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ZONE, I: NONLINEAR BENDING LOAD-DISPLACEMENT RELATIONS FOR A

LINEAR SOFTENING COHESIVE LAW

PRASAD S. MOKASHI AND DANIEL A. MENDELSOHN

Part I of this paper describes the computations of the quasistatic nonlinear moment-slope relation for
an edge-cracked beam element with a strictly linear softening cohesive zone ahead of the crack tip. A
static plane stress linear elastic boundary element analysis is used in which the cohesive nonlinearity
appears in the crack plane boundary conditions only. An iterative solution scheme is used to determine
the unknown cohesive zone length, the cohesive displacement jumps, and the bending mode J -integral.
Interpreting the moment-slope relation as a generalized load-displacement relation the bending com-
pliance (and slope) at a given applied moment are calculated from computed J -integral values over a
grid of applied moment and crack-length values. The dependence of the moment-slope relation on the
cohesive law parameters is studied and the various computed moment-slope relations are then used in
Part II to model the dynamic effect of the cohesive zone and law on the free-vibration of an edge-cracked
simply-supported beam.

1. Introduction

The major kinematic effect of an edge-crack in a beam is the discontinuity the crack allows in both the
net rotation and the net transverse deflection across the crack plane, Figure 1. The discontinuities are
resisted by the bonded ligament in an elastic manner if the crack is in small-scale yielding. This allows
the use of linear massless rotational and/or shear springs to represent the crack plane in thin structures
with through cracks. The idea originated with the line-spring model of Rice and Levy [1972] applied to
a static analysis of a through crack in a plate in bending. The model relates the jumps in the rotation
1θ and the jump in transverse deflection 1v to the applied bending moment M and the shear force
Q at the crack plane, respectively. For cracks in small-scale yielding for which linear elastic fracture
mechanics (LEFM) applies, the spring stiffnesses (or their reciprocals, the compliances) may be found
from a two-dimensional elastic analysis of a cracked beam shaped geometry as found in many fracture
mechanics handbooks [Tada et al. 1973; Yokoyama and Chen 1998] as a function of crack length, beam
depth, and elastic properties. If the crack tip is attended by a cohesive zone, then the extent of the zone
and the plastic stretch in the cohesive zone depend on the load which causes the stiffness (compliance)
to depend on the load and the load-displacement relation to be nonlinear. The purpose of this paper is
to compute the nonlinear bending load-displacement relation (moment-slope relation) for an edge-crack
with a linear softening cohesive law and to study how it depends on the cohesive law parameters.

Keywords: cohesive zone, linear softening, compliance, J -integral, nonlinear load-displacement.
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Figure 1. Left: Jump in slope 1θ at the crack plane due to the bending moment M .
Right: Jump in deflection 1v at the crack plane due to the shear force Q.

Fracture process zones are typically characterized by nonlinear softening behavior in which the crack
plane stress decreases with increasing irreversible deformation of the process zone. The particular re-
lationship between the cohesive traction and the deformation is known as the cohesive or softening
law. The softening zone is in general surrounded by a nonlinear plastic hardening region. Four general
situations may be delineated. (i) Both the softening and hardening regions are small compared to the
K-dominant region surrounding the crack tip, in which case LEFM is appropriate. (ii) The softening
zone is small and is surrounded by a large plastic hardening zone, in which case elastic-plastic fracture
mechanics is appropriate. (iii) Both the softening zone near the crack plane and the plastic hardening
zone are appreciably large, in which case both cohesive zones and a plastic hardening region need to be
modeled. (iv) The softening zone is confined to a region near the crack plane and is large compared to a
negligible small region of plastic hardening which surrounds the softening zone. This requires a model
with only an infinitesimally thin cohesive zone surrounded by elastic material. Typically (i) is referred to
as brittle behavior, (ii) and (iii) are ductile behavior, and (iv) is quasibrittle behavior. The present work
is concerned with the latter category, which is exhibited by a variety of materials: concrete, rock, ice,
certain sands and clays, toughened ceramics, fibrous composites, brittle matrix composites, and a variety
of bonded joint geometries and types (adhesive, weld, solder) [Hillerborg et al. 1976; Petersson 1981;
González et al. 2004; Cox et al. 1989; Sensmeier and Wright 1989; Bao and Suo 1992; Suo et al. 1993;
Botsis and Beldica 1994; Zok and Hom 1990; Bosco and Carpinteri 1995; Bao and McMeeking 1995;
Xu et al. 1995; Fett et al. 1995; 1994; Anderson and Stigh 2004; Shetty and Spearing 1997; Yang et al.
1999; Cavalli et al. 2005; Yang et al. 2004; Sorensen 2002; Plaut and Ritchie 2004; Wei and Hutchinson
1998].

