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SPATIAL EVOLUTION OF HARMONIC VIBRATIONS IN LINEAR ELASTICITY

STAN CHIRIT, Ă AND MICHELE CIARLETTA

In the present paper we consider a prismatic cylinder occupied by an anisotropic homogeneous compress-
ible linear elastic material that is subject to zero body force and zero displacement on the lateral bound-
ary. The elasticity tensor is strongly elliptic and the motion is induced by a harmonic time–dependent
displacement specified pointwise over the base. We establish some spatial estimates for appropriate
cross–sectional measures associated with the harmonic vibrations that describe how the corresponding
amplitude evolves with respect to the axial distance at the excited base. The results are established for
finite as well as for semi-infinite cylinders (where alternatives results of Phragmén-Lindelöf type are
obtained) and the exciting frequencies can take appropriate low and high values. In fact, for the low
frequency range the established spatial estimates are of exponential type, while for the high frequency
range the spatial estimates are of a certain algebraic type.

1. Introduction

In the construction of buildings, bridges, aircraft, nuclear reactors and automobiles, the engineer must
determine the depth to which local stresses, such as those produced by fasteners and at joints, or vibrations
can penetrate girders, I-beams, braces and other similar structural elements. The determination of the
extent of local or edge effects in structural systems allows the engineer to have a clear distinction between
the global structure (where strength of materials approximations can be used) and the local excited por-
tions which require a separate and more elaborate analysis based on some exact theories as that of linear
elasticity. The standard procedure used in engineering practice to determine the extent of local stresses
or edge effects is based on some form of the celebrated Saint Venant principle. A comprehensive surveys
of contemporary research concerning Saint Venant principle can be found in [Horgan and Knowles 1983;
Horgan 1989; 1996].

As regards elastic vibrations, it was observed in these papers that high frequency effects might be
expected to propagate with little spatial attenuation (see also [Boley 1955; 1960]). It is outlined in
[Horgan and Knowles 1983] that one would not expect to find unqualified decay estimates of the kind
concerning Saint–Venant’s principle in problems involving elastic wave propagation, even if the end
loads are self-equilibrated at each instant. In this connection, Flavin and Knops [1987] have carried out
an analysis of spatial decay for certain damped acoustic and elastodynamic problems in the low frequency
range which substantiates the early work of Boley. These results are extended to linear anisotropic
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materials in [Flavin et al. 1990]. It should be noted that all of the investigations mentioned in the foregoing
were concerned with elastic materials having a positive definite elasticity tensor.

In the present paper we address the question of spatial behavior of the harmonic vibrations in an
anisotropic elastic cylinder under the condition of strong ellipticity for the elasticity tensor. In this
respect, for vibrations in the low frequency range, our expected results describe exponential spatial
estimates similar with those previously established by Flavin et al. [1987; 1990]. Moreover, for harmonic
vibrations with appropriate high frequencies, the present results predict some algebraic spatial estimates,
confirming the foregoing observations made by Boley in related context.

We consider a prismatic cylinder occupied by an anisotropic linear elastic material and subjected to
zero body force and zero lateral boundary data and zero initial conditions. The motion is induced by a
harmonic time–dependent displacement specified pointwise over the base and the other end is subjected
to zero displacement (when a cylinder of finite extent is considered, to say). The elasticity tensor is
assumed to be strongly elliptic and so a very large class of anisotropic elastic materials is considered,
including those new materials with extreme and unusual physical properties like negative Poisson’s ratio
(that is, so called auxetic materials).

The primary purpose of the present paper is to examine how the amplitude of the harmonic vibration
evolves with respect to the axial variable. To this end we associate with the amplitude of the harmonic
vibration in concern, an appropriate cross–sectional integral function and further we prove that the strong
ellipticity conditions assure that it is an acceptable measure. This is possible thanks to some appropriate
auxiliary identities relating the amplitude of the harmonic vibrations. For these measures we are able to
establish some differential inequalities whose integration allows us to obtain spatial estimates describing
the spatial behavior of the amplitude in concern. In fact, when an identity of conservation energy type
is used then certain exponential spatial estimates are obtained for all frequencies lower than a critical
value. When a Rellich identity is involved then certain type of algebraic spatial estimates are established
for appropriate high frequencies. All results are illustrated for transversely isotropic materials as well as
for the rhombic systems.

2. Formulation of the problem

Consider a prismatic cylinder B ⊂ R3 whose bounded uniform cross–section D ⊂ R2 has piecewise con-
tinuously differentiable boundary ∂D. The origin of a rectangular Cartesian coordinate system is located
in the cylinder’s base and the positive x3−axis is directed along that of the cylinder. It is convenient to
introduce the further abbreviation

Bz = {x ∈ B : z > x3} (2.1)

and, moreover, we employ D(x3) to indicate that relevant quantities are to be evaluated over the cross–
section whose distance from the origin is x3.

The cylinder is occupied by an anisotropic compressible elastic material and is subject to a deformation
in which the displacement field u (x, t) is a smooth function satisfying the requirements of the classical
dynamical theory of elasticity [Gurtin 1972]. The corresponding stress tensor S (x, t) has Cartesian
components given by

Srs = Crsmnεmn, (2.2)
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where
εmn =

1
2

(
um,n + un,m

)
(2.3)

are the components of the strain tensor. Moreover, the constant elasticities Crsmn possess the symmetries

Crsmn = Cmnrs = Csrmn, (2.4)

and satisfy the strong ellipticity condition

Crsklmr mknsnl > 0 for all nonzero vectors (m1,m2,m3) , (n1, n2, n3) . (2.5)

The cylinder is set in motion subject to a pointwise prescribed base harmonic time–dependent dis-
placement, zero body–force and zero displacement on the lateral surface and the other end (when a finite
cylinder is considered). Furthermore, the prescribed displacement is such that a classical solution exists
on the interval [0,∞). Consequently, the problem to be considered is specified by

(Crskluk,l),r = ρüs , (x, t) ∈ B×[0,∞), (2.6)

ur (x, 0)= u0
r (x), u̇r (x, 0)= u̇0

r (x) , x ∈ B, (2.7)

ur (x, t)= 0, (x, t) ∈ ∂D×[0, L]× [0,∞), (2.8)

ur (x, t)= fr (x1, x2) eiωt , (x, t) ∈ D (0)×[0,∞), (2.9)

ur (x, t)= 0, (x, t) ∈ D (L)×[0,∞), (2.10)

in the case where L is finite (say). In the limiting case L→∞ a condition of the type (2.10) is unnecessary.
In the above relations we have used a superposed dot for denoting differentiation with respect to time and
a subscript comma indicates partial differentiation. Moreover, ρ is the constant positive mass density, ω
is a positive constant (frequency of vibration), u0

r (x), u̇0
r (x) and fr (x1, x2) are prescribed differentiable

functions compatible with the initial and lateral boundary conditions and i =
√
−1 is the complex unit.

