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A STUDY OF PENALTY FORMULATIONS USED IN THE NUMERICAL
APPROXIMATION OF A RADIALLY SYMMETRIC ELASTICITY PROBLEM

ADAIR R. AGUIAR, ROGER L. FOSDICK AND JESÚS A. G. SÁNCHEZ

We consider a class of two-dimensional problems in classical linear elasticity for which material over-
lapping occurs in the absence of singularities. Of course, material overlapping is not physically realistic,
and one possible way to prevent it uses a constrained minimization theory. In this theory, a minimiza-
tion problem consists of minimizing the total potential energy of a linear elastic body subject to the
constraint that the deformation field must be locally invertible. Here, we use an interior and an exterior
penalty formulation of the minimization problem together with both a standard finite element method and
classical nonlinear programming techniques to compute the minimizers. We compare both formulations
by solving a plane problem numerically in the context of the constrained minimization theory. The
problem has a closed-form solution, which is used to validate the numerical results. This solution is
regular everywhere, including the boundary. In particular, we show numerical results which indicate
that, for a fixed finite element mesh, the sequences of numerical solutions obtained with both the interior
and the exterior penalty formulations converge to the same limit function as the penalization is enforced.
This limit function yields an approximate deformation field to the plane problem that is locally invertible
at all points in the domain. As the mesh is refined, this field converges to the exact solution of the plane
problem.

1. Introduction

There are problems in the classical linear theory of elasticity whose closed form solutions, while sat-
isfying the governing equations of equilibrium together with well-posed boundary conditions, allow
material overlapping to occur. Typically, problems of this kind involve some sort of singularity, and
strains exceeding a level acceptable from the point of view of a linear theory occur around the singular
points [Aguiar and Fosdick 2001; Aguiar 2006]. But this is not always the case, as we shall show in this
work.

We consider a two-dimensional problem in classical linear elasticity for which material overlapping
occurs in the absence of singularities. The problem concerns the equilibrium of a circular homogeneous
and aeolotropic pipe, which is fixed at its inner surface, radially compressed along its outer surface
by a uniformly distributed normal pressure, and subjected to an axial force acting on its flat ends. The
requirement that the displacement field be radially symmetric with respect to the center of the pipe allows
the derivation of a closed-form solution that predicts overlapping of material at the inner surface of the
linear elastic pipe when the radial compressive force becomes larger than a critical load, which is small.

One possible way to prevent the anomalous behavior of self-intersection is proposed by Fosdick and
Royer-Carfagni [2001]. It combines the linear theory with the constraint of local injectivity through a

Keywords: aeolotropic elasticity, constrained minimization, penalty method, finite element method.
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Lagrange multiplier technique. These authors investigate the problem of minimizing the total potential
energy E of classical linear elasticity on an admissible set Aε of vector-valued functions v that satisfy
the injectivity constraint det(1+∇v)≥ ε > 0 for a sufficiently small ε ∈ R. In particular, they show the
existence of a solution for the constrained minimization problem in two dimensions. The constrained
problem is, however, highly nonlinear and, in general, needs to be solved numerically.

Obeidat et al. [2001] and Aguiar [2006] present finite element approaches to solve this class of
constrained problems. In the former, a carefully designed algorithm is required to keep track of all
subdomains of the reference configuration where the injectivity constraint is violated.

The approach in [Aguiar 2006] is based on an interior penalty formulation, which consists of re-
placing E by a penalized functional Eγ = E +Q/γ , where γ is an arbitrary positive number and Q is a
penalty functional defined on the constraint set Aε. The penalty functional is nonnegative on Aε, satisfies
Q[v] →∞ as v approaches the boundary of Aε, and is designed so that minimizers of Eγ [·] lie in the
interior of the constraint set Aε; hence the term interior penalty method. Thus, the penalty formulation
of the constrained problem consists of finding uγ ∈Aε that minimizes the penalized functional Eγ over
the constraint set Aε.

In this work, we consider an exterior penalty formulation, which consists of replacing E by a penalized
functional Eδ = E +P/δ, where δ is an arbitrary positive number and P is a penalty functional defined
on the whole set A. The penalty functional is nonnegative on A and vanishes on Aε. Thus, the penalty
formulation of the constrained problem consists of finding uδ ∈A that minimizes the penalized functional
Eδ over the set A. This method has the advantage of yielding an unconstrained minimization problem.
In general, the minimizers of Eδ[·] lie in the exterior of the constraint set Aε; hence the term exterior
penalty method. In this work, however, numerical results shown in Section 5 indicate that the minimizers
of Eδ for the class of problems considered in Section 3 lie in the interior of Aε for sufficiently small δ.
It is not known whether this is to be generally expected.

In Section 2 we apply both penalty formulations on the class of constrained minimization problems
considered by Fosdick and Royer-Carfagni [2001]. In Section 3 we present some exact results concerning
the compressed pipe problem in the context of both the unconstrained and the constrained theories. For
this, we assume that the problem is radially symmetric, which yields a one-dimensional problem for the
determination of the radial displacement in the pipe. In Section 4 we use the finite element method to
obtain discrete problems from the interior and exterior penalty formulations of the constrained pipe prob-
lem and discuss briefly a solution strategy presented by Aguiar [2006]. The resulting numerical scheme
is simple to implement, and can be applied in the numerical solution of problems in any dimension. In
particular, we apply the numerical scheme in the approximate solution of the one-dimensional problem
with the injectivity constraint. Fosdick et al. [2008] use the numerical strategy of Aguiar [2006] to solve
the pipe problem in the full two-dimensional setting. For certain values of the shear modulus of the
material, their numerical solution is very different from the solution of the one-dimensional problem. This
shows that, depending on the elastic parameters, the constrained minimization problem may have more
than one solution. In this work, we investigate the one-dimensional problem, because our primary goal
is to compare both penalty formulations. Thus, in Section 5 we compare the numerical results obtained
from the solutions of the discrete problems using the interior and the exterior penalty methods with
the analytical results obtained from the closed-form solution of the constrained minimization problem
considered in Section 3. In Section 6 we present some concluding remarks.
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2. The penalty functional formulation

Let B ⊂ R2 be the undistorted natural reference configuration of a body. Points x ∈ B are mapped to
points y= f(x)≡ x+u(x) ∈R2, where u(x) is the displacement of x. The boundary ∂B of B is composed
of two nonintersecting parts, ∂1B and ∂2B, ∂1B ∪ ∂2B = ∂B, ∂1B ∩ ∂2B = ∅, such that u(x) = 0 for
x ∈ ∂1B and such that a dead load traction field t̄(x) is prescribed for x ∈ ∂2B. In addition, a body force
b(x) per unit volume of B acts on points x ∈ B.

We consider the problem of minimum potential energy

min
v∈Aε

E[v], E[v] ≡ 1
2 a[v, v] − f [v], (1)

where

a[v, v] ≡
∫
B

C[E] ·Edx, f [v] ≡
∫
B

b · vdx+
∫
∂2B

t̄ · vdx, (2)

and E≡ [∇v+ (∇v)T ]/2 is the infinitesimal strain tensor field. The functional E[·] is the total potential
energy of classical linear theory of elasticity. Furthermore,

Aε ≡
{
v :W 1,2(B)→ R2 ∣∣ det(1+∇v)≥ ε > 0, v= 0 almost everywhere on ∂1B

}
, (3)

is the class of admissible displacement fields and C= C(x) is the elasticity tensor, assumed to be positive
definite and totally symmetric. We suppose that ε > 0 in (3) is sufficiently small.

Fosdick and Royer-Carfagni [2001] fully characterize the solutions of the minimization problem (1)–
(3). In particular, they show that there exists a solution to this problem and they derive first variation
conditions for a minimizer u ∈Aε of E[·]. More specifically, they let

A≡
{
v :W 1,2(B)→ R2 ∣∣v= 0 almost everywhere on ∂1B

}
, (4)

and obtain the first variation of E[·] at u in the form

〈DE[u], v〉 ≡ a[u, v] − f [v], ∀v ∈A,

where a[·, ·] and f [·] are defined in (2). It is then shown that there exists a scalar Lagrange multiplier
field λ : L2(B)→ R such that the first variation has the equivalent representation

〈DE[u], v〉 =
∫
B
λ cof∇f · ∇vdx,

for all v ∈ A, where cof∇f is the cofactor of the deformation gradient and we recall from above that
f(x)= x+u(x). Then, defining

B> ≡ int
[
{x ∈ B : det∇f> ε}

]
, B= ≡ int

[
{x ∈ B : det∇f= ε}

]
, (5)

where int[·] denotes the interior of a set, the necessary first variation conditions for the existence of a
minimizer were shown to be given by:

• The Euler–Lagrange equations

Div T+b= 0 in B>, Div
(
T− ελ(∇f)−T )

+b= 0, λ≥ 0, in B=, (6)
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together with the boundary conditions

Tn= t̄ on ∂B> ∩ ∂2B,
(
T− ελ(∇f)−T )n= t̄, on ∂B= ∩ ∂2B, (7)

where T= C[E] is the constitutive stress tensor and n is the outer unit normal to ∂2B.

• Jump conditions across 6 ≡ B̄> ∩ B̄=, which is assumed to be sufficiently smooth,(
T− ελ(∇f)−T )∣∣∣

6∩B̄=
n= T

∣∣∣
6∩B̄>

n, (8)

where n is a unit normal to6 and where6∩B̄= and6∩B̄> mean that the evaluations are understood
as limits to the dividing interface 6 from within B= and B>, respectively.

The expression T− ελ(∇f)−T is regarded as the total stress in B=, with λ representing the constraint
stress.

An interior penalty functional formulation of the minimization problem (1)–(3) consists of replacing
the energy functional (1)b by a penalized potential energy functional Eγ :Aε→ R̄, R̄≡ R∪ {∞}, of the
form

Eγ [u] = E[u] +
1
γ
Q[u], (9)

where γ > 0 is a penalty parameter and Q : Aε → R̄ is an interior penalty functional, also called a
barrier functional. The penalty functional is designed so that minimizers of Eγ [·] lie in the interior
of the constraint set Aε. Thus, the addition of (1/γ )Q has the effect of establishing a barrier on the
boundary of the constraint set Aε that prevents a search procedure for a minimizer from leaving the set
Aε. In this work, we consider the barrier functional defined by

Q[v] =
∫
B

1
det(1+∇v)− ε

dx, ∀v ∈Aε. (10)

Observe from (10) that Q is nonnegative on Aε and satisfies Q[v] →∞ as v approaches the boundary
of Aε.

We then wish to find an admissible displacement field uγ ∈Aε that minimizes the penalized potential
Eγ [·], that is,

min
v∈Aε

Eγ [v], (11)

where Eγ [v] is given by the expressions (9), (1)b, (2), and (10). This is a constrained problem, and indeed
the functional to be minimized is somewhat more complicated than the original energy functional (1)b.
The advantage of considering this problem, however, is that we can use numerical procedures commonly
employed in the numerical approximation of solutions of unconstrained problems.

On the other hand, an exterior penalty functional formulation of the minimization problem (1)–(3)
consists of replacing the energy functional (1)b by a penalized potential energy functional Eδ :A→ R

of the form

Eδ[u] = E[u] +
1
δ
P[u], (12)

where δ > 0 is a penalty parameter and P :A→ R is a penalty functional, which is nonnegative in A
and is designed so that P[v] increases with the distance from v to the constraint set Aε. In this work, we
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consider

P[v] =
1
2

∫
B

[
max

(
0,−p(v)

)]2
dx, ∀v ∈A, (13)

where max(0,−p)≡ (−p+ |p|)/2 and

p(v)= det(1+∇v)− ε. (14)

Clearly, P[v] = 0 if the injectivity constraint is satisfied; otherwise, P[v]> 0. In Section 4 we see that
the choice (13) for P leads to a discrete version of the penalized energy functional Eδ that is continuous
and differentiable everywhere.

We then wish to find an admissible displacement field uδ ∈A that minimizes the penalized potential
Eδ[·], that is,

min
v∈A

Eδ[v], (15)

where Eδ[v] is given by (12), (1)b, (2), (13), and (14). This is an unconstrained problem, which has
the advantage of yielding discrete minimization problems that can be solved by classical unconstrained
optimization techniques.

In Section 4 we use both penalty formulations presented above to construct a numerical scheme that
is used in Section 5 for the solution of the constrained plane problem presented in Section 3.2.

3. The pipe problem

In this section we present the solution of a plane problem, which will serve as a model problem in
our computations, in the context of both the classical linear theory, Section 3.1, and the constrained
minimization theory, Section 3.2.

3.1. The unconstrained pipe problem. In classical linear elasticity, the pipe problem concerns the equi-
librium of a homogeneous and aeolotropic plate of uniform thickness whose cross section is bounded by
two concentric circles, that is, a pipe whose length is the thickness of the plate with an inner radius ρi and
an outer radius ρe. The pipe is radially compressed along its external contour by a uniformly distributed
normal pressure p and is subjected to a normal force Q acting on its flat ends. In isotropic elasticity,
Q = 0 characterizes a state of generalized plane stress parallel to the flat ends of a thin plate. In general,
however, this is not the case, that is, we may have Q = 0 and still have nonzero normal stresses acting
on the flat ends that cannot be disregarded. We comment more on this below.

In a cylindrical coordinate system (ρ, θ, ζ ), we employ the contracted notation σα, α = 1, 2, . . . , 6,
for the stress components, where σ1 = σρρ, σ2 = σθθ , σ3 = σζ ζ , σ4 = σθζ , σ5 = σζρ, σ6 = σρθ . An
analogous notation is also employed for the strain components, that is, ε1 = ερρ, ε2 = εθθ , ε3 = εζ ζ ,

ε4 = 2εθζ , ε5 = 2εζρ, ε6 = 2ερθ . These components are related to each other by the linear constitutive
relations

σα = cαβεβ, (16)

where cαβ are the elastic constants for a cylindrically aeolotropic material. The corresponding 6× 6
matrix, [cαβ], is symmetric and positive definite. In this work, we consider that cαβ = 0 for α ≤ 3,
β > 3 and for β > α > 3. Following Christensen [1994], we call the corresponding material cylindrically
orthotropic.



1408 ADAIR R. AGUIAR, ROGER L. FOSDICK AND JESÚS A. G. SÁNCHEZ

We assume that the stress components are radially symmetric with respect to the center of the pipe,
so that σα = σα(ρ). In the absence of body force, the equilibrium equations for the pipe problem require
that σ5 = σ6 = 0 and yield the equation

∂σ1

∂ρ
+
(σ1− σ2)

ρ
= 0.

This equation is identically satisfied by the introduction of a stress function φ : R→ R that is related to
the stress components σi , i = 1, 2, through the expressions

σ1 =
φ′(ρ)

ρ
, σ2 = φ

′′(ρ), (17)

where (·)′ ≡ d(·)/dρ.
On the other hand, we can invert the constitutive relations (16) to obtain the strain-stress relations

εα = sαβσβ, (18)

where sαβ are the elastic compliances of the cylindrically aeolotropic material. Since σ5 = σ6 = 0, we
have that ε5 = ε6 = 0 for a cylindrically orthotropic material. Also, it follows from both (17) and (18)
that εα = εα(ρ), α = 1, 2. The compatibility conditions for the pipe problem are then satisfied if

∂(ρε2)

∂ρ
− ε1 = 0, (19)

ε3 is constant, and ε4 = 0.
To solve the differential equation (19), first, we use the strain-stress relations (18) to obtain

σ3 =
1

s33
(−s31σ1− s32σ2+ ε3). (20)

We then substitute (17) and (20) into (18) to find that

εα =
1

s33

(
sα313

φ′(ρ)

ρ
+ sα323φ

′′(ρ)+ sα3ε3

)
, α = 1, 2, (21)

where

sα3β3 ≡ sαβs33− s3αs3β, α, β = 1, 2, (22)

is the determinant of a minor submatrix of the matrix Ŝ ≡ [sδγ ] for δ, γ = 1, 2, 3. Substituting (21) into
(19), we find that

d
dρ

(
ρφ′′(ρ)

)
− κ2φ

′(ρ)

ρ
=

(s13− s23

s2323

)
ε3, κ ≡

√
s1313

s2323
, (23)

where we have used the fact that sα3α3, no sum on α, is positive since it is the determinant of a principal
submatrix of Ŝ.

c11 =
s2323

det Ŝ
, c22 =

s1313

det Ŝ
, c12 = −

s1323

det Ŝ
. (24)
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Observe from (23)b together with (24) that κ is also given by

κ =

√
c22

c11
. (25)

The general solution of the differential equation (23) is given by

φ(ρ)=
α+

1+ κ
ρ(1+κ)+

α−

1− κ
ρ(1−κ)+

ε̃3

2
ρ2
+ φ̂, ε̃3 ≡

( s13− s23

s2323− s1313

)
ε3, (26)

where φ̂ is a constant of integration. Using (26), we obtain from both (17) and (20) that

σ1 = α
+ρ(−1+κ)

+α−ρ−(1+κ)+ ε̃3,

σ2 = κα
+ρ(−1+κ)

− κα−ρ−(1+κ)+ ε̃3,

σ3 =−
s13+ κs23

s33
α+ρ(−1+κ)

−
s13− κs23

s33
α−ρ−(1+κ)+

( s22− s11

s2323− s1313

)
ε3.

(27)

Notice from (27)c that σ33 depends on ρ, a fact observed by Tings [1999], and, in general, cannot
be disregarded, as was done by Lekhnitskii [1968, Page 52], even when the pipe has small axial length,
that is, it is disk-like. This means that no generalized plane stress parallel to the flat ends of the pipe
is possible for a radially symmetric distribution of stress in a cylindrically orthotropic body. We can,
however, integrate (27)c over a flat end of the pipe and obtain Q, the resultant force on that end. As
observed by Tings [1999], we can allow free extension of the pipe in the axial direction in the sense that
Q = 0, which yields an expression for the determination of the constant ε3.

The plane stress analysis carried out by Lekhnitskii [1968], which disregards σ3, is still valid for par-
ticular classes of cylindrically aeolotropic materials, which include the isotropic materials and materials
for which s13 = s23 = 0. In this last case, observe from (27)c together with (22) that we must have ε3 = 0.

Now, recalling that the strains depend only on ρ and disregarding rigid body displacements, we have
that the displacement field u is of the form u= u(ρ)eρ + ε3eζ , where (eρ, eθ , eζ ) is an orthonormal basis
for the cylindrical coordinate system. It then follows from the linear strain-displacement relations

ε1 = u′(ρ), ε2 =
u(ρ)
ρ
, (28)

together with (21) and (27), that

u(ρ)= α̂+ρκ + α̂−ρ−κ + ε̂3ρ, (29)

where

α̂+ ≡
(s2313+ κs2323

s33

)
α+, α̂− ≡

(s2313− κs2323

s33

)
α−,

ε̂3 ≡

[
(s2313+ s2323)s13− (s2313+ s1313)s23

(s2323− s1313)s33

]
ε3.

(30)

Of major interest in this work is the sign of the Jacobian determinant of the deformation field f≡ x+u,
given by

J ≡ det∇f= (1+ ε1)(1+ ε2)(1+ ε3). (31)
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Because ε3 is constant and small compared to unity, it is of no major consequence to consider only the
case ε3 = 0 in this work, which is equivalent to assuming that the pipe is in a state of plane strain parallel
to its flat ends.

By imposing the condition of zero displacement on the inner radius, u(ρi ) = 0, and the pressure
condition on the outer radius, σρρ(ρe)= − p, we find that

α+ = (s2313− κs2323)ρ
−κ
i ρe p/α̂, α− = − (s2313+ κs2323)ρ

κ
i ρe p/α̂, (32)

where
α̂ ≡ (s2313+ κs2323)

(ρi

ρe

)κ
− (s2313− κs2323)

(ρi

ρe

)−κ
. (33)

Observe from both expressions (22) and (23)b that s2
2313− κ

2s2
2323 = s2

2313− s1313s2323 = − s33 det Ŝ < 0.
We then have both κs2323− s2313 > 0 and κs2323+ s2313 > 0, and it follows from (33) that α̂ > 0.

Substituting (30)a, (32), (33), and (24) into (29), we obtain

u(ρ)= −
ρi

2κ

[( ρ
ρi

)κ
−

( ρ
ρi

)−κ ] p̂
p1
, p̂ ≡

p
c11
, ρi < ρ < ρe, (34)

where

p1 =
ρi

2κρe

[
(κ −µθ )

(ρi

ρe

)κ
+ (κ +µθ )

(ρi

ρe

)−κ ]
> 0, µθ ≡

c12

c11
. (35)

In the limit, as ρi → 0, we obtain from (34) together with (35) the Lekhnitskii classical solution for
the disk problem, which is given by

u0(ρ)≡−
( ρ
ρe

)κ
ρeq, q ≡

p
√

c11c22+ c12
, 0< ρ < ρe, (36)

The expression (36) is presented by Fosdick and Royer-Carfagni [2001, Equation 1.18] in a slightly
different notation.

The disk problem is also considered by Tarn [2002] as a special case of a class of generalized plane
problems. The author is mainly concerned with the issue of stress singularity at the center of the disk
that results from (27) when 0< κ < 1. He attributes this singular behavior to a conflicting definition of
anisotropy at ρ = 0. To resolve this, he considers plane problems involving two concentric cylinders of
different elastic materials. The outer cylinder is cylindrically anisotropic and the inner solid cylinder is
transversely isotropic. Even though the stress fields obtained from the solutions of these problems are
not singular at the center of the resulting compound cylinder, it is observed by Fosdick et al. [2008] that
self-intersection is still an issue in his work.

Here, we return to the case ρi > 0, which corresponds to a compound cylinder with a rigid core, and
perform a detailed analysis of the solution (34). For this, we take the derivative of (34) with respect to ρ
and obtain

u′(ρ)= −
1
2

[( ρ
ρi

)κ−1
+

( ρ
ρi

)−(κ+1)
]

p̂
p1
, (37)

which is negative in the interval (ρi , ρe). Another derivative of (34) shows that u′′(ρ) > 0 for 0< κ < 1,
which means that u is a convex function of ρ and that u′ is a monotonically increasing function of ρ
with its minimum at ρ = ρi . Thus, a critical value of p̂ that yields J = 0 at ρ = ρi in (31) and (28)a
is obtained from u′(ρi )= − 1 in (37) and is given by p̂ = p1, where p1 is defined by (35)a. For larger
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values of p̂, J = 0 for a unique radius greater than ρi . Clearly, we may have p1, and hence p̂, as small
as we wish by decreasing the value of ρi and still have bounded stresses and strains everywhere. In this
work, we are only concerned with 0< κ < 1.

Similarly, we can show that u(ρ)/ρ is convex at ρ = ρi . We can also show that u(ρ)/ρ has a unique
minimum at a point with radius ρ̂ > ρi for 0 < κ < 1. This minimum reaches the value −1, which
corresponds to J = 0 from (31) together with (28)b, for p̂ = p2, where

p2 = (1− κ)
(1+ κ

1− κ

)(1+κ)/2κ
p1. (38)

This critical value of p̂ is greater than p1 for 0< κ < 1. In fact, observe from Figure 1 that p2 > 2p1.
To avoid crushing of the outer surface into the inner surface of the pipe, the displacement u(ρe) must

be such that −u(ρe)/ρe < 1− ρi/ρe, which, because of (34), imposes the restriction

p̂ < pc ≡
2(1− η)ηκ−1

1− η2κ p1, η ≡ ρi/ρe. (39)

Since pc � p1 for both ρi � ρe and κ < 1, we conclude from above that local injectivity is lost for
nonzero values of p̂ that are small compared to the critical value pc for which global injectivity is lost.

Using (31) with ε3 = 0 and (28), (34), and (37), we obtain the expression

J =

{
1−

1
2

[( ρ
ρi

)κ−1
+

( ρ
ρi

)−(κ+1)
]

p̂
p1

}{
1−

1
2κ

[( ρ
ρi

)κ−1
−

( ρ
ρi

)−(κ+1)
]

p̂
p1

}
. (40)

We then see from (40) together with the previous discussion on the critical values for p̂ that, as p̂ increases
from zero, J is positive in [ρi , ρe] for p̂ < p1. For p1 ≤ p̂ ≤ p2, J is nonpositive in [ρi , ρ1], where
u′(ρ1)= −1. In particular, J = 0 at ρ = ρ1. If p̂= p2, we also have that J = 0 at ρ = ρ̂, where we recall
from above that ρ̂ is the radius at which u(ρ)/ρ attains its minimum. For p2 < p̂ < pc, u(ρ̂)/ρ̂ < − 1
and we have two roots ρA and ρB , with ρA < ρB , for the algebraic equation u(ρ)/ρ = − 1. Since
u(ρe)/ρe > − 1+ ρi/ρe, both roots belong to the interval (ρi , ρe) and are such that u(ρ)/ρ ≤−1 in the
interval [ρA, ρB]. Outside this interval, u(ρ)/ρ > − 1. Thus, we have J = 0 at ρ = ρ1, ρA, and ρB . In
Section 5 we show a numerical example for which ρi < ρA < ρ1 < ρB < ρe. In this case, J oscilates;

0 0.2 0.4 0.6 0.8 12

2.2

2.4

2.6

2.8

 κ

 p
2/p

1

Figure 1. The ratio p2/p1 versus κ .
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it is negative between ρi and ρA, positive between ρA and ρ1, negative again between ρ1 and ρB , and
positive again between ρB and ρe.

In the case of ρi = 0, ρ1 = (κq)1/(1−κ)ρe and u(ρ)/ρ has only one root given by ρ2 = q1/(1−κ)ρe,
where q is defined by the expression (36)b. Here, J < 0 inside the annular region defined by

0< κq <
( ρ
ρe

)1−κ
< q.

Outside the annular region, that is, for small and large values of (ρ/ρe)
1−κ , we have J > 0. This feature

was first noted by Fosdick and Royer-Carfagni [2001].
Thus, for 0< κ < 1, the classical solution has no physical meaning and therefore should be rejected

as a viable solution. The anomalous behavior of material overlapping provides, however, motivation to
use a pseudolinear theory which respects the constraint that admissible deformations be at least locally
invertible, that is, that det∇f> 0.

3.2. The constrained pipe problem. The solution of the unconstrained pipe problem in Section 3.1 pre-
dicts material overlapping for κ ∈ (0, 1). In this section, we consider that κ ∈ (0, 1) and use the first
variation conditions (6)–(8) to find a minimizer of (1)–(3) for the constrained pipe problem.

Fosdick and Royer-Carfagni [2001] solve the radially symmetric disk problem of Lekhnitskii outlined
in Section 3.1 for the material parameter κ ∈ (0, 1) within the constrained minimization theory outlined
in Section 2. They consider only a radially symmetric type solution and our analysis below follows their
approach. Recently, Fosdick et al. [2008] have considered the full two-dimensional disk problem and
have presented numerical results which show that this symmetry does not persist for all values of the
elastic constant c66 in (16). Because the constrained theory is nonlinear, there are values of c66 for which
bifurcation from radial symmetry to nonradial symmetry takes place.

The sets B= and B> of (5), where the constraint of local injectivity is active (det∇f= ε) and nonactive
(det∇f> ε), respectively, will be determined explicitly as B= = {x= ρeρ ∈ B : ρi ≤ ρ < ρa}, B> = {x=
ρeρ ∈ B : ρa < ρ < ρe}, for some ρa ∈ [ρi , ρe].

Assuming that the displacement field must be radially symmetric with respect to the center of the pipe
in a state of plane strain, that is, u= u(ρ)eρ , we observe that (6)–(8) have the following forms:

• The Euler–Lagrange equations:

u′′+
u′

ρ
− κ2 u

ρ2 −

(
1+

u
ρ

)dλ̂
dρ
= 0, λ̂≥ 0, for ρ ∈ (ρi , ρa),

u′′+
u′

ρ
− κ2 u

ρ2 = 0 for ρ ∈ (ρa, ρe),

(41)

where λ̂≡ λ/c11.

• The displacement and traction conditions:

u(ρi )= 0, u′(ρe)+µθ
u(ρe)

ρe
= − p̂, (42)

where p̂ is defined by (34)b and µθ is defined by (35)b.
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• The continuity and jump conditions across ρ = ρa:

u(ρ+a )= u(ρ−a ),

u′(ρ+a )= u′(ρ−a )−
[

1+
u(ρ−a )
ρa

]
λ̂(ρ−a ),

(43)

where ρ±a ≡ limτ→0(ρa ± τ) for τ > 0. The condition (43)b is obtained from

σρρ(ρ
+

a )= σρρ(ρ
−

a )−

[
1+

u(ρ−a )
ρa

]
λ̂(ρ−a ),

together with (16), (28), and (43)a. Observe from (43)b that the jump in u′ is zero at ρ = ρa provided
that λ̂(ρ−a )= 0. We show below that this is indeed the case.

The imposition of the injectivity constraint det(1+∇u) = ε > 0 in (ρi , ρa) yields the problem of
finding u : (ρi , ρa)→ R that satisfies

1
2ρ

d
dρ
(ρ+ u)2 = ε in (ρi , ρa), u(ρi )= 0.

The solution of this problem is

u(ρ)= g(ρ)− ρ, g(ρ)=
√
(ρ2− ρ2

i )ε+ ρ
2
i , for ρ ∈ (ρi , ρa). (44)

Substituting the expression (44) into the first Euler–Lagrange equation (41)a, we obtain a first-order
differential equation for λ̂. The solution of this equation is given by

λ̂(ρ)=−
(1− ε)ρ2

i

2

[
1

g(ρ)2
−

1
g(ρ̃)2

]
+ log

(
g(ρ)
g(ρ̃)

)
−κ2 log

(ρ
ρ̃

)
−
(1− κ2)
√
ε

log
(√

ερ+ g(ρ)
√
ερ̃+ g(ρ̃)

)
, (45)

where g(ρ) is given by (44)b and ρ̃ ∈ R is to be determined consistent with λ̂(ρ̃)≥ 0. We show in the
Appendix that u′(ρ+a )= u′(ρ−a ) and that ρ̃ = ρa .

The general solution of the second Euler–Lagrange equation (41)b is of the form

u(ρ)= β+ρκ +β−ρ−κ , (46)

where both constants β+ and β− are determined from the continuity and jump conditions (43). These
constants are given by

β+ =
ρ−κ+1

a

2κ

[
−(1+ κ)+ κ

g(ρa)

ρa
+

ερa

g(ρa)

]
, β− =

ρκ+1
a

2κ

[
1− κ + κ

g(ρa)

ρa
−

ερa

g(ρa)

]
. (47)

We still need to find ρa in (47). For this, we substitute (46) and (47) into the traction condition (42)b
and obtain the algebraic equation

0= r(ζ )≡ s(ζ ; κ)+ s(ζ ;−κ)+ p̂, ζ ≡
ρa

ρe
, (48)

where

s(ζ ; κ)≡
(κ +µθ

2κ

)
ζ 1−κ

[
−(1+ κ)+

κ ĝ(ζ )
ζ
+

εζ

ĝ(ζ )

]
, (49)



1414 ADAIR R. AGUIAR, ROGER L. FOSDICK AND JESÚS A. G. SÁNCHEZ

is a function of ζ parameterized by κ and

ĝ(ζ )≡
√
εζ 2+ (1− ε)ζ 2

i , ζi ≡
ρi

ρe
. (50)

First, notice from the expressions (48)–(50) that r(ζi ) = p̂− (1− ε)p1, where p1 is given by (35)a.
Notice also that r(1)= p̂− p0, where

p0 ≡ 1+µθ −
[
ε+µθ ĝ(1)2

ĝ(1)

]
> p1, (51)

since both ζi and ε > 0 are small. Taking the derivative of r , we obtain

r ′(ζ )=−
[
(κ+µθ )ζ

−κ
+(κ−µθ )ζ

κ

2κ

]{
1−κ2

+
κ2ĝ(ζ )
ζ
−
εζ

ĝ(ζ )

[
2−ε

(
ζ

ĝ(ζ )

)2]}
, ζ ∈ (ζi , 1),

which is negative, because κ +µθ > 0, κ −µθ > 0, and ε > 0 is small. Thus, if r(ζi ) < 0, then r(ζ )= 0
has no roots, which is consistent with results obtained in Section 3.1, according to which p̂− p1 < 0
implies no self-intersection. If, on the other hand, both r(ζi )≥ 0 and p̂ ≤ p0, then there exists a unique
ζ ∈ [0, 1] that satisfies r(ζ )= 0. In particular, if p̂ = (1− ε)p1, then ζ = ζi and if p̂ = p0, then ζ = 1.
Furthermore, if p̂ > p0, no ζ ∈ [0, 1] exists that satisfies r(ζ )= 0. In this case, ρa = ρe, which means
that the constraint is active in the whole pipe.

In the limit, as ρi → 0 in (44)b, we obtain the solution of the constrained disk problem considered by
Fosdick and Royer-Carfagni [2001], which is given by

u(ρ)=


−
(
1−
√
ε
)
ρ for ρ ∈ (0, ρa),

−
(1−
√
ε)ρa

2κ

[
(1+ κ)

( ρ
ρa

)κ
− (1− κ)

( ρ
ρa

)−κ]
for ρ ∈ (ρa, ρe).

(52)

The radius ρa in (52) is determined from an algebraic equation obtained from (48)–(50) when ρi = 0.
Fosdick and Royer-Carfagni [2001] show that there exists a unique root for this equation for any positive
value of p≤ (1−

√
ε)(c11+c12). If p>(1−

√
ε)(c11+c12), the algebraic equation has no root and ρa=ρe.

Thus, for any p> 0, we have a disk-like region of radius ρa > 0 where the constraint J ≡ det(1+∇u)= ε
is satisfied.

In the pipe problem, for which ρi > 0, we must have p ≥ (1− ε)p1 for the constraint J = ε to be
satisfied in a region bounded by the radii ρi and ρa . Observe from (35) that p1 is small for small values
of ρi . Also, recall from (51) that p0 > p1. In Section 5 we consider (1− ε)c11 p1 < p < c11 p0 and
find numerically a root ρa ∈ (ρi , ρe) for the algebraic equation (48). Notice that for small ε > 0 and
small ζi > 0, it follows from (51) together with both (35)b and (50) that c11 p0 is approximately equal to
c11+ (1− ζi )c12, which is of the same order of magnitude as (1−

√
ε)(c11+ c12), as referenced in the

previous paragraph.
Using (46) together with f(ρ)= [ρ+u(ρ)]eρ , we can easily obtain an expression for det∇f(ρ), which

is positive everywhere in [ρi , ρe]. Thus, the solution (46) together with (47) describe the deformation of
the pipe, which is both locally and globally injective.
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4. The discrete formulation

We wish to construct an approximate solution to both penalty minimization problems (11) and (15) for
given penalty parameters γ and δ, respectively. For this, it is necessary to consider a finite element
formulation based on the introduction of discrete minimization problems over a finite-dimensional space
Ah ⊂A, where the subscript h denotes a characteristic length of the finite element and A is given by (4).
These problems can be solved using an unconstrained minimization method with a line search technique.

Holding h fixed and increasing γ in the interior penalty formulation, the strategy is to first generate
a sequence of solutions parameterized by γ for the discrete problems that converges to an approximate
solution ui

h of the minimization problem (1)–(3), as γ →∞. The aim is then to refine the finite element
mesh by decreasing h and repeat the process above. In so doing, we shall generate a sequence of solutions
ui

h parameterized by h which converges to the solution u of the original minimization problem (1)–(3).
A similar strategy is used to generate a convergent sequence of solutions ue

h for the exterior penalty
formulation. Here, ue

h is the limit function of a sequence of solutions parameterized by δ as δ tends to
zero. In Section 5 we show numerical results which indicate that ui

h = ue
h for a given h.

The strategies outlined above are general and apply to problems in any dimension. Here, however, we
consider the two-dimensional model problem described in Section 3 with the imposition of the injectivity
constraint det(1+∇v) ≥ ε > 0, where v ∈ A. In fact, since the fully linear theory in Section 3.1 is
radially symmetric, we shall consider only the one-dimensional radially symmetric numerical solution
here. Because the constrained theory is nonlinear, radial symmetry need not be the sole possibility as is
shown in the work of Fosdick et al. [2008]. Here, we let v= veρ , where v is a scalar function defined
on the interval (0, ρe).

Since the energy potential E[·] is given by (1)b and (2), we can write

E[veρ] = πc11

{∫ ρe

ρi

[
(v′)2ρ+

(κv)2

ρ

]
dρ+µθv(ρe)

2

}
+ 2πpv(ρe)ρe, (53)

for the model problem described in Section 3, where κ and µθ are given by, respectively, (25) and (35)b.
Since det(1+∇(veρ))= (1+ v′)(1+ v/ρ), the inverse barrier functional, defined by (10), becomes

Q[veρ] = 2π
∫ ρe

ρi

ρ

(1+ v′)(1+ v/ρ)− ε
dρ, (54)

and the exterior penalty functional, defined by (13) and (14), becomes

P[veρ] =
π

4

∫ ρe

ρi

[
−(1+ v′)(1+ v/ρ)+ ε+

∣∣(1+ v′)(1+ v/ρ)− ε∣∣]2
ρdρ. (55)

The penalized potential Eγ [·] for the interior formulation is then obtained from (9), (53), and (54), while
the penalized potential Eδ[·] for the exterior formulation is obtained from (12), (53), and (55). In both
cases, because of the assumption of radial symmetry, the discrete formulations are one-dimensional.

Now, let ρi ≡ ρ0 < ρ1 < ρ2 < . . . < ρn ≡ ρe be a partition of the interval I ≡ (ρi , ρe) into subintervals
I j = (ρ j−1, ρ j ) of length 1ρ j = ρ j −ρ j−1, j = 1, 2, . . . , n. Let also Ah be the set of functions veρ such
that v is linear over each subinterval I j , v ∈ C0(I), and v(ρi )= 0. Clearly, Ah ⊂A, where A is given
by (4).
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Next, introduce the piecewise linear basis functions φ j eρ ∈Ah, j = 1, 2, . . . , n, defined by

φ j (ρk)= δk j , k, j = 1, 2, . . . , n.

Then, a function vheρ ∈Ah has the representation

vh(ρ)= s · g(ρ), ρ ∈ I, (56)

which is the inner product between the vector s≡ (η1, η2, . . . , ηn) ∈ Rn and the n-dimensional vector-
valued function g≡ (φ1, φ2, . . . , φn) defined over the interval I. The coefficients ηi are given by

ηk = vh(ρk). (57)

Substituting vh into (53)–(55), we obtain

Eh(s)≡
E
[
(s · g)eρ

]
2πpρe

=
c11

2pρe

{∫ ρe

ρi

[
(s · g′)2ρ+

(κs · g)2

ρ

]
dρ+µθ

[
s · g(ρe)

]2}
+ s · g(ρe), (58)

Qh(s)≡
Q
[
(s · g)eρ

]
2πpρe

=

∫ ρe

ρi

ρ[
(1+ s · g′)(1+ s · g/ρ)− ε

] dρ, (59)

Ph(s)≡
P
[
(s · g)eρ

]
2πpρe

=
1
8

∫ ρe

ρi

[
−(1+s · g′)(1+s · g/ρ)+ ε+

∣∣(1+s · g′)(1+s · g/ρ)− ε
∣∣]2
ρdρ, (60)

respectively. Observe from (56)–(60) that Eh , Qh , and Ph are scalar functions of an n-dimensional vector
of coefficients ηk, k = 1, 2, . . . , n. Also, Ph is a continuous function of s with continuous first derivative.

The discrete versions of the penalized potentials Eγ [·] and Eδ[·] are then defined by

Fγ (s)≡ Eh(s)+
1
γ
Qh(s), Fδ(s)≡ Eh(s)+

1
δ
Ph(s), (61)

respectively, for a fixed h. In (61), both penalty parameters γ and δ have been redefined so that their
new values are their old values multiplied by pρe. The discrete version of the minimization problem
(11), applied to the constrained pipe problem of Section 3.2, consists of finding an n-dimensional vector
rγ ≡ {χγ 1, χγ 2, . . . , χγ n} that minimizes the scalar function Fγ , given by (61)a, over all vectors s in Rn

that satisfy the injectivity constraint

det
(

1+∇
(
(s · g)eρ

))
− ε = (1+ s · g′)(1+ s · g/ρ)2− ε ≥ 0, 0≤ ρ ≤ ρe. (62)

A nodal value of the constraint (62) is evaluated at the midpoint of the subinterval immediately to the left
of the node under consideration. For the discrete version of the minimization problem (15), we search
for rδ ≡ {χδ1, χδ2, . . . , χδn} that minimizes the scalar function Fδ, given by (61)b, over all vectors s in
Rn . Notice from these statements that the discrete version of (11) is a constrained minimization problem
while the discrete version of (15) is an unconstrained minimization problem.

The discrete minimization problems stated above are solved iteratively using a standard unconstrained
second-order minimization method with a line search technique. The method is based on an iterative
descent algorithm presented in [Aguiar 2006], which is used here to search for an approximate solution
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of the minimization problem

min
s∈Rn

Fγ (s) subject to the restriction (62), (63)

where Fγ is given by the expression (61)a together with (58) and (59).
Starting from an initial guess s0 ∈ Rn , which corresponds to the undistorted natural state of the body,

we generate a sequence of approximate solutions sk ∈ Rn, k = 0, 1, 2, . . . , denoted by {sk}, using the
recursive formula

sk+1 = sk +αkdk, (64)

where αk is a scalar minimizing Fγ in a given direction of search dk . Procedures to obtain both αk and
dk are described below.

The scalar αk is a solution of the (unidirectional) minimization problem

min
α∈R

H(α)≡min
α∈R

Fγ (sk +αdk),

which is highly nonlinear and is solved iteratively using a standard Newton–Raphson technique. The
technique is based on the assumption that we can approximate H(α) by a quadratic function obtained
from the sum of the first three terms of a Taylor series expansion of H(α) about the minimizer αk . We
assume that α(0) = 0 is a good initial guess for αk . By minimizing the quadratic function, we generate
the estimate α(1), which is taken as the next guess for αk . By repeating this process, we arrive at the
recursive formula

α(i+1)
= α(i)−

H′(α(i))
H′′(α(i))

, α(0) = 0, i = 0, 1, . . . . (65)

We then generate the sequence {α(i+1)
}, i = 0, 1, . . . , which is expected to converge to αk as the number

of elements in the sequence tends to infinity [Aguiar 2006].
For each α(i+1) calculated from (65), we check the signs of the nodal values of the discrete injectivity

constraint, given by (62), to make sure that they are all positive for s= sk +α
(i+1)dk . This is the only

place in the whole numerical scheme where we check for constraint violations.
To determine a direction of search dk in (64), we consider that, in a vicinity of sk , the scalar function

Fγ can be approximated by the quadratic form

Fγ (s)≈Qn(s)≡ Fγ (sk)+∇sFγ (sk) · (s− sk)+
1
2 (s− sk) · ∇

2
sFγ (sk)(s− sk),

where ∇sFγ ≡ (∂Fγ /∂η1, ∂Fγ /∂η2, . . . , ∂Fγ /∂ηn) is the gradient of Fγ and ∇2
sFγ is the Hessian of Fγ .

By solving the equation ∇sQn(s)= 0, which is a necessary condition for the existence of a minimizer ŝ
of the quadratic form Qn , we obtain

dk ≡ ŝ− sk = −
[
∇

2
sFγ (sk)

]−1
∇sFγ (sk), k = 0, 1, . . . .

The sequence of limit points {sk} generated by (64) converges to the solution rγ ∈ Rn of the discrete
minimization problem (63).

Next, we increase the penalty parameter γ and repeat the whole minimization process outlined above.
Now, however, we start the new minimization process taking for s0 the limit point rγ of the previous
minimization process. The initial direction of search d0 is the direction of steepest descent evaluated at
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the new point s0. Using this procedure for a fixed h, we generate a sequence {rγ } that converges to a
limit point rh ∈ Rn as γ →∞. We use rh together with the representation (56) to construct the function
uh = (rh · g)eρ . This function is an approximation of the solution u of the original problem (1)–(3) for a
fixed h. Letting h→ 0, we generate a sequence {uh} that converges to u.

The algorithm for the minimization problem mins∈Rn Fδ(s),where Fδ is given by (61)b together with
(58) and (60), is similar to the algorithm described above. Here, however, we let δ → 0 in order to
generate a sequence {rδ} that converges to the limit point rh ∈ Rn . Also, we do not need to check the
signs of the nodal values of the discrete injectivity constraint, given by (62), since the minimization is
performed over all s ∈ Rn .

5. Numerical results

We apply the numerical method presented in Section 4 to solve numerically the constrained pipe problem
described in Section 3.2. We have normalized all lengths by setting the radius of the pipe ρe = 1.
Furthermore, in dimensionless units, the inner radius of the pipe is ρi = 0.001, the elastic constants
are c11 = 105, c22 = 103, and c12 = 103, and the applied load on the boundary of the pipe is p = 500.
With these geometric and material parameters, we find from (25), (34)b, (35)a, b, (38), and (39) that
κ = 0.1< 1, p̂ = 0.005, p1 ∼= 0.00132, µθ = 0.01, p2 ∼= 0.00359, and pc ∼= 1.76913, respectively. Recall
from Section 3 that p1 is the value of p̂ below which 1+ u′(ρ) is positive and no self-intersection occurs,
p2 is the value of p̂ above which we have two roots for the algebraic equation 1+u(ρ)/ρ= 0, and pc is an
upper bound for p̂. Then, the roots of the algebraic equations 1+u′(ρ)= 0 and 1+u(ρ)/ρ = 0, where u
is the unconstrained solution given by the expression (34) together with (35), are given by ρ1 ∼= 0.00381,
ρA ∼= 0.00148, and ρB ∼= 0.00784. Also, we take ε= 0.1 for the lower bound of the injectivity constraint1.
The radius of the core subregion B= where the constraint is active is calculated from (48) together with
(49), yielding ρa ∼= 0.00554, and the value of p̂ above which det(1+∇u) = ε in [ρi , ρe] is calculated
from (51), yielding p0 = 0.69061.

In Figure 2 we show two graphs for the determinant of the deformation gradient J ≡ det(1+∇u)
calculated from the exact solutions of both the constrained pipe problem, represented by the solid line,
and the unconstrained pipe problem, represented by the dashed line. The graph on the left side refers to
the entire interval, whereas the graph on the right side refers to a neighborhood of the inner surface of
the pipe. Observe from the graph on the left that, away from the inner surface, both curves are close to
each other and from the graph on the right that J , obtained from the unconstrained solution, vanishes
at the radii ρA, ρ1, and ρB , whereas J , obtained from the constrained solution, is constant in [ρi , ρa],
increasing thereafter.

The numerical solutions were obtained with nonuniform partitions of the interval (0, ρe) in such a
way that the coarsest partition has 300 elements in (0, 0.07ρe), 100 elements in (0.07ρe, 0.46ρe), and
80 elements in (0.46ρe, ρe)

2, totaling 480 elements. The other partitions are obtained from the coarse
partition by multiplying the number of elements of this partition by integer powers of 2. Thus, the most

1 These geometric and material parameters are used by Fosdick and Royer-Carfagni [2001] in their analytical study of the
compressed disk problem.

2The nonuniform mesh of 480 elements is similar to the mesh used by Obeidat et al. [2001] in their computational study of
the compressed disk problem.
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Figure 2. Determinant of the deformation gradient J ≡ det(1+∇u) versus radius ρ for
both the constrained and unconstrained pipe problems.

refined mesh has 24
× 480 elements, totaling 7680 elements. In what follows, the characteristic length h

is the length of the largest interval and n is the total number of elements. Also, we increase the penalty
parameter γ in (61)a by powers of 10, that is, we consider γ = 10, 102, . . . , and we decrease the penalty
parameter δ in (61)b by negative powers of 10, meaning we consider δ = 10−1, 10−2, . . . .

In Figure 3 we show two graphs with both the exact analytical solution, given by (46) and (47) and
represented by the solid line, and the numerical solutions, obtained with the nonuniform mesh of 7680 el-
ements and represented by the dash-dotted lines. The graph on the left side was obtained with the interior
penalty formulation using increasing values of γ and the graph on the right side was obtained with the
exterior penalty formulation using decreasing values of δ. We see from both graphs that the sequences of
numerical solutions converge to limit functions that cannot be distinguished from the analytical solution.

In Figure 4 we show curves for the base 10 logarithm of the Euclidean norm of the error e between
the exact solution u= ueρ , given by (46) together with (47), and the numerical solution uh = (rh · g)eρ ,
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−0.03

−0.02
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Numerical solution
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…
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10−1 

10−13 
…

Figure 3. Radial displacement u versus radius ρ for the constrained pipe problem with
n = 7680. Left: γ = 10, . . . , 1010. Right: δ = 10−1, . . . , 10−13.
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Figure 4. Base 10 logarithm of the error e ≡ ‖r− rh‖2 versus base 10 logarithm of the
penalty parameter ψ , where ψ is either γ or 1/δ.

obtained from the most refined mesh of 7680 elements. This error is plotted against the base 10 logarithm
of the penalty parameter ψ , which is equal to γ for the interior penalty formulation (dash-dotted line)
and is equal to 1/δ for the exterior penalty formulation (dashed line). Observe from the dash-dotted line
that log10 e decreases monotonically with increasing values of γ and tends to an asymptotic value as γ
becomes large. A different behavior is observed for the dashed line. Here, log10 e is almost constant
for small and large values of 1/δ and decreases rapidly in an interval of intermediate values of 1/δ. For
small 1/δ, the penalty part in (61) is not enforced and the numerical solution is a good approximation of
the solution for the unconstrained pipe problem of Section 3.1. Thus, for small 1/δ, e is the approximate
error between the unconstrained and constrained solutions.

In both curves shown in Figure 4 we see that the errors tend to asymptotic values as both γ and
1/δ tend to infinity. In Figure 5 we consider different discretizations and show curves for the base 10
logarithm of the Euclidean error ‖rb − rh‖2 between the best numerical solution ub ≡ rb · g, obtained
with large values of either γ or 1/δ for each discretization, and the numerical solution uh = rh · g. This
error is plotted against both the base 10 logarithm of the parameter γ in the graph on the left side and
the base 10 logarithm of the parameter 1/δ in the graph on the right side.

Observing the graph on the left side of Figure 5, we see that ‖rb − rh‖2 decreases monotonically
with increasing values of γ and that all the curves are similar to each other. In particular, notice that all
these curves are almost straight lines for large values of γ . Performing a linear regression on the curve
corresponding to 7680 elements, represented by the dash-dotted line, we find that the angular coefficient
is approximately equal to −0.73717, which corresponds to a convergence ratio3 of 10−0.73717 ∼= 0.18.
Similar analysis can be performed on the curves shown in the graph on the right side of Figure 5. Observe
from this graph that all the curves are almost straight lines for 1/δ≥ 106. For these values of δ, the angular
coefficient obtained from a linear regression analysis of the curve corresponding to 7680 elements is
approximately equal to −0.52206, which corresponds to a convergence ratio of 10−0.52206 ∼= 0.30.

3Consider the ratio between two consecutive values of a sequence of real numbers. If this ratio tends to a constant value as
the number of terms in the sequence tends to infinity, then the ratio is called the convergence ratio of the sequence.
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Figure 5. Base 10 logarithm of the Euclidean error e = ‖rb − rh‖2 versus base 10
logarithm of the parameter a) γ (left), b) 1/δ (right).

We see from the this that, for sufficiently large n, the sequence of numerical solutions parameterized
by γ converges faster to a limit function than the sequence of numerical solutions parameterized by
δ. Also, this convergence is more uniform for the sequence of solutions parameterized by γ than it is
for the sequence of solutions parameterized by δ. In particular, notice that this last sequence yields a
convergence ratio close to one for small values of 1/δ. To quantify this, we performed a linear regression
analysis on the curve corresponding to 7680 elements for 1/δ < 10 and found that the angular coefficient
is approximately equal to −0.01045, which corresponds to a convergence ratio of 10−0.01045 ∼= 0.98.