Cohesive zones were first introduced into the mathematical analysis of the crack problem nearly si-
multaneously by Dugdale [1960], Bilby et al. [1963], and Barenblatt [1962], for application to ductile
metals. These original analyses assumed that the cohesive stress is constant over the entire cohesive zone.
Hillerborg et al. [1976] applied cohesive modeling to quasibrittle materials like concrete and were the
first to introduce a softening cohesive law in which after reaching a peak, the cohesive traction reduces
as the plastic stretch increases. Many of the studies referenced in the previous paragraph note that all or a
significant part of the cohesive law is in a softening mode. Linear and bilinear softening cohesive models
have also been used, for example, by Geubelle and Rice [1995], Yang and Ravi-Chandar [1996], and
Bažant and Planas [1998] for metals, concrete, and other quasibrittle materials. Exponential and other
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nonlinear softening models have been used by Geubelle and Baylor [1998], Bažant and Li [1997], Li and
Bažant [1997], Panasyuk and Yarema [2001], and Panasyuk et al. [2003] in the context of quasibrittle
materials. Linear softening models have been used in boundary element formulations by Ohtsu and
Chahrour [1995] and Aliabadi [1997] for quasibrittle materials like concrete to study crack propagation.
Hanson and Ingraffea [2003] and Hanson et al. [2004] have used linear and bilinear softening cohesive
models in numerical crack growth simulations in concrete using the finite element method.

From the work cited above it is clear that cohesive zones occur in many real material systems and
that the use of cohesive zone models in computational settings is convenient, useful and prevalent today.
Virtually all methods in the literature for determining the form or parameters of a cohesive law for a
particular material have been based on destructive testing to failure. This includes all of the work cited
above in which this crucial parameter identification is actually carried out. The present work is one of two
parts in an effort to develop a nondestructive technique for characterizing the cohesive law of a structural
material, or in the case of an interface crack, the cohesive law of the bond or interface material itself.
The characterization is based on the nonlinear vibration response of a model of an edge-cracked beam
in which the crack plane is replaced by a bending spring and a transverse shear spring and the beam is
modeled using Euler–Bernoulli beam theory. Assuming nonlinear behavior in bending only, the spring
stiffnesses are calculated in this part of the paper from two-dimensional fracture mechanics solutions for
beam like geometries with edge-cracks and mode I cohesive zones. The second part of the paper uses
these stiffnesses in a nonlinear beam vibration analysis. In this way the forward problem is posed and
solved: that is, for a given cracked beam and cohesive law, the nonlinear beam vibration response at a
prescribed static preload is predicted. The eventual goal is to solve the inverse problem of interpreting
measured nonlinear vibratory response to ascertain the parameters of a cohesive law for a known crack
length and superimposed static preload. The rationale for the assumption of a static preload is given in
detail in the second part of the paper.

