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A WAVE-BASED DAMAGE INDEX FOR THE ANALYSIS OF THE FILTERED
RESPONSE OF DAMAGED BEAMS

NICOLE APETRE, MASSIMO RUZZENE, SATHYANARAYA HANAGUD AND S. GOPALAKRISHNAN

This paper introduces a wave propagation-based damage index which relies on the evaluation of the strain
energy distribution associated with propagating waves. The presence of localized damages typically
distorts the wavefield by causing reflections and diffractions. The evaluation of such distortions, in
reference to the wavefield corresponding to the undamaged structure, can be used as an indicator which
potentially locates, quantifies and classifies the damage.

The damage index formulation is first illustrated through a numerical model of a beam with a small
notch, modeled as a localized thickness reduction. The beam’s wave propagation response is simulated
through the combined application of perturbation techniques and the spectral finite element method. The
perturbation approach and a first order model for the beam capture the coupling between bending and
axial behavior caused by the damage, and allow the prediction of mode conversion phenomena. The
perturbation solution allows direct comparison between undamaged and damaged strain energy contribu-
tions, which are directly associated with perturbation solutions of different orders. The resulting damage
index locates the damage along the beam length and estimates its severity.

Experimentally, the damage index is implemented by considering full wavefield measurements ob-
tained through a scanning laser vibrometer. The undamaged reference response is derived directly from
measurements on the damaged component, through the application of a filtering procedure operating in
the wavenumber/frequency domain.

1. Introduction

The objective of a structural health monitoring (SHM) system is to identify anomalies or damages such
as cracks, delaminations, and disbonds in structures. The term identification includes the determination
of the existence of damages, their location, and their size as accurately as possible. In the literature, the
amount of information that can be obtained regarding a damaged structure is typically classified into five
levels: (1) identification of the presence of damage, (2) determination of the location of the damage, (3)
classification of the type of damage, (4) quantification of its extent, and (5) estimation of the remaining
life of the component under investigation. The definition of an effective measure of damage responds to
the requirements of the first 4 stages, and ideally provides inputs to step (5). Damage indices proposed in
the literature from an SHM perspective are meant to identify and locate the damage, and, in some cases,
to provide an indication regarding the extent of the damage and its progression.

Keywords: damage measure, damage index, notched beam, spectral finite element method, perturbation techniques, first order
beam theory.
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Many SHM techniques developed over the years are based on the detection of changes in the modal
behavior of the monitored components. A valuable review of the state-of-the-art in modal-based SHM
can be found in [Doebling et al. 1996]. The existing techniques vary on the basis of the type of dynamic
response signals used for the analysis, and on the features or parameters considered as damage indicators.
Examples include techniques based on changes in modal frequencies [Ostachowicz and Krawczuk 1991;
Kim and Stubbs 2003], in measured mode shapes and their spatial derivatives (curvatures) [Pandey et al.
1991; Lestari 2001; Luo and Hanagud 1997; Ho and Ewins 1999], in calculated mean modal strain
energies [Sharma et al. 2006; Choi and Stubbs 2004; Cornwell et al. 1999] and in measured flexibility
coefficients. Although effective, these methods generally are not sensitive enough to to detect small
damages, and often require comparisons with baseline measurements on undamaged specimens. Their
lack in sensitivity and their inability to discriminate damage from changes in the operating conditions
of modal-based methods can be overcome through the application of guided ultrasonic waves (GUWs)
inspections [Staszewski et al. 2004; Rose 2002; Raghavan and Cesnik 2007]. Guided waves, such as
Lamb waves, show sensitivity to a variety of damage types and have the ability to travel relatively long
distances within the structure under investigation. For this reason, GUWs are particularly suitable for
SHM applications, which may employ a built-in sensor/actuator network to interrogate and assess the
state of health of the structure [Staszewski et al. 2004; Rose 2002; Giurgiutiu et al. 2003; Giurgiutiu
2005; 2008]. Alternatively, full wavefield measurements can be obtained through scanning laser vi-
brometers, which allow the implementation of strain energy-based damage index [Sharma et al. 2006],
and of frequency/wavenumber filtering techniques for improved damage visualization [Ruzzene 2007].
Interaction of the ultrasonic waves with various scatterers that represent arbitrary thickness variation was
study by experimental techniques and was validated with analytical and numerical models such as hybrid
boundary element method [Cho and Rose 1996; Cho 2000], finite difference method and finite element
method [Kazys et al. 2006; Basri and Chiu 2004], local interaction simulation approach [Ruzzene et al.
2005] and acoustic wavefield imaging [Michaels et al. 2005].

This paper extends the approach in [Ruzzene 2007], by introducing a wave propagation-based damage
index which relies on the estimation of the strain energy associated with waves reflected by damage.
The approach is illustrated through numerically simulated data which are obtained from the model of
a notched beam. The model considers damage as a small, localized thickness reduction, which allows
the application of perturbation techniques [Apetre et al. 2008; Lestari 2001]. The resulting perturbation
equations are solved in the frequency domain using the spectral finite element method (SFEM) [Doyle
1997; Lee et al. 2000]. SFEM, developed from matrix structural methods [Przemieniecki 1968], is using
a discrete Fourier transform to translate a problem to the frequency domain where an exact solution can
be found.

In the field of SHM, the SFEM has been previously used for example in [Kumar et al. 2004] to describe
the behavior of a first-order shear deformable beam with a transverse crack. Also, the SFE model of
a cracked Timoshenko beam is presented in [Krawczuk et al. 2003], where a massless spring, with
bending and shear flexibilities computed using Castigliano’s theorem and the laws of fracture mechanics
is used to model the crack. A review of damage detection using SFEM is presented in [Ostachowicz
2008]. The perturbation approach applied herein leads to a set of linear equations for increasing order
of the perturbation parameter. In this context, the separation between the response of the undamaged
structure (zero order perturbation solution) and the changes introduced by damage (first order perturbation
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solution) is immediate. The proposed damage index formulation is defined as the ratio of the strain energy
distribution associated with perturbations due to damage and the strain energy of the undamaged structure,
which in the numerical model respectively correspond to the first order and zero order solutions. The
formulation can be easily extended for the analysis of full-field experimental data according to procedures
outlined in [Ruzzene 2007].

The paper is organized as follows. Section 2 describes the numerical model of the notched beam,
while Section 3 presents the damage index formulation and a set of illustrative numerical examples. The
experimental implementation of the concept with the simultaneous application of frequency/wavenumber
filtering procedures are presented in Section 4. A summary of the main results of the work is finally
presented in Section 5.

2. Wave propagation model for notched beams

Damage description. A detailed derivation of the governing differential equations for a notched Euler-
Bernoulli beam is presented in [Apetre et al. 2008]. Here for completeness, a short summary of the
derivation is given. The dynamic behavior of the notched beam shown in Figure 1 is described by a set
of governing equations derived through the Hamilton principle. The defect is modeled as a reduction
in thickness of depth hd , extending over a length 1l, placed at the distance xd . As seen in the figure,
x ∈ [0, L] denotes the horizontal coordinate, whereas the vertical coordinate z varies in the interval

z ∈
[
−

h
2
,

h
2
(1− 2εγd(x))

]
, (2-1)

where ε= hd/h, and where γd(x)= H(x−(xd−1l))−H(x−xd) is a damage function with H denoting
the Heaviside function. Both the stiffness and the mass loss due to the edge notch are considered. The
moment of inertia at the damage location is truncated at ε order as

Id = I (1− ε)3 ≈ I (1− 3ε), (2-2)

where I is the moment of inertia of the undamaged beam. Thus the expressions for the stiffness and
mass distribution along the beam are [Lestari 2001]

EId(x)= EI [1− 3εγd(x)] and md(x)= m[1− εγd(x)], (2-3)

where EI and m are the stiffness and the mass of the undamaged beam.

x,u

z,w

xd

h

hd

L

∆l

Figure 1. Beam geometry.
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Perturbation equations. The governing equations for the notched beam and the appropriate set of bound-
ary conditions are derived using Hamilton’s Principle. The required kinetic and strain energies, and the
work of external forces are formulated using the first-order approximation

u(x, z, t)= u(x, t)− z ∂w
∂x
, w(x, z, t)= w(x, t), (2-4)

where u(x, t) and w(x, t) are the axial and transverse displacements in the reference plane z = 0, respec-
tively. Application of Hamilton’s Principle yields the following set of differential equations:[

E Au,x +
(
−u,x +w,xx

h
2

)
E Aγd(x)ε

]
,x
−m

[
1− εγd(x)

]
ü− mh

2
εγd(x)ẇ,xx = f1(x, t), (2-5)[

−EIw,xx +

(
−u,x +w,xx

h
2

)
E Ah

2
γd(x)ε

]
,xx
+

mh
2
[
üεγd(x)

]
,x −m

[
1− εγd(x)

]
ẅ = f2(x, t), (2-6)

where E is the Young’s modulus, A is the lateral area, h is beam thickness, m is the mass per unit
length, and f1(x, t), f2(x, t) denote the applied distributed generalized loads, assumed for simplicity to
be applied along the reference plane z = 0. The important feature of equations (2-5), (2-6) is the coupling
between the axial and transverse displacement resulting from the damage description considered. It is
noted that in the absence of damage, the small parameter ε becomes zero and equations (2-5), (2-6)
reduce to the classical uncoupled equations governing bending and axial behavior of a symmetric beam.

The governing equations can be conveniently expressed in the frequency domain through the applica-
tion of the Fourier transform, by letting the applied generalized loads f j (x, t) (with j = 1, 2) be

f j (x, t)=
∑

k

f̂ jk (x, ωk)eiωk t , (2-7)

where i =
√
−1, and f̂ jk (x, ωk) denotes the harmonic component of the generalized load at frequency

ωk [Doyle 1997]. Accordingly, the beam’s axial and transverse displacements can be written as

u(x, t)=
∑

k

ûk(x, ωk)eiωk t , w(x, t)=
∑

k

ŵk(x, ωk)eiωk t , (2-8)

where ûk(x, ωk), ŵk(x, ωk) are the displacements corresponding to the kth harmonic component. In the
remainder of the paper, the subscript k is dropped to simplify notation, so that ωk =ω, ûk(x, ωk)= û(x, ω),
ŵk(x, ω)= ŵ(x, ω).

Next, the axial and vertical displacements of the beam in the reference plane are expanded as pertur-
bations (in terms of a small parameter ε) of the axial and vertical displacement of the undamaged beam

û(x, ω)= û(0)(x, ω)− εû(1)(x, ω)−O(ε2), (2-9)

where û= {û ŵ}T . Substituting (2-8), (2-9) into the differential system (2-5), (2-6) and collecting the
coefficients of ε0 and ε1 results in the set of differential equations

ε0
:Mû(0)(x, ω)+E1û(0),xx(x, ω)+E2û(0),4x(x, ω)= f̂

(0)
(x, ω), (2-10)

ε1
:Mû(1)(x, ω)+E1û(1),xx(x, ω)+E2û(1),4x(x, ω)= f̂

(1)
(x, ω), (2-11)
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where

M=
[

mω2 0
0 mω2

]
, E1 =

[
E A 0
0 0

]
, E2 =

[
0 0
0 −E I

]
, (2-12)

where A = bh and I = bh3/12. In (2-11), f̂
(1)
(x, ω) is the load on the first order perturbation equation,

which is a function of the zero order displacement û(0) and is responsible for the axial-bending coupling.
Its explicit expression can be found in [Apetre et al. 2008].

Spectral finite element discretization. The equation for the ε0 term corresponds to the uncoupled gov-
erning equation for the undamaged beam in the frequency domain, while the first order perturbation
equation has the same form, with an applied generalized load that is a function of û(0). A common
strategy for the solution of the equations (2-10), (2-11) is based on their formally identical form. Each
of the equations can in fact be written in matrix form as

Mû(x, ω)+E1û,xx(x, ω)+E2û,4x(x, ω)= q(x, ω), (2-13)

where coefficients are 2× 2 matrices. We assume that the beam can be divided into finite elements
where an element j of length L j connects two nodes (Figure 2). The behavior of each node is de-
scribed by 3 degrees of freedom, so that the element’s vector of degrees of freedom is defined as
d j = {û1 j , ŵ1 j , ŵ1 j,x , û2 j , ŵ2 j , ŵ2 j,x}

T . The displacement û(x, ω) within element j is obtained
as an interpolation of the nodal degrees of freedom d j

û(x, ω)= N j (x, ω)d j (ω), (2-14)

where N j (x, ω) is the matrix of dynamic shape functions, which are obtained from the solution of the
homogeneous governing equation [Doyle 1997]. The application of the dynamic shape functions as
interpolation functions is the main feature of the SFEM, which otherwise maintains the formalism of
conventional FEs as demonstrated by the theoretical description of this section. Accordingly, the dynamic
shape functions N j (x, ω) provide a description of the displacement variation within an element, which
is as exact as the homogeneous distributed parameter model used for the description of the problem at
hand [Doyle 1997]. In the case considered here, it can be shown that the generalized load in the first
order (ε1) perturbation equations reduces to a concentrated nodal load if a node is placed at the damage
location. Then, the solution of the homogeneous beam equations and the proper description of nodal
loads corresponding to the presence of damage based on the formulation presented above can be used
to obtain exact dynamic shape functions and accurate representations of the beam’s displacements in
the frequency range corresponding to the applied load. This approach can also be applied when loads
are generally distributed along the element length. In this case the dynamic shape functions do not
reproduce exactly the displacement field within the element, and some approximation is introduced. The

x = Lj
û1j , N̂1jx = 0

û2j , N̂2j

ŵ1j,x , M̂1j
ŵ1j , Q̂1j ŵ2j , Q̂2j ŵ2j,x , M̂2j

Figure 2. Spectral finite element with nodal displacements and loads.
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application of nodes at damage and load locations do not cause a dramatic increase in the computational
cost, since only a node needs to be added at each damage and loading site, as opposed to the highly
refined meshes that are required for the accurate simulation of wave propagation phenomena with FEs
based on the polynomial interpolation of the nodal degrees of freedom. Therefore, the presented modeling
approach still represents an efficient tool for the analysis of wave propagation in the considered class
of damaged structures. Refinements of the formulation, allowing the accurate representation of general
load distributions and of damage locations within the element will be discussed in a forthcoming paper.

Based on the weak formulation of the governing equations (2-13), we can derive the equation

K j (ω)d j (ω)= f j (ω), (2-15)

where K j (ω) is the element stiffness matrix at frequency ω, defined as

K j (ω)=

∫ L j

0

{
NT

j (x, ω)MN j (x, ω)−NT
j,x(x, ω)E1N j,x(x, ω)+NT

j,xx(x, ω)E1N j,xx(x, ω)
}

dx, (2-16)

and where f j is the vector of applied nodal loads

f j (ω)=

∫ L j

0
NT

j (x, ω)q(x, ω)dx, (2-17)

Numerical results. The numerical model is used to simulate the response of beams with notches, and
specifically to illustrate mode conversion phenomena captured by the model considered. The results are
obtained by first transforming the time history of the applied load in the frequency domain through the
application of the fast Fourier transform (FFT) algorithm. The nodal displacements corresponding to the
various harmonic components are then computed through inversion of the dynamic stiffness matrix of
the structure according to (2-17). At each frequency, the displacements’ variation along the elements’
length is obtained through interpolation using the dynamic shape functions (2-14). Final application of
the inverse FFT provides the displacements’ variation in time.

An aluminum (Young’s modulus E = 70 GPa, density ρ = 2750 kg/m3) beam of length L = 1 m,
thickness h = 1× 10−2 m and width b = 5× 10−2 m is considered in the simulations. The beam has a
notch of length 1l = 1× 10−2 m and depth hd , located at xd = 3L/4. The beam is modeled using two
spectral elements for a total of nine degrees of freedom (Figure 3). The applied load is a longitudinal tip
force whose variation in time is described by a Hanning modulated sine burst at 500 kHz (Figure 4).

Figure 5 shows the variation of the displacements in time and space, while Figure 6 shows snapshots
of the beam’s deformed configuration at three instants in time. The longitudinal wave generated by the
applied load propagates from the tip of the beam and gets partially reflected and converted when it reaches
the notch at xD = 3L/4. Mode conversion phenomena such as the one illustrated in this example are

xd xf = L

f (t)

0

Figure 3. Schematic of the clamped-free beam with a longitudinal tip load, modeled
using two spectral elements.
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Figure 4. Modulated sinusoidal pulse load in time and frequency domain.

Figure 5. Longitudinal (left) and transverse (right) displacement as functions of time
and longitudinal coordinate. Notch length 1l = 0.001 m.

very important as they may be exploited to increase the sensitivity of damage detection and interpretation
techniques.

3. Wave-based damage index formulation

Theoretical background. The perturbation analysis is used to define a damage index (DI) which locates
the notch and estimates its severity. The definition is such that the DI has value 1 at undamaged locations,
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Figure 6. Longitudinal (left) and transversal (right) displacements as function of longi-
tudinal coordinate, for three instants in time.

while it deviates from unity in the vicinity of the notch. The formulation is based on the estimation of the
distribution of strain energy associated with propagating and reflected waves. In the proposed approach,
which follows procedures previously applied on modal curvature data of notched plates [Sharma et al.
2006], the beam is divided into N segments, over which the strain energy is evaluated through integration
over the segment length. At a given instant of time t , the strain energy over segment p, defined by
x ∈ [x p, x p+1], is obtained by summing contributions from axial and bending deformations

1Up(t)=U (x p+1, t)−U (x p, t)=
1
2

∫ x p+1

x p

[
EAu2

,x(x, t)+ EIw2
,xx(x, t)

]
dx, (3-1)

where u and w can be considered as superpositions of the solutions obtained for various orders of the
perturbation parameter of (2-9). Substituting the displacement expansions and truncating at the second
order yields the following approximate expression for the strain energy of the damaged beam

1Up(t)≈1U (0)
p (t)− ε1U (1)

p (t)− O(ε2), (3-2)

where

1U (0)
p (t)=

1
2

∫ x p+1

x p

[
EA[u(0),x (x, t)]2+ EI [w(0),xx(x, t)]2

]
dx (3-3)

corresponds to the strain energy of the undamaged beam, and where

1U (1)
p (t)=

∫ x p+1

x p

[
EAu(0),x (x, t)u(1),x (x, t)+ EIw(0),xx(x, t)w(1),xx(x, t)

]
dx (3-4)

is the contribution due to damage. In preparation for the analysis of experimental data, the integrals
are estimated numerically by using a set of spline functions. This leads to continuous strain energy
functions 1U (0)(x, t) and 1U (x, t). Based on (3-4) and the numerical results presented in the previous
section, displacement perturbations occur only when waves reach the notch location. Accordingly, the
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corresponding strain energy perturbation 1U (1)
p (x, t) originates at the damage location, where it reaches

its maximum value [Sharma et al. 2006], to progressively decrease in value as the secondary wave
produced by the damage propagates away from the damage. The damage index can be thus defined as
a ratio between the strain energies associated with the 1st order perturbation, to the strain energy of the
undamaged beam, as quantified by the zero order solution

d(x, t)=
1U (x, t)
1U (0)(x, t)

≈ 1− ε
1U (1)(x, t)
1U (0)(x, t)

. (3-5)

Equation (3-5) explicitly shows how the deviation from unity of the DI is directly proportional to the
perturbation parameter ε which defines the notch depth. The location of damage along the beam length
is instead identified by a peak of the 1U (1)(x, t)/1U (0)(x, t) function occurring at the damage site.

The above damage index is time-dependent, and it is convenient to consider its cumulative value over
a selected time interval

dc(x)=
∫

t

∣∣d(x, t)
∣∣dt (3-6)

to obtain a function depending uniquely on the spatial coordinate.

Numerical examples. Three examples are presented to demonstrate the effectiveness of the proposed
damage index formulation as a damage locator and estimator. In all the cases, the beam is simply
supported and is excited at a given point by a 5-cycle sinusoidal load. The beam is made of aluminum
with Young’s modulus E = 70 GPa and density ρ = 2750 kg/m3 and has length of L = 1 m, thickness h =
1×10−2 m and width b= 5×10−2 m. The simulation is performed over a time interval which corresponds
to the time required for the injected pulse to reach the boundary. The corresponding cumulative DIs are
calculated according to (3-6), and plotted in Figure 7. As expected, damage is highlighted by a clear
deviation from unity at the damage site. It is important to note how the DI values increase with the notch
depth hD and also shows a monotonic dependence upon the damage width 1l.

The first configuration considers a 5-cycle sinusoidal load applied in the longitudinal direction at
x f = 0.6L and a notch located at x f = 0.4L . According to this load configuration, w(0) ≡ 0, and the
damage index reduces to

d(x, t)= 1− ε

∫
u(0),x u(1),x dx∫
(u(0),x )2 dx

. (3-7)

Figure 7, top left, shows that for a given notch depth hD , the DI increases with the damage width 1l.
The results for a transverse load shown in the top right part of the same figure also confirm the damage

index behavior. In this last case, the DI can be approximated as

d(x, t)= 1− ε

∫
w
(0)
,xxw

(1)
,xx dx∫

(w
(0)
,xx)2 dx

, (3-8)

since u(0) ≡ 0. The graph shows that for a given damage width 1l, the DI increases with the notch depth
hD .

In these two cases, the coupling between longitudinal and transverse displacements due to the damage
is of order O(ε2) so it is neglected. To include coupling at O(ε), the third configuration considers a 5-cycle
sinusoidal load applied in both longitudinal and direction at x f = L/2 and a notch located at x f = L/4.
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Figure 7. Cumulative damage index results for (left) a horizontal applied load, with
hd/h = 1/4 and varying damage length (1l = 0.005, 0.007, 0.01 m); and (right) a verti-
cal applied load, with 1l = 0.005 m and varying damage depth (hd/h = 1/6, 1/4, 1/2).
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Figure 8. Cumulative damage index results for both horizontal and vertical applied
loads, with 1l = 0.01 m and varying damage depth (hd/h = 1/20, 1/15, 1/10).

Both zero order longitudinal and transverse displacements are present and the DI is given by (3-6). The
resulting DI is plotted in Figure 8 for a given damage width 1l and for various notch depths hD . Once
more we see that the DI increases as hD increases.

4. Experimental implementation

This section presents the extension of the DI concept to the analysis of experimental data. The presented
results demonstrate the effectiveness of the DI as a damage indicator, and show its practicality as an
inspection tool. The case of a homogeneous plate with a transverse notch is considered. The results in
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this section therefore cannot be directly compared with those obtained analytically as the analytical results
are obtained for an Euler-Bernoulli beam. Refinements of the analytical formulation to include Lamb
modes thus allowing the accurate simulation of the experiments presented here are under development
and will be discussed in future papers. However, the objective is to illustrate the application of the
concept in a practical setting and to demonstrate how it may be applied to correctly identify the presence
of damage.

Experimental evaluation of the DI requires information regarding the undamaged response of the
component under investigation and of the perturbation of its response due to the presence of damage.
While in the numerical model such information was directly obtained as a by-product of the adopted
numerical approach, the effective analysis of experimental data requires the ability to separate these
two pieces of information. Preferably, this should be done without need to rely on historical data on
the undamaged part. This is here achieved through the application of simple filtering strategies in
the wavenumber/frequency domain, which are enabled by the elevated spatial resolution provided by
scanning devices such as a scanning laser Doppler vibrometer [Ruzzene 2007]. A summary of this
filtering approach, used to remove the reflections due to damage, is presented in the next section, which
is followed by the illustration of how the filtering procedure can be used in conjunction with the DI to
detect damage in a structure.