We are interested in the study of the spatial behavior of the solution ur of the above initial boundary
value problem (2.6)–(2.10).

To this end we use the decomposition

ur =Ur (x, t)+ vr (x) eiωt , (2.11)

where Ur (transient solution) satisfies the above initial boundary value problem with null boundary con-
ditions and appropriate initial conditions, while vr satisfies the boundary value problem(

Crsklvk,l
)
,r + ρω

2vs = 0, x ∈ B, (2.12)

vr (x)= 0, x ∈ ∂D×[0, L], (2.13)

vr (x)= fr (x1, x2) , x ∈ D (0) , (2.14)

vr (x)= 0, x ∈ D (L) , (2.15)

in the case where L is finite.
We note that the spatial behavior of the transient solution Ur can be described by the methods de-

veloped in [Chirit,ă and Ciarletta 1999; Tibullo and Vaccaro 2008]. The exponential spatial decay of
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the amplitude vr of the forced oscillation has been established in [Flavin and Knops 1987; Flavin et al.
1990; Knops 1991] for isotropic and anisotropic elastic materials with a positive definite elasticity tensor,
provided the exciting frequency is less than a certain critical value. Considering an appropriate region
filled with an isotropic elastic material an algebraical spatial decay of the amplitude of vibration has been
established in [Chirit,ă and Quintanilla 1996] under the assumption that the elasticity tensor is positive
definite and without any restriction upon the frequency of vibration.

The main purpose of this paper consists of studying how the amplitude of harmonic vibration evolves
with respect to the axial distance at the excited base, provided the strong ellipticity condition is assumed
for the elasticity tensor. Under such hypotheses we will establish some appropriate algebraic and expo-
nential spatial estimates describing the spatial decay of the amplitude of harmonic vibration. In fact, for
all frequencies lower than a certain critical value we are able to establish exponential estimates describing
how the amplitude evolves with the distance to the excited end. While, for all frequencies greater than
an appropriate critical value, we can establish spatial estimates describing a specific algebraical behavior
of the amplitude. Moreover, some alternatives of Phragmén–Lindelöf type are established for the semi-
infinite cylinder.

Since the coefficients in the differential system (2.12) are real numbers, we can assume that vr are real
functions. Otherwise, we can proceed with the same method for the real part as well as for the imaginary
part of vr . So in what follows we shall consider the solution vr to be real functions.

3. Some auxiliary identities

Before proceeding to derive a priori estimates for a solution to equations (2.12)–(2.15), we need some
auxiliary identities concerning the equations (2.12), with the lateral boundary condition (2.13). Some of
these are achieved via some Rellich–like identities (used for example in [Chirit,ă et al. 2006; Chirit,ă and
Ciarletta 2008]).

Theorem 1. Let vr be a solution of the boundary value problem defined by relations (2.12) and (2.13).
Then ∫

D(x3)

(
Crsmnvr,svm,n − ρω

2vsvs
)

da =
d

dx3

∫
D(x3)

C3smnvm,nvs da. (3.1)

Proof. We form the identity ∫
D(x3)

vs

((
Crsmnvm,n

)
,r + ρω

2vs

)
da = 0. (3.2)

Now integrate by parts in succession and use the boundary condition (2.13) to find (3.1). �

Theorem 2. Let vr be a solution of the boundary value problem defined by (2.12) and (2.13). Then

1
2

∫
D(x3)

(
Crsmnvr,svm,n − 3ρω2vsvs

)
da

=−
d

dx3

∫
D(x3)

(
xρC3smnvs,ρvm,n +

1
2 x3

(
Cr3m3vr,3vm,3−Crαmβvr,αvm,β + ρω

2vsvs
))

da

−

∫
∂D(x3)

1
2 xρnρCrαmβnαnβ

∂vr

∂n
∂vm

∂n
ds, (3.3)
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where nα are the components of the outward unit normal vector to ∂D and ∂/∂n represents the normal
derivative.

Proof. We start with the identity∫
D(x3)

x pvs,p

((
Crsklvk,l

)
,r + ρω

2vs

)
da = 0 (3.4)

which can be written as∫
D(x3)

(
Crsmnvr,svm,n + x p

( 1
2Crsmnvr,svm,n

)
,p − x p

( 1
2ρω

2vsvs
)
,p

)
da

=

∫
D(x3)

(
x pCrsmnvm,nvs,p

)
,r da; (3.5)

moreover,

1
2

∫
D(x3)

(
Crsmnvr,svm,n − 3ρω2vsvs

)
da =−

∫
D(x3)

(
x pvr,pCrsmnvm,n

)
,s da

+

∫
D(x3)

( 1
2 x pCrsmnvr,svm,n

)
,p da−

∫
D(x3)

( 1
2 x pρω

2vrvr
)
,p da. (3.6)

Using the divergence theorem and (2.13), we obtain from (3.6)

1
2

∫
D(x3)

(
Crsmnvr,svm,n − 3ρω2vsvs

)
da

=−
d

dx3

∫
D(x3)

(
C3smnvm,nx pvs,p −

1
2 x3

(
Crsmnvr,svm,n − ρω

2vsvs
))

da

+

∫
∂D(x3)

( 1
2 xρnρCrsmnvr,svm,n − x pvr,pCrρmnvm,nnρ

)
ds. (3.7)

At this point we note that the boundary condition (2.13) implies

vr,3 = 0, x ∈ ∂D×[0, L]. (3.8)

Moreover, we write vr,α on the curve ∂D(x3) as vr,α = nα (∂vr/∂n)+τα (∂vr/∂τ), where τα are the com-
ponents of the tangential unit vector, ∂/∂n is the normal derivative and ∂/∂τ is the tangential derivative.
In view of the boundary condition (2.13) we have (∂vr/∂τ)= 0 on ∂D(x3) and hence we deduce that
vr,α = nα (∂vr/∂n) on ∂D(x3). Thus, we obtain∫
∂D(x3)

(
xρnρCrαmβvr,αvm,β − 2xαvr,αCrρmβvm,βnρ

)
ds =−

∫
∂D(x3)

xρnρCrαmβnαnβ
∂vr

∂n
∂vm

∂n
ds. (3.9)

Substituting (3.9) into (3.7) we obtain (3.3). �

By combining these two theorems we obtain the following result.