Specifically the objective of the first part of the paper is to develop a methodology for computing
the nonlinear generalized load-displacement (moment-slope) relationship in a two dimensional edge-
cracked beam-like geometry with a linear softening cohesive crack ahead of the crack tip subjected to
pure bending. The nonlinear spring stiffness for use in the beam vibration analysis is calculated from
the nonlinear moment-slope relationship. The analysis begins by solving the crack and cohesive zone
boundary value problem using a two-body, iterative, direct boundary element method (BEM). By virtue
of the method of solution the results also apply to the situation of two beams bonded together with an
edge crack in the plane of the bond. For each softening law studied, the J -integral is obtained from the
BEM analysis for a range of crack lengths and applied moments. Then, using the relationship between
the J -integral and generalized load and displacement (bending moment and jump in slope across the
crack plane) for the cracked geometry, the compliance is derived in terms of the J -integral. Once the
compliance is found at a given load the generalized displacement (jump in slope across the crack) may
be calculated. This yields the predicted generalized load versus the displacement relationship, which is
in turn used in the nonlinear beam vibration analysis presented in the second part of this paper.

The paper starts with a discussion of crack plane compliance and the J -integral and their relationship.
This is followed by the BEM formulation and some results on the dependence of the cohesive response
on the loading and the cohesive law parameters. Next we describe the numerical analysis for obtaining
the generalized load versus displacement relation, and present the curves for a variety of cohesive laws.
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2. Crack plane compliance and the J-integral

For an Euler–Bernoulli beam of rectangular cross section and containing a through-surface edge-crack,
if axial forces are neglected and only shear and bending loads are considered, then the crack plane is
subjected to a net shear force Q and a net bending moment M . The presence of a crack causes a relative
jump in displacement and rotation of one flank of the crack relative to the other as shown in Figure 1
for a cracked element in an edge-cracked beam. 1θ represents the jump in slope and 1v represents the
jump in the displacement. The increased compliance due to the presence of the crack can be lumped
into a continuous spring of zero width that connects the two faces of the crack [Rice and Levy 1972]. If
the beam is now divided at the crack plane into two regions and the crack plane replaced by line(planar)-
springs of zero-width, the compliance relations for the line-springs may be written as

1θ = θ2− θ1 = λθM, (1)

1v = v2− v1 = λvQ, (2)

where λθ and λv are the compliances due to bending moment and shear force respectively. The springs
relate the shear force and bending moment to the jump in deflection and rotation, respectively, across
the crack plane. Treating each of these as global or generalized load and load-point displacement pairs,
basic fracture mechanics principles state that the bending compliance can be written in terms of JI, the
mode I contribution to the J -integral, as [Kanninen and Popelar 1985]

λθ (M̄, ā)=
W
b

1
M̄

∫ ā

0

∂ JI(M̄, ā)
∂ M̄

d(ā). (3)

and similarly that the shear compliance may be written in terms of JII, the mode II contribution to the
J -integral as

λv(Q̄, ā)=
W
b

1
Q̄

∫ ā

0

∂ JII(Q̄, ā)
∂ Q̄

d(ā). (4)

Since in the present two-dimensional setting JI is actually a function of applied moment per unit
thickness and nondimensional crack length to beam depth ratio, we have introduced normalized applied
loads and crack length M̄ ≡ M/b, Q̄ ≡ Q/b, and ā ≡ a/W . Here b is the (out of plane) beam thickness,
a is the crack length, and W is the beam depth; see Figure 2. If the crack tip is elastic or in small-scale
yielding (negligible cohesive zone size) then the compliance relations are linear, the compliances are
independent of applied loads, and the J -integral components are proportional to their respective applied
load. The J -integral components and the compliances may in this case be written directly in terms of
the stress-intensity factors, which are well-tabulated for edge-cracked specimens [Yokoyama and Chen
1998; Tada et al. 1973; Wilson 1970; Tharp 1987]. However, if there is cohesive damage ahead of the
crack tip then the J -integral components depend nonlinearly on the applied load and the integrals in (3)
or (4) must be used. This requires that the J -integral be evaluated at a fairly fine grid of applied load and
crack-length values [Mendelsohn 2006]. For convenience, the present analysis confines the nonlinearity
to the bending spring, and hence the shear compliance can be calculated from the formulas in [Yokoyama
and Chen 1998]. The focus from here on in this paper is then on the nonlinear bending compliance in
(3) and the resulting nonlinear M̄–1θ relation. This requires only the consideration of bending loading
leading to mode I loading at the crack tip. The J -integral, which appears in (3), is computed from results
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Figure 2. Left: Boundary element geometry showing the crack plane as the interface
between two fictitious bodies having boundaries B1 and B2. The couples at the ends load
the model in bending (mode I). Right: Interface divided into three regions.

