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In this paper a heterogeneous anisotropic cylindrical beam with a rigidly fixed base is considered as
an alternative to the relaxed Saint-Venant’s problem. The rigidly fixed base results in a problem with
overspecified boundary conditions for which a proof of existence is given. The results of this paper
indicate that the relaxed Saint-Venant’s problem, for loads independent of the axial coordinate, ignores
the dependence of the stress field on the axial coordinate. Dependence of the stress field on the axial
coordinate could result in warping of transverse cross sections and nonzero in-plane stresses, which is
significant for understanding the behavior of natural structures such as wood and mammalian bone.

1. Introduction

Two examples of natural structures that can be represented as heterogeneous anisotropic cylinders are the
bole of a tree and long mammalian bones. Bodig and Jayne [1993] describe a cylindrical section of a tree
as being an orthotropic material with cylindrical anisotropy, where the axes of symmetry are in the radial
direction (eg), the tangential direction (er), and the long direction (ez) which is directed up the tree. The
same paper reports that the compressive strength of wood is weaker in the ez and ey directions than it is
in the ey direction. Barrett et al. [1981] notes the fracture toughness of wood is an order of magnitude
lower where normal stresses in the eg and ey directions can open the crack. Kennedy and Carter [1985]
note that various material models have been used for long mammalian bones and these include isotropic,
transversely isotropic, and cylindrically orthotropic. Taylor et al. [2002] used an orthotropic model to
compare elastic constants for the human femur measured by ultrasound to those predicted through a finite
element model. Peterlik et al. [2006] found the fracture toughness of bone is greater in the eg and er
directions than the e; direction. Norman et al. [1996] found in the e; direction that bone was an order
of magnitude stronger in Mode 2 fracture as opposed to Mode 1 fracture, where tension in the eg and
er directions can open the crack.

Iesan [1987] describes Saint-Venant’s problem as determining an equilibrium displacement field for a
cylinder loaded by surface forces distributed over its plane ends, and the relaxed Saint-Venant’s problem
as replacing the distributed surface forces on one end with equivalent resultant loads. To consider a
cantilever beam as a relaxed Saint-Venant’s problem, the prescribed displacements on the base of the
beam are replaced with a stress field that maintains equilibrium; however, this changes the problem from
a mixed problem to a traction problem. In solving the relaxed Saint-Venant’s problem various constants
of integration are developed if the equilibrium displacement field is desired. Sokolnikoff [1956] and
Lyons et al. [2002] found these constants of integration could be determined by reintroducing certain
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elements of the fixed boundary condition; however, these elements are on specific points or lines and in
general the equilibrium displacement field is not able to satisfy the fixed boundary conditions over the
complete base of the cylinder. When considering an anisotropic cylindrical cantilever beam as a relaxed
Saint-Venant’s problem, authors such as Lekhnitskii [1981], Iesan [1987], and Lyons [2002] found that
the stresses are zero in the plane defined by er and er. An important question is whether this result is a
function of posing the problem as a relaxed Saint-Venant’s problem or whether it is a general result.

The fixed boundary conditions considered by Sokolnikoff [1956] and Lyons et al. [2002] include both
prescribed displacements and prescribed first derivatives of the displacements at points on the base of
the cylinder. Gao and Mura [1991] consider these types of boundary conditions to be overspecified and
there is the risk that if they are selected arbitrarily then they could be inconsistent. There are additional
conditions imposed on the displacement vector when considering elastodynamic problems and these can
be used to better understand the implications of using overspecified boundary conditions.

This paper considers a cylinder that is rigidly fixed at the base and subject to a time dependent forcing
function on the free end. The cylinder is composed of a material that is heterogeneous and anisotropic,
with elastic coefficients that are independent of the axial coordinate. In this paper the objective of Section
3 is to confirm that the stresses and strains are identically equal to zero on the base of the cylinder when
the base is rigidly fixed, the objective of Sections 4 and 5 is to prove the existence of a solution which
will indicate the overspecified boundary conditions are consistent, and the objective of Section 6 is to
compare specific attributes of the stress field found in this paper to the stress field found when posing
the cylinder as a relaxed Saint-Venant’s problem.

