (35) for the parameter 3
can be obtained from Equation (33) for λ by using its Taylor series expansion up to the second-order
terms 2(1 + cosh λ)+ 2γ (1 − cosh 2λ)= 4 + (1 − 4γ )λ2

+ O(λ4).
Thus, we have demonstrated that the short wavelength spatially localized static deformations, which

could not be obtained through the single-field approach (see Section 8.2), can be found by using the
two-field model.

The accuracy of the two-field model for the derivation of static solutions is good in the case of weak
localization. The solution (36) for the model in the case when only derivatives up to the second order
are taken into account exists for 1/γ < 4. While for 1/γ > 4 the solution of the discrete system is highly
localized. This explains the lack of accuracy of the two-field model, when the parameter 1/γ approaches
its threshold value 1/γ → 4, and the reason why the solutions cannot be found when 1/γ > 4.

Figure 5 shows the dependence of the localization parameters λ and 3 on the parameter 1/γ =

(Kn + Ks)/K d
n of the discrete system, calculated from the discrete model (solid line) and from the two-

field models with derivatives up to second (dotted line) and fourth (dashed line) orders. The inclusion of
fourth-order derivatives increases both the accuracy of the derivation of the localization parameter λ, and
the region of parameters γ where spatially localized static solution can be found. Let us note that there
exist systems with small parameter λ. In such systems short wavelength solutions are weakly localized.
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Figure 5. The dependencies of the localization parameters, λ and 3, on the parameter
1/λ= (Kn + Ks)/K d

n of the discrete system calculated by using the discrete model (solid
line) and two-field models with derivatives up to second (dotted line) and fourth (dashed
line) orders.

The two-field model with derivatives up to the second order produces rather exact results and there is no
need to use higher-order gradient two-field model in this case.

The static solution for tension (compression) of a layer between two rigid parts (Figure 3) with bound-
ary conditions

U−N+1 = −U∗, U−N+2 = −U∗, UN−1 = U∗, UN = U∗ (37)

is presented in Figure 6a. We choose the dimensionless parameter γ = 1. The number of layers is equal to
ten, that is, N = 5. The displacements are given in dimensionless form Ūm = Um/U∗. The displacements
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Figure 6. (a) Displacements of layers of the lattice are shown by circles. Their approx-
imations by using two slowly varying functions in the two-field model are presented by
dashed lines. (b) The differences of the displacements of neighboring elements calcu-
lated by using the discrete and two-field models are presented by circles and crosses,
respectively. Continuous and dashed lines are drawn to underline short wavelength be-
havior of the solutions near the boundaries.
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of the discrete system are found by using the static solution (34) of the discrete Equation (14) with bound-
ary conditions (37). They are shown by small circles in Figure 6a. The displacements obtained through
the two-field solution (36) are represented as dashed lines. In order to underline the short-wavelength
behavior of the solutions near the boundaries, the difference of displacements1Ūm = Ūm+1−Ūm is shown
in Figure 6b. The values calculated by using discrete and two-field models are represented as circles and
crosses, respectively. Figure 6a demonstrates that both slowly varying displacements in the center and
rapidly varying displacements near the boundaries in the discrete system are effectively described by
two smooth field functions. The approximated models were derived through the Taylor series expansion
(3) of the displacements U (x ± m H, t) keeping derivatives of the lowest order under assumption that
U (x, t) varies slowly with respect to spatial variable. This may help qualitatively understand why two-
field models provide good approximations for both slowly and rapidly varying displacements. When we
try to describe the short wavelengths deformations by using a single function it should rapidly vary in
the corresponding areas. The single-field models with lower gradient terms do not capture the rapidly
varying static localized solutions and may lead to significant errors in the prediction of displacements in
areas where such solutions may take place (near boundaries, defects, localized forces, and so on). The
two-field model makes it possible to describe these effects within the framework of the field theory.

We have considered the application of the two-field model, Equations (4) and (5), for the solution of
one-dimensional problem (Figure 3) in order to demonstrate its advantages in comparison with single-
field models. Another interesting problem is the determination of the shear deformations of the layer in
the case of transverse displacements of the rigid parts in different directions. In this case there exists a
range of parameters of the discrete system for which smooth exponential localization of deformations
takes place. The deformations in this case can be studied by using the single-field theory. For other
parameters, the localized deformations have short wavelength form and the equations of the single-field
theory are not sufficient to capture them. The two-field model, Equations (4) and (5), enables us to study
deformations in both cases. The analysis of this problem deserves a dedicated study, which is currently
being carried out by the authors, and which will be the subject of a future paper.

