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ELASTIC SOLUTIONS FOR AN INCLINED TRANSVERSELY ISOTROPIC
MATERIAL DUE TO THREE-DIMENSIONAL POINT LOADS

JYH-JONG L1A0, TIN-BIN HU AND CHENG-DER WANG

We present the elastic solutions for displacements and stresses due to three-dimensional point loads in a
transversely isotropic material (rock), for which the transversely isotropic full planes are inclined with
respect to the horizontal loading surface. The closed-form solutions are derived by applying an efficient
method, the double Fourier transform, to obtain the integral expressions for displacements and stresses.
Subsequently, the double inverse Fourier transform and residue calculus are utilized to integrate the
contours. Utilizing the double Fourier transform in a Cartesian coordinate system is a new approach to
solving the displacement and stress components that result from three-dimensional point loads applied
to an inclined transversely isotropic medium. In addition, it is the first presentation of the exact closed-
form characteristic roots for this special material anisotropy. The proposed solutions demonstrate that
the displacements and stresses are profoundly influenced by the rotation of the transversely isotropic
planes (¢), the type and degree of material anisotropy (E/E’,v/v’, G/G’), the geometric position
(r, ¢, &), and the type of three-dimensional loading (Px, Py, P;). The present solutions are identical to
previously published solutions if the planes of transverse isotropy are parallel to the horizontal loading
surface. A parametric study is conducted to elucidate the influence of the aforementioned factors on
the displacements and stresses. The computed results reveal that the induced displacements and stresses
in the inclined isotropic/transversely isotropic rocks by a vertical point load are quite different from
the displacements that result from previous solutions in which ¢ = 0. The numerical results presented
here are interesting for their ability to describe the physical features of inclined transversely isotropic
rocks. Hence, the dip at an angle of inclination should be considered in computing the displacements
and stresses in a transversely isotropic material due to applied loads.

Introduction

Generally, estimates for the magnitudes of displacements and stresses in a solid are made using solutions
that model a material as a homogeneous, linearly elastic, and isotropic medium. However, among geo-
materials, these models are unable to describe the properties of some natural soils which have deposited
by means of sedimentation over a long period of time, for example flocculated clays, varved silts or sands,
or rock masses cut by discontinuities such as cleavages, foliations, stratifications, schistosities, or joints.
The deformability properties of these inhomogeneous materials should result in structural anisotropy.
From the standpoint of practical considerations in engineering, anisotropic bodies are often modeled as
orthotropic or transversely isotropic materials. In particular, when discontinuities of rock masses dip
at an angle from the horizontal surface, their effects on displacement and stress could be essential to

Keywords: displacements, stresses, inclined transversely isotropic material, double Fourier transform, residue calculus,
material anisotropy.
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the design of structures. Hence, we study here the elastic loading problem for an inclined transversely
isotropic material.

Elastic solutions to the problem of a point load acting on the interior of a full space are called the
fundamental solutions or the elastic Green’s function solutions [Tarn and Wang 1987]. These solutions
in exact closed-form have always played an important role in applied mechanics and in particular nu-
merical formulations of boundary element methods [Liew et al. 2001]. In [Liao and Wang 1998] we
detailed the existing solutions for transversely isotropic full/half-spaces in which the planes of transverse
isotropy are assumed to be parallel to the horizontal ground surface, subjected to three-dimensional
point loads. However, recent work that was not cited in that paper should be mentioned here: [Ding
et al. 1997; Hanson 1999; Pan and Tonon 2000; Pan and Yuan 2000a; Pan and Yuan 2000b; Tonon et al.
2001; Pan 2002; Fabrikant 2004; Ding et al. 2006]. Hu et al. [2007] presented the analytical solutions
for displacements caused by three-dimensional point loads (P, Py, P;) in a transversely isotropic full
space, where the transversely isotropic planes are inclined with respect to the horizontal loading surface.
In their derivation, the triple Fourier transform was employed to yield integral expressions of Green’s
displacement. Subsequently, the triple inverse Fourier transform and residue calculus were performed to
integrate the contours. It is known that the stress components due to three-dimensional point loads on an
inclined infinite space can be obtained by employing the coordinate transformation formulae with respect
to the applied loads. Nevertheless, the displacement components cannot be solved by the same approach.
Hence, their solutions for the displacements in an inclined space are new and cannot be obtained directly
from the aforementioned point load solutions (see [Liao and Wang 1998], for example) with a linear rota-
tion of the Cartesian coordinate system. Nevertheless, the derivations using the triple Fourier transform
were not very efficient, and the presentations were rather lengthy. Yet, to the best of our knowledge, no so-
lutions for displacements and stresses resulting from three-dimensional point loads acting on an inclined
transversely isotropic material have been performed by using the double Fourier transform in a Cartesian
coordinate system. The advantage of deriving stress components by applying the double Fourier trans-
form is that the proposed solutions for the inclined transversely isotropic infinite space are parts of the
point force problem in an inclined transversely isotropic half-space, achieved by satisfying the surface
boundary conditions and thus utilizing the principle of superposition. Therefore, the yielded solutions are
valuable and would be straightforward to extend to the half-space/bimaterial/layered material problems.

In the solutions presented here, it is found that both the displacement and stress solutions are governed
by: (1) the rotation of the transversely isotropic planes (¢), (2) the type and degree of material anisotropy
(E/E',v/v',G/G"), (3) the geometric position (r, ¢, ), and (4) the type of three-dimensional loading
(Px, Py, P;). Two examples are given to illustrate the generated solutions and clarify how the rotation
of the transversely isotropic planes (¢), the geometric position (), and the type and degree of rock
anisotropy would affect the displacements and stresses in inclined isotropic/transversely isotropic rocks
subjected to a vertical point load (P;).

1. Displacements and stresses in an inclined transversely isotropic full space
due to three-dimensional point loads

We start with the generalized Hooke’s law for a transversely isotropic material in a Cartesian coordinate
system (x’, y’, '), where 7’ is the rotation axis associated with elastic symmetry, and the x’ and y’ axes
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z<0 (region 2)

7z>0 (region 1)

Figure 1. (P,, P,, P;) acting in an inclined transversely isotropic full space.

are in the plane of transverse isotropy (see Figure 1). We have

Ox'x’ Cn C2Cs3 0 0 O Exry
Oyy CnpCii Cz 0 0 O Eyy
oy | _|Ci3 Ci3 Czz 0 0 0 a1z
Ty'7 10 0 0 Cu O O Vyrz ’
T7/'x 0 0 0 0 Cyu O Yoyt
Tx'y’ 0 0 0 0 0 C66 yx’y’

where oy, 0y, 0, are the normal stresses, eyy/, €yy, €77, the normal strains, 7, 7,y, 7oy the
shear stresses, 7z, 7/, 7xy the shear strains, and Cyy, Ci2, C13, C33, Ca4, Ceg the elastic moduli.
Because C1; = C11 — 2Cgg, only Cy1, C13, Caz, Ca4, Cgg are independent for a transversely isotropic

material, so it is convenient to work in terms of the constants cy, ..., ¢s defined in terms of the C;; by
E(1—(E/E"W"? E'(1—-v
c=Cy = /E) )/ 5o, =C3= ), 5, ¢5=Cu=0G,
A4+v)(I—v—QE/E")V?) 1—v—QE/E")v )
Ev Ci1i—Cpp E

= C C = C N = C = = .