Next, we chose the largest value of γ in the interior penalty formulation for each discretization and
obtained the numerical solutions represented by the dash-dotted lines in Figure 6. Observe from the graph
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1920 

Figure 6. Radial displacement u versus radius ρ for the constrained pipe problem for
either large γ or small δ and for an increasing number of elements. Left: Interval (ρi , ρe).
Right: Magnified view showing the distinction between the numerical solutions and the
exact solution.
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Figure 7. Base 2 logarithm of the Euclidean error e versus base 2 logarithm of the
number of elements n for either large γ or small δ. Both curves are indistinguishable at
this scale.

on the left side of this figure that the numerical solutions are not distinguishable from the constrained
exact solution, given by (46) together with (47) and represented by the solid line. We also show in this
graph the unconstrained exact solution, which is given by (34) and (35) and is represented by the dashed
line. By comparing this line with the solid line, we conclude that the imposition of the injective constraint
has the effect of stiffening the material. Similar conclusions are reached by Aguiar [2006] and Fosdick
and Royer-Carfagni [2001] in their treatment of radially symmetric constrained problems.

The graph in Figure 6, right, corresponds to a zoom in a neighborhood of ρ = ρa . Here, we can see
that the sequence of numerical solutions obtained with increasing n converges to the constrained exact
solution. At this scale, it is not possible to see the dashed line corresponding to the unconstrained exact
solution. Identical curves were obtained using the exterior penalty formulation with a fixed small δ.

In Figure 7 we show curves for the base 2 logarithm of Euclidean norm of the error between the
exact solution u = ueρ , given by (46) and (47), and the numerical solution uh = (rh · g)eρ versus the
base 2 logarithm of the number of elements n. The dash-dotted line corresponds to the numerical solution
obtained with the interior formulation and the dashed line corresponds to the numerical solution obtained
with the exterior formulation. Observe from the figure that both curves are on the top of each other and
are almost straight lines. Observe also that the error decreases with the increasing number of elements.
Performing a linear regression on these curves, we found that the angular coefficients are approximately
equal to −0.49316, which corresponds to a convergence ratio of 2−0.49316 ∼= 0.7105.

In Figure 8 we show the determinant of the deformation gradient J ≡ det(1+∇u) calculated from both
the exact solution of the constrained pipe problem, represented by the solid line, and the corresponding
numerical approximations. These approximations, which are represented in the figure by different line
styles, were obtained using both the interior penalty formulation with large γ and the nonuniform meshes.
The graph on the left in Figure 8 refers to the entire interval, whereas the graph on the right refers to a
neighborhood of the inner surface of the pipe which contains the active region, that is, for ρ ∈ (ρi , ρa).
Observe from the graph on the left the very good agreement between the analytical and the numerical
results and from the graph on the right that the numerical aproximations of J converge to the analytical
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Figure 8. Determinant of the deformation gradient J ≡ det(1+∇u) versus radius ρ for
the constrained pipe problem using large γ .

solution as the mesh is refined. In particular, observe from this last graph that the numerical scheme
captures well the sharp change in J at ρ = ρa . Identical curves were obtained using the exterior penalty
formulation.

In Figure 9 we show the determinant of the deformation gradient J ≡ det(1+∇u) calculated from
both the exact solution of the constrained pipe problem, represented by the solid line, and its numerical
approximations, represented by the dash-dotted line, for the most refined mesh of 7680 elements. The
graphs on the left and the right sides of Figure 9 refer to the approximations obtained with, respectively,
the interior and the exterior penalty formulations. Observe from both graphs that Jh converges to a limit
function as the penalty parameter is enforced in each case, that is, as γ →∞ on the left graph and as
δ→ 0 on the right graph. Recall from the analysis of Figure 8 that both limit functions are identical, are
represented by the dash-dotted line in the graph on the right of that figure, and approximate the analytical
solution J = ε (recall, ε = 0.1) in the interval (ρi , ρa).

Observe from the graph on the right side of Figure 9 that, in the interval (ρi , ρa), the approximations
uh of the minimizer u lie in the exterior of the set Aε for large δ since, in this case, Jh < ε. Nevertheless,
contrary to what one might expect, as δ→ 0, the sequence of approximations {uh} converges to a limit
function that belongs to the constrained set Aε.

6. Conclusion

In this work we investigate the problem of equilibrium of a circular homogeneous and cylindrically
orthotropic pipe that is fixed at its inner surface, is radially compressed along its outer surface, and is
subjected to an axial force on its flat ends. In the classical linear theory, the solution to this problem is
smooth everywhere, including the boundary of the pipe, and predicts self-intersection in a neighborhood
of the inner surface for a sufficiently large, but reasonable, compressive radial pressure. Of course, this
behavior has no physical meaning. By using a minimization theory that enforces the injectivity condition
J ≥ ε > 0, where J is defined in the expression (31) and ε is small, we obtain a radially symmetric solution
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Figure 9. Determinant of the deformation gradient J ≡ det(1+∇u) versus radius ρ for
the constrained pipe problem using n = 7680. Interior (left) and exterior (right) penalty
formulations.

to the corresponding constrained minimization problem that satisfies this injectivity condition, as shown
in Figure 2, that does not predict the anomalous self-intersecting behavior anywhere in the pipe, and that
yields a stiffer material response.

The advantage of investigating radially symmetric one-dimensional problems is that, in general, their
solutions are known in the context of both unconstrained and constrained minimization theories of qua-
dratic functionals [Fosdick and Royer-Carfagni 2001; Aguiar 2006]. A disadvantage of this investigative
approach is that not all possible solutions of the corresponding full two-dimensional problems can be
obtained in the context of the constrained theory (see, for instance, the numerical treatment of a full
two-dimensional problem by Fosdick et al. [2008]).

We then use both an interior and an exterior penalty formulation of the constrained minimization
problem together with a standard finite element method and classical nonlinear programming techniques
to find approximate solutions to this constrained problem. We show numerical results obtained from
discrete versions of both formulations that are in very good agreement with analytical results presented
in Section 3.2. We highlight below the main findings from the analysis of these results.

(1) For a given finite element mesh, the sequences of numerical results obtained with both penalty
formulations converge to the same limit function as the penalization is enforced (see Figures 6 and
7). These sequences are, however, very different from each other (see Figure 3) and converge at
different rates (see Figures 4 and 5).

(2) For a given finite element mesh, the results shown in Figure 5 indicate that the interior penalty
formulation yields a sequence of numerical solutions that converges faster and more uniformly to a
limit function than the sequence obtained from the exterior penalty formulation.

(3) For a given finite element mesh, a sequence of numerical solutions uψ , where either ψ = γ for the
interior penalty formulation or ψ = 1/δ for the exterior penalty formulation, yields a convergent
sequence of Jψ = det(1+∇uψ) that satisfies Jψ ≥ ε everywhere in the pipe as ψ→∞ (see Figure
8).
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(4) The interior formulation yields, expectedly, Jγ ≥ ε for every γ > 0 (see Figure 9 on the left) and
the exterior formulation yields J1/δ < ε in (0, ρa) for large δ and J1/δ ≥ ε in (0, ρa) for small
δ (see Figure 9 on the right). This last result was not expected, because, in general, the exterior
formulation yields a sequence of penalized solutions that converges to the solution of the problem
from the exterior of the constrained set. Here, however, the sequence is converging from the interior
of the set as 1/δ→∞.

In summary, both penalty methods are viable methods of analysis for the class of constrained mini-
mization problems considered in Section 2, lead to simple numerical schemes that yield very accurate
approximate solutions to the corresponding constrained problems, and can be used to solve more complex
problems. The main advantage of the exterior penalty method is that the corresponding minimization
problem is unconstrained. Also, the exterior penalty functional chosen in this work, given by the expres-
sion (13), leads to a penalty function Fδ , given by (61)b together with (58) and (60), that is differentiable
everywhere. On the other hand, the main findings highlighted above suggest that, given a finite element
mesh, the interior penalty method yields a sequence of numerical solutions that converges faster and
more uniformly to a limit function than the sequence obtained from the exterior penalty method. In
addition, the numerical solutions obtained with the interior penalty method are kinematically admissible
for any penalty parameter.

This work is part of an ongoing research effort to determine the best strategy to tackle general
higher dimensional singular problems in elasticity for which the corresponding solution may exhibit
self-intersection in the vicinity of corners and crack tips. The results obtained in this work suggest
that the best strategy might be a combination of both penalty formulations. One might use the interior
penalty formulation to generate a numerical solution that is a good approximation to the solution of
the constrained problem and then use this numerical solution as the inital guess in the search of the
constrained solution with the exterior penalty formulation.

Appendix

Here, we resolve the technical issue that arose in the solution (45) for the Lagrange multiplier function
λ̂(ρ).

Proposition. To be consistent with λ̂(ρ)≥ 0 in (ρi , ρa), the jump of u′ across ρ = ρa must be zero and
ρ̃ = ρa .

Proof. We consider a procedure that is analogous to the procedure used by [Fosdick and Royer-Carfagni
2001] in the analysis of a model problem that is a particular case of our problem when ρi = 0.

First, we rewrite the expression (45) as

λ̂(ρ)= −
ρi

2(ρ̃2
− ρ2)(1− ε)ε

2
[
g(ρ)g(ρ̃)

]2 + log
(

h(ρ)
h(ρ̃)

)
, ρ ∈ (ρi , ρa), (A.1)

where

h(ρ)=
g(ρ)

ρκ
2[√

ερ+ g(ρ)
]α , α ≡

(1− κ2)
√
ε

. (A.2)
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Next, we substitute the expressions (44), (A.1), and (A.2) in the jump condition (43)b to obtain

log
(

h(ρa)

h(ρ̃)

)
= −

ρa

g(ρa)

∣∣∣[u′(ρa)
]∣∣∣+ ρi

2(ρ̃2
− ρa

2)(1− ε)ε

2
[
g(ρa)g(ρ̃)

]2 , (A.3)

where |[u′(ρa)]| ≡ u′(ρ+a )− u′(ρ−a ) is the jump of u′ across ρ = ρa .
Noting that log(h(ρ)/h(ρ̃))= log(h(ρ)/h(ρa))+ log(h(ρa)/h(ρ̃)) and using (A.3) in (A.1), we can

rewrite λ̂ as

λ̂(ρ)= −
ρi

2(ρa
2
− ρ2)(1− ε)ε

2
[
g(ρ)g(ρa)

]2 + log
(

h(ρ)
h(ρa)

)
−

ρa

g(ρ−a )

∣∣∣[u′(ρa)
]∣∣∣. (A.4)

Since λ̂(ρa)≥ 0, we see from (A.4) that |[u′(ρa)]| ≤ 0, which implies that

u′(ρ+a )≤ u′(ρ−a ). (A.5)

On the other hand, the condition det∇f≥ ε in (ρa, ρe) together with the expressions (31), (28), and
ε3= 0, yields (1+u′(ρ+a ))(1+u(ρ+a )/ρa)≥ ε. Also, (1+u′(ρ))(1+u(ρ)/ρ)= ε for ρ ∈ (ρi , ρa). Since
u(ρ+a )= u(ρ−a ) from the jump condition (43)a, we then find that

u′(ρ+a )≥ u′(ρ−a ). (A.6)

Thus, it follows from both (A.5) and (A.6) that |[u′(ρa)]| = 0. �
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NUMERICAL AND EXPERIMENTAL STUDIES OF DEEP INDENTATION ON
SINGLE CRYSTALS

YONG X. GAN, XI CHEN AND MANHONG ZHAO

Indentation tests with large penetration depths have been used to study the plastic deformation behavior
of materials. In this work, finite element simulations of wedge indentation into face-centered cubic
single crystals were performed. Numerical solutions to the stresses and shear strains within the single
crystals indented with a relatively large penetration depth were obtained. The crystal lattice rotation map
of the indented crystals was also shown. Indentation experiments were conducted on copper crystals
and the results were used to validate the numerical predictions. Comparison of the numerical solutions
to the crystal lattice rotation with the experimentally measured lattice rotation map was made. The
main features of the crystal lattice in-plane rotation map from the finite element simulations are also
found on the map developed from the electron backscatter diffraction measurements. Both simulations
and experimental measurements reveal the same dislocation structures as evidenced by the slip sectors
underneath the wedge indentation zone.

1. Introduction

Indentation is useful for obtaining load-displacement data and the data may be used for mechanical
property evaluation [Beghini et al. 2006], post-yielding analysis [Habbab et al. 2006], and materials
rheology study [Bigot et al. 2005]. Vlassak and Nix [1994] measured the elastic properties of anisotropic
materials such as copper and brass under indentation. The indentation size effect was studied to reveal
the variation of measured properties with the applied loading levels. Based on the indentation studies on
titanium and aluminum, it is found that the contact surface area between the specimens and the indenter
causes the variation of microhardness [Iost and Bigot 1996]. In the work performed by Gerberich et al.
[2002], the indentation size effect is correlated to the ratio of the energy of newly created surface and
the plastic strain energy dissipation. The ratio of contact surface area to plastic volume remains constant
if the indentation depth is within several hundred nanometers. Another phenomena related to shallow
indentation, the surface step effect, was found [Zimmerman et al. 2001], meaning that the load needed
to nucleate dislocations decreases significantly when indenting close to a surface step.

From indentation tests, important information about dislocation activities within materials can be
obtained. For example, Kysar et al. [2007] used indentation data to calculate the geometrically necessary
dislocation density. The condition for dislocation pile-up under a conical nanoindenter is determined by
Zaafarani et al. [2008]. Bhattacharya and Nix [1991] showed how to determine the shapes of plastic
zones under indenters. They also clarified the effects of shear modulus, bulk modulus and indenter
angle on the hardness of hard and soft materials. Laursen and Simo [1992] provided an approach to

Keywords: finite element simulation, indentation, plastic deformation, copper crystal, stress field, shear strain, electron
backscatter diffraction, crystal lattice rotation, slip, dislocation structure.
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computing the hardness, contact stiffness, effective composite modulus, and surface profile under load
and thus the amount of pileup (or sink-in) around the indenter in the fully loaded configuration, as well
as the variation of the actual contact area during indenter withdrawal, can be predicted. Marx and Balke
[1997] identified the influence of material properties on the unloading response. Bolshakov and Pharr
[1998] showed how to use indentation load-displacement data to identify when pileup occurs. The work
performed by Giannakopoulos et al. [1994] evaluated the hardness formulae for materials under Vickers
indentation tests.

Studies of spherical indentation into a half-space have been performed for a long time, as shown in the
works performed by Follansbee and Sinclair [1984], Sinclair et al. [1985], and Hill et al. [1989], which
provide important information about hardness, contact pressure distributions, and the transition from the
initial elastic regime to the fully plastic contact regime. Cylindrical indentation induced deformation in
face-centered cubic (FCC) metal single crystals was examined in our earlier work [Gan et al. 2007]. For
sharp indentation tests using conical, pyramidal, or wedge indenters, the behavior of tested materials may
not be deduced directly. So, numerical simulations were used [Pelletier 2006] to predict the deformation
of the indented region. For example, Qu et al. [2006] used finite elements (FE) to simulate the mechanism-
based strain gradient plasticity in an indented iridium specimen. Indentation with small or moderate
penetration depth has been studied for evaluating the elastic-plastic properties of materials such as thin
films [Zhao et al. 2006; 2007]. Deep penetrating indentation tests may be used to study the plastic
deformation behavior of materials. At the micron length scale, materials often exhibit heterogeneous
behavior as shown by Rashid et al. [1992] via the slip of copper single crystals at different loading
rates. Havner and Yu [2005] analyzed the finite double slip behavior in FCC crystals. The number and
orientation of active slip systems are dependent and may vary during an indentation test [Bouvier and
Needleman 2006]. Constitutive modeling of materials at different finite deformation states was performed
[Naghdabadi et al. 2005]. A deformation gradient based kinematic hardening model was reported [Wallin
and Ristinmaa 2005]. Lattice orientation effects on plastic deformation and damage evolution in FCC
single crystals were also studied [Potirniche et al. 2006].

The work on simulations of indentation into single crystals spans atomic discrete simulations [Miller
et al. 2004], nanoscale plasticity simulations [Horstemeyer et al. 2001], mesoscale investigation [Yoshino
et al. 2001], micromechanics based FE analysis [Premachandran and Horii 1994], and quasicontinuum
analysis [Tadmor et al. 1996]. For example, the simulation at atomic scale levels using molecular dynam-
ics methodologies was presented by Miller et al. [2004]. Atomistic simulations of elastic deformation and
dislocation nucleation during nanoindentation were performed by Lilleodden et al. [2003]. Horstemeyer
et al. [2001] investigated the structure-property relations for plasticity at different length scales through
simulations using embedded atom potentials. Three dimensional finite element simulations of disloca-
tion nucleation under indentation were investigated based on the analysis of nanoscale contact of single
crystal copper by a cylindrical indenter [Zhu et al. 2004], and by a conical indenter [Wang et al. 2004].
Based on three dimensional FE analysis, the complex equilibrium crack front of indentation into thin
film coated on a thick silicon crystal substrate was identified [Xia et al. 2004], and the indent-induced
plastic zone in FCC crystals was defined [Fivel et al. 1998]. Simulation of the strain gradient effects
on a microscopic strain field was also performed [Shu and Barlow 2000]. Quasicontinuum analysis
[Tadmor et al. 1996] allows us to obtain simultaneous solutions for continuum and atomistic length
scales. However, the computation (either atomistic or multiscale) is very expensive and not applicable to
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large length scales. It cannot simulate very deep indents. Therefore, FE simulations of indentation into
single crystals were used to predict the plastic properties of single crystals, for example, Al, Ni, and Pb
[Xu and Rowcliffe 2002], and MgO [Yoshioka 1991; Xu and Rowcliffe 2002]. However, there is very
little work on validating the numerical solutions using experimental results.

In this work, we simulated the wedge indentation in copper single crystals with special orientations.
Comparison of the finite element solutions with experimental results was made. The paper is organized
as follows. First, the numerical simulations based on finite deformation theory of single crystal plasticity
will be presented. Implementation of finite element simulations will be delineated. Second, indentation
test procedures will be given and the lattice rotation measurement will be briefly described. Then, stress,
shear strain, and in-plane lattice rotation solutions from the FE simulations will be given. Subsequently,
the indentation experimental results will be presented. Following that, comparison of the numerical
solutions and the experimentally measured lattice rotation results will be carried out to validate the finite
element solutions. The novelty of this work is in testing the numerical predictions through experimental
results.

2. Finite element simulation

The finite element analysis was performed using the commercial software ABAQUS. A user-material
subroutine for single crystal plasticity was used in implementation of the simulations for copper single
crystals. The subroutine is based on the framework of kinematical theory for the mechanics of single
crystals [Turkmen et al. 2004]. For the finite deformation of single crystals,

D̂+ �̂= F̂F̂−1, DP
+�P

=

n∑
k=1

γ̇ (k)ŝ(k)⊗ m̂(k),

where F is the deformation gradient, D stands for the symmetric stretching tensor and � is the spin
tensor, which can be decomposed into elastic parts ( ·̂ ) and plastic parts ( ·P ). The superscript k denotes
the k-th slip system, γ̇ (k) is the shear strain rate, n is the total number of the active slip systems, s(k) and
m(k) are unit vectors along the slip direction and normal to the slip plane in the reference configuration,
respectively.

The constitutive relation for single crystals under finite deformation is ˆ̃σ + σ(I : D̂)= Ł : D̂, where
L is the tensor of elastic moduli and ˆ̃σ is the corotational stress rate on axes that rotate with the crystal
lattice. ˆ̃σ can be expressed as ˆ̃σ = σ̃ + (�− �̂)σ − σ(�− �̂), where σ̃ is the corotational stress rate on
axes rotating with the material, which is σ̃ = σ̇ −�σ + σ�. The Schmid stress and the rate of Schmid
stress are given as

τ (k) = m̂(k)ρ0

ρ
σ ŝ(k), τ̇ (k) = m̂(k)[ ˆ̃σ + σ(I : D̂)+ σ D̂− D̂σ

]
ŝ(k),

where ρ0 and ρ are the mass density in the reference and current states, respectively. τ (k) is the resolved
shear stress onto the k-th slip system.

To find γ̇ (k) we used a rate-dependent relation for single crystals as proposed by Hutchinson [1976]:

γ̇ (k) = γ̇◦ sgn
[
τ (k)

]∣∣∣∣τ (k)g(k)

∣∣∣∣m,
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where γ̇◦ is the reference strain rate, τ (k) is the applied resolved shear stress, m is the rate sensitivity
exponent, and g(k) is related to the critical resolved shear stress of the k-th slip system.

The evolution of strength is related to the strain rate, γ̇ , and the slip hardening moduli hkl by

ġ(k) =
n∑

l=1

hkl γ̇
(l).

The hardening moduli are found in different forms depending on the model used [Kysar 2001]. In the
Bassani–Wu hardening model, hkl takes the form

hkk =

{
(h0− h∞) cosh−2

[∣∣∣∣(h0− h∞)γ (k)

τ∞− τ0

∣∣∣∣+ h∞

]
+ h∞

}
G
(
γ (l)

)
,

hkl = qhkk, (k 6= l)

where h0 is the initial value of hardening modulus, and h∞ is the saturated value of hardening modulus.
τ0 is the initial value of g(k). τ∞ is the stress at which hardening moduli reach h∞. G is a function
related to cross-hardening that occurs between slip systems.

In order to formulate the finite element program, the increment of shear strain is formulated as

1γ (k)− (1−2)1t γ̇ (k)−21t γ̇ (k) f (k)
τ
(k)
t +1τ

(k)
t

g(k)t +1g(k)
= 0,

where 2 is the interpolation parameter which takes a value between 0 and 1, f (k) is a dimensionless
function which reveals the dependence of strain rate on the stress, and 1τ (k) and 1g(k) are the incre-
ments of resolved shear stress and current strength in the k-th slip system within the time increment 1t ,
respectively.

The increments of resolved shear stress, 1τ (k), depend on the strain increments 1εi j and the stress as

1τ (k) =
[
Ẽi jabµ

(k)
ab +ω

(k)
ia σ ja +ω

(k)
ja σia

][
1εi j −

n∑
k=1

µ
(k)
i j 1γ

(k)
]
,

where Ẽi jab are the elastic moduli. µ(k)i j is the Schmid factor, and ω(k)i j is a tensor related to the spin
tensor � and �̂, which are

µ
(k)
i j =

1
2

[
ŝ(k)i m̂(k)

j + ŝ(k)j m̂(k)
i

]
, ω

(k)
i j =

1
2

[
ŝ(k)i m̂(k)

j − ŝ(k)j m̂(k)
i

]
, �

(k)
i j − �̂

(k)
i j =

n∑
k=1

ω
(k)
i j γ̇

(k).

Therefore, for given strain increments, the increments of shear strain can be determined. Then, the stress
increments, 1σi j , can also be solved by

1σi j = Ẽi jab1εab− σi j1εaa −

n∑
k=1

[
Ẽi jabµ

(k)
ab +ω

(k)
ia σ ja +ω

(k)
ja σia

]
1γ (k).
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In addition, the explicit forms of the increments of lattice rotation are found to be [Asaro 1983]

1ŝ(k)i =

{
1εi j +�i j1t −

n∑
k=1

[
µ
(k)
i j +ω

(k)
i j

]
1γ (k)

}
ŝ(k)j ,

1m̂(k)
i =−

{
1ε j i +� j i1t −

n∑
k=1

[
µ
(k)
j i +ω

(k)
j i

]
1γ (k)

}
m̂(k)

j .

The convergence of the finite element simulations is assured by choosing a relatively small time incre-
mental step size in the users’ subroutines.

In this work, the numerical computation generates errors on the order of 1t2, where 1t is the step size
used in simulation. The indentation contact, loading, and unloading were set under displacement control
to achieve better convergence properties than in the case of under load control. The critical shear stress,
τ , for the copper single crystals was assumed to be 61 MPa. This is based on the experimental results.
We did compression tests (along the [001] direction) on three copper crystal samples with the dimensions
5×5×10 mm to find the yield point. The average load at the yield point was used to calculate the shear
strength by multiplying the Schmid factor related to this crystallographic orientation. The element used in
the simulation is a plane strain reduced integration, hybrid element (CPE4RH). The mesh is schematically
shown in Figure 1. The crystal in a quadrant and the 90◦ wedge indenter are put together in the drawing.
Figure 1a is the global view of the indenter and the half single crystal with the mesh. Figure 1b shows
the finer mesh close to the tip of the indenter. There are three mesh sizes. The first 12,880 elements in
the region closed to the indenter tip have the mesh size 1.5× .5µm. The 16,100 elements away from the
indenter tip have the mesh size of 3× 1.5µm. The rest of 19,320 elements far away from the indenter
have varied mesh sizes The mesh size changes from 1.5× 3µm to 4× 3µm. It must be pointed out that
some variables may be chosen dimensionless in the simulations. For example, the mesh and indentation
depth could be set as dimensionless by normalizing these parameters by the indenter size. However, since
the indenter is assumed as analytically rigid, the yield strength of the indenter in this case approaches

Figure 1. Mesh for the finite element simulation of wedge indentation: (a) global view
of the mesh and the wedge indenter and (b) mesh close to the wedge indenter tip and the
boundaries of the crystal, the dark region in (a).
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infinity. This might cause convergence problems if we would normalize the yield strength of the crystal
specimen by the yield strength of the indenter. The shear strength of copper crystal, 61 MPa, is used in
the simulation. This unit is equivalent to µN/mm2. Consequently, the mesh size of the crystal and the
indenter penetration depth are also carrying the unit of µm. Numerical tests of mesh convergence were
carried out to ensure that the presented results were independent of further mesh refinement. Excessive
mesh distortion was not observed during simulation and thus remeshing was not used.

The wedge indenter is defined as analytically rigid and the contact between the indenter and the crystal
is frictionless. In the finite element analysis, lattice rotation and stresses were solved incrementally by
ABAQUS. The constitutive properties are chosen as elastic-ideally plastic because the load increases
almost linearly with the indentation penetration depth as will be shown in Figure 7b. From this behavior
and taking into account that the indentation contact area is increasing linearly, we concluded that the
nominal strength of the copper single keeps almost the same. Therefore the material is very close to an
elastic-ideally plastic state under the indentation conditions. The power-law rate-dependent relationship
proposed by Hutchinson [1976] and delineated by Connolly and McHugh [1999], Peirce et al. [1983],
and Savage et al. [2004], was applied in the simulation. Since elastic-ideally plastic properties are used
in this simulation, the function related to critical resolved shear stress of the k-th slip system is taken
as a constant. The reference strain rate was 10−3 s−1, and the rate sensitivity exponent was 50.0. The
stress at which hardening moduli are saturated was 109.5 MPa. The ratio of latent over self hardening
moduli of various sets of slip systems was 1. During the simulation, the minimum iteration step used
was 1× 10−9 and the maximum step was 5× 10−5 and 20000 increments were performed in the loading
and unloading simulations. The computation was implemented on a computer with CPU frequency of
2.88 GHz and the CPU time of 43200 s.

3. Experimental methods

Wedge indention tests were performed on copper single crystal specimens. Three specimens were used
in the tests. All the results were based on the average of the data obtained from the three specimens. The
wedge indenter used in this study had an apex angle of 90◦. The indenter was made of tungsten carbide
bonded by a ferrous alloy. The indentation direction is along the [001̄] crystallographic orientation of the
copper single crystals. During indentation tests, the load and displacement data were recorded. After the
indentation, the midsection of the single crystal specimens with plane strain deformation conditions was
exposed through cutting. This exposed plane corresponds to the crystallographic plane of (110). After
being cut, the copper single crystal specimens were put into a compacted fixture and the indented surface
was filled with a polymer to protect the indented surface from mechanical damage during subsequent
processes.

The surfaces of the crystals were mechanically polished following the procedures as follows. Sandpa-
per (grit 600) was used to grind the surface under minimum pressure along one direction until any deep
scratches from the previous cutting process were invisible. Water was used as lubricant and coolant for
preventing the polishing surface from becoming overheated. The purpose of this polishing procedure is to
remove the possible deep deformation layer from the previous grinding processes. The grinding/polishing
along one direction can prevent rounded corner formation along the edges of the polished surface. The
polish direction was changed by 90◦ to the same grit 600 sand paper, with even less pressure applied
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until the scratches from the previous polishing procedure were invisible. Water was applied continuously.
The purpose of this polishing procedure is to remove the possible residual stress layer generated from
previous polishing. The specimen was washed with tap water to prevent any coarse abrasive going into
the next polishing procedure. The procedure was repeated using 1200 grit sandpaper. Fine polishing
was performed using diamond compound with diameter of 6µm. The specimens were then washed in
soapy water. Having been polished mechanically, the copper single crystals were cleaned. The cleaned
copper crystals were surface activated in a 10% HCl solution followed by rinsing in deionized water.
After that, the surface of (110) of the single copper crystals were electrochemically polished in an 85%
orthophosphoric acidic solution.

Scanning electron microscopic (SEM) examination and electron backscatter diffraction (EBSD) data
acquisition were carried out on a scanning electron microscope. Figure 2a is an SEM image showing
the indented single crystal. For EBSD measurement, a polycrystalline copper block was put on the
right-hand side of the copper single crystal specimen for subtracting background signals, and a piece of
silicon single crystal with the surface normal of [001] orientation was aligned on the left-hand side of the
copper single crystal at the same level with the same tilt angle of 70◦. The Si single crystal was used for
detector orientation calibration and for projection parameter calibration. Figure 2b schematically shows
the relative positions of the polycrystal, the single crystal Cu specimen, and the Si single crystal. The
EBSD measurement was carried out on the middle section of the specimen at a tilt angle of 70◦. Following
the calibration, surface mapping was performed at an acceleration voltage of 20 kV. The EBSD mapping
data were saved for subsequent analysis.

4. Results and discussion

In this section, both simulation and experimental results of wedge indentation into copper single crystals
will be presented. The finite element simulation results, including the stress solutions, shear strain solu-
tions, and lattice rotation map, will be given first. Then, the experimental data will be given. The finite
element solutions will be compared with the experimental results.

4.1. Finite element solutions. The finite element simulation results will be presented in the following
three parts. First, numerical solutions for stresses will be shown. Second, the numerical solutions to

Figure 2. SEM image of the indented specimen and configuration for EBSD measure-
ment: (a) SEM image of the indented specimen and (b) specimen alignment for the
EBSD data acquisition.
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shear strains associated with the slip of different slip systems will be shown. Then, the solution for the
in-plane crystal lattice rotation will be given.

The finite element solutions for the normalized in-plane stress components of σ11/τ , σ12/τ , and σ22/τ

for the wedge indented copper crystal are shown in Figure 3a–c. From the results shown in both Figure
3a and c, we can see that underneath the indenter tip, the region within the copper single crystal was
severely compressed because both σ11/τ and σ22/τ are negative. Farther away from the indentation tip,
the region shows position value of σ11/τ and σ22/τ . The shear stress σ12/τ , as shown in Figure 3b,
reveals a highly heterogenous and anisotropic behavior related to the indentation. The rapid change in
shear stress is found in the areas both underneath the indenter tip and far below the indenter/single crystal
contact region.

In order to define the shear strain on each activated slip system, a schematic drawing to show the
physical orientations of all the most favorable slip systems associated with the special crystallographic
orientation of the copper crystal under indentation is given in Figure 4. The numerical results of plastic
shear strain on these slip systems, γ (n), were obtained. n is an integer with the values of 1, 2, and 3. The
results of shear strains for different slip systems are output as solution dependent variables (SDVs).

Figure 5 shows the solutions for the plastic strain in the copper single crystal associated with the
wedge indentation. Figure 5a–c illustrate the shear strain from each individual slip system as sketched in
Figure 4. The plastic strain from all the three slip systems is given in Figure 5d. It is noted that γ (1) refers
to the shear strain due to the dislocation motion of slip system (1), γ (2) stands for the shear strain due
to the dislocation motion of slip system (2), γ (3) is the shear strain due to the dislocation motion of slip

Figure 3. Numerical solutions to the stress components: (a) σ11/τ , (b) σ12/τ , and (c) σ22/τ .
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system (3), and γ refers to the total shear strain due to the dislocation motion of all the three slip systems.
It can be seen from Figure 5a that γ (1), the shear strain due to the dislocation motion of slip system (1),
takes significantly higher values on the right side of the indented region. However, the γ (2) and γ (3) as
shown in Figure 5b and c, respectively, are considerably low in this region, where γ (2) represents the
shear strain from slip system (2) and γ (3) stands for the shear strain from slip system (3). Thus, the
numerical simulation predicts that the primary slip system in this region is slip system (1). As will be
shown in Section 4.2, the EBSD experimental data about the in-plane lattice rotation define different
regions where the dislocation motion of each of the three slip systems dominates the plastic deformation
in a specific slip sector. For example, in the right hand side region adjacent to the extension line of the
indenter tip, the dislocation motion is mainly due to the activation of slip system (1). Therefore, it is
shown that the numerical predictions compare well with the experimental results. The results shown in
Figure 5a–c also provide the information about the size of the plastic zone. It is found that the plastic
zone is not just limited to the region underneath the indenter tip. Rather, it propagates into the crystal at
least twice as far as the indentation penetration depth.

Figure 6 is the in-plane crystal lattice rotation map obtained from the finite element simulation. The
unit of the lattice rotation angle is degree, which is calculated from the specific SDVs in the ABAQUS
finite element simulation program. Comparison with the experimental results shown in Section 4.2.2
will be made later. The unit of lattice rotation as shown in Figure 6 is degree. The main features of the
in-plane rotation from the simulation are as follows: In the lower left part of Figure 6, a region with
negative lattice rotation can be found. This is due to the active dislocation movement of slip system (1).
The existence of such a negative lattice rotation region can be validated by the experimental results as
will be illustrated in Section 4.2.

The righthand side region adjacent to the lattice negative rotation region is a zero rotation region,
which corresponds to the active dislocation movement of slip system (2). In the rightmost part of Figure
6, there is a positive lattice rotation region, which is caused by the active dislocation movement of slip
system (3). All these features are comparable to the experimental results as will be shown in Section 4.2.

4.2. Experimental results.

4.2.1. Load displacement relation. Figure 7a is the loading profile recorded by the data acquisition unit
connected to the materials testing system. As can be seen from Figure 7a, the loading and unloading
processes were performed by applying a triangle waveform. It is noted that the loading level is normalized
by the width of the single crystal such that the unit of the loading is N/mm. The load-displacement
relation corresponding to the loading and unloading behavior of the copper single crystal under the
wedge indentation is shown in Figure 7b from which two stages of deformation can be seen. The first
stage is the elastic-plastic deformation associated with loading. This stage lasts until the load reaches
the peak point A as shown in Figure 7b. The total deformation (penetration depth) is about 0.4 mm. The
second stage shows elastic unloading and a large hysteresis area under the load displacement curve, as
shown in Figure 7b, reveals that the plastic deformation is the dominant mechanism during the indentation
process. The second stage finishes once the load drops to point B in Figure 7b. It can be seen that the
elastic part of deformation is about 0.03 mm, which can be calculated from the difference in displacement
between points A and B on the plot. During the loading process, with the increasing of the loading time,
the indentation penetration depth increases almost linearly as shown in Figure 7c. This reveals that the
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Figure 4. Configuration of the three slip systems.
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Figure 5. Numerical solutions to the shear strains under wedge indentation (deformed
state): (a) shear strain of slip system (1), γ (1), (b) shear strain of slip system (2), γ (2),
(c) shear strain of slip system (3), γ (3), and (d) the total shear strain, γ . The lower right
corner shows the mesh with dimensions 1.5× 1.5µm.



NUMERICAL AND EXPERIMENTAL STUDIES OF DEEP INDENTATION ON SINGLE CRYSTALS 1439

slip system (1). The existence of such a negative lattice rotation region can be validated by

the experimental results as will be illustrated in Section 4.2.

The righthand side region adjacent to the lattice negative rotation region is a zero ro-

tation region, which corresponds to the active dislocation movement of slip system (2). In

the right-most part of Figure 6, there is a positive lattice rotation region, which causes by

the active dislocation movement of slip system (3). All these features are comparable to the

experimental results as will be shown in Section 4.2.
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Figure 6. Numerical solution to the in-plane crystal lattice rotation showing three dis-
tinct regions. The unit of rotation is degree.
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Figure 7. Load-displacement response during wedge indentation. Left: the triangle
waveform showing force control mode. Middle: load-displacement relation. Right:
displacement versus time.

averaged behavior of the copper single crystal is close to ideally plastic in the first deformation stage
since the load carrying area increases linearly with the increasing of indenter penetration depth.

4.2.2. Lattice rotation map of indented copper single crystal. A schematic of the indented region and the
EBSD mapped area for data analysis are illustrated in Figure 8a. In Figure 8b, a contour plot showing the
in-plane lattice rotation associated with the wedge indentation is given. It is found from Figure 8b that
different regions with distinct lattice rotation features exist underneath the indented region. The change
of crystal lattice rotation is in the range from about 20◦ to -20◦. The highest value is about 35◦, and
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Figure 8. EBSD measured in-plane lattice rotation of a copper single crystal under
wedge indentation. Left: sketch of the mapped region. Right: lattice rotation contour
plot. The unit of in-plane rotation angle, ωz , is the degree.

the lowest value is -37◦. Such scattering values are from the local damage of the specimen. Chemical
adsorption in some areas also results in scattering of the measuring results.

It is interesting to examine the evolution of plastic deformation features through the thickness of the
indented specimen. Generally, the lattice rotation data taken from a section away from the midplane will
show out-of-plane rotation because there is plastic flow along the through thickness direction, that is, the
axis of indentation. To demonstrate this, we performed optical examination on the side surface of the
indented specimen. Figure 9 is the optical image of the side surface. A sketch of the indenter is also
included in the picture to show the relative size of the indented region. Plastic deformation in the forms
of shear lines and rings can be observed. Since this surface was not polished, the three slip zones are
clearly shown at different levels. The extrusion stages due to the out-of-plane lattice rotation is especially
found in Region II of Figure 8b. It is predicted that the magnitude of the out-of-plane lattice rotation
is related to the thickness of the specimens. Obviously, systematic experimental studies are needed for
generating a series of lattice rotation maps from the locations along the indenter axis, which is one of
the important aspects in our future work.

4.3. Comparison of numerical solutions and experimental results. As compared with the results shown
in Figure 6 (numerical solutions), it can be seen that the in-plane crystal lattice rotation map of Figure 8b
can also be divided into three distinct regions in a quadrant. The one with negative lattice rotation is due
to the active dislocation motion of slip system (1), as shown in Figure 4. The zero lattice rotation region is
corresponding to the active dislocation movement of slip system (2). The positive lattice rotation region
is due to the active dislocation movement of slip system (3) as also shown in Figure 4. Thus, the salient
features of the in-plane lattice rotation as determined by EBSD experiments are comparable to the results
as predicted by the finite element simulations shown in Figure 6. It is noted that there is some difference
in lattice rotation quantity between the results shown in Figure 6 and Figure 8b. In the qualitative sense,
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Figure 9. Optical micrograph showing plastic deformation in the form of extrusion
stages due to the out-of-plane lattice rotation.

it is still reasonable to say that the numerical solutions agree with the experimental results. Therefore,
the simulations can be validated by the indentation experiments.

The measured texture component map is also compared with the prediction from the plasticity theory
and the finite element simulation results. In Figure 10, the [110] texture component along the x-axis
is shown. The dark color stands for 100% of materials being oriented along the 〈110〉 crystallographic
direction. The brighter and yellow colored areas are those regions with misorientation. The orientation
of the materials in these regions shifts away from the [110] direction. The maximum shift was found to
be 35◦ (this is not marked in Figure 10 because texture component maps generated by the software have

Figure 10. Texture component of indented copper single crystal ([110] texture along
x-direction) showing the plastic spin predicted by the single crystal plasticity theory and
the finite element simulation.
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no contour legends). Comparing the features shown in Figure 10 with those obtained through numerical
simulations (see Figure 6), it is found that a zero-lattice rotation region (Region II) located in the the
same area. It must be pointed out that single crystal plasticity theory also predicts the existence of a
zero-lattice rotation region associated with the dislocation activities associated with slip system (2), the
complex slip system. Regions I and III are separated by this zero-lattice rotation region, as shown in
Figure 6, the numerical results.

The numerical simulations as described in this study have a relatively low cost as compared with the
experiments. Despite its simplicity, some of the most essential features of wedge indentation, includ-
ing lattice rotation, can be well captured by the model. We note that in most indentation experiments,
especially the sharp indentation tests, a nominally constant plastic strain impression is generated which
does not allow the behavior of tested materials to be measured directly. For that matter, construction of
equivalent stress fields, strain, and lattice rotation responses of materials with finite element simulations is
necessary and could reveal important indentation mechanisms. The importance of numerical simulations
becomes more evident through their qualitative agreement with experiment. Further improvements on
the simulation method to obtain more accurate results and better quantitative agreements with experi-
ment remain our future work. One of the possible directions is to modify the single crystal plasticity
constitutive model. We also expect to simulate different crystals and use different shapes of indenter tip.

It must be pointed out that the preliminary work presented here is based on the special orientation
of the crystal, meaning the [001] crystallographic orientation. The results obtained here are useful for
dealing with the polycrystal cases, since an arbitrarily selected orientation of a crystal (designated as
[hkl]) can always be mapped into other orientations by a series of rotation transformations. Thus, a
general grain can be treated through transformations such that its orientation matches the [001] case.
Accordingly, the modification on the materials subroutine for simulations is needed, and the output
variables such as stresses and strains can be obtained by tensorial transformations. For multiple grains,
a statistic model may be necessary to accommodate the interactions of different grains and the effect of
the grain boundaries. Such a complex case remains to be the topic for future study.

5. Conclusions

Based on the experimental studies and finite element simulations of wedge indentation into face-centered
cubic (FCC) copper single crystals, the following conclusions are made:

(1) Finite element simulations of the wedge indentation into the copper crystal have provided stress,
shear strain, and in-plane lattice rotation solutions. The results reveal highly heterogeneous plastic
deformation behavior of the single crystals under wedge indentation with deep penetration depth.

(2) The load-displacement relation of the single crystal under wedge indentation shows a plastic de-
formation dominated behavior. The load increases almost linearly with the indentation penetration
depth. Taking into account that the indentation contact area also increases linearly, the elastic ideally
plastic behavior of the crystal can be deduced.

(3) The crystal lattice rotation measurements show three distinct regions in a quadrant, revealing three
slip zones. These results show the existence of different single slip sectors in the region within the
single crystal underneath the indenter tip as predicted by the single crystal plasticity theory and the
finite element simulations.
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(4) The numerical solutions also predict the occurring of dislocation movement along different effective
slip systems activated by the wedge indentation. Therefore, the finite element solutions to both
the plastic shear strain and lattice rotation are qualitatively validated by the electron backscatter
diffraction (EBSD) experimental results. The plastic spin is also verified by the texture component
measurement.
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of the paper.
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PREFRACTURE ZONE MODELING FOR AN ELECTRICALLY IMPERMEABLE
INTERFACE CRACK IN A PIEZOELECTRIC BIMATERIAL COMPOUND

VLADIMIR B. GOVORUKHA AND MARC KAMLAH

This work is concerned with the analytical characterization of the electromechanical nonlinear effects
in the fields surrounding the tip of an interface crack located between two piezoelectric materials. It is
assumed that a prefracture zone arises along a line segment in front of the crack tip. The prefracture zone
is modeled by electrical displacement reaching a saturation limit and constant stress distribution. This
reduces the problem to a linear interface crack analysis leading to a Hilbert problem, which is solved
exactly. The prefracture zone length and the stress magnitude in this zone are found from algebraic and
transcendental equations. The latter are derived from the requirement of stresses and electrical displace-
ment to be finite at the end of prefracture zone towards the undamaged ligament. Numerical results
for certain material combinations and remote loadings are presented and analyzed. In addition, energy
release rate and crack opening displacements are introduced, which offers the possibility of formulating
a fracture criterion based on the crack opening displacements.

1. Introduction

Piezoelectric materials have found wide technological applications as transducers, sensors and actuators
due to their inherent electromechanically coupled behavior. However, piezoelectric materials are brittle
and susceptible to fracture. Various defects, such as grain boundaries, flaws and pores, impurities and
inclusions, etc, exist in piezoelectric materials. The defects cause geometric, electric and mechanical
discontinuities and thus induce strong stress and electric field concentrations, which may induce crack
initiation and crack growth, eventually causing fracture and failure. Structural reliability concerns of
electromechanical devices call for a better understanding of the mechanisms of piezoelectric fracture.

Important results about fracture in piezoelectric solids based on linear electroelasticity have been
derived by Parton [1976], Pak [1992], Sosa [1992], Suo et al. [1992], Dunn [1994], and many others.
However, analysis based on linear electroelasticity cannot explain some discrepancies between theory
and experiment [Park and Sun 1995]. Hence, various nonlinear models have been suggested. Narita and
Shindo [2001] considered a mechanical yield strip model for a piezoelectric crack under a low stress
level. In order to derive a fracture criterion suitable for piezoelectrics, Gao et al. [1997] generalized the
essential ideas of Dugdale [1960] and proposed a strip saturation model of electrical yielding by assuming
that the electrical polarization is saturated in a line segment in front of the crack tip. Based on general
linear constitutive equations, the analysis of the strip saturation model was conducted and extended by Ru
[1999], Wang [2000] and Li [2003]. McMeeking [2001] gave comprehensive and suggestive comments
on the strip saturation model. Beom and Atluri [2003] proposed a nonlinear domain switching model
for a ferroelectric material which has a circular zone of perfect saturation near the crack tip. A strip

Keywords: piezoelectric material, nonlinear fracture mechanics, interface crack, prefracture zone.
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dielectric breakdown model was introduced by Zhang and Gao [2004] for an electrically impermeable
crack of semi-infinite length. Zhang [2004] further discussed this model for a crack of finite length.

All of the works mentioned deal with nonlinear crack models for cracks in homogeneous piezoelectric
materials. For interface cracks between piezoelectric bimaterials, the situation is more complicated since
the field equations are complex and fracture behavior of piezoelectric compounds is far from obvious.
Most theoretical studies regarding interface cracks in piezoelectric compounds were performed within
the framework of the classical interface crack model (Williams, 1959). This model usually leads to
an oscillating singularity at the crack tip and to physically unrealistic overlapping of the crack faces.
To eliminate this phenomenon, a contact zone model for a crack between two isotropic materials was
suggested by Comninou [1977]. It was developed further for interface cracks in piezoelectric bimaterials
by Qin and Mai [1999], Herrmann and Loboda [2000] and Govorukha et al. [2006]. Another way of
removing crack tip singularities and modeling fracture processes for interface cracks was introduced by
Needleman [1990], Tvergaard and Hutchinson [1996] and Tvergaard [2001] by means of a cohesive zone
model. An analysis of the plastic zone for an interface crack was performed by Huang [1992], Wang and
Shen [1993] and Pickthall et al. [2002]. Plastic strips or prefracture zones in front of interface crack tips
were analyzed by Kaminsky et al. [1999] and Bakirov and Gol’dshtein [2004] for the case of isotropic
bimaterials, while Loboda et al. [2007] studied a permeable interface crack between two piezoelectric
materials.

In this paper,we want to model the situation where two piezoelectric materials are bonded by a thin
ductile interlayer. Since neither infinite strains nor infinite potential gradients can be sustained at the
atomic level, both mechanical and electrical nonlinearity of the interlayer are taken into account. Shen
et al. [2000] considered simultaneous mechanical and electrical yielding for a mode III interface crack.
However, to the authors knowledge no modeling of electrical and mechanical yielding at the same time
for an in-plane interface crack in a piezoelectric bimaterial has been done until now. In this paper, such
modeling is proposed and an interface crack with mechanical and electrical yield zones is examined.

2. General solution of the basic equations

The constitutive and equilibrium equations for a linear piezoelectric material in the absence of body
forces and free charges can be represented in the form [Pak 1992]

5i J = Ei JKl VK ,l, 5i J,i = 0, (1)

where

VK =

{
uk, K = 1,2,3,

ϕ, K = 4,
5i J =

{
σi j , i, J= 1,2,3,

Di , i= 1,2,3, J= 4,
Ei JKl=


ci jkl, J,K = 1,2,3,

eli j , J= 1,2,3, K = 4,

eikl, K = 1,2,3, J= 4,

−εil, J=K = 4.

(2)

Here, uk , ϕ, σi j and Di are the elastic displacements, electric potential, stresses and electric displace-
ments, respectively, while ci jkl , ei jk and εi j are the elastic, piezoelectric and dielectric constants. Low-
ercase subscripts in (1)–(2) and afterwards range from 1 to 3, capital subscripts range from 1 to 4 and
Einstein’s summation convention is used in (1).
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For two-dimensional deformations, where the vector V = [u1, u2, u3, ϕ]T depends on x1 and x3 only
(the superscript T denoting the transpose), a general solution of (1) can be obtained, following [Pak
1992], by writing

V = a f (z), (3)

where f is an arbitrary function of z = x1+ px3, and a = [a1, a2, a3, a4]
T is an eigenvector and p an

eigenvalue. They can be determined by inserting (3) into (1)1, and then into (1)2, which yields[
Q+ p(R+ RT )+ p2T

]
a = 0, (4)

where Q, R and T are 4×4 real matrices whose components are defined by Q JK = E1JK 1, RJK = E1JK 3,
TJK = E3JK 3.

Since Equation (4) has no real eigenvalues [Suo et al. 1992], we write an eigenvalue of (4) with positive
imaginary parts as pα and the associated eigenvectors of (4) as aα, the subscript α here and afterwards
ranging from 1 to 4. The general solution of (1) can then be represented as

V = A f (z)+ Ā f̄ (z̄), (5)

where A = [a1, a2, a3, a4]T is a matrix of eigenvectors, f (z) = [ f1(z1), f2(z2), f3(z3), f4(z4)]T with
zα = x1+ pαx3 is an arbitrary vector function, and the bar stands for complex conjugation.

By using (1)1, the vector t = [σ13, σ23, σ33, D3]
T can be represented in the form

t = B f ′(z)+ B̄ f̄ ′(z̄), (6)

where the 4×4 matrix B is defined by BJα = (E3JK 1+ pαE3JK 3)Akα (not summed over α) and f ′(z)=
[ f ′1(z1), f ′2(z2), f ′3(z3), f ′4(z4)].

Consider a bimaterial composed of two different piezoelectric semi-infinite spaces x3 > 0 and x3 < 0,
as sketched in Figure 1. The material properties are defined by matrices E (1)i JKl and E (2)i JKl . We assume that
the vector t is continuous across the whole bimaterial interface x3 = 0. Furthermore, in the undamaged
ligament L of the interface, both parts of the bimaterial are mechanically and electrically fixed to each
other, in ideal contact. In summary, the boundary conditions at the interface are

t(1)(x1, 0)= t(2)(x1, 0) for x1 ∈ (−∞,∞),

V (1)(x1, 0)= V (2)(x1, 0) for x1 ∈ L .

In this case according to (5)–(6) the solution of equations (1) can be written for each domain in the form

V (m)(x1, x3)= A(m) f (m)(z)+ Ā(m) f̄
(m)
(z̄),

t(m)(x1, x3)= B(m) f ′(m)(z)+ B̄(m) f̄
′(m)

(z̄),

Here m = 1 stands for x3 > 0 and m = 2 for x3 < 0; the vector functions f (1)(z) and f (2)(z) are analytic
in the upper (x3 > 0) and lower (x3 < 0) half-planes, respectively.

An analysis similar to that of Herrmann and Loboda [2000] leads to the expressions

[[V ′(x1, 0)]] = D f ′(1)(x1)+ D̄ f̄
′(1)
(x1),

t(x1, 0)= B(1) f ′(1)(x1)+ B̄(1) f̄
′(1)
(x1),
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Figure 1. Prefracture zones ahead of the crack tips in a piezoelectric bimaterial compound

where D = A(1)− Ā(2)(B̄2
)−1 B(1). Here and afterwards, the double square brackets [[·]] denote the jump

of the corresponding function over the material interface, i.e., [[V ′(x1, 0)]] = V ′(1)(x1, 0)− V ′(2)(x1, 0).
Introducing the vector function

W(z)=

{
D f ′(1)(z) for x3 > 0,

− D̄ f̄
′(1)
(z) for x3 < 0,

one obtains

[[V ′(x1, 0)]] =W+(x1)−W−(x1), (7)

t(x1, 0)= GW+(x1)− ḠW−(x1), (8)

where G = B(1)D−1, W+(x1) = W(x1 + i0), W−(x1) = W(x1 − i0). It follows from (7) that the
vector function W(z) is analytical in the whole (x1, x3)-plane, including the bonded parts of the material
interface.

