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SHAPE OPTIMIZATION IN AN ELASTIC PLATE UNDER REMOTE SHEAR:
FROM SINGLE TO INTERACTING HOLES

SHMUEL VIGDERGAUZ

An elastic plate with two closely spaced identical holes of fixed area is taken as a two-dimensional
sample geometry to find the interface shape which minimizes the energy increment in a homogeneous
shear stress field given at infinity. This is a transient model between a single energy-minimizing hole
and a regularly perforated plate, both numerically solved by a genetic optimization algorithm together
with a fast and accurate fitness evaluation scheme using the complex-valued elastic potentials which are
specifically arranged to incorporate a traction-free hole boundary. Here the scheme is further enhanced
by a novel shape-encoding procedure through a conformal mapping of a single hole rather than both
holes simultaneously as is done in standard practice. The optimized shapes appear to be slightly rounded
elongated quadrangles aligned with the principal load axes. Compared to the single (square-like) optimal
hole, they induce up to 12% less energy depending on the hole spacing. Qualitatively, it is also shown that
the local stresses, computed along the optimal shapes as a less accurate by-product of the optimization,
exhibit a tendency to be piecewise constant with no local concentration.

1. Introduction

Multiple closely spaced holes are widely employed in engineering design. Fulfilling technological
functions, they weaken the structure and hence may substantially reduce its mechanical performance.
This happens due to high local stresses and energy concentration induced by the holes in an applied
external field. The resulting stress state of the structure depends on the holes’ shapes, areas and mutual
arrangement. Amongst these geometrical factors, the shapes are of less technological importance and
can be used by designers to achieve a more favorable stress state of the construction.

Quantitatively, the state is assessed by any of three interrelated criteria:

(A) the maximum of the von Mises stresses along the hole shapes;

(B) the maximum of the squared tangential stress variations. In the ideal case of zero variations (a
constant or piecewise constant stress distribution) no stress concentrations occur along the boundary;

(C) the energy increment brought by the holes into a given outer stress field.

Minimization of A, B or C gives some optimal properties to the perforated plate. Here, we deal with
the energy criterion C. The following considerations weigh in favor of our choice. First, for a finite
number of holes, this increment is the zeroth-order approximation of the measurable effective moduli of
an elastic perforated structure and hence has a clear physical meaning. The lesser the energy, the stiffer
the plate. Second, the tangential stress constancy (criterion B) is the necessary condition of the energy
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minimum (criterion C) as shown by Banichuk [1977] through variation of the energy integral. In other
words, the energy-minimizing holes simultaneously smooth the stress distribution. At the same time, the
integral criterion C is computationally much easier than A and B, both of local nature.

Finally, there is the strong practical correlation between the criteria A and C. For a single hole under
remote shear, it was semianalytically found in [Vigdergauz 2006] that the energy-minimizing hole pro-
vides almost the global minimum of the stresses (criterion A). Moreover, in the opposite case of uniform
loads of the same sign, we proved analytically in [Vigdergauz 1976] that all three criteria are minimized
for the same holes, called equistress holes (in accordance with criterion B). They are found by applying
the equistress principle [Cherepanov 1974], which says that the tangential stresses along the optimal
traction-free boundary are uniform. At a given number of holes this allows us to obtain the parametric
equations of the equistress shapes depending on the ratio between the far loads and on a number of
geometrical parameters which govern the mutual hole arrangement. We note in passing that Waldman
et al. [2003] questioned this finding. Their assertion that ”it turns out that Cherepanov’s solution is for
(two) holes that do not interact to any appreciable degree” is simply caused by confusing the parameters.
Namely, the modulus of the elliptic integrals in Cherepanov’s solution is specifically taken as 1/2, while
actually it varies between zero and one, thus covering any holes separation distance. In particular, with the
modulus tending to one, the optimal holes come closer and closer together. Further, Waldman et al. [2003]
misinterpreted our paper [Vigdergauz 1982] as dealing with two equistress holes in a plane. Actually, a
distinctly different case of the equistress hole in a half-plane is considered there in an attempt to study the
interaction between the hole and the traction-free edge. Nevertheless, the cited paper contains an infor-
mative variety of numerical results related to criterion B optimization, which we use later for reference.

Returning to criterion C we note that the increment divided by the total area of the holes depends
only on the geometry. The corresponding shape optimization problem reads: Given a uniform far-field
loading, an area of two traction-free identical holes in a thin infinite elastic plate and their spacing, find,
among all admissible continuous curves, the hole shape which minimizes the induced energy increment.

For concreteness, we restrict discussion to only two interacting holes, though most derivations are
easily generalized.

From the above it follows that this shape optimization problem is yet unsolved only for remote loads
of opposite signs when the equistress principle is no longer valid, as explained in Section 3. In this case,
numerical optimization required.

Any optimization process includes an iteration scheme and a repetitively used direct problem solver,
both of great importance for converging to true optimum. Generally, the iteration process employs gradi-
ent or nongradient methods which perform directional and nondirectional searching, respectively. As in
our previous papers [Vigdergauz 2001a; 2001b; 2006] we use here a nondirectional genetic optimization
algorithm (GA). The feasibility of GA-based shape optimization in continuum mechanics has firstly
been witnessed by Schoenauer et al. [1996]. The major advantage of this approach is that it explores the
solution space by testing parameter combinations simultaneously to avoid local minima and requires no
derivative information [Osyczka 2001].

We couple GA with the direct problem solver based on the one-potential formulation given in [Vigder-
gauz 2001a] of the complex-valued Kolosov–Muskhelishvili (KM) functions [Muskhelishvili 1963]. The
forward problem is then reduced to solving a system of linear algebraic equations where only the first
unknown is needed for the energy evaluation of a given hole shape. The main difficulty here is evaluating
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the shape integrals which enter into the system coefficients. Within the GA optimization, it induces
the question of how to effectively encode an arbitrary hole shape. The serious disadvantage of the
commonly used nodal points discretization is that the nodes simultaneously serve as design variables
and as integration points. As a consequence, the number of nodes should be large enough (typically
several tens or hundreds) for both adequate shape description and accurate integration. This impairs the
convergence of the optimization process because it needlessly enlarges the problem size and hence raises
the computation time.