from a two-dimensional elastostatic BEM analysis of an edge-crack with a planar cohesive zone in a
beam shaped homogeneous elastic solid subjected to edge-moments as shown in Figure 2, left. The
elastic crack tip is a distance a from the bottom of the beam and the end of the cohesive zone is a
distance c from the bottom of the beam, Figure 2, right. The cohesive law is the relationship between the
normal traction t and the cohesive stretch δ in the cohesive zone which is modeled by a jump in normal
displacement across the crack plane:

δ = ux1=0+
1 − ux1=0−

1 , (5)

where u1 denotes displacement in the x1 direction normal to the crack plane. δt is the value of δ at
x2 = −

1
2 W + a; see Figure 3, left. A linear softening cohesive law is shown in Figure 3, right, and is

written as
t (δ)= t0

[
1− δ

δ0

]
, (6)

A

δ

t

t

δδ o

o

t

t

tx 2

x
1

δ

Γ

δ
1Γ

2

t

t (δ)t (δ)

B

A

B

Figure 3. Left: Free body diagram of the cohesive zone. Right: Linear softening cohe-
sive law showing the extent of softening.
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where t0 is the peak cohesive traction and δ0 is the critical value of cohesive crack opening displacement
at which extension of the elastic crack tip or crack growth occurs. The focus is on obtaining the cohesive
response to loadings such that the entire cohesive law is exercised, but crack growth does not occur.
Following the development in [Kanninen and Popelar 1985] but replacing the Dugdale cohesive law, for
which the traction is constant and equal to t0 over the entire cohesive zone, with the linear softening law
in (6) we obtain

JI =

∫ δt

0
t (δ)dδ = t0δt

[
1−

1
2
δt

δ0

]
, (7)

which is the area under the exercised portion of the cohesive law. We restrict δt to be less than its value
at crack growth δ0. As δt approaches δ0, JI approaches the critical value for crack growth, JI0 =

1
2 t0δ0,

a third parameter in addition to t0 and δ0 which can be used to characterize the cohesive law. Crack
growth is not modeled in order to keep the envisioned free-vibration experiments as simple as possible.
The crack tip opening displacement δt is solved for using a two-body, iterative, direct boundary element
formulation for an edge crack in a beam shaped solid subjected to pure bending, and the corresponding
J -integral from (7).

3. Boundary element formulation and solution scheme

The beam shaped geometry with an edge crack subjected to pure bending is shown in Figure 2, left. The
total length L of the beam is taken large enough compared to W to make the crack tip fields independent
of any end effects at the load points and for this two-dimensional elasticity model to behave like an
Euler–Bernoulli beam. The beam is further divided into two fictitious bodies with the crack plane as
the interface between them. The interface is divided into three regions: (i) ligament, (ii) cohesive zone -
with a linear softening t − δ law, and (iii) open crack as shown in Figure 2, right. B1 and B2 represent the
boundaries of the two bodies that are discretized into elements with constant tractions and displacements.
The direct boundary element formulation is applied to each of the two bodies which make up the beam
under consideration. Discretizing B1 and B2 into N elements each, for each body (k = 1, 2) the reciprocal
identity gives the two matrix equations

[kUi j ][k t j ] + [k Ti j ][ku j ] = [0], k = 1, 2. (8)