Theorem 3. Let vr be a solution of the boundary value problem defined by (2.12) and (2.13). Then

d
dx3

∫
D(x3)

(
2C3rmnvm,nvr+2xρC3smnvs,ρvm,n+x3(Cr3m3vr,3vm,3−Crαmβvr,αvm,β+ρω

2vsvs)
)

da

=

∫
D(x3)

(
Crsmnvr,svm,n+ρω

2vsvs
)

da−
∫
∂D(x3)

xρnρCrαmβnαnβ
∂vr

∂n
∂vm

∂n
ds. (3.10)
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Remarks. (1) By using the integration by parts and the lateral boundary condition (2.13) we can establish
the identities ∫

D(x3)

vr,3vm,β da−
∫

D(x3)

vr,βvm,3 da =
d

dx3

∫
D(x3)

vrvm,β da, (3.11)∫
D(x3)

vr,3vm,β da−
∫

D(x3)

vr,βvm,3 da =−
d

dx3

∫
D(x3)

vr,βvm da. (3.12)

(2) Theorem 1 can be viewed in connection with a (dynamic) virtual work expression, while Theorems 2
and 3 are closer to the mathematical Rellich identity often used in the study of structural stability. See
[Chirit,ă et al. 2006; Chirit,ă and Ciarletta 2008], for example.

4. Some spatial estimates for appropriate low frequencies

Throughout this section we will study the spatial evolution of the amplitude vr by starting with the identity
established in Theorem 1. To this end we combine the identity (3.1) with (3.11) and (3.12) in the same
manner like that used in [Chirit,ă and Ciarletta 2006]. Our objective consists of finding measures of the
amplitude that are able to furnish information on the spatial evolution of the amplitude vr for the entire
class of anisotropic strongly elliptic elastic materials. Since such task can be too complex for general
anisotropic elastic materials we will proceed to pursue our method for some particularly important classes
of anisotropic materials, namely those of transversely isotropic and rhombic systems. We recall that for
these systems we have established explicit necessary and sufficient conditions in [Chirit,ă et al. 2007]
characterizing the strong ellipticity condition.

4.1. Transversely isotropic materials. Many natural and man–made materials are classified as trans-
versely isotropic (or hexagonal). Such materials are characterized by the fact that one can find a line
that allows a rotation of the material about it without changing its properties. The plane, which is
perpendicular to this line (the axis of rotational symmetry) is called a plane of elastic symmetry or plane
of isotropy. A modern example for such a material are laminates made of randomly oriented chopped
fibers that are in general placed in a certain plane. The effective material properties for a bundled structure
have no profound direction in that plane, which then becomes a plane of elastic symmetry. Hence, each
plane that contains the axis of rotation is a plane of symmetry, and therefore, transversely isotropic
material admits an infinite number of elastic symmetries.

Necessary and sufficient conditions for strong ellipticity to hold for a transversely isotropic linearly
elastic solid are established in [Chirit,ă et al. 2007; Chirit,ă 2006]. In this connection we recall the standard
notation

ci j = Ci i j j , i, j ∈ {1, 2, 3} (not summed), c22 = c11, c23 = c13,

c44 = c55 = C2323 = C1313, c66 = C1212 =
1
2 (c11− c12) , (4.1)

corresponding to the direction of transverse isotropy coinciding with the x3 coordinate axis. Apart from
terms obtained by use of the symmetries (2.4), these are the only nonzero components Ci jkl . Then the
necessary and sufficient conditions for strong ellipticity to hold are (loc. cit.)

c11 > 0, c33 > 0, c55 > 0, c11 > c12, |c13+ c55|< c55+
√

c11c33. (4.2)
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Combining relations (3.1), (3.11) and (3.12) and using (4.1), we obtain

d
dx3

∫
D(x3)

(
vα((c55− ~)v3,α + c55vα,3)+ v3(c33v3,3+ (c13+ ~)(v1,1+ v2,2))

)
da

=

∫
D(x3)

(
c66(v1,2−v2,1)

2
−ρω2vαvα

)
da+

∫
D(x3)

(
c11(v1,1+v2,2)

2
+c33v

2
3,3+2(c13+~)(v1,1+v2,2)v3,3

)
da

+

∫
D(x3)

(
(c55(v

2
3,1+v

2
1,3)+2(c55−~)v1,3v3,1)+(c55(v

2
3,2+v

2
2,3)+2(c55−~)v2,3v3,2)−ρω

2v2
3
)

da, (4.3)

where ~ ∈ (0, 2c55) is a positive parameter at our disposal.
Now we choose the parameter ~ in such a way that

max
(
−c13−

√
c11c33, 0

)
< ~ <min

(
2c55,−c13+

√
c11c33

)
, (4.4)

so
|c13+ ~|<

√
c11c33, |c55− ~|< c55. (4.5)

We deduce that
c55

(
v2

3,1+ v
2
1,3
)
+ 2 (c55− ~) v1,3v3,1 ≥ ν1

(
v2

3,1+ v
2
1,3
)
,

c55
(
v2

3,2+ v
2
2,3
)
+ 2 (c55− ~) v2,3v3,2 ≥ ν1

(
v2

3,2+ v
2
2,3
)
,

(4.6)

where
ν1 =min (~, 2c55− ~) . (4.7)

Moreover, we have

c11(v1,1+ v2,2)
2
+ c33v

2
3,3+ 2(c13+ ~)(v1,1+ v2,2)v3,3 ≥ ν2

(
(v1,1+ v2,2)

2
+ v2

3,3
)
, (4.8)

where
ν2 =

1
2

(
c11+ c33−

√
(c11− c33)2+ 4(c13+ ~)2

)
. (4.9)

On the other hand, in view of the boundary condition (2.13), we obtain∫
D(x3)

vα,βvα,β da ≥ λ
∫

D(x3)

vαvα da,
∫

D(x3)

v3,βv3,β da ≥ λ
∫

D(x3)

v2
3 da, (4.10)

where λ > 0 is the first eigenvalue in the two-dimensional clamped membrane eigenvalue problem for
the cross section D(x3).