Filtering procedure for the estimation of undamaged response. The basic concept behind the filtering
technique under consideration is illustrated here for the case of propagating waves in a one-dimensional
rod. The data is obtained based on SFE model described in Section 2. Additional details, including
the application to two dimensional problems and a more in-depth description can be found in [Ruzzene
2007]. It is assumed that the clamped-free rod is excited at its free end by a modulated harmonic load,
which generates a wave. The injected wave interacts with the damage located at xd = L/2, again modeled
as a thickness reduction corresponding to hd/h = 0.1, where it is reflected.

The graphs on the left on Figure 9 are snapshots of the rod response at instants of time before, during
and after the wave interaction with the notch. After the reflection, the rod’s displacement is given by

u(x, t)= u(i)(x, t)+ u(r)(x, t), (4-1)

where one can consider u(i)(x, t) as the 0th order term in the perturbation solution. The two-dimensional
FFT in space and time of the rod response is also given by the superposition of contributions from incident
and reflected waves

û(k, ω)= û(i)(k, ω)+ û(r)(k, ω). (4-2)

Its representation in the frequency/wavenumber domain shown on the right in Figure 9 highlights the
presence of the main pulse propagating along the x > 0 direction, and of the reflected pulse propagating
in the opposite direction (x < 0). As a result, the two corresponding peaks of the two-dimensional
FFT appear centered at ω = ω0, k = ±k0. In particular, the reflected pulse has lower amplitude, it is
characterized by the same frequency, and appears in the k > 0 region of the wavenumber/frequency
domain. The two-dimensional representation hence effectively separates incident and reflected wave
components. This allows the application of simple filtering strategies, which remove the reflected wave
from the recorder signal, thus providing an approximation of the response of the structure in the absence
of the damage. For example, a two-dimensional Hanning window can be used to eliminate the reflected
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Figure 9. Left: Snapshots of rod deformed configuration at three instants of time. Right:
2D frequency/wavenumber domain representation; the solid box highlights the reflected
component, and the dashed box the incident component.

wave and to obtain the frequency/wavenumber spectrum shown in Figure 10, left. Mathematically, the
windowing process can be simply expressed as a function product between the wave’s two-dimensional
FFT and a two-dimensional window function

û(i)(k, ω)≈
[
1− H(k− k0, ω−ω0)

]
û(k, ω), (4-3)
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at three instants of time (right).
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where H(k− k0, ω−ω0) denotes the windowing function centered at k0, ω0. The incident space-time
domain signal can then be reconstructed through inverse Fourier transformation. The incident signal
obtained upon filtering at the same instant considered in the left half of Figure 9 is shown in the right
half of Figure 10, to demonstrate how the windowing procedure removes the reflected propagating pulse
while leaving the response corresponding to the undamaged beam practically unaltered. The separated
incident and the total signals can be used for the damage index estimation according to the definition
provided above. The result in terms of cumulative damage index for the simple case discussed in this
section is plotted in Figure 11.

Experimental set-up for wavefield measurements. A schematic of the set-up is shown in Figure 12. The
experimental results are obtained using piezoceramic discs as actuators and a scanning laser Doppler
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Figure 12. Schematic of experimental set-up for wavefield measurement.
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vibrometer (SLDV) as a sensor. The SLDV (Polytec PI, Model PSV400M2) allows frequency sampling
up to 1 MHz, which enables GUWs detection and visualization. In the wave propagation tests, the
piezodiscs are driven by a sinusoidal burst generated by a signal generator. The
resulting elastic waves are recorded at the measurement grid points defined on the
scanning system. The operation of the SLDV requires the generation of a pulse at
each grid point in order to record the corresponding response. Phase information is
retained by triggering the excitation signal through a low frequency signal (10 Hz),
which also defines the scanning rate. Upon completion of measurements at all
grid points, the recorded responses are postprocessed to obtain full images of the
propagating wavefield within the region of inspection.

Shown on the right is a detail top view of a typical test specimen: in this case,
an aluminum plate of dimensions 0.76 m × 0.76 m × 3.05×10−3 m. The damage
is a 27× 10−3 m long and 1× 10−3 m deep grove which was cut in the plate at
the location shown. The figure also shows a typical line of measurement points
(in the case presented below the number of points is 69). The wave is generated
by a surface bonded piezotransducer excited by a 5-cycle, 110 kHz sinusoidal
pulse. The responses at the grid points is recorded, stored, and converted for
postprocessing. In particular, the responses are interpolated using spline functions,
which can be conveniently differentiated for strain energy evaluation.

Experimental results. The time-spatial variation of the plate response shows the presence of a low am-
plitude S0 mode, which propagates faster than the A0 mode (Figure 13). The significant difference
in amplitude recorded for the two modes is related to their polarization (S0 is mostly in-plane, while
A0 is mostly out-of-plane) and to the limitation of the currently available SLDV which only measures
out-of-plane displacement or velocity components. When the S0 mode reaches the crack location, it is
partially converted into A0, as well as reflected and transmitted. The detailed spatial information obtained

Figure 13. Space-time variation of recorded response showing multimodal wave propa-
gation, mode conversion and reflection at crack location.
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!"

#"

Figure 14. Left: Response at location A of Figure 13. Right: Filtered S0 response (thick
line) and reflected A0 mode (thin line).

from the SLDV can be used to effectively separate the S0 mode from the A0 mode through filtering in
the frequency/wavenumber domain. Proper design of the filtering window allows in fact the separation
of incident and reflected waves as well as the decoupling of different modes propagating at the same
frequency. Figure 14, left shows the time response recorded at location A, while the right half of the
same figure compares the two reconstructed signals corresponding to the S0 mode and the reflected A0

mode.
Figure 15 shows the variation of the plate incident and reflected responses in time and space as col-

ormap plots. Both responses contain both S0 and A0 modes.

Figure 15. Filtered incident (left) and reflected (right) response as function of time and
longitudinal coordinate.
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Figure 16. Left: Raw test data (transverse displacement) as function of longitudinal co-
ordinate at three instants. Right: Filtered incident (dotted line) and reflected (continuous
line) waves as function of longitudinal coordinate at the same three moments.

Figure 16 shows snapshots of the displacements’ variation along the beam at three instants of time as
raw data and also as filtered data. A very clear separation between the incident and the reflected waves
is presented in Figure 16, right.

Analytically the damage index was defined as the ratio of strain energies associated with damaged
and undamaged beams. Due to the mode conversion phenomena, the damage index obtained from the
experimental data is defined as the ratio of strain energies associated with the damaged beam and with
the incident S0 mode denoted by S I

0 (Figure 14, left)

d(x, t)=
1U (x, t)

1U (S I
0 )(x, t)

, (4-4)

where the stain energy associated with S I
0 is defined as

1U (S I
0 )(x, t)=

∫ [
w
(S I

0 )
,xx (x, t)

]2 dx (4-5)

and where w(S
I
0 ) is the displacement associated with the S I

0 . As in the analytically defined damage
measure of (3-6), a cumulative damage index is considered and the result is plotted in Figure 17. Due
to the significant difference in amplitude recorded for the two modes the ratio d(x, t) gives very large
values. But the ratio still has a peak at the location of the damage (Figure 17). Refinements of the
proposed DI will be further investigated and in future papers.

5. Conclusions and future work

This paper presents a wave-based damage index and illustrates the model by applying it to both analytical
and experimental data. The formulation is first supported by a numerical method which simulates the
effects of a notch damage on a propagating elastic wave. The numerical technique combines the SFEM



WAVE-BASED DAMAGE INDEX FOR THE FILTERED RESPONSE OF DAMAGED BEAMS 1621

0 0.02 0.04 0.06 0.08

50

100

150

200

250

300

350

400

450

500

x[a.u.]

C
u
m

u
la

ti
ve

d
am

ag
e

m
ea

su
re

Figure 17. Cumulative damage index of experimental data.

and perturbation techniques and allows the prediction of reflections and mode conversion phenomena
associated with wave/damage interactions.

The damage index formulation is based on the distribution of strain energy within the structure. The
technique is implemented by estimating the undamaged response through a filtering process that operates
in the frequency/wavenumber domain to separate wave components propagating in opposite directions.
Numerical results, based on the developed numerical model, as well as experimental data, obtained
through a scanning laser vibrometer show the effectiveness of the proposed formulation and its potentials
for implementation as a practical inspection tool for detection of the damage location. Future work will
include results for the quantification of the damage that are missing in the current development. Also a
similar concept will be developed for the case of multimodal signals.

The objective of the paper is to illustrate the effectiveness of the damage index for both analytical and
experimental data. The experimental data cannot be validated with the present numerical model, due to
the model’s limitation to describe higher Lamb modes. Future work includes extensions of the analytical
formulation, allowing accurate simulation of the experiments.

Future work will also extend the concept to practical aerospace structures in the presence of structural
features such as holes, rivets, or localized impedance changes which complicate the wavefield and its
interpretation, and make the identification of the presence of damage much more challenging. The
authors are already successful in applying the same tool for two dimensional data in the presence of
multiple scatterers. In future work, the authors will demonstrate how multiple scatterers contributions to
the scattered field can be resolved to obtain the characterization of the individual scatterers.
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GENERALIZED PLANE STRAIN FINITE-ELEMENT FORMULATION
FOR THERMAL AND ELECTRICAL BUCKLING ANALYSIS

OF PIEZO COMPOSITE BEAM

R. JEROME AND N. GANESAN

We develop a generalized plane strain (GPS) finite element formulation to predict the critical buckling
voltage and temperature of a piezo composite beam in more generality than the cases characterized by
plane strain and plane stress assumptions.

This generalized plane strain formulation represents the two-dimensional finite element model as
closely as possible to the three-dimensional finite element model. It is similar to the plane strain formu-
lation that reduces a three-dimensional stress-strain relation to a two-dimensional one, but in contrast
with most GPS formulations in the literature, it does not include out of plane degrees of freedom. In our
formulation the reduced two-dimensional stress-strain relation incorporates the effect of allowed/applied
strain ε0 in the dimension not included in the two-dimensional model. Further, since the goal is to deal
with thermal and electrical buckling analysis, an initial strain vector is incorporated in the formulation.

A finite element solver based on an eight-node quadrilateral element was developed under the new
formulation, and its results show good agreement with those reported by Varelis and Saravanos (2004)
and those obtained with ANSYS. The critical electrical and thermal buckling loads for examples other
than those characterized by plane stress and plane strain were analyzed, and it was found that they are
significantly influenced by α, the parameter controlling the out-of-plane strains.

1. Introduction

Finite element analysis of smart structures has attracted much attention in recent years due to its wide
range of applications. A significant amount of research has gone into the analysis of piezo composite
structures. A number of finite element (FE) models have been proposed for the analysis of smart struc-
tures; and a detailed survey is given in [Benjeddou 2000]. One of the main problems addressed is the
buckling analysis of smart structures.

Three-dimensional beam models can be simulated using two-dimensional in-plane elements by consid-
ering only the longitudinal cross-section of the three-dimensional beam model. The boundary conditions
and the loading conditions can be simulated more accurately in this two-dimensional model than in the
one-dimensional beam element model. Still, the two-dimensional analysis of the beam is based on either
the plane stress or plane strain assumption, and cases outside these assumptions cannot be handled by
two-dimensional in-plane elements. The generalized plane strain formulation can be used to model cases
other than plane stress and plane strain at the cost of additional degrees of freedom.

The generalized plane strain formulation has been discussed extensively in the literature and has been
used for several applications. Most composite problems are generalized plane strain in nature, and they

Keywords: generalized plane strain, finite element, piezo composite, beam, electrical buckling, thermal buckling.
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are often solved using three-dimensional finite element analysis. Lin and Yi [1991] used the generalized
plane strain formulation for the analysis of interlaminar stresses in viscoelastic composites. Krueger
et al. [2002] have critically compared the two-dimensional finite element modeling assumptions with
results from three-dimensional finite element analysis for composite skin-stiffener debonding. They have
proposed a method for analyzing the composite using one layer of brick elements instead of using plane
elements. Hu and Pagano [1997] presented a new method of solving generalized plane strain problems
by introducing out-of-plane thermal strains in a two-dimensional finite element analysis with the plane
strain model. They have done their proposed two-dimensional FE analysis using ANSYS and compared
the results and computation time with those of the three-dimensional FE models.

In most of the literature, a plate element has been used to model the piezo composite plate as well
as piezo composite beams for buckling analysis. Varelis and Saravanos [2002] developed a nonlinear
mechanics to describe piezoelectric laminated plates, including nonlinear effects due to large displace-
ments and rotations, and carried out a linear buckling analysis of plates by neglecting the nonlinear
stiffness matrix. Varelis and Saravanos [2004] carried out pre- and post-buckling analysis of plates.
Giannopoulos et al. [2007] presented a coupled formulation between thermal, electrical, and mechanical
fields incorporating nonlinearity due to large displacements, and solved for linear buckling by neglecting
the nonlinear stiffness matrix.

Figure 1. The three-dimensional piezo composite beam.

φ

− φ
Figure 2. The plane of the finite element model used for thermal and electrical buckling
analysis, with electrical boundary conditions and kinematic constraints. For thermal
buckling analysis, the applied voltage is zero.
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This paper presents a generalized plane strain FE formulation for thermal and electrical buckling of
a piezo composite beam (Figure 1). The two-dimensional model is a cross-sectional one, as shown in
Figure 2. This contrasts with the plate finite elements generally used to model a piezo composite beam
[Varelis and Saravanos 2002; 2004; Giannopoulos et al. 2007]. Our generalized plane strain formula-
tion is similar to the standard plane strain formulation (which reduces a three-dimensional stress-strain
relation to a two-dimensional stress-strain relation), in that it does not include out-of-plane degrees of
freedom. Therefore, it has fewer degrees of freedom than the conventional generalized plane strain
formulation. As we shall see, however, this does not compromise its performance.

Our formulation includes the effect of out-of-plane strain (that is, in the direction not included in
the two-dimensional FE model) via a parameter α, which intervenes in the stress-strain relationship of
the beam. The effect of the out-of-plane strain is included in the formulation through the constitutive
relations.

We compare the performance of the plane strain model, the plane stress model and the newly developed
generalized plane strain model in calculating the critical buckling voltage and critical buckling tempera-
ture of a piezo composite beam. It turns out that the present model simulates the three-dimensional FE
model more closely than the conventional plane stress or plane strain two-dimensional FE model for the
same number of degrees of freedom.

The present formulation can be used to analyze beams inside a gap or a slot which constrains expansion
of the beam in the direction not included in the two-dimensional FE model.

List of symbols

εxx , εyy, εzz Strains in the x , y and z directions
σxx , σyy, σzz Stresses in the x , y and z directions
εx0, εy0, εz0 Initial strains in the x , y and z directions

ε0
yy Free expansion strain in y direction

σ PS
yy Stress in the y direction for plane strain case
σG

yy Stress in the y direction for generalized plane strain
ε0 allowed/applied strain in the z direction

α = ε0/ε0
yy Ratio between allowed/applied strain to the free expansion strain in the z direction
{T } Stress vector
{S} Stain vector
{S0} Initial strain vector
{E} Electric field vector
{D} Electric displacement vector

[c], [s] Elastic constants matrices
[ε] Dielectric constants matrix

[d], [e] Piezoelectric constants matrix
[c̄], [s̄] two-dimensional reduced elastic constants matrices
[ε̄] two-dimensional reduced dielectric constants matrix

[d̄], [ē] two-dimensional reduced piezoelectric constants matrix
{ue} Elemental structural displacement degrees of freedom
{ϕe} Elemental electric potential degrees of freedom
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[Nu] Shape function matrix for structural displacement
[Nϕ] Shape function matrix for electric potential
[Bu] Shape function derivative matrix for structural strain
[Bφ] Shape function derivative matrix for electric field
[M] Elemental mass matrix
[Kuu] Elemental structural stiffness matrix
[Kuϕ] Elemental piezostructure coupling matrix
[Kϕϕ] Elemental capacitance matrix
{ fe} Elemental external mechanical force
{ge} Elemental electrical charge
[Kσ ] Elemental geometric nonlinear matrix

s Elemental stress matrix
[M] Assembled mass matrix
[K uu] Assembled structural stiffness matrix
[K uϕ] Assembled piezostructure coupling matrix
[Kϕϕ] Assembled capacitance matrix
[Kσ ] Assembled geometric nonlinear matrix
{ f } Assembled external mechanical force
[K eq] Assembled equivalent capacitance matrix

2. Formulation

Generalized plane strain FE formulation. The three-dimensional stress-strain relation is given by

εxx = s11σxx + s12σyy + s13σzz + εx0, (1)

εyy = s21σxx + s22σyy + s23σzz + εy0, (2)

εzz = s31σxx + s32σyy + s33σzz + εz0, (3)

where εxx , εyy and εzz are the strains in the x , y and z directions and σxx , σyy and σzz are the stresses
in the x , y and z directions. The strains εx0, εy0 and εz0 are the initial strains. Consider a plane strain
case where εyy = γxy = γyz = 0. Because of the assumption εyy = 0, Equation (3) becomes εyy =

s21σxx + s22σyy + s23σzz + εy0 = 0, which gives

σyy =−
s21

s22
σxx −

s23

s22
σzz −

εy0

s22
. (4)

This σyy is required to resist the y direction strain ε0
yy caused by the stresses σxx and σzz . Therefore,

σyy produces a strain equal to ε0
yy but in the opposite direction, so the net strain in the y direction is

maintained at zero.
Based on this argument, Equation (4) can be recast as

s22σyy =−ε
0
yy =−s21σxx − s23σzz − εy0. (5)

Substituting σyy from (4) into (1) and (2) for the plane strain case implies, from (5), that we are incorpo-
rating the effect of −ε0

yy in the two-dimensional stress-strain relation. The stress-strain relationship then
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becomes 
εxx

εzz

γxz

=
 s11− s2

12/s22 s13− s12s23/s22 0
s13− s12s23/s22 s33− s2

23/s22 0
0 0 s55



σxx

σzz

τxz

+

εx0− (s12/s22)εy0

εz0− (s23/s22)εy0

γxz0

 , (6)

which enforces the condition εyy = 0.
Now consider the case where εyy = ε

0
yy but γxy = γyz = 0, that is, the y direction is allowed to expand

freely, as shown in Figure 3. In this case the effect of ε0
yy caused by the stresses σxx and σzz has to be

incorporated into the two-dimensional stress-strain relation. From (5), it is clear that to produce positive
strain ε0

yy , the stress σyy should be in the opposite direction of the plane strain case. From (5) we get

s22σ
G
yy = s22

(
−σ PS

yy

)
= ε0

yy = s21σxx + s23σzz + εy0, (7)

σG
yy =

(
−σ PS

yy

)
=

s21

s22
σxx +

s23

s22
σzz +

εy0

s22
, (8)

where σG
yy and σ PS

yy are the stresses in the y direction for the case εyy = ε
0
yy and for the plane strain case,

respectively.
By substituting σG

yy from (8) into (1) and (2), we obtain for the stress-strain relationship the equation
εxx

εzz

γxz

=
 s11+ s2

12/s22 s13+ s12s23/s22 0
s13+ s12s23/s22 s33+ s2

23/s22 0
0 0 s55



σxx

σzz

τxz

+

εx0+ (s12/s22)εy0

εz0+ (s23/s22)εy0

γxz0

 , (9)

which enforces the condition εyy = ε
0
yy .

Before enforcing this condition, however, the condition εyy = 0 has to be enforced, which means
that before applying the strain ε0

yy , there should not be any strain in the y direction. By enforcing the

ε   / 2

ε   / 2

Figure 3. The beam is allowed to expand freely in y direction.
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condition εyy = 0, the stress-strain relation becomes (6). Introducing the quantities

s ′11= s11−
s2

12

s22
, s ′13= s13−

s12s23

s22
, s ′33= s33−

s2
23

s22
, ε′x0= εx0−

s12

s22
εy0, ε′z0= εz0−

s23

s22
εy0, (10)

we can recast (6) as 
εxx

εzz

γxz

=
s ′11 s ′13 0

s ′13 s ′33 0
0 0 s55



σxx

σzz

τxz

+

ε′x0
ε′z0
γxz0

 . (11)

Next, the condition εyy = ε
0
yy has to be enforced on the y direction for the strain-free (εyy = 0) stress-

strain relation. By enforcing the condition εyy = ε
0
yy , the stress-strain relation becomes (9) . Now the

stress-strain relation becomes
εxx

εzz

γxz

=
 s ′11+ s2

12/s22 s ′13+ s12s23/s22 0
s ′13+ s12s23/s22 s ′33+ s2

23/s22 0
0 0 s55



σxx

σzz

τxz

+

ε′x0+ (s12/s22)εy0

ε′z0+ (s23/s22)εy0

γxz0

 (12)

The two conditions εyy = 0 and εyy = ε
0
yy can be enforced in any order; this is just a superposition of

one condition over the other. The condition εyy = 0 enforces zero strain in the y direction, and εyy = ε
0
yy

says the beam can expand freely in the y direction. By superimposing these two conditions, the beam
is forced to expand exactly the same amount as that of free expansion in the y direction. The derivation
for generalized plane strain is carried out based on this analogy.

For the generalized plane strain case we have εyy = ε
0 but γxy = γyz = 0. In this case, ε0 is the

allowed/applied strain in the y direction. If ε0 is specified as a multiple of ε0
yy , its effect can be taken

into account in the two-dimensional stress-strain relation.
Let the allowed/applied strain be ε0

= αε0
yy , as shown in Figures 4 and 5. The reduced two-dimensional

stress-strain relation, incorporating the effect of ε0, becomes
εxx

εzz

γxz

=
 s ′11+αs2

12/s22 s ′13+αs12s23/s22 0
s ′13+αs12s23/s22 s ′33+αs2

23/s22 0
0 0 s55



σxx

σzz

τxz

+

ε′x0+α(s12/s22)εy0

ε′z0+α(s23/s22)εy0

γxz0

 , (13)

where s ′11, s ′12, and s ′22 are given by (10) .
If α in (13) is 0, then (13) reduces to (6), which is a stress-strain relation for the plane strain case. If

the α in (13) is 1, then (13) reduces to (12), which is a stress-strain relation for the condition εyy = ε
0
yy .

By substituting (10) into (12) , the stress-strain relation for the condition εyy = ε
0
yy becomes

εxx

εzz

γxz

=
s11 s13 0

s13 s33 0
0 0 s55



σxx

σzz

τxz

+

εx0

εz0

γxz0

 . (14)

This is a simple two-dimensional stress-strain relation which completely does not constrain the strain
ε0

yy , caused by the stresses σxx and σzz .
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ε  / 2 = α ε   / 2

ε  / 2 = α ε   / 2

0 < α < 1

Figure 4. Beam is not allowed to undergo full free expansion in the y direction.

ε  / 2 = α ε   / 2

ε  / 2 = α ε   / 2

ε  / 2 = α ε   / 2

ε  / 2 = α ε   / 2

Figure 5. Left: Beam expands more than the free expansion in the y direction by the
external load. Right: Beam gets compressed in the y direction by the external load.