In the following, our attention is focused on piezoelectric materials of the symmetry class 6mm poled
in direction x3, which have an essential practical significance. In this case for loads which are independent
of the coordinate x2 we can look for fields in the (x1, x3)-plane, where the displacement u2 contained
as second component in vector function V decouples from the components (u1, u3, ϕ). Due to this, u2

can simply be determined after having solved the remaining problem for (u1, u3, ϕ), and therefore our
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attention will be focused on the plane problem for components (u1, u3, ϕ). For this case, the bimaterial
matrix G without its second row and column has the form [Herrmann and Loboda 2000]

G =

 G11 G13 G14

G31 G33 G34

G41 G43 G44

=
 ig11 g13 g14

g31 ig33 ig34

g41 ig43 ig44

 , (9)

where all the gi j are real.
Consider in addition an arbitrary row matrix S= [S1, S3, S4] and a product St(x1, 0) which by using

(8) with G defined by (9) can be written as

St(x1, 0)= SGW+(x1)− SḠW−(x1). (10)

Introducing the function
F(z)= HW(z)

with H = SG and assuming
SḠ =−γ SG,

where γ is a constant, equation (10) can be written as

St(x1, 0)= F+(x1)+ γ F−(x1).

Here, γ and ST are an eigenvalue and an eigenvector of the system

(γGT
+ Ḡ

T
)ST
= 0. (11)

By the use of (9), the roots of the equation det(γGT
+ ḠT

)= 0 can be represented in the form

γ1 =
1+ δ
1− δ

, γ3 =
1
γ1
, γ4 = 1, where δ2

=
g2

14g33+ g2
13g44− 2g13g14g34

g11(g33g44− g2
34)

.

Numerical analysis shows that for a group of compound piezoelectric materials the inequality

δ2 > 0 (12)

holds, while for another group this inequality is not valid. This has been mentioned in [Suo et al. 1992].
In the following, attention is paid to piezoelectric materials satisfying inequality (12). In this case, the
eigenvector S j =

[
S j1, S j3, S j4

]
associated with an eigenvalue γ j ( j = 1, 3, 4) can be found from system

(11). If one assumes S j3 to be real, then S j1 is imaginary and S j4 is real. Then, the components of the
corresponding vectors H j =

[
H j1, H j3, H j4

]
have the following properties: H j1 is real while H j3 and

H j4 are imaginary.
Thus, according to the conclusions above concerning the properties of S j and H j , and choosing

S j3 = 1, one can write

σ33(x1, 0)+m j4 D3(x1, 0)+ im j1σ13(x1, 0)= F+j (x1)+ γ j F−j (x1), (13)

where
F j (z)= n j1W1(z)+ in j3W3+ in j4W4, (14)
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and m j4 = S j4, m j1 = −i S j1, n j1 = H j1, n j3 = −i H j3, n j4 = −i H j4. Here m jl , n jl ( j, l = 1, 3, 4)
are real values. It is clear from (14) that the functions F j (z) are analytic in the whole (x1, x3)-plane,
including the bonded parts of the material interface.

For piezoelectric ceramics of the symmetry class 6mm with poling direction x3, the relations m41 = 0,
n41 = 0, m14 = m34, m11 = −m31 and γ3 = 1/γ1 hold [Herrmann and Loboda 2000]. Using them, we
can obtain the solution of the problems (13)–(14) for j = 3 from the solution of this problem for j = 1.
Therefore, only the equations

σ33(x1, 0)+m14 D3(x1, 0)+ im11σ13(x1, 0)= F+1 (x1)+ γ1 F−1 (x1),

σ33(x1, 0)+m44 D3(x1, 0)= F+4 (x1)+ F−4 (x1),
(15)

will be considered below.
Equations (7) and (14) lead to the expressions

n11[[u′1(x1, 0)]] + in13[[u′3(x1, 0)]] + in14[[ϕ
′(x1, 0)]] = F+1 (x1)− F−1 (x1), (16)

in43[[u′3(x1, 0)]] + in44[[ϕ
′(x1, 0)]] = F+4 (x1)− F−4 (x1) (17)

for the derivatives of the displacement and electrical potential jumps.

3. Formulation of the problem

Consider two piezoelectric half-spaces x3 > 0 and x3 < 0 having both the symmetry class 6mm with
poling direction x3. It is assumed that the half-spaces are adhered to each other by means of an interlayer
of very small thickness. The loading at infinity is given by σ (m)33 = σ

∞

33 , σ (m)11 = (σ
∞

11 )m , D(m)
3 = D∞3 and

D(m)
1 = (D∞1 )m (m = 1 stands for the upper domain, and m = 2 for the lower one). Moreover, stresses

(σ∞11 )m and electrical displacement (D∞1 )m are chosen to satisfy continuity conditions at the interface.
Assuming the load to be independent of coordinate x2, the plane strain problem in the (x1, x3)-plane can
be considered and the relations from the previous section can be used. It is assumed that a crack (−a, a)
is situated in the interlayer (Figure 1). The interlayer thickness is assumed to be small compared to the
crack length. Therefore, the exact location of the crack in thickness direction, may it be either between
the interlayer and one of the piezoelectric materials or inside the interlayer is not resolved in detail in
this work. Rather, the interlayer thickness will not be completely taken into consideration. However, the
material properties of the interlayer and its influence upon the fracture process will be accounted for.

As mentioned, a linear piezoelectric constitutive model leads to an oscillating singularity in stresses
and in electrical displacement at interface crack tips. To avoid these singularities, electromechanical
prefracture zones [−c,−a] and [a, c] are introduced in front of the crack tips. We believe that consider-
ation of such zones of electrical saturation zone and mechanical yielding zone might offer a perspective
to understand the currently observed discrepancies between theory and experiments. In general, the
electrical saturation zone and the mechanical yielding zone would be of different length. However, a
complete nonlinear analysis including such electromechanical zones of different length for the discussion
of fracture in piezoelectric bimaterial compounds will encounter considerable mathematical difficulties.
In stead, as a first step towards understanding the effects of electromechanical nonlinearity, we propose
here to consider a strip saturation model where the zones of electrical and mechanical yielding are of the
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same length. In this zone, electric displacement is limited by some given saturation value, i.e., D3 = Ds ,
while the stresses in this zones are constant and unknown: σ33 = σ0, σ13 = τ0.

In view of this, the interface conditions can be represented in the form

[[V (x1, 0)]] = 0, [[t (x1,0)]] = 0 for x1 /∈ (−c, c), (18)

σ33(x1, 0)≡ q1(x1)=


σ0, −c ≤ x1 ≤−a,
0, −a < x1 < a,
σ0, ≤ x1 ≤ c,

(19)

σ13(x1, 0)≡ q2(x1)=


−τ0, −c ≤ x1 ≤−a
0, −a < x1 < a
τ0, ≤ x1 ≤ c,

(20)

D3(x1, 0)≡ q3(x1)=


Ds, −c ≤ x1 ≤−a
0, −a < x1 < a,
Ds, ≤ x1 ≤ c.

(21)

Here, due to continuity, the saturation limit Ds is equal the smaller one of the two materials. The length
c of this prefracture zone has to be determined from the above mentioned conditions.

In this way, we have formulated a problem of linear fracture mechanics for a crack (−c, c) between
two half-spaces with unknown stress components σ0, τ0 and unknown position of the point c.

4. Solution of the problem

Taking into account that F+j (x1)= F−j (x1) ( j = 1, 4) for |x1|> c, one can write by means of (15) and
the prescribed remote electromechanical loads at infinity the conditions

F1(z)|z→∞ =
1

1+ γ1
(σ∞33 +m14 D∞3 ), F4(z)|z→∞ = 1

2(σ
∞

33 +m44 D∞3 ) (22)

for the functions F j (z).
Using equations (15) and imposing the interface conditions (19)–(21), we obtain for |x1|< c

F+1 (x1)+ γ1 F−1 (x1)= p1(x1), F+4 (x1)+ F−4 (x1)= p4(x1), (23)

where p1(x1)= q1(x1)+m14q3(x1)+ im11q2(x1), p4(x1)= q1(x1)+m44q3(x1).
By satisfying conditions at infinity (22), the solution of the problems (23) can be written in the form

[Muskhelishvili 1953]

F1(z)=
1

2π i(1+ γ1)Y1(z)

{
2π i(σ∞33 +m14 D∞3 )(z− 2ciε1)+ (1+ γ1)

∫ c

−c

Y+1 (t)p1(t) dt
t − z

}
,

F4(z)=
1

2π iY4(z)

{
π zi(σ∞33 +m44 D∞3 )+

∫ c

−c

Y+4 (t)p4(t) dt
t − z

}
,

(24)

where Y1(z)= (z+ c)0.5−iε1(z− c)0.5+iε1 , Y4(z)=
√

z2− c2, ε1 = (ln γ1)/(2π).
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By introducing the new functions

811(z)=
1

2π i

∫
−a

−c

Y+1 (t) dt
t − z

, 812(z)=
1

2π i

∫ c

a

Y+1 (t) dt
t − z

,

841(z)=
1

2π i

∫
−a

−c

Y+4 (t) dt
t − z

, 842(z)=
1

2π i

∫ c

a

Y+4 (t) dt
t − z

,

we reduce the equations (24) to the form

F1(z)=
1

(1+γ1)Y1(z)

{
(σ∞33 +m14 D∞3 )(z−2ciε1)+(1+γ1)(σ0+m14 Ds− im11τ0)811(z)

+(1+γ1)(σ0+m14 Ds+ im11τ0)812(z)
}

(25)

and
F4(z)=

1
2Y4(z)

{
z(σ∞33 +m44 D∞3 )+ 2(σ0+m44 Ds)(841(z)+842(z))

}
. (26)

Taking into account that 8+jk(x1) = 8
−

jk(x1) = 8 jk(x1) ( j = 1, 4, k = 1, 2) for |x1| > c and using
equations (15), we obtain the relations

σ33(x1, 0)+m14 D3(x1, 0)+ im11σ13(x1, 0)

=
1

Y1(x1)

{
(σ∞33 +m14 D∞3 )(x1− 2ciε1)+ (1+ γ1)(σ0+m14 Ds − im11τ0)811(x1)

+ (1+ γ1)(σ0+m14 Ds + im11τ0)812(x1)
}

(27)

and

σ33(x1, 0)+m44 D3(x1, 0)=
1

Y4(x1)

{
x1(σ

∞

33 +m44 D∞3 )+ 2(σ0+m44 Ds)(841(x1)+842(x1))
}
. (28)

for the stresses and electrical displacements.
Furthermore, we employ the finite value conditions at the interface for x1→ c+ 0 for the stresses and

electrical displacements formulated in the first and third of equations (19)–(21). These conditions are
satisfied if the equations

c(σ∞33+m14 D∞3 )(1−2iε1)+(1+γ1)
{
(σ0+m14 Ds−im11τ0)8

c
11+(σ0+m14 Ds+im11τ0)8

c
12
}
= 0,

c(σ∞33+m44 D∞3 )+2(σ0+m44 Ds)(8
c
41+8

c
42)= 0,

(29)

hold, where 8c
jk = limx1→c+08 jk(x1) ( j = 1, 4, k = 1, 2). The integrals 8c

jk can be calculated exactly:

8c
11 =

1
2π iγ1(1.5− iε1)

(a+ c)−0.5+iε1(a− c)1.5−iε1
2 F1

(
1, 1

2
− iε1,

5
2
− iε1,

a−c
a+c

)
,

8c
12 =−

1
2π i(0.5+ iε1)

(a+ c)0.5−iε1(a− c)0.5+iε1
2 F1

(
1,−1

2
+ iε1,

3
2
+ iε1,

a−c
a+c

)
,

8c
41+8

c
42 =−

c
π

cos−1
(a

c

)
,

where

2 F1(α, β, γ, z)=
∞∑

m=0

(α)m(β)mzm

(γ )mm!
is the Gauss hypergeometric function.
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From the system (29), we derive the equality

c(ω22+ 2ε1ω12)(σ
∞

33 +m14 D∞3 )
(1+ γ1)(ω11ω22−ω12ω21)

+
π(σ∞33 +m44 D∞3 )

2 cos−1(a/c)
− (m44−m14)Ds = 0, (30)

where
ω11 = Re8c

11+Re8c
12, ω12 = Im8c

11− Im8c
12,

ω21 = Im8c
11+ Im8c

12, ω22 = Re8c
12−Re8c

11;

solving (30) for c (which in general has to be done numerically) one obtains the value of c. After
substituting this value into the system (29), one arrives the expressions

τ0 =
c(ω21+ 2ε1ω11)(σ

∞

33 +m14 D∞3 )
m11(1+ γ1)(ω11ω22−ω12ω21)

,

σ0 =
1

m14−m44

{
cm44(ω22+ 2ε1ω12)(σ

∞

33 +m14 D∞3 )
(1+ γ1)(ω11ω22−ω12ω21)

+
πm14(σ

∞

33 +m44 D∞3 )
2 cos−1(a/c)

}
for the stresses in the prefracture zones.

When, for a given Ds , the prefracture zone length in terms of c and the appropriate values of σ0 and τ0

have been found, we are able to calculate the stresses and electrical displacement for |x1|> c from (27)
and (28). In this case, the integrals 841(x1) and 842(x1) can be calculated analytically, while 811(x1)

and 812(x1) can be represented via hypergeometric functions as

811(x1)=
1

4π icγ1(1.5−iε1)
(a+c)1.5+iε1(a−c)1.5−iε1 1

a+x1
F1

(
1, 2, 1, 5

2−iε1,
c−a
2c

,
(x1−c)(c−a)

2c(a+x1)

)
−

1
1+γ1

{
(x1−c)0.5+iε1(2c)0.5−iε1

2 F1

(
3
2+iε1,−

1
2+iε1,

3
2+iε1,

c−x1
2c

)
−(x1+c)0.5−iε1(x1−c)0.5+iε1

}
,

812(x1)=
1

2π i(1.5+iε1)
(a+c)0.5−iε1(a−c)1.5+iε1 1

x1−a
F1

(
1,− 1

2+iε1, 1, 5
2
+iε1,

a−c
a+c

,
c−a
x1−a

)
,

841(x1)+842(x1)=−
x1
π

{
cos−1

(a
c

)
−

√
x2

1−c2

x1
cot−1

( a
x1

√
x2

1−c2

c2−a2

)}
,

where
F1 (α, β1, β2, γ, x, y)=

∑
m,n

(α)m+n(β1)m(β2)n

(γ )m+nm!n!
xm yn

is the Appell hypergeometric function.
Now consider the jumps in displacement and electrical potential at the crack faces. From (23) we have

F−1 (x1)=
1
γ1

p1(x1)− F+1 (x1) and F−4 (x1)= p4(x1)− F+4 (x1)

for |x1|< c. Substituting this into (16) and (17), one arrives at the equations

n11[[u′1(x1, 0)]] + in13[[u′3(x1, 0)]] + in14[[ϕ
′(x1, 0)]] =

1+ γ1

γ1
F+1 (x1)−

1
γ1

p1(x1), (31)

in43[[u′3(x1, 0)]] + in44[[ϕ
′(x1, 0)]] = 2F+4 (x1)− p4(x1), |x1|< c. (32)
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Then, substituting (25)–(26) into (31) and (32), we arrive at

n11[[u′1(x1, 0)]] + in13[[u′3(x1, 0)]] + in14[[ϕ
′(x1, 0)]]

=
1

γ1Y+1 (x1)

{
(σ∞33 +m14 D∞3 )(x1− 2icε1)+ (1+ γ1)(σ0+m14 Ds − im11τ0)8

+

11(x1)

+ (1+ γ1)(σ0+m14 Ds + im11τ0)8
+

12(x1)
}

(33)

and

n43[[u′3(x1, 0)]] + n44[[ϕ
′(x1, 0)]] =

σ0+m44 Ds

2π
{0(c, x1, a)−0(c, x1,−a)} , |x1|< c, (34)

where

0(b, x1, ξ)= ln
b2
− x1ξ −

√
(b2− x2

1)(b
2− ξ 2)

b2− x1ξ +
√
(b2− x2

1)(b
2− ξ 2)

.

One can evaluate Appell’s F1 hypergeometric function using the approach of [Colavecchia et al. 2001],
which is based on analytic continuations of F1 outside the region of convergence of the series. Thus one
can write for |x1|< c

8+11(x1)=
1

4π icγ1(1.5−iε1)
(a+c)1.5+iε1(a−c)1,5−iε1

1
x1+a

F1

(
1, 2, 1, 5

2−iε1,
c−a
2c

,
(x1−c)(c−a)

2c(a+x1)

)
−

1
1+γ1

(x1−c)0.5+iε1

{
(2c)0.5−iε1

2 F1

(
3
2+iε1,−

1
2+iε1,

3
2+iε1,

c−x1

2c

)
−(x1+c)0.5−iε1

}
,

while for |x1|< a

8+12(x1)=
(2c)0.5−iε1

2π i(1.5+ iε1)
(a− c)1.5+iε1 1

x1−c
F1

(
3
2 + iε1,−

1
2 + iε1, 1, 5

2 + iε1,
c−a
2c

,
c−a
c−x1

)
,

and for a < |x1|< c

8+12(x1)=
0.5+ iε1

i exp(−πε1)(1+ γ1)
(x1− c)0.5+iε1(2c)0.5−iε1

2 F1

(
3
2 + iε1,−

1
2 + iε1,

1
2 + iε1,

c+x1
2c

)
+
(a− c)1.5+iε1(a+ c)1.5−iε1

4π ic(1.5− iε1)(a− x1)
F1

(
1, 2, 1, 5

2 − iε1,
c+a
2c

,
(c+a)(c−x1)

2c(a−x1)

)
.

Integrating (33) and (34) gives for the jumps in displacement and electrical potential the expressions

n11[[u1(x1, 0)]] + in13[[u3(x1, 0)]] + in14[[ϕ(x1, 0)]]

=
1
γ1
(σ∞33 +m14 D∞3 )(x1+ c)0.5+iε1(x1− c)0.5−iε1

+
1+ γ1

γ1

{
(σ0+m14 Ds − im11τ0)J11(x1)+ (σ0+m14 Ds + im11τ0)J12(x1)

}
(35)

and, for |x1|< c,

n43[[u3(x1, 0)]] + n44[[ϕ(x1, 0)]] =
σ0+m44 Ds

2π

{
(x1− a)0(c, x1, a)− (x1+ a)0(c, x1,−a)

}
, (36)
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where

J11(x1)=

∫ x1

−c

8+11(t) dt
Y+1 (t)

, J12(x1)=

∫ x1

−c

8+12(t) dt
Y+1 (t)

.

The most important quantities, namely the crack opening displacements and potential at the initial
crack tips, are written

δu1 = [[u1(a, 0)]], δu3 = [[u3(a, 0)]], δϕ = [[ϕ(a, 0)]].

Because (35) and (36), we get among these quantities the relations

n11δu1+in13δu3+in14δϕ =
1
γ1
(σ∞33 +m14 D∞3 )(a+c)0.5+iε1(a−c)0.5−iε1

+
1+γ1

γ1

{
(σ0+m14 Ds−im11τ0)J11(a)+(σ0+m14 Ds+im11τ0)J12(a)

}
(37)

and
n43δu3 + n44δϕ =−

a (σ0+m44 Ds)

2π
0(c, a,−a). (38)

The crack opening displacement (COD)

δ =

√(
δu1

)2
+
(
δu3

)2

can be considered as a fracture criterion for crack growth. Following Gao et al. [1997], we use a contour
0 enclosing points a and c. The energy release rate at the crack tip, as the driving force of fracture, can
then be calculated from the J -integral

J =
∮
0

{
W n1− σi j ni u j,i − Di niϕ,i

}
ds,

where W is the electric enthalpy. Using the property of path-independence of J , we reduce the contour
0 to the prefracture zone (a, c). Taking into account that the thickness of this zone tends to zero we
arrive at the formula

G = σ0δu3 + τ0δu1 + Dsδϕ,

where G is the energy release rate, which here is equal to the J -integral.
As pointed out before, the solution constructed in this section corresponds to an electrical saturation

zone where the stresses are constant. In addition, it is assumed that some relation

f (σs, τs, σ1)= 0

holds for the stresses in the prefracture zone, where σ33 = σs , σ13 = τs , σ11 = σ1. The function f , which
can be interpreted as a law of interlayer material yielding or damage, may be determined experimentally
or theoretically. For example, in the case of a von Mises yielding condition, we have

f (σs, τs, σ1)≡ (σs − σ1)
2
+ 4τ 2

s −
4
3σ

2
y = 0,

where σy is the yield stress of the interface material. According to [Tvergaard and Hutchinson 1996],
the stress σ1 in front of the crack in such material is equal to 2σy .
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From the latter condition, we can now calculate for a given saturation value Ds the external loads such
that the resultant stresses σs and τs reach a critical level for the onset of yielding in the prefracture zone.
The conditions (29) of finite stresses and electrical displacement at the ends of prefracture zone lead to
the system

(σ∞33 )s +m14(D∞3 )s =−
1+ γ1

c(1−2iε1)
{(σs +m14 Ds − im11τs)8

c
11+ (σs +m14 Ds + im11τs)8

c
12},

(σ∞33 )s +m44(D∞3 )s =
2
π
(σs +m44 Ds) arccos a

c
,

(39)

which suffices to determine the unknown external loads (σ∞33 )s and (D∞3 )s , together with the unknown
position of the point c.

After determining the value of c from the equation

σs +m14 Ds

m14
+
(ω22+ 2ε1ω12)m11τs

m14(ω21+ 2ε1ω11)
= 0, (40)

which is derived from equation (30), the external load can be calculated from the system (39).

5. Numerical results and discussion

Consider an electrically impermeable interface crack of length l = 2a = 2 mm perpendicular to the
poling direction. Calculations have been performed for a bimaterial composed of materials PZT-5H
(upper material) and BaTiO3 (lower one). The parameters of these materials are given in [Pak 1992] and
[Dunn and Taya 1994], respectively. The interface layer was assumed to be an elastic-perfectly plastic
material with yield stress of σy = 50 MPa.

In Table 1, the relative length (c−a)/ l of the prefracture zone in front of the right crack tip is listed
together with the intensity of the external load. For this, the nonlinear equation (30) has been solved. It
follows that the prefracture zone length is almost independent of σ∞33 , but depends strongly and nonlin-
early on D∞3 .

The distributions of the normalized displacement jump [[u3(x1, 0)]]/ l along the material interface is
shown in Figure 2, and that of the normal stress σ33(x1, 0)/σy in Figure 3. For the interface layer, the
same material properties as before have been used. The remote normal stress was taken to be equal to
σ∞33 /σy = 0.05, while the remote electrical displacement has been varied. Curves 1, 2 and 3 correspond

(c− a)/ l
D∞3 /Ds

σ∞33 /σy = 0.05 σ∞33 /σy = 0.4

0.2 0.02574 0.02554
0.3 0.06119 0.06097
0.4 0.11808 0.11785
0.5 0.20717 0.20692
0.6 0.35075 0.35047

Table 1. Relative prefracture zone length (c−a)/ l as a function of the intensity of the
external load.
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to D∞3 /Ds = 0.2, 0.4 and 0.6, respectively. It can be seen that an increase in the remote electrical loading
leads to an increase of the displacement jumps and, thus, to an increase of the prefracture zone length,
while the stresses decrease in these zones.

Figure 4 shows the effect of the applied electric field E∞3 on the energy release rate and the COD δ.
These Figures are obtained for the same material properties as before and various values of σ∞33 . Curves
1, 2 and 3 are related to σ∞33 /σy = 0.2, 0.202 and 0.204, respectively. It can be seen from these numerical
results that a fracture criterion based on the energy release rate differs essentially from one based on the
COD δ. As for homogeneous piezoelectric materials [Gao et al. 1997], we can conclude that a fracture
criterion based on energy release rate infers that the electric field should impede crack propagation
independently of its sign. This contradicts experimental observations. This conclusion indicates that
the energy release rate is not a reasonable basis for a fracture criterion and, rather, a fracture criterion

0.25 0.5 0.75 1 1.25 1.5 1.75
x1/a

1× 10−6

2× 10−6

3× 10−6

4× 10−6

[[u3(x1, 0)]]
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Figure 2. Distribution of normalized displacement jump [[u3(x1, 0)]]/ l along the mate-
rial interface.
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Figure 3. Distribution of normalized stress σ33(x1, 0)/σy along the material interface.
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Figure 4. Energy release rate G (top) and crack opening displacement δ (bottom) as
functions of the remote electric field E∞3 .

based on the COD might suitable. From Figure 4, we find that the COD δ would predict that fracture is
enhanced by a positive applied electric field and inhibited by a negative applied electric field. This is in
qualitative agreement with experimental observations for homogeneous materials [Park and Sun 1995].

External loads
(
σ∞33

)
s /σy and

(
D∞3

)
s /Ds as well as corresponding prefracture zone length (c− a)/ l

belonging to given values of the yield stress of the interface layer are listed in Table 2. To this end, the

σy/σs
(
σ∞33

)
s /σs

(
D∞3

)
s /Ds (c− a)/ l

0.3333 0.0551 0.0036 0.002568
0.5000 0.0849 0.0038 0.002764
0.6667 0.1148 0.0039 0.002843
0.8333 0.1446 0.0040 0.002889

Table 2. External load (σ∞33 )s/σs , (D∞3 )s/Ds and the relative prefracture zone length
(c− a)/ l resulting from corresponding values of the yield stress of the interface layer.
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system of equations (39) has been solved and equation (40) was used for calculating the prefracture zone
length. It follows from Table 2 that increasing the yield stress of the interface layer leads to a grow of
both the external loading magnitude and the prefracture zone length.

6. Conclusion

A plane strain problem for two piezoelectric half-spaces adhered by means of some thin interlayer has
been considered. This system is subject to the action of a symmetrical remote mechanical and electrical
loading. An electrically impermeable crack, which may either be located between the interlayer and one
of the piezoelectric materials or completely in the interlayer, is studied.

It is assumed that the piezoelectric bimaterial components are much stiffer than the intermediate layer.
Therefore, prefracture zones may develop in the interlayer in front of the crack tip. The problem is
reduced to one of linear fracture mechanics by neglecting the interlayer thickness and modeling the
prefracture zones as continuations of the crack where electrical polarization reaches a saturation limit
and stresses are constant with respect to position.

By assuming that the displacements and the electrical potential fields are independent of out of plane
coordinate x2, we were able to represent stresses and electrical displacements as well as the derivatives
of the mechanical displacement and electrical potential jumps by a sectionally holomorphic vector func-
tion. This function is analytically continued across the mechanically and electrically bonded parts of
the material interface. Furthermore, the problem is reduced to a Hilbert problem and solved exactly.
From the condition of stress and electrical displacement to be finite at the end of the prefracture zone
towards the undamaged interface layer, algebraic and transcendental equations have been formulated for
the determination of the prefracture zone length and the stress magnitude in this zone. For the stresses
and the electric displacement, the analytical relations (27) and (28) were derived. The electromechanical
nonlinear effects on the structure of stress and electric displacement fields are investigated for different
loading conditions. In addition, equations (35) and (36) for the crack opening at the crack tip were
deduced.

In this paper, we focus on the special case, when the electrical saturation zone and mechanical yielding
zone have the same length. The interface layer is assumed to be elastic perfectly-plastic according to the
von Mises yield condition. For this situation, the prefracture zone length and the critical external loading
corresponding to yielding are determined by system (39) and transcendental equation (40).

Numerical results for a bimaterial composed of piezoelectric materials PZT-5H and BaTiO3 are ob-
tained. The prefracture zone length, stresses in this zone and the crack opening at the crack tip correspond-
ing to the respective remote loading are calculated. Note that, due to the suggested model, all mechanical
and electrical quantities in the near-crack tip region are finite, i.e., all singularities connected with the
crack are eliminated. The analysis of energy release rate and crack opening displacements indicates
that a fracture criterion based on the crack opening displacements appears to be more appropriate from
physical point of view.
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A GENERALIZED COSSERAT POINT ELEMENT (CPE) FOR ISOTROPIC
NONLINEAR ELASTIC MATERIALS INCLUDING IRREGULAR 3-D BRICK AND

THIN STRUCTURES

M. JABAREEN AND M. B. RUBIN

A generalized form for the strain energy of inhomogeneous deformations is developed for a 3-D brick
Cosserat Point Element (CPE) which includes full coupling of bending and torsional modes of defor-
mation. The constitutive coefficients, which depend on the reference geometry of the element, are
determined by solving eighteen bending problems and six torsion problems on special elements that
are parallelepipeds with two right angles. The resulting constitutive coefficients ensure that the strain
energy for inhomogeneous deformations remains a positive definite function of the inhomogeneous strain
measures for all reference element shapes. A number of example problems are considered which show
that the generalized CPE produces results as accurate as enhanced strain and incompatible elements for
thin structures and is free of hourglass instabilities typically predicted by these enhanced elements in
regions experiencing combined high compression with bending.

1. Introduction

Recently, Nadler and Rubin [2003] developed a 3-D eight noded brick element based on the theory of
a Cosserat point [Rubin 1995; 2000]. This Cosserat point element (CPE) can be used to formulate the
numerical solution of dynamic problems for nonlinear hyperelastic materials. The kinematics of the CPE
are characterized by eight element director vectors and the kinetics propose eight balance laws of director
momentum to determine the dynamic response of the element. The locations of the nodes in the current
deformed configuration are characterized by eight nodal director vectors and the element directors are
related to the nodal directors by standard tri-linear shape functions. Moreover, the CPE theory considers
the element as a structure and introduces a strain energy function which characterizes the response of the
structure. Also, the nodal forces are related to derivatives of the strain energy function through algebraic
relations in a similar manner to the relationship of the stress to derivatives of the strain energy function
in the full three-dimensional theory of hyperelastic materials.

The CPE can easily be implemented into standard finite element programs. Specifically, the nodal
positions (nodal director vectors) are used as input variables to determine the nodal forces and tangent
stiffness as output variables. Here, the element assembly and solution procedures in the computer pro-
gram FEAP [Taylor 2005] were used to satisfy the equilibrium equations by updating the present nodal
director vectors.

In the standard finite element procedures for hyperelastic materials the response of the element is
determined by integrals over the element region which assume that the kinematic approximation is valid
pointwise. This is in contrast with the CPE which needs no integration over the element region. In

Keywords: Cosserat point, element irregularity, finite element, nonlinear elasticity.
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this regard, the nodal forces in the CPE are not determined by integration of a displacement field based
on shape functions. However, the CPE approach does not use a mixed approach based on separate
shape functions for kinematic and kinetic quantities. Specifically, the nodal forces are determined by
the nodal directors through algebraic constitutive equations characterizing the structural response of the
element. Furthermore, it is known [Zienkiewicz and Taylor 2005] that the standard element based on full
integration is robust but that it exhibits unphysical locking for thin structures with poor element aspect
ratios and for nearly incompressible materials. Special methods based on enhanced strains, incompatible
modes and reduced integration with hourglass control have been developed to overcome these problems;
see, e.g., [Belytschko et al. 1984; Simo and Rifai 1990; Simo and Armero 1992; Belytschko and Binde-
man 1993; Simo et al. 1993; Bonet and Bhargava 1995; Reese and Wriggers 1996; 2000; Reese et al.
2000; Hutter et al. 2000]. However, these improved formulations can exhibit unphysical hourglassing in
regions experiencing combined high compression with bending; see, for example, [Reese and Wriggers
1996; 2000; Loehnert et al. 2005; Jabareen and Rubin 2007a; 2008c]. Furthermore, it was shown in
[Jabareen and Rubin 2007a] that some of these improved element formulations in commercial codes can
exhibit inelastic response even though they attempt to model a hyperelastic material with a strain energy
function.

Restrictions were developed on the strain energy function for the CPE which ensure that the element
reproduces exact solutions for all homogeneous deformations [Nadler and Rubin 2003]. Consequently,
the CPE automatically satisfies a nonlinear form of the patch test. Also, a functional form of the strain
energy for the CPE was proposed with specific dependence on the strain energy of the three-dimensional
material and the reference geometry of the CPE element. In addition, a strain energy function for inho-
mogeneous deformations was introduced as a quadratic function of inhomogeneous strain measures.

In the original CPE formulation [Nadler and Rubin 2003] the coefficients in the strain energy func-
tion for inhomogeneous deformations where determined by comparing linear solutions of a rectangular
parallelepiped CPE with exact solutions of the linear three-dimensional equations for pure bending, pure
torsion and higher-order hourglass modes of deformation. Loehnert et al. [2005] implemented the CPE
formulation into the finite element code FEAP [Taylor 2005] and considered specific example problems
which showed that the response of the original CPE was robust and locking free for thin structures.
However, it was also shown that the accuracy of the original CPE degraded with increased irregularity
of the reference element shape.

Recently, Boerner et al. [2007] have proposed a numerical method for determining coefficients in a
quadratic form of the strain energy function for inhomogeneous deformations which improve the response
of the CPE for 2-D plane strain problems with irregular elements. In [Jabareen and Rubin 2007b] analyt-
ical expressions were developed for constitutive coefficients in an improved CPE for 3-D deformations
by generalizing the quadratic form of the strain energy function for inhomogeneous deformations to
include additional coupling of the inhomogeneous strains active in bending modes. Functional forms
for the additional coefficients were determined by considering four bending solutions for special shaped
reference elements which are parallelepipeds with two right angles. In [Jabareen and Rubin 2008c]
improved coefficients were developed for torsion by considering an exact torsion-like solution of the
linear elastic equations for an isotropic elastic material.

In this paper, exact linear solutions of bending and simple torsion of these special elements are re-
examined and it is shown that by including more general coupling of bending and torsional modes it
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is possible to match solutions of the two additional bending modes not handled in [Jabareen and Rubin
2007b] as well as the simple torsion solutions. Matching these additional two bending modes significantly
improves the response of the generalized CPE for the problem of bending of a thin rhombic plate, which
was shown to be inaccurate in [Ehrlich 2007].

Here is an outline of this paper. Section 2 presents the basic equations of the CPE. Section 3 describes
the procedure to use eighteen bending solutions and six torsions solutions to determine the functional
forms of the constitutive coefficients in the strain energy function for inhomogeneous deformations.
Section 4 considers a number of examples that demonstrate the response of the generalized CPE. Finally,
Section 5 presents conclusions.

2. Basic equations of a Cosserat point element (CPE)

Here attention is focused on an eight noded 3-D brick CPE as developed in [Nadler and Rubin 2003]
and modified in [Jabareen and Rubin 2008c; Jabareen and Rubin 2007b]. Moreover, for the present
discussion it is sufficient to confine attention to the equilibrium equations. Within the context of this
theory the kinematics of the CPE are characterized by

{Di , di } (i = 0, 1, 2 . . . , 7), (2.1)

where Di are constant reference directors associated with the reference configuration and di are present
directors associated with the deformed present configuration. These element director vectors are related
to the nodal director vectors [which locate the nodes of a brick element (see Figure 1) relative to a fixed
origin] by a constant matrix and details can be found in [Nadler and Rubin 2003].

Without loss in generality, the three-dimensional position vector X∗ associated with material points
in the reference configuration of the element can be expressed in the form

X∗(θ1, θ2, θ3)=

7∑
j=0

N j (θ1, θ2, θ3)D j , |θ1
| ≤

H1

2
, |θ2

| ≤
H2

2
, |θ3

| ≤
H3

2
, (2.2)
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Figure 1. Sketch of a general brick CPE showing the numbering of the nodes and the surfaces.
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where θ i (i = 1, 2, 3) are convected material coordinates having the units of lengths, Hi are constant
lengths characterizing the element defined by

|D1| = 1, |D2| = 1, |D3| = 1, (2.3)

and N i are shape functions

N 0
= 1, N 1

= θ1, N 2
= θ2, N 3

= θ3, N 4
= θ1θ2, N 5

= θ1θ3, N 6
= θ2θ3, N 7

= θ1θ2θ3. (2.4)

Moreover, the region P0 associated with the reference configuration is mapped to the region P associ-
ated with the present configuration, which is bounded by ∂P which is characterized by the six surfaces
∂PJ (J = 1, 2, . . . , 6), such that

∂P = ∂P1 ∪ ∂P2 ∪ ∂P3 ∪ ∂P4 ∪ ∂P5 ∪ ∂P6,

θ1
=+

H1
2

on ∂P1, θ2
=+

H2
2

on ∂P2, θ3
=+

H3
2

on ∂P3,

θ1
=−

H1
2

on ∂P4, θ2
=−

H2
2

on ∂P5, θ3
=−

H3
2

on ∂P6. (2.5)

The element directors and nodal directors are related using a tri-linear form like (2.2) for the position
vector x∗ of material points in the present configuration. This causes the displacement field to be contin-
uous across element boundaries. However, it is important to emphasize that the constitutive equations in
the CPE approach are determined by a strain energy function for the structure and do not depend on the
pointwise validity of this approximate expression for x∗.

Now, in the absence of body force, the equilibrium forms of the balances of director momentum
become

mi
= t i with (t0

= 0) and (i = 0, 1, 2, . . . , 7), (2.6)

where mi are director couples due to surface tractions on the boundaries of the element, and t i are intrinsic
director couples which require constitutive equations. In this regard, it is mentioned that director couples
are kinetic quantities conjugate to the element directors and they do not necessarily have the units of
mechanical moment.

For the CPE it is convenient to introduce the deformation measures

F =
3∑

i=1

di ⊗ Di , β i = F−1di+3− Di+3 (i = 1, 2, 3, 4), F = F
(

I +
4∑

i=1

β i ⊗ V i
)
, (2.7)

where {Di , di
} (i = 1, 2, 3) are the reciprocal vectors of {Di , di }, respectively, and {V, V i

} characterize
the reference configuration of the element and are defined in [Nadler and Rubin 2003, Appendix B].
Specifically, when the reference CPE is a rectangular parallelepiped then V represents the volume of
the CPE and V i vanish. Nadler and Rubin [2003] developed restrictions on the strain energy of an
elastic CPE which ensure that the element satisfies a nonlinear form of the patch test for all uniform
homogeneous nonlinear elastic anisotropic materials. In particular, the specific (per unit mass) strain
energy 6 of the CPE can be expressed in terms of the specific strain energy 6∗ of the three-dimensional
material and the specific strain energy 9 associated with inhomogeneous deformations, such that

6 =6∗(C)+9(C, κ i
j ), (2.8)
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where the kinematic quantities {C, κ i
j } are defined by

C = FT F,

κ1
1 = H2β1 · D

1, κ2
1 = H1β1 · D

2, κ3
1 = H3β1 · D

3,

κ1
2 = H3β2 · D

1, κ2
2 = H2β2 · D

2, κ3
2 = H1β2 · D

3,

κ1
3 = H1β3 · D

1, κ2
3 = H3β3 · D

2, κ3
3 = H2β3 · D

3,

κ1
4 = H2 H3β4 · D

1, κ2
4 = H1 H3β4 · D

2, κ3
4 = H1 H2β4 · D

3. (2.9)

Here, it is convenient to introduce the alternative variables bi (i = 1, 2, . . . , 12) by

bi = {κ
1
1 , κ

3
3 , κ

2
1 , κ

3
2 , κ

1
2 , κ

2
3 , κ

3
1 , κ

2
2 , κ

1
3 , κ

1
4 , κ

2
4 , κ

3
4 }. (2.10)

Then, following [Jabareen and Rubin 2008c; Jabareen and Rubin 2007b], the strain energy 9 for inho-
mogeneous deformations is expressed in the form

2m9 =
D1/2Vµ
6(1− ν)

( 12∑
i=1

12∑
j=1

Bi j bi b j

)
, (2.11)

where m is the mass of the element, {µ, ν} are the shear modulus and Poisson’s ratio associated with the
small deformation response, Bi j is a constant symmetric matrix with the response to higher order hour-
glassing being uncoupled from that to bending and torsion so that Bi j has the following zero components:

Bi j = 0 for i = 10 and j 6= 10,

Bi j = 0 for i = 11 and j 6= 11,

Bi j = 0 for i = 12 and j 6= 12,

(2.12)

and the values of {B(10,10), B(11,11), B(12,12)} are given by the expressions associated with higher order
hourglassing in [Nadler and Rubin 2003]. It then can be shown (loc. cit.) that the constitutive equations
for a hyperelastic CPE become

d1/2T = 2m F
∂6∗(C)
∂C

FT ,

t4
=

(
m
∂9

∂b1
H2d1

+m
∂9

∂b3
H1d2

+m
∂9

∂b7
H3d3

)
+(d1/2T )(F−T V 1),

t5
=

(
m
∂9

∂b5
H3d1

+m
∂9

∂b8
H2d2

+m
∂9

∂b4
H1d3

)
+(d1/2T )(F−T V 2),

t6
=

(
m
∂9

∂b9
H1d1

+m
∂9

∂b6
H3d2

+m
∂9

∂b2
H2d3

)
+(d1/2T )(F−T V 3),

t7
=

(
m
∂9

∂b10
H2 H3d1

+m
∂9

∂b11
H1 H3d2

+m
∂9

∂b12
H1 H2d3

)
, (2.13)
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and the remaining quantities t i are determined by

t i
=

(
d1/2T −

7∑
j=4

t j
⊗ d j

)
·di (i = 1, 2, 3). (2.14)

These constitutive equations automatically satisfy a nonlinear form of the patch test [Nadler and Rubin
2003].

Next, for elastically isotropic materials it is convenient to use the work of Flory [1961] to introduce
the dilation J̄ , the pure measures of distortion {F′,C ′} and the scalar measures of distortion {α1, α2}

J̄ = det(F), F′ = J̄−1/3 F, C ′ = F′T F′, α1 = C ′ · I, α2 = C ′ ·C ′. (2.15)

Then, the strain energy function 6∗ can be written in the form

6∗ = 6̂∗( J̄ , α1, α2), (2.16)

so that

∂6∗

∂C
=
∂6̂∗

∂ J̄

( 1
2 J̄ C−1)

+
∂6̂∗

∂α1

(
J̄−2/3(I − 1

3(C · I)C
−1))
+
∂6̂∗

∂α2

(
2 J̄−4/3(C− 1

3(C ·C)C
−1)). (2.17)

Also, for the example problems considered later 6∗ is specified in terms of the small deformation bulk
modulus K and shear modulus µ, such that

ρ∗06
∗
=

1
2

K ( J̄ − 1)2+µ(α1− 3), (2.18)

where ρ∗0 is the constant reference density of the material, the mass m of the CPE is given by

m = ρ∗0 D1/2V . (2.19)

and K and Young’s modulus E associated with the small deformation response satisfy the equations

K =
2µ(1+ ν)
3(1− 2ν)

, E = 2µ(1+ ν). (2.20)

Furthermore, for later reference it can be shown [Nadler and Rubin 2003] that the director couples mi

are related to the traction vector t∗ applied to the boundary ∂P by the integrals

mi
=

∫
∂P

N i t∗da∗ (i = 0, 1, . . . , 7), (2.21)

where da∗ is the current element of area. Also, it can be shown [Loehnert et al. 2005] that d1/2T is equal
to the volume integral of the three-dimensional Cauchy stress T∗

d1/2T =
∫

P
T∗dv∗, (2.22)

where dv∗ is the current element of volume.
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3. Determination of the constitutive coefficients

In this paper the constitutive coefficients Bi j in (2.11) are determined by matching solutions of the
linearized equations for the CPE with exact solutions of the linear theory of elasticity for special ele-
ment shapes. Specifically, the classical pure bending solution (e.g., [Sokolnikoff 1956]) of the three
dimensional equations of elasticity for a rectangular parallelepiped can be written in the form

X∗ = X∗i
′e′i , u∗ = u∗i

′e′i , T∗ = T ∗i j
′(e′i ⊗ e′j ), (i, j = 1, 2, 3)

u∗1
′
= γ X∗1

′X∗2
′, u∗2

′
=−

1
2γ
(
(X∗1
′)2+ν(X∗2

′)2−ν(X∗3
′)2
)
, u∗3

′
=−γ νX∗2

′X∗3
′,

T ∗11
′
= 2µ(1+ ν∗)γ X∗2

′, all other T ∗i j
′
= 0. (3.1)

In this solution, X∗ locates a material point in the reference configuration, u∗ is the displacement vector,
T∗ is the stress tensor, the constant γ controls the magnitude of the bending field and the components
of the tensors are referred to the right-handed orthonormal base vectors e′i (i = 1, 2, 3). Also, the simple
torsion-like solution in [Jabareen and Rubin 2008c] can be expressed in the form

u∗ = (−ωφX∗2
′X∗3
′)e′1+ (−ωX∗1

′X∗3
′)e′2+ (ωX∗1

′X∗2
′)e′3,

T∗ = µω[−(1+φ)X∗3
′(e′1⊗ e′2+ e′2⊗ e′1)+ (1−φ)X

∗

2
′(e′1⊗ e′3+ e′3⊗ e′1)], (3.2)

where the constant ω is the twist per unit length in the e′1 direction and the constant φ controls the warping
of the cross-section with unit normal e′1.

In order to determine values of the coefficients Bi j it is convenient to consider the following three
elements shapes, which are defined in terms of another fixed rectangular Cartesian triad ei as follows:

Element E1 (D12 6= 0, D13 = 0, D23 = 0)

D1 = e1, D2 = D12e1+

√
1− D2

12e2, D3 = e3, Di = 0 (i = 0, 4, 5, 6, 7), (3.3a)

Element E2 (D12 = 0, D13 6= 0, D23 = 0)

D1 = e1, D2 = e2, D3 = D13e1+

√
1− D2

13e3, Di = 0 (i = 0, 4, 5, 6, 7), (3.3b)

Element E3 (D12 = 0, D13 = 0, D23 6= 0)

D1 = e1, D2 = e2, D3 = D23e2+

√
1− D2

23e3, Di = 0 (i = 0, 4, 5, 6, 7), (3.3c)

where the metric Di j is defined by
Di j = Di · D j . (3.4)

Each of these element shapes is a parallelepiped with two right angles. Now, from [Nadler and Rubin
2003] it follows that for these element shapes the reference geometry is characterized by

V = H1 H2 H3, V i
= 0 (i = 1, 2, 3, 4), (3.5)

and the position vector X∗ in (2.2) and the Cartesian coordinates X∗′i can be expressed in the forms

X∗ =
3∑

j=1

θ j D j , X∗i
′
=

3∑
j=1

θ j (e′i · D j ). (3.6)
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Consequently, the exact displacements u∗ and stresses T∗ in (3.1) and (3.2) can be rewritten as functions
of the convected coordinates θ i (i = 1, 2, 3).

Within the context of the linear theory of a CPE [Nadler and Rubin 2003] the director displacements
δi are defined such that

di = Di + δi , (i = 0, 1, . . . , 7), (3.7)

and for the special elements defined by (3.3) the linearized forms of the inhomogeneous strains β i become

β i = δi+3 (i = 1, 2, 3, 4). (3.8)

As explained in [Nadler and Rubin 2003], the values δ∗i of the element director displacements δi which
correspond to the exact displacement field u∗ need to be properly defined. Specifically, for these element
shapes the values δ∗i are determined by the equations in [Nadler and Rubin 2003] which connect δ∗i to
integrals over the reference element region of derivatives of u∗ with respect to the convected coordinates.
In particular, for the exact solutions (3.1) and (3.2) and the element shapes (3.3) it can be shown that
these expressions yield

δ∗1 = δ∗2 = δ∗3 = δ∗7 = 0, (3.9)

so that when δi are replaced by the exact values δ∗i the linearized values of κ i
4 vanish

κ1
4 = κ

2
4 = κ

3
4 = 0, (3.10)

and the linearized forms of the constitutive equations (2.13) and (2.14) reduce to

d1/2T = 0, t i
= 0 (i = 0, 1, 2, 3, 7),

t4
=

(
m
∂9

∂b1
H2 D1

+m
∂9

∂b3
H1 D2

+m
∂9

∂b7
H3 D3

)
,

t5
=

(
m
∂9

∂b5
H3 D1

+m
∂9

∂b8
H2 D2

+m
∂9

∂b4
H1 D3

)
,

t6
=

(
m
∂9

∂b9
H1 D1

+m
∂9

∂b6
H3 D2

+m
∂9

∂b2
H2 D3

)
(3.11)

where di have been replaced by the reference values Di . Also, the values of mi in (2.21) associated with
the exact solutions (3.1) and (3.2) are given by

mi
= 0 (i = 0, 1, 2, 3, 7), mi

=

∫
∂P0

N i T∗N∗d A∗ (i = 4, 5, 6), (3.12)

where ∂P0 is the reference boundary of the CPE, N∗ is the unit outward normal to ∂P0 and d A∗ is the
reference element of area. It then follows that within the context of the linearized theory, the equations of
equilibrium associated with the bending (3.1) and torsion (3.2) solutions reduce to three vector equations

t i
−mi

= 0 (i = 4, 5, 6). (3.13)

Analytical expressions for Bi j can be developed by matching the solutions (3.1) and (3.2) for each of
the element shapes (3.3). Then, the resulting coefficients are combined in a manner that ensures that Bi j
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is a positive definite tensor. Specifically, with reference to the element shape E1 in (3.3a) consider six
bending solutions associated with specifications of the orientation of e′i relative to Di

Bending B1 : e′1 = D1, e′3 = D3, (3.14a)

Bending B2 : e′1 = D1, e′2 = D3 (3.14b)

Bending B3 : e′1 = D2, e′3 = D3 (3.14c)

Bending B4 : e′1 = D2, e′2 = D3 (3.14d)

Bending B5 : e′1 = D3, e′3 = D2 (3.14e)

Bending B6 : e′1 = D3, e′3 =−D1 (3.14f)

Also, consider two torsion solutions associated with specifications

Torsion T1 : e′1 = D1, e′3 = D3, (3.15a)

Torsion T2 : e′1 = D2, e′3 = D3, (3.15b)

For each bending and torsion solution the exact displacements u∗ are used to determine the exact
values δ∗i . Then, the linearized values of κ i

j are determined using (2.9) and (3.8) with δi replaced by δ∗i
and the resulting constitutive equations for t i are determined by (3.11). Similarly, the values of mi are
determined by using the exact stress T∗ in the equations (3.12). Also, the values of the warping constant
φ which corresponds to nearly pure torsion [Jabareen and Rubin 2008c] are determined by

Torsion T1 : m6
· D1 = 0⇒ φ =

H 2
2 (1− D2

12)− H 2
3

H 2
2 (1− D2

12)+ H 2
3
, (3.16a)

Torsion T2 : m5
· D2 = 0⇒ φ =

H 2
1 (1− D2

12)− H 2
3

H 2
1 (1− D2

12)+ H 2
3
, (3.16b)

In these expressions it can be seen that {m6, D1} are associated with the cross-sectional coordinates
{θ2, θ3

} and {m5, D2} are associated with the cross-sectional coordinates {θ1, θ3
}. With reference to

Figure 2 it can also be seen that these expressions are similar to those in [Nadler and Rubin 2003] since
the cross-section normal to D1 has lengths {H2

√
1− D2

12, H3} and the cross-section normal to D2 has
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Figure 2. Cross-section of the parallelepiped element E1.
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lengths {H1
√

1− D2
12, H3}. For each bending solution the value of γ can be eliminated in the resulting

equations of equilibrium (3.13) and the value of ω can be eliminated from each of the equations of
equilibrium associated with the torsion solutions. Also, the values (3.16) are used in the resulting torsion
equations. It therefore follows that the each of the solutions (B1)-(B6), (T1) and (T2) yield nine scalar
equations of equilibrium which total 72 scalar equations to determine the values of Bi j as functions of
Hi and D12. Some of these scalar equations are trivially satisfied and others are redundant. In particular,
using a symbolic program like Maple it can be shown that the equations associated with the bending
solutions (3.14) can be solved for Bi j (i, j = 1, 2, . . . , 5) in terms of

{B77, B78, B79, B88, B89, B99}. (3.17)

Then, these expressions can be substituted into the equations for torsion to determine all of the values of
Bi j (i, j = 1, 2, . . . , 9) in terms of one of the values {B77, B88, B99}, say B77.