3 13+ Cas 1—v—(2E/E’)v’2+ 44, €4 66 5 20+
Equation (1) also displays the relation between cy, . . ., ¢5 and the traditional constants E and E’ (Young’s

moduli in the plane of transverse isotropy and in the normal direction to it), v and v’ (Poisson’s ratios
characterizing the lateral strain response in the plane of transverse isotropy to a stress acting parallel
or normal to it, respectively), and G’ (the shear modulus in planes normal to the plane of transverse
isotropy). In this notation we have

Ox'y' c1 c1—2c4 c3—c5 0 0 O Exly!
Oyry c1—2cy c1 c3—cs 0 0 O Ey'y!
077 _ c3—C5 C€3—C5 c2 00O &gy )
Tyry 0 0 0 ¢ 0O Vyiy
Toy! 0 0 0 0c¢cs O Yy
Tyry 0 0 0 0 0 ¢4 Vxly
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If a new coordinate system x, y, z is obtained from the original system x’, y’, z’ by rotation through
an angle ¢ about an axis parallel to the strike direction, then x = x’. (See again Figure 1.) The direction
cosines [;; (i, j =1, 2, 3) of the transformation are given by

I iy iz 1 0 0
Iy In Ia|=|0 cos¢ sing |, 3)
l31 132 l33 0 —sin¢ COSgb

and in the new coordinate system the matrix of elastic moduli is

ajl apip aiz ai4 ais adle
a1 dppy azs a4 dzs e
(i) [Cijllgij] =: [a;;] = | @31 @32 €33 @34 35 dse )
aql a4 a4q3 aq4 a4s Adqe
as) aspy ds3 ds4 dss dse
del 4de2 4de3 de4 des Aeo

where
[ 2 i, 14 SELE hial ol |
5, 15 53 I3l [l 2171
LETR R £ I3313 l33131 I32131

lgij] = ; (&)

213101 230l 213303 l33ln+130003 13311 +131103 [31l02+132001
203111 2U30liy 2133013 l33lio 4130013 133l +13103 [31li2+130000
| 21l 2Dl 2013003 Lislo+linkas hisbi+lilas Ll +1olo |

T denotes transposition, and the elastic constants a;; have the following explicit expressions (those not
listed vanish):
app =ci,

aiy = ay = (c1 —2c4) cos” ¢+ (c3 — ¢s) sin® ¢,

aiz = az = (c3—cs) cos” ¢ + (c1—2c4) sin’ ¢,

aiy = a4 = (c1—c3—2c4+cs) cos g sin ¢,

azn = c1 cos* ¢+ 2¢3 + 2cs cos? ¢ sin® ¢ + ¢ sin? p,

a)y =az = %(C] + ¢y +6¢3 — 10c5 — (¢ + ¢ — 2¢3 — 2¢5) cos 4¢),
a4 = Ay = %(cl —cy+(c1+ ¢y —2c3 —2c¢s) cos 2¢) sin2¢,

az3 = ¢ cos? ¢+ 2c¢3+ 2cs cos’ 10} sin’ ¢+ sin* @,

a34 = a43 = —% (—c1 4+ c2+ (c1 +c¢3 —2¢3 — 2¢5) cos 2¢) sin 2¢,
g = %(cl 4+ ¢y —2¢3+6¢5 — (¢ + ¢z — 2¢3 — 2¢5) cos 4(;5),

ass = c5cos” ¢ 4 ¢4 sin’ @,

ase = aes = (c4 — cs) cos P sin @,

g6 = C4 COS° ¢+ cs sin’ é.
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Next we use the strain-displacement relation under the small strain condition in Cartesian coordinates:

_exx_ i —0uy, /0x
Eyy —0uy /0y
leij] = | = —0uz/0 , (6)
Pyz —0uy/0z — Ou /0y
Vox —0u,/0z —ou,/ox
| Vxy | | —Ouy/0x — Ouy /0y |

where u,, uy, and u, are the components of the displacement.
Finally, the equilibrium equation is

Oxx Txy Tox 0/0x F,
Tyy Oyy Tyg o/oy | = | Fy |, @)
Tzx Tyz Ozz 0/0z F;

where (Fy, Fy, F;) are the three-dimensional point loads. Hence, the generalized Hooke’s law expressed
in the xyz-coordinates,

Oxx ail a2 aiz ai4 ais die Exx
Oyy ay A azz az4 azs A Eyy
Ozz | _ | 931 d32 d33 434 d3s 436 €2z ’ (8)
Tyz a4] Q42 443 Q44 Q45 d46 Vyz
Tzx asy asy as3 ds4 Ass ase Vzx
| Txy | | @61 de2 63 ded 65 deo | | Vxy |

gives rise to the system of equations

Oxx = Al1€xx + A12Eyy +A13E; +a14Y y; = —a1] % — alz% - aw% - a14(% + aa—b;z), (9a)
Oyy = A12Exx + A0 Eyy + 236, + a2y y; = —ar2 aab;x — azz% — 023% — az4(% + aa—b;z), (9b)
02z = A136xx +a236yy +0a3362; +a34)y; = ﬂlw% - 6123% - 033% - a34(aaizy + aa—b;z), (%)
Ty: = A148xx + A2Eyy + A34E; +aasy y; = —a14 aab;x - 6124% - 6134%;Z - a44(% + aa—b;z), (9d)
Tox = A55) 20 +A56) 5y = —ass(aauzx %) - a56(aab;x + %), (%e)
Tyy = a56) 2x + A66Yxy = —a56(aauzx %) - 366(6ab;x %) 99

Substituting oy, Oyy, Oz, Tyz, Tzx, Txy from (9) into (7) enables the equations to be regrouped as
Navier—Cauchy equations for a transversely isotropic material as
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o%u o%u o%u o%u 62u o%u
ar axzx + aes aylx + ass al —i—2as6a 62 +(a12+a66) Y +(al4+a56) y
2 2u
+ (a14+a56) 0y =+ (a3 +a55) + Fy =0, (10a)
0%y o%u, 0%u, o%u, 0%u, 82u :
app+a + (ais+a +a Y+ a +a +2a Y
(ar 66)axay (a14 56)axaz 66 oy2 TG Taugs %7 5e
o%u, o%u, o%u, 0%u
tase o5 tauzy P +az— Py =+ (a23 +a44) +F =0, (10b)
2 2 2 2 2 2u
u o“u 8 Uy 0y o“u
(a14+a56)6x6; + (ai3 +6155)6x8; 6, = +ax o? > +a P +(a23—|—a44)
d%u, d%u, o%u, d%u,
+ass o2 -|-6144a 5 ° tas Py —|-2a34a 32 S+ F.=0. (10c)

The point loads (FY, Fy, F;) applied at the origin of the coordinate system of a full space can be
described in terms of body forces (Py, Py, P;) as

Fy = P:d(x)0(y)d(2), Fy = Pyo(x)06(y)d(2), F, = P:6(x)d(y)d(2), (an

where 0 is the Dirac delta function.