Here we suggest an alternative approach which separates the design variables and the integration
points. To this end, the fact is employed that the exterior of a unit circle can be conformally mapped
holomorphically onto the exterior of any closed shape [Alfors 1979]. We use the first several coefficients
of its Laurent expansion as the design variables while the integration is performed over a circle at fixed
points independent of the optimization. This novelty drastically reduces the computational efforts and
permits us to obtain detailed results at reasonable accuracy.

In contrast to common practice, neither the elastic domain nor the stress-strain equations are really
transformed. The mapping is used for the pure geometrical purpose of encoding the searched shapes.

Our contribution is thus twofold: (i) a new, effective, and easily adaptive shape-decoding scheme for
gradientless searching algorithms is proposed, and (ii) the energy-minimizing interacting holes in an
elastic plane are numerically found on this basis.

Of course, the proposed scheme is not the only possible one. Good results have recently been obtained
by Waldman et al. [2003]. They use the finite element analysis within a specific gradientless shape
optimization method to identify the stress-constant holes (criterion B). In our opinion, both methods
complement each other. Numerical examples show that the finite element method (FEM) gives the
stresses with better accuracy, especially under a pure shear loading. The reason for this is explained
in Section 7. On the other hand, the KM functions can easily tackle an infinite domain and hence are
more suitable for the current purpose of minimizing the energy increment. It would thus be interesting to
combine the direct FEM solver with the proposed shape encoding scheme within a gradientless searching
to solve the stress minimization problem. However, this is beyond the scope of our paper.

Following is the outline of the rest of the paper. In Section 2 the two-dimensional boundary value
elastostatic problem for a multiconnected infinite region is formulated in complex-variable terms for
further references and the inverse shape identification problem is stated in detail. In Section 3 some
closed-form identities are derived for assessing the future numerical results. The forward problem solver
is described in Section 4 which is also concerned with the numerical validation of the proposed solver
by comparison with alternatively obtained results available in literature. A key Section 5 presents the
novel shape encoding scheme based on conformal mapping. Section 6 displays the GA framework
specifically designed for our current purposes. In Section 7 numerical results are presented in detail and
the capabilities of the scheme are tested, depending on the quantitative parameters involved. The paper
ends with some concluding remarks in Section 8.

2. Basic relations in two-dimensional elastostatics

Consider the setup in Figure 1. Let a thin infinite plate be weakened by two identical holes, each of
area F , symmetrically located on the X-axis of the complex plane E : z = x + iy. The hole boundary
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Figure 1. Schematic of the problem: an infinite plate with two identical holes under
uniform stresses, the cases P = Q and P = −Q correspond to remote bulk and shear,
respectively. The piecewise smooth hole shape is symmetric about the x-axis and may
have a finite number of angular points.

L = L2 + L1 divides E into the isolated regions {T1, T2 : T1 + T2 = T } inside the holes and the outer
connected region S = E − T occupied by a linearly elastic material with bulk and shear moduli K and
µ, respectively. The half-spacing d0 between the holes is measured as the minimal distance of the right
hole to the y-axis:

d0 = min x : x + iy ≡ t ∈ L1; d0 ≥ 0. (2.1)

Furthermore, let the plate be remotely loaded by uniform nontangential stresses:

σ∞

xx = P0, σ∞

yy = Q0, σ∞

xy = 0. (2.2)

The cases P0 = Q0 and P0 = −Q0 correspond to remote bulk and shear, respectively. Both settings
preserve twofold geometrical symmetry, by which the regions S and T go into themselves when rotating
around the origin through the angle π .

The resulting stresses in S are governed by the biharmonic Airy function which, though useful as a
theoretical tool, is numerically ineffective. Far more advantageous is the complex variable approach of
replacing the Airy function with a pair of holomorphic functions ϕ0(z), ψ0(z), z ∈ S + L (the KM poten-
tials [England 1971; Muskhelishvili 1963, Sections 47–51]) with the remote field asymptotics governed
by (2.2):

ϕ0(z)= B0z +ϕ(z), ψ0(z)= 00z +ψ(z) for z ∈ S + L , (2.3a)

ϕ(z)=
2a1
z

+ O
(
|z|−2) , ψ(z)=

2b1
z

+ O
(
|z|−2) as z → ∞, (2.3b)

4B0 = Tr{σ∞
} = Q0 + P0, 200 = Dev{σ∞

} = Q0 − P0, Im B0, Im00 = 0. (2.3c)

The leading asymptotic terms 2a1, 2b1 with the multiplier 2 are written thus for later convenience.
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Due to the setup symmetry, the potentials ϕ(z), ψ(z) are uneven:

ϕ(−z)= −ϕ(z), ψ(−z)= −ψ(z) for z ∈ S + L , (2.4)

and take conjugate values at complex conjugate points [Muskhelishvili 1963]:

ϕ(z)= ϕ(z), ψ(z)= ψ(z) for z ∈ S + L . (2.5)

With this in view, the following Laurent expansions are valid in S + L [Alfors 1979]:

ϕ(z)=

∞∑
k=1

ak

( 1
(z − c)k

−
(−1)k

(z + c)k

)
, ψ(z)=

∞∑
k=1

bk

( 1
(z − c)k

−
(−1)k

(z + c)k

)
,

Im ak = Im bk = 0 for k = 1, 2, . . . , (2.6)

where c is a fixed point on the X -axis inside the hole T1 (Im c = 0, c > d0). In conformity with (2.3b),
we have

lim
z→∞

zϕ(z)= 2a1, lim
z→∞

zψ(z)= 2b1. (2.7)

By residue theory [Alfors 1979], the first coefficients a1, b1 in (2.6) are equally expressed as

2a1 = −
1

2π i

∫
L
ϕ(t) dt, 2b1 = −

1
2π i

∫
L
ψ(t) dt. (2.8)