Next, it is noted that that the strain energy function 9 in (2.11) will be positive definite provided
that the coefficient matrix Bi j is positive definite. The results of the calculations just described yield a
form for Bi j which separates into two matrices [Bi j (i, j = 1, 2, 3, 4) and Bi j (i, j = 5, 6, . . . , 9)]. In
particular, it can be shown that

det(Bi j )= (1− ν)2(1+ ν)2(1− D2
12)

2 > 0, (i, j = 1, 2, 3, 4) (3.18)

which is independent of the lengths Hi and is positive for the full range of Poisson’s ratio and D12

−1< ν < 1
2 , −1< D12 < 1. (3.19)

Moreover, the det(Bi j ) for (i, j = 5, 6, . . . , 9) is a linear function of B77, which has the value

det(Bi j )=
1
2(1− ν)

4(1+ ν) for (i, j = 5, 6, . . . , 9) and D12 = 0. (3.20)

It was found that if the value of B77 is specified so that

det(Bi j )=
1
2(1− ν)

4(1+ ν)(1− D2
12) for (i, j = 5, 6, . . . , 9), (3.21)

then the expressions for Bi j are quite simple and

det(Bi j )=
1
2(1− ν)

6(1+ ν)3(1− D2
12)

3 for (i, j = 1, 2, . . . , 9), (3.22)

which is positive for the range of values (3.19).
Similar procedures can be used to define bending and torsion solutions for the element shapes E2 and

E3 and the resulting equations can be solved for Bi j to determine the dependence on the metrics D13 and
D23. Next, define auxiliary variables {λ12, λ13, λ23} as follows:

For D2
12+ D2

13+ D2
23 = 0:

λ12 = λ13 = λ23 = 0, (3.23a)

For D2
12+ D2

13+ D2
23 > 0:

λ12 =
D2

12

D2
12+ D2

13+ D2
23
, λ13 =

D2
13

D2
12+ D2

13+ D2
23
, λ23 =

D2
23

D2
12+ D2

13+ D2
23
. (3.23b)
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Then it is possible to denote the values of Bi j associated with the solutions of the three elements E1-E3
in (3.3) by B12

i j for E1, by B13
i j for E2, and by B23

i j for E3. Moreover, the matrix B0
i j is defined so that it

yields a strain energy function 9 equivalent to that obtained in [Nadler and Rubin 2003] for a rectangular
parallelepiped, when the value of the torsion function b∗(1) is taken to be 1/2 as suggested in [Jabareen
and Rubin 2008c]. Then, the general expression Bi j (D12, D13, D23) combining these solutions is

Bi j (D12, D13, D23)= (1− λ12− λ13− λ23)B0
i j + λ12 B12

i j + λ13 B13
i j + λ23 B23

i j . (3.24)

Now, using the definitions (3.23) it follows that each of the coefficients {(1−λ12−λ13−λ23), λ12, λ13, λ23}

is non-negative and that at least one of them is positive. Also, each of the matrices {B0
i j , B12

i j , B13
i j , B23

i j },
given in Appendix A, is positive definite so that the combined matrix Bi j (D12, D13, D23) is also positive
definite for all reference element shapes.

4. Examples

For planar problems (in the D1-D2 plane with D13 = D23 = 0) it was shown in [Jabareen and Rubin
2008a] that

b5 = b6 = b7 = b8 = b9 = b10 = b11 = 0. (4.1)

Moreover, since the values of Bi j (i, j = 1, 2, 3, 4) for these planar problems reduce to those of the
improved CPE in [Jabareen and Rubin 2007b], the results of the improved and generalized CPE will
be identical for all planar problems. Consequently, the results of the example problems of a Cook’s
membrane, a Kirsch problem and buckling of a block considered in [Jabareen and Rubin 2007a; 2007b]
are identical to those that would be predicted by the generalized CPE of Sections 2 and 3. In particular, it
follows that the generalized CPE is free of the unphysical hourglassing that is predicted by the elements
in ABAQUS, ADINA, ANSYS and FEAP [Taylor 2005] based on enhanced strain and incompatible
mode methods.

In this section a number of example problems are considered to examine the predictions of the gener-
alized CPE which show that it is more accurate than the improved CPE in [Jabareen and Rubin 2007b].
For all of the example problems the full nonlinear equations are solved using the constitutive equations
(2.13) and (2.14) with strain energy specified by (2.8), (2.13), (2.14) and (2.18), even when the loads are
small and the deformations remain small. Also, for irregular shaped elements the values of V i in (2.7)
and (2.13) can be nonzero so the response is examined for more general conditions than those used in
the last section used to develop expressions for the constitutive coefficients Bi j . Unless otherwise stated
the material is taken to be compressible with

K = 1 GPa, µ= 0.6 GPa, ν = 0.25. (4.2)

For the special examples which consider a nearly incompressible the material constants are specified by

K = 1000 GPa, µ= 0.6 GPa, ν ≈ 0.4997. (4.3)

Furthermore, it was shown in [Jabareen and Rubin 2007a; 2007b] that the enhanced strain element
in FEAP produces results similar to the enhanced strain or incompatible mode elements in ABAQUS,
ADINA and ANSYS so that comparison with these types of elements will be limited to the element in
FEAP.
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For the calculations with the improved CPE presented here use is made of the modified torsion co-
efficients discussed in [Jabareen and Rubin 2008c]. In addition, for the improved CPE the matrices
Bi j associated with the individual metrics {D12, D13, D23} are combined using an expression of the form
(3.24) instead of using the method described in [Jabareen and Rubin 2007b] for ensuring that Bi j remains
positive definite.

Furthermore, in the following figures the symbols {G, I, F, Q1, Q1P0, HO9} denote predictions of:
the generalized CPE developed here; the improved CPE developed in [Jabareen and Rubin 2007b]; the
enhanced strain, full integration, mixed element for nearly incompressible materials and the mixed higher
order 9 node quadrilateral in FEAP, respectively. Also, it is noted that when the elements are rectangular
parallelepipeds with (D12 = D13 = D23 = 0) the predictions of (G) and (I) are identical.

4.1. Shear load on a thin cantilever beam (small deformations). Figure 3 shows a sketch of a thin
cantilever beam with dimensions

L = 200 mm, H =W = 10 mm, (4.4)

which is fully clamped at its end X∗1 = 0 and is subjected to a shear force P (modeled by a uniform shear
stress) applied in the e2 direction to its end X∗1 = L . The lateral surfaces are traction free. The mesh
{20n× n× n} is defined by distorting the middle cross-section in its reference configuration (using the
parameters a1, a2, a3, a4 shown in Figure 3), with 10n elements on each side of this cross-section and n
elements in each of the e2 and e3 directions. Two cases of element distortion are considered:

Case I: a1 = a, a2 =−a, a3 = a, a4 =−a,

Case II: a1 = a, a2 = a, a3 =−a, a4 =−a,
(4.5)

and the parameter a/H defines the element irregularity. Both of these cases cause the middle surface to
remain planar with the normal to that surface being in the e1-e2 plane for Case I and in the e1-e3 plane
for Case II. The value

u∗A2 = 0.21310 mm for P = 0.1 N (4.6)

of the e2 component of the displacement of point A (see Figure 3) predicted by (G) with the most refined
mesh (n = 5) and a regular mesh (a/H = 0) is considered to be exact and the error E associated with

Figure 3. Shear load on a thin cantilever beam. The irregular element mesh is based on
the distorted center cross-section.
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the predictions u A2 of other calculations for the same value of P is defined by

E =
u A2− u∗A2

|u∗A2|
. (4.7)

Figure 4a shows the error as a function of the irregularity parameter a/H for Case I with n = 1. Ideally
the response should be nearly insensitive to the value of a/H . This figure shows that the predictions of
(G) and (I) are identical and are slightly more accurate than those of (F) for large values of irregularity.
Figure 4b shows that the three elements converge to the same value for Case I with the refined mesh
(n = 5) and large irregularity a/H = 2. The results for Case II shown in Figures 4c,d indicate that (G)
is again slightly more accurate than (F) and that they both converge to the same solution. In contrast,
Figures 4c,d show that (I) predicts significant errors and converges slowly for large irregularities. It will
be shown later that this deficiency for Case II causes (I) to be inaccurate for out-of-plane bending of a
rhombic plate.

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

G
I
F

0.0 0.5 1.0 1.5 2.0

E
 (

%
)

a/H

(a) Case I (n=1)

-2.0

-1.0

0.0

1.0

G
I
F

1 2 3 4 5

E
 (

%
)

n

(b) Case I (a/H=2)

-10.0

-7.5

-5.0

-2.5

0.0

G
I
F

0.0 0.5 1.0 1.5 2.0

E
 (

%
)

a/H

(c) Case II (n=1)
-10.0

-7.5

-5.0

-2.5

0.0

G
I
F

1 2 3 4 5

E
 (

%
)

n

(d) Case II (a/H=2)

Figure 4. Shear load on a thin cantilever beam (small deformations). (a,c) Errors in the
displacement of the point A in the e2 direction versus the distortion parameter a/H and;
(b,d) the errors versus n for the mesh {20 n × n × n} defined for two cases of element
distortion.
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Figure 5. Shear load on a thin slanted cantilever beam.

4.2. Shear load on a thin slanted cantilever beam (small deformations). Figure 5 shows a sketch of a
thin slanted cantilever beam with dimensions (4.4) and with the slanting angle θ . The boundary conditions
are the same as those for the previous example except that the shear load P is applied in the e3 direction to
emphasize differences between the predictions of (G) and (I). Again the mesh is taken to be {20 n×n×n}
with 20n elements in axial direction of the beam. All of the elements have parallelogram cross-sections
in the e1-e2 plane with sides parallel to the ends of the beam.

Figure 6a shows the displacement component u A3 of point A (see Figure 5) in the e3 direction as a
function of θ for the most refined mesh (n = 5). The error E in u A3 is defined in a similar manner to
(4.7) with the exact value u∗A3 taken to be that predicted by (G) for each value of θ with n = 5 and with
the load P given by (4.6). Figures 6b,c show that (G) and (F) converge to the same values and that (G)
is slightly more accurate than (F) for n=1 and large values of θ . Also, it can be seen that (I) predicts
significant errors with slow convergence.

4.3. Shear load on a thin twisted cantilever beam (small deformations). The problem of shear loading
of a thin twisted beam provides a severe test of the accuracy of an element formulation since the ele-
ments have irregular shapes and the response couples torsion and bending modes of deformation. In its
unstressed reference configuration the twisted beam has length L and a rectangular cross-section with
height H and width W given by

L = 200 mm, H = 10 mm, W = 2 mm. (4.8)

Also, each of the cross-sections is twisted by the angle θ such that the position of a material point X∗ in
the reference configuration is given by

X∗ = X∗i
′e′i , θ =

X∗1
′

L
2,

e′1 = e1, e′2 = cos θe2+ sin θe3, e′3 =− sin θe2+ cos θe3, (4.9)

where 2 controls the magnitude of the twist. Furthermore, the influence of irregular element meshes is
explored by applying the twist θ to the cross-sections of the beam shown in Figure 3 and in Figure 7
using the element irregularity specified by Case I in (4.5). The surface X∗1

′
= 0 is fully clamped, a shear
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Figure 6. Shear load on a thin slanted cantilever beam (small deformations). (a) Dis-
placement u A3 of the point A in the e3 direction versus the angle θ for n = 5 with the
mesh {20 n× n× n}; (b) errors in u A3 versus θ for n = 1; (c) errors in u A3 versus n for
θ = 60 deg.

force P (modeled by a uniform shear stress) is applied to the end X∗1
′
= L in the constant e′2 direction

(defined by its direction in the reference configuration) and the remaining lateral surfaces are traction
free. Also, the element mesh for this problem is specified by {20 n× n× n} with 20n elements along the
length of the beam.

Figure 8a shows the component u′B2 of the displacement of the point B (see Figure 7) in the e′2 direction

u′B2 = uB · e′2, (4.10)

versus the pre-twist 2 for the most refined mesh with n = 5, no element irregularity (a/H = 0) and the
load given by

P = 0.01 N. (4.11)

This value of load is used for all calculations in this subsection. It can be seen that {G, I, F} converge
to the same results. Thus, the value u′∗B2 of u′B2 predicted by (G) for n = 5 is considered to be exact
and the error E of other calculations is defined in a similar manner to (4.7). Figures 8b,c show the
influence of element irregularity for the coarse mesh with n = 1 and Figures 8d,e consider a finer mesh
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Figure 7. Shear load on a thin twisted cantilever beam. The element mesh is based on
the distorted center cross-section.

with n = 2. From these figures it can be seen that (G) is as accurate as (F) and is much more accurate
than (I), especially for irregular shaped elements.

4.4. Lateral torsional buckling of a thin cantilever beam (large deformations). For this example the
beam and element mesh are characterized by the same parameters as used in Section 4.3 with the shear
force P being applied in the e′2 direction. To investigate rotation of the beam’s end it is convenient to
consider the difference in the displacements of the points A and B shown in Figure 7. Specifically, the
quantity 1u is defined by

1u = (uB − uA) · e′2. (4.12)

Figure 9 shows the results for large deformation lateral torsional buckling of a thin cantilever beam.
Again it is emphasized that the direction e′2 of the load is held constant during loading. The buckling
process is triggered by the small pre-twist

2= 0.1 deg, (4.13)

which smoothes out the bifurcation that would occur for a perfect beam with 2= 0. Figure 10 shows
the results for shear loading with a large pre-twist

2= 30 deg . (4.14)

Moreover, the curves in Figures 9 and 10 denoted by (E) are predicted by (G) with n = 5 and a/H = 0
and are considered to be exact.

The results in Figure 9 show that for n = 2 (Figures 9a,b) the predictions are not yet converged and
are sensitive to element irregularity with large errors being predicted by (I). Figures 9c,d show that for
n = 3 the predictions are reasonably converged and that the sensitivity of element irregularity is reduced
for {G, F} but that (I) still predicts large errors.
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Figure 8. Shear loading of a thin twisted cantilever beam with a pre-twist 2 and the
mesh {20 n×n×n} (small deformations). The influence of element irregularity is shown
in the middle row graphs for n = 1 and in the bottom graphs for n = 2.

The results in Figure 10 for shearing of a thin cantilever beam with a large pre-twist again show
that the predictions of {G, F} are relatively accurate but that the predictions of (I) are inaccurate for the
irregular shaped elements even for the mesh with n = 3 (Figure 10d). This result is consistent with that in
[Jabareen and Rubin 2007b, Figure 8b], which showed that the error of out-of-plane bending of a beam
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Figure 9. Large deformation lateral torsional buckling of a thin cantilever beam with a
small pre-twist 2 = 0.1 deg. using the mesh {20 n× n× n}. The influence of element
irregularity is shown in the top two graphs for n = 2 and in the bottom two for n = 3.

with the element irregularity of Case I [(4.5) here] does not have a zero slope as a/H approaches zero.
Furthermore, this error causes (I) to predict inaccurate results for out-of-plane bending of a rhombic
plate, as will be shown next.

4.5. Point load on the corner of a thin partially clamped rhombic plate (small deformations). Figure
11 shows a sketch of one quarter of a thin fully clamped rhombic plate with dimensions

L = 500 mm, H = 10 mm, (4.15)

with two clamped and two free edges and which is loaded at its corner by a point force. The length of
each edge is L and the load is specified by

P = 1 N. (4.16)

The mesh used for the plate is defined by {10 n× 10 n× n} with n elements through the thickness.
Figure 12a shows the component u A3 of the displacement of the point A in the e3 direction as a

function of θ for the most refined mesh (n = 5). The error E in this displacement is defined in a similar
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Figure 10. Large deformation shear loading of a thin cantilever beam with a pre-twist
2= 30 deg using the mesh {20 n×n×n}. The influence of element irregularity is shown
in the top two graphs for n = 2 and in the bottom two for n = 3.

Figure 11. Point load on the corner of a thin partially clamped rhombic plate.

manner to (4.7) with the exact value u∗A3 taken to be that predicted by (G) for each value of θ with n = 5
and the load P given by (4.16). Figures 12b,c show that {G,F} predict nearly the same values, that
(I) predicts significant errors for n = 1 (especially for the angle θ = 60 deg) and that (I) exhibits slow
convergence.
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Figure 12. Point load on the center of a thin fully clamped rhombic plate (small defor-
mations). Displacement u A3 of the point A in the e3 direction versus the angle θ for
n = 5 with the mesh {10 n× 10 n× n}; (b) errors in u A3 versus θ for n = 1; (c) errors in
u A3 versus n for θ = 60 deg.

Figure 13. Point load on the center of a thin fully clamped square plate with an irregular
element mesh.

4.6. Point load on the center of a thin fully clamped square plate with an irregular element mesh
(small deformations). Figure 13 shows a sketch of one quarter of a thin fully clamped square plate with
dimensions (4.8) that is loaded by a point force at its center. Only one quarter of the plate is modeled and
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the value P given by (4.16) corresponds to one quarter of the load that would be applied to the center of
the entire plate. Irregular elements are specified by moving the center point of the quarter section to the
position characterized by the lengths {a1, a2} (shown in Figure 13) defined by two cases:

Case I: a1 = a2 = a, −1≤ 4a
L
≤ 1,

Case II: a1 =
L
4

cos(θ), a2 =
L
4

sin(θ), 0≤ θ ≤ 2π.
(4.17)

The quarter section of the plate is meshed by {10 n× 10 n× n} with each subsection being meshed by
{5 n× 5 n× n} and with n elements through the thickness. The error E in the displacement component
u A3 of point A in the e3 direction is defined in a similar manner to (4.7) with the exact value u∗A3 taken
to be that predicted by (G) for regular elements (a/L = 0) with n = 5

u∗A3 = 0.16893 mm for P = 1 N. (4.18)

Figures 14a,b show the error for n = 1 as a function of the irregularity parameters 4a/L for Case I
(Figure 14a) and as a function of θ/(2π) for Case II (Figure 14b). From these figures it can be seen that
that {G, F} are relatively insensitive to the magnitude and type of element irregularity but that (I) predicts
significant errors for irregular elements.

4.7. Point load on the corner of a thin partially clamped rhombic plate (large deformations). Figure
15 shows the deformed shapes of a thin partially clamped rhombic plate subjected to a point load on its
corner for two different angles θ and the same value P of load. The plate is fully clamped on two edges
and the other edges and major surfaces are traction free. The dimensions are given by (4.8) as shown in
Figure 11 (with L now being the length of the plate’s edge) and the point force P is specified by

P = 1 kN. (4.19)
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Figure 14. Point load on the center of a thin fully clamped square plate (small deforma-
tions). Errors in the displacement of the point A in the e3 direction versus the distortion
parameters (a) 4a/L and; (b) the angle θ for two cases of element irregularity with the
mesh {10× 10× 1}.
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(a) ! = 0 deg 

P 

 

 (b) ! = 60 deg 

P 

Figure 15. Point load on a partially clamped rhombic plate (large deformations). Pre-
dictions of the generalized CPE for the mesh {10 n× 10 n× 1} with n = 2 and P = 1 kN.

The mesh is specified by {10 n× 10 n× 1} and the exact value u∗3 of the displacement of the corner in
the e3 direction is determined by the most refined solution (G) with n = 5

u∗3 = 0.21084 m for θ = 0 deg, u∗3 = 0.39306 m for θ = 60 deg . (4.20)

Figures 16 show the load P versus displacement curves for n = 2 and the convergence curves for two
values of the angle θ . Comparison of Figures 16a,c shows that the rhombic plate with angle θ = 60 deg is
more flexible than that for θ = 0 deg and that {G, F} predict nearly the same values, whereas (I) predicts
significant errors for the angle θ = 60 deg. Also, Figure 16d shows that the convergence properties of
(G) are slightly better than those of (F) for the case when θ = 60 deg.

4.8. A pair of opposing point loads applied to a complete circular cylindrical shell (large deformations).
Figure 17 is a sketch of one eighth of a thin circular cylindrical shell that is subjected to a pair of opposing
point loads P . The entire shell has length 2L , middle surface radius R, and thickness H , with

L = 300 mm, R = 300 mm, H = 3 mm. (4.21)

All nodes (except for one) on the circular edges of the shell are allowed to move freely in the axial
direction but their radial and circumferential positions are fixed. Also, the eighth region of the shell is
modeled by the mesh {10 n× 10 n× 1} in the axial, circumferential and radial directions, respectively.

Figure 18 plots the force P versus radial displacement ur of the point A under the load for different
mesh refinements. Curves are presented for (G) for the most refined mesh of n = 10 and for {G, F} for
n = 3 (Figure 18a) and n = 5 (Figure 18b). It can be seen from Figure 18a that for the coarser mesh
(n = 3) the load-deflection curve exhibits ratcheting due to localized limit points whereas for the more
refined mesh (n = 5) in Figure 18b the load-deflection curve is smooth. It can also be seen that the
predictions of {G, F} tend to converge to the same solutions. Figure 19 shows the deformed shape of
one eighth of the circular shell predicted by (G) for n = 5 and P = 1.73 kN with no enhancement of the
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Figure 16. Point load on a partially clamped rhombic plate (large deformations). Pre-
dictions of the load P versus displacement u3 at the loaded corner and convergence of
the error in the displacement for the mesh {10 n× 10 n× 1} with the load P = 1 kN and
different angles θ .

 

Figure 17. Sketch of one eighth of a thin circular cylindrical shell that is subjected to a
pair of opposing point loads P .
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Figure 18. A pair of opposing concentrated loads P applied to a thin circular cylindrical
shell with the mesh {10 n× 10 n× 1}.

displacements. In particular, it is noted that the inability of the coarse mesh to capture the high curvature
of the middle of the shell far away from the load is most likely the cause of the ratcheting shown in
Figure 18a.

4.9. Plane strain indentation of a rigid plate into a nearly incompressible block (large deformations).
Crisfield et al. [1995] and César de Sá et al. [2001] considered the example of plane strain indentation of
a rigid plate into a block and showed limitations of enhanced strain elements for elastic and elastic-plastic
response. Figure 20 shows a sketch of the dimensions and boundary conditions for this problem with a

 

Figure 19. Deformed shape of an eighth of a thin circular cylindrical shell subjected to
a pair of opposing concentrated point loads P for the mesh {10 n× 10 n× 1} with n = 5
and P = 1.73 kN.
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nearly incompressible elastic material. The block has length 2L , height L and depth W . Material points
on its sides and bottom remain in contact with a rigid container and are allowed to slide freely. The top
surface of the block is loaded by a rigid plate (AB) of length L which makes perfect contact with the
block so that material points in contact with the rigid plate move only vertically. The remaining half of
the block’s top surface is traction free. The dimensions of the block are given by

L =W = 1 m. (4.22)

Irregular meshes are defined by dividing the block into four subsections with the central node moving
to the position characterized by the lengths {a1, a2} (shown in Figure 20) defined by two cases:

Case I: a1 = a, a2 = 0, −1≤ 8a
3L
≤ 1, u A2 =−0.1 m, n = 5,

Case II: a1 = 0, a2 = a, −1≤ 8a
3L
≤ 1, u A2 =−0.1 m, n = 5.

(4.23)

The entire block is meshed by {8 n× 4 n× 1} with 4n elements in the e1 direction and 2n elements in
the e2 in each of the subsections. The point C (shown in Figure 20) is located on the free top surface at
a distance 0.25L from the corner B of the rigid plate.

Figure 21 shows convergence of the solution for the regular (a = 0) mesh {8 n× 4 n× 1} and u A2 =

−0.1 m. The converged value u∗C2 of the displacement of the point C in the e2 direction predicted by (G)
for a regular mesh with n = 20 is considered to be exact and is given by

u∗C2 = 0.071895 m for u A2 =−0.1 m with n = 20. (4.24)

The error E of in the values uC2 predicted by calculations of other elements and meshes is defined by an
expression similar to (4.7). Figure 21 shows the convergence of this error predicted by {G, Q1P0, HO9}.
This error is plotted relative to n for the mesh {8 n× 4 n× 1} in Figure 21a and is plotted relative to the
degrees of freedom (DOF, calculated for plane strain response) in Figure 21b. From Figure 21a it is not
clear if (Q1P0) exhibits a locking behavior by converging to a value different from (G) or whether the

 

Figure 20. Plane strain indentation of a rigid plate into a block showing the boundary
conditions and definition of element irregularity.
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Figure 21. Plane strain indentation of a rigid plate into a nearly incompressible block.
Convergence of the error E in the displacement uC2 of the point C using the regular
mesh {8 n × 4 n × 1} for u A2 = −0.1 m versus: (a) n; and (b) versus the number of
degrees of freedom DOF.

convergence rate is very slow. To validate the converged value of (G) for n = 20, calculations were also
performed using the mixed higher order element (HO9) with the mesh {8 n× 4 n× 1} up to n = 10. In
particular, it can be seen in Figure 21b that (HO9) tends to converge to the value predicted by (G).

Figure 22 presents the errors E in the displacement uC2 for two cases of element irregularity and for
the mesh {8 n×4 n×1} with n = 5 and u A2 =−0.1 m. Since there is a strain concentration near the edge
of the plate it is expected that a non-fully converged solution will be sensitive to element irregularity. In
particular, it can be seen from Figure 22a that (Q1P0) is more sensitive to element irregularity than (G)
for positive values of a for Case I which cause the elements near the plate’s edge B to be more irregular.
The results in Figure 22b show that the error reduces slightly for increasing positive values of a for Case
II which cause the elements near the plate’s edge B to be more refined.
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Figure 22. Plane strain indentation of a rigid plate into a nearly incompressible block.
Error E in the displacement uC2 of the point C for two cases of element irregularity and
for the mesh {8 n× 4 n× 1} with n = 5 and u A2 =−0.1 m.
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 Figure 23. Plane strain indentation of a rigid plate into a nearly incompressible block
showing nonlinear load curves using the regular mesh {8 n× 4 n× 1} for 3 values of n.

Figure 23 shows nonlinear load curves using the regular mesh {8 n× 4 n× 1} for different values of n.
Again it can be seen that (G) predicts more flexible response than (Q1P0) for the coarser meshes. Figure
24 shows the deformed shapes for the regular mesh {8 n×4 n×1} with n = 3 for different values of loads.
In particular, it can be seen that the flexibility of (G) allows the elements near the plate’s corner to roll
around the corner more easily than allowed by (Q1P0). Since the flexibility of (G) has been validated
relative to the mixed higher order element (HO9) it is concluded that the stiffness shown by (Q1P0) is
unphysical.

4.10. Indentation of a rigid plate into a nearly incompressible block (large deformations). Figure 25
shows a sketch of one fourth of a nearly incompressible block that has total length 2L , height L and
depth 2L with

L = 1 m. (4.25)
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Figure 24. Plane strain indentation of a rigid plate into a nearly incompressible block
showing the deformed shapes for the regular mesh {8 n× 4 n× 1} with n = 5. The left
column shows the results for (G) and the right column shows the results (Q1P0).

The bottom (X∗3 = 0) and exterior lateral surfaces (X∗1 =±L , X∗2 =±L) of the block remain in contact
with and slide freely on smooth rigid planes. The block’s top surface (X∗3 = L) is loaded by a rigid
plate (ABCD) which makes perfect contact with the material points so that these points can only move
vertically in the e3 direction. The remaining portion of the block’s top surface is traction free. Irregular
elements are generated by moving the nodes of the center plane by the displacements {a1, a2, a3, a4} as
shown in Figure 25 with

a1 = a, a2 = 0, a3 =−a, a4 = a, −1≤
8a
3L
≤ 1. (4.26)
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Figure 25. Indentation of a rigid plate into a block showing the boundary conditions
and definition of element irregularity. Symmetry conditions are used so that only one
fourth of the block is meshed.

The mesh for the one fourth region is specified by {4 n×4 n×4 n} with 2n elements below and above the
distorted center surface and with {n× n} elements under the rigid plate. Moreover, the vertical reference
locations of material points on these distorted surfaces are described by a bilinear form of the coordinates
(X∗1, X∗2). Furthermore, the point E is located at a distance L/4 from the edge of the rigid plate.

Based on the results of the previous example it is expected that the deformation will be concentrated
near the edges of the plate so that a refined mesh will be required to obtain an accurate solution. Mesh
refinement of this 3-D problem is beyond the capacity of the hardware being used to obtain the solution.
Therefore, attention will be focused on the robustness of the solutions with relative coarse meshes.

Figure 26 explores the sensitivity of the elements {G, Q1P0} to irregularity of the reference element
shape. Since the converged value of the displacement uE3 is not known it is convenient to define the
difference of uE3 relative to the value u∗E3 predicted for a regular mesh (a = 0). Specifically, the value
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Figure 26. Indentation of a rigid plate into a nearly incompressible block. The displace-
ment uE3 of the point E as a function of element irregularity for the mesh {4 n×4 n×4 n}
with n = 3 and u A3 =−0.1 m.
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Figure 27. Indentation of a rigid plate into a nearly incompressible block. Nonlinear
load curves for the regular mesh {4 n× 4 n× 4 n} with different values of n.

of u∗E3 for each element for the regular mesh {4 n× 4 n× 4 n} with n = 3 and u A3 =−0.1 m is given by

u∗E3 =−0.0078595 m for (G), u∗E3 =−0.0071327 m for (Q1P0). (4.27)

The difference 1 is then defined by a formula of the type (4.7)

1=
uE3− u∗E3

|u∗E3|
, (4.28)

for each of the elements using its value of u∗E3 so that 1 vanishes for each element when a = 0. The
results in Figure 26 demonstrate that (G) can be used for three-dimensional irregularity of the reference
element shapes and that the predictions of (G) are similar to those of (Q1P0). Since the solution is
not fully converged for this mesh it is expected that the solution will be sensitive to the value of the
irregularity parameter a. In particular, the results in Figure 26 are consistent with the observation that
the mesh is more refined under the rigid plate for positive values of a.

Figure 27 shows nonlinear load curves using the regular mesh {4 n× 4 n× 4 n} for different values
of n. From these figures it can be seen that the results predicted by {G, Q1P0} are similar. In particular,



A GENERALIZED CPE FOR ISOTROPIC NONLINEAR ELASTIC MATERIALS 1495

the unphysical stiffness exhibited by (Q1P0) in the previous plane strain problem is not detected in this
three-dimensional problem.

5. Conclusions

A generalized form (2.11) for the strain energy of inhomogeneous deformations of a Cosserat point
element (CPE) has been developed which includes full coupling of bending and torisonal modes. The
dependence of the constitutive coefficients Bi j on the metric Di j (3.4) have been determined by matching
exact small deformation solutions for pure bending (eighteen solutions) and simple torsion (6 solutions).
These coefficients are then used with nonlinear strain measures to characterize the response of general
irregular element shapes to large deformations.

Ideally, for a fully converged solution the response of a structure to a specified load should be insensi-
tive to irregularities in the element shapes used to mesh the structure. The results here indicate that the
main features of this desired response for general shaped elements can be obtained by properly modeling
pure bending and simple torsion of parallelepipeds with two right angles. Also, it is recalled [Jabareen
and Rubin 2007b] that insensitivity to element irregularity can best be exhibited by focusing attention on
a thin structure that is loaded so that inhomogeneous deformations (like bending and torsion) dominate
homogeneous deformations. In particular, plots like Figure 4c for (I) clearly emphasize undesirable
sensitivity to element irregularity.

In contrast with standard finite elements, the nodal forces in the generalized CPE are determined by
algebraic expressions in terms of derivatives of a strain energy function and no integration is needed over
the element region. A number of example problems (also see [Jabareen and Rubin 2007a; Jabareen and
Rubin 2007b]) have been considered which show that the generalized CPE is as accurate as elements
based on enhanced strain and incompatible modes and is as robust as elements based on full integration.
The plane strain example of indentation of a rigid plate into a nearly incompressible block showed that
the flexibility exhibited by the CPE is physical and that the mixed Q1P0 element predicts unphysical
stiffness. Furthermore, the generalized CPE can be used to model 3-D bodies, thin shells and rods and
nearly incompressible materials. In addition, the generalized CPE is free of hourglass instabilities that
are observed in other element formulations in regions experiencing combined high compression with
bending. Consequently, the generalized CPE is truly a robust user friendly element that can be used with
confidence to model problems in nonlinear elasticity.

Appendix A. Values of the constitutive coefficients Bi j

The equations of the bending and torsion problems discussed in Section 3 for the element shapes can be
solved for the values of Bi j in the strain energy function (2.11) for inhomogeneous deformations and the
results were reported in [Jabareen and Rubin 2008b]. Specifically, the nonzero components of the upper
diagonal of the symmetric matrices {B0

i j , B12
i j , B13

i j , B23
i j , i, j = 1, 2, . . . , 9} in (3.24) for a general shaped

element are specified by

B0
11 = 1, B12

11 = 1+
H 2

1 D2
12

H 2
2

, B13
11 = 1+

(1− ν){H 2
1 (1− D2

13)+ H 2
2 }D

2
13

2H 2
2 (1− D2

13)
, B23

11 = 1,
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B0
12 = ν, B12

12 = ν, B13
12 = ν−

(1− ν)D2
13

2(1− D2
13)
, B23

12 = ν, B12
13 =

(H 2
1 + H 2

2 )D12

H1 H2
,

B12
14 =

νH1 D12

H2
, B23

16 =
νH2 D23

H3
, B13

17 =
(1− ν){H 2

1 (1− D2
13)+ H 2

2 }D13

2H2 H3(1− D2
13)

,

B13
18 =

(1− ν)H 2
1 D13

2H 2
2

, B13
19 =−

(1− ν)H2 D13

2H1(1− D2
13)
,

B0
22 = 1, B12

22 = 1, B13
22 = 1+

(1− ν){H 2
3 (1− D2

13)+ H 2
2 }D

2
13

2H 2
2 (1− D2

13)
, B23

22 = 1+
H 2

3 D2
23

H 2
2

,

B12
23 =

νH2 D12

H1
, B23

25 =
νH3 D23

H2
, B23

26 =
(H 2

2 + H 2
3 )D23

H2 H3
,

B13
27 =−

(1− ν)H2 D13

2H3(1− D2
13)
, B13

28 =
(1− ν)H 2

3 D13

2H 2
2

, B13
29 =

(1− ν){H 2
2 + H 2

3 (1− D2
13)}D13

2H1 H2(1− D2
13)

,

B0
33 = 1, B12

33 = 1+
H 2

2 D2
12

H 2
1

, B13
33 = 1, B23

33 = 1+
(1− ν){H 2

1 + H 2
2 (1− D2

23)}D
2
23

2H 2
1 (1− D2

23)
,

B0
34 = ν, B12

34 = ν, B13
34 = ν, B23

34 = ν−
(1− ν)D2

23

2(1− D2
23)
,

B13
35 =

νH1 D13

H3
, B23

37 =
(1− ν){H 2

1 + H 2
2 (1− D2

23)}D23

2H1 H3(1− D2
23)

, B23
38 =−

(1− ν)H1 D23

2H2(1− D2
23)
,

B23
39 =

(1− ν)H 2
2 D23

2H 2
1

, B0
44 = 1, B12

44 = 1, B13
44 = 1+

H 2
3 D2

13

H 2
1

,

B23
44 = 1+

(1− ν){H 2
1 + H 2

3 (1− D2
23)}D

2
23

2H 2
1 (1− D2

23)
, B13

45 =
(H 2

1 + H 2
3 )D13

H1 H3
, B13

46 =
νH3 D13

H1
,

B23
47 =−

(1− ν)H1 D23

2H3(1− D2
23)
, B23

48 =
(1− ν){H 2

1 + H 2
3 (1− D2

23)}D23

2H1 H2(1− D2
23)

, B23
49 =

(1− ν)H 2
3 D23

2H 2
1

,

B0
55 = 1, B12

55 = 1+
(1− ν){H 2

1 (1− D2
12)+ H 2

3 }D
2
12

2H 2
3 (1− D2

12)
, B13

55 = 1+
H 2

1 D2
13

H 2
3

, B23
55 = 1,

B0
56 = ν, B12

56 = ν−
(1− ν)D2

12

2(1− D2
12)
, B13

56 = ν, B23
56 = ν,

B12
57 =

(1− ν)H 2
1 D12

2H 2
3

, B12
58 =

(1− ν){H 2
1 (1− D2

12)+ H 2
3 }D12

2H2 H3(1− D2
12)

, B12
59 =−

(1− ν)H3 D12

2H1(1− D2
12)
,

B0
66 = 1, B12

66 = 1+
(1− ν){H 2

2 (1− D2
12)+ H 2

3 }D
2
12

2H 2
3 (1− D2

12)
, B13

66 = 1, B23
66 = 1+

H 2
2 D2

23

H 2
3

,

B12
67 =

(1− ν)H 2
2 D12

2H 2
3

, B12
68 =−

(1− ν)H3 D12

2H2(1− D2
12)
, B12

69 =
(1− ν){H 2

2 (1− D2
12)+ H 2

3 }D12

2H1 H3(1− D2
12)

,
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B0
77 =

(1− ν)(H 2
1 + H 2

2 )

2H 2
3

, B12
77 = B0

77, B13
77 = B0

77+
(1−ν)H 2

2 D2
13

2H 2
3 (1−D2

13)
, B23

77 = B0
77+

(1−ν)H 2
1 D2

23

2H 2
3 (1−D2

23)
,

B0
78 =

(1−ν)H 2
1

2H2 H3
, B12

78 = B0
78, B13

78 = B0
78, B23

78 = B0
78−

(1− ν)H 2
1 D2

23

2H2 H3(1− D2
23)
,

B0
79 =

(1− ν)H 2
2

2H1 H3
, B12

79 = B0
79, B13

79 = B0
79−

(1− ν)H 2
2 D2

13

2H1 H3(1− D2
13)
, B23

79 = B0
79,

B0
88 =

(1−ν)(H 2
1 + H 2

3 )

2H 2
2

, B12
88 = B0

88+
(1−ν)H 2

3 D2
12

2H 2
2 (1−D2

12)
, B13

88 = B0
88, B23

88 = B0
88+

(1−ν)H 2
1 D2

23

2H 2
2 (1−D2

23)
,

B0
89 =

(1− ν)H 2
3

2H1 H2
, B12

89 = B0
89−

(1− ν)H 2
3 D2

12

2H1 H2(1− D2
12)
, B13

89 = B0
89, B23

89 = B0
89,

B0
99 =

(1−ν)(H 2
2 + H 2

3 )

2H 2
1

, B12
99 = B0

99+
(1−ν)H 2

3 D2
12

2H 2
1 (1−D2

12)
, B13

99 = B0
99+

(1−ν)H 2
2 D2

13

2H 2
1 (1−D2

13)
, B23

99 = B0
99,

with {λ12, λ13, λ23} defined by (3.23).
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AXISYMMETRIC INDENTATION OF A RIGID CYLINDER ON A LAYERED
COMPRESSIBLE AND INCOMPRESSIBLE HALFSPACE

LUIGI LA RAGIONE, FRANCESCO MUSCEO AND ALFREDO SOLLAZZO

We propose a solution for an elastic, axisymmetric, indentation problem. The indenter is a rigid cylinder
on an elastic layer in contact with an elastic substrate. The goal is to provide a contact law between
the applied force and the displacement of the coating in two cases: frictionless interaction and perfect
binding between the coating and the substrate. As examples we have considered situations in which the
substrate is either softer, similarly stiff, or stiffer than the coating, both for compressible or incompress-
ible materials.

1. Introduction

Problems concerning the investigation of strain and stress in elastic bodies in contact are the goal of
researches devoted to theoretical models and applications in the industry; see, for example, [Li and Chou
1997; Johnson and Sridhar 2001; Wang et al. 2004; Sburlati 2006].

A relative recent interest in contact mechanics (an exhaustive treatise of contact problems can be found
in [Johnson 1985]) has focused on indentation problems upon layered solids with coating different from
the substrate. This is of interest, for example, in the measurement of mechanical properties, such as
hardness and elastic moduli, of surface films in not destructive experimental tests, also on the micro- or
nanoscale.

In this paper we focus our attention on the case of a rigid cylinder with circular section indenting a lay-
ered body formed by an isotropic halfspace with an isotropic surface coating having different mechanical
characteristic from the substrate: this is an axisymmetric problem for compressible or incompressible
layers.

From the general case, in which no restriction is made on the elastic properties of the bodies in
contact, we deduce a limit condition for the case where the substrate is stiffer than the surface coating.
(An example of a solution in the case of a rigid foundation can be found in [Matthewson 1981; Yang
1998; 2003].)

Our solution is based on Hankel integral transforms, developed by Harding and Sneddon [1945] and
applied by Sneddon [1946] to the case of half space, that leads to a second kind Fredholm integral
equation numerically solvable.

We make the following hypotheses to approach the problem: the friction influences in a negligible way
the normal stress distribution on the interface between the layer and the cylinder (see [Johnson 1985],
for example); and we consider only the limit contact cases between the layer and the elastic substrate,
that is, either perfect bonding or absence of friction.

Keywords: contact mechanics, elasticity, indentation, Hankel transform.
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We believe that the model allows to highlight characteristics of solution that are unlikely to be noticed
through numerical simulations alone (as in [Komvopoulos 1988]), especially in the inherent case of a
rigid foundation where we obtain a solution normalized by all mechanical parameters.

2. Problem formulation

We study the quasistatic axisymmetric indentation of a rigid circular cylinder with radius a, in the context
of small deformation. The cylinder produces a normal force F upon an elastic body made by an isotropic
surface layer with moduli E1 and ν1 and thickness h, and a semi-indefinite isotropic substrate with moduli
E2 and ν2 (see Figure 1). For the interface between the layer and the elastic substrate we consider two
limit conditions: perfect bonding and absence of friction. The contact area does not vary with the loading
and it is a circle with radius a. The normal acting force is fixed and the displacement for all points of
the contact surface, δ, is the same.

We take two cylindrical frames of reference: the triplet (r, ϑ, z) refers to the surface layer, with r and ϑ
belonging to the upper surface of the coating and the z axis that coincides with the axis of symmetry; the
triplet (r ′, ϑ ′, z′) refers to the substrate with r ′ and ϑ ′ belonging to the interface layer-substrate surface
and the z′ axis superimposed on z. That is, the two frames of reference differ for a translation h in the
positive z direction.

Because of the symmetry, the problem can be simplified by focusing only on the positive quadrants
(O, r, z), r ≥ 0, z ≥ 0, and (O, r ′, z′), r ′ ≥ 0, z′ ≥ 0.

We first consider Mitchell’s theory [Sneddon 1951] for isotropic bodies deformed in axisymmetry
condition where stress and strain can be expressed through a single function. We refer to the generic
frame of reference (O, r, ϑ, z) and we introduce a potential 8(r, z) related to the nonzero components
of the strain such that

ur (r, z)=−
(1+ ν)

E
∂

∂r
∂8(r, z)
∂z

, (1)

Figure 1. Cylindrical indenter on layered halfspace.
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uz(r, z)=
2(1− ν2)

E
∇

28(r, z)−
(1+ ν)

E
∂28(r, z)
∂z2 . (2)

It is then straightforward to obtain the following expressions for the component of stress:

σz(r, z)=
∂

∂z

[
(2− ν)∇28(r, z)−

∂28(r, z)
∂z2

]
, (3)

σr (r, z)=
∂

∂z

[
ν∇28(r, z)−

∂28(r, z)
∂r2

]
, (4)

σϑ(r, z)=
∂

∂z

[
ν∇28(r, z)−

1
r
∂8(r, z)
∂r

]
, (5)

τzr (r, z)=
∂

∂r

[
(1− ν)∇28(r, z)−

∂28(r, z)
∂z2

]
, (6)

with

∇
2
=
∂2

∂r2 +
∂

r∂r
+
∂2

∂z2 .

If we apply Hankel transform theory [Sneddon 1951] to (1)–(6) indicating the transform with ,̃ and
introduce the parameter ξ instead of r , all the listed quantities can be written as function of the zeroth
order Hankel transform of the potential 8̃0(ξ, z):

ur (r, z)=
∫
∞

0

(1+ ν)
E

ξ 2 d8̃0(ξ, z)
dz

J1(ξr) dξ, (7)

uz(r, z)=
∫
∞

0
ξ

[
(1− 2ν)(1+ ν)

E
d28̃0(ξ, z)

dz2 −
2(1− ν2)

E
ξ 28̃0(ξ, z)

]
J0(ξr) dξ, (8)

σz(r, z)=
∫
∞

0
ξ

[
(1− ν)

d38̃0(ξ, z)
dz3 − (2− ν)ξ 2 d8̃0(ξ, z)

dz

]
J0(ξr) dξ, (9)

σr (r, z)=
∫
∞

0
ξ

(
ν

d38̃0(ξ, z)
dz3 + (1− ν)ξ 2 d8̃0(ξ, z)

dz

)
J0(ξr) dξ −

1
r

∫
∞

0
ξ 2 d8̃0(ξ, z)

dz
J1(ξr) dξ,

(10)

σϑ(r, z)=
∫
∞

0
ξν

(
d38̃0(ξ, z)

dz3 − ξ 2 d8̃0(ξ, z)
dz

)
J0(ξr) dξ +

1
r

∫
∞

0
ξ 2 d8̃0(ξ, z)

dz
J1(ξr) dξ, (11)

τzr (r, z)=
∫
∞

0
ξ 2
[
ν

d28̃0(ξ, z)
dz2 + (1− ν)ξ 28̃0(ξ, z)

]
J1(ξr) dξ. (12)

where Jm(rξ) represents the m order Bessel function of first kind, in the variable rξ .
On this basis, the indefinite balance equations are automatically satisfied, while compatibility gives

the equation (
d2

dz2 − ξ
2
)2

8̃0(ξ, z)= 0 ,

whose solution is

8̃0(ξ, z)= [L(ξ)+M(ξ)z] sinh(ξ z)+ [N (ξ)+ P(ξ)z] cosh(ξ z) , (13)



1502 LUIGI LA RAGIONE, FRANCESCO MUSCEO AND ALFREDO SOLLAZZO

in the unknown functions L(ξ), M(ξ), N (ξ) e P(ξ).
Note that the potential function introduced agrees with the one considered in [Timoshenko and Goodier

1970], and differs from that indicated in [Love 1944] and in [Sneddon 1951] by a term (1+ ν) (1−2ν)/E .
The former form allows us to determine a solution for the special case of incompressible materials
(ν = 1/2).

As the layered halfspace is axisymmetric deformed, the present theory is applicable to both upper
layer and substrate.

We label with the apex (c) terms related to the surface coating, and with apex (s) those related to the
substrate. The zeroth order Hankel transform for the potential of the coating, in the frame of reference
(O, r, z), is given by:

8̃
(c)
0 (ξ, z)= [A(ξ)+ B(ξ)z] cosh(ξ z)+ [C(ξ)+ D(ξ)z] sinh(ξ z), (14)

where A(ξ), B(ξ), C(ξ) and D(ξ) are unknowns. In the frame of reference (O, r ′, z′), the potential for
the substrate is given by

8̃
(s)
0 (ξ, z′)=−

[
S(ξ)z′+ T (ξ)

]
sinh(ξ z′)+

[
S(ξ)z′+ T (ξ)

]
cosh(ξ z′), (15)

in the unknowns S(ξ) and T (ξ) where we have imposed the vanishing of stresses and displacements as
z′ goes to∞. The equilibrium equation along the z axis can be phrased as

2π
∫ a

0

[
σz
](c)

z=0 rdr =−F. (16)

The boundary condition at the external surface of the layer are

[τzr ]
(c)
z=0 = 0 for r > 0, (17)

[uz]
(c)
z=0 = δ for 0≤ r ≤ a, (18)

[σz]
(c)
z=0 = 0 for r > a. (19)

The interaction between the layer and the substrate, keeping in mind the relation z = z′ + h, can be
expressed, in the case of a perfect bond, through the equations

[uz]
(c)
z=h = [uz]

(s)
z′=0, (20)

[ur ]
(c)
z=h = [ur ]

(s)
z′=0, (21)

[τzr ]
(c)
z=h = [τzr ]

(s)
z′=0, (22)

[σz]
(c)
z=h = [σz]

(s)
z′=0 . (23)

For the frictionless case we replace the conditions (21) and (22), that refer to the continuity of the radial
displacement and stress, with

[τzr ]
(c)
z=h = 0, [τzr ]

(s)
z′=0 = 0,

which accounts for the absence of tangential traction between the layer and the substrate.
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2.1. Solution. With the boundary conditions above, except for equations (16), (18), (19) and with equa-
tions (14), (15), we express B(ξ), C(ξ), D(ξ), S(ξ), T (ξ) as functions of A(ξ) by means of Hankel
transforms (see Appendix A). Therefore we write

D(ξ)=−
ξ A(ξ)

2ν1
, (24)

S(ξ)=
S(ξ)(N )
S(ξ)(D)

, T (ξ)=
T (ξ)(N )
T (ξ)(D)

, B(ξ)=
B(ξ)(N )
B(ξ)(D)

, C(ξ)=
C(ξ)(N )
C(ξ)(D)

, (25)

where, in the case of a perfect bond, we obtain

S(ξ)(N ) = 2A(ξ)E2 ξ(1−ν2
1)
{(

E2(1+ν1)(−2+hξ+2ν1)−hE1ξ(1+ν2)
)

cosh(ξh)

+
(
−E2(1+hξ−2ν1)(1+ν1)+E1(−1+hξ)(1+ν2)

)
sinh(ξh)

}
,

T (ξ)(N ) = 2A(ξ)E2(1−ν2
1)
{(

4E2(−1+ν2
1)ν2−hξ [E1+E2+E2ν1+ν2(E1−2E2(1+ν1))]

)
cosh(ξh)

+
(
E1(1+ν2) [−1+2hξ(−1+2ν2)]+E2(1+ν1) [1−2(1+hξ)ν2+ν1(−2+4ν2)]

)
sinh(ξh)

}
,

B(ξ)(N ) = 1
2 A(ξ)ξ

{
[E2(1+ν1)−E1(1+ν2)][−E2(1+ν1)+E1(−3+ν2+4ν2

2)]

+
[
E2

2(1+ν1)
2(−3+4ν1)+E2

1(1+ν2)
2(−3+4ν2)−2E1 E2(−1+ν1+2ν2

1)(−1+ν2+2ν2
2)
]

cosh(2ξh)

−8E1 E2(−1+ν2
1)(−1+ν2

2) sinh(2ξh)
}
,

C(ξ)(N ) = A(ξ)
{

E2
2(1+ν1)

2 [2+h2ξ 2
+ν1(−5+4ν1)

]
+E2

1(h
2ξ 2
+ν1)(1+ν2)

2(−3+4ν2)

−2E1 E2(1+ν1)(−1+h2ξ 2
+2ν1)(−1+ν2+2ν2

2)

+ν1
[
−E2

2(1+ν1)
2(−3+4ν1)−E2

1(1+ν2)
2(−3+4ν2)+2E1 E2(−1+ν1+2ν2

1)(−1+ν2+2ν2
2)
]

cosh(2ξh)

+8E1 E2ν1(−1+ν2
1)(−1+ν2

2) sinh(2ξh)
}
,

T (ξ)(D) = B(ξ)(D) = C(ξ)(D) = S(ξ)(D),

S(ξ)(D) = ν1
{
2hξ [−E2(1+ν1)+E1(1+ν2)][−E2(1+ν1)+E1(−3+ν2+4ν2

2)]

−8E1 E2(−1+ν2
1)(−1+ν2

2) cosh(2ξh)

+
[
E2

2(1+ν1)
2(−3+4ν1)+E2

1(1+ν2)
2(−3+4ν2)−2E1 E2(−1+ν1+2ν2

1) (−1+ν2+2ν2
2)
]

sinh(2hξ)
}
,

while the frictionless case leads to

S(ξ)(N ) = A(ξ)ξE2(−1+ ν2
1) [hξ cosh(hξ)+ sinh(ξh)] ,

T (ξ)(N ) = A(ξ)2E2ν2(−1+ ν2
1) [hξ cosh(hξ)+ sinh(ξh)] ,

B(ξ)(N ) = A(ξ)ξ sinh(ξh)
[
E2(−1+ ν2

1) cosh(hξ)+ E1(−1+ ν2
2) sinh(ξh)

]
,

C(ξ)(N ) = A(ξ)
[
−E2ξh(−1+ ν2

1)+ E1ξ
2h2(−1+ ν2

2)+ E1ν1(−1+ ν2
2)

−E1ν1(−1+ ν2
2) cosh(2hξ)− E2ν1(−1+ ν2

1) sinh(2ξh)
]
,

T (ξ)(D) = B(ξ)(D) = C(ξ)(D) = S(ξ)(D),

S(ξ)(D) = ν1
[
E2(1− ν2

1)− 2ξhE1(1− ν2
2)− E2(1− ν2

1) cosh(2hξ)− E1(1− ν2
2) sinh(2hξ)

]
.