We will now use the double Fourier transform of the displacement components to solve the governing
equations (10a)—(10c). We introduce the transform variables a, f corresponding to x, y, respectively,
and consider the double Fourier transform of u; (i = x, y, z),

1 o0 o0 .
_/ / ui(x, y, 2)e" @) dx dy = i; (o, B, 2).
T J—00J—-00
As is well-known, we have

00 00 A, )
i/ / Me—l(aX+ﬂy) dxdy =iai;(a, B, 2),
T J_oot-o ox
00 [00 A, )
L/ / aul(x, > Z)e—l(ax+ﬂy) dx dy:lﬁ’/_ll(aa ﬁa Z)a
T J—00J—00 oy

1 [ [*8%ui(x,y,2) _; _
o || Dt rdy = oo ),
—0oQ —0o0

Since f_oooo f_oooo 0(x)d(y) dx dy = 1, the double Fourier transforms of (11) reduce to
_ 1 oo oo . P
Fo= _/ / Ped(x)3(n)d(2)e” " ) dx dy = Z26(2), (12a)
27 )0 J—0 27
1 [ [ - P,
_/ / Pyo(x)8(y)d(@)e @M dx dy = 25(2), (12b)
T J_ood—oo 27

_ 1 00 00 . P
Fo=5- / / P.5(x)8(y)6()e "M dx dy = S26(2). (12¢)
2 00 J -0 27
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When z # 0, this allows us to rewrite the Navier—Cauchy equations (10a)—(10c) as a system of linear
ordinary differential equations:

dyy dip diz | [uy 0
dyy dyy dpz | |uy |[=1]0], (13)
d31 dy dsz| | u; 0
where
2
it = ana? + assf? — ass 1 ~ 2iaso -, (142)
. d
dip = dy1 = (a12 +aes) af —i(ais +ase) a a2 (14b)
. d
di3 =d31 = (a14 +ase)af —i(aiz +ass)a a2 (14c)
2
dy = ageo” + anf* — asy j—zz —2iaxuf j_z’ (14d)
a> . d
dys = d3p = ase0® + anf* —az —— —i(axn+au)p -, (14e)
dz dz
2
ds3 :a55a2—|—a44ﬂ2—a33;—zz—2ia34ﬂ j_z (14f)

From the elementary theory of linear ordinary differential equations we know that we need to solve
the characteristic equation

det[d;j(a, B,u)] =0, (15)

where the entries d;;(a, S, u) are obtained from (14) by substituting the unknown u (representing the
eigenvalue) for d/dz:

dii(a, B, u) = ana® +aee > + ass(iu)* — 2asef(iu), (16a)
diz(a, B, u) = da(a, f,u) = (a12 + aee) o — (a14 + ase) a(iu), (16b)
diz(a, B, u) = dz(a, B, u) = (a14 + ase) o — (a13 + ass) a(iu), (16¢)
d(a, B, u) = agea” + anf® +as(iu)* —2azf (i), (16d)
drs(a, B, u) = dy(a, B, u) = aseo” + anp® + azs(iu) — (ao3 + as) fliu), (16¢)
d33(at, B, u) = assa” + asp® + azs(iu)* — 2azf(iv). (16f)

An algebraic manipulation (details and the physical basis of which are given in the Appendix) shows
that, if we set
2 2 2 2\2 1/2
Ay — l|:c5 +cie2 —c3 n {(c5 +clcz—c3) _42} / i|’
2 C2Cs C2C5 2

b
Cs A 1 c§+clcz—cg c§+clcz—c§ 2 4c1 12
3 _ — 4=
2 C2C5 C2C5 ) ’
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the characteristic equation takes on the form
3
czcg I (Aj (—u2 +a? +ﬁz —(iucosgp+pf sin¢)2) 4+ (iucos¢p+ f sin¢)2) =0, (18)
j=1

and its six eigenroots uy, ..., Ug can be expressed as

—iffsingcosp(—1+A;) — \/A]‘(,B2 +a2(cos2¢+AJ- sin’ ¢))
cos? p+ Aj sin® ¢
—iffisingcosp(—14+Aj) —i—\/Aj(ﬁ2 +a’(cos’ p+ A; sin? )
cos? p+ A; sin® ¢

Uj =

i=1,2,3). (19

Uzyj =

(In particular, the real parts of u;, uy, uz are negative and those of u4, us, ug are positive.)

Equations (19) represent the first instance in which exact closed-form eigenroots for the inclined
transversely isotropic media are proposed. To derive explicitly the solutions to (10a)—(10c), define three
displacement functions as follows:

for z > O (region 1 in Figure 1),

iy (e, B,2) = Al e"1F 4 A% "2 4 A3 "7 4 A% "7 4 AD "7 AD e, (20a)
ity (a, B,2) = Ay €15+ AT 17 + AT "5 + AT e + AT "5 + AS e, (20b)
itz1(a, B,2) = Al @15 + AZ "% + A3 €57 + AL e + A7 "5 + AS e, (20c)

and for z < 0 (region 2 in Figure 1),

i, B,7) = ALye1* 4 A2 0" 4 A3,e"57 4 A, e"47 4 AD "7 A ee, (21a)
I/_lyz((l, ;Ba 7) = A;26u1z + Aizeuzz + Aizemz + A‘}lﬂemz + Aizeusz + Agzeusz’ (21b)
it2(a, B, 2) = ALe" 1 + AL e + Ad €57 4+ ALy e + AL e + AS eter, (21c)

In (20), the undetermined coefficients Ail, Ail, and Ail (j=1,...,6) can be obtained by assuming
the displacements in region 1, u,i, uy1, and u;; must be finite when z approaches oco. Hence, Ail =
A} =A% =0, 47, = A, = A}, =0, and A}, = A2 = A% =0. Similarly, in region 2, u, u,, and
uz also must be finite when z approaches —oo. Therefore, A)lc2 = Aiz = Aiz =0, A;z = Aiz = Aiz =0,
and A, = A2, = A}, =0.

Now, let
Al A Al ;
= = o = () (=1,2,3),
Dyi(a, B,uj)  Da(a, B,uj)  Dii(a, p,uj) 22)
Aiz A;Z Agz

- = :cL{ (j =4,5,6),
Di(a, f.u;)  Dar(a, Bruy)  Dai(a, fouj) / )
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where Dy, Dy, and D3; are second-order determinants’ involving the functions d;; (i, j =1, 2, 3) of

(16): _ -
d22(0€, ﬂ’ uj) dg},((l, ﬁ, uj)

| d32(a, B, uj) diz(a, B, uj)
[di2(a, B, uj) diz(a, B, u;)]
[ d52(a, B, uj) dss(a, B, uj)
[dia(a, B, uj) diz(a, B,u;)]
| doa(a, B, uj) daz(a, B, uj) ]

The stress components of (9) are transformed by the double Fourier transform as

Dl](a’ﬁauj): det

Dy (a, B, uj) = —det

Dai(a. fouj) = det

Oxx = —iaayiy —ifapiy —6113(%Z —a14(% +iﬁﬁz),
Gyy = —iaaniiy — iBayiiy — aB% - a24( Oy | i )

0., = —loasiy —ifaxi, —a33%ﬁ; —6134( Ly +ip z)>
Ty, = —iaaly —ifaxiy — 613488L_ZZ - 044(5}”) +ip z),

Tox = —dss (aaizx + iaﬁz) —iase(Buy + aity),

i) — ides (B + aity).