2. Problem statement

Consider a cylindrical cantilever beam with constant cross sections (Figure 1), where the displacement
of the free end combined with the length of the beam is such that geometric nonlinear effects are not
significant. Let the region B refer to the interior of the cylinder, 6B is the boundary, and B = 9B U B.
Let X, be the open cross section at x3 = 0, let £, be the open cross section at x3 = 4. The lateral surface
of the cylinder is II. In the following Greek indices range from 1 to 2, while Latin indices range from 1

2, I
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Figure 1. Cylindrical beam in Cartesian coordinates.
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to 3. Summation notation is used for repeated indices and a comma followed by a subscript will indicate
a partial derivative with respect to the subscript. In addition, the Kronecker delta function (d;;) will be
used.

The beam considered in this paper will be rigidly fixed on X,. Eringen and Suhubi [1974] give the
necessary condition for a body to be locally rigid d;;(x, 1) = %(vi(x, 1),j +v;(x,1),; ) =0. Here, d;; is
the rate of deformation tensor, and v; is the velocity vector.

The boundary conditions for the problem considered in this paper are

u(Z,,1)=0 on Xo,
dij(Eg,t):O on X, !
s(I1,1) =0 on II, M

s(Zq, 1) = k(21)<D(t) on Xj.

Here u(X,, 1) is the prescribed displacement vector on X, s;(X, t) = S;; (X, f)nj, where n; is the unit
vector normal to the surface of interest and S;;(x, t) is Cauchy’s stress tensor, k(Z1) is a vector that is a
function of the coordinates on X, and ®@(¢) is a scalar function of time.

At t = 0 the beam is subject to body loads due to gravity alone. Therefore, the initial conditions are

ux,0)=—q(x)on B and u(x,0),; =¢(x) on B. 2)

Here —q(x) is the displacement vector due to gravity alone, and ¢ (x) is the initial velocity vector.
The constitutive equation is

Sij = Cijii(xq)Enr. 3)

Here S;; is Cauchy’s stress tensor, E;; is the infinitesimal strain tensor, and C;jx; is the elasticity tensor
which is independent of the axial coordinate x3, symmetric, and positive definite.

The problem considered in this paper is one of linear elasticity, where nonlinear terms in the strain
tensor, velocity vector, and acceleration vector are discarded as terms of higher order. In addition, when
considering a spatial description of acceleration, the convective components are discarded as terms of
higher order. Achenbach [1973] notes that once the problem is completely linearized the distinction
between the material and spatial descriptions of motion vanish; therefore, either the notation for the
material description or the spatial description can be used. Material coordinates are typically used in
solid mechanics; however, in the problem considered by this paper the velocities are prescribed on
>, and thus a spatial description can be useful. This paper uses a material description except for the
derivation involving the continuity equation, and Equations (7)—(10); however, given the observations by
Achenbach [1973] a new coordinate system is not introduced.

3. Considering stress and strain as x3 approaches h

Theorem 3.1. Let u(x, ) € C"2(B) N C>2(B). Given Equation (2) and the first two equations of (1),
then, lim, ., u;(x, 1),; = 0.

Proof. The boundary values of the field equations are defined as follows. Let x¢ be some point on 0 B
and let u(x, t) tend to a definite limit as the point x approaches xo from B. Recall Greek indices range
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from 1 to 2, while Latin indices range from 1 to 3. Given the first equation of (1), and that x; and ¢ are
independent, then

hm u(x,t), =0, 4)
x3—h
lim v(x,1) =0, 5)
)C34>h
limh v(X,1).4 =0. (6)
X3—>

Consider the density of the material in B to be a function of position and time

p=p(x,1). (7)
The equation of continuity is
Dp(x, 1)
Dt
Expand the material derivative in (8), take the limit as x3 approaches 4, and take into account Equation (5),

then b
t
lim M = hm p(X, 1) . 9

x3—h Dt x3—h
Take the limit of (8) as x3 approaches A, take into account Equation (9) and the second equation of (1)
with i = j, then

+p(x,t)v;(x,1); =0. (8)

lim p(x,1),=0. (10)
x3—h

Integrating (10) with respect to time it can be seen that the density of the material in B is independent
of time as x3 approaches #.
lim p(x,t) = lim p(x). (11)
X3~>h X3~>h

The density at time ¢ is related to the reference density by

pX, 1) = p(x,0).