At this instant we introduce the critical frequency

ω1 =

√
λ
ρ

min (ν1,min (c66, ν2)) (4.11)

and then assume that the frequency of vibration ω is lower than ω1, that is

0< ω < ω1. (4.12)

Throughout in the remainder of this subsection we will assume that relations (4.4) and (4.12) hold
true. Then we introduce the function

I~(x3)=−

∫
D(x3)

[
vα
(
(c55− ~)v3,α + c55vα,3

)
+ v3

(
c33v3,3+ (c13+ ~)vα,α

)]
da (4.13)
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for all x3 ∈ [0, L] and note that relations (4.3)–(4.12) imply

−
d I~
dx3

(x3)≥min(c66, ν2)

(
1−

ω2

ω2
1

)∫
D(x3)

vα,βvα,β da

+ν2

∫
D(x3)

v2
3,3 da+ ν1

∫
D(x3)

vα,3vα,3 da+ ν1

(
1−

ω2

ω2
1

)∫
D(x3)

v3,βv3,β da ≥ 0 (4.14)

and hence I~(x3) is a nonincreasing function with respect to x3 on [0, L].
We have now all preliminary material in order to state and proof the following result.

Theorem 4. Let vr be the amplitude of a harmonic vibration whose frequency is lower than the critical
frequency ω1 given by (4.11). Then, for every ~ satisfying (4.4), the cross section integral I~(x3) as
defined by (4.13) is an acceptable measure of the amplitude vr (that is, I~ (x3) ≥ 0 and I~(x3) = 0
implies that vr = 0) and it satisfies the spatial decay estimate

0≤ I~(x3)≤ I~ (0) e−σ1x3 for all x3 ∈ [0, L], (4.15)

where σ1 is given by

1
σ1
=

1
√
λ

max

{
c55+

√
c11c33

min (c66, ν2)
(
1−ω2/ω2

1

) , c33

2ν2
,

c55

2ν1
,

c33+ c55+
√

c11c33

2ν1
(
1−ω2/ω2

1

) }
. (4.16)

Proof. On the basis of the end boundary condition (2.15) and relation (4.13) we deduce that I~ (L)= 0,
so that we have

I~(x3)≥ 0 for all x3 ∈ [0, L]. (4.17)

Thus, I~(x3) represents an acceptable measure for the amplitude vr of the harmonic vibration.
Now, by using the Schwarz and arithmetic-geometric mean inequalities, from (4.5) and (4.13) we

obtain the estimate

|I~(x3)| ≤
1
√
λ

(
c55+

√
c11c33

) ∫
D(x3)

vα,βvα,β da+
1

2
√
λ

c33

∫
D(x3)

v2
3,3 da

+
1

2
√
λ

c55

∫
D(x3)

vα,3vα,3 da+
1

2
√
λ

(
c33+ c55+

√
c11c33

) ∫
D(x3)

v3,βv3,β da. (4.18)

By combining (4.14) and (4.18) we obtain the first order differential inequality

d I~
dx3

(x3)+ σ1 I~(x3)≤ 0 for all x3 ∈ [0, L], (4.19)

which, when integrated, furnishes the exponential spatial decay estimate (4.15). �

4.2. Rhombic materials. Suppose the cylinder is filled with a rhombic elastic material with the group
C3 generated by Rπ

e3
, Rπ

e2
(here Rθ

e is the orthogonal tensor corresponding to a right–handed rotation
through the angle θ ∈ (0, 2π), about an axis in the direction of the unit vector e). According to Gurtin
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[1972], this class of materials is characterized by

C1123 = C1131 = C1112 = C2223 = C2231 = C2212 = 0,

C3323 = C3331 = C3312 = C2331 = C2312 = C3112 = 0,

c11 = C1111, c22 = C2222, c33 = C3333, c12 = C1122, c23 = C2233,

c31 = C3311, c44 = C2323, c55 = C1313, c66 = C1212. (4.20)

The strong ellipticity condition (2.5) becomes

c11n2
1m2

1+ c22n2
2m2

2+ c33n2
3m2

3+ c66 (n1m2+ n2m1)
2
+ c44 (n3m2+ n2m3)

2

+c55 (n1m3+ n3m1)
2
+ 2c12n1m1n2m2+ 2c23n2m2n3m3+ 2c31n3m3n1m1 > 0, (4.21)

for all nonzero vectors (m1,m2,m3) and (n1, n2, n3). It is equivalent to the conditions [Chirit,ă et al.
2007]

c11 > 0, c22 > 0, c33 > 0, c44 > 0, c55 > 0, c66 > 0, (4.22)

−2c66+ ~
i
3
√

c11c22 < c12 < ~
s
3
√

c11c22, −2c44+ ~
i
1
√

c22c33 < c23 < ~
s
1
√

c22c33,

−2c55+ ~
i
2
√

c11c33 < c13 < ~
s
2
√

c11c33, (4.23)

where
(
~ i

1, ~
s
1

)
,
(
~ i

2, ~
s
2

)
and

(
~ i

3, ~
s
3

)
are solutions with respect to x , y and z of the equation x2

+ y2
+

z2
− 2xyz− 1= 0, satisfying |x |< 1, |y|< 1, |z|< 1 and

x ∈
{

c23
√

c22c33
,

c23+ 2c44
√

c22c33

}
, y ∈

{
c13
√

c11c33
,

c13+ 2c55
√

c11c33

}
, z ∈

{
c12
√

c11c22
,

c12+ 2c66
√

c11c22

}
. (4.24)

This statement is equivalent with the relation (4.22) and all points P(x, y, z), with coordinates satisfying
(4.24) lie inside the region limited by the surface S(x, y, z)≡ x2

+ y2
+ z2
− 2xyz− 1= 0, with |x |< 1,

|y|< 1, |z|< 1.
In the case of a rhombic material the relation (4.3) is replaced by

d
dx3

∫
D(x3)

[
v1
(
c55v1,3+(c55−~2)v3,1

)
+v2

(
c44v2,3+(c44−~1)v3,2

)
+v3

(
(c13+~2)v1,1+(c23+~1)v2,2+c33v3,3

)]
da

=

∫
D(x3)

[
c11v

2
1,1+c22v

2
2,2+c33v

2
3,3+2(c12+~3)v1,1v2,2+2(c13+~2)v1,1v3,3+2(c23+~1)v2,2v3,3

]
da

+

∫
D(x3)

[
c66(v

2
1,2+v

2
2,1)+2(c66−~3)v1,2v2,1

]
da+

∫
D(x3)

[
c55(v

2
3,1+v

2
1,3)+2(c55−~2)v1,3v3,1

]
da

+

∫
D(x3)

[
c44(v

2
3,2+v

2
2,3)+2(c44−~1)v2,3v3,2

]
da−

∫
D(x3)