1504 LUIGI LA RAGIONE, FRANCESCO MUSCEO AND ALFREDO SOLLAZZO

Conditions (18) and (19), which refer to parts of the domain, represent the dual integral equation that
allows us to determine the unknown function A(ξ).

In terms of Hankel transforms, equations (18) and (19) can be written as∫
∞

0
ξ
[̃
uz0

](c)
z=0 J0(ξr) dξ = δ for 0≤ r ≤ a, (26)∫

∞

0
ξ
[
σ̃z0

](c)
z=0 J0(ξr) dξ = 0 for r > a, (27)

with
[̃
uz0

](c) and
[
σ̃z0

](c) function of 8̃(c)0 (ξ, z) as specified in Appendix A.
If we write [̃

uz0

](c)
z=0 =−ξ

2 A(ξ)ku, (28)[
σ̃z0

](c)
z=0 = ξ

3 A(ξ)ks, (29)

where

ku =
(1− ν2

1)

E1ν1
and ks(ξ)=

ks(N )

ks(D)
, (30)

with, in the case of a perfect bond

ks(N ) =−
{

E2
2(1+ν1)

2(5+2h2ξ 2
+4ν1(−3+2ν1)

)
−E2

1(1+2h2ξ 2)(1+ν2)
2(−3+4ν2)

+2E1 E2(1+ν1)(−1+2h2ξ 2
+2ν1)(−1+ν2+2ν2

2)

+
[
E2

2(1+ν1)
2(−3+4ν1)+E2

1(1+ν2)
2(−3+4ν2)−2E1 E2(−1+ν1+2ν2

1)(−1+ν2+2ν2
2)
]

cosh(2hξ)

−8E1 E2(−1+ν2
1)(−1+ν2

2) sinh(2hξ)
}
,

ks(D) = 2S(ξ)(D),

and, in the frictionless case,

ks(N ) =−2ξhE2(1− ν2
1)− E1(1+ 2ξ 2h2)(1− ν2

2)− E1(1− ν2
2) cosh(2hξ)− E2(1− ν2

1) sinh(2hξ),

ks(D) = 2S(ξ)(D),

then equations (26) and (27) become∫
∞

0
−ξ 3 A(ξ)ku J0(ξr) dξ = δ for 0≤ r ≤ a, (31)∫

∞

0
ξ 4 A(ξ)ks(ξ)J0(ξr) dξ = 0 for r > a. (32)

Equations (31) and (32) represent the dual integral equation that solves the problem. At this point we
search for a numerical solution instead of treating the problem analytically. From (31) and (32) we
can find solutions in the case of an incompressible layer; this special case is not treatable if we adopt
Sneddon’s expression (for ν = 1/2 we have ks(ξ)=∞).

In Appendix B we show that if the thickness of the coating tends to infinite the potential of surface
layer converges to the one related to the indefinite isotropic halfspace with moduli E1 and ν1, while
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when the thickness vanishes the potential of substrate converge to that related to the indefinite isotropic
halfspace with moduli E2 and ν2.

3. Numerical solutions

The dual integral equation (31)–(32), for the Erdélyi–Sneddon solution method [Sneddon 1966], can be
converted in a second kind Fredholm equation whose kernels, in our cases, have only singularity in the
integration limits.

With

A∗(ξ)= ξ 4 A(ξ)ks(ξ), ξ = aξ, r̄ = r/a,

%

ks(ξ)
= 1+ I (ξ), (33)

A∗(ξ)= A∗(ξ)
ku

%δ
,

the dual integral equation (31)–(32) becomes∫
∞

0
ξ−1 A∗(ξ)

[
1+ I (ξ)

]
J0(ξ r̄) dξ =−1 0< r̄ < 1, (34)∫

∞

0
A∗(ξ)J0(ξ r̄) dξ = 0 r̄ > 1. (35)

The parameter % has to be chosen so that the Fourier cosine transform of function I (t) exists with the
auxiliary parameters |x − u| e |x + u|; that is, the following integrals converge∫

∞

0
I (t) cos (t |x − u|) dt +

∫
∞

0
I (t) cos (t |x + u|) dt.

This condition implies that

lim
ξ→∞

%

ks(ξ)
= 1,

which means, either for perfect bond or frictionless case, that % = 1/2ν1.
The solution of (34)–(35) is

A∗(ξ)=
ξ
√
π

∫ 1

0
h1(t) cos

(
ξ t
)

dt, (36)

where h1(t) is the solution of the following Fredholm integral equation [Sneddon 1966]

h1(x)+
∫ 1

0
h1(u)k (x, u) du = H(x), (37)

with

k (x, u)=
u

x
√

2π

(√
2
π

∫
∞

0
I (t) cos( t |x − u|) dt +

√
2
π

∫
∞

0
I (t) cos(t |x + u|) dt

)
(38)
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and
H(x)=−

2
x
√
π
.

Once we have solved Equation (37) numerically, together with (36), we obtain the dimensionless normal
stress distribution inside the contact area[

σz (r̄)
](c)

z=0 =
[
σz (r̄)

](c)
z=0

aku

%δ
=

∫
∞

0
A∗(ξ̄ )J0(ξ r̄) dξ [0< r̄ < 1] . (39)

Next we impose the translation balance, Equation (16), and obtain the dimensionless force-displacement
relation

F = F
ku

%δa
=−2π

∫ 1

0
[σz(r̄)]

(c)
z=0 r̄dr̄ , (40)

which allows us to obtain a symbolic solution in E1 and ν1 in the case of elastic layer, with no friction,
on a rigid substrate. In order to solve Equation (38) numerically we use the Newton–Cotes method, with
the exclusion of the integration limits (see [Davis and Rabinowitz 1984], for example). We replace the
integral in (37) by a series by dividing the range [0, 1] into N parts, so that

h1(xi )+

N−1∑
j=1

h1(u j )k(xi , u j )w j = H (xi ) , (41)

where w j represents the weight to be considered for the chosen integration method. Varying xi and u j

with the same step, Equation (41) is equivalent to a linear system of equations in the variable h1(xi ):

(K + V ) H1 = H,

where H1 is the variable array h1 (xi ), K the coefficients matrix k
(
xi , u j

)
w j , V the (N − 1)th order iden-

tity matrix and H the known terms array H (xi ). When we get h1 (xi ) we can then evaluate numerically
the expressions (36), (39) and (40).

4. Applications

We note that with ks(ξ) in (30) in both cases, perfect bond and frictionless condition, we do not have a
symbolic solution. Therefore we take some values for all mechanical properties of the two elastic bodies.
As examples of our activity we consider four cases of interacting materials; in particular we take a steel
layer above a polystyrene substrate such that E1 = 210 GPa, ν1 = 0.3 and E2 = 2 GPa, ν2 = 0.4. This
represents an application for a case in which the substrate is softer than the coating. Then we take a steel
layer above a glass substrate such that E1 = 210 GPa, ν1 = 0.3 and E2 = 70 GPa, ν2 = 0.22; the opposite
case is also treated such that E1 = 70 GPa, ν1 = 0.22 and E2 = 210 GPa, ν2 = 0.3. These represent an
application for a case in which the substrate and the coating have similar stiffness. As last case, in the
next section, we deal with the case of substrate much stiffer than the upper layer that can be treated as a
limit case of rigid foundation.

In Figure 2 we plot the dimensionless force F for different values of the ratio h̄ = h/a, in the case of
a perfect bond of a steel layer above a polystyrene substrate (top) and in the frictionless case (bottom).
Figure 3 deals with the case of a steel layer above a glass substrate, and Figure 4 with that of a glass
layer above a steel substrate.
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Figure 2. Elastic substrate (steel on polystyrene): contact law for perfect-bond (top)
and frictionless case (bottom). Parameters: E1=210 GPa, ν1=0.3, E2=2 GPa, ν2=0.4).

In all figures we have also considered the limit values of F related to the elastic halfspace 1, with
moduli E1 and ν1, and to the elastic halfspace 2, with moduli E2 and ν2. (For the half space with moduli
E and ν, we have

F =
2
δa

(
1− ν2

1

)
E1

[
2δEa
(1− ν2)

]
.
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Figure 3. Elastic substrate (steel on glass): contact law for perfect-bond (top) and
frictionless case (bottom). Parameters: E1=210 GPa, ν1=0.3, E2=70 GPa, ν2=0.22).

For the halfspace with moduli E1 and ν1, we have F1 = 4. For the halfspace with moduli E2 and ν2 we
have

F2 = 4
E2

E1

(
1− ν2

1

)(
1− ν2

2

) .
Therefore F2 = 0.04127 for steel on polystyrene, F2 = 1.275 for steel on glass and F2 = 12.549 for
glass on steel.)
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Figure 4. Elastic substrate (glass on steel): contact law for perfect-bond (top) and
frictionless case (bottom). Parameters: E1 = 70 GPa, ν1 = 0.22, E2 = 210 GPa, ν2 = 0.3).

The numerical results have been fitted by means of the SRichards curve or ExpDec curve (see Ap-
pendix C). We also provide in Appendix C the numerical results related to Figures 2–4 in order to show
more in detail the differences that emerge in the perfect-bond and frictionless cases.

We observe that for the coating’s thickness h < 0.5a the solution is close to the halfspace with the
same characteristic of the substrate, while, when the ratio h̄ = h/a increases it tends to the case of the
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halfspace with moduli E1, ν1, such that, for h > 10a, we can assume that the substrate does not influence
the force-displacement relation.

With fixed thickness, F related to the frictionless case is lower than that related to perfect bond; that
is, in the latter case the layer results less capable of being deformed.

5. Rigid foundation

As already underlined, if the substrate is much stiffer than the surface coating the problem can be ap-
proximated to the case of an elastic layer lying on a rigid foundation [Matthewson 1981; Yang 2003;
Yang 1998]. The solution can be obtained directly by the general case developed previously by taking
the limit E2→∞.

In the case of a perfect bond we have

lim
E2→∞

B(ξ)=−ξ A(ξ)
1+ (3− 4ν1)ν1 cosh (2ξh)

4hξν1+ 2ν1(−3+ 4ν1) sinh (2ξh)
, (42)

lim
E2→∞

C(ξ)= A(ξ)
2+ h2ξ 2

+ ν1(−5+ 4ν1)+ (3− 4ν1)ν1 cosh (2ξh)
2hξν1+ ν1(−3+ 4ν1) sinh (2ξh)

, (43)

lim
E2→∞

D(ξ)=−
ξ A(ξ)

2ν1
, (44)

lim
E2→∞

[̃
uz0

](c)
z=0 =−ξ

2 A(ξ)
(1− ν2

1)

E1ν1
, (45)

lim
E2→∞

[
σ̃z0

](c)
z=0 =−ξ

3 A(ξ)
5+ 2h2ξ 2

+ 4ν1(−3+ 2ν1)+ (3− 4ν1) cosh (2ξh)
4hξν1+ 2ν1(−3+ 4ν1) sinh (2ξh)

. (46)

The dual integral equation (31)–(32) seems not to be analytically solvable; however the numerical solu-
tion, for equations (45) and (46), is symbolic in the parameter E1. We plot in Figure 5 the dimensionless
force-displacement diagrams for ν1 = 0.1, 0.3 and 0.5. The numerical results have been fitted by means
of the ExpDec curve for the compressible layer (see Appendix C). Note that, for a given thickness, when
the Poisson ratio increases we need a greater force to produce the same displacement.

The same Figure 5 also shows the dimensionless force-displacement relation for the halfspace with
moduli E1 and ν1 and for very thin layer; in this last case we have introduced in (42)–(46) the series

sinh(hξ)=
∞∑

n=0

(hξ)2n+1

(2n+ 1)!
, cosh(hξ)=

∞∑
n=0

(hξ)2n

(2n)!
, (47)

neglecting in each case the higher order terms (details of the approximations are given in Appendix D).
With this approximation, we can treat the dual integral Equation (31)–(32) analytically. These equations,
in fact, can be reduced to the classic Titchmarsh’s form [Sneddon 1966] if the film is incompressible
(see Appendix E), while, in the case of compressible films, they can be solved by applying the inversion
theorem for Hankel transforms (see Appendix E). For an incompressible film we have

A (ξ)=−
δa2

2ξ 2ku
J2(ξa),
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Figure 5. Rigid substrate: contact law for perfect bond case.
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and, for (16), we obtain the force-displacement relation

δ =
8Fh3

a4πE1
. (48)

For a compressible film, instead, we have

A(ξ)=−
1
ξ 3

aδ
ku

J1(ξa),

and, for (16), we obtain the force-displacement relation

δ =
Fh (1+ ν1) (1− 2ν1)

πa2 E1 (1− ν1)
. (49)

For very thin films we note a great difference between displacements δ given by (48) and (49): the former
depends on h3 while the latter varies as h.

In the frictionless case we have

lim
E2→∞

B(ξ)= ξ A(ξ)
cosh (ξh)

2ν1 sinh (ξh)
, (50)

lim
E2→∞

C(ξ)=−A(ξ)
[hξ + ν1 sinh (2ξh)]

2ν1 [sinh (ξh)]2 , (51)

lim
E2→∞

D(ξ)=−
ξ A(ξ)

2ν1
, (52)

lim
E2→∞

[̃
uz0

](c)
z=0 =−ξ

2 A(ξ)
(1− ν2

1)

E1ν1
, (53)

lim
E2→∞

[
σ̃z0

](c)
z=0 = ξ

3 A(ξ)
[2hξ + sinh (2ξh)]

4ν1 [sinh (ξh)]2 . (54)

Unlike the case of a perfect bond, the dual integral equation (53)–(54) has a numerical symbolic solu-
tion in both mechanical parameters, E1 and ν1, of the surface layer. We plot in Figure 6 the dimensionless
force-displacement relation.

Moreover in this case we consider the dimensionless force-displacement relation for the halfspace with
moduli E1 and ν1 and for very thin layer; we have also plotted the fitting ExpDec curve (see Appendix
C). For thin layer we have again replaced in ((50)− (54)), the series (47) and we do not have a different
significant order of infinitesimal for the compressible and incompressible film. So we then obtain a
single solution for compressible and incompressible cases. Again equations (31) and (32) are solvable
analytically applying the inversion theorem for Hankel transform (see Appendix E) and the solution is

A(ξ)=−
1
ξ 3

aδ
ku

J1(ξa),

and, with (16), we obtain the force-displacement relation

δ =
Fh

(
1− ν2

1

)
πa2 E1

. (55)
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Figure 6. Rigid substrate: contact law for frictionless case.

In case of a compressible or incompressible very thin layer that is free to slide on a rigid foundation, we
obtain, therefore, a direct proportionality between δ and h, as in the case of compressible films in perfect
bond. Yang [1998; 2003; 2006] obtained the same results, considering the direct case of an elastic layer
on a rigid foundation, again in the compressible and incompressible cases. For the latter he formulates
the differential problem on the basis of the constitutive relation of incompressible materials.

6. Conclusion

We have considered an elastic, axisymmetric indentation problem under conditions that represent the up-
per and lower limits of real situations, for which the degree of adhesion between the layers is intermediate
between the conditions of complete bond and frictionless.

From the analysis developed for an elastic coating on an elastic substrate is deduced that, varying
h̄ = h/a between 0.5 and 10, the F-δ law is influenced by all the mechanical properties of materials of
the two layers. The same is true for the function [σz (r̄)]

(c)
z=0 given by (39), for different values of the

ration h/a. Therefore we have only provided the dimensionless relations F vs. δ.
A comparison of the results leads us to conclude that a given displacement δ is associated to a smaller

force F for the frictionless case than for the perfect bond condition; this indicates that the frictionless on
interface makes more deformable the layered body. This difference increases with the reduction of the
thickness of the surface layer and when the Poisson ratio increases.

This is evident if we compare the two cases of a compressible film on a rigid foundation: the dimen-
sionless solution in the frictionless case is slightly lower than that of perfect bond related to film with
modulus ν1 minimum among those considered (ν1 = 0.1).

The contrast is all the clearer for incompressible films, especially if the foundation is rigid and the
surface layer is very thin. In fact, formulas (48) and (55), referring to the latter condition respectively
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for perfect bonding and absence of friction, differ by two orders of magnitude: in one case there appears
h3 and in the other h.

We also pointed out that the choice of analytical solution highlight characteristics of the solution that
are difficult to notice through a complete numerical study.

Appendix A. Hankel transforms

If we apply the inversion theorem to equations (1), (2), (3) and (6) we obtain the Hankel transforms of
some components of stress and displacement as functions of 8̃0(ξ, z) and derivatives of 8̃0(ξ, z):

ũr1(ξ, z)=
(1+ ν)

E
ξ

d8̃0(ξ, z)
dz

, (56)

ũz0(ξ, z)=
(1− 2ν)(1+ ν)

E
d28̃0(ξ, z)

dz2 −
2(1− ν2)

E
ξ 28̃0(ξ, z), (57)

σ̃z0(ξ, z)= (1− ν)
d38̃0(ξ, z)

dz3 − (2− ν)ξ 2 d8̃0(ξ, z)
dz

, (58)

τ̃zr1(ξ, z)= ξ
[
ν

d28̃0(ξ, z)
dz2 + (1− ν)ξ 28̃0(ξ, z)

]
, (59)

Appendix B. Convergence for h → ∞ and for h → 0

The following proof of convergence to halfspace is valid either for perfect bond that for frictionless case.
For h→∞, equations (28), (29) become

lim
h→∞

[̃
uz0

](c)
z=0 =−ξ

2 A(ξ)

(
1− ν2

1

)
E1ν1

, lim
h→∞

[
σ̃z0

](c)
z=0 = ξ

3 A(ξ)
1

2ν1
.

Consequently the dual integral (31)–(32) can be treated analytically as it reduces to the classical Titch-
marsh’s form [Sneddon 1966], and give

A(ξ)=−
2
πξ 3

E1ν1(
1− ν2

1

)δ sin (ξa) . (60)

For the other functions B(ξ), C(ξ) and D(ξ) we simply have

lim
h→∞

B(ξ)=
ξ A(ξ)

2ν1
; lim

h→∞
C(ξ)=−A(ξ); lim

h→∞
D(ξ)=−

ξ A(ξ)
2ν1

, (61)

and, by replacing Equation (60) in (61), the potential in the layer, given by equation (14), becomes

8̃
(c)
0 =−

sin (ξa)
ξ 4

E1δ

π
(
1− ν2

1

) [2ν1+ ξ z] e(−ξ z), (62)

which is equivalent to the solution of the halfspace of moduli E1 e ν1.
For h→ 0, equations (28)–(29) become

lim
h→0

[̃
uz0

](c)
z=0 =−ξ

2 A(ξ)

(
1− ν2

1

)
E1ν1

, lim
h→0

[
σ̃z0

](c)
z=0 = ξ

3 A(ξ)
E2
(
1− ν2

1

)
2E1ν1

(
1− ν2

2

) .
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With these equations it is again the case that the solution of the dual integral (31)–(32) is given by (60),
because the right-hand term in (32) vanishes. In the limit the unknown functions S(ξ) and T (ξ) are

lim
h→0

S(ξ)=
E2
(
1− ν2

1

)
2E1ν1

(
1− ν2

2

)ξ A(ξ); lim
h→0

T (ξ)=
E2ν2

(
1− ν2

1

)
E1ν1

(
1− ν2

2

) A(ξ), (63)

and, replacing (60) in (63), the potential in the substrate, given by equation (15), becomes

8̃
(s)
0 =−

sin (ξa)
ξ 4

E2δ

π
(
1− ν2

2

)(2ν2+ ξ z′)e(−ξ z′), (64)

that is equivalent to the solution of the halfspace of moduli E2 e ν2, because for h→ 0 the z′ axis has
the same origin of z.1

Appendix C. Numerical results and fitting curves

The following tables show the numerical results for F , in the case of perfect bonding (pb) and no friction
(nf), as well as the percent difference.

Steel on polystyrene

h̄ 0.25 0.5 1 2.5 3.5 5 6.5 8.5 10 15 20 30 100
F (pb) .0550 .0815 .1385 .3267 .4936 .8489 1.3118 1.9653 2.3968 3.2809 3.6260 3.8228 3.8717
F (nf) .0522 .0772 .1312 .3089 .4681 .8149 1.2757 1.9347 2.3724 3.2719 3.6227 3.8221 3.8716

1F (%) 5.09 5.27 5.27 5.45 5.17 4.00 2.75 1.58 1.02 0.27 0.09 0.02 0.003

Steel on glass

h̄ 0.25 0.5 1 2.5 3.5 5 6.5 8.5 10 15 20 30 100
F (pb) 1.463 1.636 1.945 2.600 2.852 3.097 3.264 3.422 3.511 3.696 3.788 3.853 3.872
F (nf) 1.261 1.344 1.557 2.181 2.450 2.723 2.922 3.129 3.257 3.560 3.722 3.838 3.862

1F (%) 13.82 17.85 19.92 16.11 14.09 12.07 10.47 8.56 7.25 3.67 1.75 0.38 0.26

Glass on steel

h̄ 0.25 0.5 1 2.5 3.5 5 6.5 8.5 10
F (pb) 9.0541 7.6161 6.1548 4.7986 4.5174 4.3118 4.2043 4.1222 4.0827
F (nf) 8.4112 6.8633 5.4886 4.4709 4.2846 4.1551 4.0864 4.0338 4.0084

1F (%) 7.10 9.88 10.82 6.83 3.63 3.63 2.80 2.14 1.82

The fitting of curves was carried out based on 13 values of the ratio h/a. SRichards and ExpDec are
exponential curves; the general expression for a SRichards curve is

F = b
[
1+ (d − 1) e−c(h−h0)

]1/(1−d)

1The Hankel transform of Sneddon’s potential [1951] for the halfspace is equivalent to (62) or (64) times E−1(1+ν)(1−2ν),
in agreement with the formulation of the problem.
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while the expression for the ExpDec curve is

F = F0+ b1e−(h̄−h0)/c1 + b2e−(h̄−h0)/c2 + b3e−(h̄−h0)/c3

The constants obtained were as follows (pb = perfect bond; nf = no friction):

Steel on polystyrene

b d c h0

(pb) 3.8447 1.05499 0.22874 6.88795
(nf) 3.84321 1.06893 0.23112 7.02854

Steel on glass

F0 h0 b1 b2 b3 c1 c2 c3

(pb) 3.87775 0 −1.30211 −1.31437 0 1.88306 7.68174 0
(nf) 3.88583 0 −1.73246 −0.98371 0 8.90297 3.07826 0

Glass on steel

F0 h0 b1 b2 b3 c1 c2 c3

(pb) 3.9879 0.13699 7.44575 1.20125 6.4023 0.12538 2.60411 0.52208
(nf) 4.04243 0.14828 6.62349 1.72188 6.14044 0.12554 2.77703 0.62372

Rigid foundation

F0 h0 b1 b2 b3 c1 c2 c3

(nf) 4.1702 0 264.127 50.342 7.86791 0.03896 0.21493 1.40524
(pb, ν1 = 0.1) 4.1947 0 270.474 51.108 8.31471 0.03942 0.21365 1.41220
(pb, ν1 = 0.3) 4.2509 0 323.156 61.805 9.99856 0.03983 0.21263 1.3695

Appendix D. Approximations on the hyperbolic functions for very thin coating

In the case of a very thin coating we have substituted the hyperbolic series (47), neglecting the higher
order terms, in order to solve the dual integral equation and obtain the force-displacement law. To this
end we follow the approach proposed by Yang [2003; 1998] and we report here some details of the
calculation useful to derive the explicit form of the dual integral equation based upon the potentials
adopted.

For a compressible very thin coating in perfect bond on a rigid foundation, if we assume

sinh(hξ)' hξ, cosh(hξ)' 1+ 1
2(hξ)

2, (65)

use the identities

sinh(2hξ)= 2 sinh(hξ), cosh(2hξ)= sinh2(hξ)+ cosh2(hξ), (66)
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and substitute formulas (65) and (66) in (42), (43) and (46) we obtain

B(ξ)= A(ξ)
1−ν1

2hν1(1−2ν1)
, C(ξ)=−A(ξ)

1−ν1

2hξν1(1−2ν1)
, [̃σz0]

(c)
z=0 = ξ

2 A(ξ)
(1−ν1)

2

hν1(1−2ν1)
. (67)

With this approximation, we can treat the dual integral (31)–(32) analytically. These equations, in fact,
can be solved applying the inversion theorem for Hankel transforms.

In case of an incompressible coating the expressions (67) become indeterminate and consequently we
must include additional terms in the series expansion (47). If we take

sinh(hξ)' hξ + 1
6(hξ)

3, cosh(hξ)' 1+ 1
2(hξ)

2, (68)

set ν = 1
2 , and substitute formulas (68), (66) in (42), (43) and (46), we obtain

B(ξ)= A(ξ)
3

2h3ξ 2 , C(ξ)=−A(ξ)
3

2h3ξ 3 , [̃σz0]
(c)
z=0 = A(ξ)

3
2h3 . (69)

With this approximation we can treat the dual integral (31)–(32) analytically because it can be reduced
to the classic Titchmarsh form.

For a compressible very thin coating free to slide on a rigid foundation, if we substitute formulas (65)
and (66) in (50), (51) and (54) we obtain

B(ξ)= A(ξ)
1

2hν1
, C(ξ)=−A(ξ)

1+ 2ν1

2hξν1
, [̃σz0]

(c)
z=0 = ξ

2 A(ξ)
1

hν1
. (70)

In this case the approximation (65) is valid for incompressible upper layer too, and the dual integral
(31)–(32) is solvable analytically applying the inversion theorem for Hankel transform.

Appendix E. Analytical solution of the dual integral equation for a very thin coating
on a rigid foundation

For a very thin incompressible layer in perfect bond on a rigid foundation we have the transform of the
surface normal stress given by (69)3. Consequently, the dual integral equation can be written as∫

∞

0
−ξ 3 A(ξ)

3
2E1

J0(ξr) dξ = δ for 0< r < a,∫
∞

0
ξ A(ξ)

3
2h3 J0(ξr) dξ = 0 for r > a, (71)

and if we assume

ξ = ξa, r̄ =
a
r
, ku =

3
2E1

, δ =−a4 δ

ku
, A(ξ)= ξ A(ξ),

we have ∫
∞

0
ξ 2 A(ξ)J0(ξ r̄) dξ = δ for 0< r̄ < 1,∫
∞

0
A(ξ)J0(ξ r̄) dξ = 0 for r̄ > 1. (72)
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The dual integral equation in the form∫
∞

0
ξ−2αA(ξ̄ )Jm(ξ r̄) dξ = f (r̄) for 0< r̄ < 1,∫
∞

0
A(ξ)Jm(ξ̄ r̄) dξ = 0 for r̄ > 1,

with α < 0, was solved by Titchmarsh; the solution is

A(ξ)=

(
2ξ
)1+α

0 (−α)

∫ 1

0
t1−α Jm−α(ξ̄ t)

(∫ 1

0

(
1− s2)−1−α

sm+1 f (ts)ds
)

dt.

Therefore, the solution for the dual (72) is

A(ξ)=
∫ 1

0
r̄2 J1(ξ̄ r̄)

(∫ 1

0
sδ̄ ds

)
dr̄ =−

1
ξ

a4 δ

2ku
J2(ξ),

and then we have

A(ξ)=−
δa2

2ξ 2ku
J2(ξa). (73)

If we substitute (73) in (71) we deduce the normal stress distribution over the contact area

[σz(r, z)]z=0 =

∫
∞

0

−3a2δ

4h3ξku
J2(ξa)J0(ξr) dξ =

 0 for r > a,

−
δE1
4h3 (a

2
− r2) for 0< r < a,

while, with Equation (16), we have the force-displacement law

δ =
8Fh3

a4πE1
.

For a very thin compressible layer in perfect bond on a rigid foundation we have the transform of the
surface normal stress given by (67)3. The dual integral equation can be written as∫

∞

0
−ξ 3 A(ξ)

1− ν2
1

E1ν1
J0(ξr) dξ = δ for 0< r < a,

∫
∞

0
ξ 3 A(ξ)

(1− ν1)
2

hν1 (1− 2ν1)
J0(ξr) dξ = 0 for r > a, (74)

and then ∫
∞

0
−ξ 3 A(ξ)J0(ξr) dξ =


0 for r > a,

E1ν1

1−ν2
1

for δ 0< r < a,

By means of the inversion theorem for the Hankel transform, we obtain

A(ξ)=−
1
ξ 2

∫ a

0
r
δE1ν1(
1− ν2

1

) J0(ξr) dr =−
1
ξ 3

aδE1ν1(
1− ν2

1

) J1(ξa).
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Consequently we have

[
σz(r, z)

]
z=0 =

∫
∞

0
−

aδE1ν1(
1− ν2

1

) (1− ν1)
2

hν1 (1− 2ν1)
J1(ξa)J0(ξr) dξ

=

 0 for r > a,

−δ
E1(1−ν1)

h(1+ν1)(1−2ν1)
for 0< r < a,

(75)

and with (16) we derive

δ =
Fh (1+ ν1) (1− 2ν1)

πa2 E1 (1− ν1)
.

For a very thin compressible or incompressible layer free to slide on a rigid foundation we have the
transform of the surface normal stress given by (70)3. The dual integral equation can be written as∫

∞

0
−ξ 3 A(ξ)

(
1− ν2

1

)
E1ν1

J0(ξr) dξ = δ 0< r < a,∫
∞

0
ξ 3 A(ξ)

1
hν1

J0(ξr) dξ = 0 r > a, (76)

and then ∫
∞

0
ξ 3 A(ξ)J0(ξr) dξ =


0 for r > a,

−δ
E1ν1

1−ν2
1

for 0< r < a,
(77)

By means of the inversion theorem for the Hankel transform, we obtain

A(ξ)=−
1
ξ 2

∫ a

0
r
δE1ν1(
1− ν2

1

) J0(ξr) dr =−
1
ξ 3

aδE1ν1(
1− ν2

1

) J1(ξa). (78)

Consequently

[
σz(r, z)

]
z=0 =

∫
∞

0
−

aδE1ν1(
1− ν2

1

) 1
hν1

J1(ξa)J0(ξr) dξ = 0=


0 for r > a,

−δ
E1

h
(
1−ν2

1

) for 0< r < a.
(79)

Using (16), we then obtain

δ =
Fh

(
1− ν2

1

)
πa2 E1

.
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ELASTIC SOLUTIONS FOR AN INCLINED TRANSVERSELY ISOTROPIC
MATERIAL DUE TO THREE-DIMENSIONAL POINT LOADS

JYH-JONG LIAO, TIN-BIN HU AND CHENG-DER WANG

We present the elastic solutions for displacements and stresses due to three-dimensional point loads in a
transversely isotropic material (rock), for which the transversely isotropic full planes are inclined with
respect to the horizontal loading surface. The closed-form solutions are derived by applying an efficient
method, the double Fourier transform, to obtain the integral expressions for displacements and stresses.
Subsequently, the double inverse Fourier transform and residue calculus are utilized to integrate the
contours. Utilizing the double Fourier transform in a Cartesian coordinate system is a new approach to
solving the displacement and stress components that result from three-dimensional point loads applied
to an inclined transversely isotropic medium. In addition, it is the first presentation of the exact closed-
form characteristic roots for this special material anisotropy. The proposed solutions demonstrate that
the displacements and stresses are profoundly influenced by the rotation of the transversely isotropic
planes (φ), the type and degree of material anisotropy (E/E ′, ν/ν ′,G/G ′), the geometric position
(r, ϕ, ξ), and the type of three-dimensional loading (Px , Py, Pz). The present solutions are identical to
previously published solutions if the planes of transverse isotropy are parallel to the horizontal loading
surface. A parametric study is conducted to elucidate the influence of the aforementioned factors on
the displacements and stresses. The computed results reveal that the induced displacements and stresses
in the inclined isotropic/transversely isotropic rocks by a vertical point load are quite different from
the displacements that result from previous solutions in which φ = 0. The numerical results presented
here are interesting for their ability to describe the physical features of inclined transversely isotropic
rocks. Hence, the dip at an angle of inclination should be considered in computing the displacements
and stresses in a transversely isotropic material due to applied loads.

Introduction

Generally, estimates for the magnitudes of displacements and stresses in a solid are made using solutions
that model a material as a homogeneous, linearly elastic, and isotropic medium. However, among geo-
materials, these models are unable to describe the properties of some natural soils which have deposited
by means of sedimentation over a long period of time, for example flocculated clays, varved silts or sands,
or rock masses cut by discontinuities such as cleavages, foliations, stratifications, schistosities, or joints.
The deformability properties of these inhomogeneous materials should result in structural anisotropy.
From the standpoint of practical considerations in engineering, anisotropic bodies are often modeled as
orthotropic or transversely isotropic materials. In particular, when discontinuities of rock masses dip
at an angle from the horizontal surface, their effects on displacement and stress could be essential to

Keywords: displacements, stresses, inclined transversely isotropic material, double Fourier transform, residue calculus,
material anisotropy.
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the design of structures. Hence, we study here the elastic loading problem for an inclined transversely
isotropic material.

Elastic solutions to the problem of a point load acting on the interior of a full space are called the
fundamental solutions or the elastic Green’s function solutions [Tarn and Wang 1987]. These solutions
in exact closed-form have always played an important role in applied mechanics and in particular nu-
merical formulations of boundary element methods [Liew et al. 2001]. In [Liao and Wang 1998] we
detailed the existing solutions for transversely isotropic full/half-spaces in which the planes of transverse
isotropy are assumed to be parallel to the horizontal ground surface, subjected to three-dimensional
point loads. However, recent work that was not cited in that paper should be mentioned here: [Ding
et al. 1997; Hanson 1999; Pan and Tonon 2000; Pan and Yuan 2000a; Pan and Yuan 2000b; Tonon et al.
2001; Pan 2002; Fabrikant 2004; Ding et al. 2006]. Hu et al. [2007] presented the analytical solutions
for displacements caused by three-dimensional point loads (Px , Py, Pz) in a transversely isotropic full
space, where the transversely isotropic planes are inclined with respect to the horizontal loading surface.
In their derivation, the triple Fourier transform was employed to yield integral expressions of Green’s
displacement. Subsequently, the triple inverse Fourier transform and residue calculus were performed to
integrate the contours. It is known that the stress components due to three-dimensional point loads on an
inclined infinite space can be obtained by employing the coordinate transformation formulae with respect
to the applied loads. Nevertheless, the displacement components cannot be solved by the same approach.
Hence, their solutions for the displacements in an inclined space are new and cannot be obtained directly
from the aforementioned point load solutions (see [Liao and Wang 1998], for example) with a linear rota-
tion of the Cartesian coordinate system. Nevertheless, the derivations using the triple Fourier transform
were not very efficient, and the presentations were rather lengthy. Yet, to the best of our knowledge, no so-
lutions for displacements and stresses resulting from three-dimensional point loads acting on an inclined
transversely isotropic material have been performed by using the double Fourier transform in a Cartesian
coordinate system. The advantage of deriving stress components by applying the double Fourier trans-
form is that the proposed solutions for the inclined transversely isotropic infinite space are parts of the
point force problem in an inclined transversely isotropic half-space, achieved by satisfying the surface
boundary conditions and thus utilizing the principle of superposition. Therefore, the yielded solutions are
valuable and would be straightforward to extend to the half-space/bimaterial/layered material problems.

In the solutions presented here, it is found that both the displacement and stress solutions are governed
by: (1) the rotation of the transversely isotropic planes (φ), (2) the type and degree of material anisotropy
(E/E ′, ν/ν ′,G/G ′), (3) the geometric position (r, ϕ, ξ), and (4) the type of three-dimensional loading
(Px , Py, Pz). Two examples are given to illustrate the generated solutions and clarify how the rotation
of the transversely isotropic planes (φ), the geometric position (ϕ), and the type and degree of rock
anisotropy would affect the displacements and stresses in inclined isotropic/transversely isotropic rocks
subjected to a vertical point load (Pz).

1. Displacements and stresses in an inclined transversely isotropic full space
due to three-dimensional point loads

We start with the generalized Hooke’s law for a transversely isotropic material in a Cartesian coordinate
system (x ′, y′, z′), where z′ is the rotation axis associated with elastic symmetry, and the x ′ and y′ axes
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Figure 1. (Px , Py, Pz) acting in an inclined transversely isotropic full space.

are in the plane of transverse isotropy (see Figure 1). We have

σx ′x ′

σy′y′

σz′z′

τy′z′

τz′x ′

τx ′y′


=



C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66





εx ′x ′

εy′y′

εz′z′

γy′z′

γz′x ′

γx ′y′


,

where σx ′x ′ , σy′y′ , σz′z′ are the normal stresses, εx ′x ′ , εy′y′ , εz′z′ the normal strains, τy′z′ , τz′x ′ , τx ′y′ the
shear stresses, γy′z′ , γz′x ′ , γx ′y′ the shear strains, and C11, C12, C13, C33, C44, C66 the elastic moduli.

Because C12 = C11− 2C66, only C11, C13, C33, C44, C66 are independent for a transversely isotropic
material, so it is convenient to work in terms of the constants c1, . . . , c5 defined in terms of the Ci j by

c1 = C11 =
E(1− (E/E ′)ν ′2)

(1+ ν)(1− ν− (2E/E ′)ν ′2)
, c2 = C33 =

E ′(1− ν)
1− ν− (2E/E ′)ν ′2

, c5 = C44 = G ′,

c3 = C13+C44 =
Eν ′

1− ν− (2E/E ′)ν ′2
+C44, c4 = C66 =

C11−C12

2
=

E
2(1+ ν)

.

(1)

Equation (1) also displays the relation between c1, . . . , c5 and the traditional constants E and E ′ (Young’s
moduli in the plane of transverse isotropy and in the normal direction to it), ν and ν ′ (Poisson’s ratios
characterizing the lateral strain response in the plane of transverse isotropy to a stress acting parallel
or normal to it, respectively), and G ′ (the shear modulus in planes normal to the plane of transverse
isotropy). In this notation we have

σx ′x ′

σy′y′

σz′z′

τy′z′

τz′x ′

τx ′y′


=



c1 c1−2c4 c3−c5 0 0 0
c1−2c4 c1 c3−c5 0 0 0
c3−c5 c3−c5 c2 0 0 0

0 0 0 c5 0 0
0 0 0 0 c5 0
0 0 0 0 0 c4





εx ′x ′

εy′y′

εz′z′

γy′z′

γz′x ′

γx ′y′


(2)
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If a new coordinate system x , y, z is obtained from the original system x ′, y′, z′ by rotation through
an angle φ about an axis parallel to the strike direction, then x = x ′. (See again Figure 1.) The direction
cosines li j (i, j = 1, 2, 3) of the transformation are given byl11 l12 l13

l21 l22 l23

l31 l32 l33

=
1 0 0

0 cosφ sinφ
0 −sinφ cosφ

 , (3)

and in the new coordinate system the matrix of elastic moduli is

[qi j ]
T
[Ci j ][qi j ] =: [ai j ] =



a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66


, (4)

where

[qi j ] =



l2
11 l2

12 l2
13 l12l13 l13l11 l12l11

l2
21 l2

22 l2
23 l23l22 l23l21 l22l21

l2
31 l2

32 l2
33 l33l32 l33l31 l32l31

2l31l21 2l32l22 2l33l23 l33l22+l32l23 l33l21+l31l23 l31l22+l32l21

2l31l11 2l32l12 2l33l13 l33l12+l32l13 l33l11+l31l13 l31l12+l32l11

2l21l11 2l12l22 2l13l23 l13l22+l12l23 l13l21+l11l23 l11l22+l12l21


, (5)

T denotes transposition, and the elastic constants ai j have the following explicit expressions (those not
listed vanish):

a11 = c1,

a12 = a21 = (c1− 2c4) cos2 φ+ (c3− c5) sin2 φ,

a13 = a31 = (c3−c5) cos2 φ+ (c1−2c4) sin2 φ,

a14 = a41 = (c1−c3−2c4+c5) cosφ sinφ,

a22 = c1 cos4 φ+ 2c3+ 2c5 cos2 φ sin2 φ+ c2 sin4 φ,

a23 = a32 =
1
8

(
c1+ c2+ 6c3− 10c5− (c1+ c2− 2c3− 2c5) cos 4φ

)
,

a24 = a42 =
1
4

(
c1− c2+ (c1+ c2− 2c3− 2c5) cos 2φ

)
sin 2φ,

a33 = c2 cos4 φ+ 2c3+ 2c5 cos2 φ sin2 φ+ c1 sin4 φ,

a34 = a43 =−
1
4

(
−c1+ c2+ (c1+ c2− 2c3− 2c5) cos 2φ

)
sin 2φ,

a44 =
1
8

(
c1+ c2− 2c3+ 6c5− (c1+ c2− 2c3− 2c5) cos 4φ

)
,

a55 = c5 cos2 φ+ c4 sin2 φ,

a56 = a65 = (c4− c5) cosφ sinφ,

a66 = c4 cos2 φ+ c5 sin2 φ.
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Next we use the strain-displacement relation under the small strain condition in Cartesian coordinates:

[εi j ] =



εxx

εyy

εzz

γyz

γzx

γxy


=



−∂ux/∂x
−∂u y/∂y
−∂uz/∂z

−∂u y/∂z− ∂uz/∂y
−∂ux/∂z− ∂uz/∂x
−∂u y/∂x − ∂ux/∂y


, (6)

where ux , u y , and uz are the components of the displacement.
Finally, the equilibrium equation isσxx τxy τzx

τxy σyy τyz

τzx τyz σzz

∂/∂x
∂/∂y
∂/∂z

=
Fx

Fy

Fz

 , (7)

where (Fx , Fy, Fz) are the three-dimensional point loads. Hence, the generalized Hooke’s law expressed
in the xyz-coordinates, 

σxx

σyy

σzz

τyz

τzx

τxy


=



a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66





εxx

εyy

εzz

γyz

γzx

γxy


, (8)

gives rise to the system of equations

σxx = a11εxx + a12εyy + a13εzz + a14γyz =−a11
∂ux
∂x
− a12

∂u y

∂y
− a13

∂uz
∂z
− a14

(∂u y

∂z
+
∂uz
∂y

)
, (9a)

σyy = a12εxx + a22εyy + a23εzz + a24γyz =−a12
∂ux
∂x
− a22

∂u y

∂y
− a23

∂uz
∂z
− a24

(∂u y

∂z
+
∂uz
∂y

)
, (9b)

σzz = a13εxx + a23εyy + a33εzz + a34γyz =−a13
∂ux
∂x
− a23

∂u y

∂y
− a33

∂uz
∂z
− a34

(∂u y

∂z
+
∂uz
∂y

)
, (9c)

τyz = a14εxx + a24εyy + a34εzz + a44γyz =−a14
∂ux
∂x
− a24

∂u y

∂y
− a34

∂uz
∂z
− a44

(∂u y

∂z
+
∂uz
∂y

)
, (9d)

τzx = a55γzx + a56γxy =−a55

(
∂ux
∂z
+
∂uz
∂x

)
− a56

(
∂ux
∂y
+
∂u y

∂x

)
, (9e)

τxy = a56γzx + a66γxy =−a56

(
∂ux
∂z
+
∂uz
∂x

)
− a66

(
∂ux
∂y
+
∂u y

∂x

)
. (9f)

Substituting σxx , σyy , σzz , τyz , τzx , τxy from (9) into (7) enables the equations to be regrouped as
Navier–Cauchy equations for a transversely isotropic material as



1526 JYH-JONG LIAO, TIN-BIN HU AND CHENG-DER WANG

a11
∂2ux

∂x2 + a66
∂2ux

∂y2 + a55
∂2ux

∂z2 + 2a56
∂2ux

∂y∂z
+ (a12+ a66)

∂2u y

∂x∂y
+ (a14+ a56)

∂2u y

∂x∂z

+ (a14+ a56)
∂2uz

∂x∂y
+ (a13+ a55)

∂2uz

∂x∂z
+ Fx = 0, (10a)

(a12+ a66)
∂2ux

∂x∂y
+ (a14+ a56)

∂2ux

∂x∂z
+ a66

∂2u y

∂x2 + a22
∂2u y

∂y2 + a44
∂2u y

∂z2 + 2a24
∂2u y

∂y∂z

+ a56
∂2uz

∂x2 + a24
∂2uz

∂y2 + a34
∂2uz

∂z2 + (a23+ a44)
∂2uz

∂y∂z
+ Fy = 0, (10b)

(a14+ a56)
∂2ux

∂x∂y
+ (a13+ a55)

∂2ux

∂x∂z
+ a56

∂2u y

∂x2 + a24
∂2u y

∂y2 + a34
∂2u y

∂z2 + (a23+ a44)
∂2u y

∂y∂z

+ a55
∂2uz

∂x2 + a44
∂2uz

∂y2 + a33
∂2uz

∂z2 + 2a34
∂2uz

∂y∂z
+ Fz = 0. (10c)

The point loads (Fx , Fy, Fz) applied at the origin of the coordinate system of a full space can be
described in terms of body forces (Px , Py , Pz) as

Fx = Pxδ(x)δ(y)δ(z), Fy = Pyδ(x)δ(y)δ(z), Fz = Pzδ(x)δ(y)δ(z), (11)

where δ is the Dirac delta function.
We will now use the double Fourier transform of the displacement components to solve the governing

equations (10a)–(10c). We introduce the transform variables α, β corresponding to x, y, respectively,
and consider the double Fourier transform of ui (i = x, y, z),

1
2π

∫
∞

−∞

∫
∞

−∞

ui (x, y, z)e−i(αx+βy) dx dy = ūi (α, β, z).

As is well-known, we have

1
2π

∫
∞

−∞

∫
∞

−∞

∂ui (x, y, z)
∂x

e−i(αx+βy) dx dy = iαūi (α, β, z),

1
2π

∫
∞

−∞

∫
∞

−∞

∂ui (x, y, z)
∂y

e−i(αx+βy) dx dy = iβūi (α, β, z),

1
2π

∫
∞

−∞

∫
∞

−∞

∂2ui (x, y, z)
∂x2 e−i(αx+βy) dx dy =−α2ūi (α, β, z), . . .

Since
∫
∞

−∞

∫
∞

−∞
δ(x)δ(y) dx dy = 1, the double Fourier transforms of (11) reduce to

F x =
1

2π

∫
∞

−∞

∫
∞

−∞

Pxδ(x)δ(y)δ(z)e−i(αx+βy) dx dy =
Px

2π
δ(z), (12a)

F y =
1

2π

∫
∞

−∞

∫
∞

−∞

Pyδ(x)δ(y)δ(z)e−i(αx+βy) dx dy =
Py

2π
δ(z), (12b)

F z =
1

2π

∫
∞

−∞

∫
∞

−∞

Pzδ(x)δ(y)δ(z)e−i(αx+βy) dx dy =
Pz

2π
δ(z). (12c)
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When z 6= 0, this allows us to rewrite the Navier–Cauchy equations (10a)–(10c) as a system of linear
ordinary differential equations: d11 d12 d13

d21 d22 d23

d31 d32 d33

ūx

ū y

ūz

=
0

0
0

 , (13)

where

d11 = a11α
2
+ a66β

2
− a55

d2

dz2 − 2ia56β
d
dz
, (14a)

d12 = d21 = (a12+ a66)αβ − i(a14+ a56)α
d
dz
, (14b)

d13 = d31 = (a14+ a56)αβ − i(a13+ a55)α
d
dz
, (14c)

d22 = a66α
2
+ a22β

2
− a44

d2

dz2 − 2ia24β
d
dz
, (14d)

d23 = d32 = a56α
2
+ a24β

2
− a34

d2

dz2 − i(a23+ a44)β
d
dz
, (14e)

d33 = a55α
2
+ a44β

2
− a33

d2

dz2 − 2ia34β
d
dz
. (14f)

From the elementary theory of linear ordinary differential equations we know that we need to solve
the characteristic equation

det [di j (α, β, u)] = 0, (15)

where the entries di j (α, β, u) are obtained from (14) by substituting the unknown u (representing the
eigenvalue) for d/dz:

d11(α, β, u)= a11α
2
+ a66β

2
+ a55(iu)2− 2a56β(iu), (16a)

d12(α, β, u)= d21(α, β, u)= (a12+ a66)αβ − (a14+ a56)α(iu), (16b)

d13(α, β, u)= d31(α, β, u)= (a14+ a56)αβ − (a13+ a55)α(iu), (16c)

d22(α, β, u)= a66α
2
+ a22β

2
+ a44(iu)2− 2a24β(iu), (16d)

d23(α, β, u)= d32(α, β, u)= a56α
2
+ a24β

2
+ a34(iu)2− (a23+ a44)β(iu), (16e)

d33(α, β, u)= a55α
2
+ a44β

2
+ a33(iu)2− 2a34β(iu). (16f)

An algebraic manipulation (details and the physical basis of which are given in the Appendix) shows
that, if we set

A1 =
c4

c5
,

A2 =
1
2

[
c2

5+ c1c2− c2
3

c2c5
+

{(
c2

5+ c1c2− c2
3

c2c5

)2

− 4
c1

c2

}1/2
]
,

A3 =
1
2

[
c2

5+ c1c2− c2
3

c2c5
−

{(
c2

5+ c1c2− c2
3

c2c5

)2

− 4
c1

c2

}1/2
]
,

(17)
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the characteristic equation takes on the form

c2c2
5

3∏
j=1

(
A j
(
−u2
+α2
+β2
− (iu cosφ+β sinφ)2

)
+ (iu cosφ+β sinφ)2

)
= 0, (18)

and its six eigenroots u1, . . . , u6 can be expressed as

u j =
−iβ sinφ cosφ(−1+ A j )−

√
A j (β

2
+α2(cos2 φ+ A j sin2 φ))

cos2 φ+ A j sin2 φ

u3+ j =
−iβ sinφ cosφ(−1+ A j )+

√
A j (β

2
+α2(cos2 φ+ A j sin2 φ))

cos2 φ+ A j sin2 φ

 (i = 1, 2, 3). (19)

(In particular, the real parts of u1, u2, u3 are negative and those of u4, u5, u6 are positive.)
Equations (19) represent the first instance in which exact closed-form eigenroots for the inclined

transversely isotropic media are proposed. To derive explicitly the solutions to (10a)–(10c), define three
displacement functions as follows:

for z > 0 (region 1 in Figure 1),

ūx1(α, β, z)= A1
x1eu1z

+ A2
x1eu2z

+ A3
x1eu3z

+ A4
x1eu4z

+ A5
x1eu5z

+ A6
x1eu6z, (20a)

ū y1(α, β, z)= A1
y1eu1z

+ A2
y1eu2z

+ A3
y1eu3z

+ A4
y1eu4z

+ A5
y1eu5z

+ A6
y1eu6z, (20b)

ūz1(α, β, z)= A1
z1eu1z

+ A2
z1eu2z

+ A3
z1eu3z

+ A4
z1eu4z

+ A5
z1eu5z

+ A6
z1eu6z, (20c)

and for z < 0 (region 2 in Figure 1),

ūx2(α, β, z)= A1
x2eu1z

+ A2
x2eu2z

+ A3
x2eu3z

+ A4
x2eu4z

+ A5
x2eu5z

+ A6
x2eu6z, (21a)

ū y2(α, β, z)= A1
y2eu1z

+ A2
y2eu2z

+ A3
y2eu3z

+ A4
y2eu4z

+ A5
y2eu5z

+ A6
y2eu6z, (21b)

ūz2(α, β, z)= A1
z2eu1z

+ A2
z2eu2z

+ A3
z2eu3z

+ A4
z2eu4z

+ A5
z2eu5z

+ A6
z2eu6z. (21c)

In (20), the undetermined coefficients A j
x1, A j

y1, and A j
z1 ( j = 1, . . . , 6) can be obtained by assuming

the displacements in region 1, ux1, u y1, and uz1 must be finite when z approaches ∞. Hence, A4
x1 =

A5
x1 = A6

x1 = 0, A4
y1 = A5

y1 = A6
y1 = 0, and A4

z1 = A5
z1 = A6

z1 = 0. Similarly, in region 2, ux2, u y2, and
uz2 also must be finite when z approaches −∞. Therefore, A1

x2 = A2
x2 = A3

x2 = 0, A1
y2 = A2

y2 = A3
y2 = 0,

and A1
z2 = A2

z2 = A3
z2 = 0.