9. Conclusions

The classical model for Cosserat media has wide applications in problems where not only displacements,
but also rotations of structural elements should be taken into account. Rotational degrees of freedom
naturally appear, for example, for bodies with elements having finite sizes and bodies with beam-like
microstructure. Some examples are granular media [Limat 1988; Mühlhaus and Oka 1996; Pasternak
and Mühlhaus 2000], beam lattices [Noor 1988], masonry walls [Casolo 2004], auxetics [Lakes 1991;
Vasiliev et al. 2002; Grima et al. 2007], bodies with chiral structure [Spadoni and Ruzzene 2007], liquid
crystals, dielectric crystals [Pouget et al. 1986; Askar 1986; Maugin 1999], thin films [Randow et al.
2006], among others.

The discrete model of square lattice of elements with rotational degrees of freedom is used to obtain
generalized continuum models which describe essential structural effects in Cosserat media with mi-
crostructure. We utilize ideas and methods of the well-developed micropolar and higher-order gradient
theories and of the multifield theory, which is still being investigated and expanded, and consider the
possibilities and advantages of their applications separately and in combination. The derivation of the
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continuum models starting from structural model gives us the possibility to test their accuracy, and to
study and compare their properties. We have shown that their application allows describing qualitatively
different effects in bodies with microstructure. By increasing the number of fields, the multifield approach
gives a natural way to describe both long- and short wavelength deformations. The latter ones are often
considered as inaccessible for continuum models. However, it should be noted that such deformations
in some cases may become very important, in particular in fracture, instability, and plasticity problems.
Their description gives a possibility to study similar phenomena in the framework of generalized contin-
uum mechanics.
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ANALYSIS OF THE RUN-IN EFFECT IN FIBER-REINFORCED ISOLATORS
UNDER VERTICAL LOAD

JAMES M. KELLY

Previous work on experimental and theoretical studies on fiber-reinforced bearings has shown the feasi-
bility of using them as lightweight low-cost elastomeric isolators for application to housing, schools and
other public buildings in highly seismic areas of the developing world. The theoretical analysis covered
the mechanical characteristics of these bearings where the reinforcing elements, normally steel plates,
are replaced by fiber reinforcement. The fiber in the fiber-reinforced isolator, in contrast to the steel
in the conventional isolator (which is assumed to be rigid both in extension and flexure), is assumed
to be flexible in extension, but completely without flexural rigidity. This leads to an extension of the
theoretical analysis on which the design of steel-reinforced isolators is based that accommodates the
stretching of the fiber-reinforcement. Several examples of isolators in the form of long strips were tested
at the Earthquake Engineering Research Center Laboratory.

The theoretical analysis suggests, and the test results confirmed, that it is possible to produce a fiber-
reinforced strip isolator that matches the behavior of a steel-reinforced isolator. The fiber-reinforced
isolator is significantly lighter and can be made by a much less labor-intensive manufacturing process.
The advantage of the strip isolator is that it can be easily used in buildings with masonry walls.

The main difference between the behavior of a fiber-reinforced and a steel-reinforced bearing is the
degree of run-in under vertical loading. In this context we mean by run-in that a certain amount of
vertical load must be applied to the bearing before its vertical stiffness can be developed.

The most likely source of the run-in is that the fibers are initially not straight and as they have no
bending stiffness, the vertical stiffness cannot be developed until they have been straightened by the
action of the applied vertical load. Straightening the fibers requires them to push against the surrounding
rubber. This causes an increasing force in the fiber, and as it is straightening, there will be a transition to
the stretching of the fiber and to the consequent stiffness of the composite system. These bearings can
be used in a wide range of applications in addition to seismic protection of buildings including bridge
bearings and vibration isolation bearings, so there is a need to be able to predict how much vertical
load or vertical displacement is needed before the full vertical stiffness can be achieved. In this paper
a theoretical analysis of the effect has been developed in an attempt to formulate a prediction for the
transition from the initially bent to the finally straight fiber.

The method takes the already formulated analysis for the straight fiber and modifies it by treating
the fiber as a curved string on an elastic foundation, adds to this an estimate of the subgrade reaction
of this foundation, and, using the basic equations of the fiber-rubber composite, calculates the effective
compression modulus as a function of the vertical compression strain or pressure.

1. Introduction

The motivation for proposing the use of fiber-reinforced seismic isolators is the fact that the major loss of
life in earthquakes happens when the event occurs in developing countries. Even in relatively moderate

Keywords: seismic isolation, fiber-reinforced isolators, elastomeric bearings, bearing mechanics.
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earthquakes in areas with poor housing many people are killed by the collapse of brittle heavy unrein-
forced masonry or poorly constructed concrete buildings. Modern structural control technologies such
as active control or energy dissipation devices can do little to alleviate this but it is possible that seismic
isolation could be adopted to improve the seismic resistance of poor housing and other buildings such
as schools and hospitals in developing countries. The possibility of using fiber-reinforced elastomeric
isolators was reviewed by the author, Kelly [2002].

The problem with using isolation in developing countries is that conventional isolators are large, ex-
pensive and heavy. An individual isolator can weigh one ton or more and cost many thousands of dollars.
To extend this earthquake-resistant strategy to housing and commercial buildings, the cost and weight of
the isolators must be reduced.