_ Oy
Txy = —4ads6 oz

(23a)

(23b)

(23¢)

(24a)

(24b)

(24c)

(244d)

(24e)

(24f)

We next consider the plane z = 0 separating regions 1 and 2 of Figure 1, and write the pertinent

continuity and discontinuity conditions along this plane:

Tle(xa Y, O) - TZ)CZ(x: Y O) = Pxé(x)a(Y), Mxl(x: Y, 0) = sz(x, Y O)a
sz](-xa Y O) - szZ(-xa Y 0) = Pyé(x)é(Y)a uyl(-xa Y, 0) = uyz(x, Y 0)’
O-ZZI(X’ Y, 0) - O-ZZQ(X’ Y, O) = Pzé(x)é(y)’ uzl(x’ Y, O) = MZZ(X, Y, 0):

(25a)
(25b)
(25¢)

where —00 < x < 00, —00 < y < 00. The subscripts 1 and 2 denote the limits as z — 0" and z — 0~.

Taking the double Fourier transform of (25), we obtain

Tox1(a, ﬂ, 0) — 72x2(a, ;Ba 0) = P /2m, i (a, ﬂa 0) = ux2(a, /Ba 0),
fZyl(oca /Ba 0) - fzyZ(Ota ﬁ: 0) = Py/27l', ﬂyl(a’ ﬁ» 0) = ﬁyZ(aa 185 0),
0_-221 ((Z, IB’ 0) - O_-ZZZ(as ﬁ’ O) = PZ/277:: ’/_tzl ((Z, :Bs 0) = l/_tzz(a, :Bs 0)

We further introduce the convention

Dijl = Dil(a’ ﬁa l/t])

I There are similar determinants Dj; foralli, j =1, 2,3, but we don’t need the other ones here.

(26a)
(26b)
(26¢)

27)
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Then we can rewrite the linear system (26) in terms of unknowns CJ, C2, C3, C%, C3, C&:

where

C) P,

C% P,

C 1 |P
[fll] Ci{ = g OZ >

u

C> 0

c$ 0

fij = _i(a56(ﬂD{1 +aDé1) —l—ass(aDél - iD{l“j))

fij =ilass(BD], +aD},) +ass(@Di, —i D u;))

foj = —i(@awsDy, + fars D3, + fasuD3)) — (D3, +az D u;
foj = i(@as D], + Ban D}, + fasDi)) + (s D3, + asa D3, )u;
f3j = —i(aaisD{, + pax D3, + PauD})) — (asa D3, +az D),
f3j= i(aawDijl —I—ﬁangél +ﬁa34D§]) + (a34D£1 +a33D§1)Mj
f4j=D{1> fsi=Di, foj = D3,

faj=—D1,, f5f'=_Dél’ fo; = D3

(j=1,2,3),
(j=4.5,6),
(=123,
(j=4,5,6),
(j=1,2,3),
(j=4,5,6),
(j=12,3),
(j=4,5,6).

(28)

Now u,, uy, and u, can be obtained by taking the double inverse Fourier transform of (20) and (21):

For z > 0 (region 1),

uyi(x,y,2)= / / ZClel(a b,u; )el(ax+ﬂy)+u,zda dp,

uy1(x,3,2) = E/ / Z Ci Doy (a, B, uj)e' P42 dg dp,
—0Q0 J =0 j=1

3
1 o0 [o,0) . .
uzi(x,y,z) = 7y / / Z C; D3 (a, B, u;)e! O gg ap.

For z < 0 (region 2),
up(x,y,z) = / / ZCJD”(O( B, uj)el(ax+/”y)+”ﬂda dp,

uy2(x, y,2) = / / ZCL{Dﬂ(a,ﬁ, u;)e! XTI qg ap,

un(x,y,z) = / / ZCJD31(a B uj)e YL 4o dp.

(29a)

(29b)

(29¢)

(30a)

(30b)

(30c)

The desired o, 0y, 0, Ty, 7,1, and 7, can also be obtain by the double inverse Fourier transform:
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for z > 0 (region 1),

for z < 0 (region 2),

Gxxl(x> Y Z) =

O'yyl(x: y,2) =

O-ZZI(X, y, Z) =

Tyzl (x,y,2) =

szl(xa Yy, Z)

Txyl(x y,2) =

Jxe(xa Y Z)

UyyZ(x v, 2) =

o.2(x,y,2) =

TyzZ(X, Y, Z) =

szZ(xa Yy, Z)

Txy2(x y,2) =

1 0o oo 3 i )

E J = i(ax+py)tu;
E/ / Cda){xe GXTPY fzdadﬁ,

—o0J—00 5T

1 0 oo 3 i iavaps

§ —j Jilax+py)+ujz
27 /oo /oo =1 Cdo-yye - dodp
L= J 57 gilax+py+

2 Clale @tz go qp,
2w /_Oo/_

/ / ZC]TJ z(ax—|—/>’y)+u,zdadﬁ
/ / ZC’T’ ¢ AT da d,

/ / ZCif;ye"“"“’”*“ﬂdadﬁ,
=1

/ / ZCJO_J ilax+py)tu;z 4. dgp,
/ / ZCJO_J el @x+py)+ujz g4 dgp,

1 [o° foo S
—00 J —00 =4

/ / el ! IS da d,

/ / ZCﬁ{ye"(“Hﬂ”*”’ﬂdadﬁ,
=4
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(31a)

(31b)

(3lc)

(31d)

(31e)

(31f)

(32a)

(32b)

(32¢)

(32d)

(32e)

(32f)
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where

O'J —z(aanD“+ﬁa12D21+ﬁa14D31
O_-){y _l(aallel +,Ba22D21 +ﬂa24D31
6! = —1(aa13D 1 —|—ﬁa23D 5 +ﬁa34D31

yz = —l(aa14D 11 +ﬁaz4D 21 +ﬁa44D31
TJ :—l(a56(ﬁD 1+0£D21)+a55(aD31

7], = —i(ags(BD], +aD};) +ass(a D,

i(a1aD}, + a3 D))u;),
i(a2a D}, +az D)) uj),
i(a3a D}, +azs D)) u;),
i(asa D}, +aza D)) u;),
—iD{u))),

—iDj{u))).

In (33), j =1,2,3 for z > 0 (region 1), and j =4, 5, 6 for z < 0 (region 2).
Now introduce polar coordinates (k, 8;) in the af-plane, so

oo=kcosf, and p =ksinb,.

Substituting into (19), we obtain for j =1, 2, 3

—i sin6, singcosp(—1+A4;) —\/Aj (sin® O, +cos2 0, (cos? g+ A sin® ¢))

Ltjzk

cos2 -+ A, sin® ¢

—i sin 6, sin ¢ cos ¢(—1+Aj)+\/Aj (sin? O, +cos? O, (cos? p+ A; sin® ¢))

ujyz =k

where 0 <k <ooand 0 < 6, < 2.
We can then rewrite (27) and (22) in terms of k£ and 0,:

cos? p+A; sin® ¢

DY, (k, 0,) = k* D], (6y).
D3, (k, 0,) = k* D3, (6y).
D}, (k, 0.) =k* D3, (6,),
C4(k, 0,) = k3C;(6),
Ci(k,0,) =k>Ci(0).

Equations (33) can also be rewritten as

I (k,0,) =K1 (6,),
1,0, 0,) = K50,
6L (k,0,) =KG.(6y),
7). (k,0,) = k7] (6,),
) (k, 0,) = K71 6,),
) (k, 0,) = K7], (6x).

(33a)
(33b)
(33c)
(33d)
(33e)
(33f)

(34)

(352)
(35b)
(35¢)
(35d)
(35¢)

(36a)
(36b)
(36¢)
(36d)
(36e)
(361)
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The exponential terms in (29)—(32) become
i(ax +py)+ujz=ky;(6),

while the element da df equals
do dpf =kdkdo,.