The generalized plane strain stress-strain relations of (13) can be extended to generalized plane strain
two-dimensional piezostructure coupled stress-strain relations. The constitutive equations for a piezo-
electric material are

{T } = [cE
]
(
{S}− {S0}

)
− [e]T {E}, {D} = [e]{S}+ [εS

]{E}, (15)

where {T } is the stress vector, {S} the stain vector, {S0} the initial strain vector, {E} the electric field
vector, {D} the electric displacement vector, [c] and [s] the elastic constants matrices, [ε] the dielectric
constants matrix, and [d] and [e] the piezoelectric constants matrix, and where superscript E and S
indicate that the specified values are evaluated at constant E and S.
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Equation (15) can be written in strain form as

{S} = [s E
]{T }+ [d]T {E}+ {S0}, {D} = [d]{T }+ [εE

]{E}, (16)

where

[e] = [d][cE
], [cE

] = [s E
]
−1. (17)

Equation (16) can be recast as{
{S}
{D}

}
=

[[
s E
]

[d]T

[d]
[
εE
]] {{T }
{E}

}
+

{
{S0}

{0}

}
. (18)

This in turn can be expanded for the case where the polarization direction is the positive z axis as follows:

S1

S2

S3

S4

S5

S6

D1

D2

D3


=



s11 s12 s13 0 0 0 0 0 d31

s12 s22 s23 0 0 0 0 0 d32

s13 s23 s33 0 0 0 0 0 d33

0 0 0 s44 0 0 0 d24 0
0 0 0 0 s55 0 d15 0 0
0 0 0 0 0 s66 0 0 0
0 0 0 0 d15 0 ε11 0 0
0 0 0 d24 0 0 0 ε22 0

d31 d32 d33 0 0 0 0 0 ε33





T1

T2

T3

T4

T5

T6

E1

E2

E3


+



S10

S20

S30

S40

S50

S60

0
0
0


. (19)

In the piezostructure coupled two-dimensional case, the xz plane is considered for analysis as shown
in Figure 2, and the y direction is the be the out-of-plane direction. Now consider the plane strain case,
where

S2 = S4 = S6 = 0, (20)

D2 = E2 = 0. (21)

By substituting (20) into (19) , the second row of (19) becomes S2= s12T1+s22T2+s23T3+d32 E3+S20=0,
which gives

T2 =−
s12

s22
T1−

s23

s22
T3−

d32

s22
E3−

S20

s22
. (22)

Substituting (22) into (19) and using (20) and (21), we obtain the reduced stress-strain relationship in
the plane strain case in the form

S1

S3

S5

D1

D3


=


s ′11 s ′13 0 0 d ′31
s ′13 s ′33 0 0 d ′33
0 0 s55 d15 0
0 0 d15 ε11 0

d ′31 d ′33 0 0 ε′33





T1

T3

T5

E1

E3


+



S′10
S′30
S50

0
0


, (23)
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where

s ′11 = s11−
s2

12

s22
, s ′13 = s13−

s12s23

s22
, s ′33 = s33−

s2
23

s22
, (24)

d ′31 = d31−
s12d32

s22
, d ′33 = d33−

s23d32

s22
, ε′33 = ε33−

d2
32

s22
, (25)

S′10 = S10−
s12

s22
S20, S′30 = S30−

s23

s22
S20. (26)

The arguments given for the pure elastic generalized plane strain case can be extended for the piezo-
structure coupled generalized plane strain case. The reduced two-dimensional piezostructure coupled
stress-strain relationship for the generalized plane strain case is given by

S1

S3

S5

D1

D3

=


s ′11+αs2
12/s22 s ′13+αs12s23/s22 0 0 d ′31+αs12d32/s22

s ′13+αs12s23/s22 s ′33+αs2
23/s22 0 0 d ′33+αs23d32/s22

0 0 s55 d15 0
0 0 d15 ε11 0

d ′31+αs12d32/s22 d ′33+αs23d32/s22 0 0 ε′33+αd2
32/s22




T1

T3

T5

E1

E3

+


S′10−αs12S20/s22

S′30−αs23S20/s22

S50

0
0

,
which can be recast as{
{S}
{D}

}
=

[
[s̄] [d̄]T

[d̄] [ε̄ ]

]{
{T }
{E}

}
+

{{
S0
}

{0}

}
, {S} = [s̄]{T }+ [d̄]T {E}+ {S0}, {D} = [d̄]{T }+ [ε̄]{E}.

Using (17) , this can further be rewritten in stress form as

{T } = [c̄]
(
{S}−

{
S0
})
− [ē]T

{E} , {D} = [ē] {S}+ [ε̄] {E} .

Finite element formulation. In order to model the piezo composite beam, an eight-node quadrilateral
element was developed. The finite element model of the piezo composite beam is shown in Figure 6.
Each node has three degrees of freedom: axial displacement (u1), transverse displacement (u3) and
electric potential (φ). The elemental degrees of freedom are

{ue} =
{
u1

1, u1
3, u2

1, u2
3, u3

1, u3
3, . . . , u8

1, u8
3
}T
, {ϕe} = {ϕ1, ϕ2, ϕ3, . . . , ϕ8}

T . (27)

φ

− φ

ξ

Figure 6. Finite element model of the piezo composite beam with kinematic constraints
and electrical boundary conditions for electrical buckling analysis and (with zero applied
voltage) for thermal buckling analysis.
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The displacement {u} = {u1, u3}
T and electric potential (φ) within the element can be expressed in

terms of element shape functions as

{u} = [Nu]{ue}, {ϕ} = [Nϕ]{ϕe},

where

[Nu]=
[

N1 0 N2 0 . . . N8 0
0 N1 0 N2 . . . 0 N8

]
, [Nϕ] = [N1 N2 N3 . . . N8],

N1, N2, . . . , N8 being the shape functions.
The strain displacement relation can be expressed as

{S} =


S1

S3

S5

=


∂u1/∂x1

∂u3/∂x3

∂u1/∂x3+ ∂u3/∂x1

= [Bu] {ue} ,

where [Bu] is the shape function derivative matrix:

[Bu]=

∂N1/∂x1 0 ∂N2/∂x1 0 . . . ∂N8/∂x1 0
0 ∂N1/∂x3 0 ∂N2/∂x3 . . . 0 ∂N8/∂x3

∂N1/∂x3 ∂N1/∂x1 ∂N2/∂x3 ∂N2/∂x1 . . . ∂N8/∂x3 ∂N8/∂x1


The electric field-potential relation can be expressed as

{E} =
{

E1

E3

}
=

{
−∂ϕ/∂x1

−∂ϕ/∂x3

}
= [Bϕ] {ϕe} ,

where [Bφ] is the shape function derivative matrix:

[
Bϕ
]
=

[
∂N1/∂x1 ∂N2/∂x1 ∂N3/∂x1 . . . ∂N8/∂x1

∂N1/∂x3 ∂N2/∂x3 ∂N3/∂x3 . . . ∂N8/∂x3

]
.

After application of the variational principle, the coupled finite element matrix equation becomes (see
[Allik and Hughes 1970; Lerch 1990; Tzou and Tseng 1990])

[M]{üe}+ [Kuu]{ue}+ [Kuϕ]{ϕe} = { fe}, [Kϕu]{ue}+ [Kϕϕ]{ϕe} = {ge}, (28)

where [M] =
∫

V ρ[N ]
T
[N ] dV is the element mass,

[Kuu]=

∫
V
[Bu]

T
[c̄E
][Bu] dV, [Kuϕ]=[Kϕu]

T
=

∫
V
[Bu]

T
[ē]T [Bϕ] dV, [Kϕϕ]=

∫
V
[Bϕ]T [ε̄][Bϕ] dV

are the stiffness, piezoelectric coupling and capacitance matrices, and

{ fe} =

∫
V
[Bu]

T
[c̄E
]{S0} dV +

∫
V
[N ]T {Pb} dV +

∫
�1

[N ]T {Ps}d�1+ [N ]T {Pc}, (29)

{ge} = −

∫
�2

[N ]T P d�2− [N ]T Q (30)
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are the external mechanical force and electrical charge. The first term in (29) is the element load vector
due to initial strains, and the other terms are body, surface, and point forces, respectively [Cook et al.
2003].

In order to do the buckling analysis, the geometric nonlinear matrix can be computed as [Cook et al.
2003]

[Kσ ]=
∫

V
[G]T

[
s 0
0 s

]
[G] dV,

where

s =
[
σx0 τxz0

τxz0 σz0

]
and [G]=


∂N1/∂x1 0 ∂N2/∂x1 0 . . . ∂N8/∂x1 0
∂N1/∂x3 0 ∂N2/∂x3 0 . . . ∂N8/∂x3 0

0 ∂N1/∂x1 0 ∂N2/∂x1 . . . 0 ∂N8/∂x1

0 ∂N1/∂x3 0 ∂N2/∂x3 . . . 0 ∂N8/∂x3


are the stress and shape function derivative matrices.

For static analysis and for the case where only a mechanical load exists, Equation (28) becomes, after
assembling the stiffness matrices,

[K uu]{u}+ [K uϕ]{φ} = { f }, [Kϕu]{u}+ [Kϕϕ]{φ} = 0; (31)

the assembled geometric nonlinear matrix is [Kσ ].
In the case of thermal buckling analysis, since only the thermal load exists, the right-hand side of

(31)1 is simply

{ f } =
∑∫

V
[Bu]

T
[c̄E
]{S0} dV ,

and the assembled buckling eigenequation is(
[K uu] + λ[Kσ ]

)
{δu} = {0}. (32)

In the case of electrical buckling analysis, the right-hand side of (31) is { f }= {0} and the known quantities
are only the voltages on the electrodes. Therefore, for electrical buckling, (31) becomes

[K uu]{u}+ [K uϕ]{φ} = {0}, [Kϕu]{u}+ [Kϕϕ]{φ} = {0}. (33)

Since the FE model is a cross section model, as shown in Figure 6, the voltages are known only at the
electrodes. There are other nodes in the piezo layer whose potentials have to be evaluated, and this in
a coupled way. To evaluate the voltages applied in the piezolayer in a coupled way, Equation (33)1 is
solved for {u} and it is substituted into (33)2 to get an equivalent stiffness matrix

[K eq] = [Kϕϕ] + [Kϕu][K uu]
−1(−[K uϕ].)

Now [K eq] is a coupled capacitance matrix because the effect of the first equation of (33)1 has been
incorporated into the second equation of (33)2 and the unknown potentials can be evaluated using the
equation

[K eq]{φ} = {0}. (34)

The unknown potentials in the piezolayers have been determined by taking the known potentials to the
right-hand side and solving (34) , which is similar to the process of solving thermal problems where one
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knows temperatures on some nodes and the temperatures on the other nodes are evaluated. Once all the
potentials are known, (33)1 can be used to determine the displacements. The buckling eigenequation is
(32).

3. Results and discussion

A finite element solver was written implementing the formulation above. In this section we discuss some
validation tests and then new example calculations involving a system where neither plane stress nor
plain strain conditions are assumed.

Validation. The code was validated for electric buckling by comparison with the results in [Varelis and
Saravanos 2004]. The same example was also subjected to a three-dimensional FE computation in AN-
SYS; due to the limitations of ANSYS, a thermal analog of the linear electrical buckling problem [Dong
and Meng 2006] was solved as a proxy.

The example beam of Varelis and Saravanos is a three-layer [pzt/Al/pzt] composite with length 200 mm,
width 20 mm, thickness of each piezo layer tp = 0.25 mm, and aluminum layer thickness ta = 0.5 mm.
In the case α = 1 (the beam is allowed to expand freely in the y direction), we obtain these values for
the critical electrical buckling voltage:

present approach 189.6 V

ANSYS 3D model 188.8 V

[Varelis and Saravanos 2004] 188 V

(35)

We observe good agreement between all three results.
For thermal buckling validation, we took an example beam from [Giannopoulos et al. 2007]: a three-

layer [pzt/Al/pzt] composite with length 70 mm and width 5 mm. The thickness of each piezo layer is
tp = 0.191 mm and that of the aluminium layer is ta = 0.070 mm. The beam is subjected to a uniform
temperature rise above the ambient temperature, and again we take α = 1. These are the values obtained
for the critical thermal buckling temperature:

present approach 29.7◦C

ANSYS 3D model 28.3◦C
(36)

No direct comparison is possible with the calculations in [Giannopoulos et al. 2007], since that reference
only contains the thermal buckling analysis of plates. However, we performed a three-dimensional anal-
ysis in ANSYS for the same problem solved by these authors, and it was found that the ANSYS result
and their result agree very well.

Further examples. We next performed the thermal and electrical buckling analysis for an example
structure taken from [Giannopoulos et al. 2007], using different assumptions for the parameter α. In
the particular cases of plane stress assumptions and plane strain assumptions, the results obtained are
compared with those obtained with ANSYS; however, the more general case (neither plane stress nor
plane strain) has also been studied.

The beam is a three layer [pzt/Al/pzt] composite with length 70 mm and width 5 mm. The thickness
tp of each piezo layer is 0.191 mm and the aluminium layer thickness ta is 0.070 mm.
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Electrical buckling. An equal voltage was applied to the piezolayers in the corresponding direction as
shown in Figure 6, so that pure compression is developed in the structure due to the kinematic constraints
imposed by the boundary conditions. The results obtained for the buckling voltage with our FE solver
under assumptions of plane stress, plane strain, and free expansion (α = 1) are shown here along with
those obtained from an ANSYS solution of the thermal analog [Dong and Meng 2006] to our problem:

free expansion plane stress plane strain

ANSYS (3D/2D/2D) 98.3 V 102.7 V 78.4 V
present approach 97.5 V 102.3 V 78.2 V

(37)

This shows good agreement between the ANSYS results and those from the present analysis; in
particular, our critical buckling voltage calculated using α = 1 (free expansion) matches closely the one
obtained using a three-dimensional analysis in ANSYS.

It is also clear that the calculated critical buckling voltage varies greatly with the constraints assumed.
This dependence was explored further by varying the value of α in the calculation using the present
approach. For α = 1 (free expansion), as we have seen, we obtained 97.5 V, then 91.8 V for α = 0.75,
and 86.7 V for α = 0.5, 82.2 V for α = 0.25, and finally 78.2 V, for α = 0 (plane strain assumption). The
decrease in the critical buckling voltage with α can be rationalized by observing that as α is reduced,
compressive stress is increased in the y direction (perpendicular to the plane of the FE model), which in
turn increases the voltage produced in the piezo layer. The developed voltage is such that it causes the
piezo layer to expand in the other two directions (in the plane of the FE model). This expansion causes
additional compressive stress due to the imposed kinematic constrains on the boundary, which in turn
makes the structure buckle at lower voltages.

We extended the computation to α < 0, meaning that external strain is applied in compression (Figure
5, right), and to α > 1, meaning that external strain is applied in tension (Figure 5, left). When α < 0
the trend just discussed still holds true: the calculated critical buckling voltage decreases in tandem with
α. Thus for α < 0 we have 74.6 V at α = −0.25 and 71.3 V at α = −0.5. When α > 1 the critical
buckling voltage increases (103.9 V at α = 1.25 and 111.3 V at α = 1.5); this is because the expansion
in the y direction produces voltage in such a way that the piezo layer contracts in the xz plane. Due to
the kinematic constraints imposed by the boundary condition, this produces tensile stress opposed to the
compressive stress produced by electrical actuation, resulting in an increase in the buckling voltage.

Thermal buckling. The analysis carried out in the preceding paragraphs was repeated for thermal buck-
ling. Here the setup as the same as in Figure 6, but there is no applied voltage. Instead, the beam
is subjected to a uniform temperature rise above the ambient temperature. The buckling temperatures
obtained in the calculations under various assumptions are as follows:

free expansion plane stress plane strain

ANSYS (3D/2D/2D) 28.30 ◦C 29.62 ◦C 22.56 ◦C
present approach 29.66 ◦C 29.66 ◦C 22.44 ◦C

(38)

Again we see good agreement between the ANSYS calculations and those based on the present approach.
Further, the calculations yield the same critical buckling temperature using the plane stress assumption
or using α = 1 (free expansion). This is because the thermal expansion mechanism is given by the initial
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strain vector {S0}, which is not reduced under the plane stress assumption. More precisely, when the
three-dimensional stress-strain relation (1) is reduced to a two-dimensional stress-strain relation based
on the plane stress assumption (T2= T4= T6= 0, D2= E2= 0), the initial strain vector {S0} is unchanged.

Here are the results given by the present approach for various values of α:

α =−0.5 19.9529◦C α = 0.25 23.9296◦C α = 1 29.6673◦C

α =−0.25 21.1288◦C α = 0.75 27.4970◦C α = 1.5 35.1063◦C

α = 0 22.4481◦C α = 0.5 25.6004◦C α = 1.25 32.1751◦C

We see that the critical buckling temperature increases with α. This is because, as α decreases, the
compressive stress in the direction perpendicular to the FE model increases, which makes the material
expand in the other two directions due to the Poisson effect. This expansion causes additional compres-
sive stress in the beam due to the kinematic constraints imposed by the boundary condition, reducing the
critical buckling temperature. The influence of α on the critical buckling temperature is similar to that
of the influence in critical buckling voltage as discussed earlier.

Combined thermal and electrical buckling. In the combined thermal and electrical buckling analysis,
the critical electrical buckling voltage was predicted for different uniform temperature increases in the
beam. All analyses carried out for electrical and thermal buckling were also repeated for combined
thermal and electrical buckling. The results obtained under different assumptions are presented in Figure
7 (comparison with ANSYS calculation performed on the thermal analog [Dong and Meng 2006]) and
in Figure 8 (dependence on α). The results are similar to those just discussed.

Figure 7. Values of critical buckling voltage obtained with the present approach and
with ANSYS [Varelis and Saravanos 2004].
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Figure 8. Influence of α on the combined thermal and electrical buckling analysis.

4. Conclusion

A generalized plane strain FE formulation was developed to predict the critical buckling voltage and
critical buckling temperature of a piezo composite beam for cases other than those characterized by
plane strain and plane stress assumptions. The two-dimensional FE formulation presented in this paper
is capable of describing the strain ε0 allowed/applied in the direction which is not included in the two-
dimensional FE model, (here the y direction) if the strain ε0 is specified in terms of the free expansion
strain ε0

yy . An eight-node quadrilateral element was developed based on the new formulation, and the
FE solver results were validated by comparison to the results in [Varelis and Saravanos 2004] and those
obtained with ANSYS. These results are in good agreement with each other. The critical electrical
and thermal buckling load for the cases other than those characterized by plane stress and plane strain,
which can be handled by the present two-dimensional FE solver, was analyzed, and it was found that the
influence of α on the critical buckling voltage as well as the critical buckling temperature is significant.
Since the present formulation varies only in the constitutive equation matrix reduction, this formulation
can be easily incorporated into the existing piezostructure coupled FE solvers.
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THREE-DIMENSIONAL NONLINEAR ANALYSES OF SCARF REPAIR IN
COMPOSITE LAMINATES AND SANDWICH PANELS

MANABENDRA DAS, ERDOGAN MADENCI AND DAMODAR R. AMBUR

A special-purpose analysis tool based on the finite element method is presented for parametric design
studies of composite laminates and sandwich panels with scarf repairs. This design tool provides the
complete three-dimensional stress and strain fields in scarf-repaired panels without any requirements on
the nature of the lamination and the type of loading. The adherends are modeled using a plate element
based on a higher-order single-layer theory, and the adhesive is modeled using a solid element. The
higher-order nature of the plate theory makes it suitable for analyzing thick laminates and sandwich pan-
els comprised of numerous plies. The model takes into account geometric nonlinearity in the adherends
and assumes a bilinear stress-strain relationship for the adhesive. The responses of composite laminates
with single- and double-sided repairs and sandwich panels with both full and partial repairs of the top
face sheets are investigated.

1. Introduction

Bonded joints and repairs, in a variety of forms such as lap, step, and scarf, have become the most
common types of repairs for composite laminated and sandwich panels. The objective of a scarf repair
is to restore the static strength and durability of a composite structure that contains damage due to
unexpected impact loading on the structure, crack occurrence within the structure after longtime use,
and environmental reasons. Panels with scarf joints do not experience excessive secondary bending and
the magnitude of transverse shear and peel stress concentration is not as severe as in lap and step joints.
In fact in the case of homogeneous adherends, the stress variation inside the adhesive remains fairly
uniform. In the case of panels made of composite laminates, however, a nonuniform stress variation
inside the adhesive has been observed [Johnson 1989]. Therefore, a detailed analysis of composite
laminates for the accurate prediction of the stress and strain fields becomes critical for failure analysis.
Moreover, geometric nonlinearity due to adherend bending and material nonlinearity of the adhesive
should be taken into account for realistic predictions. With the increasing use of sandwich panels in
aircraft structures, the development of repair methods and analysis tools to investigate the responses of
these panels with scarf repair has become very important [Tomblin et al. 2004].

Analytical and numerical methods have been used in the past to examine scarf joints [Hart-Smith
1973; Erdogan and Ratwani 1971]. These methods are two dimensional in nature and the scarf repair
is analyzed based on a representative scarf joint. In a scarf joint, the entire load is transferred through
the adhesive bond, as opposed to both the undamaged base material and the repair sharing the load in
the case of a scarf repair. The two dimensional scarf joint model over-predicts the stresses inside the
adhesive and therefore underestimates the strength of the repaired panel [Soutis and Hu 1997]. Moreover,

Keywords: scarf repair, laminate, sandwich panels, nonlinear analyses.
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the adherends are assumed to be homogeneous, and arbitrary boundary conditions and loading cannot
be imposed. More recently, Mortensen and Thomsen [1997] employed the classical plate theory to
model the adherends and a nonlinear material model for the adhesive. The analysis permits adherend
bending as well as arbitrary load and boundary conditions. Finite element analysis can be employed to
overcome the limitations of the analytical methods. While comparing different finite element models
for scarf repair analysis, Odi and Friend [2002] noticed that although a considerable amount of work
had been done on bonded joints, the number of numerical analysis methods devoted to bonded repair
was inadequate. Johnson [1989] carried out a finite element analysis of scarf joints to investigate the
nonuniform stress variation in nonhomogeneous laminated composites. It was observed that due to
discontinuity in adherend stiffness, the stress variation had an oscillating trend with peaks in the vicinity
of the 0◦ plies. Similar characteristics were observed by Harman and Wang [2006], who carried out
both analytical and finite element analyses to investigate the influence of a varying scarf angle on the
shear stress distribution. Gunnion and Herszberg [2006] conducted two- and three-dimensional finite
element analyses and investigated the influence of various parameters on the average and peak values
of shear and peel stress. Their work was later extended to accommodate the elastic-plastic nature of
the adhesive [Wang and Gunnion 2008]. Baker et al. [1999] carried out a combined experimental and
computational analysis where a detailed three-dimensional finite element model was created and the
tapered scarf was modeled as a series of steps. In several studies finite element models have been used to
investigate the effect of scarf angle and stacking sequence on the failure load of panels with scarf repair
[Du et al. 2004; Kumar et al. 2006; Campilho et al. 2007]. Very often, instead of discretizing each layer
of the laminate, average material properties are utilized to represent a specific stacking sequence [Soutis
and Hu 1997; Kumar et al. 2006]. This approach reduces the size of the model considerably but the
oscillating variation of the stress field inside the adhesive layer is not captured. Although detailed three-
dimensional finite element analyses of scarf joints using solid elements can be used to provide accurate
results, these models tend to be computationally expensive due to the presence of the thin adhesive layer
and the numerous layers of plies in the laminate or the face sheet of a sandwich panel. Mesh refinement
can be significant, especially in the case of nonlinear analysis where a fine mesh might be required for
convergence. Moreover, difficulties associated with parameterizing the meshing process requires extra
effort in creating a new mesh every time a panel with a different number of plies, adhesive thicknesses,
or panel dimensions is to be analyzed.

An alternative to this approach is to use an element based on a single-layer theory, which utilizes a
modest number of degrees of freedom for the entire FE model and provides accurate results. The current
analysis utilizes one such plate element [Das et al. 2005; Das et al. 2006] for the adherents and a separate
solid element for the adhesive layer in between the adherents. The tapered scarf is modeled as a stepped
joint with numerous steps in order to replicate the taper as closely as possible. The analysis incorporates
geometric and material nonlinearity in the adherent and adhesive elements, respectively. A bilinear stress
strain relationship is used for the material model and geometric nonlinearity is incorporated based on
the total Lagrangian formulation. The model accounts for finite boundaries, the presence of a cutout or
grind-out in the skin, general loading conditions, material anisotropy, different thicknesses of the repair
patch and skin, and different repair and parent materials. The material properties are input for each ply
without any limitation on refinement in the thickness direction. While it is computationally robust and
fast, it leads to accurate stress predictions in each specific ply and the adhesive layer.
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Figure 1. Top view of a panel with scarf repair under arbitrary loading conditions.