The boundary traction and displacement N -vectors are [k t j ] and [ku j ], where the leading subscript refers
to the body and the trailing subscript refers to the direction of traction or displacement. [k Ti j ] and [kUi j ]

with i, j = 1, 2 are the infinite space Green’s matrices for tractions and displacements, respectively in
body k. Details of these matrices can be found in [Brebbia and Dominguez 1989] and in the present
notation in the doctoral thesis by Young [1994]. The boundary conditions in the crack plane are now
described. The bending loading considered leads to a mode I cohesive zone only. A complete formulation
with mode I and II cohesive behavior has also been completed and used in the cracked bimaterial beam
problem [Mokashi 2007], but is not presented here. Starting with the ligament, normal, and tangential
displacements across the fictitious interface are continuous and normal and shear tractions are equal and
opposite (stresses are continuous). In the cohesive zone the tangential displacement and the shear traction
are continuous across the interface, just as they are in the ligament, while the normal tractions are equal
and opposite on either side of the interface and related to the normal displacement jump through the
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cohesive law, (6). In the open crack both the normal and shear tractions on either crack surface are zero.
The open crack surfaces and the boundaries B1 and B2 (except the load points) are traction free. The
point loads creating the couples are modeled as constant applied normal traction over the element at
whose node they act. These boundary conditions give rise to a 4N × 4N linear system in the remaining
unknown tractions and displacements. The matrix equation corresponding to each boundary condition
consists of all rows of each of the Green’s submatrices and only those columns corresponding to the node
at which the boundary condition is applied. The details of the matrices that give rise to the final linear
system can be found in the doctoral thesis by Mokashi [2007]. In addition to the 4N unknown tractions
and displacements, the length of the cohesive zone is also unknown.

An automatic iterative solution scheme is employed to obtain the unknown tractions and displacements
and the extent of the cohesive zone. The scheme begins with an initial guess of the number of elements
that constitute the extent of the cohesive zone. The evaluated normal traction value in an element of
the cohesive zone nearest to the ligament is then compared with t0. If it is larger than t0, iterations
are performed on the number of elements in the cohesive zone until the value of the normal traction in
the first element of the ligament, nearest to the cohesive zone, is less than t0. The other constraint for
the solution is that in the open crack there is no interpenetration of material, that is, the crack exhibits
opening displacements only. The solution for displacements is automatically checked for this condition.
A representative solution for the normal tractions and displacements at the interface under predominantly
mode-I conditions is shown in Figure 4. The interface is composed of 100 elements which provides a
sufficient amount of refinement to obtain convergent results. The markers in the rightmost pane of the
figure show the traction values in the elements in the cohesive zone, thus indicating the extent to which
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Figure 4. Representative solution for tractions and displacements in the cohesive zone
along with the extent of softening (E = 72800 MPa, ν = 0.3, W = 12.5 mm, a/W = 0.42,
M̄ = 800.78 N, t0 = 50 MPa, and δ0 = 0.0008 m).
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the linear cohesive softening law has been exercised (how close δt is to δ0) and the number of elements
in the cohesive zone, and hence its length. The element nearest the crack tip has the smallest traction
and largest displacement δt , while the traction approaches t0 and the displacement goes to zero at the
end of the cohesive zone. In this example the elastic crack is 42 elements long, the cohesive zone is 18
elements long, and δt is about 75% of its critical value. The solution shown in Figure 4 is for a material
with shear modulus G = 28, 000 MPa, Poisson’s ratio ν = 0.3 and the cohesive law is t0 = 50 MPa and
δ0 = 0.0008 m. In all simulations W is chosen to be 12.5 mm. The total number of elements on the
boundaries of both the bodies is 840 making the total size of the linear system 1680× 1680.

4. Extent of cohesive zone and softening

Several linear softening cohesive laws with three basic kinds of parameter variations are considered in
this section. For each, the beam is quasistatically loaded such that significantly large cohesive zones are
formed ahead of the crack tip. For a given peak cohesive traction and displacement the nonlinear M̄–1θ
relation is obtained over a range of applied moment per unit thickness that exercises the linear softening
cohesive law as much as possible, which in turn creates as large as possible cohesive zones, both without
crack growth. Before obtaining the load-displacement relations we discuss the dependence of each of
these features of the cohesive behavior on the applied moment, peak cohesive traction t0, critical opening
displacement δ0, and the critical J -integral, JI0.