Now, let

A j
x1

D11(α, β, u j )
=

A j
y1

D21(α, β, u j )
=

A j
z1

D31(α, β, u j )
= C j

d ( j = 1, 2, 3),

A j
x2

D11(α, β, u j )
=

A j
y2

D21(α, β, u j )
=

A j
z2

D31(α, β, u j )
= C j

u ( j = 4, 5, 6),

(22)
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where D11, D21, and D31 are second-order determinants1 involving the functions di j (i, j = 1, 2, 3) of
(16):

D11(α, β, u j )= det
[

d22(α, β, u j ) d23(α, β, u j )

d32(α, β, u j ) d33(α, β, u j )

]
, (23a)

D21(α, β, u j )=− det
[

d12(α, β, u j ) d13(α, β, u j )

d32(α, β, u j ) d33(α, β, u j )

]
, (23b)

D31(α, β, u j )= det
[

d12(α, β, u j ) d13(α, β, u j )

d22(α, β, u j ) d23(α, β, u j )

]
. (23c)

The stress components of (9) are transformed by the double Fourier transform as

σ̄xx =−iαa11ūx − iβa12ū y − a13
∂ ūz
∂z
− a14

(∂ ū y

∂z
+ iβūz

)
, (24a)

σ̄yy =−iαa12ūx − iβa22ū y − a23
∂ ūz
∂z
− a24

(∂ ū y

∂z
+ iβūz

)
, (24b)

σ̄zz =−iαa13ūx − iβa23ū y − a33
∂ ūz
∂z
− a34

(∂ ū y

∂z
+ iβūz

)
, (24c)

τ̄yz =−iαa14ūx − iβa24ū y − a34
∂ ūz
∂z
− a44

(∂ ū y

∂z
+ iβūz

)
, (24d)

τ̄zx =−a55

(
∂ ūx
∂z
+ iαūz

)
− ia56(βūx +αū y), (24e)

τ̄xy =−a56

(
∂ ūx
∂z
+ iαūz

)
− ia66(βūx +αū y). (24f)

We next consider the plane z = 0 separating regions 1 and 2 of Figure 1, and write the pertinent
continuity and discontinuity conditions along this plane:

τzx1(x, y, 0)− τzx2(x, y, 0)= Pxδ(x)δ(y), ux1(x, y, 0)= ux2(x, y, 0), (25a)

τzy1(x, y, 0)− τzy2(x, y, 0)= Pyδ(x)δ(y), u y1(x, y, 0)= u y2(x, y, 0), (25b)

σzz1(x, y, 0)− σzz2(x, y, 0)= Pzδ(x)δ(y), uz1(x, y, 0)= uz2(x, y, 0), (25c)

where −∞< x <∞, −∞< y <∞. The subscripts 1 and 2 denote the limits as z→ 0+ and z→ 0−.
Taking the double Fourier transform of (25), we obtain

τ̄zx1(α, β, 0)− τ̄zx2(α, β, 0)= Px/2π, ūx1(α, β, 0)= ūx2(α, β, 0), (26a)

τ̄zy1(α, β, 0)− τ̄zy2(α, β, 0)= Py/2π, ū y1(α, β, 0)= ū y2(α, β, 0), (26b)

σ̄zz1(α, β, 0)− σ̄zz2(α, β, 0)= Pz/2π, ūz1(α, β, 0)= ūz2(α, β, 0). (26c)

We further introduce the convention

D j
i1 := Di1(α, β, u j ). (27)

1There are similar determinants Di j for all i, j = 1, 2, 3, but we don’t need the other ones here.
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Then we can rewrite the linear system (26) in terms of unknowns C1
d , C2

d , C3
d , C4

u , C5
u , C6

u :

[
fi j
]


C1
d

C2
d

C3
d

C4
u

C5
u

C6
u


=

1
2π



Px

Py

Pz

0
0
0


, (28)

where
f1 j =−i(a56(βD j

11+αD j
21)+ a55(αD j

31− i D j
11u j )) ( j = 1, 2, 3),

f1 j = i(a56(βD j
11+αD j

21)+ a55(αD j
31− i D j

11u j )) ( j = 4, 5, 6),

f2 j =−i(αa14 D j
11+βa24 D j

21+βa44 D j
31)− (a44 D j

21+ a34 D j
31)u j ( j = 1, 2, 3),

f2 j = i(αa14 D j
11+βa24 D j

21+βa44 D j
31)+ (a44 D j

21+ a34 D j
31)u j ( j = 4, 5, 6),

f3 j =−i(αa13 D j
11+βa23 D j

21+βa34 D j
31)− (a34 D j

21+ a33 D j
31)u j ( j = 1, 2, 3),

f3 j = i(αa13 D j
11+βa23 D j

21+βa34 D j
31)+ (a34 D j

21+ a33 D j
31)u j ( j = 4, 5, 6),

f4 j = D j
11, f5 j = D j

21, f6 j = D j
31 ( j = 1, 2, 3),

f4 j =−D j
11, f5 j =−D j

21, f6 j =−D j
31 ( j = 4, 5, 6).

Now ux , u y , and uz can be obtained by taking the double inverse Fourier transform of (20) and (21):

For z > 0 (region 1),

ux1(x, y, z)=
1

2π

∫
∞

−∞

∫
∞

−∞

3∑
j=1

C j
d D11(α, β, u j )ei(αx+βy)+u j z dα dβ, (29a)

u y1(x, y, z)=
1

2π

∫
∞

−∞

∫
∞

−∞

3∑
j=1

C j
d D21(α, β, u j )ei(αx+βy)+u j z dα dβ, (29b)

uz1(x, y, z)=
1

2π

∫
∞

−∞

∫
∞

−∞

3∑
j=1

C j
d D31(α, β, u j )ei(αx+βy)+u j z dα dβ. (29c)

For z < 0 (region 2),

ux2(x, y, z)=
1

2π

∫
∞

−∞

∫
∞

−∞

6∑
j=4

C j
u D11(α, β, u j )ei(αx+βy)+u j z dα dβ, (30a)

u y2(x, y, z)=
1

2π

∫
∞

−∞

∫
∞

−∞

6∑
j=4

C j
u D21(α, β, u j )ei(αx+βy)+u j z dα dβ, (30b)

uz2(x, y, z)=
1

2π

∫
∞

−∞

∫
∞

−∞

6∑
j=4

C j
u D31(α, β, u j )ei(αx+βy)+u j z dα dβ. (30c)

The desired σxx , σyy , σzz , τyz , τzx , and τxy can also be obtain by the double inverse Fourier transform:
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for z > 0 (region 1),

σxx1(x, y, z)=
1

2π

∫
∞

−∞

∫
∞

−∞

3∑
j=1

C j
d σ̄

j
xx ei(αx+βy)+u j z dα dβ, (31a)

σyy1(x, y, z)=
1

2π

∫
∞

−∞

∫
∞

−∞

3∑
j=1

C j
d σ̄

j
yyei(αx+βy)+u j z dα dβ, (31b)

σzz1(x, y, z)=
1

2π

∫
∞

−∞

∫
∞

−∞

3∑
j=1

C j
d σ̄

j
zzei(αx+βy)+u j z dα dβ, (31c)

τyz1(x, y, z)=
1

2π

∫
∞

−∞

∫
∞

−∞

3∑
j=1

C j
d τ̄

j
yzei(αx+βy)+u j z dα dβ, (31d)

τzx1(x, y, z)=
1

2π

∫
∞

−∞

∫
∞

−∞

3∑
j=1

C j
d τ̄

j
zx ei(αx+βy)+u j z dα dβ, (31e)

τxy1(x, y, z)=
1

2π

∫
∞

−∞

∫
∞

−∞

3∑
j=1

C j
d τ̄

j
xyei(αx+βy)+u j z dα dβ, (31f)

for z < 0 (region 2),

σxx2(x, y, z)=
1

2π

∫
∞

−∞

∫
∞

−∞

6∑
j=4

C j
u σ̄

j
xx ei(αx+βy)+u j z dα dβ, (32a)

σyy2(x, y, z)=
1

2π

∫
∞

−∞

∫
∞

−∞

6∑
j=4

C j
u σ̄

j
yyei(αx+βy)+u j z dα dβ, (32b)

σzz2(x, y, z)=
1

2π

∫
∞

−∞

∫
∞

−∞

6∑
j=4

C j
u σ̄

j
zzei(αx+βy)+u j z dα dβ, (32c)

τyz2(x, y, z)=
1

2π

∫
∞

−∞

∫
∞

−∞

6∑
j=4

C j
u τ̄

j
yzei(αx+βy)+u j z dα dβ, (32d)

τzx2(x, y, z)=
1

2π

∫
∞

−∞

∫
∞

−∞

6∑
j=4

C j
u τ̄

j
zx ei(αx+βy)+u j z dα dβ, (32e)

τxy2(x, y, z)=
1

2π

∫
∞

−∞

∫
∞

−∞

6∑
j=4

C j
u τ̄

j
xyei(αx+βy)+u j z dα dβ, (32f)
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where

σ̄ j
xx =−i(αa11 D j

11+βa12 D j
21+βa14 D j

31− i(a14 D j
21+ a13 D j

31)u j ), (33a)

σ̄ j
yy =−i(αa12 D j

11+βa22 D j
21+βa24 D j

31− i(a24 D j
21+ a23 D j

31)u j ), (33b)

σ̄ j
zz =−i(αa13 D j

11+βa23 D j
21+βa34 D j

31− i(a34 D j
21+ a33 D j

31)u j ), (33c)

τ̄ j
yz =−i(αa14 D j

11+βa24 D j
21+βa44 D j

31− i(a44 D j
21+ a34 D j

31)u j ), (33d)

τ̄ j
zx =−i(a56(βD j

11+αD j
21)+ a55(αD j

31− i D j
11u j )), (33e)

τ̄ j
xy =−i(a66(βD j

11+αD j
21)+ a56(αD j

31− i D j
11u j )). (33f)

In (33), j = 1, 2, 3 for z > 0 (region 1), and j = 4, 5, 6 for z < 0 (region 2).
Now introduce polar coordinates (k, θx) in the αβ-plane, so

α = k cos θx and β = k sin θx .

Substituting into (19), we obtain for j = 1, 2, 3

u j = k
−i sin θx sinφ cosφ(−1+A j )−

√
A j (sin2 θx+cos2 θx(cos2 φ+A j sin2 φ))

cos2 φ+A j sin2 φ
,

u j+3 = k
−i sin θx sinφ cosφ(−1+A j )+

√
A j (sin2 θx+cos2 θx(cos2 φ+A j sin2 φ))

cos2 φ+A j sin2 φ
,

(34)

where 0< k <∞ and 0< θx < 2π .
We can then rewrite (27) and (22) in terms of k and θx :

D j
11(k, θx)= k4 D j

11(θx), (35a)

D j
21(k, θx)= k4 D j

21(θx), (35b)

D j
31(k, θx)= k4 D j

31(θx), (35c)

C j
d (k, θx)= k−5C j

d (θx), (35d)

C j
u (k, θx)= k−5C j

u (θx). (35e)

Equations (33) can also be rewritten as

σ̄ j
xx(k, θx)= k5σ̄ j

xx(θx), (36a)

σ̄ j
yy(k, θx)= k5σ̄ j

yy(θx), (36b)

σ̄ j
zz(k, θx)= k5σ̄ j

zz(θx), (36c)

τ̄ j
yz(k, θx)= k5τ̄ j

yz(θx), (36d)

τ̄ j
zx(k, θx)= k5τ̄ j

zx(θx), (36e)

τ̄ j
xy(k, θx)= k5τ̄ j

xy(θx). (36f)
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The exponential terms in (29)–(32) become

i(αx +βy)+ u j z = k ψj (θx), (37)

while the element dα dβ equals
dα dβ = k dk dθx . (38)

Using (34), (35) and Equation (37), we can rewrite (29) and (30) as follows:

For z > 0 (region 1),

ux1(x, y, z)=−
1

2π

∫ 2π

0

3∑
j=1

C j
d (θx)D

j
11(θx)

ψj (θx)
dθx , (39a)

u y1(x, y, z)=−
1

2π

∫ 2π

0

3∑
j=1

C j
d (θx)D

j
21(θx)

ψj (θx)
dθx , (39b)

uz1(x, y, z)=−
1

2π

∫ 2π

0

3∑
j=1

C j
d (θx)D

j
31(θx)

ψj (θx)
dθx . (39c)

For z < 0 (region 2),

ux2(x, y, z)=−
1

2π

∫ 2π

0

6∑
j=4

C j
u (θx)D

j
11(θx)

ψj (θx)
dθx , (40a)

u y2(x, y, z)=−
1

2π

∫ 2π

0

6∑
j=4

C j
u (θx)D

j
21(θx)

ψj (θx)
dθx , (40b)

uz2(x, y, z)=−
1

2π

∫ 2π

0

6∑
j=4

C j
u (θx)D

j
31(θx)

ψj (θx)
dθx . (40c)

Likewise, using (34)–(37), we rewrite (32) for z > 0 as

σxx1(x, y, z)=
1

2π

∫ 2π

0

3∑
j=1

C j
d (θx)σ̄

j
xx(θx)(

ψj (θx)
)2 dθx , (41a)

σyy1(x, y, z)=
1

2π

∫ 2π

0

3∑
j=1

C j
d (θx)σ̄

j
yy(θx)(

ψj (θx)
)2 dθx , (41b)

σzz1(x, y, z)=
1

2π

∫ 2π

0

3∑
j=1

C j
d (θx)σ̄

j
zz(θx)(

ψj (θx)
)2 dθx , (41c)

τyz1(x, y, z)=
1

2π

∫ 2π

0

3∑
j=1

C j
d (θx)τ̄

j
yz(θx)(

ψj (θx)
)2 dθx , (41d)

τzx1(x, y, z)=
1

2π

∫ 2π

0

3∑
j=1

C j
d (θx)τ̄

j
zx(θx)(

ψj (θx)
)2 dθx , (41e)
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τyz1(x, y, z)=
1

2π

∫ 2π

0

3∑
j=1

C j
d (θx)τ̄

j
yz(θx)(

ψj (θx)
)2 dθx , (41f)

and similarly for z < 0, with 1 replaced by 2 in the subscripts on the left-hand side and the sum ranging
from 4 to 6.

We now introduce ω = eiθx (whence in particular dω = iωdθx ), and

ψ7(ω)= ψ1(ω)ψ4(ω)=
1

4ω2 (η
1
1ω

4
+ η1

2ω
2
+ η1

3)=
η1

1

4ω2 (ω
2
−α2

1)(ω
2
−β2

1 ), (42a)

ψ8(ω)= ψ2(ω)ψ5(ω)=
1

4ω2 (η
2
1ω

4
+ η2

2ω
2
+ η2

3)=
η2

1

4ω2 (ω
2
−α2

2)(ω
2
−β2

2 ), (42b)

ψ9(ω)= ψ3(ω)ψ6(ω)=
1

4ω2 (η
3
1ω

4
+ η3

2ω
2
+ η3

3)=
η3

1

4ω2 (ω
2
−α2

3)(ω
2
−β2

3 ), (42c)

where, for j = 1, 2, 3,

η
j
1 =

((i x + y) cosφ+ z sinφ)2− A j sinφ(2(i x + y)z cosφ+ ((x − iy)2+ z2) sinφ)

cos2 φ+ A j sin2 φ
, (43a)

η
j
2 =−2

(
x2
+ y2
− z2
−

z(y sin 2φ(−1+ A j )− z(1+ 2A j ))

cos2 φ+ A j sin2 φ

)
, (43b)

η
j
3 =

((−i x + y) cosφ+ z sinφ)2− A j sinφ(2(−i x + y)z cosφ+ ((x + iy)2+ z2) sinφ)

cos2 φ+ A j sin2 φ
, (43c)

α2
j =
−η

j
2 +

√
η

j
2 − 4η j

1η
j
3

2η j
1

, β2
j =
−η

j
2 −

√
η

j
2 − 4η j

1η
j
3

2η j
1

. (43d)

In this notation, Equations (39), valid for z > 0, become

ux1(x, y, z)=−
1

2π

∮
C

1
iω

3∑
j=1

C j
d (ω)D

j
11(ω)

ψ j+3(ω)

ψ j+6(ω)
dω, (44a)

u y1(x, y, z)=−
1

2π

∮
C

1
iω

3∑
j=1

C j
d (ω)D

j
21(ω)

ψ j+3(ω)

ψ j+6(ω)
dω, (44b)

uz1(x, y, z)=−
1

2π

∮
C

1
iω

3∑
j=1

C j
d (ω)D

j
31(ω)

ψ j+3(ω)

ψ j+6(ω)
dω, (44c)

while (40), valid for z < 0, takes on an analogous form, with 1 replaced by 2 on the left-hand sides and
the roles of j and j + 3 on the right-hand sides reversed.
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Next, Equations (41), valid for z > 0, become

σxx1(x, y, z)=
1

2π

∮
C

1
iω

3∑
j=1

C j
d (ω)σ̄

j
xx(ω)

(
ψ j+3(ω)

ψ j+6(ω)

)2

dω, (45a)

σyy1(x, y, z)=
1

2π

∮
C

1
iω

3∑
j=1

C j
d (ω)σ̄

j
yy(ω)

(
ψ j+3(ω)

ψ j+6(ω)

)2

dω, (45b)

σzz1(x, y, z)=
1

2π

∮
C

1
iω

3∑
j=1

C j
d (ω)σ̄

j
zz(ω)

(
ψ j+3(ω)

ψ j+6(ω)

)2

dω, (45c)

τyz1(x, y, z)=
1

2π

∮
C

1
iω

3∑
j=1

C j
d (ω)τ̄

j
yz(ω)

(
ψ j+3(ω)

ψ j+6(ω)

)2

dω, (45d)

τzx1(x, y, z)=
1

2π

∮
C

1
iω

3∑
j=1

C j
d (ω)τ̄

j
zx(ω)

(
ψ j+3(ω)

ψ j+6(ω)

)2

dω, (45e)

τxy1(x, y, z)=
1

2π

∮
C

1
iω

3∑
j=1

C j
d (ω)τ̄

j
xy(ω)

(
ψ j+3(ω)

ψ j+6(ω)

)2

dω. (45f)

The counterparts for z < 0 are, as before, obtained by replacing 1 with 2 on the left-hand sides and
interchanging j and j + 3 on the right-hand sides.

In (42), Cauchy’s theory of residues can be used to integrate the contours. If we set

ψj =
8j

ω
( j = 1, 2, 3), (46)

and substitute (42) into (44), the result is a new expression for ux , u y , and uz valid for z > 0 (region 1):

ux1(x, y, z)=−4
3∑

j=1

(
C j

d (αj )D
j
11(αj )

8 j+3(αj )

η
j
1(2αj )(α

2
j −β

2
j )
+C j

d (−αj )D
j
11(−αj )

8 j+3(−αj )

η
j
1(−2αj )(α

2
j −β

2
j )

)
,

(47a)

u y1(x, y, z)=−4
3∑

j=1

(
C j

d (αj )D
j
21(αj )

8 j+3(αj )

η
j
1(2αj )(α

2
j −β

2
j )
+C j

d (−αj )D
j
21(−αj )

8 j+3(−αj )

η
j
1(−2αj )(α

2
j −β

2
j )

)
,

(47b)

uz1(x, y, z)=−4
3∑

j=1

(
C j

d (αj )D
j
31(αj )

8 j+3(αj )

η
j
1(2αj )(α

2
j −β

2
j )
+C j

d (−αj )D
j
31(−αj )

8 j+3(−αj )

η
j
1(−2αj )(α

2
j −β

2
j )

)
,

(47c)
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Since 84(−α1)=85(−α2)=86(−α3)= 0, this reduces to (still for z > 0)

ux1(x, y, z)=−4
3∑

j=1

C j
d (αj )D

j
11(αj )

8 j+3(αj )

η
j
1(2αj )(α

2
j −β

2
j )
, (48a)

u y1(x, y, z)=−4
3∑

j=1

C j
d (αj )D

j
21(αj )

8 j+3(αj )

η
j
1(2αj )(α

2
j −β

2
j )
, (48b)

uz1(x, y, z)=−4
3∑

j=1

C j
d (αj )D

j
31(αj )

8 j+3(αj )

η
j
1(2αj )(α

2
j −β

2
j )
, (48c)

The analogous formulas for z< 0, taking into account that in this case 81(α1)=82(α2)=83(α3)= 0,
read as follows:

ux2(x, y, z)=−4
3∑

j=1

C j+3
u (−αj )D

j+3
11 (−αj )

8j (−αj )

η
j
1(−2αj )(α

2
j −β

2
j )
, (49a)

u y2(x, y, z)=−4
3∑

j=1

C j+3
u (−αj )D

j+3
21 (−αj )

8j (−αj )

η
j
1(−2αj )(α

2
j −β

2
j )
, (49b)

uz2(x, y, z)=−4
3∑

j=1

C j+3
u (−αj )D

j+3
31 (−αj )

8j (−αj )

η
j
1(−2αj )(α

2
j −β

2
j )
, (49c)

Using the same approach, with the substitution of (42) into (45), one obtains for z > 0

σxx1(x, y, z) =
3∑

j=1

d
dω

{
ωC j

d (ω)σ̄
j

xx(ω)

(
8 j+3(ω)

η
j
1(ω+αj )(ω2−β2

j )

)2}
ω→αj

, (50a)

σyy1(x, y, z) =
3∑

j=1

d
dω

{
ωC j

d (ω)σ̄
j

yy(ω)

(
8 j+3(ω)

η
j
1(ω+αj )(ω2−β2

j )

)2}
ω→αj

, (50b)

σzz1(x, y, z) =
3∑

j=1

d
dω

{
ωC j

d (ω)σ̄
j

zz(ω)

(
8 j+3(ω)

η
j
1(ω+αj )(ω2−β2

j )

)2}
ω→αj

, (50c)

τyz1(x, y, z) =
3∑

j=1

d
dω

{
ωC j

d (ω)τ̄
j

yz(ω)

(
8 j+3(ω)

η
j
1(ω+αj )(ω2−β2

j )

)2}
ω→αj

, (50d)

τzx1(x, y, z) =
3∑

j=1

d
dω

{
ωC j

d (ω)τ̄
j

zx(ω)

(
8 j+3(ω)

η
j
1(ω+αj )(ω2−β2

j )

)2}
ω→αj

, (50e)

τxy1(x, y, z) =
3∑

j=1

d
dω

{
ωC j

d (ω)τ̄
j

xy(ω)

(
8 j+3(ω)

η
j
1(ω+αj )(ω2−β2

j )

)2}
ω→αj

, (50f)

and similarly for z < 0
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σxx2(x, y, z) =
3∑

j=1

d
dω

{
ωC j+3

u (ω)σ̄ j+3
xx (ω)

(
8j (ω)

η
j
1(ω−αj )(ω2−β2

j )

)2}
ω→αj

, (51a)

σyy2(x, y, z) =
3∑

j=1

d
dω

{
ωC j+3

u (ω)σ̄ j+3
yy (ω)

(
8j (ω)

η
j
1(ω−αj )(ω2−β2

j )

)2}
ω→αj

, (51b)

σzz2(x, y, z) =
3∑

j=1

d
dω

{
ωC j+3

u (ω)σ̄ j+3
zz (ω)

(
8j (ω)

η
j
1(ω−αj )(ω2−β2

j )

)2}
ω→αj

, (51c)

τyz2(x, y, z) =
3∑

j=1

d
dω

{
ωC j+3

u (ω)τ̄ j+3
yz (ω)

(
8j (ω)

η
j
1(ω−αj )(ω2−β2

j )

)2}
ω→αj

, (51d)

τzx2(x, y, z) =
3∑

j=1

d
dω

{
ωC j+3

u (ω)τ̄ j+3
zx (ω)

(
8j (ω)

η
j
1(ω−αj )(ω2−β2

j )

)2}
ω→αj

, (51e)

τxy2(x, y, z) =
3∑

j=1

d
dω

{
ωC j+3

u (ω)τ̄ j+3
xy (ω)

(
8j (ω)

η
j
1(ω−αj )(ω2−β2

j )

)2}
ω→αj

, (51f)

2. Illustrative examples

The closed-form solutions given above demonstrate that several factors can affect the displacements and
stresses in an inclined transversely isotropic material. They include: (1) the rotation of the transversely
isotropic planes (φ), (2) the type and degree of material anisotropy (E/E ′, ν/ν ′,G/G ′), (3) the geometric
position (r, ϕ, ξ), as seen in Figure 2, and (4) the type of three-dimensional loading (Px , Py, Pz). Based
on Equations (48) and (49) for region 1 (z > 0) and their counterparts for region 2, a Mathematica
program was written to clarify the effect of these factors on the induced displacements and stresses. In
this program, the displacements and stresses at any point in the full space can be calculated.

A parametric study is conducted to illustrate the generated analytical solutions and investigate the
influence of the rotation of transversely isotropic planes, the geometric position, and the degree and type
of rock anisotropy on the displacements and stresses. Two examples will be discussed: the first example
presents the effect of φ on the displacements and stresses of a material subjected to a vertical point
load Pz at x = y = z = 1 (as shown in Figure 3 for displacements, and Figure 4 for stresses); the second

�

�

�

��� � ���

�

�

�

Figure 2. Spherical coordinate system (r, ϕ, ξ).
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E/E ′ ν/ν ′ G/G ′

Rock 1. Isotropic 1.0 1.0 1.0
Rock 2. Transversely isotropic 2.0 1.0 1.0
Rock 3. Transversely isotropic 3.0 1.0 1.0
Rock 4. Transversely isotropic 1.0 0.75 1.0
Rock 5. Transversely isotropic 1.0 1.5 1.0
Rock 6. Transversely isotropic 1.0 1.0 2.0
Rock 7. Transversely isotropic 1.0 1.0 3.0

Table 1. Elastic properties of the hypothetical rocks used in the examples. In each case,
E = 50 GPa and ν = 0.25.

example exhibits the effect of ϕ on the stresses due to Pz at φ = 90◦ and ξ = 45◦ (as depicted in Figure 5).
Seven types of isotropic and transversely isotropic rocks are considered in our model of the foundation
materials. For typical ranges of transversely isotropic rocks, Gerrard [1977] and Amadei et al. [1987]
suggested that the ratios E/E ′ and G/G ′ range from 1.0 to 3.0, and that ν/ν ′ vary between 0.75 and 1.5.
Hence, the degree of rock anisotropy, specified by the ratios E/E ′, ν/ν ′, and G/G ′ is accounted for in
the investigation of the anisotropy effect on displacements and stresses. Table 1 lists the rock type and
elastic properties for the hypothetical rocks. The values chosen for E and ν are 50 GPa and 0.3.

Figure 3 shows the normalized displacements uxr/Pz , u yr/Pz and uzr/Pz versus rotation of the trans-
versely isotropic planes (φ), due to a vertical point load (Pz), at x = y = z = 1, for the constituted
isotropic/transversely isotropic rocks (rock 1/rocks 2–7, Table 1). Figure 3(a) depicts the normalized
displacement ux of the rocks, induced by Pz . It is observed that any value in each curve is symmetric
with respect to the origin of the coordinates, and the ratios E/E ′ (rocks 2 and 3), ν/ν ′ (rocks 4 and 5), and
G/G ′ (rocks 6 and 7) all strongly influence this displacement. This figure also shows that the magnitude
of the normalized induced displacement (0.00026 m2/GN) for rock 1 is independent of the change in
φ. However, for rocks 2 and 3, the displacement is maximal at about φ = 0◦–180◦, and is minimal at
approximately φ = 60◦–240◦. As for rocks 6 and 7, the displacement is maximal at around φ = 50◦–
230◦, and is minimal at about φ = 100◦–280◦. Figure 3(b) presents the normalized displacement u y of
the rocks, due to Pz . This figure clearly reveals that the displacement induced in transversely isotropic
rocks is deeply affected by the ratios E/E ′ (rocks 2 and 3) and G/G ′ (rocks 6 and 7), but is only
slightly influenced by ν/ν ′ (rocks 4 and 5). Notably, the normalized displacement (0.00026 m2/GN) of
the isotropic rock (rock 1) is also independent of φ. Nevertheless, it is found that the values of induced
displacement for rocks 2 and 3 would be partially within the range of −0.0004 to 0, meaning there could
be an opposite-direction displacement occurring in these media. Figure 3(c) displays the normalized
displacement uz of the rocks, subjected to Pz . Clearly, the ratios E/E ′ (rocks 2 and 3) and G/G ′ (rocks
6 and 7) profoundly impact the induced displacement, but the effect of ν/ν ′ (rocks 4 and 5) is small. The
magnitude of the normalized induced displacement for rock 1 is always 0.00179 m2/GN; however, for
rocks 2, 3, 6, and 7, the values of uz are nearly greater than those of rock 1. The calculated results for
the displacement fields are all in good agreement with Wang and Liao’s solutions [Wang and Liao 1999]
if the full space is homogeneous, linearly elastic, and the planes of transverse isotropy are parallel to the
horizontal axes.
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Figure 3. At the position x = y = z = 1, the effect of φ on the normalized displacement
(a) uxr/Pz , (b) u yr/Pz , (c) uzr/Pz .

Figure 4 plots the nondimensional normal stresses σxxr2/Pz , σyyr2/Pz , σzzr2/Pz and the nondimen-
sional shear stresses τyzr2/Pz , τzxr2/Pz , τxyr2/Pz , versus the rotation of the transversely isotropic planes
(φ), subjected to a vertical point load (Pz), at x = y = z = 1, for the isotropic (rock 1) and transversely
isotropic rocks (rocks 2–7). Figure 4(a) illustrates the effect of φ on σxxr2/Pz , for rocks 1–7. This figure
shows that the induced stress for the isotropic rock (rock 1) has the same value (0.005105) that is again
independent of φ. However, it is found that the values of induced stress for rocks 1–7 vary between
−0.004 and 0.02, namely, that there is an obvious tensile stress occurring in rock 7. In addition, any
value in each curve is symmetric with respect to the origin of the coordinates. Hence, from this figure,
it is apparently revealed that the induced stress is greatly influenced by the rotation of the transversely
isotropic planes (φ), and the type and degree of rock anisotropy (E/E ′, ν/ν ′,G/G ′). Figure 4(b) presents
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Figure 4. At the position x = y = z = 1, the effect of φ on the nondimensional normal
and shear stresses. For the code indicating the type of rock, see Figure 3.
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the effect of φ on σyyr2/Pz , for rocks 1–7. Notably, the value in the curves is also symmetric with respect
to the origin of the coordinates, and the ratios E/E ′ (rocks 2 and 3), ν/ν ′ (rocks 4 and 5), and G/G ′

(rocks 6 and 7) do also have a considerable influence on the stress. This graph shows that the magnitude
of the nondimensional normal stress (σyyr2/Pz) for rock 1 (0.005105) is also independent of φ, and the
value of the nondimensional stress is within 0.06. In particular, the computed results for rocks 4 and 5
are, respectively, greater than or less than those of rock 1. Figure 4(c) depicts the effect of φ on σzzr2/Pz ,
for rocks 1–7. This stress depends heavily on the ratios E/E ′ (rocks 2 and 3) and G/G ′ (rocks 6 and 7).
Nevertheless, the effect of the ratios ν/ν ′ (rocks 4 and 5) on the stress is slight. The maximum value of
the nondimensional stress approaches 0.026. Figure 4(d) plots the effect of φ on τyzr2/Pz , for rocks 1–7.
Evidently, the ratios E/E ′ (rocks 2 and 3) and G/G ′ (rocks 6 and 7) could intensely affect the induced
stress. However, the effect of the ratios ν/ν ′ (rocks 4 and 5) on the induced stress is still small. The trend
of these stress curves in this figure is similar to that in Figure 4(c). Figure 4(e) displays the effect of φ
on τzxr2/Pz , for rocks 1–7. The maximum value of the nondimensional stress is about 0.026. Figure
4(f) shows the effect of φ on τxyr2/Pz , for rocks 1–7. The effect of the ratios ν/ν ′ for rocks 4 and 5
in this figure is more explicit than the effect on other shear stresses (Figures 4(d) and 4(e)). Especially,
the calculated results of rocks 4 and 5 are, respectively, greater than or less than those of rock 1. The
maximum value of the nondimensional stress is within the range of 0.024. The computed results for the
stress fields are identical to those estimated from Wang and Liao’s solutions [1999], in which the planes
of transverse isotropic full space are parallel to the horizontal loading surface.

Figure 5 plots the nondimensional normal stresses (σxxr2/Pz, σyyr2/Pz, σzzr2/Pz) and the nondimen-
sional shear stresses (τyzr2/Pz, τzxr2/Pz, τxyr2/Pz) versus the geometric position ϕ (from 0◦ to 360◦),
due to a vertical point load (Pz), at the rotation of the transversely isotropic planes φ = 90◦ and the
geometric position ξ = 45◦, for the constituted isotropic/transversely isotropic rocks (rock 1/rocks 2–7).
Figure 5(a) clarifies the effect of ϕ on σxxr2/Pz , for rocks 1–7. It is observed that the magnitudes of the
estimated stresses are symmetric with respect to ϕ = 180◦. The upper/lower part of this figure denotes
the compressive/tensile stress occurring in the rock media. The maximum values of tensile/compressive
stress appeared at ϕ = 0◦/180◦ in rock 7. In addition, the induced stresses are found to be influenced
by the ratios E/E ′ (rocks 2 and 3), ν/ν ′ (rocks 4 and 5), G/G ′ (rocks 6 and 7), and they are all zero at
ϕ = 90◦ and 270◦. Figure 5(b) demonstrates the effect of ϕ on σyyr2/Pz , for rocks 1–7. Results reveal
that the magnitudes of the computed stresses are also symmetric with respect to ϕ = 180◦, and the tensile
and compressive stresses would be expected to occur in all media. However, the maximum values of
tensile/compressive stress appeared at approximately ϕ = 125◦ and 235◦/55◦ and 305◦ in rock 4. This
means that at a given position (φ = 90◦ and ξ = 45◦), the decrease in the ratio ν/ν ′ from 1.0 (rock 1)
to 0.75 (rock 4) could remarkably affect the stress (σyy). Figure 5(c) shows the induced nondimensional
normal stress σzzr2/Pz for rocks 1–7. The distributions and magnitudes of the calculated stresses are
quite different from those of Figures 5(a) and 5(b). The tensile/compressive stress can be found within
ϕ = 0◦–90◦ and 270◦–360◦/90◦–270◦. Moreover, the stress (σzz) is apparently impacted by the ratios
G/G ′ (rocks 6 and 7). Nevertheless, the stress is affected to only a small degree by the ratios E/E ′ (rocks
2 and 3) and ν/ν ′ (rocks 4 and 5). The induced nondimensional shear stress τyzr2/Pz for rocks 1–7 is
depicted in Figure 5(d). It is noted that the positive/negative values of τyz are symmetric with respect
to ϕ = 180◦. Additionally, the computed stresses are all zero at ϕ = 0◦, 180◦, and 360◦. The results of
rocks 2, 4, 6, 7 are rather distinct from those of rocks 1, 3, 5. Similarly, the trends can be discovered in
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Figure 5. At the position φ= 90◦, ξ = 45◦, the effect of ϕ on the nondimensional normal
and shear stresses. For the code indicating the type of rock, see Figure 3.
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Figure 5(e) for τzxr2/Pz . Eventually, the induced nondimensional shear stress τxyr2/Pz for rocks 1–7
is displayed in Figure 5(f). The calculated positive/negative values of τxy are symmetric with ϕ = 90◦

and 270◦. The zero values for τxy are found at ϕ = 0◦, 90◦, 180◦, 270◦, and 360◦. Furthermore, the
influences of the type and degree of rock anisotropy in this figure are more explicit than those in Figure
5(d,e). That means again that at φ = 90◦ and ξ = 45◦, the normal and shear stresses due to a vertical
point load are strongly impacted by the geometric position (ϕ) and rock anisotropy (E/E ′, ν/ν ′,G/G ′).

The examples are presented to illustrate the derived solutions and demonstrate how the rotation of
transversely isotropic planes (φ), the geometric position (r, ϕ, ξ), and the degree and type of material
anisotropy (E/E ′, ν/ν ′,G/G ′) would influence the normalized displacements and nondimensional nor-
mal and shear stresses. Results reveal that the displacements and stresses in the inclined isotropic or
transversely isotropic rocks (rock 1/rocks 2–7) due to a vertical point load are quite different from the
displacements and stresses calculated by assuming the transversely isotropic planes are parallel to the
horizontal surface. Hence, it is imperative to consider the dip at an angle of inclination when calculating
the induced displacements and stresses in a transversely isotropic material by applied loads.

Conclusions

Analytical solutions are presented for displacements and stresses in a transversely isotropic material (in
which the transversely isotropic planes are oriented with respect to the horizontal axes) subjected to
three-dimensional point loads . It is known that the stress components due to three-dimensional point
loads in an inclined infinite space can be obtained by employing the coordinate transformation formulae
with respect to the applied loads. Nevertheless, the displacement components cannot be solved by the
same approach. Hence, an efficient method that employs the double Fourier transform in a Cartesian
coordinate system is proposed to yield the fundamental solutions for displacements and stresses. First,
the characteristic roots for this special material anisotropy are addressed in this article. Next, the double
inverse Fourier transform and residue calculus are applied to integrate the contours. The generated
solutions for displacements are the same as those of [Hu et al. 2007], which were arrived at by using the
triple Fourier transform for an inclined transversely isotropic full space. In addition, they are identical
with those of [Wang and Liao 1999] if the planes of transverse isotropy are parallel to the horizontal
loading surface. The proposed solutions clarify that the displacements and stresses are governed by

(1) the rotation of the transversely isotropic planes (φ),

(2) the type and degree of material anisotropy (E/E ′, ν/ν ′,G/G ′),

(3) the geometric position (r, ϕ, ξ), and

(4) the type of three-dimensional loading (Px , Py, Pz).

The present elastic fundamental solutions could not only realistically imitate the actual stratum of loading
circumstances in many fields of practical engineering, but also provide the foundations of the bound-
ary integral equation method (BIEM) or the boundary element method (BEM) for solving numerous
boundary value problems. Moreover, the addressed solutions can be extended to generate the dis-
placements and stresses due to three-dimensional point loads in the inclined transversely isotropic half-
spaces/bimaterials/layered materials. These solutions could be very valuable to solid mechanics, and
they will be presented in the near future.
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Appendix

In this appendix we give a parallel, more leisurely derivation of the characteristic equation (18). Recall
that the x ′ and y′ axes are in the plane of transversely isotropy, and that the generalized Hooke’s law for
a transversely isotropic material is expressed by Equation (2).

Let ux ′, u y′, uz′ be the displacements of a point on the axes of a Cartesian coordinate system. The
strain-displacement relationship for the small strain condition is given by (6), with x, y, z replaced by
x ′, y′, z′.

The equation of force equilibrium is

σx ′x ′ τx ′y′ τz′x ′

τx ′y′ σy′y′ τy′z′

τz′x ′ τy′z′ σz′z′

∂/∂x ′

∂/∂y′

∂/∂z′

−
Fx ′

Fy′

Fz′

= ρ
∂2ux ′/∂t2

∂2u y′/∂t2

∂2uz′/∂t2

 .
If we set (Fx ′, Fy′, Fz′)= (0, 0, 0), this becomes

ρ
∂2ux ′

∂t2 = c1
∂2ux ′

∂x ′2
+ c4

∂2ux ′

∂y′2
+ c5

∂2ux ′

∂z′2
+ (c1− c4)

∂2u y′

∂x ′∂y′
+ c3

∂2uz′

∂x ′∂z′
, (52a)

ρ
∂2u y′

∂t2 = (c1− c4)
∂2ux ′

∂x ′∂y′
+ c4

∂2u y′

∂x ′2
+ c1

∂2u y′

∂y′2
+ c5

∂2u y′

∂z′2
+ c3

∂2uz′

∂y′∂z′
, (52b)

ρ
∂2uz′

∂t2 = c3
∂2ux ′

∂x ′∂z′
+ c3

∂2u y′

∂y′∂z′
+ c5

∂2uz′

∂x ′2
+ c5

∂2uz′

∂y′2
+ c2

∂2uz′

∂z′2
. (52c)

For the elastic dynamic problem, an arbitrary time-harmonic body force in the x ′, y′, and z′ directions
with angular frequency ω can be written as

ux ′(x ′, y′, z′, t)= u∗x ′(x
′, y′, z′) exp(−iωt), (53a)

u y′(x ′, y′, z′, t)= u∗y′(x
′, y′, z′) exp(−iωt), (53b)

uz′(x ′, y′, z′, t)= u∗z′(x
′, y′, z′) exp(−iωt), (53c)

where u∗x ′ , u∗y′ , and u∗z′ represent the complex amplitude of the body force.
Taking the triple Fourier transform of (53) we obtain

ūx ′(α, β, γ)=
1

(2π)3/2

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

ux ′(x ′, y′, z′)e−i(αx ′+βy′+γz′)dx ′dy′dz′,

ū y′(α, β, γ)=
1

(2π)3/2

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

ux ′(x ′, y′, z′)e−i(αx ′+βy′+γz′)dx ′dy′dz′,

ūz′(α, β, γ)=
1

(2π)3/2

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

ux ′(x ′, y′, z′)e−i(αx ′+βy′+γz′)dx ′dy′dz′.
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Substituting this and (53) into (52), we have the triple Fourier-type integrals

ρω2ū∗x ′ = c1α
2ū∗x ′ + c4β

2ū∗x ′ + c5γ
2ū∗x ′ + (c1− c4)αβū∗y′ + c3αγū∗z′,

ρω2ū∗y′ = (c1− c4)αβū∗x ′ + c4α
2ū∗y′ + c1β

2ū∗y′ + c5γ
2ū∗y′ + c3βγū∗z′,

ρω2ū∗z′ = c3αγū∗x ′ + c3βγū∗y′ + c5α
2ū∗z′ + c5β

2ū∗z′ + c2γ
2ū∗z′ .

Rearranging, we obtain d11− ρω
2 d12 d13

d21 d22− ρω
2 d23

d31 d32 d33− ρω
2


ū∗x ′

ū∗y′
ū∗z′

=
0

0
0

 , (54)

where

[di j ] =

c1α
2
+ c4β

2
+ c5γ

2 (c1− c4)αβ c3αγ

(c1− c4)αβ c4α
2
+ c1β

2
+ c5γ

2 c3βγ

c3αγ c3βγ c5α
2
+ c5β

2
+ c2γ

2


Expanding the determinant of the matrix in (54) and substituting the expressions of the di j shows that
the eigenvalues of the matrix [di j ] are

ρω2
=


c5γ

2
+ c4(α

2
+β2),

1
2

(
c1(α

2
+β2)+ c2γ

2
+ c5(α

2
+β2
+ γ2)+1

)
,

1
2

(
c1(α

2
+β2)+ c2γ

2
+ c5(α

2
+β2
+ γ2)−1

)
,

where

1=

√(
(c1− c5)(α2+β2)− (c2− c5)γ2

)2
+ 4c2

3(α
2+β2)γ2.

If we introduce spherical coordinates (k, θx ′, θz′) in αβγ-space (so α= k sin θz′ cos θx ′ , β = k sin θz′ sin θx ′ ,
γ = k cos θz′), we see that 1 can be expressed as

1=

√(
(c1− c5) sin2 θz′ − (c2− c5) cos2 θz′

)2
+ 4c2

3 sin2 θz′ cos2 θz′ .

Introducing the quantity V 2
=ω2/k2, the square of the body-wave velocity, leads to a familiar appearance

for the eigenvalues:

VSH,θ,z′ =

√
c5 cos2 θz′ + c4 sin2 θz′

ρ
,

VP,θ,z′ =

√
c1 sin2 θz′ + c2 cos2 θz′ + c5+1

2ρ
,

VSV,θ,z′ =

√
c1 sin2 θz′ + c2 cos2 θz′ + c5−1

2ρ
.
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Note that θz′ can be interpreted as the angle between the direction of wave travel and the z′-axis. The
determinant of [di j ] is written as

D = det [di j ] = ρ
3k6(VSH,θ,z′VP,θ,z′VSV,θ,z′)

2

=
(
c5γ

2
+ c4(α

2
+β2)

)[(
c1(α

2
+β2)+ c5γ

2)(c5(α
2
+β2)+ c2γ

2)
− c2

3(α
2
+β2)γ2]

= c2c2
5

3∏
i=1

(
Ai (α

2
+β2)+ γ2

)
= c2c2

5k6
3∏

i=1

(
Ai sin2 θz′ + cos2 θz′

)
, (55)

where A1, A2, A3 are defined in (17).
As depicted in Figure 1, a new coordinate system x , y, z is obtained from the original system x ′, y′,

z′ by rotating through an angle φ about the x = x ′ axis. Then the value of D in (55) becomes

D = ρ3k6(VSH,θ,t VP,θ,t VSV,θ,t)
2
= c2c2

5k6
3∏

i=1

(
Ai sin2 θt + cos2 θt

)
, (56)

where θt is the angle between the vector (α, β, γ) and the z′ axis, which can be expressed in terms of α,
β, γ, and φ as

cos θt =
γ cosφ−β sinφ√
α2+β2+ γ2

, (57)

that is,

sin2 θt =
α2
+β2
+ γ2
− (γ cosφ−β sinφ)2

α2+β2+ γ2 .

Hence, (56) can be rearranged as

D = c2c2
5k6

3∏
i=1

(
Ai sin2 θt + cos2 θt

)
=

c2c2
5k6

(α2+β2+ γ2)3

3∏
i=1

(
Ai
(
α2
+β2
+ γ2
− (γ cosφ−β sinφ)2

)
+ (γ cosφ−β sinφ)2

)
= c2c2

5

3∏
i=1

(
Ai
(
α2
+β2
+ γ2
− (γ cosφ−β sinφ)2

)
+ (γ cosφ−β sinφ)2

)
.

If we further set iγ = u, this becomes

D = det[di j ]

= c2c2
5

3∏
i=1

(
Ai
(
−u2
+α2
+β2
− (iu cosφ+β sinφ)2

)
+ (iu cosφ+β sinφ)2

)
.

The six eigenroots can be generated by setting D = 0 in this equation. They are given in (19).
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AN ANISOTROPIC HETEROGENEOUS BEAM WITH OVERSPECIFIED
BOUNDARY CONDITIONS

C. KEVIN LYONS

In this paper a heterogeneous anisotropic cylindrical beam with a rigidly fixed base is considered as
an alternative to the relaxed Saint-Venant’s problem. The rigidly fixed base results in a problem with
overspecified boundary conditions for which a proof of existence is given. The results of this paper
indicate that the relaxed Saint-Venant’s problem, for loads independent of the axial coordinate, ignores
the dependence of the stress field on the axial coordinate. Dependence of the stress field on the axial
coordinate could result in warping of transverse cross sections and nonzero in-plane stresses, which is
significant for understanding the behavior of natural structures such as wood and mammalian bone.

1. Introduction

Two examples of natural structures that can be represented as heterogeneous anisotropic cylinders are the
bole of a tree and long mammalian bones. Bodig and Jayne [1993] describe a cylindrical section of a tree
as being an orthotropic material with cylindrical anisotropy, where the axes of symmetry are in the radial
direction (eR), the tangential direction (eT ), and the long direction (eL) which is directed up the tree. The
same paper reports that the compressive strength of wood is weaker in the eR and eT directions than it is
in the eL direction. Barrett et al. [1981] notes the fracture toughness of wood is an order of magnitude
lower where normal stresses in the eR and eT directions can open the crack. Kennedy and Carter [1985]
note that various material models have been used for long mammalian bones and these include isotropic,
transversely isotropic, and cylindrically orthotropic. Taylor et al. [2002] used an orthotropic model to
compare elastic constants for the human femur measured by ultrasound to those predicted through a finite
element model. Peterlik et al. [2006] found the fracture toughness of bone is greater in the eR and eT

directions than the eL direction. Norman et al. [1996] found in the eL direction that bone was an order
of magnitude stronger in Mode 2 fracture as opposed to Mode 1 fracture, where tension in the eR and
eT directions can open the crack.

Iesan [1987] describes Saint-Venant’s problem as determining an equilibrium displacement field for a
cylinder loaded by surface forces distributed over its plane ends, and the relaxed Saint-Venant’s problem
as replacing the distributed surface forces on one end with equivalent resultant loads. To consider a
cantilever beam as a relaxed Saint-Venant’s problem, the prescribed displacements on the base of the
beam are replaced with a stress field that maintains equilibrium; however, this changes the problem from
a mixed problem to a traction problem. In solving the relaxed Saint-Venant’s problem various constants
of integration are developed if the equilibrium displacement field is desired. Sokolnikoff [1956] and
Lyons et al. [2002] found these constants of integration could be determined by reintroducing certain

Keywords: Anisotropic, heterogeneous, dynamic, cantilever beam.
This research was supported by the NSERC Discovery Grant 261644-03.
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elements of the fixed boundary condition; however, these elements are on specific points or lines and in
general the equilibrium displacement field is not able to satisfy the fixed boundary conditions over the
complete base of the cylinder. When considering an anisotropic cylindrical cantilever beam as a relaxed
Saint-Venant’s problem, authors such as Lekhnitskii [1981], Iesan [1987], and Lyons [2002] found that
the stresses are zero in the plane defined by eR and eT . An important question is whether this result is a
function of posing the problem as a relaxed Saint-Venant’s problem or whether it is a general result.

The fixed boundary conditions considered by Sokolnikoff [1956] and Lyons et al. [2002] include both
prescribed displacements and prescribed first derivatives of the displacements at points on the base of
the cylinder. Gao and Mura [1991] consider these types of boundary conditions to be overspecified and
there is the risk that if they are selected arbitrarily then they could be inconsistent. There are additional
conditions imposed on the displacement vector when considering elastodynamic problems and these can
be used to better understand the implications of using overspecified boundary conditions.

This paper considers a cylinder that is rigidly fixed at the base and subject to a time dependent forcing
function on the free end. The cylinder is composed of a material that is heterogeneous and anisotropic,
with elastic coefficients that are independent of the axial coordinate. In this paper the objective of Section
3 is to confirm that the stresses and strains are identically equal to zero on the base of the cylinder when
the base is rigidly fixed, the objective of Sections 4 and 5 is to prove the existence of a solution which
will indicate the overspecified boundary conditions are consistent, and the objective of Section 6 is to
compare specific attributes of the stress field found in this paper to the stress field found when posing
the cylinder as a relaxed Saint-Venant’s problem.

2. Problem statement

Consider a cylindrical cantilever beam with constant cross sections (Figure 1), where the displacement
of the free end combined with the length of the beam is such that geometric nonlinear effects are not
significant. Let the region B refer to the interior of the cylinder, ∂B is the boundary, and B̄ = ∂B ∪ B.
Let 61 be the open cross section at x3 = 0, let 62 be the open cross section at x3 = h. The lateral surface
of the cylinder is 5. In the following Greek indices range from 1 to 2, while Latin indices range from 1

Self weight

X
3

X
2 X

1

1

2

Figure 1. Cylindrical beam in Cartesian coordinates.
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to 3. Summation notation is used for repeated indices and a comma followed by a subscript will indicate
a partial derivative with respect to the subscript. In addition, the Kronecker delta function (δi j ) will be
used.

The beam considered in this paper will be rigidly fixed on 62. Eringen and Suhubi [1974] give the
necessary condition for a body to be locally rigid di j (x, t)= 1

2(vi (x, t), j +v j (x, t),i )= 0. Here, di j is
the rate of deformation tensor, and vi is the velocity vector.

The boundary conditions for the problem considered in this paper are

u(62, t)= 0

di j (62, t)= 0

s(5, t)= 0

s(61, t)= k(61)8(t)

on 62,

on 62,

on 5,

on 61.

(1)

Here u(62, t) is the prescribed displacement vector on 62, si (x, t)= Si j (x, t)n j , where n j is the unit
vector normal to the surface of interest and Si j (x, t) is Cauchy’s stress tensor, k(61) is a vector that is a
function of the coordinates on 61, and 8(t) is a scalar function of time.