Using (34), (35) and Equation (37), we can rewrite (29) and (30) as follows:

For z > 0 (region 1), Ve 3 j i
1 [T Cy0:) Dy, (6)
uxl(x; y,Z):—g/ Z d —11 d@x,

V/j(ax)
1 [ O Cl0,) DL, (6
”yl(X,y,Z)=_Z/ Z%d&x,
2 CJ(H )DJ1(9 )
vy ==5- [ Z Do) o,
J

For z < 0 (region 2), p . ,
1 [ Ci (0x) Dy, (6y)
uﬂ(x,y,z):—g/ Z—dex,

w;j(Or)
2 2. Cl(6,) DL, (6,
uyZ(x y,2) = __/ Z (WJ)(Q )( )de,n
27 C]49 DJ 9
u(x,y,2) = ——/ Z (%)(8 ;( <) 40,

Likewise, using (34)—(37), we rewrite (32) for z > 0 as

1 [ L Ch6)61 (6,
/ d( )U()dﬁ

Oxx1 (X, y,2) = oy j:1 (l//j(@ ))2 x>
2 Cd(e )ayy(e )
oy, y,20) = / ,Zf (0,6 —LCE N2 46,

L [T G
o1 (¥, y,2) = 27r/o j=1 ((Z1Cx ))2

" Cl00T:00)
Ty (X, 3, 2) = o / JZ; (1,60 do,

/Zﬂ 2 CI0)7(0))
j=1 l/jj(ex))

dex B

szl(xa Y, Z) ——————db,
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(37)

(38)

(39a)

(39b)

(39¢)

(40a)

(40b)

(40¢)

(41a)

(41b)

(41c)

(41d)

(41e)
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Tyzl (x,y,2)=

1 /2” > C(0)70,) 0
o S (y00)

(41f)

and similarly for z < 0, with 1 replaced by 2 in the subscripts on the left-hand side and the sum ranging

from 4 to 6.
We now introduce w = ¢/%* (whence in particular dow = iwd#,), and

y7(0) = y1(0) pa() = (mw + mye* +n3)— (w —ad) (@ — B?),
ws(@) = pa(o)ys() = (mw + e’ +13) = (w —a3) (@’ - B3),
wo(w) = y3(w) pe(w) = (mw + 300° +n3)— (w —a3) (@ — B3),

where, for j =1, 2, 3,

i ((ix +y) cos ¢ +zsing)? — A; smgb(Z(zx+y)zcos¢+((x—zy)2+z2) sm¢)
B cos? ¢+ A; sin® ¢

n

—_

; zZ(ysin2¢(—14+A;) —z(1 +2A;
néz_z(xz_i_yz_zz_ (y #( j) : 2( ]))),
cos? ¢+ Ajsin” ¢
i ((=ix+Yy) cos ¢+ zsing)> — A; singp(2(— lx+y)zcos¢+((x+ly)2+z2) smgb)
s cos2 ¢+ A; sin’ ¢
o TV —Am g —né—\/nz—%ng
i = ; ; =

277{ 2771

In this notation, Equations (39), valid for z > 0, become

1 LS vi+3(@)
”“(x’y’z)z_ﬁjégé%(wwl( o) do

1 1 <. .
uyl(x’y’z):_ﬂfégchi(a’)D (@ )l//1+3§ ; o,
j=1

1 1 <L ) ()

(42a)

(42b)

(42c)

(43a)

(43b)

(43c)

(43d)

(44a)

(44b)

(44c)

while (40), valid for z < 0, takes on an analogous form, with 1 replaced by 2 on the left-hand sides and

the roles of j and j + 3 on the right-hand sides reversed.
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Next, Equations (41), valid for z > 0, become

Oxx1 (1, y,2) = f leC’(w) (w)("”j:g;)zdw, (452)
oy (x, y,2) = 21 flecd(w)a )("’”ZEZ;)ZM, (45b)
rater =5 ¢ lecd(w)af(w)(‘”:zg)zdw, (450)
ryzl(x,y,z)ziﬁiécg(w)f )(Wj:g;)zdw, (45d)
S e = P
Tay1 (6,3, 2) = f ZC’(w)r (w)(‘”’fgg)zdw (4sf)

The counterparts for z < 0 are, as before, obtained by replacing 1 with 2 on the left-hand sides and
interchanging j and j + 3 on the right-hand sides.
In (42), Cauchy’s theory of residues can be used to integrate the contours. If we set

D; )
wj = E/ (j=12,3), (46)

and substitute (42) into (44), the result is a new expression for uy, uy, and u, valid for z > 0 (region 1):

uy(x, y,z)__4Z(Cd(aJ)Dl( ]) ' q)j+3(01j) +C£(—aj)D{1(—aj) . q)j+3(—aj) ),

< 1 o) — 52) (24, (@ — f2)
(47a)
Di3(a;) ®;3(—0;)
1 (x, . 2) = —4 (cf(aw().“’ Cl(=ay) D (—a)—— 2% )
vl < ]Z; )21 4 /(2011')(0!]2—ﬂ]-2 d 7721 J j(—2aj)(a]2—ﬁj2)
(47b)

D;3(a)) D;i3(—aj)
ax,y,2)=—4 (C()D().”J +C)(—a)) DYy (—aj)—— ! )
D ,Zl SO a3 — ) T a3 — )

47¢)
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Since ®4(—ay) = D5(—az) = De(—asz) = 0, this reduces to (still for z > 0)

D;13(a))
1 (x,y,2) = =4 Ci(a)) D], (0j) —21 (48a)
1 jzl D T aapy e — )
Di3(a;)
wyi(x,y,2) =—4> Cl(a;)D (aj) —L3TFT (48b)
! ,Zl D Cag @ = )
3
D 3(a))
1 (x,y,2) = =4y Cia;) D} () —— 2 (48c)
1 Izl d\"] 1&; Jj (2(11)((ZJ2 . IBJZ)

The analogous formulas for z < 0, taking into account that in this case @ (a;) = @5 (az) = 3(a3) =0,
read as follows:

D;(—aj)
2 (x,y,2) = —4 > Ci3(—a)) D] (~aj) —— : (492)
’ ,Zl : nl(—2a)(? - p)
. ®;(~a))
y(x,y,2)=—4 > CiH(—a)) D) (~aj) — : (49b)
" ,Zl ’ 1 (—2a;)(@? — p2)
Di(—aj)
up(x,y,2) = —4 > Ci(~a))Di > (—aj)—L— : (49¢)
le ! "nl(=205) (a2 — B2)
Using the same approach, with the substitution of (42) into (45), one obtains for z > 0
2. d ®;43() ’
oex1(x,y,2) = {wc ()5} (w)( — )} , (50a)
: ;da) a n{(a)+aj)(w2—ﬁj2) w—a;
owi(x,y,2) = i d {a)C (a))a (a)) D)43(w) )2} (50b)
= 7] R n(@+a) @ — ) Joma,
d : D 13() g
yod ( B 5 ) = _{ CJ( ( . ) > (SOC)
0.:1(x,9,2 ;dw wC () ( ;71(60+0!j)(w2 ﬁz) JaHa,—
d : 3 () g
(Y, ) = —{ C( ( i ) : (50d)
Ty1(x, v, 2 ;da) oC; a))r ) i (a)-l—aj)(wz ,82) a
> 4 ; 3(w) >
1 (6,9, 2) = —i C)( ( i ) : (50e)
Tax1(X, Yy Z) jzz;dw oly CU)T ) 17{(60-%—0(])(602— 12) J(L)_)(Xj
> g ; (w) 2
X s ) = R C] ( ]+3 ) 5 50
o) Zdw{” OO et @ =) lome o

and similarly for z <0
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3

. 2
ox2(x,y,2) = Z%{wcg+3(w)gj+3( )( . (D](a)) ﬁZ)) } , (51a)
: ; w—>a;

m (0 — ij)(w2 -

por

oa(r.y.2) = il di{wc”%w)af”( ( j(w_q;j)(gz ﬂz))z} .Gy
j= w—>0;