ρω2vsvs da, (4.25)

where ~1 ∈ [0, 2c44], ~2 ∈ [0, 2c55] and ~3 ∈ [0, 2c66] are positive parameters at our disposal. In view
of the assumptions (4.22) and (4.23) we can choose ~1 ∈ [0, 2c44], ~2 ∈ [0, 2c55], ~3 ∈ [0, 2c66] so that
P(x, y, z), with coordinates

x =
c23+ ~1
√

c22c33
, y =

c13+ ~2
√

c11c33
, z =

c12+ ~3
√

c11c22
,
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lies inside the region limited by the surface S(x, y, z). With these choices we have

c44
(
v2

3,2+ v
2
2,3
)
+ 2 (c44− ~1) v2,3v3,2 ≥ ξ1

(
v2

3,2+ v
2
2,3
)
, (4.26)

c55
(
v2

3,1+ v
2
1,3
)
+ 2 (c55− ~2) v1,3v3,1 ≥ ξ2

(
v2

3,1+ v
2
1,3
)
, (4.27)

c66
(
v2

1,2+ v
2
2,1
)
+ 2 (c66− ~3) v1,2v2,1 ≥ ξ3

(
v2

1,2+ v
2
2,1
)
, (4.28)

c11v
2
1,1+ c22v

2
2,2+ c33v

2
3,3+ 2 (c12+ ~3) v1,1v2,2

+2 (c13+ ~2) v1,1v3,3+ 2 (c23+ ~1) v2,2v3,3 ≥ ξ4
(
v2

1,1+ v
2
2,2+ v

2
3,3
)
, (4.29)

where

ξ1 =min (2c44− ~1, ~1) , ξ2 =min (2c55− ~2, ~2) , ξ3 =min (2c66− ~3, ~3) (4.30)

and ξ4 is the lowest positive eigenvalue of the 3× 3 matrix c11 c12+ ~3 c13+ ~2

c12+ ~3 c22 c23+ ~1

c13+ ~2 c23+ ~1 c33

 . (4.31)

So we have to introduce the function

J~(x3)=−

∫
D(x3)

[
v1
(
(c55− ~2)v3,1+ c55v1,3

)
+ v2

(
(c44− ~1)v3,2+ c44v2,3

)
+v3

(
(c13+ ~2)v1,1+ (c23+ ~1)v2,2+ c33v3,3

)]
da (4.32)

and note that identity (4.25) and relations (4.10) and (4.26)–(4.29) imply

−
d J~
dx3

(x3)≥

∫
D(x3)

(
ξ4
(
v2

1,1+ v
2
2,2
)
+ ξ3

(
v2

1,2+ v
2
2,1
)
−
ρω2

λ
vα,βvα,β

)
da

+

∫
D(x3)

(
ξ1v

2
3,2+ ξ2v

2
3,1−

ρω2

λ
v3,αv3,α

)
da+

∫
D(x3)

(
ξ1v

2
2,3+ ξ2v

2
1,3+ ξ4v

2
3,3
)

da. (4.33)

At this point we introduce the critical frequency

ω2 =

√
λ
ρ

min (min (ξ1, ξ2) ,min (ξ3, ξ4)) (4.34)

and assume that the vibration frequency ω is lower than ω2:

0< ω < ω2. (4.35)

Thus, we have

−
d J~
dx3

(x3)≥min (ξ3, ξ4)

(
1−

ω2

ω2
2

)∫
D(x3)

vα,βvα,β da+min (ξ1, ξ2)

(
1−

ω2

ω2
2

)∫
D(x3)

v3,αv3,α da

+

∫
D(x3)

(
ξ1v

2
2,3+ ξ2v

2
1,3+ ξ4v

2
3,3
)

da ≥ 0. (4.36)

Consequently, J~(x3) is a nonincreasing function with respect to x3 on [0, L].
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Theorem 5. Let vr be the amplitude of a harmonic vibration whose frequency is lower than the critical
frequency ω2 of (4.34). Then the cross section integral J~(x3) as defined by (4.32) is an acceptable
measure of the amplitude vr (that is, J~(x3)≥ 0 and J~ (x3)= 0 implies that vr = 0) and it satisfies the
spatial decay estimate

0≤ J~(x3)≤ J~ (0) e−σ2x3 for all x3 ∈ [0, L], (4.37)

where σ2 is given by

1
σ2
=

1

2
√
λ

max

{
max

(
2c55+

√
c11c33, 2c44+

√
c22c33

)
min (ξ3, ξ4)

(
1−ω2/ω2

2

) ,

c44

ξ1
,

c55

ξ2
,

c33

ξ4
,

max (c44, c55)+
√

c33
(√

c11+
√

c22+
√

c33
)

min (ξ1, ξ2)
(
1−ω2/ω2

2

) }
. (4.38)

Proof. On the basis of the end boundary condition (2.15) and relation (4.32) we deduce that J~ (L)= 0,
so that we have

J~(x3)≥ 0 for all x3 ∈ [0, L]. (4.39)

Thus, J~(x3) represents an acceptable measure for the amplitude vr of the harmonic vibration.
We further note that

|c44− ~1|< c44, |c55− ~2|< c55, |c13+ ~2|<
√

c11c33, |c23+ ~1|<
√

c22c33. (4.40)

On this basis and by using the Schwarz and arithmetic-geometric mean inequalities and (4.10), we obtain
from (4.32) the estimate

|J~(x3)| ≤
1

2
√
λ

max
(
2c55+

√
c11c33, 2c44+

√
c22c33

) ∫
D(x3)

vα,βvα,β da

+
1

2
√
λ

[
max (c44, c55)+

√
c33

(√
c11+

√
c22+

√
c33
)] ∫

D(x3)

v3,αv3,α da

+
1

2
√
λ

∫
D(x3)

(
c33v

2
3,3+ c44v

2
2,3+ c55v

2
1,3
)

da. (4.41)

By combining (4.36), (4.38) and (4.41) we obtain the first order differential inequality

d J~
dx3

(x3)+ σ2 J~(x3)≤ 0 for all x3 ∈ [0, L], (4.42)

whose integration furnishes the spatial decay expressed by (4.37). �

The analysis of this section can be extended to the case of a semi-infinite cylinder, that is the case
when L→∞. We shall exemplify this for the case of measure J~(x3). In view of (4.25) and (4.32), by
an integration [x3, L], we obtain

J~(x3)− J~ (L)= E (x3, L) , (4.43)
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where

E(x3, L)=
∫

B(x3,L)

(
c11v

2
1,1+c22v

2
2,2+c33v

2
3,3+2(c12+~3)v1,1v2,2+2(c13+~2)v1,1v3,3

+2(c23+~1)v2,2v3,3+c66(v
2
1,2+v

2
2,1)+2(c66−~3)v1,2v2,1+c55(v

2
3,1+v

2
1,3)

+2(c55−~2)v1,3v3,1+c44(v
2
3,2+v

2
2,3)+2(c44−~1)v2,3v3,2−ρω

2vsvs

)
dv ≥ 0, (4.44)

with B (x3, L)= Bx3\BL and Bx3 is defined by relation (2.1). We conclude that J~ (∞)= limL→∞ J~ (L)
exists and is finite if and only if there is finite the energetic measure E(x3)= limL→∞ E (x3, L) associated
with the amplitude vr in the cylinder Bx3 . Since J~(x3) is a nonincreasing function with respect to x3,
there are the only two possibilities: (a) J~(x3)≥ 0 for all x3 ∈ [0,∞) or (b) there exists x∗3 ∈ [0,∞) so
that J~

(
x∗3
)
< 0.