First, as expected, for a given cohesive law and at a given crack length, as the applied moment is
increased the cohesive zone length increases as well. When several linear softening cohesive laws having
the same value of t0 and different values of δ0 are considered, it is observed that for a given crack length
and applied moment smaller cohesive zones are formed for the steeper cohesive laws compared to the
less steep cohesive laws. As δt for the steepest cohesive law approaches its critical value, cohesive zones
just begin to form for the less steep cohesive laws. The length of the cohesive zone as it approaches δ0 is
very small for the steepest cohesive law. Now if several cohesive laws with different values of t0 and the
same value of δ0 are considered then for a given crack length and applied moment the size of the cohesive
zone is significantly smaller for the more steep cohesive law compared to the less steep cohesive law.
Longer cohesive zones are obtained as δt approaches δ0 for the least steep cohesive law. Similar trends
are obtained when several cohesive laws having the same value of JI0, but different values of t0 and δ0,
are considered. As the softening curve becomes steeper the size of the cohesive zone becomes markedly
smaller, whereas for the less steep cohesive laws very long cohesive zones are obtained. Details of the
trends are found in [Mokashi 2007].

A representative variation of the dimensionless J -integral, J/JI0 with dimensionless crack length
a/W for various values of the applied moment per unit thickness M̄ is shown in Figure 5. The cohesive
law on which these results are based is t0 = 50 MPa, δ0 = 1.8(10−3)m, and JI0 = 45(103)N/m. Similar
results for several cohesive laws are also found in [Mokashi 2007].

5. Numerical analysis for obtaining nonlinear load-displacement curves

The nonlinear M̄–1θ curves for a given crack length are found by first obtaining the bending compliance
λθ as a function of applied moment by evaluating the integral in (3). Noting that the integral is over crack
length, this requires knowledge of d J/d M̄ over a grid of applied moment and crack length values. Next
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Figure 5. Variation of the dimensionless J -integral (J/JI0) with the dimensionless
crack length (a/W ) at various values of the normalized moment M̄ (as indicated by
the markers in the legend). t0 = 50 MPa, δ0 = 0.0018 m and JI0 = 45(103)N/m.

1θ is found from (1) for a range of values of M̄ and the calculated λθ . At a given crack length a/W the
analysis starts by using Newton’s method to obtain the interpolation polynomial JN−1(M̄) from the J -
integral values obtained from the boundary element calculations at various values of applied moment M̄ :

JN−1(M̄)=
N∑

i=1

J
[
M̄1, . . . , M̄i

] i−1∏
j=1

(
M̄ − M̄ j

)
. (9)

For N points in the original data, JN−1(M̄) is a polynomial of order (N − 1). The coefficients of this
interpolating polynomial are obtained using divided differences in the standard way and are denoted by
J
[
M̄1, . . . , M̄i

]
[Atkinson and Han 2004]. Using the original values of applied moment as the skeleton,

a denser grid of moment values is created with many points between each of the original values. Using
the interpolation polynomial, the values Jn are generated on this finer grid, where the index n ranges
over this fine grid of values. The derivative in (3), d J/d M̄ , is obtained using central differences. This
procedure is repeated to obtain curves of d J/d M̄ at several crack lengths ā that range between 0.06 and
0.5. At a given moment M̄ , an interpolating polynomial of order (N − 1) for d J/d M̄ as a function of ā,
with values of J -integral at N crack lengths ā, can be written(d J (ā)

d M̄

)
N−1
=

N∑
i=1

d J
d M̄

[
ā1, . . . , āi

] i−1∏
j=1

[
ā− ā j

]
. (10)

The coefficients of this interpolating polynomial are again obtained using divided differences and are
denoted by d J

d M̄

[
ā1, . . . , āi

]
. Using the polynomial functions for d J

d M̄
(ā) obtained at several values of M̄ ,

several data points (d J/d M̄)n are now created at multiple values of crack lengths ān for crack lengths