Dimensionally, they are proportional to the hole area F [Muskhelishvili 1963]

a1 = α1 F, b1 = β1 F, (2.9)

where, in turn, F is given by the contour integral [Alfors 1979]

2F =
1
2i

∫
L

t dt =
1
i

∫
L j

t dt for j = 1, 2, (2.10)

while
1

2π i

∫
L j

tndt = 0,
1

2π i

∫
L j

dt
(t − z)n

= δn,1 for n = 0, 1, . . . , z ∈ L j , j = 1, 2. (2.11)

Here δ is the Kronecker delta. All the integrals above are traversed counterclockwise.
For simplicity in further manipulations, suppose that the hole boundary L is traction-free:

σρρ(t)= σρτ (t)= 0 for all t ∈ L , (2.12)

where σ(t) = {σρρ, σττ , σρτ } represents the stress tensor in a local system of curvilinear orthogonal
coordinates (ρ, τ ) at a point t ∈ L . With the KM potentials, (2.12) possesses the form

ϕ(t)+ tϕ′(t)+ψ(t)= −2B0t −00t + C j for t ∈ L j , j = 1, 2. (2.13)

Here the C j are free complex-valued constants not affecting the stress field. Identity (2.13) forms a bound-
ary value problem in the holomorphic functions ϕ(z), ψ(z) with first-order vanishing conditions (2.3) at
infinity. For a proper choice of the constants C j , this problem is uniquely solvable [Muskhelishvili 1963]
in a broad class {L} of continuous hole shapes. The solved functions ϕ(z), ψ(z) completely describe
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the hole-induced distortion of the homogeneous field (2.2). Remarkably, the Cartesian displacements
ux(t), u y(t) of the boundary points t ∈ L are expressed only through ϕ(z) [Vigdergauz 2001a]:

ux(t)+ iu y(t)=

( 1
K

+
1
µ

)
(B0t +ϕ(t)) for t ∈ L , (2.14)

as is the nonzero stress component σττ (t) [Muskhelishvili 1963]:

σττ (t)= 4B0 + 4 Reϕ′(t) for t ∈ L . (2.15)

Combining (2.14) and (2.15), we arrive at an interesting identity which holds only at a traction-free hole
boundary

σττ (t)= 4
( 1

K
+

1
µ

)−1
Re(u′

x(t)+ iu′

y(t)). (2.16)

Application of the maximum principle to the harmonic function Reϕ0(z) provides (after some algebra)
the interesting lower bound [Vigdergauz 1976]

max | Reϕ0(t)| ≥ |ϕ0(∞)| H⇒ M ≡ max |σττ (t)| ≥ 4|B0| for t ∈ L , (2.17)

which turns out to be attainable (see the next section). At a free boundary |σττ (t)| coincides with the
von Mises stresses.

The stresses at any point inside S are also expressed in ϕ(z), ψ(z). We omit the corresponding for-
mulae to save room.

At a given loading, the potentials ϕ(z), ψ(z) and hence the stress distortion depend only on the hole
shapes and their mutual location defined by the dimensionless parameter λ= d0

√
π/F (the multiplier

π serves for convenient comparison with the literature data where a unit circle with F = π is usually
considered). This one-parameter dependence brings up the optimization problem:

To find the hole shapes that minimize the stress distortion as measured through the induced strain energy
increment 1W divided by the total hole area 2F.

1W (B0, 00, λ, L)−−−−−−−−−−→
{L}

min(B0, 00, λ), (2.18)

The lesser the increment, the stiffer the plate weakened by the holes. Mathematically, 1W takes
the form of the first-order approximation to the effective moduli of a regularly perforated plate when
the volume fraction of the hole is vanishingly small. Due to its averaging nature, the energy increment
involves only the first terms (2.9) of the expansion (2.6) [Jasiuk 1995; Vigdergauz 2001a]

1W = 8π(200α1 + B0β1)
( 1

K
+

1
µ

)
. (2.19)

Nevertheless, 1W can be extracted and optimized only from the full-size solution of the problem (2.13).
The optimization strategy depends on whether the ratio

∣∣Dev{σ∞
}/Tr{σ∞

}
∣∣ in (2.3c) is less than 1.

Physically, this ratio measures the far-field anisotropy.
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3. Bulk load: analytical relations for the equistress shapes

When the deviatoric part of σ∞ is no larger than its trace

|δ0| ≤ 1; δ0 ≡
Dev{σ∞

}

Tr{σ∞}
=

Q0 − P0

Q0 + P0
=
00

2B0
, (3.1)

or, equivalently, the far loads are of the same sign, the inverse problem (2.18) admits a remarkable
solution dating back to the pioneering work by Cherepanov [1974]. Namely, if ϕ(z) is identical to zero,

ϕ(z)≡ 0, z ∈ S + L , (3.2)

then the traction-free condition (2.13) goes into the resolving equation for ψ(z) :

ψ(t)= −2B0t −00t + C j for t ∈ L j , j = 1, 2. (3.3)

Actually, identity (3.3) presents the inverse problem of finding the shapes which bear the given values
of a holomorphic function vanishing at infinity. With (3.1) and, possibly, nonzero constants C j , this
problem is proven to be uniquely solvable under the necessary condition

‖00‖ ≤ 2‖B0‖. (3.4)

Indeed, differentiating (3.3) with respect to t and taking the real parts of both sides we arrive at

Reψ ′(t)= −00 − 2B0 Re
∂t
∂t

for t ∈ L j , j = 1, 2, (3.5)

where the harmonic function u(x, y)≡ Reψ ′(t) vanishes at infinity. The Mean Value theorem [Alfors
1979] implies that u(x, y) has at least one zero on L , so that

00 = −2B0 Re
∂t0
∂t0

for t0 ∈ L . (3.6)

The well-known inequality ‖∂t/∂t‖ ≤ 1 [Alfors 1979] makes (3.6) equivalent to (3.4). The corresponding
function ψ(z) is further referred to as the domain characteristic function �0(z)≡ψ(z) [Vigdergauz 1988].
The resultant holes exist for any mutual arrangement, up to their touching. They simultaneously possess
some analytically derived optimal properties:

• First, substitution of (3.2) into (2.15) shows that the stress distribution along the hole shapes (3.3) is
uniform:

σττ (t)= Const = 4B0 for t ∈ L , (3.7)

with no local concentration potentially harmful for the plate strength. Because of (3.7) these are called
equistress or equistrength holes [Cherepanov 1974].