The primary weight in an isolator is that of the steel reinforcing plates used to provide the vertical
stiffness of the rubber-steel composite element. A typical rubber isolator has two large end-plates around
25 mm (1 inch) thick and 20 thin reinforcing plates around 3 mm (1/8 inch) thick. The high cost of
producing the isolators reflects the labor involved in preparing the steel plates and laying-up of the
rubber sheets and steel plates for vulcanization bonding in a mold. The steel plates are cut, sand blasted,
acid cleaned and then coated with bonding compound. Next, the compounded rubber sheets with the
interleaved steel plates are put into a mold and heated under pressure for several hours to complete the
manufacturing process. Both the weight and the cost of isolators could be reduced if the steel reinforcing
plates were eliminated and replaced by fiber reinforcement. As fiber materials are available with an
elastic stiffness that is of the same order as that of steel, the reinforcement needed to provide the vertical
stiffness may be obtained by using a similar volume of very much lighter material. There is also the fact
that more steel is used than is needed to ensure the required vertical stiffness of the isolator because it
is difficult to sand blast very thin plates. With carbon fiber, bonding can be done without this cleaning
so that only the required minimum of reinforcement is needed. The cost savings may be possible if
the use of fiber allows a simpler, less labor-intensive manufacturing process such as building the iso-
lators in long rectangular strips, with individual isolators cut to the required size. All steel-reinforced
isolators are currently manufactured as either circular or square. Rectangular isolators in the form of
long strips would have distinct advantages over square or circular isolators when applied to buildings
where the lateral-resisting system is walls. When isolation is applied to buildings with structural walls,
additional wall beams are needed to carry the wall from isolator to isolator. A strip isolator would have
a distinct advantage for retrofitting masonry structures and for isolating residential housing constructed
from concrete or masonry blocks.

The vertical stiffness of a steel-reinforced bearing is approximated by assuming that each individual
pad in the bearing deforms in such a way that horizontal planes remain horizontal and points on a
vertical line lie on a parabola after loading. The plates are assumed to constrain the displacement at the
top and bottom of the pad. Linear elastic behavior with incompressibility is assumed, with the additional
assumption that the normal stress components are approximated by the pressure. This leads to the well-
known pressure solution which is generally accepted as an adequate approximate approach for calculating
the vertical stiffness. The extensional flexibility of the fiber reinforcement can be incorporated into this
approach, and the resulting vertical stiffness calculated.

A number of carbon fiber-reinforced rubber strip isolators were tested on a small isolator test machine.
The tests show that the concept is viable. The vertical and horizontal stiffnesses of the strip isolator are
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less than those for the equivalent steel-reinforced isolator but still adequate and they proved to be easy
to cut with a standard saw, in contrast to steel-reinforced isolators which are difficult to cut and need
special saws. They are light and can be put in place without the use of lifting equipment.

While no fiber-reinforced isolators have been used to date in any building project the idea appears to
have gained some attention in other countries. For example in Korea a group of researchers associated
with Pusan University has studied the manufacturing of the bearings and their use for a shock absorbing
system [Moon et al. 2003]. In Italy a group of researchers has tested rectangular carbon fiber-reinforced
bearings as isolators for liquid storage tanks at refineries and petrochemical facilities [Summers et al.
2004]. Recent experimental work at McMaster University in Canada has confirmed that these bearings
are a viable option for the base isolation of ordinary low-rise buildings [Toopchi-Nezhad et al. 2007]. All
of this testing work indicates that these isolators are practical and it should lead to their widespread use.

2. Vertical stiffness of fiber-reinforced bearings

The essential characteristic of the elastomeric isolator is the very large ratio of the vertical stiffness to the
horizontal stiffness. This is produced by the reinforcing plates, which in current industry standard are
thin steel plates. These plates prevent lateral bulging of the rubber, but allow the rubber to shear freely.
The vertical stiffness can be several hundred times the horizontal stiffness. The steel reinforcement has
a similar effect on the resistance of the isolator to bending moments, referred to as the bending stiffness.
This important design quantity makes the isolator stable against large vertical loads.

2.1. Compression of pad with rigid reinforcement. A linear elastic theory is the most common method
used to predict the compression and the bending stiffness of a thin elastomeric pad. The first analysis of
the compression stiffness was done using an energy approach by Rocard [1937]; further developments
were made by Gent and Lindley [1959] and Gent and Meinecke [1970]. A very detailed description of
the theory is given by Kelly [1996] and need not be repeated here. The analysis is an approximate one
based on the kinematic assumptions that:

(i) points on a vertical line before deformation lie on a parabola after loading;

(ii) horizontal planes remain horizontal.