1582 PRASAD S. MOKASHI AND DANIEL A. MENDELSOHN

0 0.1 0.2 0.3 0.4 0.5
1

1.1

1.2

1.3

1.4

1.5

1.6

a / W

λ θ / 
λ θe

 

 

449.22 N
546.88 N
644.53 N
742.19 N
839.84 N
937.50 N
1015.63 N

Figure 6. Dimensionless compliance (λθ/λθe) curves with dimensionless crack length
a/W . t0 = 50 MPa and JI0 = 45(103)N/m. The values in the legend represent various
normalized moments M̄ .

ranging from 0 to 0.5. The integral in (3) over crack length is, at a given moment M̄ , obtained numerically
using the trapezoidal rule. The final expression then for λθ can be written as

λθ =
W
b

1
M̄

n∑
i=1

1
2

[(d J (ā)
d M̄

)
i
+

(d J (ā)
d M̄

)
i+1

]
hā. (11)

where hā denotes the increment in crack length ā. The variation of the dimensionless compliance λθ/λθe

with dimensionless crack length ā is shown in Figure 6.
The curves are for various values of moment ratio MR obtained using a set of values of the J -integral

corresponding to the cohesive law (t0 = 50 MPa, JI0 = 45(103)N/m) used to generate the curves in
Figure 5. The normalization constant λθe is the elastic compliance obtained using a set of values of the
J -integral for the same beam geometry without considering a cohesive zone ahead of the crack tip. The
J -integral for the linear elastic case is obtained in the standard way from the stress intensity factor KI

that is evaluated from the near tip stress fields using a similar boundary element code [Young 1994].
The numerical scheme just discussed is used to obtain the elastic compliance λθe from those boundary
element results. For reference purposes, the variation of the elastic compliance with crack length is
shown in Figure 7.

The normalization is used because both the cohesive and elastic compliances are proportional to (W/b).
Figure 6 shows that at higher crack lengths the increase in compliance due to cohesive deformation ahead
of the crack tip is less pronounced than at lower crack lengths. This is due to the almost pure bending
like applied stress distribution on the crack plane. For a crack length of half the depth the entire cohesive
zone lies in a region of what would be compressive normal stress in the absence of the crack. This effect
is more dominant at higher values of applied moment M̄ and affects the elastic compliance for the same
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Figure 7. Variation of elastic compliance (λθe) with dimensionless crack length a/W .

geometry much less as long as the crack tip itself is below the mid-plane. At very low crack lengths and at
low load levels the values of compliance are not reliable due to the inaccuracies in the cohesive zone size
and in numerically obtaining the derivative d J/d M̄ . Only reliable results are reported. Over a middle
range of crack lengths the results show consistently that the elastic compliance accounts essentially for
the crack length effect and that the additional increase in compliance due to cohesive stretching depends
primarily on the applied moment and not on the crack length itself. The dependence of the normalized
compliance on the applied moment at a given crack length is itself nonlinear. In order for the compliance
to be about 10% larger than the elastic, the load must be 65% more than the elastic moment. But, as
the load increases the rate of increase in the inelastic compliances increases and a 50% increase in the
inelastic compliance occurs for a shorter crack at 125% more load than the elastic moment.

At a given crack length the jump in rotation 1θ is evaluated by solving (1) at the N discrete calculated
values of the compliance, (11), at the chosen values of applied moment. To obtain a smooth M̄–1θ curve
Newton’s method of interpolation is used again to obtain a polynomial M̄N−1(1θ) of order (N − 1)

(
M̄(1θ)

)
N−1 =

N∑
i=1

M̄[1θ1, . . . ,1θi ]

i−1∏
j=1

(1θ −1θ j ). (12)

where M̄[1θ1, . . . ,1θi ] are the coefficients of the polynomial obtained by divided differences. Normal-
ized M̄–1θ curves for the single specific cohesive law (t0 = 50 MPa, JI0 = 45(103)N/m) at several crack
lengths are shown in Figure 8. 1θe represents the elastic value of 1θ at ā = 0.5 obtained from the elastic
compliance.