2. Problem definition

This study concerns the analysis of scarf repairs of composite laminates and sandwich panels. The top
view of a composite laminate, or sandwich panel, with a scarf repair is illustrated in Figure 1. The panels
have a rectangular geometry with length L x and width L y . As shown in Figure 1, the panel is subjected
to forces, moments, and prescribed displacements at the edges. The composite laminate is made of
several plies with orthotropic material properties. The laminate can have either a single-sided repair or a
double-sided repair, as shown in Figures 2a and 2b. The sandwich panel can have either the full top face
sheet or only a portion of it under the repair as shown in Figures 2c and 2d. The face sheets, as well as
the core, can be composed of homogeneous, elastic, and orthotropic material layers. The problem posed
herein concerns the determination of the complete three-dimensional stress and strain fields in the base
and repair adherend and in the thin adhesive layer.

3. Present approach

The tapered scarf is modeled as a series of steps and each step consists of the adhesive layer in between
the repair and base adherend. Plate elements, based on the {3,2}-order theory, and solid elements are
utilized to model each step along the scarf repair. As shown in Figure 3, the base and repair adherends are
represented through separate plate elements, through the thickness. The adhesive layer on the other hand
is modeled using a solid element. Since all the plate elements are required to have a constant thickness,
a fictitious material with a very low stiffness value is used in the region where the adherent does not
occupy any space, as shown in Figure 3. A similar approach was adopted by Bair et al. [1991] for their
FE model based on shell elements.

Since the nodes of the plate elements are placed along the mid-surface, they are not aligned with the
nodes of the adhesive element. Hence, the nodes of the adhesive elements are offset to the mid-surface of
the adherend elements so that they coincide with the nodes of the adherend element [Carpenter 1973]. The
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Figure 2. Side view of a composite panel with (a) single- and (b) double-sided repairs
and a sandwich panel with (c) full repair of the top face sheet and (d) partial repair of
the top face sheet.

details of the element formulation for the plate and solid elements are given in subsequent sections. The
stiffness matrix and the unknown displacement vector of the super element, comprised of the adhesive
and adherends, have the following forms

K SCARF =

[
K P

b + K S
bb K S

br
K S

rb K P
r + K S

rr

]
78×78

, vT
SCARF =

{
vT

b vT
r
}
, (1)

BASE

Plate Element

REPAIR

Plate Element

ADHESIVE

Solid Element

ADHESIVE

Fictitious

Material

SUPER ELEMENT

REPAIR

BASE

Figure 3. The scarf super element comprised of the two adherend plate elements with
the solid adhesive element in between them.
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Figure 4. A triangular plate element with three nodes having 13 degrees of freedom at
each node.

where K P
b and K P

r are the stiffness matrix of the base and repair adherend plate elements, respectively,
and K S corresponds to the stiffness matrix of the adhesive element. The displacement vector consists of
the nodal unknowns, vb and vr , that correspond to the base and repair plate elements, respectively. The
region outside the repair zone is modeled using a single layer of plate elements.

4. Plate element

The plate element for the adherends is based on the {3,2}-order single-layer theory [Cook and Tessler
1998; Barut et al. 2001]. The triangular element contains 13 degrees of freedom at each node, as
shown in Figure 4. These degrees of freedom consist of two in-plane displacements, (u, v), two out-
of-plane rotations, (θx , θy), and three transverse nodal displacements, (w,w1, w2), and their derivatives,
(w,x , w,y, w1,x , w1,y, w2,x , w2,y). The weighted-average in-plane displacement components in the x-
and y-directions are denoted by u and v, respectively. The weighted-average transverse displacement
is denoted by w. The weighted-average bending rotations about the negative x- and positive y-axes are
denoted by θx and θy , respectively. Their positive sign convention is shown in Figure 4. The transverse
displacements, not weighted-averaged, (w1, w2), represent the symmetric and antisymmetric expansion
modes through the thickness of the element.

As shown by Barut et al. [2001], the displacement components of the plate are defined as

ux(x, y, z)= u(x, y)+ hζθy(x, y)+
(

1
6
−
ζ 2

2

)
hw1,x(x, y)

+ h
(
ζ

5
−
ζ 3

3

)[
5
4

(
θy(x, y)+w,x(x, y)

)
+w2,x(x, y)

]
,

(2a)

u y(x, y, z)= v(x, y)+ hζθx(x, y)+
(

1
6
−
ζ 2

2

)
hw1,y(x, y)

+ h
(
ζ

5
−
ζ 3

3

)[
5
4

(
θx(x, y)+w,y(x, y)

)
+w2,y(x, y)

]
,

(2b)

uz(x, y, z)= w(x, y)+w1(x, y)ζ +w2(x, y)(ζ 2
− 1/5), (2c)

where ζ = z/h is the normalized thickness and varies in the range −1≤ ζ ≤ 1. In accordance with the
{3,2} plate theory, the in-plane displacement components vary cubically and the transverse displacement
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component varies quadratically across the thickness of the panel. At any point in the panel, the in-
plane displacement components in the x- and y-directions are represented by ux(x, y, z) and u y(x, y, z),
respectively, and the transverse displacement component by uz(x, y, z).

The definitions of the stress and moment resultants and the form of the resultant strain and curvatures
are provided in [Barut et al. 2001]. The resultant stresses and moments are expressed in terms of the
strain and curvature components as 

N
M
Q

=
 A B 0

BT D 0
0 0 G


ε

κ

γ

 , (3)

where

NT
=
{

Nxx0, Nyy0, Nzz0, Nxy0, Nxx1, Nyy1, Nxy1
}
, (4a)

MT
=
{

Mxx0,Myy0,Mzz0,Mxy0,Mxx1,Myy1,Mxy1
}
, (4b)

QT
=
{

Q yz0, Qxz0
}
, (4c)

εT
=
{
εxx0, εyy0, εzz0, γxy0, εxx1, εyy1, γxy1

}
, (4d)

κT
=
{
κxx0, κyy0, κzz0, κxy0, κxx1, κyy1, κxy1

}
, (4e)

γ T
=
{
γyz0, γxz0

}
. (4f)

The explicit forms of A, B, D, and G are given in [Barut et al. 2001]. This constitutive relation can also
be expressed in terms of the compliance matrix C in the form E = C S, where ET

=
{
εT κT γ T

}
and

ST
=
{

NT MT QT }. The governing equations concerning the equilibrium equations and continuity of
interelement displacements along the element edges are derived utilizing the principle of virtual work.
The resulting equations of equilibrium and boundary conditions are derived in [Barut et al. 2001]. The
kinematic continuity conditions are imposed not only on the weighted-average displacements and slopes,
(u, v, w, θx , θy), but also on the derivatives of the higher-order displacement modes, (w1, w2), in the
transverse direction. Therefore, the finite element implementation of the equilibrium equations requires
at least C1 interelement continuity for the out-of-plane displacement modes of w, w1, and w2. Because
of this requirement, the finite element implementation of the total potential energy functional in terms
of the assumed displacement field becomes rather difficult. The hybrid energy functional formulation
overcomes the difficulty of the C1 interelement continuity requirement because the displacements, as
well as the slopes, are independently assumed only along element boundaries, which can be rendered
identical along the common boundaries of adjacent elements. However, the kinematic compatibility
between the displacements and slopes along the element boundaries is preserved in order to avoid a
possible shear-locking phenomenon. Also, as part of the hybrid energy functional formulation, the stress
and moment resultants within the element are selected such that they satisfy the equilibrium equations.

The hybrid energy functional for an element, 5H , is defined as

5H =
1
2

∫
Ae

ST C Sd A−
∫
0e

T T
b ub d0, (5)
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in which the element boundary is denoted by 0e and its area by Ae. The vectors T b and ub include the
components of the boundary forces and boundary displacements, respectively. In accordance with the hy-
brid energy formulation, the resultant stress vector, S, must satisfy the equilibrium equations identically.
The derivation of the resultant stress vector, S, satisfying the equilibrium equations is presented in [Das
et al. 2005]. Also, the boundary displacement vector, u(k)b , containing the assumed boundary displace-
ment components, and the boundary stress vector, T (k)

b , containing the resultant stresses and moments
corresponding to the boundary displacement vector u(k)b , are given in [Das et al. 2005]. Substituting for
the stress vector, the boundary displacement and boundary stress vectors in the hybrid energy functional
result in

5H =
1
2 bT Hb+λT cb+ RT

b b− RT
v v− bT Gv+50, (6)

where

H =
∫

Ae

PT C P d A, G =
∑

k

∫
0(k)

PT B(k)
s B(k)

b L(k)d0,

Rb =

∫
Ae

ST
0 C P d A, Rv =

3∑
k=1

∫
0(k)

ST
0 B(k)

s B(k)
b L(k)d0, 50 =

1
2

∫
Ae

ST
0 C S0 d A,

(7)

in which the explicit definition of each of the matrices and vectors is given in [Das et al. 2005]. In matrix
form, the hybrid energy functional, 5H , can be rewritten as

5H =
1
2 b̂

T
Ĥ b̂+ R̂

T
b b̂− RT

v v+ b̂
T

Ĝv+50, (8)

where

b̂
T
=
{

bT ,λT }, Ĥ =
[

H cT

c 0

]
, R̂

T
b =

{
RT

b , 0T }, Ĝ =
[

G
0

]
.

In accordance with the concept of energy minimization, the first variation of the hybrid energy functional
with respect to the unknown vector b̂ of generalized coordinates yields

δ b̂
T (

Ĥ b̂+ R̂b− Ĝv
)
= 0 or b̂= Ĥ

−1(
Ĝv− R̂b

)
. (9)

With this explicit solution form, the hybrid energy functional becomes

5H =−
1
2v

T kLv+ f T
0 v+50, (10)

in which the linear stiffness matrix kL and the resultant force (load) vector f 0 are defined as

kL = Ĝ
T

Ĥ
−1

Ĝ and f T
0 = R̂

T
b Ĥ
−1

Ĝ− R̂
T
v . (11)

Finally, the element equilibrium equation is obtained by requiring the first variation of the hybrid
energy functional to vanish

δ5H = δv
T (kLv− f 0)= 0. (12)

For arbitrary variation of δv, the element equilibrium equations become

kLv = f 0. (13)
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The nonlinear analysis is based on the total Lagrangian formulation. The principle of virtual work in
the total Lagrangian formulation is given by∫

0V

∑
k

t+1t
0 S(k)δ0 E (k)d0V = δt+1t

<. (14)

In this expression, the left subscript indicates the configuration by which the quantity is measured and the
left superscript refers to the configuration of the body at a specific time. The right superscript refers to
the kth component of the Piola-Kirchoff stress, S, and Green strain, E, resultant vector. The right-hand
side of Equation (14) represents the virtual work done by the conservative external forces on the virtual
displacements. The Piola-Kirchoff stress are decomposed between times t and t +1t as

t+1t
0 S(k) = t

0S(k)+ 0S(k). (15)

The incremental Piola-Kirchoff stress vector, 0S(k), represents the incremental loading between t +1t
and t , and t

0S(k) represents the known component from time t . The Green strain at any state t +1t can
be written in terms of linear and nonlinear components as

t+1t
0 E (k) = t+1t

0 E (k)L +
t+1t
0 E0

N L . (16)

This expression can be written in terms of the unknown displacement as

t+1t
0 E (k) = B(k)T

L

(tv+ v
)
+

1
2

(tv+ v
)T B(k)

N L

(tv+ v
)
, (17)

where B(k)
L and B(k)

N L are the linear and nonlinear strain-displacement relationship vector and matrix,
respectively, corresponding to the kth strain resultant component. Based on the hybrid formulation, the
linear strain-displacement relationship matrix can be expressed as

BL = C P Ĥ
−1

Ĝ. (18)

The matrix B(k)
N L is obtained based on von Karman assumptions and therefore the current analysis is

applicable only for small rotations. The incremental strain 0 E (k) can be obtained by finding the difference
between the strain at state t +1t and t

0 E (k) = t+1t
0 E (k)− t

0 E (k) = B(k)T
L v+ tvT B(k)

N Lv+
1
2v

T B(k)
N Lv. (19)

The virtual strain increment can be expressed as

δ0 E (k) = B(k)T
L δv+ tvT B(k)

N Lδv+ v
T B(k)

N Lδv. (20)

Based on Equations (15) and (19), the expression for stress can now be written in terms of the unknown
displacements as

t+1t
0 S(k) = t

0S(k)+
∑

j

C−1
jk E ( j)

=
t
0S(k)+

∑
j

C−1
jk

(
B( j)T

L v+ tvT B( j)
N Lv+

1
2v

T B( j)
N Lv

)
, (21)

where C−1
jk represents the linear relationship between the resultant stresses and strains. Substituting the

expressions for virtual incremental strain and total stress from Equations (20) and (21) into the virtual
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work expression and neglecting the higher order terms results in(∫
0V

(∑
k

∑
j

B(k)
L C−1

jk B(k)T
L +

∑
k

∑
j

B(k)
L C−1

jk
tvT B(k)

N L +
∑

k

B(k)
N L

tvC−1
jk

t B(k)T
L

+

∑
k

B(k)
N L

tvC−1
jk

tvT B(k)
N L +

∑
k

t
0S(k)B(k)

N L

)
d0V

)
v = f e−

∑
k

t
0S(k)B(k)

L −
∑

k

t
0S(k)B(k)

N L
tv. (22)

The final nonlinear system of finite element equations can be written as

K Pv = F P , (23)

where K P
= kL + kv + kσ and P F = f e − f i . The matrices kL , kv, and kσ are the linear, initial

displacement, and geometric stiffness matrices, respectively, and f i and f e are the internal and external
force vectors, respectively. The explicit form of these matrices and vectors is as follows

kL =

∫
0V

(∑
k

∑
j

B(k)
L C−1

jk B(k)T
L

)
d0V , (24a)

kv =
∫

0V

(∑
k

∑
j

B(k)
L C−1

jk v
T B(k)

N L +
∑

k

B(k)
N L

tvC−1
jk

t B(k)T
L +

∑
k

B(k)
N L

tvC−1
jk

tvT B(k)
N L

)
d0V, (24b)

kσ =
∫

0V

(∑
k

t
0S(k)B(k)

N L

)
d0V , (24c)

f i =

∫
0V

(∑
k

t
0S(k)B(k)

L +
∑

k

t
0S(k)B(k)

N L
tv

)
d0V . (24d)

Note that by combining the linear strain-displacement relationship matrix given in Equation (18) with
Equation (24a), the linear stiffness matrix obtained from the hybrid formulation, Equation (11), can be
reproduced.

5. Adhesive element

A solid element with six nodes is used for the adhesive layer. Unlike the plate element, the adhesive
element is based on a displacement formulation and each node has three degrees of freedom. The dis-
placement field varies linearly both in the in-plane and transverse directions. Therefore, the displacement
field inside the adhesive can be expressed as

uS
=

[
Nη+ 0

0 Nη−

] [
N xy 0

0 N xy

]{
vS

bot
vS

top

}
, (25)

where uS
={uS

x uS
y uS

z }
T and vS

bot and vS
top consist of the nodal displacements corresponding to the bottom

and top surfaces, respectively. As mentioned earlier, the nodes of the solid element do not coincide with
the nodes of the adherend plate element. Therefore, in order to enforce continuity, the nodes of the
adhesive elements are offset to the mid-surface of the adherend elements. The displacements at the
nodes of the solid element are expressed in terms of the nodal displacements of the plate element, as
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Figure 5. Offset nodes of the solid element for the adhesive.

shown in Figure 5, based on the following transformation{
vS

bot
vS

top

}
=

[
T b 0
0 T r

]{
vP

b
vP

r

}
, (26)

where vP
b and vP

r are nodal displacements of the base and repair plate element, and T b and T r are
transformation matrices. The transformation matrices are constructed based on the definition of through-
the-thickness variation of the displacement field inside the adherend plate, as given in Equation (2).
Combining Equations (25) and (26), the displacement field inside the adhesive element can now be
expressed in terms of the degrees of freedom associated with the plate elements as

uS
=

[
Nη+ 0

0 Nη−

] [
N xy 0

0 N xy

] [
T (i) 0

0 T ( j)

]{
vP

b
vP

r

}
. (27)

Using the displacement variation given in Equation (27), the strain field inside the element takes the
form

εS
= BS

{
vP

b
vP

r

}
, (28)

where BS is the strain-displacement transformation matrix. Instead of using a typical shear lag model,
the adhesive layer takes into account the presence of all six components of strain such that

εS
= {εxx εyy εzz γyz γxz γxy}

T . (29)

The stiffness matrix is therefore defined as

K S
=

∫
S V

BST
DS BS dV =

[
K S

bb K S
br

K S
rb K S

rr

]
78×78

, (30)

where DS is the stress-strain relationship matrix. The isotropic adhesive material has a bilinear relation
between the effective transverse shear stress, τeff, and effective transverse shear strain, γeff. The effective
transverse shear stress and strain in the adhesive are defined as

τeff =

√
τ 2

xz + τ
2
yz (31a)
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Figure 6. Bilinear relationship between effective stress and strain.

and
γeff =

√
γ 2

xz + γ
2
yz. (31b)

As shown in Figure 6, the initial shear modulus of the bilinear adhesive behavior is denoted by G1, and
it reduces to G2 when the effective transverse shear strain, γeff, reaches the critical shear strain, γc. For a
given value of effective shear strain, the effective shear stress can be obtained from Figure 6. Thereafter,
the effective shear modulus can be obtained as

Geff = τeff/γeff. (32)

Moreover, the effective Young’s modulus can be expressed as

Eeff = 2Geff(1+ ν). (33)

Note that due to the dependence of the effective modulus on the effective strain, the system of equations
become nonlinear.

6. Results and discussion

The current analysis tool is validated against an analytical solution and the commercial finite element
analysis software ANSYS. Although both two-dimensional and three-dimensional models were created
using ANSYS, only the three-dimensional results are reported here. In the ANSYS model, two layers
of elements were used for each ply in the adherends and the adhesive was divided into three layers of
elements. PLANE 42 and SOLID 45 elements were used for the two-dimensional and three-dimensional
model, respectively. Similar to the approximation made in the current analysis tool, a series of steps were
used to represent the scarf, instead of modeling it as a smooth taper. The adhesive along with each ply
in the laminate was divided into multiple steps and one layer of solid element was used for every step.

The first problem involves the linear analysis of a two-dimensional scarf joint previously considered by
[Erdogan and Ratwani 1971]. The scarf joint is subjected to in-plane stress, and its geometry is shown in
Figure 7. The first adherend is made of aluminum with an elastic modulus E = 1.0×107 psi and Poisson’s
ratio ν = 0.3. The second adherend is made of boron-epoxy with elastic moduli Ex = 3.24× 107 psi
and Ez = 3.5× 106 psi, shear modulus G = 1.23× 106 psi , and Poisson’s ratio νx = 0.23. An epoxy
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Figure 7. Schematics of the scarf joint.

material with elastic modulus E = 4.45× 105 psi and shear modulus G = 1.65× 105 psi is used for the
thin adhesive layer. Since the analytical analysis does not permit the adherends to bend, for this problem,
the bending deformations were suppressed in the finite element analysis as well. The transverse shear
stress variation inside the adhesive layer is shown in Figure 8. Unlike a lap or step joint, the scarf joint
has a fairly uniform variation of shear stress inside the adhesive. The difference in the results from the
analytical and current finite element analysis is due to the presence of stress-free boundary condition at
the edges. The current finite element solution tries to satisfy the stress boundary condition whereas the
analytical results do not capture this feature.

The nonuniform variation of adhesive stress in a composite laminated joint is investigated next. The
two-dimensional joint has a stacking sequence of (45/90/− 45/0)5, and each ply has a thickness of
0.0072 in. The total length of the panel is 12.32 in, and the scarf ratio is 30.0. The material properties of
the plies in the base and repair adherends are given in Table 1. The 0.01-inch-thick adhesive has linear
material properties with shear modulus G = 6.0× 104 psi and Poisson’s ratio ν = 0.3. The panel is
subjected to an in-plane force of Nx = 1000.0 lbs/in; the stresses in the adhesive are shown in Figure
9. Unlike the homogeneous adherends, the stress distribution in the laminated joints has an oscillating
trend and locations of the peaks are in the vicinity of the 0◦ degree plies. The transverse shear stress,

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

x, inches

ANALYTICAL

PRESENT

x

Figure 8. Shear stress variation inside the adhesive layer of a scarf joint.
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Figure 9. Stress variation inside the adhesive layer of a scarf joint.

σxy , is the dominant component whereas the magnitude of transverse normal stress, σyy , is much smaller
even though the laminate has an unsymmetrical stacking sequence. Since the adhesive element is not
based on a typical shear-lag-type model, the in-plane normal stress, σxx , can also be computed using the
current analysis; the results are shown in Figure 9.

The next problem involves the three-dimensional scarf repair analysis of a composite laminate with
a single-sided repair. The panel has length and width of 40 in and 28 in, respectively. The inner ra-
dius of the scarf repair is 0.25 in, and the scarf ratio is 30.0. The laminate has a stacking sequence
of (45/90/−45/0)5s , and each ply has a thickness of 0.0072 in. The adhesive thickness and material
properties of the base, repair, and adhesive are the same as the scarf joint discussed earlier. The linear
and geometrically nonlinear responses of the repaired laminate under two loading conditions have been
analyzed. In the first case, a moment of Mx = 10.0 lbs-in/in is applied at the edges of the panel. The

Base Repair Core

E1(psi) 1.85× 107 1.58× 107 1.50× 102

E2(psi) 1.00× 106 8.50× 105 7.50× 101

E3(psi) 1.00× 106 8.50× 105 2.00× 105

G12(psi) 5.20× 105 4.40× 105 1.00× 103

G13(psi) 5.20× 105 4.40× 105 1.00× 103

G23(psi) 3.30× 105 2.80× 105 4.00× 104

ν12 0.34 0.34 1.20
ν13 0.34 0.34 1.00× 10−5

ν23 0.53 0.53 1.00× 10−5

Table 1. Material properties for the base, repair, and core
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Figure 10. Shear stress, τr z , variation obtained from (a) the current analysis and (b)
ANSYS for a composite panel with a single-sided repair under moment loading.

transverse shear stress inside the adhesive along the x-axis is shown in Figure 10a. The deformations
due to the applied loading are not significant enough and therefore there is hardly any difference between
the results from the linear and nonlinear analyses. The variation of the transverse shear stress obtained
from ANSYS is shown in Figure 10b; the results are in good agreement with the current analysis. In
the second case, the laminate is subjected to a moment of Mx = 10.0 lbs-in/in along with an in-plane
force of Nx = 100.0 lbs/in. Even though the panel does not experience large deformations, there is a
considerable difference between the solutions obtained from the linear and nonlinear analyses, as shown
in Figure 11a. This is due the presence of in-plane forces that introduce the stress stiffening effect, which
is not considered in the linear analysis. The results obtained from ANSYS are shown in Figure 11b; they
match the results obtained form the current analysis.

A composite laminate with a double-sided repair is considered next. The geometry, stacking sequence,
and material properties are same as the previous problem, which involved a laminate with a single-sided
repair. The panel is subjected to an in-plane force of Nx = 1000.0 lbs/in. The stress variations inside the
adhesive along lines that are 0◦, 30◦, 60◦, and 90◦ from the x-axis are shown in Figures 12a and 12b.
Since both the stacking sequence and the nature of the repair are symmetrical, the variations of shear
stresses τr z and τθ z are shown only inside the adhesive layer between the top repair and the base. A
dominant peak is observed at the inner edge of the repair, which is also the location where two 0◦ plies
exist. As expected the shear stress, τr z , is dominant along the direction of loading, that is, the x-axis,
whereas the τθ z component has significant stress concentration in the 30◦–60◦ region.