We consider an arbitrarily-shaped pad of thickness t and locate a rectangular Cartesian coordinate
system, (x , y, z), in the middle surface of the pad, as shown in Figure 1(a). Figure 1(b) shows the
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Figure 1. Constrained rubber pad and coordinate system.
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displacements, (u, v, w), in the coordinate directions under assumptions (i) and (ii):

u(x, y, z)= u0(x, y)(1 − 4z2/t2),

v(x, y, z)= v0(x, y)(1 − 4z2/t2),

w(x, y, z)= w(z).

(1)

This displacement field satisfies the constraint that the top and bottom surfaces of the pad are bonded to
rigid substrates. The assumption of incompressibility produces a further constraint on the three compo-
nents of strain, εxx , εyy , εzz , in the form

εxx + εyy + εzz = 0, (2)

and this leads to
(u0, x + v0, y)(1 − 4z2/t2)+w,z = 0,

where the commas imply partial differentiation with respect to the indicated coordinate. When integrated
through the thickness, this gives

u0, x + v0, y =
31
2t

=
3
2
εc, (3)

where the change of thickness of the pad is 1 (1> 0 in compression), and εc =1/t is the compression
strain.

The other assumptions of the theory are that the material is incompressible and that the stress state is
dominated by the pressure, p, in the sense that the normal stress components can be taken as −p. The
vertical shear stress components are included but the in-plane shear stress is assumed to be negligible.

These assumptions and the equations of stress equilibrium lead to the pressure solution

p,xx + p,yy = ∇
2 p = −

12G1
t3 = −

12G
t2 εc. (4)

The boundary condition, p = 0, on the perimeter of the pad completes the system for the pressure
distribution, p(x , y), across the pad. The effective compression modulus Ec of the pad is obtained by
computing p(x , y) in terms of the compression strain εc, and integrating it over the area of the pad to
determine the resultant load P . The effective compression modulus is then given by

Ec =
P

Aεc
. (5)

The value of Ec for a single rubber layer is controlled by the shape factor S defined as

S =
loaded area

free area
,

which is a dimensionless measure of the aspect ratio of the single layer of the elastomer. For example,
in an infinite strip of width 2b, and with a single layer thickness of t , S = b/t , and for a circular pad of
diameter 8 and thickness t , S =8/(4t), and for a square pad of side a and thickness t , S = a/(4t).

In this paper we are only interested in the theory for a long strip when the effects of the ends can be
neglected and the strip is taken to be infinite. For an infinite strip of width 2b (see Figure 2), Equation
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Figure 2. Infinitely long rectangular pad showing dimensions.

(4) reduces to

∇
2 p =

d2 p
dx2 = −

12G
t2 εc,

which, with p = 0 at x = ±b, gives

p =
6G
t2 (b

2
− x2)εc.

In this case the load per unit length of the strip, P , is given by

P =

∫ b

−b
p dx =

8Gb3

t2 εc. (6)

Since the shape factor S is given by S = b/t , and the area per unit length is A = 2b,

Ec =
P

Aεc
= 4GS2. (7)

2.2. Compression stiffness with flexible reinforcement. Before looking at the analysis for the bearing
reinforced by fibers that are initially not straight it is necessary to review that for the initially straight
fiber.

In developing the solution for the compression of a pad with flexible reinforcement, the rubber, as
before, is assumed incompressible and the pressure is assumed to be the dominant stress component.
The kinematic assumption of quadratically variable displacement is supplemented by an additional dis-
placement that is constant through the thickness and is intended to accommodate the stretching of the
reinforcement. Thus in this case the displacement pattern given in Equation (1) is replaced by

u(x, z)= u0(x)(1 − 4z2/t2)+ u1(x),

w(x, z)= w(z),
(8)

The constraint of incompressibility of Equation (2) remains, and, modified for the additional stretch of
the reinforcement, becomes

u0, x +
3
2

u1, x =
31
2t
. (9)

The only equation of stress equilibrium in this case is σxx, x + τxz, z = 0, and the assumption of elastic
behavior means that

τxz = Gγxz, (10)
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Figure 3. Force in equivalent sheet of reinforcement.

and calculating γxz from Equation (8) gives

γxz = −
8z
t2 u0. (11)

The assumption that σxx = σzz = −p, when applied to the sole equation of equilibrium, provides

p,x = −
8Gu0

t2 . (12)

The individual fibers are replaced by an equivalent sheet of reinforcement of thickness t f . The internal
force, F(x), per unit width of the equivalent reinforcing sheet is related to the shear stresses on the top
and bottom of the pad by

d F
dx

− τxz
∣∣
z=t/2 +τxz

∣∣
z=−t/2= 0,

as shown in Figure 3. The shear stresses on the top and bottom of the pad are given by

τxz
∣∣
z=t/2= −

4Gu0

t
, τxz

∣∣
z=−t/2=

4Gu0

t
,

leading to
d F
dx

= −
8Gu0

t
. (13)