X, y,2) = ; %[wq{“(w)fyf;”(w)(’7 T _(Zj)(?a))z iy )Z]MI, (51d)

(¥, ¥,2) = ; %{w AN *%w)(n{(w_cz)(gz_ﬁ}))z}w%, (51e)

s, 7,9) = ; %{wcﬁ%w)rf“(w)(n{(w_q;j)(z"a))z ﬁZ))Z}H,’ 610

2. Tllustrative examples

The closed-form solutions given above demonstrate that several factors can affect the displacements and
stresses in an inclined transversely isotropic material. They include: (1) the rotation of the transversely
isotropic planes (¢), (2) the type and degree of material anisotropy (E/E’, v/v’, G/G’), (3) the geometric
position (r, ¢, £), as seen in Figure 2, and (4) the type of three-dimensional loading (Py, Py, P;). Based
on Equations (48) and (49) for region 1 (z > 0) and their counterparts for region 2, a Mathematica
program was written to clarify the effect of these factors on the induced displacements and stresses. In
this program, the displacements and stresses at any point in the full space can be calculated.

A parametric study is conducted to illustrate the generated analytical solutions and investigate the
influence of the rotation of transversely isotropic planes, the geometric position, and the degree and type
of rock anisotropy on the displacements and stresses. Two examples will be discussed: the first example
presents the effect of ¢ on the displacements and stresses of a material subjected to a vertical point
load P, at x =y =z =1 (as shown in Figure 3 for displacements, and Figure 4 for stresses); the second

X

Figure 2. Spherical coordinate system (7, ¢, &).
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E/E’ v/v’ G/G’
Rock 1. Isotropic 1.0 1.0 1.0
Rock 2. Transversely isotropic 2.0 1.0 1.0
Rock 3. Transversely isotropic 3.0 1.0 1.0
Rock 4. Transversely isotropic 1.0 0.75 1.0
Rock 5. Transversely isotropic 1.0 1.5 1.0
Rock 6. Transversely isotropic 1.0 1.0 2.0
Rock 7. Transversely isotropic 1.0 1.0 3.0

Table 1. Elastic properties of the hypothetical rocks used in the examples. In each case,
E =50GPa and v = 0.25.

example exhibits the effect of ¢ on the stresses due to P, at ¢ =90° and & =45° (as depicted in Figure 5).
Seven types of isotropic and transversely isotropic rocks are considered in our model of the foundation
materials. For typical ranges of transversely isotropic rocks, Gerrard [1977] and Amadei et al. [1987]
suggested that the ratios E/E’ and G/G’ range from 1.0 to 3.0, and that v/v’ vary between 0.75 and 1.5.
Hence, the degree of rock anisotropy, specified by the ratios E/E’, v/v’, and G/G’ is accounted for in
the investigation of the anisotropy effect on displacements and stresses. Table 1 lists the rock type and
elastic properties for the hypothetical rocks. The values chosen for E and v are 50 GPa and 0.3.

Figure 3 shows the normalized displacements u,r/P,, uyr/P, and u,r/ P, versus rotation of the trans-
versely isotropic planes (¢), due to a vertical point load (P;), at x = y = z = 1, for the constituted
isotropic/transversely isotropic rocks (rock 1/rocks 2—7, Table 1). Figure 3(a) depicts the normalized
displacement u, of the rocks, induced by P;. It is observed that any value in each curve is symmetric
with respect to the origin of the coordinates, and the ratios E/E’ (rocks 2 and 3), v/v’ (rocks 4 and 5), and
G /G’ (rocks 6 and 7) all strongly influence this displacement. This figure also shows that the magnitude
of the normalized induced displacement (0.00026 m*/GN) for rock 1 is independent of the change in
¢. However, for rocks 2 and 3, the displacement is maximal at about ¢ = 0°-180°, and is minimal at
approximately ¢ = 60°-240°. As for rocks 6 and 7, the displacement is maximal at around ¢ = 50°—
230°, and is minimal at about ¢ = 100°-280°. Figure 3(b) presents the normalized displacement u of
the rocks, due to P,. This figure clearly reveals that the displacement induced in transversely isotropic
rocks is deeply affected by the ratios E/E’ (rocks 2 and 3) and G/G’ (rocks 6 and 7), but is only
slightly influenced by v/v’ (rocks 4 and 5). Notably, the normalized displacement (0.00026 m*/GN) of
the isotropic rock (rock 1) is also independent of ¢. Nevertheless, it is found that the values of induced
displacement for rocks 2 and 3 would be partially within the range of —0.0004 to 0, meaning there could
be an opposite-direction displacement occurring in these media. Figure 3(c) displays the normalized
displacement u, of the rocks, subjected to P,. Clearly, the ratios E/E’ (rocks 2 and 3) and G/ G’ (rocks
6 and 7) profoundly impact the induced displacement, but the effect of v/v" (rocks 4 and 5) is small. The
magnitude of the normalized induced displacement for rock 1 is always 0.00179 m?/GN; however, for
rocks 2, 3, 6, and 7, the values of u, are nearly greater than those of rock 1. The calculated results for
the displacement fields are all in good agreement with Wang and Liao’s solutions [Wang and Liao 1999]
if the full space is homogeneous, linearly elastic, and the planes of transverse isotropy are parallel to the
horizontal axes.
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(a)

285

270

st 2

255

Loading is P,
Effect of ¢
(x=y=z-1)

Rock 1
A& — A — —A Rock2

A——A—4A Rock 3
+ — + — —+ Rock 4
+—+—*F Rock5
G- — ©— -0 Rock 6
®—®—® Rock7

Figure 3. At the position x = y = z = 1, the effect of ¢ on the normalized displacement
(@) uyr/ P, (b) uyr/P,, (c) u,r/P;,.