• Second, the equistress condition (3.2) saturates inequality (2.17), thus giving the global minimum to
the maximum von Mises stresses over all possible hole shapes:

min
{L}

max
t∈L

|σττ (t)| = min
{L}

max
t∈L

M = 4B0 for δ0 ≤ 1. (3.8)
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• Finally, substituting (3.3) into (2.19) and making use of (2.10), (2.11) we arrive at the energy increment
value

1W = 4B2
( 1

K
+

1
µ

)
, (3.9)

which again turns out to be the global minimum [Gibiansky and Cherkaev 1984].
All three criteria (3.7)–(3.9) are independent of the far stresses deviator 00 and the relative distance

between the holes, while the equistress shapes do depend on both, as dictated by (3.3). Particularly, the
equistress isolated hole is simply an ellipse [Cherepanov 1974] with eccentricity δ0 elongated along the
far field eigendirection of the maximum |P0|, |Q0|. Some specific arrangements of the optimal interacting
holes are found in [Cherepanov 1974; Vigdergauz 1976; Grabovsky and Kohn 1995; Vigdergauz 1996].
Commonly, the equistress shapes are smooth with no angular points.

Pairs of equistress holes are numerically reproduced in [Waldman et al. 2003]. As compared to the
analytical shape equation derived in [Cherepanov 1974] (and generalized as explained in the Introduc-
tion), these findings bring no novelty to the equistress solutions but they help to verify the proposed
FEM-based stress optimization scheme.

With the properties we have shown, we are now in a position to derive a guiding inequality for 1W
outside the interval (3.1). Indeed, let a plate with equistress holes be subject to an arbitrary far load:
P, Q with 4B = P + Q, 20 = Q − P . Integration of the traction-free condition (2.13) over L separately
with respect to dt and dt gives:∫

L
ϕ(t)dt +

∫
L

tϕ′(t)dt +

∫
L
ψ(t)dt = −2B

∫
L

tdt −0

∫
L

tdt + C1

∫
L1

dt + C2

∫
L2

dt, (3.10a)∫
L
ϕ(t)dt +

∫
L

tϕ′(t)dt +

∫
L
ψ(t)dt = −2B

∫
L

tdt −0

∫
L

tdt + C1

∫
L1

dt + C2

∫
L2

dt . (3.10b)

Consider the first identity (3.10a). With (2.10) and (2.11), all integrals, excepting the first two, are taken
in the form independent of the holes shapes. For the equistress boundaries, the remaining integrals can
also be written explicitly. To this end, separately differentiating the characteristic Equation (3.3) with
respect to t and t ,

dt = (−2B0)
−1(�′

0(t)+00
)

dt; B0 6= 0, (3.11a)

dt = (−2B0)
−1(�′

0(t)+00
)

dt, (3.11b)

we have ∫
L
ϕ(t) dt = (−2B0)

−1
∫

L
ϕ(t)(�′

0(t)+00) dt . (3.12)

The first integral on the right-hand side of (3.12) is the conjugate value of the residue at infinity of the
holomorphic function ϕ(z)�′

0(z). It vanishes because, in view of (2.3b), we have ϕ(z)�0(z)′ = O(|z|−3)

as z → ∞. Finally, from (2.8) we get∫
L
ϕ(t) dt = (−2B0)

−100

∫
L
ϕ(t)dt = 2π i

00

B0
a1 = 4π iδ0a1. (3.13)
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Similarly, in view of (3.11b), the remaining integral in (3.10a) takes the form∫
L

tϕ′(t) dt = −

∫
L
ϕ(t)dt = 2π i

00

B0
a1 = 4π iδ0a1. (3.14)

The second identity (3.10b) is treated in same manner so that (3.10) goes into a (2 × 2) system of linear
algebraic equations in the unknown residues a1, b1 of the potentials ϕ(z), ψ(z):

2δ0a1 + b1 =
2B
π

F, (1 + δ2
0)a1 + δ0b1 =

0

π
F, (3.15)

with the solution

a1 =
0− 2Bδ0

π(1 − δ2
0)

F, b1 =
B(1 + δ2

0)−0δ0

π(1 − δ2
0)

2F, (3.16)

substitution of which into (2.19) yields

1W =
4

(
B2(1 + δ2

0)+0
2
− 3δ0 B0

)
1 − δ2

0

( 1
K

+
1
µ

)
. (3.17)

Of course, (3.17) returns to (3.9) for the initial load parameters: B = B0, 0 = 00.
Again, this equistress relation involves neither the number of holes nor their arrangement and hence

may serve as a geometry-independent upper assessment of min1W under predominating shear when
the equistress necessary condition (3.1) is not valid or, equivalently, the far loads are of opposite signs.
In particular, taken at the bulk-type initial load (00, δ0 = 0), the equistress holes induce the following
increment under pure shear (B = 0, 0 = 1):

1W (0, 1, λ, L)= 4
( 1

K
+

1
µ

)
, (3.18)

which is larger than the global minimum:

1W (0, 1, λ, L)≈ 3.71449
( 1

K
+

1
µ

)
, (3.19)

known in the limiting case λ→ ∞ of a single hole and attained at the square-like shape [Vigdergauz
and Cherkayev 1986]. Though not sharp, the upper bound (3.18) is useful in assessing numerical results
(Section 7).