A sandwich panel with full repair of the top face sheet is considered next. The panel has length and
width of 40 in and 28 in, respectively. The inner radius of the scarf repair is 0.25 inch, and the scarf
ratio is 30.0. The top face sheet has 40 plies with a stacking sequence of (45/90/−45/0)5s and the
bottom face sheet has 8 plies with a stacking sequence of (45/90/−45/0)2. Each ply has a thickness of
0.0072 in, and the core is 1.0 in thick. The material properties of the undamaged top and bottom face
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Figure 11. Shear stress, τr z , variation obtained from (a) the current analysis and (b)
ANSYS for a composite panel with a single-sided repair under combined moment and
in-plane loading.

sheets correspond to the base material in Table 1. The material properties of the repair and core are
also given in Table 1. The adhesive, which is 0.01 in thick, has a bilinear stress-strain relationship. The
shear moduli of the adhesive are G1 = 6.0× 104 psi and G2 = 6.0× 102 psi, and the Poisson’s ratio is
ν = 0.3. The adhesive has a critical shear strain values of γc = 0.04. The edge of the sandwich panel
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Figure 12. Shear stresses, (a) τr z and (b) τθ z , inside the adhesive between the top repair
and base of a composite panel with a double-sided repair.
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Figure 13. (a) Shear strain, γr z , and (b) shear stress, τr z , variations obtained from the
current analysis for a sandwich under prescribed displacement.

is subjected to a displacement of ux = 0.2 in. Under the influence of the prescribed displacement, the
effective strain inside the adhesive exceeds the critical strain, thereby triggering the nonlinear material
response. The transverse shear strain, γr z , and stress, σr z , inside the adhesive along the x-axis are shown
in Figure 13. Since the effective strain in certain regions exceeds the critical value of γc = 0.04, the
elastic modulus in those regions gets degraded. This leads to higher strain values in comparison to the
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Figure 14. (a) Shear strain, γr z , and (b) shear stress, τr z , variations obtained from AN-
SYS for a sandwich under prescribed displacement.
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linear response, reduced stresses in these regions, and an additional load carried by the face sheet in the
undamaged region. As shown in Figure 14, the results from ANSYS show a similar trend.

7. Conclusion

An analysis tool for scarf repair analysis of composite laminates and sandwich panels has been developed.
Apart from analyzing two-dimensional scarf joints, the current tool can be used for three-dimensional
analysis of scarf repair. Composite laminates with single-sided or double-sided repairs and sandwich
panels with complete or partial repairs of the top face sheet can be analyzed. The analysis takes into
account both geometric and material nonlinearity. The loading, material properties, and panel geometry
can be arbitrary. Although computationally efficient, the stress and strain fields can be accurately pre-
dicted. Depending on the type and magnitude of loading, there can be a considerable difference between
the linear and nonlinear solutions.
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CRACK FRONT POSITION AND CRACK BACK POSITION TECHNIQUES FOR
EVALUATING THE T-STRESS AT CRACK TIP USING FUNCTIONS OF A

COMPLEX VARIABLE

Y. Z. CHEN, Z. X. WANG AND X. Y. LIN

In this paper, the crack front position and the crack back position techniques for evaluating the T-stress
using complex variables are suggested. In the crack front technique, an expression for stress components
in the crack front position is expressed through a complex variable. The limit value of the expression
from the crack front position will give the T-stress. In the crack back technique, the other expression of
stress components in the crack back position is expressed through the complex variable. The limit value
of the expression from the crack back position will give the T-stress. The suggested techniques are used
to evaluate T-stress in the arc crack and the curved crack problems. It is found from a detailed derivation
that both techniques give the same result in the crack problem. Numerical examples are carried out for
two problems: an elliptic crack with a central crack and a curved crack with parabolic configuration.

1. Introduction

The T-stress term at the vicinity of a crack tip was introduced in earlier years [Williams 1957; Rice 1974].
The T-stress term may affect the plastic zone ahead of crack tip [Larsson and Carlsson 1973; Betegon
and Hancock 1991]. In addition, the T-stress has significant influence on the directional stability for the
crack growth path [Rice 1974; Melin 2002]. A maximum tensile stress criterion for the onset of crack
growth was suggested, which considers the role of the stress intensity factors and T-stress [Smith et al.
2006]. The T-stress before and after crack kinking in two-dimensional elastic solids was studied [Li
and Xu 2007]. Contributions from the T-stress before crack kinking to the T-stress and stress intensity
factors of the kinked crack are clearly described.

A variety of methods were used to evaluate the T-stress. The Eshelby technique was used [Kfouri
1998]. The T-stress evaluation is completed by using the weight function method [Sham 1989; 1991;
Chen 1997]. The boundary collocation method and the weight function were developed to evaluate the
T-stress [Fett 1997; 1998a; 1998b; 2001; Fett and Rizzi 2005].

The finite element method was used to evaluate the T-stress in crack problems [Ayatollahi et al. 1998;
Chen et al. 2001]. A hybrid finite element at the vicinity of the crack tip was suggested [Tong et al. 1973;
Cheung and Chen 1991; Karihaloo and Xiao 2001; Xiao and Karihaloo 2002; Xiao et al. 2004]. The
formulation of a hybrid finite element depends on the Williams expansion. The element is embedded in
the usual finite elements. Once the problem is solved, the higher-order terms as well as the T-stress in
the expansion are obtainable. Using the HCE (hybrid crack element), the higher-order terms in the stress
distribution of a three-point bend beam are evaluated [Karihaloo and Xiao 2001]. The problem for an
edge crack in a finite plate with wedge force on the crack face was studied [Xiao and Karihaloo 2002].

Keywords: T-stress, crack, crack front position technique, crack back position technique, arc crack, numerical solution.
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The problem was reduced to a problem of a traction-free edge crack with loading on the outer boundary.
The usage of the Williams expansion and the boundary collocation method gave the final solution.

A stress difference method was developed to evaluate the T-stress in the crack problem [Yang and
Ravi-Chandar 1999]. It was proved that a limit of the difference between two normal stress components
ahead of a crack tip would give the T-stress.

Using the dislocation distribution method and the singular integral equation, several T-stress problems
were solved [Broberg 2005]. Those problems include the problems of: (i) two collinear cracks, (ii) an
edge crack, and (iii) cracks emanating from a circular hole. A Fredholm integral equation was used to
evaluate the T-stress in the multiple crack problems [Chen 1994]. The solved problems were limited
to the line crack case. In addition, a compendium of the T-stress solutions in the crack problems was
carried out [Sherry et al. 1995].

From the methodology for evaluating the T-stress, researchers suggested two techniques for obtaining
the T-stress in the line crack case. In the stress difference method, the T-stress is obtained from the
stress difference in crack front position [Yang and Ravi-Chandar 1999]. In the mode I fracture case, the
T-stress evaluation was related to a stress evaluation in the crack back position [Ayatollahi et al. 1998].
The mentioned derivations were related to the real analysis only. It is seen that those methods are not easy
to use in some complicated cases, for example, for evaluating the T-stress in the curved crack problem.

It is known that in most cases the complex potentials in the plane elasticity crack problem can be
formulated successfully [Savruk 1981; Chen and Lin 2006]. In addition, the stress components can be
expressed by the complex potentials explicitly. Therefore, it is a particular advantage to use a complex
variable for evaluating the SIF (stress intensity factor) as well as the T-stress. In this paper, the crack
front position and crack back position techniques for evaluating T-stress using the complex variable are
suggested. In the crack front technique, an expression for stress components in the crack front position is
expressed through the complex variable. The limit value of the expression from the crack front position
will give the T-stress. In addition, in the crack back technique, the other expression for stress components
in the crack back position is expressed through the complex variable. The limit value of the expression
from the crack back position will give the T-stress. It is found from a detailed derivation that both
techniques give the same result in the crack problem.

2. Basic equations in the crack front position and the crack back position techniques

In the crack front position technique, the T-stress is evaluated in the front position of the crack. In
addition, in the crack back position technique, the T-stress is evaluated in the back position of the crack.
The two techniques with usage of a complex variable are introduced below.

2.1. The stress expansions in the vicinity of crack tip. The stress distribution near a crack tip under
the traction-free crack face was investigated early on by Williams [1957]. A little modification for the
Williams expansion is suggested below. It is assumed that the crack face has the following loadings
(Figure 1)

σ+y = σ
−

y = pc, σ+xy = σ
−

xy = qc. (1)
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From the Williams expansion, the stresses at the crack tip area can be expressed as[
σx σxy

σxy σy

]
=

K I
√

2πr

[
f11(θ) f12(θ)

f12(θ) f22(θ)

]
+

K I I
√

2πr

[
g11(θ) g12(θ)

g12(θ) g22(θ)

]
+

[
T qc

qc pc

]
, (2)

where the first two terms in the expansion form are singular at the crack tip, K I , K I I denote the mode
I and mode II stress intensity factors respectively, and the functions fi j (θ), gi j (θ) represent the angular
distributions of stresses at crack tip. In Equation (2), the third term is finite and bounded. The term T is
denoted as the T-stress and can be regarded as the stress acting parallel to the crack flanks. In Equation
(1) the term O(r1/2) has been neglected for clarity. In addition, the angular distribution can be expressed
as [Williams 1957] f11

f12

f22

= cos(θ/2)

1− sin(θ/2) sin(3θ/2)
sin(θ/2) cos(3θ/2)

1+ sin(θ/2) sin(3θ/2)

 ,
g11

g12

g22

=
− sin(θ/2)[2+ cos(θ/2) cos(3θ/2)]

cos(θ/2)[1− sin(θ/2) sin(3θ/2)]
sin(θ/2) cos(θ/2) cos(3θ/2)

. (3)

Clearly, substituting θ =±π into Equation (2) will yield the stresses σy = pc and σxy = qc, which are
applied on the crack face.

Note that Equation (2) represents a pattern of stress distribution at the vicinity of crack tip. It is easily
seen that the stress field defined by Figure 1 was solely determined by two factors: (1) the tractions
σ+y = σ

−
y = pc, σ+xy = σ

−
xy = qc applied on the crack face, (2) the tractions applied along the outer

boundary CDEFGH in Figure 1. Therefore, the tractions σ+y = σ
−
y = pc, σ+xy = σ

−
xy = qc applied on the

crack face cannot alone determine the K I , K I I and T values. Alternatively, there is no definite relation
between (i) the tractions σ+y = σ

−
y = pc, σ+xy = σ

−
xy = qc applied on the crack face and (ii) the stress field

and the T-stress at the crack tip. In this study, it is assumed that pc and qc are given beforehand. In this
case, the K I , K I I and T values will be determined by the tractions applied on the boundary CDEFGH.

Figure 1. A finite cracked plate with loadings on the crack face.
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Let θ = 0 and r = s1 in Figure 1, from Equations (2), (3), we have

σx =
K I
√

2πs1
+ T + O(s1/2

1 ), σy =
K I
√

2πs1
+ pc+ O(s1/2

1 ). (4)

Therefore, from Equation (4), the following equation is obtained

T = lim
s1→0

(σx − σy)+ pc or T =− lim
s1→0

(σy − σx)+ pc (5)

This equation will be used for the crack front position technique. In fact, this equation was suggested in
[Yang and Ravi-Chandar 1999].

The necessity for introducing Equations (1), (2), and (5) can be seen from an example described in
Section 5. In the example, the T-stress in the curve crack problem is evaluated. In the problem, the stress
field of the original problem must be decomposed into the uniform stress field and the perturbation stress
field. In the perturbation stress field, the crack face is applied by the normal and shear tractions. Clearly,
for investigating the T-stress in the perturbation field (in Figure 2b), the usage of Equations (1), (2), and
(5) is necessary simply because the normal and shear tractions are applied on the crack face. When some
solutions to the traction-free condition on the crack face are available, we simply let pc = 0 and qc = 0
in the relevant equations.

Alternatively, let θ = π and r = s2 in Figure 1, and from Equations (2), (3) we have

σ+x =−
2K I I
√

2πs2
+ T + O(s1/2

2 ), σ+y = pc+ O(s1/2
2 ). (6)

In addition, let θ =−π and r = s2, and we have

σ−x =
2K I I
√

2πs2
+ T + O(s1/2

2 ), σ−y = pc+ O(s1/2
2 ). (7)

(o)

Same in magnitude and opposite in direction for σN , σN T

(a) (b)

Figure 2. Superposition method: (o) the original field, a curved crack in an infinite plate
with the remote loading σ∞y = p2, or σ∞x = p1, or σ∞xy = q; (a) the uniform field, a perfect
plate with remote loading σ∞y = p2, or σ∞x = p1, or σ∞xy = q, the subscript u denoting
the uniform field; (b) the perturbation field, a curved crack with loading on the crack
face, the subscript p denoting the perturbation field.
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In Equations (6) and (7), σ+x , σ+y (σ
−
x , σ

−
y ) denote the stress component along the upper (lower) side,

respectively (Figure 1). Therefore, from Equations (6) and (7), the following equation is obtained:

T = lim
s2→0
{[(σ+x + σ

+

y )+ (σ
−

x + σ
−

y )]/2}− pc or T = lim
s2→0
{(σ+x + σ

−

x )/2}. (8)

Equation (8) can be used for the general case, which is first suggested by us in this paper.
In the case of a mode I fracture, or K I I = 0, the above-mentioned equations can be reduced to

T = lim
s2→0
{σ+x + σ

+

y }− pc = lim
s2→0
{σ−x + σ

−

y }− pc or T = lim
s2→0

σ+x = lim
s2→0

σ−x . (9)

This equation will be used in the crack back position technique. In fact, Equation (9) was suggested in
[Ayatollahi et al. 1998].

2.2. T-stress expressions in crack front position and crack back position techniques using a complex
variable. The following analysis depends on the complex variable function method in plane elasticity
[Muskhelishvili 1953]. In this method, the stresses (σx , σy, σxy), the resultant forces (X, Y ), and the
displacements (u, v) are expressed in terms of complex potentials φ(z), ψ(z), 8(z)= φ′(z), and 9(z)=
ψ ′(z) such that

σx + σy = 4 Re8(z), (10)

σy − iσxy = 2 Re8(z)+ z8′(z)+9(z), (11)

σy − σx + 2iσxy = 2(z̄8′(z)+9(z)), (12)

or

σy − σx − 2iσxy = 2(z8′(z)+9(z)), (13)

f =−Y + i X = φ(z)+ zφ′(z)+ψ(z), (14)

2G(u+ iv)= κφ(z)− zφ′(z)−ψ(z), (15)

where z = x + iy denotes a complex variable, G is the shear modulus of elasticity, κ = (3− ν)/(1+ ν)
is for the plane stress problems, κ = 3− 4ν is for the plane strain problems, and ν is the Poisson’s ratio.
In the present study, the plane strain condition is assumed thoroughly.

It is assumed that a concrete crack problem, for example, the problem shown by Figure 1 has been
solved. Alternatively, the relevant complex potentials are obtained in advance. Therefore, from Equa-
tions (5) and (12), we have

T =−Re(σy − σx + 2iσxy)|z=s1,s1→0+ pc

=−2 Re(z̄8′(z)+9(z))|z=s1,s1→0+ pc,
(16)

(see Figure 1). This is the formula for evaluating the T-stress in the crack front position technique.
In addition, from Equations (8) and (10) we have (Figure 1)

T = lim
s2→0
{[(σ+x + σ

+

y )+ (σ
−

x + σ
−

y )]/2}− pc

= 2 Re(8+(z)+8−(z))|z=−s2,s2→0− pc.
(17)

This is the formula for evaluating the T-stress in the crack back position technique.
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3. Closed form solution for the T-stress in an arc crack using the crack front position and crack
back position techniques

A closed form solution for the T-stress in the arc crack by using the crack front position and crack back
position techniques is introduced below. The configuration of the arc crack is shown in Figure 3. The
arc crack has a spanning angle 2α with the remote loading σ∞x , σ∞y , σ∞xy . In addition to two complex
potentials 8(z) and 9(z), the following complex potential �(z) is introduced:

�(z)= 8̄
(1

z

)
−

1
z
8̄′
(1

z

)
−

1
z2 9̄

(1
z

)
. (18)

Here and after, for example, the following definition is used [Muskhelishvili 1953]

8̄
(1

z

)
=8

(1
z̄

)
. (19)

After some manipulation, the stress components in (r, θ) coordinates can be expressed as [Muskhelishvili
1953]

σr + σθ = 4 Re8(z), (20)

σr − σθ − 2iσrθ =−28(z)+ 2�̄
(1

z

)
+ 2z

(
z−

1
z̄
.
)
9(z). (21)

For the arc crack problem under the remote loading σ∞x , σ∞y , σ∞xy , there is a solution as follows
[Muskhelishvili 1953]:

8(z)= F1(z)+ F2(z), �(z)= F1(z)+ F2(z), (22)

Figure 3. An arc crack.
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where

F1(z)=
1

2X (z)

(
Coz+C1+

D1

z
+

D2

z2

)
, F2(z)=

Do

2
+
0̄1

2z2 , (23)

Co =
1
2
(01− 0̄1) sin2(α/2)+

40+ (01+ 0̄1) sin2(α/2) cos2(α/2)

2(1+ sin2(α/2))
,

C1 =−Co cosα,

Do = 20−Co,

D1 =−0̄1 cosα,

D2 = 0̄1,

(24)

0 =
σ∞x + σ

∞
y

4
, 01 =

σ∞y − σ
∞
x

2
+ iσ∞xy , (25)

X (z)=
√
(z− exp(−iα))(z− exp(iα)) (taking the branch lim

z→∞
X (z)/z = 1). (26)

The T-stress at the crack tip A is evaluated by using the crack front position technique. Similar to
Equation (16), the T-stress at the crack tip A can be evaluated by (Figure 3)

TA =−Re{σr − σθ − 2iσrθ }|z=exp(iβ),β>α,β→α + pc, (27)

where the point z = exp(iβ) with β > α is actually located in front of the crack tip A (Figure 3).
Considering (i) the traction-free crack face, where pc = 0, (ii) z− 1/z̄ = 0 for z = exp(iβ), and (iii)

substituting Equation (21) into (27), the above-mentioned equation can be reduced to

TA = 2 Re
(
8(z)− �̄

(1
z

))
z=exp(iβ),β>α,β→α

. (28)

Substituting Equations (22), (23), and (24) into (28) yields

TA = 2 Re(Do+ 0̄1 exp(−2iα))= σ∞x
(
− cos 2α+

(1− cosα)(3+ cosα)
2(3− cosα)

)
+ σ∞y

(
cos 2α+

(1− cosα)2

2(3− cosα)

)
− 2σ∞xy sin 2α, (29)

which was obtained previously by using a different method [Chen 2000].
Since σx + σy(= σr + σθ ) is invariant, similar to Equation (17), the T-stress in the crack back position

technique can be defined as

TA = {[(σ
+

r + σ
+

θ )+ (σ
−

r + σ
−

θ )]/2}|t=exp(iβ),β<α,β→α − pc. (30)

Considering the traction-free crack face, where pc = 0, and substituting Equations (20) and (22) into
(30), the above-mentioned equation can be reduced to

TA = 2 Re(8+(t)+8−(t))|t=exp(iβ),β<α,β→α. (31)
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In the crack back position, or for t = exp(iβ), where β < α, we have X+(t) = −X−(t), where X+(t),
X−(t) denotes the value of X (z) at z = t+, the positive side, and z = t−, the negative side, respectively.
Considering this point and substituting (22) into (31) yields the same result as shown by Equation (29):

TA = 2 Re(Do+ 0̄1 exp(−2iα)). (29)

4. Evaluation of the T-stress for an elliptic plate with a central crack and normal loading on the
contour

In the following analysis, we can let ω(z)= zφ̄′(z)+ ψ̄(z), �(z)= ω′(z). From Equations (10)–(15), the
stresses (σx , σy, σxy), the resultant forces (X, Y ), and the displacements (u, v) are expressed in terms of
the complex potentials φ(z) and ω(z) in the following form:

σx + σy = 4 Re8(z),

σx − σy + 2iσxy = 28(z)− 2(z− z̄)8′(z)− 2�(z̄),
(32)

f =−Y + i X = φ(z)+ (z− z̄)φ′(z)+ω(z̄), (33)

2G(u+ iv)= κφ(z)− (z− z̄)φ′(z)−ω(z̄). (34)

For an elliptic plate with a crack under the condition of symmetric loading (Figure 4), the complex
potentials can be expressed in the form [Chen 1983]:

φ(z)= φ1(z)+φ2(z), (35)

ω(z)= ω1(z)+ω2(z), (36)

where

φ1(z)= ω1(z)=
M∑

k=1

ak X (z)z2k−2, (37)

φ2(z)=−ω2(z)=
M∑

k=1

bkz2k−1, (38)

X (z)=
√

z2− a2 (taking the branch lim
z→∞

X (z)/z = 1). (39)

Figure 4. An elliptic plate with a central crack and normal loading p.
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In Equations (37) and (38), ak and bk (k = 1, 2, . . . ,M) are real undetermined coefficients. The complex
potentials shown by Equations (37) and (38) satisfy the traction-free condition [Chen 1983]. Therefore,
only the condition on the elliptic boundary needs to be satisfied for the complex potentials. The eigenex-
pansion variational method is used to evaluate the coefficients ak and bk (k = 1, 2, . . . ,M) [Chen 1983].
In Equations (37) and (38), we can denote

81(z)= φ′1(z)=�1(z)= ω′1(z), (40)

82(z)= φ′2(z)=−�2(z)=−ω′2(z). (41)

Note that, for z = s1, s1 > a and s1→ a, we have 81(z)−�1(z̄) = 0 and 82(z)−�2(z̄) = 282(z).
If the crack front position method is used, from Equations (5) and (32), and pc = 0, we have

T = lim
z=s1, s1>a, s1→a

(σx − σy)= 4 lim
z=s1, s1>a, s1→a

82(z)= 4
M∑

k=1

bk(2k− 1)a2k−2. (42)

If the crack back position method is used, from Equations (8) and (32), and pc = 0, we have

T = lim
z=s2, s2<a, s2→a

{[(σ+x + σ
+

y )+ (σ
−

x + σ
−

y )]/2} = lim
z=s2, s2<a, s2→a

2 Re{8+(z)+8−(z)}. (43)

For z= s2, s2 < a and s2→ a, both 8+1 (z) and 8−1 (z) take pure imaginary values and 8+2 (z)=8
−

2 (z)
takes a real value. Therefore, from Equations (43), the same result is obtainable

T = 4
M∑

k=1

bk(2k− 1)a2k−2. (44)

For the normal loading p (Figure 4), we choose M = 15 in Equations (37) and (38) in the eigenex-
pansion variational method [Chen 1983]. Finally, the computed results for the T-stress is expressed as

T = H(c/b, a/b)p, (45)

which are tabulated in Table 1. From Table 1 we see that, for a circular plate (c/b= 1) with a central crack,
we have T =−0.0199P for a/b = 0.1, which is a rather small value. However, we have T =−3.8334p
for a/b = 0.9, which is a rather large value. It is also seen from tabulated results that the deviation of
the computed results for the c/b = 1 case from previously obtained results [Fett 2001] is rather small.

5. Evaluation for the T-stress in a curved crack using the crack front position and crack back
position techniques

The T-stress in the curved crack problem can also be evaluated with the usage of two techniques and the
relevant complex potentials. In addition, one numerical example is presented below.