Figure 4 plots the nondimensional normal stresses .72/ P;, 6yyr?/P,, 6,,r?/ P, and the nondimen-
sional shear stresses ryzrz /P, 1..1%/ P, rxyrz / P,, versus the rotation of the transversely isotropic planes
(¢), subjected to a vertical point load (P,), at x = y = z = 1, for the isotropic (rock 1) and transversely
isotropic rocks (rocks 2—-7). Figure 4(a) illustrates the effect of ¢ on o, ,r%/ P, for rocks 1-7. This figure
shows that the induced stress for the isotropic rock (rock 1) has the same value (0.005105) that is again
independent of ¢». However, it is found that the values of induced stress for rocks 1-7 vary between
—0.004 and 0.02, namely, that there is an obvious tensile stress occurring in rock 7. In addition, any
value in each curve is symmetric with respect to the origin of the coordinates. Hence, from this figure,
it is apparently revealed that the induced stress is greatly influenced by the rotation of the transversely
isotropic planes (¢), and the type and degree of rock anisotropy (E/E’, v/v’, G/G’). Figure 4(b) presents
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0g) o5

285 75 285 75

270 920 270 90

0.024 0:028 0.024 0:028

255 105 255 105

195 165 195 165

Figure 4. At the position x = y = z = 1, the effect of ¢ on the nondimensional normal
and shear stresses. For the code indicating the type of rock, see Figure 3.
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the effect of ¢ on ayyrz / P, for rocks 1-7. Notably, the value in the curves is also symmetric with respect
to the origin of the coordinates, and the ratios E/E’ (rocks 2 and 3), v/v’ (rocks 4 and 5), and G/G’
(rocks 6 and 7) do also have a considerable influence on the stress. This graph shows that the magnitude
of the nondimensional normal stress (ayyr2 / P;) for rock 1 (0.005105) is also independent of ¢, and the
value of the nondimensional stress is within 0.06. In particular, the computed results for rocks 4 and 5
are, respectively, greater than or less than those of rock 1. Figure 4(c) depicts the effect of ¢ on o,.r2/ P,
for rocks 1-7. This stress depends heavily on the ratios E/E’ (rocks 2 and 3) and G/ G’ (rocks 6 and 7).
Nevertheless, the effect of the ratios v/v’ (rocks 4 and 5) on the stress is slight. The maximum value of
the nondimensional stress approaches 0.026. Figure 4(d) plots the effect of ¢ on ryzrz / P, for rocks 1-7.
Evidently, the ratios E/E’ (rocks 2 and 3) and G/G’ (rocks 6 and 7) could intensely affect the induced
stress. However, the effect of the ratios v/v’ (rocks 4 and 5) on the induced stress is still small. The trend
of these stress curves in this figure is similar to that in Figure 4(c). Figure 4(e) displays the effect of ¢
on 7,72/ P,, for rocks 1-7. The maximum value of the nondimensional stress is about 0.026. Figure
4(f) shows the effect of ¢ on rxyr2 / P,, for rocks 1-7. The effect of the ratios v/v’ for rocks 4 and 5
in this figure is more explicit than the effect on other shear stresses (Figures 4(d) and 4(e)). Especially,
the calculated results of rocks 4 and 5 are, respectively, greater than or less than those of rock 1. The
maximum value of the nondimensional stress is within the range of 0.024. The computed results for the
stress fields are identical to those estimated from Wang and Liao’s solutions [1999], in which the planes
of transverse isotropic full space are parallel to the horizontal loading surface.

Figure 5 plots the nondimensional normal stresses (o,,72/P., o-yyr2 /P, o..r*/P.) and the nondimen-
sional shear stresses (ryzr2 /P., 1.xr?/ P, Txyr2 / P;) versus the geometric position ¢ (from 0° to 360°),
due to a vertical point load (P;), at the rotation of the transversely isotropic planes ¢ = 90° and the
geometric position & = 45°, for the constituted isotropic/transversely isotropic rocks (rock 1/rocks 2—7).
Figure 5(a) clarifies the effect of ¢ on o,,7?/P,, for rocks 1-7. It is observed that the magnitudes of the
estimated stresses are symmetric with respect to ¢ = 180°. The upper/lower part of this figure denotes
the compressive/tensile stress occurring in the rock media. The maximum values of tensile/compressive
stress appeared at ¢ = 0°/180° in rock 7. In addition, the induced stresses are found to be influenced
by the ratios E/E’ (rocks 2 and 3), v/v’ (rocks 4 and 5), G/ G’ (rocks 6 and 7), and they are all zero at
@ = 90° and 270°. Figure 5(b) demonstrates the effect of ¢ on ayyr2 / P, for rocks 1-7. Results reveal
that the magnitudes of the computed stresses are also symmetric with respect to ¢ = 180°, and the tensile
and compressive stresses would be expected to occur in all media. However, the maximum values of
tensile/compressive stress appeared at approximately ¢ = 125° and 235°/55° and 305° in rock 4. This
means that at a given position (¢ = 90° and ¢ = 45°), the decrease in the ratio v/v" from 1.0 (rock 1)
to 0.75 (rock 4) could remarkably affect the stress (oy,). Figure 5(c) shows the induced nondimensional
normal stress o.72/ P, for rocks 1-7. The distributions and magnitudes of the calculated stresses are
quite different from those of Figures 5(a) and 5(b). The tensile/compressive stress can be found within
@ = 0°-90° and 270°-360°/90°-270°. Moreover, the stress (o,,) is apparently impacted by the ratios
G /G’ (rocks 6 and 7). Nevertheless, the stress is affected to only a small degree by the ratios E/E’ (rocks
2 and 3) and v/v’ (rocks 4 and 5). The induced nondimensional shear stress Tyzrz / P, for rocks 1-7 is
depicted in Figure 5(d). It is noted that the positive/negative values of 7,, are symmetric with respect
to ¢ = 180°. Additionally, the computed stresses are all zero at ¢ = 0°, 180°, and 360°. The results of
rocks 2, 4, 6, 7 are rather distinct from those of rocks 1, 3, 5. Similarly, the trends can be discovered in
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and shear stresses. For the code indicating the type of rock, see Figure 3.

At the position ¢ =90°, & =45°, the effect of ¢ on the nondimensional normal
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Figure 5(e) for 7,72/ P,. Eventually, the induced nondimensional shear stress rxyrz / P, for rocks 1-7
is displayed in Figure 5(f). The calculated positive/negative values of 7., are symmetric with ¢ = 90°
and 270°. The zero values for 7., are found at ¢ = 0°, 90°, 180°, 270°, and 360°. Furthermore, the
influences of the type and degree of rock anisotropy in this figure are more explicit than those in Figure
5(d,e). That means again that at ¢ = 90° and ¢ = 45°, the normal and shear stresses due to a vertical
point load are strongly impacted by the geometric position (¢) and rock anisotropy (E/E’,v/v’', G/G").

The examples are presented to illustrate the derived solutions and demonstrate how the rotation of
transversely isotropic planes (¢), the geometric position (7, ¢, &), and the degree and type of material
anisotropy (E/E’,v/v’, G/G’) would influence the normalized displacements and nondimensional nor-
mal and shear stresses. Results reveal that the displacements and stresses in the inclined isotropic or
transversely isotropic rocks (rock 1/rocks 2—7) due to a vertical point load are quite different from the
displacements and stresses calculated by assuming the transversely isotropic planes are parallel to the
horizontal surface. Hence, it is imperative to consider the dip at an angle of inclination when calculating
the induced displacements and stresses in a transversely isotropic material by applied loads.