4. Pure shear: fast direct solver

In contrast, a shear-dominated remote loading (outside interval (3.1)) admits no closed-form optimal
solution and hence must be treated numerically. Any numerical optimization involves, in one way or
another, repeated solving of the direct problem (2.13), (2.3). The more accurate and faster the direct
solver is, the better the optimization scheme works as a whole. Besides, the solver should match stringent
requirements of the computer memory, speed and computational stability.

Particularly relevant here is the approach first proposed and implemented by the author for a single
hole [Vigdergauz 2001a;2006] and for a regularly perforated plate [Vigdergauz 2001b]. The key idea is
to solve the KM potentials in tandem rather than in parallel. Since the basic features of the approach are
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covered in the above-referenced papers, here we specifically focus on its application to a multiconnected
region.

Identity (2.13) resolved for ψ(t) and differentiated with respect to t

−ψ ′(t)= 2
∂t
∂t

Reϕ′(t)+ tϕ
′′

(t)+ 2B0
∂t
∂t

+00, t ∈ L , (4.1)

implies that the right hand-side of (4.1) is the boundary value of a function holomorphic in S and van-
ishing at infinity. Then the Cauchy-type integral

∫
L1+L2

2
∂t
∂t

Reϕ′(t)+ tϕ
′′

(t)+ 2B0
∂t
∂t

+00

t − z
dt (4.2)

is identically zero at any point z ∈ T [Muskhelishvili 1963]. The symmetry relations (2.4) reduce the
integration path in (4.2) to only L1. With (2.11), some algebra yields

2
∫

L1

Reϕ′(t)ρ0(t, z) dt +

∫
L1

tϕ
′′

(t)ρ0(t, z) dt = −4B0

∫
L1

ρ0(t, z)dt − 200,

ρ0(t, z)≡
1

t − z
+

1
t + z

for z ∈ T .
(4.3)

Cauchy-type integrals in (4.3) are holomorphic functions of z in the hole’s region T . Consequently, this
identity holds everywhere in T if and only if it holds for all derivatives with respect to z at a given point
z = c ∈ T1 [Muskhelishvili 1963]:

2
∫

L1

Reϕ′(t)ρk(t, c)dt +

∫
L1

tϕ
′′

(t)ρk(t, c)dt = −4B0

∫
L1

ρk(t, c)dt − 200δk,0,

ρk(t, c)≡
1
k!

∂kρ0(t, z)
∂zk |z=c =

1
(t − c)k+1 +

(−1)k

(t + c)k+1 for k = 0, 1, 2 . . .
(4.4)

As one would expect, the Laurent expansion (2.6) for ϕ(z) and its derivatives similarly involve the kernels
ρk(z, c). Substitution of them into the left-hand side of (4.4) gives an infinite system of linear algebraic
equations in the desired unknowns {a1, a2, . . .} from (2.6) with the matrix A = {Akl}:

Akl = 2l
∫

L1

Re(ρl+1(t, c))ρk(t, c) dt + l(l + 1)
∫

L1

tρl+2(t, c)ρk(t, c) dt. (4.5)

Due to the adopted symmetry, the system is purely real. For computation purposes it is necessarily
truncated to a finite order N . This is all the more relevant since the first coefficient a1 alone appears
in the energy increment for pure shear. As mentioned in Section 2, the displacements (2.14) and the
tangential stresses (2.15) along a free boundary are also expressed only through ϕ(z). In other words,
the second potential ψ(z) is not involved in the current solution process, thus halving the computational
efforts as compared to more traditional approaches. This feature is particularly appealing for repetitive
use within evolutionary optimization algorithms.

For a circular hole L1 : |t − c| = 1

t = c +
1

t − c
,

∂t
∂t

= −
1

(t − c)2
for t ∈ L1, (4.6)
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the integrals in (4.5) are expressed analytically. Indeed, with (4.6), the conjugates ρk(t, c) can be ex-
panded around the point t = c as

ρk(t, c)=
1

(t − c)k+1 +
(−1)k

(t + c)k+1 = (t − c)k+1
+
(−1)k

2c

∞∑
j=0

(
−m

j

)( t − c
2c

) j
, (4.7)

where (
−m

j

)
= (−1) j (m + j)!

m! j !
.

The series (4.7) converges absolutely since 2c > 1. Substituting (4.6) and (4.7) into (4.5) and computing
the integrand’s residue at the isolated pole z = a we obtain the similar series for Akl and, when necessary,
for the bulk-related right-hand side (4.4) of the system. The resultant expressions are not displayed here
to save room.

It is interesting to verify the derived formulae by comparing the results against alternatively obtained
solutions of the boundary value problem (2.13). The literature suggest various approaches to find the
stress distribution along two interacting circular holes under remote loading. In parallel with rapid ex-
pansion in computer capabilities, the numerical schemes progressed from a closed-form solution with
infinite sums in the bipolar coordinates [Ling 1948] and the alternative iterations [Ting et al. 1999] to
the advanced FE analysis [Waldman et al. 2003] and to the highly accurate solution of the Sherman-type
integral equation [Helsing and Jonsson 2000]. Tables 1 and 2 compare literature data against our results

[Ting et al. 1999] [Helsing and Jonsson 2000] Present

x-axial tension Max 2.611 2.61038805
(P = 1, Q = 0) Min −0.918 −0.91768252
y-axial tension Max 6.107 6.106040764542 6.10604077
(P = 0, Q = 1) Min −0.962 −0.96154890

Table 1. Maximum and minimum tangential stresses (2.15) for two equal circular holes
aligned with the x-axis at λ= 0.2.

λ [Ling 1948]
[Waldman
et al. 2003] Present

0.0200 — — 12.475899
0.2101 — 3.955 3.9153632
0.2500 — 3.682 3.6561422
0.3500 — 3.259 3.2374789
0.4568 — 2.990 2.9684777

λ [Ling 1948]
[Waldman
et al. 2003] Present

0.5000 2.887 2.906 2.8874965
1.0000 2.411 2.426 2.4108275
2.0000 2.155 2.172 2.1545912
4.0000 2.049 — 2.0488101
7.0000 2.018 — 2.0177007

Table 2. Maximum tangential stresses (2.15) for two equal circular holes aligned with
the x-axis under biaxial loading B0 = 1, 00 = 0 as a function of λ. The relative error of
approximation. 1% in [Waldman et al. 2003] can be attributed to taking a finite region
instead of an infinite plate.
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obtained at N = 30 for different load modes and separation distance between holes. The values show
close agreement, which should be even better for the less sensitive energy increment.