When the fiber is assumed to be initially straight the extensional strain ε f in the reinforcement is related
to the stretching force through the elastic modulus of the reinforcement E f and the thickness t f such
that

ε f = u1, x =
F

E f t f
, (14)

which, when combined with Equation (13), gives

u1, xx = −
8G

E f t f t
u0. (15)

The complete system to be solved consists of Equations (9), (12) and (15) above.
The boundary conditions used are the vanishing of the pressure p and the reinforcement force F at

the edges of the strip, x = ±b leading to p(±b)= 0, u1, x(±b)= 0; and the assumption of a symmetric
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displacement pattern gives u1(0)= 0, u0(0)= 0. The results for p and F from [Kelly 1999] are

p =
E f t f

t

(
1 −

coshαx/b
coshα

)
εc, F(x)= E f t f

(
1 −

coshαx/b
coshα

)
εc, (16)

where
α2

=
12Gb2

E f t f t
. (17)

The load per unit length of the strip, P , is given by

P =
E f t f

t
2
∫ b

0

(
1 −

coshαx/b
coshα

)
dx εc =

2E f t f

αt
b(α− tanhα)εc. (18)

This result can be interpreted as an effective compression modulus, Ec, given by

Ec =
E f t f

t

(
1 −

tanhα
α

)
. (19)

We note that when α→ 0, i.e., E f → ∞, we have Ec = 4GS2 as before. The formula also shows that
Ec < 4GS2 for all finite values of E f .

The effect of the elasticity of the reinforcement on Ec can be illustrated by normalizing the compres-
sion modulus Ec, by dividing by 4GS2, giving from Equation (19)

Ec

4GS2 =
3
α2

(
1 −

tanhα
α

)
, (20)

which is shown in Figure 4 for 0 ≤ α ≤ 5. Note how the stiffness decreases with decreasing E f .
It is worthwhile to note that α also depends on the shape factor S, through

α2
= 12

G
E f

S2 t
t f
.

In the case of carbon fiber reinforcement the ratio G/E f will be extremely small although S2 and t/t f

are certain to be large.
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Figure 5. Fiber-reinforced bearing under vertical load.

2.3. Analysis for initially imperfect fiber reinforcement. There is one essential difference between the
behavior of a fiber-reinforced bearing and a steel-reinforced bearing, and that is the degree of run-in
before the full vertical stiffness is developed. In a steel-reinforced bearing the run-in is relatively small
as shown in the examples in Figures 5, 6 and 7. In Figure 5 we see a fiber-reinforced bearing in the test
machine under vertical load in this case generating a pressure of 6.9 MPa. The resultant force deflection
curve is shown in Figure 6. The corresponding curve for a steel-reinforced bearing is shown in Figure 7.
There is of course some run-in in this case but it is much less than that for the fiber bearing. It should be
noted for comparison purposes that the steel bearing has much larger thickness of rubber. The steel plates
are more or less rigid so their in-plane flexibility plays no role in the stiffness. The reason there is any
run-in is probably that in the manufacturing process the plates are initially not quite parallel with the end
plates and a slight amount of adjustment takes place as the vertical load is applied. In a fiber-reinforced
bearing it is always much larger and one could speculate that the reason for this is that linear behavior is
only developed when significant tension is produced in the fiber. This cannot be the explanation since if
the fiber is straight it is its elastic extensibility that affects the vertical stiffness not the force in the fiber.

The most likely source of the run-in is that the fibers are initially not straight and as they have no
bending stiffness, the vertical stiffness cannot be developed until they have been straightened by the action
of the applied vertical load. Straightening the fibers requires the fiber to push against the surrounding
rubber. This causes an increasing force in the fiber but as the fiber is straightening there will be a
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transition to the tensile extensionality of the fiber and the consequent stiffness of the composite system.
These bearings can be used in a wide range of applications including seismic protection of buildings,
bridge bearings and vibration isolation bearings, so there is a need to develop a method for predicting
how much vertical load or vertical displacement is needed before the full vertical stiffness can be achieved.
The analysis here is an attempt to formulate a prediction for the transition from the initially bent to the
finally straight fiber.

The method takes the already formulated analysis for the straight fiber and modifies it by treating the
fiber as a string on an elastic foundation, adds to this an estimate of the subgrade reaction of this founda-
tion, and, using the basic equations of the fiber-rubber composite, calculates the effective compression
modulus as a function of the vertical compression strain.

If it is no longer assumed that the force in the fiber is related solely to the extensional strain as in
Equation (14) the basic equations are Equations (4), (7) and (8) and a further constitutive equation for F
is required, which will be derived in the next two sections.

2.4. String on an elastic foundation. The equation for the deflection v(x) of a tightly stretched string
under the action of a lateral load p(x) is

T0
d2v

dx2 + p = 0,

where T0 is the constant x-component of the tension force in the string. The lateral load in this case is
given by

p = k(v0 − v),

where v0 is the initial shape of the string, giving as the equation for the deflection of the string

T0
d2v

dx2 − kv = kv0.