Conclusions

Analytical solutions are presented for displacements and stresses in a transversely isotropic material (in
which the transversely isotropic planes are oriented with respect to the horizontal axes) subjected to
three-dimensional point loads . It is known that the stress components due to three-dimensional point
loads in an inclined infinite space can be obtained by employing the coordinate transformation formulae
with respect to the applied loads. Nevertheless, the displacement components cannot be solved by the
same approach. Hence, an efficient method that employs the double Fourier transform in a Cartesian
coordinate system is proposed to yield the fundamental solutions for displacements and stresses. First,
the characteristic roots for this special material anisotropy are addressed in this article. Next, the double
inverse Fourier transform and residue calculus are applied to integrate the contours. The generated
solutions for displacements are the same as those of [Hu et al. 2007], which were arrived at by using the
triple Fourier transform for an inclined transversely isotropic full space. In addition, they are identical
with those of [Wang and Liao 1999] if the planes of transverse isotropy are parallel to the horizontal
loading surface. The proposed solutions clarify that the displacements and stresses are governed by

(1) the rotation of the transversely isotropic planes (¢),

(2) the type and degree of material anisotropy (E/E’,v/v', G/G),

(3) the geometric position (r, ¢, &), and

(4) the type of three-dimensional loading (Py, Py, P;).
The present elastic fundamental solutions could not only realistically imitate the actual stratum of loading
circumstances in many fields of practical engineering, but also provide the foundations of the bound-
ary integral equation method (BIEM) or the boundary element method (BEM) for solving numerous
boundary value problems. Moreover, the addressed solutions can be extended to generate the dis-
placements and stresses due to three-dimensional point loads in the inclined transversely isotropic half-

spaces/bimaterials/layered materials. These solutions could be very valuable to solid mechanics, and
they will be presented in the near future.
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Appendix

In this appendix we give a parallel, more leisurely derivation of the characteristic equation (18). Recall
that the x” and y’ axes are in the plane of transversely isotropy, and that the generalized Hooke’s law for
a transversely isotropic material is expressed by Equation (2).

Let uy, uy, uy be the displacements of a point on the axes of a Cartesian coordinate system. The
strain-displacement relationship for the small strain condition is given by (6), with x, y, z replaced by
x/’ y/’ Z/-

The equation of force equilibrium is

Oy Tty Ty | [ 0/0x Fo d%u,/ot?
Ty Oyy Tyy | | 0/0Y | = | Fy | = p | 8%uy /01>
Ty Tyy Oyy || 0/07 F, 0%u, ot?

If we set (Fy, Fy, F7) = (0, 0, 0), this becomes

0%uy uy N 0%u, N 0%uy o ) 0%u N uy (522)
=c c ¢ c1—c ¢ , a
P o Voxz 7 oy"? 20772 P ox'oy’ S ox'oz
azuy/ %uy azuy/ azuy/ 62uy/ 82uz/
=(c1—c +c +c +c +c , 52b
Pon =la=c) ox'ay | toxz T Vay2 TV a2 TP ayaz (52b)
62qu %uy 6214),/ 62qu 82uz/ a2uZ/
Pz = Py T4 0y'07 T ox'? T oy’ o2 (520)

For the elastic dynamic problem, an arbitrary time-harmonic body force in the x’, y’, and 7" directions
with angular frequency @ can be written as

ux’(xls yla Z/: t) = M;(X/, y/a Z/) eXP(_iCUt)a (533)
uy,(xls yla Z/: t) = M;/(X/, y/a Z/) eXP(_iCUt)a (53b)
uy(x',y, 2 0 =ul(x',y, 2) exp(—iot), (53¢)

where u},, u;,, and u?, represent the complex amplitude of the body force.
Taking the triple Fourier transform of (53) we obtain

u /(OC ﬂ V) = —1 u /(X/ ! z/)e iax'+fy’ yzl)dx/d /dZ/
X b > (2 )3/2 X > y ’ y B
u /(OC ﬁ V) = —1 u /()C/ ! z’)e i(ax'+py' VZ/)dx/dy’dz/
y s Mo (2 )3/2 X Y s

i@ =y [ [ [ w2 e o ayayaz
Z ’ ,V _(271_)3/2 o)) X ,y, y .



ELASTIC SOLUTIONS FOR AN INCLINED TRANSVERSELY ISOTROPIC MATERIAL

1545
Substituting this and (53) into (52), we have the triple Fourier-type integrals
p*itt, = crali’, + cafrit, + csy?it, + (c1 — ca) afiy, + czayi,
pwzﬁ; = (c1 —ca)afuy, + C4a2ﬁ;, + clﬁzﬁ;, + 65))21/_1;/ +c3fyi,
pwzﬁ; = czayiy +c3fyiy + csazﬁ; + csﬁzﬁ; + czyzﬁj/.
Rearranging, we obtain
d11 - ,Da)2 d12 d13 12;/ 0
dy1 dyp — po*  d3 wy | =10/, (54)
2 -
dz; dy,  dyz—pw uy 0
where
c1a® +caff® + csy? (c1 —ca)af oy
[dij] = (cr—ca)af  cso®+c1f*+csy? c3fy
cay

3By csa’ +cs B+ crp?

Expanding the determinant of the matrix in (54) and substituting the expressions of the d;; shows that
the eigenvalues of the matrix [d;;] are

esy? +ca(a® + ),
po’ =1 1(ci(@®+ %) + 29 +cs(a® + B2+ 9D + A),

$ci@®+ B +eap? +es(a® + f>+ %) — A),
where

A= (1= )@+ D) — (e2 — 5)72) + 42 (e + 2)p2.

If we introduce spherical coordinates (k, 6y, 9,/) in afy-space (so & =k sin@, cos 0y, f =k sin 0, sin b,
y =k cos ), we see that A can be expressed as

A= \/((61 —¢5) sin? 0, — (c2 — ¢5) cos? 91/)2 +4¢2 sin® 0, cos2 6.

Introducing the quantity V2 = w?/k?, the square of the body-wave velocity, leads to a familiar appearance
for the eigenvalues:

Voo — \/ c5 0820 + ¢y sin 6,
0,2 ™

p b
c1sin® 0, + ¢y cos2 By +c5s+ A
VP,B,Z’ - 2p 9
c1sin® 0, + ¢y cos2 0, +c5 — A
Vsv,o,0 =

2p
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Note that 8,/ can be interpreted as the angle between the direction of wave travel and the z’-axis. The
determinant of [d;;] is written as

D =det[d;j]1 = p°k®(Vsu.0.0 Ve.o.0 Vsv.o.2)

= (c57® +cal@® + ) [ (16 + B2 +e57%) (e5(6® + ) +e2p?) = 30 + 2)7?]
3 3
= c2¢5 [T (Ai(a® + B*) +92) = c2c2k® [ (A sin’ 0 + cos? 0), (55)
i=1 j

i=1

where A1, Ay, A3 are defined in (17).
As depicted in Figure 1, a new coordinate system x, y, z is obtained from the original system x’, y’,
7z’ by rotating through an angle ¢ about the x = x” axis. Then the value of D in (55) becomes

3
D = pk®(Vsn0.0 Voo, Vsv.0.)” = cacsk® ] (A; sin® 6, + cos ), (56)
i=1

where 6; is the angle between the vector (a, 8, v) and the 7’ axis, which can be expressed in terms of a,

B, y,and ¢ as
y cos¢ — fsing

a2+ p2 492

a’ 4 B>+ y? — (y cos ¢ — B sinp)?
a’+ p?+y? ’

cosf; =

(57)

that is,

sin? 6, =

Hence, (56) can be rearranged as
3
D= 02c§k6 I1 (Al- sin? 6, + cos? 9,)
i=1
czc§k6 3

= mi];[l(Ai(az—i-ﬁz—i-yz—(y cos¢—ﬁsin¢)2)+(y cos¢—ﬁsin¢)2)

3
= czcg E(Ai (az +ﬁ2 + y2 —(ycosgp—f8 singb)z) 4+ (ycosp—pf sin¢)2).

If we further set iy = u, this becomes

D = det [dij]
3
— o2 ] (Ai (—u? +a®+ B2 — (it cos  + f sin $)?) + (it cos ¢ + f sin ¢)2).
i=1
The six eigenroots can be generated by setting D = 0 in this equation. They are given in (19).
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