5. The design variables: an efficient shape parameterization

In contrast to circles, general hole shapes must be treated numerically. Usually, they are presented by
equally spaced nodal points whose role is twofold. First, they form a discretization set to compute the
integrals (4.5). Second, they serve as optimized design variables. However, this results in a contradiction
in the goals, inasmuch as the number of nodes should be sufficiently large to perform an accurate integra-
tion but rather small to carry out an efficient optimization over the pool of shapes. In [Vigdergauz 2006]
we proposed a much more economic alternative which separates the design variables and the integration
points by using for the first purpose the finite-term conformal mapping of a centrally located unit circle
γ onto the hole shape L1. At a given normalized distance λ we have

t ∈ L1 : t = c +ω(ξ), ω(ξ)≡ ξ +

M∑
m=1

dmξ
−m, (5.1a)

F = π
(

1 −

K∑
k=1

kd2
k

)
, (ξ = eiϑ

∈ γ : |ξ | = 1), (5.1b)

dt = iω′(ξ)ξdϑ, dt = iω′(ξ)ξ−1dϑ, (5.1c)

where the contour displacement c is defined in conformity with (2.1) as

c = −λ
√

F/π min
t

Re(ω(t)). (5.2)

Because of the setup symmetry, {dm} are real. As design variables, the mapping coefficients offer sub-
stantial numerical advantages enumerated in [Vigdergauz 2006]. For clarity, we display them here:

(A) They are ”naturally” ordered, in the sense that the higher the coefficient, the lesser its global im-
pact on the inclusion shape. This means that even a small number of the first coefficients form a
practically representative searching pool — in contrast to the nodal points.

(B) Each mapping coefficient falls into the successively narrowed interval

−
1

√
m

≤ dm ≤
1

√
m
, m = 1, 2, . . . , (5.3)

as it follows from the nonnegativeness of the area F inside L1 [Alfors 1979].

(C) With (5.1c), the path L1 in (4.5) is transformed into the circle γ where the discrete points for
numerical evaluation of the integrals can be taken in the irreducible interval [0, π] independently
of the design variables {dm}. For simplifying further computations we use a trapezoidal rule at
Nint equal subintervals [nπ/(Nint ; (n + 1)π/Nint ], n = 0, 1, . . . , Nint − 1 which remain unchanged
during the optimization.

(D) Specifically, for interacting holes, the hole displacement a is explicitly expressed by (5.2).

Items (B) and (D) are hard to realize in a more traditional approach when the exterior of all holes is
simultaneously mapped onto the plane minus the same number of circles.
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We are in a position to verify the proposed approach for noncircular holes. The relevant comparison
here is with the stress constancy (3.7) of the analytically known equistress shapes. At λ= 0.3 the solver
gives, after term-by-term differentiation, the stress distribution oscillating around the true value with
the maximum relative deviation of 0.9% located along the interacting parts of the holes. However, for
rectangle-like shapes the stress computations get worse drastically, because this leads to a very unfavor-
able situation. The first KM potential ϕ(z) is presented through the polar angle ϑ , small increments
of which lead to large increments along the straight line portions of the curves. With term-by-term
differentiation, this manifests itself in very large stress oscillations which are further amplified by the
fact that all the Laurent coefficients ak but the first one remain outside the energy optimization. For a
single hole this was first reported in [Cherkaev et al. 1998]. In other words, the one-potential scheme,
especially structured for the energy assessment, is ineffective (in its current form) in computing the
stresses along quadrangle-like holes, be it at M = 5 or M = 100 first mapping terms. Here, another
stress solver should be used for optimization. Exclusively for illustration purposes, we will once again
consider the local stresses at the end of Section 7.

6. Outline of the genetic algorithm

The optimization problem (2.18) typically has many local minima, and this fact precludes the use of
gradient-based descendent methods. An integer-encoded simple GA was chosen as the global shape
optimization approach in the previous author’s papers and in the present work.

The GA operates by constructing sets of candidate shapes and solving the forward problem for each.
The design variables dm , m = (1,M), are encoded using a discrete 16-bit procedure when each coefficient
dm is approximated in view of (5.3) only by 216

− 1 separate values in the continuous search space
[−1/

√
m, 1/

√
m]. These values are decoded from a randomly generated integer p ∈ [−215, 215

] as
dm = p/215/

√
m. The genes for different coefficients are concatenated into a 16N binary chromosome

that encodes a shape to be evaluated with the proposed approach. A randomly generated chromosome
population of constant size is subject to bitwise crossover and mutations [Osyczka 2001] to produce the
next generation. Then the process is repeated. This mimics the natural process where better members of
a population tend to outperform others in the long run. In our situation, “better” means a lower fitness
value. When the heuristic probability levels of genetic operations are adjusted correctly, they tend to
bias towards better individuals in the population so that better genes are passed down to offspring. To
enhance this effect, the best chromosome(s) from one generation are passed, unchanged, to the next (the
elitism option). So the generations evolve, and if the optimization process is successful, the shapes in
each generation are better, in a broad sense, than those in the previous one.

The stopping criterion is a problematic issue in GA, as there no practical means to assess the actual
error in real applications. Instead, the optimization is stopped after the first Ni ter iterations — in the
belief that the process really converges. However, at specific stochastic combinations, GAs may become
“embedded” far from the global optimum. This is prevented by multiple GA runs performed in the
current work for each given problem. Practically, Niter is chosen so that the optimization criterion remains
unchanged in successive iterations well before reaching this limit.