In the case (a) we can apply the same procedure as in the above to obtain the spatial decay estimate
(4.37). So in what follows we shall consider the case (b), that is we will suppose that J~

(
x∗3
)
< 0. Then

we have
J~(x3) < 0 for all x3 ∈ [x∗3 ,∞), (4.45)

so that (4.36), (4.38), (4.41) and (4.45) now give

d J~
dx3

(x3)− σ2 J~(x3)≤ 0 for all x3 ∈ [0, L], (4.46)

which implies
−J~(x3)≥−J~

(
x∗3
)

eσ2(x3−x∗3) for all x3 ∈ [x∗3 ,∞) (4.47)

and hence J~ (∞)=−∞ and the energetic measure E(x3) is infinite.
We may summarize this analysis in the following alternative of Phragmén–Lindelöf type result.

Theorem 6. In the context of a semi-infinite cylinder made of a rhombic elastic material, for all harmonic
vibrations with frequency lower than the critical value ω2, the amplitude vr either has a finite energetic
measure E(x3) and then we have

E(x3)≤ E (0) e−σ2x3 for all x3 ∈ [0,∞), (4.48)

or it has an infinite energetic measure and then −J~ (x3) goes to infinity faster than the exponential
eσ2(x3−x∗3).

5. Spatial estimates for appropriate high frequencies

Throughout this section we will study the spatial evolution of the amplitude vr by starting with the
identity established in Theorem 3. To this end we note that the strong ellipticity condition (2.5) implies
that

Ck3l3ζkζl > 0 for all nonzero vectors ζr , (5.1)

and
Crαsβmr msnαnβ > 0 for all nonzero vectors (m1,m2,m3) , (n1, n2) . (5.2)

We further assume that ∂D is star shaped with respect to the origin so that xρnρ ≥ h0 > 0, with h0

constant.
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On this basis we observe that

0≤
∫
∂D(x3)

xρnρCrαmβnαnβ
∂vr

∂n
∂vm

∂n
ds ≤ dC

∫
∂D(x3)

∂vr

∂n
∂vr

∂n
ds, (5.3)

where C =
√

CrαmβCrαmβ and
d = sup

(x1,x2)∈∂D

√
xαxα. (5.4)

Further, we introduce

m0 = max
x3∈[0,L]

∫
∂D

∂vr
∂n

∂vr
∂n

ds∫
D
vrvr da

, ω∗ =
1
ρ

dCm0, (5.5)

and assume that
ω ≥ ω∗. (5.6)

Whereas one cannot, in general, obtain m0 explicitly, we have the crude bound

m0 ≤ m1, with m1 = sup
vi∈H1

0 (D)

∫
∂D

∂vr
∂n

∂vr
∂n

ds∫
D
vrvr da

. (5.7)

So, when m1 is finite, we can take ω∗ = 1
ρ

dCm1 and obtain an explicit critical value for the frequency
of vibration.

Then the identity (3.10), relations (5.3) and (5.6), and the definition of m0 in (5.5) give

d
dx3

∫
D(x3)

[
2C3rmnvm,nvr + 2xρC3smnvs,ρvm,n + x3

(
Cr3m3vr,3vm,3−Crαmβvr,αvm,β + ρω

2vsvs
)]

da

≥

∫
D(x3)

Crsmnvr,svm,n da. (5.8)

Our objective now is to find measures of the amplitude that are able to furnish information on the
spatial evolution of the amplitude vr for the entire class of anisotropic strongly elliptic elastic materials.
We now pursue our method for transversely isotropic and rhombic systems.

5.1. Transversely isotropic materials. We first consider the class of transversely isotropic materials as
defined in Section 4.1. Relations (5.8), (3.11) and (3.12) give

d
dx3

∫
D(x3)

(
vα
(
(2c55−~)v3,α+2c55vα,3

)
+ v3

(
2c33v3,3+(2c13+~)vα,α

)
+ 2c55xρvα,ρ(v3,α+vα,3)+ 2xρv3,ρ(c13vα,α+c33v3,3)

+ x3
[
c55(v

2
1,3+v

2
2,3)+c33v

2
3,3−c66(v1,2−v2,1)

2
−c11(v1,1+v2,2)

2

−2c13vα,αv3,3−c55v3,αv3,α−2c55vα,3v3,α+ρω
2vsvs

])
da

≥

∫
D(x3)

c66(v1,2−v2,1)
2 da+

∫
D(x3)

[
c11(v1,1+v2,2)

2
+c33v

2
3,3+2(c13+~)(v1,1+v2,2)v3,3

]
da

+

∫
D(x3)

[
c55(v

2
3,1+v

2
1,3)+2(c55−~)v1,3v3,1+c55(v

2
3,2+v

2
2,3)+2(c55−~)v2,3v3,2

]
da, (5.9)



1688 STAN CHIRIT, Ă AND MICHELE CIARLETTA

where ~ ∈ (0, 2c55) is a positive parameter chosen in such way to satisfy relation (4.4). Therefore, we
can introduce the function

I~(x3)=−

∫
D(x3)

(
vα
(
(2c55− ~)v3,α + 2c55vα,3

)
+ v3

(
2c33v3,3+ (2c13+ ~)vα,α

)
+ 2c55xρvα,ρ(v3,α + vα,3) + 2xρv3,ρ(c13vα,α + c33v3,3)

+ x3
[
c55(v

2
1,3+ v

2
2,3)+ c33v

2
3,3− c66(v1,2− v2,1)

2
− c11(v1,1+ v2,2)

2

− 2c13vα,αv3,3− c55v3,αv3,α − 2c55vα,3v3,α + ρω
2vsvs

])
da (5.10)

and note that relations (4.4), (4.6), (4.8) and (5.9) imply

−
dI~

dx3
(x3)≥min(c66, ν2)

∫
D(x3)

vα,βvα,β da+ ν2

∫
D(x3)

v2
3,3 da+ ν1

∫
D(x3)

vα,3vα,3 da+ ν1

∫
D(x3)

v3,βv3,β da

≥ 0. (5.11)

Thus, I~(x3) is a nonincreasing function with respect to x3 on [0, L].