At t = 0 the beam is subject to body loads due to gravity alone. Therefore, the initial conditions are

u(x, 0)=−q(x) on B̄ and u(x, 0),t = ζ(x) on B̄. (2)

Here −q(x) is the displacement vector due to gravity alone, and ζ(x) is the initial velocity vector.
The constitutive equation is

Si j = Ci jkl(xα)Ekl . (3)

Here Si j is Cauchy’s stress tensor, Ei j is the infinitesimal strain tensor, and Ci jkl is the elasticity tensor
which is independent of the axial coordinate x3, symmetric, and positive definite.

The problem considered in this paper is one of linear elasticity, where nonlinear terms in the strain
tensor, velocity vector, and acceleration vector are discarded as terms of higher order. In addition, when
considering a spatial description of acceleration, the convective components are discarded as terms of
higher order. Achenbach [1973] notes that once the problem is completely linearized the distinction
between the material and spatial descriptions of motion vanish; therefore, either the notation for the
material description or the spatial description can be used. Material coordinates are typically used in
solid mechanics; however, in the problem considered by this paper the velocities are prescribed on
62 and thus a spatial description can be useful. This paper uses a material description except for the
derivation involving the continuity equation, and Equations (7)–(10); however, given the observations by
Achenbach [1973] a new coordinate system is not introduced.

3. Considering stress and strain as x3 approaches h

Theorem 3.1. Let u(x, t) ∈ C1,2(B̄)∩C2,2(B). Given Equation (2) and the first two equations of (1),
then, limx3→h ui (x, t), j = 0.

Proof. The boundary values of the field equations are defined as follows. Let x0 be some point on ∂B
and let u(x, t) tend to a definite limit as the point x approaches x0 from B. Recall Greek indices range
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from 1 to 2, while Latin indices range from 1 to 3. Given the first equation of (1), and that xi and t are
independent, then

lim
x3→h

u(x, t),α = 0, (4)

lim
x3→h

v(x, t)= 0, (5)

lim
x3→h

v(x, t),α = 0. (6)

Consider the density of the material in B̄ to be a function of position and time

ρ = ρ(x, t). (7)

The equation of continuity is
Dρ(x, t)

Dt
+ ρ(x, t)v j (x, t), j = 0. (8)

Expand the material derivative in (8), take the limit as x3 approaches h, and take into account Equation (5),
then

lim
x3→h

Dρ(x, t)
Dt

= lim
x3→h

ρ(x, t),t . (9)

Take the limit of (8) as x3 approaches h, take into account Equation (9) and the second equation of (1)
with i = j , then

lim
x3→h

ρ(x, t),t = 0. (10)

Integrating (10) with respect to time it can be seen that the density of the material in B is independent
of time as x3 approaches h.

lim
x3→h

ρ(x, t)= lim
x3→h

ρ(x). (11)

The density at time t is related to the reference density by

ρ(x, t)=
1

J (x, t)
ρ(x, 0).

Here, J (x, t) is the Jacobian determinant, which represents the dilation of an infinitesimal volume at the
material point x. However, given (11)

lim
x3→h

ρ(x)= lim
x3→h

1
J (x, t)

ρ(x). (12)

Recall for infinitesimal strains that

J (x, t)= 1+ div u(x, t). (13)

Substitute (13) into (12), then it can be seen that

lim
x3→h

div u(x, t)= lim
x3→h

u j (x, t), j = 0. (14)

Substitute (4) into (14) and take the derivative of this with time, then

lim
x3→h

u3(x, t),3 = 0 and lim
x3→h

v3(x, t),3 = 0. (15)
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Set i = α and j = 3 in the second equation of (1) and take into account Equation (6), then

lim
x3→h

vα(x, t),3 = 0. (16)

Integrate (16) with respect to time and take into account the first equation of Equation (2), then

lim
x3→h

uα(x, t),3=− lim
x3→h

qα(x),3. (17)

Equation (17) indicates the shear strains are independent of time as x3 approaches h. This is an unlikely
result given the time dependent forcing function being applied to 61. Therefore, as will be demonstrated
in Section 4, the only nontrivial solution is to let limx3→h qα(x),3 = 0, then

lim
x3→h

uα(x, t),3 = 0. (18)

Given equations (4)–(6), (15), (16), and (18) the velocities and the derivatives of the displacements and
velocities with respect to the coordinates as x3 approaches h can be summarized as follows

lim
x3→h

ui (x, t), j = 0, lim
x3→h

vi (x, t)= 0, and lim
x3→h

vi (x, t), j = 0. (19)

Equation (19) completes the proof of Theorem 3.1. �

Consider the constitutive Equation (3), note the material coefficients are independent ofx3, and take
the limit as x3 approaches h.

lim
x3→h

Si j (u)=
Ci jkl

2

(
lim

x3→h
uk,l + lim

x3→h
ul,k

)
. (20)

Substitute the first equation of (19) into (20), then

lim
x3→h

Si j (u)= 0. (21)

Note the results, Equation (19) and (21), follow from assuming infinitesimal strains; in general these
results do not hold if finite strains are allowed.

4. Displacement functions

Theorem 4.1. Let 8(t)= at , for 0≤ t < tL where a is a constant and tL is the time when the strains are
no longer infinitesimal; given equations (1), (2), and (19), then ui (x, t)= tζi (x)−qi (x) and ui (x, t),t t = 0.

Proof. The equation of motion in material description is

ρo(x)vi (x, t),t = Si j (x, t), j +δi3ρo(x)g. (22)

Let U(x, t) ∈ C1,2(B̄)∩C2,2(B) and

Ui (x, t)= ui (x, t)+ qi (x), (23)

Si j (q(x)), j = δi3ρog.

Rearrange (23)
ui (x, t)=Ui (x, t)− qi (x). (24)
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Substitute Equation (24) into the equations of motion, (22), then

ρoUi (x, t),t t = Si j (x, t), j . (25)

Substitute (24) into the initial conditions, (2), then

Ui (x, 0)= 0 and Ui (x, 0),t = ζ(x) (26)

Substitute (24) into the first equation of (1), the first equation of (19), and the third and fourth equations
of (1).

Ui (62, t)= qi (62), (27)

Ui (62, t), j = qi (62), j , (28)

Si j
(
U(61, t)

)
n(61)

j = ki (61)8( t)+ Si j
(
q(61)

)
n(61)

j , (29)

Si j
(
U(5, t)

)
n(5)j = Si j

(
q(5)

)
n(5)j . (30)

Let
Ui (x, t)= X i (x)T (t). (31)

Here, X i (x) is a vector function of x alone, and T (t) is a scalar function of t alone.
Substitute Equation (31) into (25), then

ρo X i (x)T (t),t t = Si j (X(x)), j T (t). (32)

Separate the variables in (32), then

T (t),t t
T (t)

=
Si j (X(x)), j

ρo X i (x)
= bi .

Here bi are constant; however, T (t)is independent of X i (x). Therefore, b1 = b2 = b3 = b and

T (t),t t − bT (t)= 0, (33)

Si j
(
X(x)

)
, j − bρo X i (x)= 0. (34)

Substitute (31) into the first equation of (26), then

X i (x)T (0)= 0. (35)

The only nontrivial solution to (35) is when

T (0)= 0. (36)

Substitute Equation (31) into the second equation of (26), then

X i (x)T (0),t = ζi (x). (37)

The only nontrivial solution to (37) is when

T (0),t = c and X i (x)= c−1ζi (x). (38)

Here c is a constant.



AN ANISOTROPIC HETEROGENEOUS BEAM WITH OVERSPECIFIED BOUNDARY CONDITIONS 1555

Substitute (31) into (27), then
X i (62)T (t)= qi (62) (39)

The only nontrivial solution to (39) is when

X i (62)= qi (62)= 0. (40)

Substitute (31) into (28), then
X i (62), j T (t)= qi (62), j . (41)

The only nontrivial solution to (41) is when

X i (62), j = qi (62), j = 0. (42)

Substitute Equation (31) into (29), then

Si j
(
X(61)

)
n(61)

j T (t)= ki (61)8( t)+ Si j
(
q(61)

)
n(61)

j . (43)

Given (36) and (38) we have T (t)= ct ; therefore, let Si j
(
q(61)

)
n(61)

j = 0 in (43) and isolate T (t).

T (t)=
ki (61)8( t)

Si j
(
X(61)

)
n(61)

j

, no sum over i. (44)

By definition T (t) is a scalar function, while the right hand side of (44) is vector valued; therefore, let

ki (61)= Si j
(
X(61)

)
n(61)

j . (45)

Note, from the definition in 4.1 we have 8(t)= at ; therefore, given (44) and (45)

T (t)= at. (46)

Substitute (31) into (30), then

Si j
(
X(5)

)
n(5)j T (t)= Si j

(
q(5)

)
n(5)j . (47)

The only nontrivial solution to (47) is

Si j
(
X(5)

)
n(5)j = Si j

(
q(5)

)
n(5)j = 0. (48)

Equations (33), (36), and (38) form an initial value problem that can be solved for three cases of b.

CASE 1. Let b = 0, then (33) becomes
T (t),t t = 0. (49)

Integrating (49) twice with respect to time, and taking into account Equation (36) and (38), it can be seen
that

T (t)= ct. (50)

Taking Equation (46) into account, (50) becomes T (t)= at . CASE 2. Let b > 0, and let b = λ2, where

λ > 0. Then (33) becomes
T (t),t t − λ2T (t)= 0. (51)



1556 C. KEVIN LYONS

Let T (t)= er t , then (51) becomes
r2
− λ2
= 0. (52)

Factoring (52) it can be seen that r =±λ, therefore, there are two solutions for T (t).

T (t)= c1eλt
+ c2e−λt . (53)

Considering (36) and (38) it can be seen that c1 =−c2 and c1 = c/2λ; therefore, (53) becomes

T (t)=
c
λ

sinh(λt). (54)

Considering (54) and (46) it can be seen for a 6= 0 and t > 0 there are no solutions for T (t) when b > 0.

CASE 3. Let b < 0, and let b =−λ2, where λ > 0. Then (33) becomes

T (t),t t + λ2T (t)= 0. (55)

Let T (t)= er t , then (55) becomes
r2
+ λ2
= 0. (56)

Factoring (56) it can be seen that r =± iλ; therefore, there are two solutions for T (t)

T (t)= c1 cos(λ t)+ c2 sin(λ t). (57)

Considering (36) and (38), it can be seen that c1 = 0 and c2 = c/λ; therefore, (57) becomes

T (t)=
c
λ

sin(λ t). (58)

Considering (58) and (46) it can be seen for a 6= 0 and t > 0 there are no solutions for T (t) when b < 0.
Combining the solutions for T (t) from the three cases of b results in

T (t)= at. (59)

Equations (34), (40), (42), (45), and (48) form a boundary value problem defining X(x) that can be
solved for three cases of b. From the analysis of T (t) it was found that b = 0; therefore, the equilibrium
problem that defines X(x) is

Si j
(
X(x)

)
, j = 0,

X i (62)= 0,

X i (62), j = 0,

Si j
(
X(61)

)
n(61)

j = ki (61),

Si j
(
X(5)

)
n(5)j = 0.

(60)

Substitute Equation (59) into the first equation of (38), then from the second equation of (38)

X i (x)= a−1ζi (x). (61)

Substitute (61) and (59) into (31), and the resulting function into (24), then

ui (x, t)= tζi (x)− qi (x) and ui (x, t),t t = 0 (62)

Equation (62) completes the proof of Theorem 4.1. �
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5. Nonexistence

Ericksen [1963] gives the main result of nonexistence theorems as nonuniqueness implies nonexistence.
Ericksen [1965] notes that it is tacitly hoped in elastostatics that problems are well posed when uniqueness
is obtained; however, this is a weak result since it leaves open the possibility of problems where existence
fails even though uniqueness is proven. Therefore, nonuniqueness is used in this section as one possible
test to determine if solutions to the problem defined by Equation (60) are nonexistent.

Gurtin [1972] presents a nonexistence theorem for the mixed problem of elastostatics where the elas-
ticity tensor is symmetric. The difference between the elastostatics problem defined by (60) and the
one considered by Gurtin [1972] is that the third equation of (60) prescribes the strains on 62 and this
could affect the method used to form the null data problem. Let [w,E,S] be the difference between
two solutions to (60) that are not equal modulo a rigid displacement, where w is the difference between
displacements, E is the difference between strains, and S is the difference between stresses. Note, since
E 6≡ 0 in B then wi (x), j 6≡ 0 in B. Recall from the proof of Theorem 3.1 that limx3→h ui (x, t), j = 0
is solely dependent on the 62 boundary conditions, and this result produced the third equation of (60).
Therefore, even though wi (x), j 6≡ 0 in B it must still vanish as interior points approach 62. Thus,

wi (x)= wi (x), j = 0 on 62, and si (x)= Si j (w(x))n j = 0 on 61 ∪5. (63)

Equation (63) corresponds to a nontrivial solution of (60) with null data. Thus, Gurtin’s [1972] nonex-
istence theorem for mixed problems applies to the problem defined by (60), and the task at hand is to
determine if (60) has a unique solution in which case nonexistence of a solution is not proven.

The following proof of uniqueness follows Gurtin’s [1981] theorem for elastostatics. Consider the
problem defined by (60) and note that C is positive definite. Let [X1,E1,S1] and [X2,E2,S2] be two
solutions to (60), where

w(x)= X1(x)−X2(x) and E(x)= E1(X1(x))−E2(X2(x)) (64)

Here [w,E,S] is an elastic state that satisfies the boundary conditions w(x)= 0 on 62 and S(x)n= 0 on
61 ∪5; therefore,

S(x)n ·w(x)= 0 on ∂B. (65)

Substituting (65) into the Theorem of Work and Energy as presented by Gurtin [1981] and noting that
the body forces are zero in (60) results in∫

B
E ·C[E]dV = 0. (66)

Since C is positive definite, (66) can only be true if E(x)= 0, which results in S(x)= 0. Therefore, given
(64) the solution to (60) is unique up to a rigid displacement.

Let w(x)= α+η×x. Here α and η are constant vectors. Given (63) α and η must be identically equal
to zero; therefore, the solution to (60) is unique. Thus, the Nonexistence Theorem proposed by Gurtin
[1972] is unable to detect the nonexistence of a solution to Equation (60).
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6. Remarks on the relaxed Saint-Venant’s problem

Iesan [1987] found the following stress function that satisfies the equilibrium problem for Extension,
Bending, and Torsion posed as a relaxed Saint-Venant’s problem for a material defined by Equation (3).

Si j (3)= Ci j33(aρxρ + a3)− a4Ci jα3eαβxβ + Ti j (xα). (67)

Here 3 is an infinitesimal equilibrium displacement field, aq are constants with q ranging from 1 to 4, Ti j

are the generalized plane stresses that are independent of x3, and eαβ is the two-dimensional alternator
symbol. When considering the problem corresponding to (67), Chirit,ă [1979] and Lyons [2002] found
for certain forms of the elasticity tensor that Sαβ(3)= 0 throughout B.

Given the third equation of (60) and (3)

lim
x3→h

Si j (X)= 0. (68)

Iesan [1987] notes the justification for the relaxed Saint-Venant’s problem is based on Saint-Venant’s
principle, which assumes the effects of posing the problem as a relaxed Saint-Venant’s problem are
negligible except possibly near the ends of the cylinder. Note in Equation (67) that Si j are independent
of x3 throughout B; however, for Equation (68) to hold and for the stresses to be nonzero in some region
of B there must be a x3 dependence. Dependence of the field equations on x3 indicates warping of
the transverse cross sections with the possible result that Sαβ 6= 0 throughout B. This is an important
consideration for anisotropic materials such as trees and bone that are significantly weaker in the xα
directions.
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THERMOELASTIC STABILITY ANALYSIS OF IMPERFECT FUNCTIONALLY
GRADED CYLINDRICAL SHELLS

BABAK MIRZAVAND AND M. REZA ESLAMI

Elastic buckling analysis of imperfect FGM cylindrical shells under axial compression in thermal en-
vironments is carried out, using two different models for geometrical imperfections. The material
properties of the functionally graded shell are assumed to vary continuously through the thickness of
the shell according to a power law distribution of the volume fraction of the constituent materials, also
temperature dependency of the material properties is considered. Derivation of equations is based on
classical shell theory using the Sanders nonlinear kinematic relations. The stability and compatibility
equations for the imperfect FGM cylindrical shell are obtained, and the buckling analysis of shell is
carried out using Galerkin’s method. The novelty of the present work is to obtain closed form solutions
for critical buckling loads of the imperfect FGM cylindrical shells, which may be easily used in engineer-
ing design applications. The effects of shell geometry, volume fraction exponent, magnitude of initial
imperfections, and environment temperature on the buckling load are investigated. The results reveal that
initial geometrical imperfections and temperature dependency of the material properties play major roles
in dictating the bifurcation point of the functionally graded cylindrical shells under the action of axial
compressive loads. Also results show that for a particular value of environment temperature, critical
buckling load is almost independent of volume fraction exponent.

1. Introduction

An early attempt to establish occasional discrepancies between the theoretical and experimental buckling
loads of cylindrical shells was reported in [Donnell 1934]. Later it was determined that the initial imper-
fections and the boundary conditions are the principal cause of disagreement. A well known buckling
analysis of initially imperfect cylindrical shells is presented in [Donnell and Wan 1950; Donnell 1956].
The analysis is based on the equilibrium path of an imperfect cylindrical shell. Donnell’s theory was
later extended and applied to buckling problems by other researchers.

Recent studies on new performance materials have addressed new materials known as the functionally
graded materials (FGMs). These are high-performance heat resistant materials able to withstand ultra
high temperatures and minimize thermal stresses. The stabilization of a functionally graded cylindrical
shell under axial harmonic loading is investigated in [Ng et al. 2001]. Shen [2002; 2003] (see also
[Shen and Noda 2005]) presented the mechanical postbuckling of FGM cylindrical shells with tempera-
ture dependent properties in thermal environments under compressive axial loads and external pressure
using a singular perturbation technique. The results reveal that the characteristics of postbuckling are
significantly influenced by temperature rise and initial geometric imperfections. Shen [2004] also stud-
ied the thermal postbuckling of imperfect functionally graded cylindrical shells. Dynamic buckling of

Keywords: buckling, geometrical imperfection, FGM, cylindrical shell.
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functionally graded cylindrical thin shells under non-periodic impulsive loading is studied by [Sofiyev
2003]. [Shahsiah and Eslami 2003a; Shahsiah and Eslami 2003b] investigated the thermal buckling of
functionally graded cylindrical shells under several types of loadings based on the Donnell and improved
Donnell equations. [Woo et al. 2003; Woo et al. 2005] presented thermomechanical postbuckling analysis
of functionally graded plates and shallow cylindrical shells based on the classical and higher order shell
theories. [Mirzavand et al. 2005; Mirzavand and Eslami 2006] studied the thermal buckling of imperfect
FGM cylindrical shells, under several types of loadings based on the Koiter and Wan–Donnell geomet-
rical imperfection models. Also buckling and free vibration analysis of functionally graded cylindrical
shells subjected to a temperature-specified boundary condition is investigated by [Kadoli and Ganesan
2006].

The present article develops the buckling analysis of imperfect functionally graded cylindrical shells
under axial compression in thermal environments, using two different models for the geometrical im-
perfections; namely, the Koiter and Wan–Donnell Models. The cylindrical shell is graded according to
a power law form through the thickness direction. The boundary conditions are assumed to be simply
supported. The stability and compatibility equations for the imperfect FGM cylindrical shell are obtained,
and the buckling analysis of the shell is carried out, using the Galerkin method, leading to the closed
form solutions.

2. Fundamental equations

Consider a thin circular cylindrical shell of mean radius R and thickness h with length L made of
functionally graded material. The shell is simply supported at its ends and subjected to a uniformly
distributed axial compressive load P combined with thermal loading in the form of uniform temperature
rise. The normal and shear strains at distance z from the shell middle surface are

ε̄x = εx + zκx , ε̄θ = εθ + zκθ , γ̄xθ = γxθ + 2zκxθ . (1)

The middle-surface kinematic relations are

εx = u,x + 1
2β

2
x , εθ =

w+ v,θ

R
+

1
2β

2
θ , γxθ =

u,θ
R
+ v,x +βxβθ , (2)

where u, v, w are the displacement components at points on the shell middle surface, and εx , εθ and γxθ

are the middle surface normal and shear strains, respectively. The indices x and θ refer to the axial and
circumferential directions, respectively. The rotations are

βx =−w,x , βθ =−
w,θ

R
(3)

and the curvature components are

κx = βx,x , κθ =
βθ,θ

R
, κxθ =

1
2

(βx,θ

R
+βθ,x

)
. (4)

The variation of Young’s modulus and of the coefficient of thermal expansion of the functionally
graded material are given by

E(z)= Em + (Ec− Em)
(2z+ h

2h

)ξ
, α(z)= αm + (αc−αm)

(2z+ h
2h

)ξ
, (5)
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(see [Praveen and Reddy 1998]) where the subscripts m and c refer to the metal and ceramic constituents,
and ξ is the volume fraction exponent which takes values greater than or equal to zero. The Poisson’s
ratio ν is considered to be constant across the thickness.

The force and moment resultants are [Mirzavand and Eslami 2006]

Nx = C(εx + νεθ )+ B(kx + νkθ )− T0, Nθ = C(εθ + νεx)+ B(kθ + νkx)− T0,

Mx = B(εx + νεθ )+ D(kx + νkθ )− T1, Mθ = B(εθ + νεx)+ D(kθ + νkx)− T1,
(6)

Nxθ =
1
2C(1− ν)γxθ + B(1− ν)kxθ ,

Mxθ =
1
2 B(1− ν)γxθ + D(1− ν)kxθ ,

(7)

where

C =
h

1−ν2

(
Em+

Ecm

ξ+1

)
, B =

h2 Ecm

2(1−ν2)

( ξ

ξ 2+3ξ+2

)
, D =

h3

4(1−ν2)

(
Em

3
+

Ecm(ξ
2
+ξ+2)

ξ 3+6ξ 2+11ξ+6

)
,

T0 =
1T h
1−ν

(
Emαm+

Emαcm+Ecmαm

ξ+1
+

Ecmαcm

2ξ+1

)
, T1 =

1
1−ν

∫
+h/2

−h/2
Eα1T z dz. (8)

Here 1T is temperature rise from some reference temperature at which there are no thermal stresses.
The equilibrium equations of a perfect FGM cylindrical shell may be derived on the basis of the

stationary potential energy criterion, and are given by [Mirzavand and Eslami 2006]

RNx,x + Nxθ,θ = 0, Nθ,θ + RNxθ,x = 0,(
D−

B2

C

)
∇

4w+
1
R

Nθ −
(

Nxw,xx +
2
R

Nxθw,xθ +
1
R2 Nθw,θθ

)
= 0

(9)

3. Analysis

Here the buckling analysis is presented for two common types of axisymmetric imperfections. According
to the Koiter model, the axisymmetric geometrical imperfection of cylindrical shell is expressed as [Brush
and Almroth 1975]

w∗ =−µh cos
(mπx

L

)
, −

L
2
≥ x ≥+

L
2
, (10)

where m is the number of half wave in x-direction, and µh represents the amplitude of imperfection of
the middle surface of the shell (0≤ µ≤ 1).

Donnell divides the initial imperfections into two combined components. Based on the experience with
buckling problems, only that component which has the same shape as the deflection of the shell under
load, which is w, can be taken into consideration [Donnell and Wan 1950; Donnell 1956]. Accordingly,
the Wan–Donnell model for the axisymmetric radial imperfection is

w∗ =
(k− 1

2

)
w, (11)

where the coefficient k is the imperfection parameter, which is a constant number equal or greater than
1. The magnitude of k depends on the material properties and manufacturing process of the cylindrical
shell. The value of k = 1 represents a perfect shell.
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The unloaded shell in the imperfection form, including w∗, is assumed to be stress free. The small
angle of rotation w,x in the equations for an initially perfect cylinder is replaced by (w+w∗),x . The form
of the equations can be simplified substantially by introducing a circumferential coordinate y= Rθ . Using
Equations (2) and (3) and by introducing the coordinate y, the net strains for the imperfect cylindrical
shell now become

εx = u,x + 1
2w

2
,x +w

∗

,xw,x , εy = v,y +
w
R
+

1
2w

2
,y, γxy = u,y + v,x + (w+w∗),xw,y . (12)

Similarly, Equations (9) for an initially imperfect cylindrical shell are replaced by

Nx,x + Nxy,y = 0, Nxy,x + Ny,y = 0,(
D− B2

C

)
∇

4w+
1
R

Ny −
(
Nx(w+w

∗),xx + 2Nxyw,xy + Nyw,yy
)
= 0.

(13)

The stability equations of FGM cylindrical shell may be obtained by the application of the minimum
potential energy criterion, and are [Mirzavand and Eslami 2006]

Nx1,x + Nxy1,y = 0, Nxy1,x + Ny1,y = 0,(
D−

B2

C

)
∇

4w1+
Ny1

R

−

(
Nx1(w0+w

∗),xx + 2Nxy1w0,xy + Ny1w0,yy + Nx0w1,xx + Ny0w1,yy + 2Nxy0w1,xy

)
= 0, (14)

where u0, v0, w0 are related to the equilibrium configuration, and u1, v1, w1 are arbitrary small neighbor-
ing increments, and Ni j1 represent the force resultants related to the neighboring state. Introducing the
Airy stress function 8 as

Nx1 =8,yy, Ny1 =8,xx , Nxy1 =−8,xy (15)

the first and second stability equations are automatically satisfied and the third stability equation reduces
to(

D−
B2

C

)
∇

4w1+
8,xx

R

−

(
8,yy(w0+w

∗),xx − 28,xyw0,xy +8,xxw0,yy + Nx0w1,xx + Ny0w1,yy + 2Nxy0w1,xy

)
= 0. (16)

The compatibility equation in terms of the Airy stress function and the lateral displacement component
w1 is [Mirzavand and Eslami 2006]

∇
48−C(1− ν2)

(
w1,xx

R
− (w0+w

∗),xxw1,yy + 2w0,xyw1,xy −w1,xxw0,y

)
= 0. (17)

3.1. Koitr imperfection model. Equations (16) and (17) are a set of linear equations in terms of the
variable prebuckling coefficients Ni j0, w0, and the radial geometric imperfection w∗. The prebuckling
coefficients must be known to be able to obtain the buckling load. Consider an imperfect cylindrical shell
made of functionally graded material with simply supported edge conditions and subjected to axial com-
pression load P . For the axisymmetric configuration on the primary path, u0= u0(x), v0≡ 0, w0=w0(x)
[Brush and Almroth 1975]. For the axisymmetric loading, Nxy0 = 0 and from the first equilibrium equa-
tion, however, Nxx0 is seen to be independent of x . Considering the boundary conditions at the cylinder
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ends, where the axial load P is uniformly distributed around the circumference, the axial prebuckling
force resultant is

Nx0 =−
P

2πR
− T0 =−σh− T0. (18)

Using Equation (18) and the equilibrium equations, the other prebuckling coefficients are found to be

Ny0 = C(1− ν2)
w0

R
− νσh− T0, (19)

w0 =
νR(σh+ T0)

C(1− ν2)
+ q cos

mπx
L

, (20)

where

q =−µh
(σh+ T0)

(mπ
L

)2

(
D− B2

C

)(mπ
L

)4
− σh

(mπ
L

)2
+

C(1−ν2)
R2

. (21)

Introducing the prebuckling coefficients from the above equations into (16) and (17), we obtain the
coupled linear equations of stability and compatibility as(

D−
B2

C

)
∇

4w1+
8,xx

R
+

(
(σh+ T0)w1,xx −

C(1− ν2)q
R

cos
mπx

L
w1,yy

−8,yy(µh− q)
(mπ

L

)2
cos

mπx
L

)
= 0,

∇
48−C(1− ν2)

(
w1,xx

R
−w1,yy(µh− q)

(mπ
L

)2
cos

mπx
L

)
= 0. (22)

To solve this system of equations, with the consideration of the simply supported boundary conditions,
the approximate solutions may be considered as

w1 = αmn cos
mπx

L
cos

ny
R
, 8= βmn cos

mπx
L

cos
ny
R
,

+
L
2
≥ x ≥−

L
2
, 2πR ≥ y ≥ 0, m, n = 1, 2, . . . ,

(23)

where m and n are the number of half waves in x and y-directions, respectively, and αmn and βmn are con-
stant coefficients that depend on m and n. Substituting the approximate solutions (23) into Equations (22)
gives the residues R1 and R2. Following Galerkin’s method, R1 and R2 are made orthogonal with respect
to the approximate solutions (23), and then the determinant of the obtained system of equations for the
coefficients αmn and βmn is set to zero. For even values of m the determinant of coefficients has no result,
but for m = 4k± 1 (odd values of m) yields

s1(σh+ T0)
3
+ s2(σh+ T0)

2
+ s3(σh+ T0)+ s4 = 0, (24)

where we have set

s1 =− f1 f2, s2 = f3 f4 f 2
5 + f5( f3 f6+ f4 f7− f1 f8)− 2 f1 f2 f9+ f6 f7− f1 f10,

s3 = f5 f9( f3 f6+ f4 f7− f1 f8)− f1 f2 f 2
9 + 2 f9( f6 f7− f1 f10), s4 = f 2

9 ( f6 f7− f1 f10),
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with

f1 =
πRL

2

((mπ
L

)4
+ 2

(mπ
L

)2( n
R

)2
+

( n
R

)4
)
,

f2 =−
πRL

2

(mπ
L

)2
,

f3 =
±4RLC(1−ν2)

3m

(mπ
L

)2( n
R

)2
,

f4 =
∓4RL

3m

(mπ
L
)2
( n

R

)2
,

f5 = µh,

f6 =
−πRL

2R

(mπ
L

)2
±

4RLµh
3m

(mπ
L

)2( n
R

)2
,

f7 =
πRLC(1−ν2)

2R

(mπ
L

)2
∓

4RLµh
3m

C(1− ν2)
(mπ

L

)2( n
R

)2
,

f8 =
±4RLC(1−ν2)

3m R

( n
R

)2
,

f9 =−

(
D− B2

C

)(mπ
L

)2
−

C(1−ν2)
R2

(mπ
L

)−2
,

f10 =
πRL

2

(
D− B2

C

)((mπ
L

)4
+ 2

(mπ
L

)2( n
R

)2
+

( n
R

)4
)
.

Solving (24) yields σh+ T0 versus the material properties, the shell geometry parameters, the imper-
fection amplitude, and m and n. The critical axial compression load, in which buckling occurs, can be
written as

Pcr = 2πR(σh)min, (25)

where Pcr is the critical axial compression load, and (σh)min is obtained by minimizing the solutions of
(24) with respect to m and n.

3.2. Wan–Donnell imperfection model. Similarly, for an FGM cylindrical shell with the Wan–Donnell
imperfection model, the prebuckling force resultants and prebuckling deflection may be found to be

Nx0 =−
P

2πR
− T0 =−σh− T0, Ny0 = C(1− ν2)

w0

R
− νσh− T0, Nxy0 = 0 (26)

and

w0 = η sin
mπx

L
, (27)

where

η =
4(νσh+T0)/mπR(

D− B2

C

)(mπ
L

)4
−(σh+T0)

(k+1
2

)(mπ
L

)2
+

C(1−ν2)
R2

.
(28)
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Introducing the prebuckling coefficients from the above equations into Equations (16) and (17), result in
the coupled linear equations of stability and compatibility as(

D−
B2

C

)
w1,xxxx +

8,xx

R
−8,yy

(k+ 1
2

)(mπ
L

)2
η sin

(mπx
L

)
+ (σh+ T0)w1,xx = 0,

∇
48−C(1− ν2)

w1,xx

R
= 0.

(29)

To solve the system (29), with the consideration of the simply supported boundary conditions, the
approximate solutions may be considered as

w1 = αm sin
mπx

L
, 8= βmn sin

mπx
L

cos
ny
R
,

L ≥ x ≥ 0, 2πR ≥ y ≥ 0, m, n = 1, 2, . . . ,
(30)

where m and n are the number of half waves in x and y-directions, respectively, and αm and βmn are
constant coefficients that depend on m and n. Substituting the approximate solutions (30) into (29) gives
the residues R1 and R2. Following Galerkin’s method, R1 and R2 are made orthogonal with respect to
the approximate solutions given by (30), and then the determinant of the resulting system of equations
for the coefficients αm and βmn is set to zero, which for the odd values of m yields

η =
−π( n

R

)2(k+1
2

)(8R
3m

) . (31)

Considering (28) and (31), we obtain

P
2πR

=

Cπ(1−ν2)
R2 +π

(
D− B2

C

)(mπ
L

)4
− T0

(k+1
2

)(
−

( n
R

)2( 32
3m2π

)
+π

(mπ
L

)2
)

(k+1
2

)(
−

( n
R

)2( 32ν
3m2π

)
+π

(mπ
L

)2
) . (32)

The critical axial compression load Pcr is obtained by minimizing this with respect to m and n.

4. Numerical results and discussion

The functionally graded materials chosen are zirconium oxide, ZrO2, and the titanium alloy Ti-6Al-4V.
Their material properties P are given in [Touloukian 1967] as functions of temperature T , of the form

P = P0
(
1+ P1T + P2T 2

+ P3T 3) (33)

in which T = T0 +1T and T0 = 300 K (room temperature), and P0, P1, P2, and P3 are temperature
dependent coefficients that are unique to the constituent materials. Typical values for Young’s modulus
E , Poison’s ratio ν, and the coefficient of thermal expansion α of zirconium oxide and titanium alloy are
listed in Table 1. (A term in T−1 in Touloukian’s version of (33) has coefficient zero in this case and is
omitted.)

Here three comparison cases are presented for the validation of the results. The first comparison is
based on the buckling under axial compression in the absence of thermal loading. Let us assume µ= 0
and k = 1, in the Koiter and Wan–Donnell models, respectively, which corresponds to the equations for
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ZrO2 Ti-6Al-4V
P0 P1 P2 P3 P0 P1 P2 P3

E (Pa) 244.27·109
−1.371·10−3 1.214·10−6

−3.681·10−10 122.56·109
−4.586·10−4 0 0

α (Pa) 12.766·10−6
−1.491·10−3 1.006·10−5

−6.778·10−11 7.5788·10−6 6.638·10−4
−3.147·10−6 0

ν 0.28 0 0 0 0.28 0 0 0

Table 1. Temperature-dependent thermoelastic coefficients for zirconium oxide ZrO2

and titanium alloy Ti-6Al-4V. From [Touloukian 1967].

thickness ratio, h/R 0.003 0.004 0.005 0.006

this article (Koiter model) 2.40 4.26 6.65 9.58
this article (Wan–Donnell model) 2.52 4.26 6.77 9.66
[Brush and Almroth 1975] 2.40 4.26 6.65 9.58

Table 2. Buckling loads Pcr (in MN) for perfect homogeneous shells, in the absence of
thermal load (E = 70 GPa, α = 23× 10−6/K, ν = 0.3, L/R = 1).

volume fraction exponent ξ 0.0 0.2 0.5 1.0 2.0 3.0 5.0

this article (Koiter model) 85.90 95.65 106.49 118.74 133.12 141.62 151.59
this article (Wan–Donnell model) 87.89 97.68 108.91 121.81 137.05 145.98 156.27
[Shen 2004] 86.65 96.03 106.54 118.45 132.44 140.69 150.28

Table 3. Buckling temperature difference 1Tcr for perfect FGM cylindrical shells, in
the absence of axial compression (h/r = 0.025, L/R = 0.866).

a perfect cylindrical shell. If, in addition, we take Ec = Em and αc = αm (pure homogeneous metallic
shell), the solutions may be validated with the closed form solution obtained in [Brush and Almroth
1975] when 1T = 0. Table 2 shows the results obtained for a cylindrical shell made of pure aluminum
(L/R = 1) with the Koiter and Wan–Donnell imperfection models discussed in this article, together
with the values given by the closed form solution of Brush and Almorth. The comparison for the two
imperfection models, when imperfections are eliminated, is well justified.

Other comparisons are based on the buckling under thermal loading in the absence of axial compres-
sion. Assume µ= 0 and k = 1, in the Koiter and Wan–Donnell models, respectively (perfect cylindrical
shell). For uniform temperature rise loading, in the absence of axial compression, the solution may be
validated with the results obtained in [Shen 2004] for FGM shells made from Si3N4/SUS304 as shown
in Table 3. If, in addition, we take Ec = Em and αc = αm (homogenous shell), the solution may be
validated with the closed form solution obtained in [Eslami et al. 1996] for an isotropic cylindrical shell,
as shown in Table 4. As seen, in all cases the comparisons are well justified.

Figure 1 plots the variation of the ratio of critical load for the imperfect FGM cylindrical shell Pcr

to the critical load of the corresponding perfect shell Pps , subjected to axial compression and under
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Si3N4 SUS 304

h/r 0.003 0.005 0.010 0.003 0.005 0.010

this article (Koiter model) 216.42 361.01 721.29 103.07 171.84 343.52
this article (Wan–Donnell model) 216.55 360.84 721.55 103.14 171.86 343.64
[Eslami et al. 1996] 216.61 360.79 722.03 103.16 171.94 343.87

Table 4. Buckling temperature difference 1Tcr for perfect homogenous cylindrical
shells, in the absence of axial compression. (L/R = 0.866)
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Figure 1. Influence of imperfection magnitude. Left: Koiter imperfection model; right
Wan–Donnell imperfection model.

different uniform temperature rise and based on the Koiter imperfection parameter µ and Wan–Donnell
imperfection parameter k for L/R = 1.2, h/R = 0.008, and ξ = 2. As the magnitude of imperfection
increases, the buckling ratio decreases. This effect is stronger as the uniform temperature rise increases.

The influence of cylindrical shell geometry on critical axial compression load Pcr under a uniform
temperature rise 1T = 30 K for various values of the volume fraction exponent ξ = 0.5, 1, 2 (as well as
pure metal and pure ceramic) are illustrated in Figures 2 and 3. Figure 2 shows the buckling loads versus
h/R for two imperfection models when the Koiter imperfection amplitude and Wan–Donnell imperfec-
tion parameter are 0.5 and 1.2, respectively, and L/R = 1. As the ratio h/R increases, the buckling load
increases. Figure 3 represents the variation of buckling load versus L/R for two imperfection models
when the Wan–Donnell imperfection parameter and the Koiter imperfection amplitude are 2 and 0.5,
respectively, and h/R = 0.005. The critical bucking load increases as the ratio L/R increases.

The variation of Pcr versus volume fraction exponent are plotted for different values of environment
temperature in Figure 4 for the two imperfection models. Here, the Koiter imperfection amplitude and
Wan–Donnell imperfection parameter are 0.5 and 1.2, respectively, L/R = 1.2, and h/R = 0.008. As
seen in this figures, for a particular value of environment temperature (here, T = 350 K for the Koiter
model and T = 360 K for the Donnell model) the critical buckling load is almost constant for different
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Figure 2. Variation of critical buckling load with h/R according to volume fraction
exponent. Left: Koiter imperfection model; right Wan–Donnell imperfection model.
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Figure 3. Variation of buckling load with L/R according to volume fraction exponent.
Left: Koiter imperfection model; right Wan–Donnell imperfection model.

values of ξ , provided that the other parameters are kept constant. For temperatures less than this par-
ticular temperature, critical buckling load decreases as the volume fraction exponent ξ increases, and
for temperatures greater than this particular temperature, critical buckling load increases as the volume
fraction exponent ξ increases. This particular temperature, extremely depends on the shell parameters
such as material properties, geometrical parameters, and magnitude of the initial imperfection. Note
that negative values of Pcr in Figure 4, left for T = 420 K(1T = 120 K) display situations that FGM
cylindrical shell will buckle before applying any axial compression load, through existing thermal load
(thermal buckling).
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Figure 4. Critical buckling load of shell versus volume fraction exponent ξ and tempera-
ture T . Left: Koiter imperfection model; right Wan–Donnell imperfection model.

5. Conclusion

The equilibrium, stability, and compatibility equations for a simply supported imperfect functionally
graded cylindrical shell are derived. The buckling analysis of imperfect FGM cylindrical shell under
axial compressive load in thermal environments is investigated for two models of initial geometric imper-
fections, leading to the closed form solutions for the buckling load. The results reveal that effect of initial
imperfections on decreasing the buckling load is stronger for larger magnitudes of the thermal loading.
It is also shown that the buckling load of an imperfect functionally graded cylindrical shell subjected
to thermomechanical loads increases with increasing the shell thickness and/or increasing shell length.
Also results show that for a particular value of environment temperature, critical buckling load is almost
independent of volume fraction exponent. Beyond this temperature, critical buckling load increases with
increasing the volume fraction exponent and below that, critical buckling load decreases with increasing
the volume fraction exponent.
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NONLINEAR VIBRATION OF AN EDGE-CRACKED BEAM WITH A COHESIVE
ZONE, I: NONLINEAR BENDING LOAD-DISPLACEMENT RELATIONS FOR A

LINEAR SOFTENING COHESIVE LAW

PRASAD S. MOKASHI AND DANIEL A. MENDELSOHN

Part I of this paper describes the computations of the quasistatic nonlinear moment-slope relation for
an edge-cracked beam element with a strictly linear softening cohesive zone ahead of the crack tip. A
static plane stress linear elastic boundary element analysis is used in which the cohesive nonlinearity
appears in the crack plane boundary conditions only. An iterative solution scheme is used to determine
the unknown cohesive zone length, the cohesive displacement jumps, and the bending mode J -integral.
Interpreting the moment-slope relation as a generalized load-displacement relation the bending com-
pliance (and slope) at a given applied moment are calculated from computed J -integral values over a
grid of applied moment and crack-length values. The dependence of the moment-slope relation on the
cohesive law parameters is studied and the various computed moment-slope relations are then used in
Part II to model the dynamic effect of the cohesive zone and law on the free-vibration of an edge-cracked
simply-supported beam.

1. Introduction

The major kinematic effect of an edge-crack in a beam is the discontinuity the crack allows in both the
net rotation and the net transverse deflection across the crack plane, Figure 1. The discontinuities are
resisted by the bonded ligament in an elastic manner if the crack is in small-scale yielding. This allows
the use of linear massless rotational and/or shear springs to represent the crack plane in thin structures
with through cracks. The idea originated with the line-spring model of Rice and Levy [1972] applied to
a static analysis of a through crack in a plate in bending. The model relates the jumps in the rotation
1θ and the jump in transverse deflection 1v to the applied bending moment M and the shear force
Q at the crack plane, respectively. For cracks in small-scale yielding for which linear elastic fracture
mechanics (LEFM) applies, the spring stiffnesses (or their reciprocals, the compliances) may be found
from a two-dimensional elastic analysis of a cracked beam shaped geometry as found in many fracture
mechanics handbooks [Tada et al. 1973; Yokoyama and Chen 1998] as a function of crack length, beam
depth, and elastic properties. If the crack tip is attended by a cohesive zone, then the extent of the zone
and the plastic stretch in the cohesive zone depend on the load which causes the stiffness (compliance)
to depend on the load and the load-displacement relation to be nonlinear. The purpose of this paper is
to compute the nonlinear bending load-displacement relation (moment-slope relation) for an edge-crack
with a linear softening cohesive law and to study how it depends on the cohesive law parameters.

Keywords: cohesive zone, linear softening, compliance, J -integral, nonlinear load-displacement.
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M M Q

∆θ

Q

∆ v

Figure 1. Left: Jump in slope 1θ at the crack plane due to the bending moment M .
Right: Jump in deflection 1v at the crack plane due to the shear force Q.

Fracture process zones are typically characterized by nonlinear softening behavior in which the crack
plane stress decreases with increasing irreversible deformation of the process zone. The particular re-
lationship between the cohesive traction and the deformation is known as the cohesive or softening
law. The softening zone is in general surrounded by a nonlinear plastic hardening region. Four general
situations may be delineated. (i) Both the softening and hardening regions are small compared to the
K-dominant region surrounding the crack tip, in which case LEFM is appropriate. (ii) The softening
zone is small and is surrounded by a large plastic hardening zone, in which case elastic-plastic fracture
mechanics is appropriate. (iii) Both the softening zone near the crack plane and the plastic hardening
zone are appreciably large, in which case both cohesive zones and a plastic hardening region need to be
modeled. (iv) The softening zone is confined to a region near the crack plane and is large compared to a
negligible small region of plastic hardening which surrounds the softening zone. This requires a model
with only an infinitesimally thin cohesive zone surrounded by elastic material. Typically (i) is referred to
as brittle behavior, (ii) and (iii) are ductile behavior, and (iv) is quasibrittle behavior. The present work
is concerned with the latter category, which is exhibited by a variety of materials: concrete, rock, ice,
certain sands and clays, toughened ceramics, fibrous composites, brittle matrix composites, and a variety
of bonded joint geometries and types (adhesive, weld, solder) [Hillerborg et al. 1976; Petersson 1981;
González et al. 2004; Cox et al. 1989; Sensmeier and Wright 1989; Bao and Suo 1992; Suo et al. 1993;
Botsis and Beldica 1994; Zok and Hom 1990; Bosco and Carpinteri 1995; Bao and McMeeking 1995;
Xu et al. 1995; Fett et al. 1995; 1994; Anderson and Stigh 2004; Shetty and Spearing 1997; Yang et al.
1999; Cavalli et al. 2005; Yang et al. 2004; Sorensen 2002; Plaut and Ritchie 2004; Wei and Hutchinson
1998].

Cohesive zones were first introduced into the mathematical analysis of the crack problem nearly si-
multaneously by Dugdale [1960], Bilby et al. [1963], and Barenblatt [1962], for application to ductile
metals. These original analyses assumed that the cohesive stress is constant over the entire cohesive zone.
Hillerborg et al. [1976] applied cohesive modeling to quasibrittle materials like concrete and were the
first to introduce a softening cohesive law in which after reaching a peak, the cohesive traction reduces
as the plastic stretch increases. Many of the studies referenced in the previous paragraph note that all or a
significant part of the cohesive law is in a softening mode. Linear and bilinear softening cohesive models
have also been used, for example, by Geubelle and Rice [1995], Yang and Ravi-Chandar [1996], and
Bažant and Planas [1998] for metals, concrete, and other quasibrittle materials. Exponential and other
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nonlinear softening models have been used by Geubelle and Baylor [1998], Bažant and Li [1997], Li and
Bažant [1997], Panasyuk and Yarema [2001], and Panasyuk et al. [2003] in the context of quasibrittle
materials. Linear softening models have been used in boundary element formulations by Ohtsu and
Chahrour [1995] and Aliabadi [1997] for quasibrittle materials like concrete to study crack propagation.
Hanson and Ingraffea [2003] and Hanson et al. [2004] have used linear and bilinear softening cohesive
models in numerical crack growth simulations in concrete using the finite element method.

From the work cited above it is clear that cohesive zones occur in many real material systems and
that the use of cohesive zone models in computational settings is convenient, useful and prevalent today.
Virtually all methods in the literature for determining the form or parameters of a cohesive law for a
particular material have been based on destructive testing to failure. This includes all of the work cited
above in which this crucial parameter identification is actually carried out. The present work is one of two
parts in an effort to develop a nondestructive technique for characterizing the cohesive law of a structural
material, or in the case of an interface crack, the cohesive law of the bond or interface material itself.
The characterization is based on the nonlinear vibration response of a model of an edge-cracked beam
in which the crack plane is replaced by a bending spring and a transverse shear spring and the beam is
modeled using Euler–Bernoulli beam theory. Assuming nonlinear behavior in bending only, the spring
stiffnesses are calculated in this part of the paper from two-dimensional fracture mechanics solutions for
beam like geometries with edge-cracks and mode I cohesive zones. The second part of the paper uses
these stiffnesses in a nonlinear beam vibration analysis. In this way the forward problem is posed and
solved: that is, for a given cracked beam and cohesive law, the nonlinear beam vibration response at a
prescribed static preload is predicted. The eventual goal is to solve the inverse problem of interpreting
measured nonlinear vibratory response to ascertain the parameters of a cohesive law for a known crack
length and superimposed static preload. The rationale for the assumption of a static preload is given in
detail in the second part of the paper.

Specifically the objective of the first part of the paper is to develop a methodology for computing
the nonlinear generalized load-displacement (moment-slope) relationship in a two dimensional edge-
cracked beam-like geometry with a linear softening cohesive crack ahead of the crack tip subjected to
pure bending. The nonlinear spring stiffness for use in the beam vibration analysis is calculated from
the nonlinear moment-slope relationship. The analysis begins by solving the crack and cohesive zone
boundary value problem using a two-body, iterative, direct boundary element method (BEM). By virtue
of the method of solution the results also apply to the situation of two beams bonded together with an
edge crack in the plane of the bond. For each softening law studied, the J -integral is obtained from the
BEM analysis for a range of crack lengths and applied moments. Then, using the relationship between
the J -integral and generalized load and displacement (bending moment and jump in slope across the
crack plane) for the cracked geometry, the compliance is derived in terms of the J -integral. Once the
compliance is found at a given load the generalized displacement (jump in slope across the crack) may
be calculated. This yields the predicted generalized load versus the displacement relationship, which is
in turn used in the nonlinear beam vibration analysis presented in the second part of this paper.

The paper starts with a discussion of crack plane compliance and the J -integral and their relationship.
This is followed by the BEM formulation and some results on the dependence of the cohesive response
on the loading and the cohesive law parameters. Next we describe the numerical analysis for obtaining
the generalized load versus displacement relation, and present the curves for a variety of cohesive laws.
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2. Crack plane compliance and the J-integral

For an Euler–Bernoulli beam of rectangular cross section and containing a through-surface edge-crack,
if axial forces are neglected and only shear and bending loads are considered, then the crack plane is
subjected to a net shear force Q and a net bending moment M . The presence of a crack causes a relative
jump in displacement and rotation of one flank of the crack relative to the other as shown in Figure 1
for a cracked element in an edge-cracked beam. 1θ represents the jump in slope and 1v represents the
jump in the displacement. The increased compliance due to the presence of the crack can be lumped
into a continuous spring of zero width that connects the two faces of the crack [Rice and Levy 1972]. If
the beam is now divided at the crack plane into two regions and the crack plane replaced by line(planar)-
springs of zero-width, the compliance relations for the line-springs may be written as

1θ = θ2− θ1 = λθM, (1)

1v = v2− v1 = λvQ, (2)

where λθ and λv are the compliances due to bending moment and shear force respectively. The springs
relate the shear force and bending moment to the jump in deflection and rotation, respectively, across
the crack plane. Treating each of these as global or generalized load and load-point displacement pairs,
basic fracture mechanics principles state that the bending compliance can be written in terms of JI, the
mode I contribution to the J -integral, as [Kanninen and Popelar 1985]

λθ (M̄, ā)=
W
b

1
M̄

∫ ā

0

∂ JI(M̄, ā)
∂ M̄

d(ā). (3)

and similarly that the shear compliance may be written in terms of JII, the mode II contribution to the
J -integral as

λv(Q̄, ā)=
W
b

1
Q̄

∫ ā

0

∂ JII(Q̄, ā)
∂ Q̄

d(ā). (4)

Since in the present two-dimensional setting JI is actually a function of applied moment per unit
thickness and nondimensional crack length to beam depth ratio, we have introduced normalized applied
loads and crack length M̄ ≡ M/b, Q̄ ≡ Q/b, and ā ≡ a/W . Here b is the (out of plane) beam thickness,
a is the crack length, and W is the beam depth; see Figure 2. If the crack tip is elastic or in small-scale
yielding (negligible cohesive zone size) then the compliance relations are linear, the compliances are
independent of applied loads, and the J -integral components are proportional to their respective applied
load. The J -integral components and the compliances may in this case be written directly in terms of
the stress-intensity factors, which are well-tabulated for edge-cracked specimens [Yokoyama and Chen
1998; Tada et al. 1973; Wilson 1970; Tharp 1987]. However, if there is cohesive damage ahead of the
crack tip then the J -integral components depend nonlinearly on the applied load and the integrals in (3)
or (4) must be used. This requires that the J -integral be evaluated at a fairly fine grid of applied load and
crack-length values [Mendelsohn 2006]. For convenience, the present analysis confines the nonlinearity
to the bending spring, and hence the shear compliance can be calculated from the formulas in [Yokoyama
and Chen 1998]. The focus from here on in this paper is then on the nonlinear bending compliance in
(3) and the resulting nonlinear M̄–1θ relation. This requires only the consideration of bending loading
leading to mode I loading at the crack tip. The J -integral, which appears in (3), is computed from results
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Figure 2. Left: Boundary element geometry showing the crack plane as the interface
between two fictitious bodies having boundaries B1 and B2. The couples at the ends load
the model in bending (mode I). Right: Interface divided into three regions.

from a two-dimensional elastostatic BEM analysis of an edge-crack with a planar cohesive zone in a
beam shaped homogeneous elastic solid subjected to edge-moments as shown in Figure 2, left. The
elastic crack tip is a distance a from the bottom of the beam and the end of the cohesive zone is a
distance c from the bottom of the beam, Figure 2, right. The cohesive law is the relationship between the
normal traction t and the cohesive stretch δ in the cohesive zone which is modeled by a jump in normal
displacement across the crack plane:

δ = ux1=0+
1 − ux1=0−

1 , (5)

where u1 denotes displacement in the x1 direction normal to the crack plane. δt is the value of δ at
x2 = −

1
2 W + a; see Figure 3, left. A linear softening cohesive law is shown in Figure 3, right, and is

written as
t (δ)= t0

[
1− δ

δ0

]
, (6)
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Figure 3. Left: Free body diagram of the cohesive zone. Right: Linear softening cohe-
sive law showing the extent of softening.
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where t0 is the peak cohesive traction and δ0 is the critical value of cohesive crack opening displacement
at which extension of the elastic crack tip or crack growth occurs. The focus is on obtaining the cohesive
response to loadings such that the entire cohesive law is exercised, but crack growth does not occur.
Following the development in [Kanninen and Popelar 1985] but replacing the Dugdale cohesive law, for
which the traction is constant and equal to t0 over the entire cohesive zone, with the linear softening law
in (6) we obtain

JI =

∫ δt

0
t (δ)dδ = t0δt

[
1−

1
2
δt

δ0

]
, (7)

which is the area under the exercised portion of the cohesive law. We restrict δt to be less than its value
at crack growth δ0. As δt approaches δ0, JI approaches the critical value for crack growth, JI0 =

1
2 t0δ0,

a third parameter in addition to t0 and δ0 which can be used to characterize the cohesive law. Crack
growth is not modeled in order to keep the envisioned free-vibration experiments as simple as possible.
The crack tip opening displacement δt is solved for using a two-body, iterative, direct boundary element
formulation for an edge crack in a beam shaped solid subjected to pure bending, and the corresponding
J -integral from (7).