1
J(x, 1)
Here, J(x, t) is the Jacobian determinant, which represents the dilation of an infinitesimal volume at the
material point x. However, given (11)

Jim p(9) = lim )p() (12)
Recall for infinitesimal strains that
J(x,t) =1+divu(x, ). (13)
Substitute (13) into (12), then it can be seen that
xl31£)nh divu(x,t) = hmh uj(x,1),;=0. (14)

Substitute (4) into (14) and take the derivative of this with time, then

limh u3(x,t)3=0 and limh 03(x,1)3=0. (15)
X3—>

X3—>
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Seti = a and j = 3 in the second equation of (1) and take into account Equation (6), then

lim v,(x,1) 3 =0. (16)

)C3—>/’l

Integrate (16) with respect to time and take into account the first equation of Equation (2), then

lim u,(x,1),3=— hmh 9a (X),3- (17)
xX3—>

x3—>h

Equation (17) indicates the shear strains are independent of time as x3 approaches /. This is an unlikely
result given the time dependent forcing function being applied to X. Therefore, as will be demonstrated
in Section 4, the only nontrivial solution is to let lim,,,; g, (x) 3 = 0, then

lim g (x, 1) 3 =0. (18)
X3~>h

Given equations (4)—(6), (15), (16), and (18) the velocities and the derivatives of the displacements and
velocities with respect to the coordinates as x3 approaches /# can be summarized as follows

lim u;(x,1),; =0, lim v;(x,7)=0, and lim v;(x,1),; =0. (19)
x3—h x3—h x3—>h
Equation (19) completes the proof of Theorem 3.1. U

Consider the constitutive Equation (3), note the material coefficients are independent ofx3, and take
the limit as x3 approaches h.

Cij . .
lim S;;(u) = —2%! ( lim u;,; + lim ul,k). (20)
x3—h x3—h x3—h
Substitute the first equation of (19) into (20), then
lim S,-J-(u) =0. (21)
x3—h

Note the results, Equation (19) and (21), follow from assuming infinitesimal strains; in general these
results do not hold if finite strains are allowed.

4. Displacement functions

Theorem 4.1. Let ®(r) = at, for 0 <t < t; where a is a constant and ¢, is the time when the strains are
no longer infinitesimal; given equations (1), (2), and (19), then u; (X, ¢) = #{; (X) —g; (x) and u; (X, t) ;s =0.

Proof. The equation of motion in material description is
Po(X)0;i (X, 1), = S;j (X, 1), +0i3p0(X)g. (22)
Let U(x, 1) € C»2(B) N C>%(B) and
Ui(x, 1) = ui(x, 1) + gi (x), (23)
Sij(q(x)),; = 6i3p0g-

Rearrange (23)
ui(X> t) = Ui(X, [) _Qi(X)~ (24)
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Substitute Equation (24) into the equations of motion, (22), then
pUUi (X> t),ll - Slj (X, t),j'
Substitute (24) into the initial conditions, (2), then

Ui (Xs 0) =0 and Ui (X: O)ﬂ = C(X)

(25)

(26)

Substitute (24) into the first equation of (1), the first equation of (19), and the third and fourth equations

of (1).
Ui(22,1) = qi(%2),
Ui(22,1),; = qi(Z2),j,
Si; (U(Zy, f))”?l) =k (Z)DP(1) + S;; (Q(Zl))nﬁzl),
8, (UL, 0)n{ = 5;; (q(I) !
Let

Ui(x, 1) = X;(x)T (7).

Here, X;(x) is a vector function of x alone, and 7 (¢) is a scalar function of ¢ alone.
Substitute Equation (31) into (25), then

PoXi(X)T (1) ;s = Sij (X(x)),; T ().

Separate the variables in (32), then

T  Si(X(X)),;
T(1) PoXi(X)
Here b; are constant; however, T (¢)is independent of X;(x). Therefore, by = by = b3 = b and

= i‘

T(t),; —bT(t)=0,
Sij (X(X)),j —bp,X;(x) =0.
Substitute (31) into the first equation of (26), then
X;(x)T (0) =0.
The only nontrivial solution to (35) is when
T(0)=0.
Substitute Equation (31) into the second equation of (26), then
Xi(x)T(0),r = g (x).
The only nontrivial solution to (37) is when
T0),=c and X;(x)=c"'¢;(x).