In contrast to many other applications, here we have an opportunity to calibrate the GA heuristic
parameters by numerically reproducing the optimal equistress shapes with the known global minimum
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λ M = 3 M = 5 M = 7 M = 9

0.01 1.22×10−2 2.96×10−3 8.18×10−4 2.33×10−4

0.25 5.69×10−3 2.21×10−4 7.76×10−5 4.60×10−5

0.50 1.39×10−3 9.28×10−5 1.94×10−5 1.94×10−5

1.0 7.15×10−5 1.42×10−5 1.42×10−5 1.42×10−5

2.0 3.67×10−6 3.66×10−6 3.66×10−6 3.66×10−6

Table 3. Relative deviations of the energy increment 1W from the exact value (3.9) for
two holes under the bulk type loading P = Q = 1 (equistress shapes) versus the number
M of the mapping terms and the normalized distance λ.

(3.9). The results are grouped in Table 3 as a function of the distance λ and on the number M of the
mapping coefficients.

In practice, each genetic operator has a lot of various modifications advanced in the literature for
different applied purposes. However, a relatively small number M of required design variables permits
a fairly simple GA configuration as detailed in Table 4. A typical convergence characteristic for the GA
scheme is shown in Figure 2.

7. Numerical results

The GA-based simulations aim to numerically solve the optimization problem (2.18) in the representative
interval of the normalized parameter λ. The proximity to the true minimum values can be only evaluated
through the internal convergence of the results for successively increasing mapping size M of the problem

GA Parameter Parameter value(s)

Gene Integer [−32767; 32767]
Individual Interface shape
Population size 800
Number of genes up to 9
Initial population 800 random individuals
Selection Tournament
Elitism Four best individuals
Crossover 1-point
Crossover rate 0.90
Creep mutation By randomly changing a bit
Creep mutation rate 0.35
Jump mutation By adding a random integer,

typically in the range [−4; 4]
Jump mutation rate 0.35
Stopping criterion After 1200 iterations
Resolving system size 24
Number of integration points 720 (in the interval [0, π])

Table 4. GA operator types, their probability rates and related parameters typically used
in further optimizations.
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Figure 2. Hole shape identification: progress of a typical genetic optimization run.

as presented in Figure 3 and 4. For convenience, the increment is normalized by its value (3.18) for a
circular hole under pure shear. It is seen that the approximants converge remarkably fast for any λ.
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Figure 3. Minimum of 1W as a function of the distance λ as a function of the problem
mapping size M beginning with a circle (M = 0). The values are normalized by the
equistress-related energy increment (3.18) (the dashed line) added here for comparison.
The inset recalls the problem schematic. An enlarged view of the dotted rectangular is
given in Figure 4.
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Figure 4. Enlarged fragment of Figure 3 around the global minima of min1W at λ≈ 0.45.

In the limiting case of a single hole (λ → ∞) the curves tend asymptotically to either the global
minimum (3.19) for M ≥ 3 or to the bound (3.18) when the given (M + 1)-fold symmetry (M ≤ 2)
allows for only the equistress circle instead of the truly optimal square-like shape.

The most remarkable finding is that the shear-related optimized energy depends on the separation
distance λ between the holes attaining the minimum at λmin ≈ 0.45. In contrast to equistress holes, whose
mutual arrangement has no impact on the induced energy, shear-optimal shapes exhibit a significant
collective effect, conjectured and qualitatively explained in [Cherkaev n.d.]. Interaction of the simplest
circular holes gives only 3.3% less energy at λmin than the optimal isolated square-like hole. More
markedly, the optimized shapes conserve ≈ 12% of the perturbed energy for M = 9. This percentage
consists of two quite unequal parts: 12% = 10.7% + 1.3%; the dominating one relates to the first three
coefficients while the contribution of the rest is much less. It is pictorially explained by

Figure 5 which shows the optimal shape evolution against the number M of mapping terms begin-
ning with a circle (M = 0). One can see that the quadrangle-like optimal shape is formed already
at M = 3 whereas the higher coefficients only flatten its sides and sharpen the angles. Such local
improvements have less effect on the integral-type energy criterion. The analogy with the single optimal
hole [Vigdergauz and Cherkayev 1986] suggests that the appearing angular points of the hole shape bring
no singularities in the tangential stress distribution.

Figure 6 exemplifies the shape elongation as a function of the distance λ as resulting from the holes
interaction. We note in parallel that the square-like single optimal hole also transforms into a rectangle
as a function of a nonzero trace component in the remote shear-dominating load −1< Q0/P0 < 0. Both
elongations present the optimal response in the absence of the setup square symmetry caused by either
the holes’ location or the applied load. A marked feature of the optimal shapes is that they are vertically
symmetric. In other words, the even coefficients dm,m = 2, 4, . . . are invariably optimized to zero values.
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Figure 5. Evolution of the energy-minimizing hole with the number of the mapping
terms M at the distance λ= 0.4.
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Figure 6. Evolution of the energy-minimizing hole with the distance λ at M = 9.

This is in contrast to the horizontal symmetry of the holes as predefined by taking only real values of
dk, k = 0, 1, 2 . . . before the optimization process.

Table 5 presents the edge separation ratio λ/h introduced in [Waldman et al. 2003] (here h is the half
height of the quadrangle) for the optimal shapes at M = 9 for different values of λ together with the
mapping coefficients. The parametric equation of the shapes then has the form

x(θ)=
λ− Reω(π)+ Reω(θ)

F
, y(θ)=

Imω(θ)

F
for 0 ≤ θ ≤ 2π, (7.1)
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λ d1 d3 d5 d7 d9 1W λ/h

0.2 −0.2067 −0.1144 0.0240 0.0067 −0.0033 0.8409 0.2195
0.4 −0.1600 −0.1222 0.0187 0.0081 −0.0033 0.8261 0.4425
0.6 −0.1567 −0.1244 0.0167 0.0086 −0.0022 0.8268 0.6643
0.8 −0.1533 −0.1244 0.0160 0.0090 −0.0022 0.8341 0.8850
1.0 −0.1167 −0.1333 0.0080 0.0090 −0.0015 0.8434 1.1108
1.5 −0.1033 −0.1378 0.0047 0.0071 −0.0015 0.8651 1.6717
2.0 −0.0667 −0.1378 0.0033 0.0071 −0.0007 0.8822 2.2350
3.0 −0.0267 −0.1378 0.0013 0.0071 −0.0004 0.9010 3.3529

Table 5. Mapping coefficients, energy increment and the separation ratio λ/h for the
optimal shapes at M = 9. The even terms d2m,m = 1, 2, . . . go to zero.

where

ω(θ)= t +

M∑
m=1,3,...

dm t−m, F = 1 −

M∑
m=1,3,...

md2
m, t = exp iθ.