To study the effect of the cohesive law parameters, t0 and δ0 on the M̄–1θ relationship, 11 cohesive
laws in were considered; see Table 1 on the right. The present study is exploratory and intended to deter-
mine the feasibility of the overall nondestructive characterization scheme and is not tied to a particular
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Figure 8. Normalized M̄–1θ curves at various crack lengths. t0 = 50 MPa and JI0 = 45(103)N/m.

material or cohesive process at this point. Therefore the parameter study was performed at only one value
of Young’s modulus and Poisson’s ratio and a range of cohesive law parameters and applied moment such
that the cohesive laws are well exercised, yet crack growth does not occur, that is, J does not exceed
it’s critical value JI0. The critical J -integral values of all of the laws listed below are all less than, or of
the order of magnitude of, the value corresponding to the critical stress intensity factor for LEFM crack
growth of 60 MPa

√
m.

Figure 9 shows the M̄–1θ curves for the various cohesive laws in Table 1. All results are for a beam
depth of 1.25 m by appropriate scaling. The curves are clearly grouped by the value of the peak cohesive
traction t0 and show an increase in 1θ for decreasing peak traction at a given moment. Within a group at
a particular peak traction t0 there is a slight dependence on the critical displacement δ0 (or equivalently
the critical J integral JI0). The main feature of that dependence is that the values of the applied moment
at which (a) the cohesive law just begins to be exercised, and (b) crack growth occurs both increase with
increasing δ0 (JI0). These values of applied moment are the approximate limits of each of the M̄–1θ
curves shown in Figure 9. These curves provide the properties of the springs used to represent the crack
plane in the dynamic beam vibration analysis and are accurate enough to carry out a two-term Taylor
series expansion of the data at a given static load level.

t0 δ0 = 0.8 mm δ0 = 1.3 mm δ0 = 1.6 mm δ0 = 1.8 mm

25 MPa 7 (16.3 N/m) 4 (20 N/m) 1 (22.5 N/m)
50 MPa 11 (20 N/m) 8 (32.5 N/m) 5 (40 N/m) 2 (45 N/m)
75 MPa 9 (48.8 N/m) 6 (60 N/m) 3 (62.5 N/m)

Table 1. Cohesive laws: the first number is the law number; the number in parentheses
is JI0 for the law.
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Figure 9. A plot of the M̄–1θ relationship for the cohesive laws in Table 1 for a dimen-
sionless crack length of a/W = 0.34.

6. Conclusion

A BEM formulation for a linear softening cohesive zone problem in an edge cracked beam like geometry
which requires an iterative process to determine the length of the cohesive zone to satisfy the nonlinear
interfacial boundary conditions has been presented. The behavior of the cohesive zone with respect to
the applied load, t0, δ0 and a/W has been examined for nonpropagating cracks. The iterative boundary
element solution scheme is robust, as the extent of the cohesive zone along with the solution for tractions
and displacements are generally obtained within 3–6 iterations with an arbitrary initial guess.

For a specific linear softening cohesive law applied to the edge cracked beam shaped geometry the
variation of the J -integral calculated for various values of applied load and crack lengths a/W are used
in an algorithm for generating the nonlinear M̄–1θ curves. These results have potential application in
the characterization of the cohesive behavior ahead of a crack tip in vibration analysis as discussed in the
second part of this paper. In particular, a nonlinear free-vibration analysis, using the nonlinear M̄–1θ
curves in Figure 9, is developed for exploring the effect of cohesive law parameters on the magnitude of
various nonlinear beam responses.

Finally we note that the results presented here apply equally to a crack in a homogeneous beam and
to a crack in a weak interface or bond layer between two beam sections made of the same material. The
BEM model for the problem of a cohesive crack in the interface or bond layer between two beam sections
of dissimilar materials is the same as for the similar material case, except that even with strictly mode
I loading, the material mismatch causes the cohesive behavior to be of a mixed mode nature and a new
combined mixed-mode cohesive law has to be used. This is the subject matter of ongoing research.
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