Here c is a constant.

(27)
(28)
(29)
(30)

€19

(32)

(33)
(34)

(35)

(36)

(37)

(38)
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Substitute (31) into (27), then

Xi(Z)T (1) = qi(%2) (39)
The only nontrivial solution to (39) is when
Xi(22) =qi(22) =0. (40)
Substitute (31) into (28), then
Xi(22) ;T () =qi(Z2),;. 41)
The only nontrivial solution to (41) is when
Xi(22),j =¢i(Z2),; =0. (42)

Substitute Equation (31) into (29), then
$i; (X)) VT (1) = ki (Z)D (1) + S (q(z )™, 43)
Given (36) and (38) we have T (t) = ct; therefore, let S;; (q(Zl))n?l) =0 in (43) and isolate T (¢).

T()= ki(zl)q)(t()zl), no sum over i. (44)
Sy (X(z)n’

By definition T'(¢) is a scalar function, while the right hand side of (44) is vector valued; therefore, let
ki(21) = S (X(2))n (™. (45)

Note, from the definition in 4.1 we have ®(¢) = at; therefore, given (44) and (45)

T(t) =at. (46)
Substitute (31) into (30), then
8 (X()nT (1) = 5,5 (q(I) ! 47)
The only nontrivial solution to (47) is
8 (X()n'!Y = 8;;(q(@)n | =0. (48)

Equations (33), (36), and (38) form an initial value problem that can be solved for three cases of b.
CASE 1. Let b =0, then (33) becomes

T(t),;=0. (49)
Integrating (49) twice with respect to time, and taking into account Equation (36) and (38), it can be seen
that

T(t) =ct. (50)
Taking Equation (46) into account, (50) becomes 7' (t) = at. CASE 2. Let b > 0, and let b = A2, where
A > 0. Then (33) becomes

T(t).. — AT (t) =0. (51)
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Let T(r) = €', then (51) becomes

rf—22=0. (52)
Factoring (52) it can be seen that r = £ 4, therefore, there are two solutions for 7 ().
T (1) =cre” 4+ cre™. (53)
Considering (36) and (38) it can be seen that c; = —cy and ¢; = ¢/24; therefore, (53) becomes
T(1) = % sinh(41). (54)

Considering (54) and (46) it can be seen for @ # 0 and ¢ > 0 there are no solutions for 7'(¢) when b > 0.
CASE 3. Let b <0, and let b = — A2, where A > 0. Then (33) becomes

T (1) +A*T(t) =0. (55)
Let T(t) = ¢, then (55) becomes
r’+1*=0. (56)
Factoring (56) it can be seen that r = £ i 4; therefore, there are two solutions for 7 (¢)
T(t) =cicos(At)+cpsin(At). 67

Considering (36) and (38), it can be seen that c; = 0 and ¢, = ¢/4; therefore, (57) becomes
T(1) = %sin(/l ). (58)

Considering (58) and (46) it can be seen for a # 0 and ¢ > 0 there are no solutions for 7'(¢) when b < 0.
Combining the solutions for 7'(¢) from the three cases of b results in

T(t) =at. (59)

Equations (34), (40), (42), (45), and (48) form a boundary value problem defining X(x) that can be
solved for three cases of b. From the analysis of 7' (¢) it was found that b = 0; therefore, the equilibrium
problem that defines X (x) is

Sij (X(X)),j = 0,

Xi(22) =0,
Xi(%2),; =0, (60)
Sii (X(Z0)n$ = ki (Z1),
8 (X()n'" = 0.
Substitute Equation (59) into the first equation of (38), then from the second equation of (38)

Xi(x) =a~'G(x). (61)
Substitute (61) and (59) into (31), and the resulting function into (24), then
ui(x,1) =1 (x) —qi(x) and wu;(x,1) =0 (62)

Equation (62) completes the proof of Theorem 4.1. O
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5. Nonexistence

Ericksen [1963] gives the main result of nonexistence theorems as nonuniqueness implies nonexistence.
Ericksen [1965] notes that it is tacitly hoped in elastostatics that problems are well posed when uniqueness
is obtained; however, this is a weak result since it leaves open the possibility of problems where existence
fails even though uniqueness is proven. Therefore, nonuniqueness is used in this section as one possible
test to determine if solutions to the problem defined by Equation (60) are nonexistent.