If we assume that v0(x) = v0 sin(πx/ l) and v(x) = v sin(πx/ l) where now v0 and v are taken as
constants we have

T0 = k
l2(v0 − v)

π2v
or v =

v0

1 + T0 π2/(kl2)
,

showing that T0 → ∞ as v → 0 and vice versa. The initial projected length of a half wavelength of the
string is l and the curved length L is given by

L = l +
1
2

∫ l

0

( d
dx
v0(x)

)2
dx .

We assume that the curved length remains constant so that as the string tension increases the deformed
projected length increases to become l + δ, such that

L = l + δ+
1
2

∫ l

0

( d
dx
v(x)

)2
dx,

from which the change in length δ becomes

δ = π2 (v
2
0 − v2)

4l
,
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and with v in terms of T0 and v0 from the above equation we have

δ

l
= π2 v

2
0(2 +π2T0/(kl2))

4l2(1 +π2T0/(kl2))2
π2 T0

kl2 .

To this result we add the stretch of the string due to its own elasticity, giving

δ

l
=

T0

E A
+π2 v

2
0(2 +π2T0/(kl2))

4l2(1 +π2T0/(kl2))2
π2 T0

kl2 , (21)

where E is the modulus of elasticity of the string and A is the cross sectional area.
At this point it is necessary to change from the variables of the string equations to the quantities of the

fiber bearings. Thus T0 → F , E A → E f t f and δ/ l → du1/dx . We note that F now has the dimension
of force/unit width and t f is area/unit width.

2.5. Estimation of subgrade stiffness between fiber and rubber. We assume that the half-wavelength
of the initial lack of straightness is much smaller than the thickness of the rubber layer and assume that
the deformation takes place in a semiinfinite space and that the state of strain is plane strain. The material
is assumed to incompressible.

Under these assumptions the stress strain relations

εxx =
1
E

[(1 − v2)σxx − v(1 + v)σyy], εyy =
1
E

[(1 − v2)σyy − v(1 + v)σxx ], γxy =
1
G
τxy,

become

εxx =
1

4G
[σxx − σyy], (22)

εyy =
1

4G
[σyy − σxx ], (23)

γxy =
1
G
τxy . (24)

The stress function 8 given by

∂4

∂x48+ 2
∂2

∂x2

∂2

∂y28+
∂4

∂y48= 0,

takes the form
8= f (y) sin

πx
l
,

with
f = Aeπy/ l

+ Be−πy/ l
+ C

πy
l

eπy/ l
+ D

πy
l

e−πy/ l,

where A, B, C and D are constants of integration. For a half space the constants A and C must vanish
and 8 reduces to

8= sin
πx
l

(
Be−πy/ l

+ D
πy
l

e−πy/ l
)
,
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from which the stresses become

σxx =
∂28

∂y2 =
π2

l2 sin
πx
l

(
B − 2D + D

πy
l

)
e−πy/ l,

σyy =
∂28

∂x2 = −
π2

l2 sin
πx
l

(
B + D

πy
l

)
e−πy/ l,

τxy =
∂28

∂x∂y
=
π2

l2 cos
πx
l

(
B − D + D

πy
l

)
e−πy/ l .

At the top surface, y = 0, we have σyy = p sin (πx/ l)= (−π2/l2) sin (πx/ l)B and τxy = 0.
Thus B = D = (l2/π2)p and the stresses become

σxx = −p sin
πx
l

(
1 −

πy
l

)
e−πy/ l,

σyy = −p sin
πx
l

(
1 +

πy
l

)
e−πy/ l,

τxy = p cos
πx
l

(πy
l

)
e−πy/ l .

To calculate the displacement field for these stresses we first calculate the strains which for the stress-
strain relations from Equations (23), (24) and (25) are

εxx =
p

2G
sin

πx
l

(πy
l

)
e−πy/ l,

εyy = −
p

2G
sin

πx
l

(πy
l

)
e−πy/ l,

γxy =
p

4G
cos

πx
l

(πy
l

)
e−πy/ l .

The resulting displacements obtained by integrating the strain-displacement equations for the first two
are

u = −
p

2G
cos

πx
l

ye−πy/ l
+ f1(y),

v =
p

2G
sin

πx
l

(
1 +

πy
l

)
e−πy/ l

+ f2(x),

where at this point f1(y) and f2(x) are arbitrary functions of their respective variables. Substitution of
these two displacement equations into the equation for the shear strain,

γxy =
1
G
τxy =

∂u
∂y

+
∂v

∂x
,

gives
p
G

cos
πx
l

ye−πy/ l
+

d f1

dy
+

d f2

dx
=

p
G

cos
πx
l

ye−πy/ l,

from which we conclude that
d f1

dy
+

d f2

dx
= 0,
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and that the functions are equal and opposite constants, and the displacement field takes the form

u = −
p

2G
cos

πx
l

ye−πy/ l
+ c,

v =
p

2G
l
π

sin
πx
l

(
1 +

πy
l

)
e−πy/ l

− c,

It is reasonable to choose the upward displacement at the origin to be zero from which

v(0, 0)= 0 and c = 0

and the displacement of the surface by the applied load is

v(x, 0)=
p

2G
l
π

sin
πx
l
.