3. Boundary element formulation and solution scheme

The beam shaped geometry with an edge crack subjected to pure bending is shown in Figure 2, left. The
total length L of the beam is taken large enough compared to W to make the crack tip fields independent
of any end effects at the load points and for this two-dimensional elasticity model to behave like an
Euler–Bernoulli beam. The beam is further divided into two fictitious bodies with the crack plane as
the interface between them. The interface is divided into three regions: (i) ligament, (ii) cohesive zone -
with a linear softening t − δ law, and (iii) open crack as shown in Figure 2, right. B1 and B2 represent the
boundaries of the two bodies that are discretized into elements with constant tractions and displacements.
The direct boundary element formulation is applied to each of the two bodies which make up the beam
under consideration. Discretizing B1 and B2 into N elements each, for each body (k = 1, 2) the reciprocal
identity gives the two matrix equations

[kUi j ][k t j ] + [k Ti j ][ku j ] = [0], k = 1, 2. (8)

The boundary traction and displacement N -vectors are [k t j ] and [ku j ], where the leading subscript refers
to the body and the trailing subscript refers to the direction of traction or displacement. [k Ti j ] and [kUi j ]

with i, j = 1, 2 are the infinite space Green’s matrices for tractions and displacements, respectively in
body k. Details of these matrices can be found in [Brebbia and Dominguez 1989] and in the present
notation in the doctoral thesis by Young [1994]. The boundary conditions in the crack plane are now
described. The bending loading considered leads to a mode I cohesive zone only. A complete formulation
with mode I and II cohesive behavior has also been completed and used in the cracked bimaterial beam
problem [Mokashi 2007], but is not presented here. Starting with the ligament, normal, and tangential
displacements across the fictitious interface are continuous and normal and shear tractions are equal and
opposite (stresses are continuous). In the cohesive zone the tangential displacement and the shear traction
are continuous across the interface, just as they are in the ligament, while the normal tractions are equal
and opposite on either side of the interface and related to the normal displacement jump through the
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cohesive law, (6). In the open crack both the normal and shear tractions on either crack surface are zero.
The open crack surfaces and the boundaries B1 and B2 (except the load points) are traction free. The
point loads creating the couples are modeled as constant applied normal traction over the element at
whose node they act. These boundary conditions give rise to a 4N × 4N linear system in the remaining
unknown tractions and displacements. The matrix equation corresponding to each boundary condition
consists of all rows of each of the Green’s submatrices and only those columns corresponding to the node
at which the boundary condition is applied. The details of the matrices that give rise to the final linear
system can be found in the doctoral thesis by Mokashi [2007]. In addition to the 4N unknown tractions
and displacements, the length of the cohesive zone is also unknown.

An automatic iterative solution scheme is employed to obtain the unknown tractions and displacements
and the extent of the cohesive zone. The scheme begins with an initial guess of the number of elements
that constitute the extent of the cohesive zone. The evaluated normal traction value in an element of
the cohesive zone nearest to the ligament is then compared with t0. If it is larger than t0, iterations
are performed on the number of elements in the cohesive zone until the value of the normal traction in
the first element of the ligament, nearest to the cohesive zone, is less than t0. The other constraint for
the solution is that in the open crack there is no interpenetration of material, that is, the crack exhibits
opening displacements only. The solution for displacements is automatically checked for this condition.
A representative solution for the normal tractions and displacements at the interface under predominantly
mode-I conditions is shown in Figure 4. The interface is composed of 100 elements which provides a
sufficient amount of refinement to obtain convergent results. The markers in the rightmost pane of the
figure show the traction values in the elements in the cohesive zone, thus indicating the extent to which
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the linear cohesive softening law has been exercised (how close δt is to δ0) and the number of elements
in the cohesive zone, and hence its length. The element nearest the crack tip has the smallest traction
and largest displacement δt , while the traction approaches t0 and the displacement goes to zero at the
end of the cohesive zone. In this example the elastic crack is 42 elements long, the cohesive zone is 18
elements long, and δt is about 75% of its critical value. The solution shown in Figure 4 is for a material
with shear modulus G = 28, 000 MPa, Poisson’s ratio ν = 0.3 and the cohesive law is t0 = 50 MPa and
δ0 = 0.0008 m. In all simulations W is chosen to be 12.5 mm. The total number of elements on the
boundaries of both the bodies is 840 making the total size of the linear system 1680× 1680.

4. Extent of cohesive zone and softening

Several linear softening cohesive laws with three basic kinds of parameter variations are considered in
this section. For each, the beam is quasistatically loaded such that significantly large cohesive zones are
formed ahead of the crack tip. For a given peak cohesive traction and displacement the nonlinear M̄–1θ
relation is obtained over a range of applied moment per unit thickness that exercises the linear softening
cohesive law as much as possible, which in turn creates as large as possible cohesive zones, both without
crack growth. Before obtaining the load-displacement relations we discuss the dependence of each of
these features of the cohesive behavior on the applied moment, peak cohesive traction t0, critical opening
displacement δ0, and the critical J -integral, JI0.

First, as expected, for a given cohesive law and at a given crack length, as the applied moment is
increased the cohesive zone length increases as well. When several linear softening cohesive laws having
the same value of t0 and different values of δ0 are considered, it is observed that for a given crack length
and applied moment smaller cohesive zones are formed for the steeper cohesive laws compared to the
less steep cohesive laws. As δt for the steepest cohesive law approaches its critical value, cohesive zones
just begin to form for the less steep cohesive laws. The length of the cohesive zone as it approaches δ0 is
very small for the steepest cohesive law. Now if several cohesive laws with different values of t0 and the
same value of δ0 are considered then for a given crack length and applied moment the size of the cohesive
zone is significantly smaller for the more steep cohesive law compared to the less steep cohesive law.
Longer cohesive zones are obtained as δt approaches δ0 for the least steep cohesive law. Similar trends
are obtained when several cohesive laws having the same value of JI0, but different values of t0 and δ0,
are considered. As the softening curve becomes steeper the size of the cohesive zone becomes markedly
smaller, whereas for the less steep cohesive laws very long cohesive zones are obtained. Details of the
trends are found in [Mokashi 2007].

A representative variation of the dimensionless J -integral, J/JI0 with dimensionless crack length
a/W for various values of the applied moment per unit thickness M̄ is shown in Figure 5. The cohesive
law on which these results are based is t0 = 50 MPa, δ0 = 1.8(10−3)m, and JI0 = 45(103)N/m. Similar
results for several cohesive laws are also found in [Mokashi 2007].

5. Numerical analysis for obtaining nonlinear load-displacement curves

The nonlinear M̄–1θ curves for a given crack length are found by first obtaining the bending compliance
λθ as a function of applied moment by evaluating the integral in (3). Noting that the integral is over crack
length, this requires knowledge of d J/d M̄ over a grid of applied moment and crack length values. Next



NONLINEAR VIBRATION OF AN EDGE-CRACKED BEAM WITH A COHESIVE ZONE, I 1581

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

a / W

J 
/ J

Io

 

 

390.63 N
527.34 N
664.06 N
800.78 N
937.50 N
1093.75 N
1230.47 N

Figure 5. Variation of the dimensionless J -integral (J/JI0) with the dimensionless
crack length (a/W ) at various values of the normalized moment M̄ (as indicated by
the markers in the legend). t0 = 50 MPa, δ0 = 0.0018 m and JI0 = 45(103)N/m.

1θ is found from (1) for a range of values of M̄ and the calculated λθ . At a given crack length a/W the
analysis starts by using Newton’s method to obtain the interpolation polynomial JN−1(M̄) from the J -
integral values obtained from the boundary element calculations at various values of applied moment M̄ :

JN−1(M̄)=
N∑

i=1

J
[
M̄1, . . . , M̄i

] i−1∏
j=1

(
M̄ − M̄ j

)
. (9)

For N points in the original data, JN−1(M̄) is a polynomial of order (N − 1). The coefficients of this
interpolating polynomial are obtained using divided differences in the standard way and are denoted by
J
[
M̄1, . . . , M̄i

]
[Atkinson and Han 2004]. Using the original values of applied moment as the skeleton,

a denser grid of moment values is created with many points between each of the original values. Using
the interpolation polynomial, the values Jn are generated on this finer grid, where the index n ranges
over this fine grid of values. The derivative in (3), d J/d M̄ , is obtained using central differences. This
procedure is repeated to obtain curves of d J/d M̄ at several crack lengths ā that range between 0.06 and
0.5. At a given moment M̄ , an interpolating polynomial of order (N − 1) for d J/d M̄ as a function of ā,
with values of J -integral at N crack lengths ā, can be written(d J (ā)

d M̄

)
N−1
=

N∑
i=1

d J
d M̄

[
ā1, . . . , āi

] i−1∏
j=1

[
ā− ā j

]
. (10)

The coefficients of this interpolating polynomial are again obtained using divided differences and are
denoted by d J

d M̄

[
ā1, . . . , āi

]
. Using the polynomial functions for d J

d M̄
(ā) obtained at several values of M̄ ,

several data points (d J/d M̄)n are now created at multiple values of crack lengths ān for crack lengths
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ranging from 0 to 0.5. The integral in (3) over crack length is, at a given moment M̄ , obtained numerically
using the trapezoidal rule. The final expression then for λθ can be written as

λθ =
W
b

1
M̄

n∑
i=1

1
2

[(d J (ā)
d M̄

)
i
+

(d J (ā)
d M̄

)
i+1

]
hā. (11)

where hā denotes the increment in crack length ā. The variation of the dimensionless compliance λθ/λθe

with dimensionless crack length ā is shown in Figure 6.
The curves are for various values of moment ratio MR obtained using a set of values of the J -integral

corresponding to the cohesive law (t0 = 50 MPa, JI0 = 45(103)N/m) used to generate the curves in
Figure 5. The normalization constant λθe is the elastic compliance obtained using a set of values of the
J -integral for the same beam geometry without considering a cohesive zone ahead of the crack tip. The
J -integral for the linear elastic case is obtained in the standard way from the stress intensity factor KI

that is evaluated from the near tip stress fields using a similar boundary element code [Young 1994].
The numerical scheme just discussed is used to obtain the elastic compliance λθe from those boundary
element results. For reference purposes, the variation of the elastic compliance with crack length is
shown in Figure 7.

The normalization is used because both the cohesive and elastic compliances are proportional to (W/b).
Figure 6 shows that at higher crack lengths the increase in compliance due to cohesive deformation ahead
of the crack tip is less pronounced than at lower crack lengths. This is due to the almost pure bending
like applied stress distribution on the crack plane. For a crack length of half the depth the entire cohesive
zone lies in a region of what would be compressive normal stress in the absence of the crack. This effect
is more dominant at higher values of applied moment M̄ and affects the elastic compliance for the same
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Figure 7. Variation of elastic compliance (λθe) with dimensionless crack length a/W .

geometry much less as long as the crack tip itself is below the mid-plane. At very low crack lengths and at
low load levels the values of compliance are not reliable due to the inaccuracies in the cohesive zone size
and in numerically obtaining the derivative d J/d M̄ . Only reliable results are reported. Over a middle
range of crack lengths the results show consistently that the elastic compliance accounts essentially for
the crack length effect and that the additional increase in compliance due to cohesive stretching depends
primarily on the applied moment and not on the crack length itself. The dependence of the normalized
compliance on the applied moment at a given crack length is itself nonlinear. In order for the compliance
to be about 10% larger than the elastic, the load must be 65% more than the elastic moment. But, as
the load increases the rate of increase in the inelastic compliances increases and a 50% increase in the
inelastic compliance occurs for a shorter crack at 125% more load than the elastic moment.

At a given crack length the jump in rotation 1θ is evaluated by solving (1) at the N discrete calculated
values of the compliance, (11), at the chosen values of applied moment. To obtain a smooth M̄–1θ curve
Newton’s method of interpolation is used again to obtain a polynomial M̄N−1(1θ) of order (N − 1)

(
M̄(1θ)

)
N−1 =

N∑
i=1

M̄[1θ1, . . . ,1θi ]

i−1∏
j=1

(1θ −1θ j ). (12)

where M̄[1θ1, . . . ,1θi ] are the coefficients of the polynomial obtained by divided differences. Normal-
ized M̄–1θ curves for the single specific cohesive law (t0 = 50 MPa, JI0 = 45(103)N/m) at several crack
lengths are shown in Figure 8. 1θe represents the elastic value of 1θ at ā = 0.5 obtained from the elastic
compliance.

To study the effect of the cohesive law parameters, t0 and δ0 on the M̄–1θ relationship, 11 cohesive
laws in were considered; see Table 1 on the right. The present study is exploratory and intended to deter-
mine the feasibility of the overall nondestructive characterization scheme and is not tied to a particular
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Figure 8. Normalized M̄–1θ curves at various crack lengths. t0 = 50 MPa and JI0 = 45(103)N/m.

material or cohesive process at this point. Therefore the parameter study was performed at only one value
of Young’s modulus and Poisson’s ratio and a range of cohesive law parameters and applied moment such
that the cohesive laws are well exercised, yet crack growth does not occur, that is, J does not exceed
it’s critical value JI0. The critical J -integral values of all of the laws listed below are all less than, or of
the order of magnitude of, the value corresponding to the critical stress intensity factor for LEFM crack
growth of 60 MPa

√
m.

Figure 9 shows the M̄–1θ curves for the various cohesive laws in Table 1. All results are for a beam
depth of 1.25 m by appropriate scaling. The curves are clearly grouped by the value of the peak cohesive
traction t0 and show an increase in 1θ for decreasing peak traction at a given moment. Within a group at
a particular peak traction t0 there is a slight dependence on the critical displacement δ0 (or equivalently
the critical J integral JI0). The main feature of that dependence is that the values of the applied moment
at which (a) the cohesive law just begins to be exercised, and (b) crack growth occurs both increase with
increasing δ0 (JI0). These values of applied moment are the approximate limits of each of the M̄–1θ
curves shown in Figure 9. These curves provide the properties of the springs used to represent the crack
plane in the dynamic beam vibration analysis and are accurate enough to carry out a two-term Taylor
series expansion of the data at a given static load level.

t0 δ0 = 0.8 mm δ0 = 1.3 mm δ0 = 1.6 mm δ0 = 1.8 mm

25 MPa 7 (16.3 N/m) 4 (20 N/m) 1 (22.5 N/m)
50 MPa 11 (20 N/m) 8 (32.5 N/m) 5 (40 N/m) 2 (45 N/m)
75 MPa 9 (48.8 N/m) 6 (60 N/m) 3 (62.5 N/m)

Table 1. Cohesive laws: the first number is the law number; the number in parentheses
is JI0 for the law.
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Figure 9. A plot of the M̄–1θ relationship for the cohesive laws in Table 1 for a dimen-
sionless crack length of a/W = 0.34.

6. Conclusion

A BEM formulation for a linear softening cohesive zone problem in an edge cracked beam like geometry
which requires an iterative process to determine the length of the cohesive zone to satisfy the nonlinear
interfacial boundary conditions has been presented. The behavior of the cohesive zone with respect to
the applied load, t0, δ0 and a/W has been examined for nonpropagating cracks. The iterative boundary
element solution scheme is robust, as the extent of the cohesive zone along with the solution for tractions
and displacements are generally obtained within 3–6 iterations with an arbitrary initial guess.

For a specific linear softening cohesive law applied to the edge cracked beam shaped geometry the
variation of the J -integral calculated for various values of applied load and crack lengths a/W are used
in an algorithm for generating the nonlinear M̄–1θ curves. These results have potential application in
the characterization of the cohesive behavior ahead of a crack tip in vibration analysis as discussed in the
second part of this paper. In particular, a nonlinear free-vibration analysis, using the nonlinear M̄–1θ
curves in Figure 9, is developed for exploring the effect of cohesive law parameters on the magnitude of
various nonlinear beam responses.

Finally we note that the results presented here apply equally to a crack in a homogeneous beam and
to a crack in a weak interface or bond layer between two beam sections made of the same material. The
BEM model for the problem of a cohesive crack in the interface or bond layer between two beam sections
of dissimilar materials is the same as for the similar material case, except that even with strictly mode
I loading, the material mismatch causes the cohesive behavior to be of a mixed mode nature and a new
combined mixed-mode cohesive law has to be used. This is the subject matter of ongoing research.
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NONLINEAR VIBRATION OF AN EDGE-CRACKED BEAM
WITH A COHESIVE ZONE, II: PERTURBATION ANALYSIS

OF EULER-BERNOULLI BEAM VIBRATION
USING A NONLINEAR SPRING FOR DAMAGE REPRESENTATION

DANIEL A. MENDELSOHN, SRIDHAR VEDACHALAM,
CLAUDIO PECORARI AND PRASAD S. MOKASHI

A nonlinear free-vibration analysis of an Euler–Bernoulli beam with an edge crack and a cohesive zone
at the crack tip, represented by bending and shear springs, is presented. Restricting attention to bending
nonlinearities, we suppose the beam is loaded statically in bending into the nonlinear region and small
amplitude vibrations are then superposed. A two term perturbation expansion is used where the small
parameter depends on the ratio of the first and second derivatives of the nonlinear moment-slope relations
computed in Part I. The zeroth order term is the linear free-vibration solution (constant spring stiffness
equal to the first derivative of the moment-slope relation). Each mode generates a second harmonic
(first-order term) whose magnitude depends on the linear spring stiffness and on the small perturbation
parameter. Key features of the zeroth and first-order solutions are studied as functions of the moment-
slope relations computed in Part I, and the possibility of cohesive property characterization is discussed.

1. Introduction

Material characterization based on vibration characteristics is an important quantitative nondestructive
evaluation (QNDE) tool. The presence of cracks in a structure causes an increase in structural and
material compliance, reduction in the natural frequencies, and changes in the mode shapes. Natural
frequency and mode shape versus crack geometry relationships are of interest, for example, in the as-
sessment of the performance integrity of cracked structures, nondestructive evaluation of the extent and
location of cracking, and prediction of the resonant frequency in high-cycle fatigue. The reduction in
natural frequencies caused by transverse cracks in linear elastic beams and similar thin structures has
been studied extensively both theoretically and experimentally. (See [Gudmundson 1982; Gudmundson
1983; Bamnios and Trochidis 1995a; Bamnios and Trochidis 1995b; Dimarogonas 1996; Chondros and
Dimarogonas 1998; Gounaris and Papadopoulos 1997; Chondros et al. 1998; Yokoyama and Chen 1998;
Shifrin and Ruotolo 1999; Mahmoud et al. 1999; Li 2001; Chondros 2001]. See also the numerous
references in [Kessler et al. 2002], and the extensive review in [Dimarogonas 1996].) A typical beam
analysis involves a linear elastic frequency analysis of the vibrating beam, modeled by Euler–Bernoulli
or some higher order beam theory on either side of the (infinitesimally thin) crack plane along with one
of various models for representing the localized increased compliance of the beam in the neighborhood
of the crack plane caused by the presence of the crack. One such model, used in the present analysis
and previously by Yokoyama and Chen [1998] and Mendelsohn [2006], is the line-spring model [Rice

Keywords: nonlinear beam vibrations, cracked beam, cohesive zone, material characterization.
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and Levy 1972], which replaces the crack plane with shear and bending springs, whose stiffnesses are
found from fracture mechanics solutions of edge-cracked geometries under appropriate loading. The
analysis of Yokoyama and Chen [1998] assumes elastic behavior at the crack tip(s) which allows the
spring constants to be found from well-tabulated elastic fracture mechanics solutions for stress intensity
factors. In the absence of material nonlinearity, the spring constants found in this way are independent
of load and depend only on crack length and specimen geometry.

The majority of the work cited above in vibration signatures of cracked structures has been linear
and elastic and the only nonlinearity that has been studied is that due to intermittent crack face contact
during a vibration cycle, known as the breathing crack phenomenon. This results in higher harmonics
generated through the coupling of the bending vibrations with longitudinal motions in the direction of
the opening and closing crack faces [Dimarogonas 1996; Chondros et al. 2001; Brandon et al. 1999;
Sekhar and Balaji Prasad 1998; Ruotolo et al. 1996]. The reductions in natural frequencies compared to
the uncracked beam are less than when the crack closure portions of the vibration cycle are prevented
from occurring, say due to a static preload.

Turning to material types of nonlinearity, we note, as discussed in detail in the companion paper
[Mokashi and Mendelsohn 2008], that many materials exhibit a region of cohesive behavior that is
limited to a thin planar zone ahead of the crack tip, often referred to as a cohesive zone. The only beam
vibration analysis that considers plastic or cohesive behavior at the crack tip that the authors are aware
of is that of [Mendelsohn 2006], who also solves a free-vibration problem for the cracked beam using
the line-spring model. However, despite the nonlinear behavior of the M −1θ relationships found using
a Dugdale–Barenblatt cohesive zone, the dynamic response is assumed to be linear and the stiffness
constant is taken to be the slope of the nonlinear M −1θ curve. In other words, at a given static preload
MS , the dynamic response is assumed to take place linearly along the local tangent to the nonlinear
M −1θ curve. Since the crack plane is taken at the midspan, and the applied static preload is in bending
only, as will be the case in the present analysis as well, only the symmetric modes activate the bending
cohesive behavior and the shear response is always elastic. The shear line-spring stiffness was therefore
calculated as in [Yokoyama and Chen 1998] and confirmed by the BEM analysis in the doctoral thesis
by Mokashi [2007]. For sufficiently large static preloads, the resulting linear eigenvalue problem results
in markedly reduced natural frequencies compared to the elastic cracked case with no cohesive zones.

The present work extends that of Mendelsohn [2006] in two ways. First, it makes use of the nonlinear
M −1θ curves for the linear softening cohesive zone [Mokashi and Mendelsohn 2008], as opposed
to those for Dugdale–Barenblatt cohesive zones. This is important for many materials, which exhibit
softening behavior before crack growth and ultimate failure. And second, it is the first attempt to ad-
dress the nonlinearity of the line-spring directly in the dynamic analysis. This is done by employing
an asymptotic or perturbation technique used in nonlinear dynamics. The method involves identifying
the nonlinear part of the nonlinear bending spring boundary condition, and writing it in such a way
that it is multiplied by a parameter, which can be argued to be small. The solution is then expanded in
powers of the small parameter, and by collecting terms of like powers of the small parameter, a series
of linear boundary conditions are generated. The lowest order boundary conditions are naturally linear,
while the nonlinear terms in the original formulation result in nonlinear combinations of lower order
results appearing as known loading terms in the higher order linear problems. This method has been
widely used for including weak nonlinearities throughout nonlinear dynamics; spatially discrete and
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spatially continuous systems, and in the time domain and frequency domain. In problems similar to the
present one, Pecorari [2003; 2004] and Pecorari and Poznić [2005] have used a perturbation approach
in a frequency domain analysis of wave transmission and reflection at contact interfaces, where the
elasto-plastic contact is represented by nonlinear springs. The work presented here is a first step toward
evaluating the feasibility of and developing an inverse technique, which would determine the cohesive law
parameters from measurements of the nonlinear contributions to the dynamic response of edge-cracked
beam specimens.

2. Nonlinear beam vibration formulation

In the following the line-spring model for a cracked beam is introduced, and the relationship between
the quasistatic nonlinear bending deformation across the crack-plane and the nonlinear small amplitude
dynamic response about a quasistatic preload is discussed. Since the present study is aimed at charac-
terizing only cohesive nonlinearity effects, the well understood nonlinearity due to crack face contact is
avoided by assuming a static preload for two reasons. While the contact conditions could be added, and
the vibration problem without the static preload could be treated with a slightly modified perturbation
method, that would (i) only confuse the issue at hand by mixing the two nonlinear effects, and (ii) require
extremely large vibration amplitudes to activate significant cohesive behavior during a test. The latter
would be almost impossible to control, so as is commonly done in QNDE, the cohesive zone is activated
by the static preload and the superposed vibrations are assumed to be of small amplitude about this
preload state.

The resulting nonlinear motions about the static preload are represented as a two-term series in a
small parameter which depends on the quasistatic nonlinear bending deformation behavior and on the
nondimensional amplitude of the free vibration response. This yields two uncoupled problems; one that
is of zeroth order in the small parameter which is the fundamental modified free-vibration eigenvalue
problem. The second of these problems (first order in the small parameter) is a forced vibration problem
where the source term is the zeroth order contribution to the nonlinear bending spring boundary condition,
which is solved for first from the zeroth order problem. For each natural frequency and mode shape
from the zeroth order problem, there is a first-order solution with known amplitude and frequency twice
that of the natural frequency (that is, the nonlinearity generates a complete set of second harmonics).
Consider a simply supported Euler–Bernoulli beam of rectangular cross-section A, containing an edge-
crack of length a located a distance c from the left end; see Figure 1. The beam has length L , depth W
and thickness b (A = b ·W ), although all measurable results are independent of the thickness b. The
presence of the crack allows discontinuities in transverse deflection (1υ) and slope of the deflection (1θ)
across the crack-plane [Mokashi and Mendelsohn 2008, Figure 1]. Recalling the line-spring model of the
crack-plane presented in [Mokashi and Mendelsohn 2008], we rewrite the bending and shear interactions
[Mokashi and Mendelsohn 2008, Equations (1) and (2)] in terms of resistance or stiffness rather than
compliance.

M = RN (1θ) (1a)

Q = RT (1υ)= KT1υ. (1b)
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Figure 1. (a) Geometry of an edge-cracked beam. (b) Discontinuity in slope and deflec-
tion under mode I and mode II loading, respectively.

Here R represents the resistance to crack-plane deformation. If material behavior is linear for a particular
mode, then that R is a linear function of the deformation with slope equal to the stiffness. Since the static
preload and resulting cohesive behavior is in bending only, the shear spring is assumed linear throughout,
and the second equality in Equation (1b) is used, where KT is the stiffness obtained from an elastic mode
II loading crack solution.

The nonlinearity in the bending spring is now treated. Consider a general nonlinear quasistatic soft-
ening relationship for the bending spring (Figure 2) representing any of the predicted relations from
[Mokashi and Mendelsohn 2008, Figures 8 and 9]. In order to isolate the bending effects, the crack is
placed in the middle of the beam (c= L/2) so that the odd modes excite only mode I deformations. Now
assume a static mode I preload, represented by the point [1θs,Ms] in Figure 2, and further assume that

tot

M

Static
Pre−load

∆θ ∆θ

M

tot

S

S

Figure 2. A generic nonlinear quasistatic M −1θ curve.
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small amplitude free vibrations occur about the preload state. Neglecting hysteresis, a first approximation
for the dynamic behavior is that the point [θtot,Mtot] lies along the tangent to the curve at [1θs,Ms]

[Mendelsohn 2006] where ‘tot’ indicates the total response which is sum of the static and dynamic
responses. This is equivalent to taking the total response to be the first two terms of a Taylor series
expansion about [1θs,Ms]. This approximation is refined here by assuming that the dynamic response
is nonlinear as well and that [θtot,Mtot] lies along a parabola at [1θs,Ms], that is, the first three terms in
the Taylor series about [1θs,Ms]:

Mtot = Ms + KN0(1θtot−1θs)+ KN1(1θtot−1θs)
2, (2a)

KN0 ≡ [(d Mtot/d1θtot)]1θtot=1θs , (2b)

KN1 ≡ (1/2)[(d2 Mtot/d1θ2
tot)]1θtot=1θs . (2c)

Now, defining the dynamic moment to be the total minus the static moment and similarly for the jump
in slope, the nonlinear dynamic representation of the bending spring is obtained as

M = KN01θ + KN11θ
2, (3)

where KN0 and KN1 are defined above and M and 1θ (without subscripts) are the dynamic moment and
jump in slope.

2.1. Beam equation of motion and boundary conditions. The equation of motion for an Euler–Bernoulli
beam is

E I
∂4υ

∂x4 + ρA
∂2υ

∂t2 = 0, (4)

where E I is the flexural rigidity, ρ is the density, A is the cross-sectional area, υ(x, t) is the dis-
placement of the mid-plane, defined positive in the upward direction, and θ(x, t) = (∂υ/∂x) is the
slope, defined positive in the counter-clockwise direction. The bending moment and shear force are
M(x, t)= E I (∂2υ/∂x2) and Q(x, t)= E I (∂3υ/∂x3). (See [Mokashi and Mendelsohn 2008, Figure 1]
for sign conventions.) The following boundary conditions can be specified for all times t > 0. At the
simple supports (x = 0, L) the displacement and rotational moment are zero. Since the length of the
line-spring is always zero, static equilibrium requires that the bending moment and shear force across
the crack plane be continuous.

∂2υ

∂x2 (c−, t)=
∂2υ

∂x2 (c+, t), (5)

∂3υ

∂x3 (c−, t)=
∂3υ

∂x3 (c+, t). (6)

where c− and c+ indicate limits from the left and right, respectively as x goes to c. The jump in
displacement and slope, respectively, across the crack plane are defined as

1υ(t)≡ υ(c+, t)− υ(c−, t), (7)

1θ(t)≡
∂υ

∂x
(c+, t)−

∂υ

∂x
(c−, t). (8)
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The bending moment is related to the change in slope across the crack plane through the nonlinear
bending relation (3):

M = E I
∂2υ

∂x2 (c−, t)= KN 0 1θ(t)+ KN 1 (1θ(t))
2. (9)

The shear spring relation is, however, linear:

Q = E I (∂3υ/∂x3)=−KT 0 1υ(t). (10)

2.2. Nondimensionalization and perturbed boundary conditions. In the following perturbation analy-
sis, the zeroth order solution will be eigenfunctions of the linear free-vibration problem, involving KN0

and KT 0 only. These eigenfunctions will be determined in terms of a free amplitude constant, say, A0,
which is assumed to be small compared to the length of the beam. Write the deflection υ(x, t) in a
variable separable form in the two solution regions: L to the left of crack plane (0< x̄ < c̄) and R to the
right of the crack plane (c̄ < x̄ < L̄), where x̄ ≡ x/L . The deflections in the left and right regions are
then

υ(x, t)= υL(x, t)= A0 φL(x̄) T (t), 0< x̄ < c̄, (11)

υ(x, t)= υR(x, t)= A0 φR(x̄) T (t), c̄ < x̄ < L̄. (12)

A is a free parameter representing the vibration amplitude. Substituting this notation into the linear
dimensional boundary conditions (5), (6), (9) and (10) yields

φ′′L(c̄)= φ
′′

R(c̄) (13)

φ′′′L (c̄)= φ
′′′

R (c̄) (14)

φ′′L(c̄)T (t)= K̄N 0[1φ
′T (t)+ εN (1φ

′2)T 2(t)], (15)

φ′′′L (c̄)= − K̄T 01φ, (16)

where ′ ≡ (d/dx̄)= L(∂/∂x), and

K̄T 0 ≡ (KT 0 L3/E I ), (17)

1φ = φR(c̄)−φL(c̄), (18)

K̄N 0 ≡ (KN 0 L/E I ), (19)

εN ≡ (KN 1/KN 0)(A0/L), (20)

1φ′ ≡ φ′R(c̄)−φ
′

L(c̄). (21)

The parameters, K̄N 0 , K̄T 0 and εN are dimensionless and εN is assumed to be a small quantity, which
is easily achieved by keeping the vibration amplitude A0 several orders of magnitude smaller than the
beam length. The deflection of the beam in the left and right regions are now expanded in powers of εN .

υ(x, t)= υL(x, t)= A0 [φL 0(x̄) T0(t)+ εN φL 1(x̄) T1(t)+ ...], 0< x̄ < c̄,

υ(x, t)= υR(x, t)= A0 [φR0(x̄) T0(t)+ εN φR1(x̄) T1(t)+ ...], c̄ < x̄ < L̄.
(22)
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The solution forms obtained in (22) are substituted in (15) to get the following expression for the nonlinear
boundary condition

φL
′′

0(c̄) T0(t) + εN φL
′′

1(c̄) T1(t)

= K̄N 0 [1φ
′

0 T0(t)+ εN 1φ
′

1 T1(t)+ ... εN (1φ
′

0 T0(t)+ εN 1φ
′

1 T1(t)+ ...)2]. (23)

Keeping only the zeroth and first-order terms of εN , this can be rewritten as

φL
′′

0(c̄) T0(t) + εN φL
′′

1(c̄) T1(t)= K̄N 0 [1φ
′

0 T0(t)+ εN (1φ
′

1 T1(t)+ (1φ′0)
2 T 2

0 (t))]. (24)

In order that (22) be satisfied for all times t , we must have T1(t)= T 2
0 (T ). The solution forms for υ(x, t)

in (22) are now substituted into the linear nondimensional boundary conditions, (13)–(16). The resulting
expressions and (24) are then separated into zeroth order and first-order contributions in εN , to obtain
separate linear nondimensional, time-independent boundary conditions for the zeroth and the first-order
problems.

The zeroth order crack plane boundary conditions are written as:

φ′′L0(c̄)= φ
′′

R0(c̄),

φ′′′L0(c̄)= φ
′′′

R0(c̄),

φ′′L0(c̄)− K̄N0 1φ
′

0 = 0,

φ′′′L0(c̄)+ K̄T 0 1φ0 = 0.

(25)

The first-order crack plane boundary conditions are written as:

φ′′L1(c̄)= φ
′′

R1(c̄),

φ′′′L1(c̄)= φ
′′′

R1(c̄),

φ′′L1(c̄)− K̄N0 1φ
′

1 = K̄N0 (1φ
′

0)
2,

φ′′′L1(c̄)+ K̄T 0 1φ1 = 0.

(26)

Note that the time functions factor out of all of these linear boundary conditions if T1(t)= T 2
0 (t). The

zeroth and first-order jumps 1φ0, 1φ′0 and 1φ′1 are defined analogously to the total jumps in (18) and
(21) by adding a subscript of 0 or 1.

3. Zeroth order solution

Assuming the time dependence T0(t) = sin(ω0t) and substituting the zeroth order contributions to the
displacement forms in (22) into the equation of motion, (4), leads to the forms:

υL 0(x, t)= A0φL0(x̄)T0(t)
= A0[C1 sin(k̄0 x̄)+C2 sin h(k̄0 x̄)] sin(ω0t),

υR0(x, t)= A0φR0(x̄)T0(t)
= A0[C3 sin(k̄0 x̄)− tan(k̄0) cos(k̄0 x̄)] +C4[sin h(k̄0 x̄)− tan h(k̄0) cos h(k̄0 x̄)] sin(ω0t),

(27)
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where k̄0 ≡ k0L and the wave number k0 and frequency ω0 are related by

k2
0 = ω0

√
(ρA/E I ). (28)

The solution forms in Equation (27) satisfy the simple support boundary conditions of zero displacement
and zero moment at x̄ = 0 and x̄ = 1. Using a linear system in the unknown constants the boundary
conditions (25) can be written as

[A] · (x)= 0 (29)

where (x) is the vector consisting of the four constants C1, C2, C3 and C4 and [A] is the coefficient
matrix, shown below

− sin(k̄0c̄) sinh(k̄0c̄) sin(k̄0c̄)− tan(k̄0) cos(k̄0c̄) tanh(k̄0) cosh(k̄0c̄)− sinh(k̄0c̄)
− cos(k̄0c̄) cosh(k̄0c̄) cos(k̄0c̄)+ tan(k̄0) sin(k̄0c̄) tanh(k̄0) sinh(k̄0c̄)− cosh(k̄0c̄)

K̃N0 cos(k̄0c̄)− sin(k̄0c̄) K̃N0 cosh(k̄0c̄)+ sinh(k̄0c̄) −K̃N0(cos(k̄0c̄)+ tan(k̄0) sin(k̄0c̄)) K̃N0(tanh(k̄0) sinh(k̄0c̄)− cosh(k̄0c̄))
K̃T 0 sin(k̄0c̄)+ cos(k̄0c̄) K̃T 0 sinh(k̄0c̄)− cosh(k̄0c̄) K̃T 0(tan(k̄0) cos(k̄0c̄)− sin(k̄0c̄)) K̃T 0(tanh(k̄0) cosh(k̄0c̄)− sinh(k̄0c̄))


The dimensionless bending and shear stiffnesses in [A] are defined as

K̃N0 ≡
K̄N0

k̄0
=

KN0

E I k0
=

12
EW 3k0

(
KN0

b

)
, (30)

K̃T 0 ≡
K̄T 0

k̄3
0

=
KT 0

E I k3
0

=
12

EW 3k0

(
KT 0

b

)
(31)

where W is the depth and b is the thickness of the beam. Setting the determinant of the matrix [A] equal
to zero for given crack position, c̄ and stiffnesses K̃N O and K̃T O yields an infinite number of eigenvalues

k0n; n = 1, 2, 3, . . . (32)

For a given mode and k0n the mode shapes can be determined by solving any three of the four equations
of the linear system, (29), for any three of the constants (C1,C2,C3,C4) in terms of the fourth and
substituting in (27).

4. First-order solution

For each of the infinite zeroth order modes with wavenumber k0n and frequency ω0n (n = 1, 2, 3, ...),
there is a first order solution with wavenumber k1n and frequency ω1n . For convenience, the index n is
suppressed throughout this section. Since there is already an undetermined amplitude constant A0 in the
zeroth order solution, (27), one of the four constants C1, C2, C3, C4 may be taken to be unity without
loss of generality. Hence from here on, let C1 = 1.

The first-order crack plane boundary conditions can be written time-independently (see Equation (26))
only if T1(t)= T 2

0 (t). For the assumed T0(t)= sin(ωt) above

T1(t)= T 2
0 (t)= sin2(ω0t)= 1/2− 1/2 cos(2ω0t)∼=−1/2 cos(2ω0t), (33)

where the last relation indicates the dynamic contribution to T1(t). Hence, for the first-order solution,
the frequency is ω1 = 2ω0, and k1 =

√
2k0, (28). The first order solution for the deflections to the left
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and right of the crack planes that satisfy the simple support conditions at x̄ = 0 and x̄ = 1 can thus be
defined as

υL 1(x, t)= εN A0φL1(x̄)T1(t)
= εN A0 [D1 sin(k̄1 x̄)+ D2 sinh(k̄1 x̄)] (−1/2 cos(2ω0t)),

υR1(x, t)= εN A0φL1(x̄)T1(t)
= εN A0 [D3 sin(k̄1 x̄)− tan(k̄1) cos(k̄1 x̄)]

+ D4 [sinh(k̄1 x̄)− tanh(k̄1) cosh(k̄1 x̄)] (−1/2 cos(2ω0t)),

(34)

where k̄1 ≡ k1L . The single higher harmonic is at twice the frequency and is phase shifted compared to
the fundamental. Similar to the zeroth order, this deflection solution is now substituted in the first-order
nondimensional, time-independent boundary conditions, (26), yielding the linear system

[B] · (y)= (Z), (35)

where (y) is the vector consisting of the four constants D1, D2, D3 and D4, and the elements of (Z) are
Z1 = 0, Z2 = 0, Z3 = 0 and Z4 = (K̃N0(1φ

′

0)
2/2k̄0). The term 1φ′0 in the fourth element of (Z) is

obtained from the zeroth order mode shape as

1φ′0 = φ
′

R0(c̄)−φ
′

L0(c̄). (36)

The coefficient matrix [B] is given below

− sin(k̄1c̄) sinh(k̄1c̄) sin(k̄1c̄)− tan(k̄1) cos(k̄1c̄) tanh(k̄1) cosh(k̄1c̄)− sinh(k̄1c̄)

− cos(k̄1c̄) cosh(k̄1c̄) cos(k̄1c̄)+ tan(k̄1) sin(k̄1c̄) tanh(k̄1) sinh(k̄1c̄)− cosh(k̄1c̄)

K̃T 0
2
√

2
sin(k̄1c̄)+ cos(k̄1c̄) K̃T 0

2
√

2
sinh(k̄1c̄)− cosh(k̄1c̄) K̃T 0

2
√

2
[tan(k̄1) cos(k̄1c̄)− sin(k̄1c̄)] K̃T 0

2
√

2
[tanh(k̄1) cosh(k̄1c̄)− sinh(k̄1c̄)]

K̃N0√
2

cos(k̄1c̄)− sin(k̄1c̄) K̃N0√
2

cosh(k̄1c̄)+ sinh(k̄1c̄) K̃N0√
2
[− cos(k̄1c̄)− tan(k̄1) sin(k̄1c̄))] K̃N0√

2
[tanh(k̄1) sinh(k̄1c̄)− cosh(k̄1c̄)]


The nondimensional stiffnesses K̃N0 and K̃T 0 are defined in Equation (30), substituting the solutions of

(35) for D1, D2, D3 and D4 into (34) to get the first-order deflection of the beam.

5. Results

The length L and depth of the beam are taken to be 12.5 m and W 1.25 m, respectively. By appropriate
scaling, results for any beam with a L/W ratio of 10 may be obtained. The thickness of the beam, b
is not a critical parameter since most of the vibration parameters are independent of the thickness. The
dimensionless crack ratio ā is taken to be 0.34 for all results. The material of the beam is chosen as
aluminum (Young’s modulus E = 72.8 GPa, ν = 0.3). Results for other ā ratios and beam materials
do not reveal any new patterns or insights. Since the even modes are antisymmetric about the midspan,
the midspan is subjected only to shear and the even mode frequencies do not depend on the nonlinear
bending stiffness.

The remaining parameters to prescribe and calculate are (KN0/b), (KN1/b) and (KT 0/b) which in turn
will determine K̃N0, K̃T 0 and εN in (30) and (20). For calculation purposes we note that the M̄ −1θ
curves from the BEM model [Mokashi and Mendelsohn 2008, Figures 8 and 9] really involve M̄ ≡
M/b and are independent of b, the beam thickness. Hence we can approximate (KN0/b) and (KN1/b),
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Equations (2b)–(2c), from the particular M̄ −1θ curve using central differences. Similarly KT 0/b will
be independent of b, and is calculated using the elastic analysis presented in [Yokoyama and Chen 1998]:

KT 0

b
=

E

2 (1− ν2)
∫ ā

0
F2

T
1−ā dā

, (37)

where FT is a function of the dimensionless crack ratio ā

FT = 1.993 ā+ 4.513 ā2
− 9.516 ā3

+ 4.482 ā4. (38)

For the crack length ā = 0.34, the shear stiffness per unit thickness is calculated to be K̄T 0/b = 3.3986 ·
1011 N/m2. Finally the perturbation parameter εN , (20), is easily written in terms of KN1/b and KN0/b
by dividing the numerator and denominator by b.

A typical set of results for the eigenvalues and zeroth and first order mode shapes are shown in Figures
3–5. Cohesive law 5 in [Mokashi and Mendelsohn 2008, Table 1] (to = 50 MPa, δo = 1.6 mm) is used and
the static preload per unit thickness is taken to be M̄s = 7 · 106 N. From the data for the M −1θ relation
shown in [Mokashi and Mendelsohn 2008, Figure 9], the first and second derivatives are calculated using
standard central differences as KN0/b = 8.4 · 109 N and KN1/b = 5.88 · 1012 N and the free amplitude
constant is taken to be A0 = 0.005 m , which gives a perturbation parameter value of εN = 0.28. The first
four wavenumbers and frequencies from the zeroth order eigenvalue problem are k01 = 0.23883, k02 =

0.50248, k03= 0.72195, k04= 1.00389, ω01= 62.881, ω02= 278.337, ω03= 574.577, ω04= 1110.981.
Wave numbers are in m−1 and frequencies are in rad / sec. Figure 3 shows the zeroth order mode shapes
and slope of the cracked beam with a cohesive zone for the lowest of these modes and compares them to
the uncracked case. The presence of the crack causes an increase in maximum deflection and a jump in
slope 1θo at the crack plane. Figure 4 shows the corresponding lowest mode first-order second harmonic
solution for the deflection and slope for the cracked beam with a cohesive zone. The wavenumber and
frequency are k11 = 0.33776 and ω11 = 125.762. The magnitude of the first-order response depends
on A2

0, so it is quite sensitive to A0, however the ratio of the first-order magnitudes to the zeroth order
magnitudes depend only on A0 through the perturbation parameter εN .

Figure 3. Zeroth-order mode shapes for deflection and slope. The solid curves are the
uncracked mode shapes.
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Figure 4. First-order mode shapes for deflection and slope.

The double hump in the first-order deflection appears as KN0 is reduced from a very large value
representing an intact plane at x = c, and the cusp becomes deeper as KN0 is further reduced. The
shapes of both υ1 and υ ′1 are independent of KN1 and εN . The jump in slope is distinctly observed and
the maximum slopes occur at the crack plane rather than at the supports as in Figure 3. The magnitude
of first-order jump in slope is observed to be on the order of 15% of the zeroth order jump in this
example. Corresponding results for higher even modes show no effect of the crack or cohesive behavior
and higher-order odd modes are similar to the plots shown in Figures 3 and 4, but with increasingly
smaller magnitudes and wavelengths.

To study the effect of the cohesive law and its parameters, t0 and δ0 on the M̄ −1θ relationship and
the dynamic results, 11 cohesive laws were considered [Mokashi and Mendelsohn 2008, Table 1]. The

Figure 5. Variation of the first eigenvalue over applied moment.
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amplitude of vibration A0 is 0.001 in these results. All other parameters are as given above. Figure 5
shows the variation of the fundamental eigenvalue over applied static moment, M̄s for all of the cohesive
laws. It can be seen that eigenvalues drop with increasing moments, starting with a maximum eigenvalue
of 0.243. This is lower than the first eigenvalue for an uncracked beam (k01uncracked ≈ 0.25). The variation
in eigenvalues show some dependence on J0, that is, with decreasing J0, the eigenvalue decreases for a
given moment. However, this dependence is not absolute, and some deviations are observed, as seen with
cases 7 and 11 of [Mokashi and Mendelsohn 2008, Table 1]. The grouping by peak cohesive traction is
only partially evident in these results, but the peak traction still has an influence.

The effect of the cohesive laws on the maximum modal amplitude is seen in Figure 7. When plotted
against applied moment,(υ0)max shows a strong dependence on t0. At any given moment, lower stresses
lead to higher maximum modal amplitudes. For laws that share a common t0, as the slope of the cohesive
law becomes steeper Jo decreases, the cohesive law is exercised at a lower moment, and over the part of
the load range the displacement increases with increasing slope of the law. This controls the branching
off of, for example, the 6 and 9 curves from the 3 curve. The corresponding plots for 1θ are shown in
Figure 8 and they are remarkably similar.

Next the ratios of the first-order responses to the zeroth order responses are plotted against applied
moment. Figure 9 shows the maximum modal amplitude ratios (left) and the ratios of the jump in
slopes for the first order to the zeroth order against applied moment (right). Both results show a strong
dependence on J0, that is, with decreasing J0, higher ratios are obtained for a given moment. However,
deviations to this trend are observed in cases 2, 8 and 11 [Mokashi and Mendelsohn 2008, Table 1].

A sensitivity study was done to understand the dependence of our dynamic model to the key parameters
A0, K̄N0 and K̄N1. Figure 6 (left) shows a plot of k0, (υ0)max and 1θ0 against the zeroth order bending

Figure 6. First eigenvalue: variation of k0, (v0)max and 1θ0 (left); variation of (v1)max

and 1θ1 and ε over bending stiffness (right). A0 = 0.01.
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Figure 7. Variation of the maximum modal amplitude for the first eigenvalue over ap-
plied moment.

stiffness per unit thickness, K̄N0. The physical range of K̄N0 considered spans from very high compliance
that approximates a plastic hinge on the lower end to high stiffness approximating an uncracked beam
on the higher end. k0 shows an increase with increasing bending stiffness, asymptotically approaching
0.25, which is the first eigenvalue for the uncracked beam. (υ0)max and 1θ0, however, decrease with an

Figure 8. Variation of the jump in slope for the first eigenvalue over applied moment.
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Figure 9. First eigenvalue: ratio of first- to zeroth-order maximum modal amplitude
over applied moment (left); ratio of first- to zeroth-order jump in slope over applied
moment (right).

increase in K̄N0, asymptotically reaching the uncracked condition. (υ0)max and 1θ0 scale with A0, that
is, using different values of A0, a family of similar curves can be obtained. A0 is taken to be 0.01 in
Figure 6 (left). Knowing (υ0)max and 1θ0, it may then be possible to obtain both A0 and the zeroth order
bending stiffness, K̄N0. It is to be noted that k0 does not depend on either A0 or K̄N1, and both (υ0)max

and 1θ0 do not depend on K̄N1.
Figure 6 (right) shows a plot of (υ1)max, 1θ1 and εN against K̄N0. The first-order bending stiffness

per unitthickness K̄N1 is taken to be −1 · 1012 N . All the three parameters show a sharp decrease with
increasing stiffness. All of these parameters scale with the product A0 · ¯KN1, that is, using different
values of A0 · K̄N1, a family of similar curves can be obtained. Knowing A0 and K̄N0 from the previous
plots and (υ1)max or 1θ1 from this plot, it may then be possible to obtain the A0 · K̄N1 term. Since A0

is known, the first-order bending stiffness, K̄N1 could then be obtained. Results for the third eigenvalue
are in [Vedachalam 2007] and show similar trends.

6. Conclusions

This paper addresses the issue of a linear softening cohesive zone ahead of a crack tip and its effect on the
vibrational response of an edge-cracked beam. For a given crack length, presence of the cohesive zone
leads to an additional reduction in the fundamental natural frequency, and induces nonlinearity leading
to a second harmonic. The dynamic response is controlled by the critical yield stress, to or the critical
fracture energy JI o, much more than the crack tip opening displacement δo or the slope of the cohesive
law. The state of damage affects the 1θ ratios more strongly than the modal amplitude ratios. 1θ ratios
can, therefore, be used effectively in cohesive damage characterization. Within physical ranges of the
dynamic spring constants, the first-order harmonic is observed to be quite significant when compared to
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the fundamental. This model has potential for use in nondestructive cohesive material characterization in
beam-like structures. There is potential for determining the dynamic spring constants from the dynamic
responses. However, the relationship between the spring constants and the cohesive law parameters is
less clear at this point and needs to be explored more in order to move towards an experimental inverse
technique based on the present modeling.
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