Gurtin [1972] presents a nonexistence theorem for the mixed problem of elastostatics where the elas-
ticity tensor is symmetric. The difference between the elastostatics problem defined by (60) and the
one considered by Gurtin [1972] is that the third equation of (60) prescribes the strains on X, and this
could affect the method used to form the null data problem. Let [w, E, S] be the difference between
two solutions to (60) that are not equal modulo a rigid displacement, where w is the difference between
displacements, E is the difference between strains, and S is the difference between stresses. Note, since
E # 0 in B then w;(x) ; # 0 in B. Recall from the proof of Theorem 3.1 that lim,,,, u;(x,7) ; =0
is solely dependent on the X, boundary conditions, and this result produced the third equation of (60).
Therefore, even though w; (x) ; # 0 in B it must still vanish as interior points approach X,. Thus,

w;(x) =w;(x) ;=00n X, and s;(x)=S;;(W(x))n;=00n X UII. (63)

Equation (63) corresponds to a nontrivial solution of (60) with null data. Thus, Gurtin’s [1972] nonex-
istence theorem for mixed problems applies to the problem defined by (60), and the task at hand is to
determine if (60) has a unique solution in which case nonexistence of a solution is not proven.

The following proof of uniqueness follows Gurtin’s [1981] theorem for elastostatics. Consider the
problem defined by (60) and note that C is positive definite. Let [X;, E{, S1] and [X>, E;, S;] be two
solutions to (60), where

w(x) =X;(x) —Xao(x) and E(x)=E;|(X;(x))—Ex(X2(x)) (64)
Here [w, E, S] is an elastic state that satisfies the boundary conditions w(x) =0 on Z, and S(x)n =0 on

21 UII; therefore,
Sx)n-w(x) =0 ondB. (65)

Substituting (65) into the Theorem of Work and Energy as presented by Gurtin [1981] and noting that
the body forces are zero in (60) results in

/ E-C[E]dV =0. (66)
B

Since C is positive definite, (66) can only be true if E(x) = 0, which results in S(x) = 0. Therefore, given
(64) the solution to (60) is unique up to a rigid displacement.

Let w(x) = o +# x x. Here a and # are constant vectors. Given (63) a and # must be identically equal
to zero; therefore, the solution to (60) is unique. Thus, the Nonexistence Theorem proposed by Gurtin
[1972] is unable to detect the nonexistence of a solution to Equation (60).
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6. Remarks on the relaxed Saint-Venant’s problem

Iesan [1987] found the following stress function that satisfies the equilibrium problem for Extension,
Bending, and Torsion posed as a relaxed Saint-Venant’s problem for a material defined by Equation (3).

Sij(A) = Cijzzlapx, +a3) —asCijazeapxp + Tij(xq). (67)

Here A is an infinitesimal equilibrium displacement field, a, are constants with ¢ ranging from 1 to 4, T;;
are the generalized plane stresses that are independent of x3, and e,y is the two-dimensional alternator
symbol. When considering the problem corresponding to (67), Chiritd [1979] and Lyons [2002] found
for certain forms of the elasticity tensor that S,4(A) = 0 throughout B.

Given the third equation of (60) and (3)

lim S;;(X) = 0. (68)
x3—>h

Iesan [1987] notes the justification for the relaxed Saint-Venant’s problem is based on Saint-Venant’s
principle, which assumes the effects of posing the problem as a relaxed Saint-Venant’s problem are
negligible except possibly near the ends of the cylinder. Note in Equation (67) that S;; are independent
of x3 throughout B; however, for Equation (68) to hold and for the stresses to be nonzero in some region
of B there must be a x3 dependence. Dependence of the field equations on x3 indicates warping of
the transverse cross sections with the possible result that S,z # 0 throughout B. This is an important
consideration for anisotropic materials such as trees and bone that are significantly weaker in the x,
directions.
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