In the context of the subgrade reaction we have p = kδ, which, with

δ = v
(1

2
, 0
)
=

pl
2Gπ

,

leads finally to the result

k = 2G
π

l
. (25)

In the bearing there is rubber on both sides of the fiber sheet so that the subgrade reaction will be twice
this.

2.6. Calculation of compression modulus. The main purpose of this paper is to calculate the compres-
sion modulus Ec as a function of the compression strain εc as the fiber is straightened from its initial
imperfect condition. The procedure will be to calculate the tension force F in the fiber as a function
of the compression strain and from that the pressure distribution p(x), which, when integrated over the
area of the bearing, gives the total compression load P . Knowing the load and the strain the modulus is
calculated from

Ec =
P

Aεc
. (26)

The basic equations for the fiber-reinforced strip bearing are repeated here to clarify the method. They
are the constraint equation of incompressibility

du0

dx
+

3
2

du1

dx
=

3
2
εc,

the equilibrium equation relating pressure and shear stress in the rubber

dp
dx

= −
8Gu0

t2 ,

and the equilibrium equation for the tension force in the fiber

d F
dx

= −
8Gu0

t
.
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Using the first equation to eliminate u0, the third equation becomes

d2 F
dx2 =

12G
t

du1

dx
−

12G
t
εc.

For a straight fiber, du1/dx is the tensile strain in the fiber and is related to F through the elasticity of
the fiber, but here we use the expression for δ/ l from Equation (21), giving

d2 F
dx2 −

12G
t

(
F

E f t f
+
π2v2

0

4l2

2 + Fπ2/(kl2)(
1 + Fπ2/(kl2)

)2

)
= −

12G
t
εc.

This can be written in terms of dimensionless groups of variables in the form

d2

dx2

(Fπ2

kl2

)
−

12G
E f t f t

(
1 + E f t f

π2v2
0

4l2

π2

kl2

2 + Fπ2/(kl2)(
1 + Fπ2/(kl2)

)2

)
Fπ2

kl2 = −
12G

t
π2

kl2 εc.

We note here that the subgrade reaction calculated in the previous section is now 4πG/ l since the fiber
has rubber on both sides. It is now convenient to define the following set of dimensionless variables:

x̄ =
x
b
, y =

πF
4Gl

, α2
=

12Gb2

E f t f t
, β =

π3v2
0

16Gl3 E f t f , s = 3π
b2

tl
εc. (27)

In terms of these variables the complete system of equations reduces to

d2 y
dx̄2 −α2

(
1 +β

2 + y
(1 + y)2

)
y = −s, (28)

on −1 ≤ x̄ ≤ 1 with y(−1)= y(1)= 0. It is worth noting at this point that when s → 0 and y → 0, this
equation takes the form

d2 y
dx̄2 −α2(1 + 2β)y = −s,

and if s is very large, y also becomes large and the term β(2+ y)/(1 + y)2 tends to zero, and the equation
becomes

d2 y
dx̄2 −α2 y = −s.

When the fiber is initially straight, i.e., β = 0, the latter equation prevails, demonstrating that the effect
of the initial imperfection is subsumed in the β term.

2.7. Solution Technique. Equation (28), for y = y(x), is essentially unsolvable except by numerical
methods, but a good approximation can be obtained by replacing y(x) in the bracketed term by ȳ where,

ȳ =
1
2

∫ 1

−1
y(x̄) dx̄ .

We then solve
d2 y
dx̄2 − ᾱ2 y = −s,
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where

ᾱ2
= α2

(
1 +β

2 + ȳ
(1 + ȳ)2

)
.

The solution using, symmetry and the boundary conditions at the edges, y(±1)= 0, is

y =
s
ᾱ2

(
1 −

cosh ᾱ x̄
cosh ᾱ

)
,

and the corresponding result for ȳ is

ȳ =
s
ᾱ2

(
1 −

tanh ᾱ
ᾱ

)
,

finally giving as the equation for ᾱ

ᾱ2
= α2

(
1 +β

2 + (s/ᾱ2)
(
1 − (tanh ᾱ)/ᾱ

)(
1 + (s/ᾱ2)(1 − (tanh ᾱ)/ᾱ)

)2

)
. (29)

The solution technique is to now specify the bearing parameters α2 and β, vary s, solve the equation
for ᾱ2, and, knowing this calculate first ȳ and then F(x̄) from

F(x̄)=
12Gb2

t
1
ᾱ2

(
1 −

cosh ᾱ x̄
cosh ᾱ

)
εc.