For evaluating the T-stress at the crack tip, it is suitable to use the superposition method. The original
problem is shown in Figure 2o. Without losing generality, it is assumed that the remote loading is
σ∞y = p2, or σ∞x = p1, or σ∞xy = q . The original field can be considered as a superposition of a uniform
field and a perturbation field, which are shown by Figure 2a–b, respectively. The T-stress at the crack
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a/b = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
c/b =

0.5 −0.0529 −0.1701 −0.2713 −0.3012 −0.2418 −0.0982 0.0904 0.1489 −0.9572
1.0 −0.0199 −0.0778 −0.1705 −0.2960 −0.4603 −0.6870 −1.0447 −1.7523 −3.8334
1.0†

−0.0216 −0.0806 −0.1712 −0.2937 −0.4568 −0.6868 −1.0515 −1.7589 −3.8466
1.5 −0.0114 −0.0464 −0.1079 −0.2023 −0.3439 −0.5636 −0.9370 −1.6859 −3.5710
2.0 −0.0090 −0.0373 −0.0887 −0.1713 −0.3012 −0.5118 −0.8803 −1.6178 −3.2109

Table 1. Nondimensional T-stresses H(c/b, a/b) for an elliptic plate with a central
crack and the normal loading p on contour (see Figure 4 and Equation (45)). † From an
equation in [Fett 2001].

tip A is denoted by TA, which is composed of two portions and can be expressed as

TA = TA(u)+ TA(p), (46)

where TA(u) and TA(p) are derived from the uniform field and the perturbation field, respectively.
The uniform field is defined for an infinite perfect plate with the remote loading σ∞y = p2, σ∞x = p1, or

σ∞xy = q (Figure 2a). This stress field is easy to evaluate. The stress components along the prospective site
of the crack are denoted by σN (u), σT (u), σN T (u), where the subscript (u) denotes the stress components
defined in the uniform field. Clearly, for the right crack tip A, we have the following T-stress contribution
(Figure 2a):

TA(u) = σT (u), at point tA = σT (u)(tA). (47)

In the notation for σT (u)(tA), the subscript T denotes the stress in the T -direction, (u) represents the
stress from the uniform field, and tA denotes the location of a point for finding the T-stress.

In the following, the perturbation field for the curved crack is studied (Figure 2b). It was proved that
the complex potentials for this field could be expressed as [Savruk 1981; Chen and Lin 2006]

φ′(z)=8(z)=
1

2π

∫
L

g′(t)dt
t − z

, φ′′(z)=8′(z)=
1

2π

∫
L

g′(t)dt
(t − z)2

, (48)

ψ ′(z)=9(z)=
1

2π

∫
L

g′(t)dt̄
t − z

−
1

2π

∫
L

t̄ g′(t)dt
(t − z)2

, (49)

where g′(t) denotes the dislocation distribution along the curved crack and is defined by

g′(t)=
dg(t)

dt
, (t ∈ L , L − the curved crack). (50)

In Equation (50), g(t) is the COD (crack opening displacement) function defined by

g(t)=−
2Gi
κ + 1

{
(u(t)+ iv(t))+− (u(t)+ iv(t))−

}
, (t ∈ L , L − the curved crack), (51)

where (u(t)+ iv(t))+((u(t)+ iv(t))−) denotes the displacement in the upper side (lower side) of the
curved crack, respectively.
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For the curved crack problem, a singular integral equation was suggested previously [Savruk 1981;
Chen and Lin 2006]:

1
π

∫
L

g′(t)dt
t − to

+M(to)= σN (p)(to)+ iσN T (p)(to), (to ∈ L), (52)

where

M(to)=
1

2π

∫
L

K1(t, to)g′(t)dt +
1

2π

∫
L

K2(t, to)g′(t)dt̄, (53)

L denotes the curved crack configuration, and

K1(t, to)=
d

dto

{
ln

t − to
t̄ − t̄o

}
=−

1
t − to

+
1

t̄ − t̄o

dt̄o
dto
, (54)

K2(t, to)=−
d

dto

{ t − to
t̄ − t̄o

}
=

1
t̄ − t̄o

−
t − to
(t̄ − t̄o)2

dt̄o
dto
. (55)

For the perturbation field, the applied tractions on the crack face must be opposite to those from the
uniform field (Figure 2a–b). Clearly, the right hand term in Equation (52) is defined by

σN (p)(to)+ iσN T (p)(to)=−(σN (u)(to)+ iσN T (u)(to)), (to ∈ L). (56)

In addition, the dislocation distribution g′(t) should satisfy the following single-valued condition of
displacements [Savruk 1981; Chen and Lin 2006],∫

L
g′(t)dt = 0. (57)

Substituting Equations (48) and (49) into (12) yields

σy − σx − 2iσxy =
1
π

∫
L

g′(t)dt
t̄ − z̄

−
1
π

∫
L

(t − z)g′(t)dt̄
(t̄ − z̄)2

. (58)

In the vicinity of the right crack tip A, we can assume the coordinates Ax∗y∗ (Figure 2b). In these
coordinates, we have

(σy−σx−2iσxy)∗ = (σy−σx−2iσxy) exp(−2iδ) =
( 1
π

∫
L

g′(t)dt
t̄−z̄

−
1
π

∫
L

(t−z)g′(t)dt̄
(t̄−z̄)2

)dt̄A

dtA
, (59)

with dt̄A/dtA = exp(−2iδ). It is convenient to introduce the following equality

Re
(
−

1
π

∫
L

g′(t)dt
t − z

+
1
π

∫
L

g′(t) dt̄
t̄ − z̄

)
= 0. (60)

Therefore, from Equations (59) and (60) we have

(σy − σx)∗ = Re
{( 1
π

∫
L

g′(t)dt
t̄ − z̄

−
1
π

∫
L

(t − z)g′(t)dt̄
(t̄ − z̄)2

)dt̄A

dtA

}
+Re

(
−

1
π

∫
L

g′(t)dt
t − z

+
1
π

∫
L

g′(t)dt̄
t̄ − z̄

)
. (61)
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Similar to Equation (16), the T-stress in the perturbation field can be defined by

TA(p) =−(σy − σx)∗|z→tA + pc, (62)

where tA denotes the complex value for the crack tip A, and z→ tA represents a limit from the crack
front position. In this case, we have

pc = σN (p)(tA)=−σN (u)(tA). (63)

Substituting Equations (61) and (63) into (62) yields

TA(p) =−σN (u)(tA)− 2 Re M(tA), (64)

where the integral M(tA)= M(tA)|to=tA has been defined by Equation (53). Finally, from Equations (46),
(47), and (64), we have

TA = TA(u)+ TA(p) = σT (u)(tA)− σN (u)(tA)− 2 Re M(tA). (65)

A particular case is introduced below. It is assumed that there is a line crack in an infinite plate. In
this case, from Equations (53), (54), and (55) we find M(to)= 0 and M(tA)= 0, and Equation (65) can
be reduced to

TA = σT (u)(tA)− σN (u)(tA). (66)

Therefore, the term −2 Re(M(tA)) in Equation (65) represents the influence caused by curvature to the
T-stress. For a straight-line crack, this term −2 Re(M(tA)) is generally equal to zero.

On the other hand, the crack back technique is introduced below. From Equations (17) and (48), we
have

TA(p) = 2 Re
(
8+(to)+8−(to)

)
|to→tA − σN (p)(tA)= Re

( 2
π

∫
L

g′(t)dt
t − to

)
to→tA
− σN (p)(tA). (67)

In Equation (67), the Plemelj formula is used for obtaining 8+(to) and 8−(to) [Muskhelishvili 1953].
Substituting Equation (52) into (67), the same result as shown by Equation (64) will be found. It is

seen that the two techniques give the same result.
Similarly, at the left crack tip B we have

TB = TB(u)+ TB(p) = σT (u)(tB)− σN (u)(tB)− 2 Re
(
M(tB)

)
. (68)

Once the solution for the function g′(t) is obtained, the SIFs (stress intensity factors) at the right crack
tip A and the left crack tip B can be evaluated by [Savruk 1981; Chen and Lin 2006]

(K1− i K2)A =−
√

2π lim
t→tA

√
|t − tA|g′(t),

(K1− i K2)B =
√

2π lim
t→tB

√
|t − tB |g′(t).

(69)

To obtain the final solution, successive steps for evaluating the T-stresses and SIFs in the numerical
solution are summarized as follows.

(i) The first step is to obtain the dislocation function g′(t) from the integral equation pair composed of
Equations (52) and (57).
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Figure 5. A parabolic crack.

(ii) The second step is to obtain two values M(tA)= M(to)|to=tA and M(tB)= M(to)|to=tB , where M(to)
was defined by Equation (53).

(iii) The third step is to evaluate the T-stresses and SIFs at the crack tips by using Equations (65), (68),
and (69).

One numerical example is carried out: a parabolic curved crack is defined by (see Figure 5)

y = γ a(x/a)2. (70)

In computation, the curve length coordinates method is used to solve the singular integral equation [Chen
2004]. The computed T-stresses is expressed as

T = G1(γ )p (for σ∞y = p case), (71)

T = G2(γ )p (for case σ∞x = σ
∞

y = p). (72)

The computed results for γ = 0.1, 0.2, . . . , 1.0 are listed in Table 2. It is known that for a line crack
in horizontal position under loading σ∞y = p we have T =−p. In addition, for a line crack in vertical
position under loading σ∞y = p we have T = p. The tabulated results for G1(γ ) (for σ∞y = p) reflect the
following property. If the tangential angle δ at the crack tip is changed gradually, the relevant T-stress is
also changed simultaneously, for example from T =−0.9051p (for δ = arctan 0.2) to from T = 0.6527p
(for δ = arctan 2.0).

6. Conclusions

It is known that the T-stress is a particular term for a stress component parallel to the crack face in the
vicinity of the crack tip. However, depending on the position where the stress component is evaluated,
the situations for this particular term are quite different. We assume that the fracture is mode I and
the crack face is traction-free. In this case, the T-stress is a term embedded in the singular value of

γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
G1(γ ) −0.9051 −0.6674 −0.3793 −0.1062 0.1185 0.2813 0.4276 0.5183 0.5936 0.6527
G2(γ ) 0.0184 0.0603 0.1015 0.1299 0.1409 0.1326 0.1301 0.1107 0.0946 0.0791

Table 2. Nondimensional T-stresses G1(γ ) (for σ∞y = p case) and G2(γ ) (for σ∞x =
σ∞y = p case) for a parabolic crack (see Figure 5 and Equations (71), (72)).
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the stress component if the stress distribution at the crack front position is considered. However, if the
stress distribution at the crack back position is considered under the condition K I I = 0, the T-stress is a
regular term in the stress component. All of those situations cause people to investigate the crack front
position and crack back position techniques for evaluating the T-stress. It is known that in the crack front
technique, one needs to evaluate a limit taking the form of limr→0(σx − σy). However, in this case, this
limit generally takes the type∞−∞. This is an inconvenient point in computation.

In this study, all derivations including the T-stress are related to complex potentials. In this case, one
can use the two techniques to evaluate T-stress in more complicated crack problems, for example, in the
curved crack problem. In addition, the obtained T-stress expression, or the equation shown by Equation
(65) for the curved crack, are a regular integral plus some terms.
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SPATIAL EVOLUTION OF HARMONIC VIBRATIONS IN LINEAR ELASTICITY

STAN CHIRIT, Ă AND MICHELE CIARLETTA

In the present paper we consider a prismatic cylinder occupied by an anisotropic homogeneous compress-
ible linear elastic material that is subject to zero body force and zero displacement on the lateral bound-
ary. The elasticity tensor is strongly elliptic and the motion is induced by a harmonic time–dependent
displacement specified pointwise over the base. We establish some spatial estimates for appropriate
cross–sectional measures associated with the harmonic vibrations that describe how the corresponding
amplitude evolves with respect to the axial distance at the excited base. The results are established for
finite as well as for semi-infinite cylinders (where alternatives results of Phragmén-Lindelöf type are
obtained) and the exciting frequencies can take appropriate low and high values. In fact, for the low
frequency range the established spatial estimates are of exponential type, while for the high frequency
range the spatial estimates are of a certain algebraic type.

1. Introduction

In the construction of buildings, bridges, aircraft, nuclear reactors and automobiles, the engineer must
determine the depth to which local stresses, such as those produced by fasteners and at joints, or vibrations
can penetrate girders, I-beams, braces and other similar structural elements. The determination of the
extent of local or edge effects in structural systems allows the engineer to have a clear distinction between
the global structure (where strength of materials approximations can be used) and the local excited por-
tions which require a separate and more elaborate analysis based on some exact theories as that of linear
elasticity. The standard procedure used in engineering practice to determine the extent of local stresses
or edge effects is based on some form of the celebrated Saint Venant principle. A comprehensive surveys
of contemporary research concerning Saint Venant principle can be found in [Horgan and Knowles 1983;
Horgan 1989; 1996].

As regards elastic vibrations, it was observed in these papers that high frequency effects might be
expected to propagate with little spatial attenuation (see also [Boley 1955; 1960]). It is outlined in
[Horgan and Knowles 1983] that one would not expect to find unqualified decay estimates of the kind
concerning Saint–Venant’s principle in problems involving elastic wave propagation, even if the end
loads are self-equilibrated at each instant. In this connection, Flavin and Knops [1987] have carried out
an analysis of spatial decay for certain damped acoustic and elastodynamic problems in the low frequency
range which substantiates the early work of Boley. These results are extended to linear anisotropic

Keywords: spatial behavior, harmonic vibrations, linear elasticity, strongly elliptic elasticity tensor.
Chirit,ă’s work was supported by Romanian Ministry of Education and Research, CNCSIS Grant code ID-401, Contract no.
15/28.09.2007.
.
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materials in [Flavin et al. 1990]. It should be noted that all of the investigations mentioned in the foregoing
were concerned with elastic materials having a positive definite elasticity tensor.

In the present paper we address the question of spatial behavior of the harmonic vibrations in an
anisotropic elastic cylinder under the condition of strong ellipticity for the elasticity tensor. In this
respect, for vibrations in the low frequency range, our expected results describe exponential spatial
estimates similar with those previously established by Flavin et al. [1987; 1990]. Moreover, for harmonic
vibrations with appropriate high frequencies, the present results predict some algebraic spatial estimates,
confirming the foregoing observations made by Boley in related context.

We consider a prismatic cylinder occupied by an anisotropic linear elastic material and subjected to
zero body force and zero lateral boundary data and zero initial conditions. The motion is induced by a
harmonic time–dependent displacement specified pointwise over the base and the other end is subjected
to zero displacement (when a cylinder of finite extent is considered, to say). The elasticity tensor is
assumed to be strongly elliptic and so a very large class of anisotropic elastic materials is considered,
including those new materials with extreme and unusual physical properties like negative Poisson’s ratio
(that is, so called auxetic materials).

The primary purpose of the present paper is to examine how the amplitude of the harmonic vibration
evolves with respect to the axial variable. To this end we associate with the amplitude of the harmonic
vibration in concern, an appropriate cross–sectional integral function and further we prove that the strong
ellipticity conditions assure that it is an acceptable measure. This is possible thanks to some appropriate
auxiliary identities relating the amplitude of the harmonic vibrations. For these measures we are able to
establish some differential inequalities whose integration allows us to obtain spatial estimates describing
the spatial behavior of the amplitude in concern. In fact, when an identity of conservation energy type
is used then certain exponential spatial estimates are obtained for all frequencies lower than a critical
value. When a Rellich identity is involved then certain type of algebraic spatial estimates are established
for appropriate high frequencies. All results are illustrated for transversely isotropic materials as well as
for the rhombic systems.

2. Formulation of the problem

Consider a prismatic cylinder B ⊂ R3 whose bounded uniform cross–section D ⊂ R2 has piecewise con-
tinuously differentiable boundary ∂D. The origin of a rectangular Cartesian coordinate system is located
in the cylinder’s base and the positive x3−axis is directed along that of the cylinder. It is convenient to
introduce the further abbreviation

Bz = {x ∈ B : z > x3} (2.1)

and, moreover, we employ D(x3) to indicate that relevant quantities are to be evaluated over the cross–
section whose distance from the origin is x3.

The cylinder is occupied by an anisotropic compressible elastic material and is subject to a deformation
in which the displacement field u (x, t) is a smooth function satisfying the requirements of the classical
dynamical theory of elasticity [Gurtin 1972]. The corresponding stress tensor S (x, t) has Cartesian
components given by

Srs = Crsmnεmn, (2.2)
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where
εmn =

1
2

(
um,n + un,m

)
(2.3)

are the components of the strain tensor. Moreover, the constant elasticities Crsmn possess the symmetries

Crsmn = Cmnrs = Csrmn, (2.4)

and satisfy the strong ellipticity condition

Crsklmr mknsnl > 0 for all nonzero vectors (m1,m2,m3) , (n1, n2, n3) . (2.5)

The cylinder is set in motion subject to a pointwise prescribed base harmonic time–dependent dis-
placement, zero body–force and zero displacement on the lateral surface and the other end (when a finite
cylinder is considered). Furthermore, the prescribed displacement is such that a classical solution exists
on the interval [0,∞). Consequently, the problem to be considered is specified by

(Crskluk,l),r = ρüs , (x, t) ∈ B×[0,∞), (2.6)

ur (x, 0)= u0
r (x), u̇r (x, 0)= u̇0

r (x) , x ∈ B, (2.7)

ur (x, t)= 0, (x, t) ∈ ∂D×[0, L]× [0,∞), (2.8)

ur (x, t)= fr (x1, x2) eiωt , (x, t) ∈ D (0)×[0,∞), (2.9)

ur (x, t)= 0, (x, t) ∈ D (L)×[0,∞), (2.10)

in the case where L is finite (say). In the limiting case L→∞ a condition of the type (2.10) is unnecessary.
In the above relations we have used a superposed dot for denoting differentiation with respect to time and
a subscript comma indicates partial differentiation. Moreover, ρ is the constant positive mass density, ω
is a positive constant (frequency of vibration), u0

r (x), u̇0
r (x) and fr (x1, x2) are prescribed differentiable

functions compatible with the initial and lateral boundary conditions and i =
√
−1 is the complex unit.

We are interested in the study of the spatial behavior of the solution ur of the above initial boundary
value problem (2.6)–(2.10).

To this end we use the decomposition

ur =Ur (x, t)+ vr (x) eiωt , (2.11)

where Ur (transient solution) satisfies the above initial boundary value problem with null boundary con-
ditions and appropriate initial conditions, while vr satisfies the boundary value problem(

Crsklvk,l
)
,r + ρω

2vs = 0, x ∈ B, (2.12)

vr (x)= 0, x ∈ ∂D×[0, L], (2.13)

vr (x)= fr (x1, x2) , x ∈ D (0) , (2.14)

vr (x)= 0, x ∈ D (L) , (2.15)

in the case where L is finite.
We note that the spatial behavior of the transient solution Ur can be described by the methods de-

veloped in [Chirit,ă and Ciarletta 1999; Tibullo and Vaccaro 2008]. The exponential spatial decay of
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the amplitude vr of the forced oscillation has been established in [Flavin and Knops 1987; Flavin et al.
1990; Knops 1991] for isotropic and anisotropic elastic materials with a positive definite elasticity tensor,
provided the exciting frequency is less than a certain critical value. Considering an appropriate region
filled with an isotropic elastic material an algebraical spatial decay of the amplitude of vibration has been
established in [Chirit,ă and Quintanilla 1996] under the assumption that the elasticity tensor is positive
definite and without any restriction upon the frequency of vibration.

The main purpose of this paper consists of studying how the amplitude of harmonic vibration evolves
with respect to the axial distance at the excited base, provided the strong ellipticity condition is assumed
for the elasticity tensor. Under such hypotheses we will establish some appropriate algebraic and expo-
nential spatial estimates describing the spatial decay of the amplitude of harmonic vibration. In fact, for
all frequencies lower than a certain critical value we are able to establish exponential estimates describing
how the amplitude evolves with the distance to the excited end. While, for all frequencies greater than
an appropriate critical value, we can establish spatial estimates describing a specific algebraical behavior
of the amplitude. Moreover, some alternatives of Phragmén–Lindelöf type are established for the semi-
infinite cylinder.

Since the coefficients in the differential system (2.12) are real numbers, we can assume that vr are real
functions. Otherwise, we can proceed with the same method for the real part as well as for the imaginary
part of vr . So in what follows we shall consider the solution vr to be real functions.

3. Some auxiliary identities

Before proceeding to derive a priori estimates for a solution to equations (2.12)–(2.15), we need some
auxiliary identities concerning the equations (2.12), with the lateral boundary condition (2.13). Some of
these are achieved via some Rellich–like identities (used for example in [Chirit,ă et al. 2006; Chirit,ă and
Ciarletta 2008]).

Theorem 1. Let vr be a solution of the boundary value problem defined by relations (2.12) and (2.13).
Then ∫

D(x3)

(
Crsmnvr,svm,n − ρω

2vsvs
)

da =
d

dx3

∫
D(x3)

C3smnvm,nvs da. (3.1)

Proof. We form the identity ∫
D(x3)

vs

((
Crsmnvm,n

)
,r + ρω

2vs

)
da = 0. (3.2)

Now integrate by parts in succession and use the boundary condition (2.13) to find (3.1). �

Theorem 2. Let vr be a solution of the boundary value problem defined by (2.12) and (2.13). Then

1
2

∫
D(x3)

(
Crsmnvr,svm,n − 3ρω2vsvs

)
da

=−
d

dx3

∫
D(x3)

(
xρC3smnvs,ρvm,n +

1
2 x3

(
Cr3m3vr,3vm,3−Crαmβvr,αvm,β + ρω

2vsvs
))

da

−

∫
∂D(x3)

1
2 xρnρCrαmβnαnβ

∂vr

∂n
∂vm

∂n
ds, (3.3)
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where nα are the components of the outward unit normal vector to ∂D and ∂/∂n represents the normal
derivative.

Proof. We start with the identity∫
D(x3)

x pvs,p

((
Crsklvk,l

)
,r + ρω

2vs

)
da = 0 (3.4)

which can be written as∫
D(x3)

(
Crsmnvr,svm,n + x p

( 1
2Crsmnvr,svm,n

)
,p − x p

( 1
2ρω

2vsvs
)
,p

)
da

=

∫
D(x3)

(
x pCrsmnvm,nvs,p

)
,r da; (3.5)

moreover,

1
2

∫
D(x3)

(
Crsmnvr,svm,n − 3ρω2vsvs

)
da =−

∫
D(x3)

(
x pvr,pCrsmnvm,n

)
,s da

+

∫
D(x3)

( 1
2 x pCrsmnvr,svm,n

)
,p da−

∫
D(x3)

( 1
2 x pρω

2vrvr
)
,p da. (3.6)

Using the divergence theorem and (2.13), we obtain from (3.6)

1
2

∫
D(x3)

(
Crsmnvr,svm,n − 3ρω2vsvs

)
da

=−
d

dx3

∫
D(x3)

(
C3smnvm,nx pvs,p −

1
2 x3

(
Crsmnvr,svm,n − ρω

2vsvs
))

da

+

∫
∂D(x3)

( 1
2 xρnρCrsmnvr,svm,n − x pvr,pCrρmnvm,nnρ

)
ds. (3.7)

At this point we note that the boundary condition (2.13) implies

vr,3 = 0, x ∈ ∂D×[0, L]. (3.8)

Moreover, we write vr,α on the curve ∂D(x3) as vr,α = nα (∂vr/∂n)+τα (∂vr/∂τ), where τα are the com-
ponents of the tangential unit vector, ∂/∂n is the normal derivative and ∂/∂τ is the tangential derivative.
In view of the boundary condition (2.13) we have (∂vr/∂τ)= 0 on ∂D(x3) and hence we deduce that
vr,α = nα (∂vr/∂n) on ∂D(x3). Thus, we obtain∫
∂D(x3)

(
xρnρCrαmβvr,αvm,β − 2xαvr,αCrρmβvm,βnρ

)
ds =−

∫
∂D(x3)

xρnρCrαmβnαnβ
∂vr

∂n
∂vm

∂n
ds. (3.9)

Substituting (3.9) into (3.7) we obtain (3.3). �

By combining these two theorems we obtain the following result.