The displacements (2.14) and the stresses (2.15) along the optimal shape can also be obtained through
ϕ(t) and ϕ′(t), respectively, as a by-product of the energy optimization. The remaining figures show
them as a function of the contour arc length s:

ds = |ω′(ξ)||dξ | = |ω′(ϑ)|dϑ; ξ = eiϑ
∈ γ, (7.2)

normalized by the length s0 of the upper half of the optimal rectangle. Let the contour be traversed in
the counterclockwise direction and let s = 0 correspond to the right point on the x-axis. Let also s1,2

denote the arc length at the upper right and upper left corner points, respectively, so that with a certain
approximation we have, setting t = x + iy ∈ L ,

0 ≤ s < s1 : ds = dy, dt = i dy,
s1 < s < s2 : ds = −dx, dt = −dx,
s2 < s ≤ s0 : ds = −dy, dt = idy.

(7.3)

In stating (7.3) the optimal shape is supposed to be a true rectangle. From Figure 7 we may conserva-
tively conclude that the Cartesian displacements of the optimal shape tend to piecewise linear functions
in the corresponding coordinates:

0 ≤ s < s1 : ux(t)= α1,

s1 < s < s2 : ux(t)= α2x +α3,

s2 < s ≤ s0 : ux(t)= α4,

0 ≤ s < s1 : u y(t)= β1 y +β2,

s1 < s < s2 : u y(t)= β3,

s2 < s ≤ s0 : u y(t)= β4 y +β5,

(7.4)

where the constants α j , β j provide the continuity of displacement at the corners s1, s2. Now, referring
back to the displacement-stress relation (2.16) and making use of (7.3) and (7.4), we conclude that the
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Figure 7. Boundary displacements ux(s) (top) and u y(s) (bottom) along the energy-
minimizing hole shape as a function of the mapping size M , for λ = 0.4. The dashed
piecewise linear trend line is also added for comparison.

tangential stresses should be then piecewise constant:

0 ≤ s < s1 : σττ (s)= 4qβ1,

s1 < s < s2 : σττ (s)= −4qα2,

s2 < s ≤ s0 : σττ (s)= 4qβ4,

(7.5)
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Figure 8. Tangential stresses σττ (s) along the energy-minimizing hole shape as a func-
tion of the mapping size M at λ= 0.4.

where we introduced the symbol

q =

( 1
K

+
1
µ

)−1
.

However, the stress distributions obtained through (2.15) independently of the linearity assumption (7.4)
on the displacements exhibit, for M ≥ 2, unacceptable oscillations (Figure 8) that mask the piecewise
constancy trend. They result from numerical term-by-term differentiation, as explained at the end of
Section 4.

To improve the situation, we smooth the stresses so computed by numerical expansion in Fourier series
followed by convolution with the Feier kernel. Though crude, this analysis shows that the filtered stresses
(Figure 9) tend to a piecewise distribution. These numerical conjectures are in keeping with the already
known analytical facts that the Cartesian displacements of equistress boundaries are proportional to the
corresponding coordinate [Vigdergauz 1988] and that the stress distribution along the optimal shape of
a single hole under pure shear is piecewise constant [Vigdergauz and Cherkayev 1986]. Further, Figures
8 and 9 show that the energy minimization with increasing M is accompanied by decreasing the stress
concentration. This favors our choice of the energy optimization.

In this context, very interesting results have been independently obtained by Waldman et al. [2003]
through FEM analysis within an effective gradientless optimization searching. The quadrangle-like inter-
acting holes were numerically shown to keep the stress constancy which was taken as the optimization
criterion. Figure 10 shows a quantitative agreement between the stress distribution along the stress-
minimizing [Waldman et al. 2003] and the energy-minimizing holes at shear type (but not pure shear)
loading 00/2B0 = 3 and at approximately the same hole separation. The observed stress concentration
error of 8-9% stems not only from the lesser accuracy of the KM energy solver in computing the stresses
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Figure 9. Filtered stress distributions σττ (s) along the energy-minimizing hole shape as
a function of the mapping size M at λ= 0.4.
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but also, to some extent, from comparing the energy-minimizing hole in an infinite plane to the stress-
constant hole in a finite plate. For reference, we also note that the constant-stress value |σ | = 2.84
reported in [Waldman et al. 2003] for a single hole under pure shear deviates by approximately 2% from
the semianalytical value 2.779. . . [Vigdergauz 2006].

8. Concluding remarks

The essential points in this paper are, first, the novel utilization of the conformal mapping technique to
encode the optimized shapes within an evolutionary algorithm and, second, the effective application of
this scheme to the rather difficult optimization problem of two-dimensional elastostatics.

In our opinion, the proposed mapping-based shape representation can be a competitive alternative to
the nodal points in numerically treating both forward and optimization boundary-value problems of con-
tinuum mechanics. This computation-saving technique is easily adapted to evaluate appearing boundary
integrals in a variety of direct solvers, from ideally suited integral equations to less open FEMs.

The specific results obtained show that interacting holes under pure shear store less energy and hence
are stiffer than a single hole of the same area. Though known as rule-of-thumb, this fact has not yet been
investigated numerically. It is of special interest that the stress concentration on the stress-constant holes
is numerically shown to be independent of the separation distances [Waldman et al. 2003].
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