From the basic equations for the fiber bearing we have

dp
dx

=
1
t

d F
dx
,

giving

p(x)=
1
t

F(x)+ A,

where A is a constant of integration. The boundary condition on p is p(b)= p(−b)= 0, but that for F
is also F(b)= F(−b)= 0, so that A = 0 and

p(x̄)=
12Gb2

t2

1
ᾱ2

(
1 −

cosh ᾱ x̄
cosh ᾱ

)
εc,

from which we have

P =
12Gb2

t2

2b
ᾱ2

(
1 −

tanh ᾱ
ᾱ

)
εc = Ec(2b)εc, Ec=

12Gb2

t2

1
ᾱ2

(
1 −

tanh ᾱ
ᾱ

)
.

Since S = b/t , this can be written in the form

Ec = 4GS2 3
ᾱ2

(
1 −

tanh ᾱ
ᾱ

)
, (30)

where 4GS2 is, we recall, the modulus of the steel-reinforced bearing.
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2.8. Orders of magnitude and numerical examples. The important quantities for any particular solution
are α and β. We have

α2
=

4GS2

E f

t
t f
, β =

π3 E f

16G
v2

0 t f

l3 .

Typical properties for a fiber-reinforced bearing are S = 10, G = 100 psi, E f = 20 × 106 psi and
t/t f = 10, from which we get α ≈ 0.25. To estimate the value of β we assume that the initial lack of
straightness v0 is of order t f and that there are 10 half-wavelengths across the width of an individual
layer which gives a value of 400. The initial modulus is given by

E0
c = 4GS2 3

α2(1 + 2β)

(
1 −

tanhα(1 + 2β)1/2

α(1 + 2β)1/2

)
,

and the fully developed modulus by

E∞

c = 4GS2 3
α2

(
1 −

tanhα
α

)
.

For this selection of parameters the quantity α(1 + 2β)1/2 takes the value 7.1 and the initial modulus is

E0
c = 4GS2(0.0510),

and the asymptotic modulus is
E∞

c = 4GS2(0.9756),

a ratio of about 19, showing how a small deviation from initial straightness can cause a very large
reduction in the stiffness and presumably lead to the observed initial run-in before the full stiffness of
the bearing is developed.

The question still to be resolved is the level of vertical compression needed to produce a straight fiber.
To determine this it is necessary to calculate the evolution of Ec as a function of s from its initial value
at s = 0. It should be recalled that s depends on εc through Equation (27). For the parameters already
used, we have s = 1000εc. The process is now to insert values of s into Equation (29) calculate ᾱ, and
then calculate Ec from Equation (30). To evaluate the average pressure on the surface of the bearing that
is needed to achieve a certain value of the modulus it is only necessary to multiply the current value of
Ec(εc) by εc to provide this information. A number of examples have been computed from the analysis,
with the only difference between them being the degree of initial imperfection of the fiber. Thus we fix
α and vary s and calculate Ec in terms of εc and then the average pressure p = Ecεc for certain values
of b. These examples are shown in Figure 8. It is clear that the initial lack of straightness can have a
very large effect on the initial stiffness of the bearing but it is also clear that it is not necessary to have
the fiber totally straight for the stiffness to achieve the effective final value.

It is worth noting that at this value of α the effect of the flexibility of the fiber reinforcement is, if the
fiber were straight, quite small; the reduction in the compression modulus is only 2.5% and one could
speculate that the large effect of the initial lack of straightness could be due to this. To check if this in
fact the case the results were computed for the example corresponding to a reduction of the fiber modulus
by a factor of sixteen giving α = 1.00. These results are shown in Figure 9. It is clear that even with a
very flexible fiber the initial lack of stiffness still plays a major role in the evolution of the modulus and
the load deflection curve.
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Figure 8. Run-in for high-stiffness fiber case: modulus and pressure vs. strain.

3. Conclusions

The main difference between the behavior of a fiber-reinforced and a steel-reinforced bearing is the
degree of run-in under vertical loading. In this paper it has been shown that this can be attributed to an
initial lack of straightness in the fiber and since in certain cases it may be necessary to predict this, a
theoretical analysis of the effect has been developed. The theory has been based on well-known principles
of solid mechanics. The analysis has shown that a quite small initial lack of straightness in the fiber can
have a surprisingly large effect on the initial stiffness of the bearing. However the asymptotic value of
the stiffness, the stiffness when the fiber is assumed to be completely straight, is actually achieved well
before the fiber has completely straightened out. This is an encouraging result since the point of using
fiber-reinforced bearings as isolators is to develop a lower-cost manufacturing approach than that for
steel-reinforced bearings. An effort to hold the fiber tight during the vulcanization process would lead
to higher costs and defeat the purpose of the endeavour.
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Figure 9. Run-in for low-stiffness fiber case: modulus and pressure vs. strain.
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