Theorem 7. Let vr be the amplitude of a harmonic vibration whose frequency is greater than the critical
frequency

ω∗1 =
dm0

ρ

√
2c2

11+ 2c2
12+ (c11− c12)

2
+ 2c2

55.

Then the cross section integral I~ (x3) as defined by (5.10) is an acceptable measure of the amplitude vr

(that is, I~(x3)≥ 0 and I~(x3)= 0 implies that vr = 0) and it satisfies the spatial decay estimate

0≤ I~(x3)≤ I~ (0)
(

1+ β
α

x3

)−1/β
for all x3 ∈ [0, L], (5.12)

where α and β are positive constants computable in terms of the elastic coefficients, λ, d, ω and ρ.

Proof. On the basis of the end boundary condition (2.15) and relation (5.10) we deduce that I~ (L)= 0,
so that we have

I~(x3)≥ 0 for all x3 ∈ [0, L]. (5.13)

Thus, I~(x3) represents an acceptable measure for the amplitude vr of the harmonic vibration.
On the other hand, by using the Schwarz and arithmetic-geometric mean inequalities, from (4.10),

(5.4) and (5.10) we obtain the estimates∣∣∣∣∫
D(x3)

[
vα
(
(2c55− ~)v3,α + 2c55vα,3

)
+ v3

(
2c33v3,3+ (2c13+ ~)vα,α

)]
da
∣∣∣∣

≤
2
√
λ
(2c55+

√
c11c33)

∫
D(x3)

vα,βvα,β da+
c55
√
λ

∫
D(x3)

vα,3vα,3 da

+
1
√
λ
(2c55+ c33+

√
c11c33)

∫
D(x3)

v3,αv3,α da+
c33
√
λ

∫
D(x3)

v2
3,3 da, (5.14)
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D(x3)

[
2c55xρvα,ρ(v3,α + vα,3)+ 2xρv3,ρ(c13vα,α + c33v3,3)

]
da
∣∣∣∣

≤ d(c55+ 2 |c13|)

∫
D(x3)

vα,βvα,β da+ 2dc55

∫
D(x3)

vα,3vα,3 da

+ d(2c55+ 2c33+ |c13|)

∫
D(x3)

v3,αv3,α da+ 2dc33

∫
D(x3)

v2
3,3 da, (5.15)

∣∣∣∣∫
D(x3)

[
c55(v

2
1,3+ v

2
2,3)+ c33v

2
3,3− c66(v1,2− v2,1)

2
− c11(v1,1+ v2,2)

2

− 2c13vα,αv3,3− c55v3,αv3,α − 2c55vα,3v3,α + ρω
2vsvs

]
da
∣∣∣∣

≤

(
max(c11, c66)+ 2 |c13| +

ρω2

λ

)∫
D(x3)

vα,βvα,β da+ 2c55

∫
D(x3)

vα,3vα,3 da

+

(
2c55+

ρω2

λ

)∫
D(x3)

v3,αv3,α da+ (c33+ |c13|)

∫
D(x3)

v2
3,3 da. (5.16)

Therefore, if we use the estimates (5.14)–(5.16) in (5.10) and then use (5.11), we obtain the differential
inequality

|I~(x3)| ≤ −(α+βx3)
dI~

dx3
(x3) for all x3 ∈ [0, L], (5.17)

where

α =max
{

1
min(c66, ν2)

[( 4
√
λ
+ d

)
c55+

2
√
λ

√
c11c33+ 2d |c13|

]
,

1
ν1

[
2
( 1
√
λ
+ d

)
c55+

( 1
√
λ
+ 2d

)
c33+

1
√
λ

√
c11c33+ d |c13|

]
,

1
ν1

( 1
√
λ
+ 2d

)
c55,

1
ν2

( 1
√
λ
+ 2d

)
c33

}
, (5.18)

β =max
{

1
min (c66, ν2)

(
max(c11, c66)+ 2 |c13| +

ρω2

λ

)
,

1
ν1

(
2c55+

ρω2

λ

)
,

2c55
ν1

,
c33+|c13|

ν2

}
. (5.19)

To integrate the differential inequality (5.17) we write it in the form

dI~

dx3
(x3)+

d
dx3

(∫ x3

0

1
α+βt

dt
)

I~(x3)≤ 0 for all x3 ∈ [0, L], (5.20)

which, multiplied by exp
(∫ x3

0 dt/(α + βt)
)

and then integrated with respect to x3, gives the estimate
(5.12). �

5.2. Rhombic materials. For a rhombic material, we proceed similarly. Relation (5.8) combined with
(3.11) and (3.12) gives
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−
d

dx3
J~(x3)

≥

∫
D(x3)

(
c11v

2
1,1+c22v

2
2,2+c33v

2
3,3+2(c12+~3)v1,1v2,2+2(c13+~2)v1,1v3,3+2(c23+~1)v2,2v3,3

)
da

+

∫
D(x3)

(
c66v

2
1,2+c66v

2
2,1+2(c66−~3)v1,2v2,1

)
da+

∫
D(x3)

(
c55v

2
3,1+c55v

2
1,3+2(c55−~2)v1,3v3,1

)
da

+

∫
D(x3)

(
c44v

2
3,2+ c44v

2
2,3+ 2(c44− ~1)v2,3v3,2

)
da, (5.21)

where ~1, ~2, ~3 satisfy the conditions requested in Section 4.2 and we have introduced the function

J~(x3)=−

∫
D(x3)

(
v1
(
(2c55− ~2)v3,1+ 2c55v1,3

)
+ v2

(
(2c44− ~1)v3,2+ 2c44v2,3

)
+ v3

(
(2c13+~2)v1,1+ (2c23+~1)v2,2+ 2c33v3,3

)
+ 2c55xρv1,ρ(v3,1+ v1,3)

+ 2c44xρv2,ρ(v3,2+ v2,3)+ 2xρv3,ρ(c13v1,1+ c23v2,2+ c33v3,3)

+ x3
[
c55v

2
1,3+ c44v

2
2,3+ c33v

2
3,3− c66(v1,2+ v2,1)

2

− (c11v
2
1,1+c22v

2
2,2+2c12v1,1v2,2+c55v

2
3,1+c44v

2
3,2)+ ρω

2vsvs
])

da. (5.22)

Now (4.26)–(4.29) and (5.21) give

−
dJ~

dx3
(x3)≥

∫
D(x3)

(
ξ4(v

2
1,1+v

2
2,2)+ξ3(v

2
1,2+v

2
2,1)+ξ1v

2
3,2+ξ2v

2
3,1
)

da+
∫

D(x3)

(
ξ1v

2
2,3+ξ2v

2
1,3+ξ4v

2
3,3
)

da

≥ 0; (5.23)

hence J~(x3) is a nonincreasing function with respect to x3 on [0, L]. Moreover, by means of the end
condition (2.15) and relation (5.22) we obtain J~ (L)= 0 and hence J~(x3)≥ 0 for all x3 ∈ [0, L], that
is J~(x3) is a measure of the amplitude of the harmonic vibration.