Theorem 3. Let vr be a solution of the boundary value problem defined by (2.12) and (2.13). Then

d
dx3

∫
D(x3)

(
2C3rmnvm,nvr+2xρC3smnvs,ρvm,n+x3(Cr3m3vr,3vm,3−Crαmβvr,αvm,β+ρω

2vsvs)
)

da

=

∫
D(x3)

(
Crsmnvr,svm,n+ρω

2vsvs
)

da−
∫
∂D(x3)

xρnρCrαmβnαnβ
∂vr

∂n
∂vm

∂n
ds. (3.10)
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Remarks. (1) By using the integration by parts and the lateral boundary condition (2.13) we can establish
the identities ∫

D(x3)

vr,3vm,β da−
∫

D(x3)

vr,βvm,3 da =
d

dx3

∫
D(x3)

vrvm,β da, (3.11)∫
D(x3)

vr,3vm,β da−
∫

D(x3)

vr,βvm,3 da =−
d

dx3

∫
D(x3)

vr,βvm da. (3.12)

(2) Theorem 1 can be viewed in connection with a (dynamic) virtual work expression, while Theorems 2
and 3 are closer to the mathematical Rellich identity often used in the study of structural stability. See
[Chirit,ă et al. 2006; Chirit,ă and Ciarletta 2008], for example.

4. Some spatial estimates for appropriate low frequencies

Throughout this section we will study the spatial evolution of the amplitude vr by starting with the identity
established in Theorem 1. To this end we combine the identity (3.1) with (3.11) and (3.12) in the same
manner like that used in [Chirit,ă and Ciarletta 2006]. Our objective consists of finding measures of the
amplitude that are able to furnish information on the spatial evolution of the amplitude vr for the entire
class of anisotropic strongly elliptic elastic materials. Since such task can be too complex for general
anisotropic elastic materials we will proceed to pursue our method for some particularly important classes
of anisotropic materials, namely those of transversely isotropic and rhombic systems. We recall that for
these systems we have established explicit necessary and sufficient conditions in [Chirit,ă et al. 2007]
characterizing the strong ellipticity condition.

4.1. Transversely isotropic materials. Many natural and man–made materials are classified as trans-
versely isotropic (or hexagonal). Such materials are characterized by the fact that one can find a line
that allows a rotation of the material about it without changing its properties. The plane, which is
perpendicular to this line (the axis of rotational symmetry) is called a plane of elastic symmetry or plane
of isotropy. A modern example for such a material are laminates made of randomly oriented chopped
fibers that are in general placed in a certain plane. The effective material properties for a bundled structure
have no profound direction in that plane, which then becomes a plane of elastic symmetry. Hence, each
plane that contains the axis of rotation is a plane of symmetry, and therefore, transversely isotropic
material admits an infinite number of elastic symmetries.

Necessary and sufficient conditions for strong ellipticity to hold for a transversely isotropic linearly
elastic solid are established in [Chirit,ă et al. 2007; Chirit,ă 2006]. In this connection we recall the standard
notation

ci j = Ci i j j , i, j ∈ {1, 2, 3} (not summed), c22 = c11, c23 = c13,

c44 = c55 = C2323 = C1313, c66 = C1212 =
1
2 (c11− c12) , (4.1)

corresponding to the direction of transverse isotropy coinciding with the x3 coordinate axis. Apart from
terms obtained by use of the symmetries (2.4), these are the only nonzero components Ci jkl . Then the
necessary and sufficient conditions for strong ellipticity to hold are (loc. cit.)

c11 > 0, c33 > 0, c55 > 0, c11 > c12, |c13+ c55|< c55+
√

c11c33. (4.2)
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Combining relations (3.1), (3.11) and (3.12) and using (4.1), we obtain

d
dx3

∫
D(x3)

(
vα((c55− ~)v3,α + c55vα,3)+ v3(c33v3,3+ (c13+ ~)(v1,1+ v2,2))

)
da

=

∫
D(x3)

(
c66(v1,2−v2,1)

2
−ρω2vαvα

)
da+

∫
D(x3)

(
c11(v1,1+v2,2)

2
+c33v

2
3,3+2(c13+~)(v1,1+v2,2)v3,3

)
da

+

∫
D(x3)

(
(c55(v

2
3,1+v

2
1,3)+2(c55−~)v1,3v3,1)+(c55(v

2
3,2+v

2
2,3)+2(c55−~)v2,3v3,2)−ρω

2v2
3
)

da, (4.3)

where ~ ∈ (0, 2c55) is a positive parameter at our disposal.
Now we choose the parameter ~ in such a way that

max
(
−c13−

√
c11c33, 0

)
< ~ <min

(
2c55,−c13+

√
c11c33

)
, (4.4)

so
|c13+ ~|<

√
c11c33, |c55− ~|< c55. (4.5)

We deduce that
c55

(
v2

3,1+ v
2
1,3
)
+ 2 (c55− ~) v1,3v3,1 ≥ ν1

(
v2

3,1+ v
2
1,3
)
,

c55
(
v2

3,2+ v
2
2,3
)
+ 2 (c55− ~) v2,3v3,2 ≥ ν1

(
v2

3,2+ v
2
2,3
)
,

(4.6)

where
ν1 =min (~, 2c55− ~) . (4.7)

Moreover, we have

c11(v1,1+ v2,2)
2
+ c33v

2
3,3+ 2(c13+ ~)(v1,1+ v2,2)v3,3 ≥ ν2

(
(v1,1+ v2,2)

2
+ v2

3,3
)
, (4.8)

where
ν2 =

1
2

(
c11+ c33−

√
(c11− c33)2+ 4(c13+ ~)2

)
. (4.9)

On the other hand, in view of the boundary condition (2.13), we obtain∫
D(x3)

vα,βvα,β da ≥ λ
∫

D(x3)

vαvα da,
∫

D(x3)

v3,βv3,β da ≥ λ
∫

D(x3)

v2
3 da, (4.10)

where λ > 0 is the first eigenvalue in the two-dimensional clamped membrane eigenvalue problem for
the cross section D(x3).

At this instant we introduce the critical frequency

ω1 =

√
λ
ρ

min (ν1,min (c66, ν2)) (4.11)

and then assume that the frequency of vibration ω is lower than ω1, that is

0< ω < ω1. (4.12)

Throughout in the remainder of this subsection we will assume that relations (4.4) and (4.12) hold
true. Then we introduce the function

I~(x3)=−

∫
D(x3)

[
vα
(
(c55− ~)v3,α + c55vα,3

)
+ v3

(
c33v3,3+ (c13+ ~)vα,α

)]
da (4.13)
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for all x3 ∈ [0, L] and note that relations (4.3)–(4.12) imply

−
d I~
dx3

(x3)≥min(c66, ν2)

(
1−

ω2

ω2
1

)∫
D(x3)

vα,βvα,β da

+ν2

∫
D(x3)

v2
3,3 da+ ν1

∫
D(x3)

vα,3vα,3 da+ ν1

(
1−

ω2

ω2
1

)∫
D(x3)

v3,βv3,β da ≥ 0 (4.14)

and hence I~(x3) is a nonincreasing function with respect to x3 on [0, L].
We have now all preliminary material in order to state and proof the following result.

Theorem 4. Let vr be the amplitude of a harmonic vibration whose frequency is lower than the critical
frequency ω1 given by (4.11). Then, for every ~ satisfying (4.4), the cross section integral I~(x3) as
defined by (4.13) is an acceptable measure of the amplitude vr (that is, I~ (x3) ≥ 0 and I~(x3) = 0
implies that vr = 0) and it satisfies the spatial decay estimate

0≤ I~(x3)≤ I~ (0) e−σ1x3 for all x3 ∈ [0, L], (4.15)

where σ1 is given by

1
σ1
=

1
√
λ

max

{
c55+

√
c11c33

min (c66, ν2)
(
1−ω2/ω2

1

) , c33

2ν2
,

c55

2ν1
,

c33+ c55+
√

c11c33

2ν1
(
1−ω2/ω2

1

) }
. (4.16)

Proof. On the basis of the end boundary condition (2.15) and relation (4.13) we deduce that I~ (L)= 0,
so that we have

I~(x3)≥ 0 for all x3 ∈ [0, L]. (4.17)

Thus, I~(x3) represents an acceptable measure for the amplitude vr of the harmonic vibration.
Now, by using the Schwarz and arithmetic-geometric mean inequalities, from (4.5) and (4.13) we

obtain the estimate

|I~(x3)| ≤
1
√
λ

(
c55+

√
c11c33

) ∫
D(x3)

vα,βvα,β da+
1

2
√
λ

c33

∫
D(x3)

v2
3,3 da

+
1

2
√
λ

c55

∫
D(x3)

vα,3vα,3 da+
1

2
√
λ

(
c33+ c55+

√
c11c33

) ∫
D(x3)

v3,βv3,β da. (4.18)

By combining (4.14) and (4.18) we obtain the first order differential inequality

d I~
dx3

(x3)+ σ1 I~(x3)≤ 0 for all x3 ∈ [0, L], (4.19)

which, when integrated, furnishes the exponential spatial decay estimate (4.15). �

4.2. Rhombic materials. Suppose the cylinder is filled with a rhombic elastic material with the group
C3 generated by Rπ

e3
, Rπ

e2
(here Rθ

e is the orthogonal tensor corresponding to a right–handed rotation
through the angle θ ∈ (0, 2π), about an axis in the direction of the unit vector e). According to Gurtin
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[1972], this class of materials is characterized by

C1123 = C1131 = C1112 = C2223 = C2231 = C2212 = 0,

C3323 = C3331 = C3312 = C2331 = C2312 = C3112 = 0,

c11 = C1111, c22 = C2222, c33 = C3333, c12 = C1122, c23 = C2233,

c31 = C3311, c44 = C2323, c55 = C1313, c66 = C1212. (4.20)

The strong ellipticity condition (2.5) becomes

c11n2
1m2

1+ c22n2
2m2

2+ c33n2
3m2

3+ c66 (n1m2+ n2m1)
2
+ c44 (n3m2+ n2m3)

2

+c55 (n1m3+ n3m1)
2
+ 2c12n1m1n2m2+ 2c23n2m2n3m3+ 2c31n3m3n1m1 > 0, (4.21)

for all nonzero vectors (m1,m2,m3) and (n1, n2, n3). It is equivalent to the conditions [Chirit,ă et al.
2007]

c11 > 0, c22 > 0, c33 > 0, c44 > 0, c55 > 0, c66 > 0, (4.22)

−2c66+ ~
i
3
√

c11c22 < c12 < ~
s
3
√

c11c22, −2c44+ ~
i
1
√

c22c33 < c23 < ~
s
1
√

c22c33,

−2c55+ ~
i
2
√

c11c33 < c13 < ~
s
2
√

c11c33, (4.23)

where
(
~ i

1, ~
s
1

)
,
(
~ i

2, ~
s
2

)
and

(
~ i

3, ~
s
3

)
are solutions with respect to x , y and z of the equation x2

+ y2
+

z2
− 2xyz− 1= 0, satisfying |x |< 1, |y|< 1, |z|< 1 and

x ∈
{

c23
√

c22c33
,

c23+ 2c44
√

c22c33

}
, y ∈

{
c13
√

c11c33
,

c13+ 2c55
√

c11c33

}
, z ∈

{
c12
√

c11c22
,

c12+ 2c66
√

c11c22

}
. (4.24)

This statement is equivalent with the relation (4.22) and all points P(x, y, z), with coordinates satisfying
(4.24) lie inside the region limited by the surface S(x, y, z)≡ x2

+ y2
+ z2
− 2xyz− 1= 0, with |x |< 1,

|y|< 1, |z|< 1.
In the case of a rhombic material the relation (4.3) is replaced by

d
dx3

∫
D(x3)

[
v1
(
c55v1,3+(c55−~2)v3,1

)
+v2

(
c44v2,3+(c44−~1)v3,2

)
+v3

(
(c13+~2)v1,1+(c23+~1)v2,2+c33v3,3

)]
da

=

∫
D(x3)

[
c11v

2
1,1+c22v

2
2,2+c33v

2
3,3+2(c12+~3)v1,1v2,2+2(c13+~2)v1,1v3,3+2(c23+~1)v2,2v3,3

]
da

+

∫
D(x3)

[
c66(v

2
1,2+v

2
2,1)+2(c66−~3)v1,2v2,1

]
da+

∫
D(x3)

[
c55(v

2
3,1+v

2
1,3)+2(c55−~2)v1,3v3,1

]
da

+

∫
D(x3)

[
c44(v

2
3,2+v

2
2,3)+2(c44−~1)v2,3v3,2

]
da−

∫
D(x3)

ρω2vsvs da, (4.25)

where ~1 ∈ [0, 2c44], ~2 ∈ [0, 2c55] and ~3 ∈ [0, 2c66] are positive parameters at our disposal. In view
of the assumptions (4.22) and (4.23) we can choose ~1 ∈ [0, 2c44], ~2 ∈ [0, 2c55], ~3 ∈ [0, 2c66] so that
P(x, y, z), with coordinates

x =
c23+ ~1
√

c22c33
, y =

c13+ ~2
√

c11c33
, z =

c12+ ~3
√

c11c22
,
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lies inside the region limited by the surface S(x, y, z). With these choices we have

c44
(
v2

3,2+ v
2
2,3
)
+ 2 (c44− ~1) v2,3v3,2 ≥ ξ1

(
v2

3,2+ v
2
2,3
)
, (4.26)

c55
(
v2

3,1+ v
2
1,3
)
+ 2 (c55− ~2) v1,3v3,1 ≥ ξ2

(
v2

3,1+ v
2
1,3
)
, (4.27)

c66
(
v2

1,2+ v
2
2,1
)
+ 2 (c66− ~3) v1,2v2,1 ≥ ξ3

(
v2

1,2+ v
2
2,1
)
, (4.28)

c11v
2
1,1+ c22v

2
2,2+ c33v

2
3,3+ 2 (c12+ ~3) v1,1v2,2

+2 (c13+ ~2) v1,1v3,3+ 2 (c23+ ~1) v2,2v3,3 ≥ ξ4
(
v2

1,1+ v
2
2,2+ v

2
3,3
)
, (4.29)

where

ξ1 =min (2c44− ~1, ~1) , ξ2 =min (2c55− ~2, ~2) , ξ3 =min (2c66− ~3, ~3) (4.30)

and ξ4 is the lowest positive eigenvalue of the 3× 3 matrix c11 c12+ ~3 c13+ ~2

c12+ ~3 c22 c23+ ~1

c13+ ~2 c23+ ~1 c33

 . (4.31)

So we have to introduce the function

J~(x3)=−

∫
D(x3)

[
v1
(
(c55− ~2)v3,1+ c55v1,3

)
+ v2

(
(c44− ~1)v3,2+ c44v2,3

)
+v3

(
(c13+ ~2)v1,1+ (c23+ ~1)v2,2+ c33v3,3

)]
da (4.32)

and note that identity (4.25) and relations (4.10) and (4.26)–(4.29) imply

−
d J~
dx3

(x3)≥

∫
D(x3)

(
ξ4
(
v2

1,1+ v
2
2,2
)
+ ξ3

(
v2

1,2+ v
2
2,1
)
−
ρω2

λ
vα,βvα,β

)
da

+

∫
D(x3)

(
ξ1v

2
3,2+ ξ2v

2
3,1−

ρω2

λ
v3,αv3,α

)
da+

∫
D(x3)

(
ξ1v

2
2,3+ ξ2v

2
1,3+ ξ4v

2
3,3
)

da. (4.33)

At this point we introduce the critical frequency

ω2 =

√
λ
ρ

min (min (ξ1, ξ2) ,min (ξ3, ξ4)) (4.34)

and assume that the vibration frequency ω is lower than ω2:

0< ω < ω2. (4.35)

Thus, we have

−
d J~
dx3

(x3)≥min (ξ3, ξ4)

(
1−

ω2

ω2
2

)∫
D(x3)

vα,βvα,β da+min (ξ1, ξ2)

(
1−

ω2

ω2
2

)∫
D(x3)

v3,αv3,α da

+

∫
D(x3)

(
ξ1v

2
2,3+ ξ2v

2
1,3+ ξ4v

2
3,3
)

da ≥ 0. (4.36)

Consequently, J~(x3) is a nonincreasing function with respect to x3 on [0, L].
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Theorem 5. Let vr be the amplitude of a harmonic vibration whose frequency is lower than the critical
frequency ω2 of (4.34). Then the cross section integral J~(x3) as defined by (4.32) is an acceptable
measure of the amplitude vr (that is, J~(x3)≥ 0 and J~ (x3)= 0 implies that vr = 0) and it satisfies the
spatial decay estimate

0≤ J~(x3)≤ J~ (0) e−σ2x3 for all x3 ∈ [0, L], (4.37)

where σ2 is given by

1
σ2
=

1

2
√
λ

max

{
max

(
2c55+

√
c11c33, 2c44+

√
c22c33

)
min (ξ3, ξ4)

(
1−ω2/ω2

2

) ,

c44

ξ1
,

c55

ξ2
,

c33

ξ4
,

max (c44, c55)+
√

c33
(√

c11+
√

c22+
√

c33
)

min (ξ1, ξ2)
(
1−ω2/ω2

2

) }
. (4.38)

Proof. On the basis of the end boundary condition (2.15) and relation (4.32) we deduce that J~ (L)= 0,
so that we have

J~(x3)≥ 0 for all x3 ∈ [0, L]. (4.39)

Thus, J~(x3) represents an acceptable measure for the amplitude vr of the harmonic vibration.
We further note that

|c44− ~1|< c44, |c55− ~2|< c55, |c13+ ~2|<
√

c11c33, |c23+ ~1|<
√

c22c33. (4.40)

On this basis and by using the Schwarz and arithmetic-geometric mean inequalities and (4.10), we obtain
from (4.32) the estimate

|J~(x3)| ≤
1

2
√
λ

max
(
2c55+

√
c11c33, 2c44+

√
c22c33

) ∫
D(x3)

vα,βvα,β da

+
1

2
√
λ

[
max (c44, c55)+

√
c33

(√
c11+

√
c22+

√
c33
)] ∫

D(x3)

v3,αv3,α da

+
1

2
√
λ

∫
D(x3)

(
c33v

2
3,3+ c44v

2
2,3+ c55v

2
1,3
)

da. (4.41)

By combining (4.36), (4.38) and (4.41) we obtain the first order differential inequality

d J~
dx3

(x3)+ σ2 J~(x3)≤ 0 for all x3 ∈ [0, L], (4.42)

whose integration furnishes the spatial decay expressed by (4.37). �

The analysis of this section can be extended to the case of a semi-infinite cylinder, that is the case
when L→∞. We shall exemplify this for the case of measure J~(x3). In view of (4.25) and (4.32), by
an integration [x3, L], we obtain

J~(x3)− J~ (L)= E (x3, L) , (4.43)
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where

E(x3, L)=
∫

B(x3,L)

(
c11v

2
1,1+c22v

2
2,2+c33v

2
3,3+2(c12+~3)v1,1v2,2+2(c13+~2)v1,1v3,3

+2(c23+~1)v2,2v3,3+c66(v
2
1,2+v

2
2,1)+2(c66−~3)v1,2v2,1+c55(v

2
3,1+v

2
1,3)

+2(c55−~2)v1,3v3,1+c44(v
2
3,2+v

2
2,3)+2(c44−~1)v2,3v3,2−ρω

2vsvs

)
dv ≥ 0, (4.44)

with B (x3, L)= Bx3\BL and Bx3 is defined by relation (2.1). We conclude that J~ (∞)= limL→∞ J~ (L)
exists and is finite if and only if there is finite the energetic measure E(x3)= limL→∞ E (x3, L) associated
with the amplitude vr in the cylinder Bx3 . Since J~(x3) is a nonincreasing function with respect to x3,
there are the only two possibilities: (a) J~(x3)≥ 0 for all x3 ∈ [0,∞) or (b) there exists x∗3 ∈ [0,∞) so
that J~

(
x∗3
)
< 0.

In the case (a) we can apply the same procedure as in the above to obtain the spatial decay estimate
(4.37). So in what follows we shall consider the case (b), that is we will suppose that J~

(
x∗3
)
< 0. Then

we have
J~(x3) < 0 for all x3 ∈ [x∗3 ,∞), (4.45)

so that (4.36), (4.38), (4.41) and (4.45) now give

d J~
dx3

(x3)− σ2 J~(x3)≤ 0 for all x3 ∈ [0, L], (4.46)

which implies
−J~(x3)≥−J~

(
x∗3
)

eσ2(x3−x∗3) for all x3 ∈ [x∗3 ,∞) (4.47)

and hence J~ (∞)=−∞ and the energetic measure E(x3) is infinite.
We may summarize this analysis in the following alternative of Phragmén–Lindelöf type result.

Theorem 6. In the context of a semi-infinite cylinder made of a rhombic elastic material, for all harmonic
vibrations with frequency lower than the critical value ω2, the amplitude vr either has a finite energetic
measure E(x3) and then we have

E(x3)≤ E (0) e−σ2x3 for all x3 ∈ [0,∞), (4.48)

or it has an infinite energetic measure and then −J~ (x3) goes to infinity faster than the exponential
eσ2(x3−x∗3).

5. Spatial estimates for appropriate high frequencies

Throughout this section we will study the spatial evolution of the amplitude vr by starting with the
identity established in Theorem 3. To this end we note that the strong ellipticity condition (2.5) implies
that

Ck3l3ζkζl > 0 for all nonzero vectors ζr , (5.1)

and
Crαsβmr msnαnβ > 0 for all nonzero vectors (m1,m2,m3) , (n1, n2) . (5.2)

We further assume that ∂D is star shaped with respect to the origin so that xρnρ ≥ h0 > 0, with h0

constant.
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On this basis we observe that

0≤
∫
∂D(x3)

xρnρCrαmβnαnβ
∂vr

∂n
∂vm

∂n
ds ≤ dC

∫
∂D(x3)

∂vr

∂n
∂vr

∂n
ds, (5.3)

where C =
√

CrαmβCrαmβ and
d = sup

(x1,x2)∈∂D

√
xαxα. (5.4)

Further, we introduce

m0 = max
x3∈[0,L]

∫
∂D

∂vr
∂n

∂vr
∂n

ds∫
D
vrvr da

, ω∗ =
1
ρ

dCm0, (5.5)

and assume that
ω ≥ ω∗. (5.6)

Whereas one cannot, in general, obtain m0 explicitly, we have the crude bound

m0 ≤ m1, with m1 = sup
vi∈H1

0 (D)

∫
∂D

∂vr
∂n

∂vr
∂n

ds∫
D
vrvr da

. (5.7)

So, when m1 is finite, we can take ω∗ = 1
ρ

dCm1 and obtain an explicit critical value for the frequency
of vibration.

Then the identity (3.10), relations (5.3) and (5.6), and the definition of m0 in (5.5) give

d
dx3

∫
D(x3)

[
2C3rmnvm,nvr + 2xρC3smnvs,ρvm,n + x3

(
Cr3m3vr,3vm,3−Crαmβvr,αvm,β + ρω

2vsvs
)]

da

≥

∫
D(x3)

Crsmnvr,svm,n da. (5.8)

Our objective now is to find measures of the amplitude that are able to furnish information on the
spatial evolution of the amplitude vr for the entire class of anisotropic strongly elliptic elastic materials.
We now pursue our method for transversely isotropic and rhombic systems.