By using the Schwarz and arithmetic-geometric mean inequalities and with the aid of (4.10), (4.40)
and (5.4), we obtain∣∣∣∣∫

D(x3)

(
v1
(
(2c55−~2)v3,1+2c55v1,3

)
+v2

(
(2c44−~1)v3,2+2c44v2,3

)
+v3

(
(2c13+~2)v1,1+(2c23+~1)v2,2+2c33v3,3

))
da
∣∣∣∣

≤
1
√
λ

∫
D(x3)

[(
3c55+

√
c11c33

)
v2

1,1+
(
3c44+

√
c22c33

)
v2

2,2+2c55v
2
1,2+2c44v

2
2,1

+
(
c33+c44+2c55+

√
c11c33+

√
c22c33

)
v2

3,1

+
(
c33+2c44+c55+

√
c11c33+

√
c22c33

)
v2

3,2+c55v
2
1,3+c44v

2
2,3+c33v

2
3,3
]

da, (5.24)∣∣∣∣∫
D(x3)

(
2c55xρv1,ρ(v3,1+v1,3)+2c44xρv2,ρ(v3,2+v2,3)+2xρv3,ρ(c13v1,1+c23v2,2+c33v3,3)

)
da
∣∣∣∣

≤ d
∫

D(x3)

[
(c55+|c13|)v

2
1,1+(c44+|c23|)v

2
2,2+c55v

2
1,2+c44v

2
2,1+(c33+2c55+|c13|+|c23|)v

2
3,1

+(c33+2c44+|c13|+|c23|)v
2
3,2+2c55v

2
1,3+2c44v

2
2,3+c33v

2
3,3
]

da, (5.25)
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D(x3)

[
c55v

2
1,3+c44v

2
2,3+c33v

2
3,3−c66(v1,2+v2,1)

2

−(c11v
2
1,1+c22v

2
2,2+2c12v1,1v2,2+c55v

2
3,1+c44v

2
3,2)+ρω

2vsvs
]

da
∣∣∣∣

≤

∫
D(x3)

[(
c11+|c12|+

ρω2

λ

)
v2

1,1+

(
c22+|c12|+

ρω2

λ

)
v2

2,2+

(
2c66+

ρω2

λ

)
(v2

1,2+v
2
2,1)

+

(
c55+

ρω2

λ

)
v2

3,1+

(
c44+

ρω2

λ

)
v2

3,2+c55v
2
1,3+c44v

2
2,3+c33v

2
3,3

]
da. (5.26)

To conclude, we obtain from (5.22)–(5.26) a first order differential inequality of type (5.17), where now
we have

α=max
{

1
ξ4

(
1
√
λ

(
3c55+

√
c11c33

)
+d (c55+|c13|)

)
,

1
ξ3

c55

(
2
√
λ
+d

)
,

1
ξ3

c44

(
2
√
λ
+d

)
,

1
ξ4

(
1
√
λ

(
3c44+

√
c22c33

)
+d (c44+|c23|)

)
,

1
ξ2

c55

(
1
√
λ
+2d

)
,

1
ξ1

c44

(
1
√
λ
+2d

)
,

1
ξ2

(
1
√
λ

(
c44+2c55+c33+

√
c11c33+

√
c22c33

)
+d (c33+2c55+|c13|+|c23|)

)
,

1
ξ1

(
1
√
λ

(
2c44+c55+c33+

√
c11c33+

√
c22c33

)
+d (c33+2c44+|c13|+|c23|)

)
,

1
ξ4

c33

(
1
√
λ
+d

)}
, (5.27)

β =max
{

1
ξ4

(
c11+|c12|+

ρω2

λ

)
,

1
ξ4

(
c22+|c12|+

ρω2

λ

)
,

1
ξ3

(
2c66+

ρω2

λ

)
,

1
ξ2

(
c55+

ρω2

λ

)
,

1
ξ1

(
c44+

ρω2

λ

)
,

1
ξ4

c33

}
. (5.28)

Therefore, the spatial evolution of the amplitude is described by the estimate (5.12), where α and β
are given now by relations (5.27) and (5.28) and ω∗1 is replaced by

ω∗2 =
dm0

ρ

√
c2

11+ c2
22+ c2

44+ c2
55+ 2c2

12+ 4c2
66. (5.29)

The analysis of this section can be extended to a semi-infinite cylinder using the procedure developed
at the end of the above section.

6. Concluding remarks

We have addressed some exponential and algebraic spatial estimates for describing how the amplitude of
a harmonic vibration evolves in an anisotropic elastic cylinder. The discussion is based on the assumption
regarding the strong ellipticity of the elasticity tensor. This hypothesis allows us to obtain results valid for
a very large class of anisotropic elastic materials, including auxetic materials (which, having a negative
Poisson’s ratio or negative stiffness, expand laterally when stretched in contrast to ordinary materials;
see [Park and Lakes 2007], for example).
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Exponential spatial decay estimates are predicted for harmonic vibrations whose frequency is lower
than a certain critical value, as defined by relations (4.11) and (4.34), for example. However, as we can
see from relations (4.15), (4.16), (4.37) and (4.38), these estimates fall to give information regarding the
spatial evolution for harmonic vibrations with frequency close to the critical value.

On the other hand, the algebraic spatial estimate (5.12) proves how the spatial behavior evolves in the
case of harmonic vibrations with frequency greater than the critical value ω∗ as defined in (5.5).

The extent to which our present results cover the entire range of frequencies remains open question.
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[Chirit,ă and Ciarletta 2008] S. Chirit,ă and M. Ciarletta, “On the structural stability of thermoelastic model of porous media”,
Math. Methods Appl. Sci. 31:1 (2008), 19–34.
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