5.1. Transversely isotropic materials. We first consider the class of transversely isotropic materials as
defined in Section 4.1. Relations (5.8), (3.11) and (3.12) give

d
dx3

∫
D(x3)

(
vα
(
(2c55−~)v3,α+2c55vα,3

)
+ v3

(
2c33v3,3+(2c13+~)vα,α

)
+ 2c55xρvα,ρ(v3,α+vα,3)+ 2xρv3,ρ(c13vα,α+c33v3,3)

+ x3
[
c55(v

2
1,3+v

2
2,3)+c33v

2
3,3−c66(v1,2−v2,1)

2
−c11(v1,1+v2,2)

2

−2c13vα,αv3,3−c55v3,αv3,α−2c55vα,3v3,α+ρω
2vsvs

])
da

≥

∫
D(x3)

c66(v1,2−v2,1)
2 da+

∫
D(x3)

[
c11(v1,1+v2,2)

2
+c33v

2
3,3+2(c13+~)(v1,1+v2,2)v3,3

]
da

+

∫
D(x3)

[
c55(v

2
3,1+v

2
1,3)+2(c55−~)v1,3v3,1+c55(v

2
3,2+v

2
2,3)+2(c55−~)v2,3v3,2

]
da, (5.9)
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where ~ ∈ (0, 2c55) is a positive parameter chosen in such way to satisfy relation (4.4). Therefore, we
can introduce the function

I~(x3)=−

∫
D(x3)

(
vα
(
(2c55− ~)v3,α + 2c55vα,3

)
+ v3

(
2c33v3,3+ (2c13+ ~)vα,α

)
+ 2c55xρvα,ρ(v3,α + vα,3) + 2xρv3,ρ(c13vα,α + c33v3,3)

+ x3
[
c55(v

2
1,3+ v

2
2,3)+ c33v

2
3,3− c66(v1,2− v2,1)

2
− c11(v1,1+ v2,2)

2

− 2c13vα,αv3,3− c55v3,αv3,α − 2c55vα,3v3,α + ρω
2vsvs

])
da (5.10)

and note that relations (4.4), (4.6), (4.8) and (5.9) imply

−
dI~

dx3
(x3)≥min(c66, ν2)

∫
D(x3)

vα,βvα,β da+ ν2

∫
D(x3)

v2
3,3 da+ ν1

∫
D(x3)

vα,3vα,3 da+ ν1

∫
D(x3)

v3,βv3,β da

≥ 0. (5.11)

Thus, I~(x3) is a nonincreasing function with respect to x3 on [0, L].

Theorem 7. Let vr be the amplitude of a harmonic vibration whose frequency is greater than the critical
frequency

ω∗1 =
dm0

ρ

√
2c2

11+ 2c2
12+ (c11− c12)

2
+ 2c2

55.

Then the cross section integral I~ (x3) as defined by (5.10) is an acceptable measure of the amplitude vr

(that is, I~(x3)≥ 0 and I~(x3)= 0 implies that vr = 0) and it satisfies the spatial decay estimate

0≤ I~(x3)≤ I~ (0)
(

1+ β
α

x3

)−1/β
for all x3 ∈ [0, L], (5.12)

where α and β are positive constants computable in terms of the elastic coefficients, λ, d, ω and ρ.

Proof. On the basis of the end boundary condition (2.15) and relation (5.10) we deduce that I~ (L)= 0,
so that we have

I~(x3)≥ 0 for all x3 ∈ [0, L]. (5.13)

Thus, I~(x3) represents an acceptable measure for the amplitude vr of the harmonic vibration.
On the other hand, by using the Schwarz and arithmetic-geometric mean inequalities, from (4.10),

(5.4) and (5.10) we obtain the estimates∣∣∣∣∫
D(x3)

[
vα
(
(2c55− ~)v3,α + 2c55vα,3

)
+ v3

(
2c33v3,3+ (2c13+ ~)vα,α

)]
da
∣∣∣∣

≤
2
√
λ
(2c55+

√
c11c33)

∫
D(x3)

vα,βvα,β da+
c55
√
λ

∫
D(x3)

vα,3vα,3 da

+
1
√
λ
(2c55+ c33+

√
c11c33)

∫
D(x3)

v3,αv3,α da+
c33
√
λ

∫
D(x3)

v2
3,3 da, (5.14)
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D(x3)

[
2c55xρvα,ρ(v3,α + vα,3)+ 2xρv3,ρ(c13vα,α + c33v3,3)

]
da
∣∣∣∣

≤ d(c55+ 2 |c13|)

∫
D(x3)

vα,βvα,β da+ 2dc55

∫
D(x3)

vα,3vα,3 da

+ d(2c55+ 2c33+ |c13|)

∫
D(x3)

v3,αv3,α da+ 2dc33

∫
D(x3)

v2
3,3 da, (5.15)

∣∣∣∣∫
D(x3)

[
c55(v

2
1,3+ v

2
2,3)+ c33v

2
3,3− c66(v1,2− v2,1)

2
− c11(v1,1+ v2,2)

2

− 2c13vα,αv3,3− c55v3,αv3,α − 2c55vα,3v3,α + ρω
2vsvs

]
da
∣∣∣∣

≤

(
max(c11, c66)+ 2 |c13| +

ρω2

λ

)∫
D(x3)

vα,βvα,β da+ 2c55

∫
D(x3)

vα,3vα,3 da

+

(
2c55+

ρω2

λ

)∫
D(x3)

v3,αv3,α da+ (c33+ |c13|)

∫
D(x3)

v2
3,3 da. (5.16)

Therefore, if we use the estimates (5.14)–(5.16) in (5.10) and then use (5.11), we obtain the differential
inequality

|I~(x3)| ≤ −(α+βx3)
dI~

dx3
(x3) for all x3 ∈ [0, L], (5.17)

where

α =max
{

1
min(c66, ν2)

[( 4
√
λ
+ d

)
c55+

2
√
λ

√
c11c33+ 2d |c13|

]
,

1
ν1

[
2
( 1
√
λ
+ d

)
c55+

( 1
√
λ
+ 2d

)
c33+

1
√
λ

√
c11c33+ d |c13|

]
,

1
ν1

( 1
√
λ
+ 2d

)
c55,

1
ν2

( 1
√
λ
+ 2d

)
c33

}
, (5.18)

β =max
{

1
min (c66, ν2)

(
max(c11, c66)+ 2 |c13| +

ρω2

λ

)
,

1
ν1

(
2c55+

ρω2

λ

)
,

2c55
ν1

,
c33+|c13|

ν2

}
. (5.19)

To integrate the differential inequality (5.17) we write it in the form

dI~

dx3
(x3)+

d
dx3

(∫ x3

0

1
α+βt

dt
)

I~(x3)≤ 0 for all x3 ∈ [0, L], (5.20)

which, multiplied by exp
(∫ x3

0 dt/(α + βt)
)

and then integrated with respect to x3, gives the estimate
(5.12). �

5.2. Rhombic materials. For a rhombic material, we proceed similarly. Relation (5.8) combined with
(3.11) and (3.12) gives
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−
d

dx3
J~(x3)

≥

∫
D(x3)

(
c11v

2
1,1+c22v

2
2,2+c33v

2
3,3+2(c12+~3)v1,1v2,2+2(c13+~2)v1,1v3,3+2(c23+~1)v2,2v3,3

)
da

+

∫
D(x3)

(
c66v

2
1,2+c66v

2
2,1+2(c66−~3)v1,2v2,1

)
da+

∫
D(x3)

(
c55v

2
3,1+c55v

2
1,3+2(c55−~2)v1,3v3,1

)
da

+

∫
D(x3)

(
c44v

2
3,2+ c44v

2
2,3+ 2(c44− ~1)v2,3v3,2

)
da, (5.21)

where ~1, ~2, ~3 satisfy the conditions requested in Section 4.2 and we have introduced the function

J~(x3)=−

∫
D(x3)

(
v1
(
(2c55− ~2)v3,1+ 2c55v1,3

)
+ v2

(
(2c44− ~1)v3,2+ 2c44v2,3

)
+ v3

(
(2c13+~2)v1,1+ (2c23+~1)v2,2+ 2c33v3,3

)
+ 2c55xρv1,ρ(v3,1+ v1,3)

+ 2c44xρv2,ρ(v3,2+ v2,3)+ 2xρv3,ρ(c13v1,1+ c23v2,2+ c33v3,3)

+ x3
[
c55v

2
1,3+ c44v

2
2,3+ c33v

2
3,3− c66(v1,2+ v2,1)

2

− (c11v
2
1,1+c22v

2
2,2+2c12v1,1v2,2+c55v

2
3,1+c44v

2
3,2)+ ρω

2vsvs
])

da. (5.22)

Now (4.26)–(4.29) and (5.21) give

−
dJ~

dx3
(x3)≥

∫
D(x3)

(
ξ4(v

2
1,1+v

2
2,2)+ξ3(v

2
1,2+v

2
2,1)+ξ1v

2
3,2+ξ2v

2
3,1
)

da+
∫

D(x3)

(
ξ1v

2
2,3+ξ2v

2
1,3+ξ4v

2
3,3
)

da

≥ 0; (5.23)

hence J~(x3) is a nonincreasing function with respect to x3 on [0, L]. Moreover, by means of the end
condition (2.15) and relation (5.22) we obtain J~ (L)= 0 and hence J~(x3)≥ 0 for all x3 ∈ [0, L], that
is J~(x3) is a measure of the amplitude of the harmonic vibration.

By using the Schwarz and arithmetic-geometric mean inequalities and with the aid of (4.10), (4.40)
and (5.4), we obtain∣∣∣∣∫

D(x3)

(
v1
(
(2c55−~2)v3,1+2c55v1,3

)
+v2

(
(2c44−~1)v3,2+2c44v2,3

)
+v3

(
(2c13+~2)v1,1+(2c23+~1)v2,2+2c33v3,3

))
da
∣∣∣∣

≤
1
√
λ

∫
D(x3)

[(
3c55+

√
c11c33

)
v2

1,1+
(
3c44+

√
c22c33

)
v2

2,2+2c55v
2
1,2+2c44v

2
2,1

+
(
c33+c44+2c55+

√
c11c33+

√
c22c33

)
v2

3,1

+
(
c33+2c44+c55+

√
c11c33+

√
c22c33

)
v2

3,2+c55v
2
1,3+c44v

2
2,3+c33v

2
3,3
]

da, (5.24)∣∣∣∣∫
D(x3)

(
2c55xρv1,ρ(v3,1+v1,3)+2c44xρv2,ρ(v3,2+v2,3)+2xρv3,ρ(c13v1,1+c23v2,2+c33v3,3)

)
da
∣∣∣∣

≤ d
∫

D(x3)

[
(c55+|c13|)v

2
1,1+(c44+|c23|)v

2
2,2+c55v

2
1,2+c44v

2
2,1+(c33+2c55+|c13|+|c23|)v

2
3,1

+(c33+2c44+|c13|+|c23|)v
2
3,2+2c55v

2
1,3+2c44v

2
2,3+c33v

2
3,3
]

da, (5.25)
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D(x3)

[
c55v

2
1,3+c44v

2
2,3+c33v

2
3,3−c66(v1,2+v2,1)

2

−(c11v
2
1,1+c22v

2
2,2+2c12v1,1v2,2+c55v

2
3,1+c44v

2
3,2)+ρω

2vsvs
]

da
∣∣∣∣

≤

∫
D(x3)

[(
c11+|c12|+

ρω2

λ

)
v2

1,1+

(
c22+|c12|+

ρω2

λ

)
v2

2,2+

(
2c66+

ρω2

λ

)
(v2

1,2+v
2
2,1)

+

(
c55+

ρω2

λ

)
v2

3,1+

(
c44+

ρω2

λ

)
v2

3,2+c55v
2
1,3+c44v

2
2,3+c33v

2
3,3

]
da. (5.26)

To conclude, we obtain from (5.22)–(5.26) a first order differential inequality of type (5.17), where now
we have

α=max
{

1
ξ4

(
1
√
λ

(
3c55+

√
c11c33

)
+d (c55+|c13|)

)
,

1
ξ3

c55

(
2
√
λ
+d

)
,

1
ξ3

c44

(
2
√
λ
+d

)
,

1
ξ4

(
1
√
λ

(
3c44+

√
c22c33

)
+d (c44+|c23|)

)
,

1
ξ2

c55

(
1
√
λ
+2d

)
,

1
ξ1

c44

(
1
√
λ
+2d

)
,

1
ξ2

(
1
√
λ

(
c44+2c55+c33+

√
c11c33+

√
c22c33

)
+d (c33+2c55+|c13|+|c23|)

)
,

1
ξ1

(
1
√
λ

(
2c44+c55+c33+

√
c11c33+

√
c22c33

)
+d (c33+2c44+|c13|+|c23|)

)
,

1
ξ4

c33

(
1
√
λ
+d

)}
, (5.27)

β =max
{

1
ξ4

(
c11+|c12|+

ρω2

λ

)
,

1
ξ4

(
c22+|c12|+

ρω2

λ

)
,

1
ξ3

(
2c66+

ρω2

λ

)
,

1
ξ2

(
c55+

ρω2

λ

)
,

1
ξ1

(
c44+

ρω2

λ

)
,

1
ξ4

c33

}
. (5.28)

Therefore, the spatial evolution of the amplitude is described by the estimate (5.12), where α and β
are given now by relations (5.27) and (5.28) and ω∗1 is replaced by

ω∗2 =
dm0

ρ

√
c2

11+ c2
22+ c2

44+ c2
55+ 2c2

12+ 4c2
66. (5.29)

The analysis of this section can be extended to a semi-infinite cylinder using the procedure developed
at the end of the above section.

6. Concluding remarks

We have addressed some exponential and algebraic spatial estimates for describing how the amplitude of
a harmonic vibration evolves in an anisotropic elastic cylinder. The discussion is based on the assumption
regarding the strong ellipticity of the elasticity tensor. This hypothesis allows us to obtain results valid for
a very large class of anisotropic elastic materials, including auxetic materials (which, having a negative
Poisson’s ratio or negative stiffness, expand laterally when stretched in contrast to ordinary materials;
see [Park and Lakes 2007], for example).
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Exponential spatial decay estimates are predicted for harmonic vibrations whose frequency is lower
than a certain critical value, as defined by relations (4.11) and (4.34), for example. However, as we can
see from relations (4.15), (4.16), (4.37) and (4.38), these estimates fall to give information regarding the
spatial evolution for harmonic vibrations with frequency close to the critical value.

On the other hand, the algebraic spatial estimate (5.12) proves how the spatial behavior evolves in the
case of harmonic vibrations with frequency greater than the critical value ω∗ as defined in (5.5).

The extent to which our present results cover the entire range of frequencies remains open question.
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[Chirit,ă et al. 2006] S. Chirit,ă, M. Ciarletta, and B. Straughan, “Structural stability in porous elasticity”, Proc. R. Soc. Lond. A
462:2073 (2006), 2593–2605.
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SOFTENING HYPERVISCOELASTICITY FOR MODELING RATE-DEPENDENT
MATERIAL FAILURE

KONSTANTIN VOLOKH AND PAVEL TRAPPER

New models of viscoelastic solids at small and finite deformations are proposed that describe material
failure by enforcing the energy limiter — the average bond energy. Basically, the bond energy defines
the energy that is necessary to separate two attracting particles. In the case of a solid composed of many
particles there exists a magnitude of the average bond energy that is necessary to separate particles in a
small material volume. The average bond energy can be calculated if a statistical distribution of the bond
density is known for a particular material. Alternatively, the average bond energy can be determined in
macroscopic experiments if the energy limiter is introduced in a material constitutive model. Traditional
viscoelastic models of materials do not have energy limiters and, consequently, they allow for unlimited
energy accumulation under the strain increase. The latter is unphysical, of course, because no material
can sustain large enough deformations without failure. The average bond energy is the energy limiter
that controls material softening, which indicates failure. Thus, by limiting the stored energy we include
a description of material failure in the constitutive model. Viscoelasticity including energy limiters can
be called softening hyperviscoelasticity. We present two softening hyperviscoelasticity models for small
and finite deformations. In all cases the elastic and viscoelastic responses are described by potentials
with limiters, which control material softening. The models are studied in the case of simple shear and
uniaxial tension. The results of the calculations show that softening hyperviscoelasticity can be used for
analysis of rate-dependent failure of materials.

1. Introduction

Existing continuum mechanics approaches for modeling material failure can be divided in two groups:
surface and bulk models. The surface models, pioneered by Barenblatt [1959], are called cohesive zone
models (CZMs) in the modern literature. They present material surfaces — cohesive zones — where dis-
placement discontinuities occur. The discontinuities are enhanced with constitutive laws relating normal
and tangential displacement jumps with the corresponding tractions. There are plenty of proposals of
constitutive equations for cohesive zones [Dugdale 1960; Rice and Wang 1989; Tvergaard and Hutchin-
son 1992; Xu and Needleman 1994; Camacho and Ortiz 1996]. All CZMs are constructed qualitatively
as follows: tractions increase, reach a maximum, and then approach zero with increasing separation.
Such a scenario is in harmony with our intuitive understanding of the rupture process. Since the work
by Needleman [1987] CZMs are used increasingly in finite element simulations of many phenomena,
such as crack tip plasticity and creep, crazing in polymers, adhesively bonded joints, interface cracks in
bimaterials, delamination in composites and multilayers, and fast crack propagation in polymers. Cohe-
sive zones can be inside finite elements or along their boundaries [Xu and Needleman 1994; Belytschko

Keywords: softening, failure, hyperelasticity, viscosity, material, rate-dependence.
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et al. 2001; De Borst 2001]. Crack nucleation, propagation, branching, kinking, and arrest are natural
outcomes of the computations where the discontinuity surfaces are spread over the bulk material. This
is in contrast to the traditional approach of fracture mechanics where stress analysis is separated from
a description of the actual process of material failure. The CZM approach is natural for simulation of
fracture at the internal material interfaces in polycrystals, composites, and multilayers. It is less natural
for modeling bulk fracture because it leads to the simultaneous use of two material models for the same
real material: one model describes the bulk while the other model describes a CZM imbedded in the bulk.
Such a two-model approach is rather artificial physically. It seems preferable to incorporate a material
failure law directly in the constitutive description of the bulk.

Remarkably, the first models of bulk failure — damage mechanics — proposed by Kachanov [1958]
and Rabotnov [1963] for analysis of the gradual failure accumulation and propagation in creep and
fatigue appeared almost simultaneously with the cohesive zone approach. The need to describe the failure
accumulation, that is, evolution of the material microstructure, explains why damage mechanics is very
similar to plasticity theories including the internal damage variable (inelastic strain), the critical threshold
condition (yield surface), and the damage evolution equation (flow rule). The subsequent development of
the formalism of damage mechanics [Kachanov 1986; Krajcinovic 1996; Skrzypek and Ganczarski 1999;
Lemaitre and Desmorat 2005] left its physical origin well behind the mathematical and computational
techniques and, eventually, led to the use of damage mechanics for the description of any bulk failure.
Theoretically, the approach of damage mechanics is very flexible and allows reflecting physical processes
triggering macroscopic damage at small length scales. Practically, the experimental calibration of damage
theories is not trivial because it is difficult to measure the damage parameter directly. The experimental
calibration should be implicit and include both the damage evolution equation and criticality condition.

A physically motivated alternative to damage mechanics in the cases of failure related with the bond
rupture has been considered recently by Gao and Klein [1998] and Klein and Gao [1998] who showed
how to mix the atomic/molecular and continuum descriptions in order to simulate material failure. They
applied the Cauchy–Born rule linking micro and macro scales to empirical potentials, which include
a possibility of the full atomic separation. The continuum-atomistic link led to the formulation of the
macroscopic strain energy potentials allowing for the stress/strain softening and strain localization. The
continuum-atomistic method is very effective at small length scales where purely atomistic analysis
becomes computationally intensive. Unfortunately, a direct use of the continuum-atomistic method in
macroscopic failure problems is not very feasible because its computer implementation includes a nu-
merically involved procedure of the averaging of the interatomic potentials over a representative volume.

In order to bypass the computational intensity of the continuum-atomistic method while preserving
its sound physical basis the softening hyperelasticity approach was proposed by Volokh [2004; 2007a;
2007b]. The basic idea of the approach was to formulate an expression of the stored macroscopic en-
ergy, which would include the energy limiter — the average bond energy. Such a limiter automatically
induces strain softening, that is, a material failure description, in the constitutive law. The softening
hyperelasticity approach is computationally simple yet physically appealing. The approach proved itself
in a number of problems varying from failure of brittle materials to rubbers and soft biological tissues
[Volokh 2007a; 2007b; 2008a; 2008b; Trapper and Volokh 2008; Volokh and Trapper 2008; Volokh
and Vorp 2008]. Besides Gei et al. [2004] used a variant of softening hyperelasticity for modeling
plastic softening. One should be careful, however, with doing that because material failure during plastic
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deformation is essentially due to microstructural changes rather than the bond rupture and the approach
of energy limiters may not be applicable in this case on physical grounds.

It should be noted that softening hyperelasticity has been used for the prediction of the global mate-
rial/structural instability in all mentioned works. To extend the approach to problems of dynamic failure
propagation it is necessary to include rate-dependence in the constitutive description. In other words,
the softening hyperelasticity should be extended to the softening hyperviscoelasticity, which is the main
goal of the present work. Including viscosity in the constitutive framework is important physically. It
is also important computationally because viscosity naturally regularizes the potentially ill conditioned
problems related to tracking the propagation of dynamic failure.

The outline of the paper is as follows. Section 2 introduces the idea of the energy limiters providing a
physical multiscale link for the phenomenological quantity of the average bond energy. Sections 3 and
4 present the softening hyperviscoelasticity theories for small and finite deformations respectively. A
general discussion of the new theories is present in Section 5.

2. Energy limiters

To motivate the introduction of energy limiters and softening hyperelasticity we briefly describe the
continuum-atomistic link. A more detailed exposition of the issue can be found in [Volokh and Trapper
2008; Trapper and Volokh 2008], for example.

Interaction of two particles (atoms, molecules, et cetera) can be described as

ψ(F)= ϕ(F)−ϕ0, ϕ0 =minL ϕ(F = 1). (2-1)

Here ψ is the particle interaction potential; F is the one-dimensional deformation gradient mapping the
distance between particles from the reference, L , to the current, l, state: l = F L . To be specific we
choose the Lennard-Jones potential, for example, ϕ(l) = 4ε((σ/ l)12

− (σ/ l)6), where ε and σ are the
bond energy and length constants accordingly. By direct computation we can find the energy limiter or
the failure energy, 8. Indeed, increasing deformation we cannot increase the energy unlimitedly:

ψ(F→∞)=−ϕ0 =8= constant . (2-2)

Analogously to the case of the pair interaction it is possible to consider particle assemblies. Applying
the assumption of applicability of continuum mechanics to the description of such assemblies, meaning
using the Cauchy–Born rule, it is possible to derive a stored energy function analogously to (2-1),

ψ(C)= 〈ϕ(C)〉− 〈ϕ〉0, 〈ϕ〉0 =minL〈ϕ(C = 1)〉.

Here C = FTF is the right Cauchy–Green deformation tensor and F = ∂x/∂X is the deformation
gradient of a generic material macroparticle of body � occupying position X at the reference state and
position x(X) at the current state of deformation. The average means

〈ϕ(C)〉 = V−1
0

∫
V ∗0

4ε
((

σ
L‖C‖

)12
−

( σ

L‖C‖

)6
)

DV dV,
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in the case of the Lennard-Jones potential, where the tensorial norm designates stretch in a bond direction,
DV is the volumetric bond density function, V ∗0 is the integration volume defined by the range of influence
of ϕ, and V0 is the reference representative volume.

Analogously to (2-2), we can find the energy limiter, 8, increasing the deformation unlimitedly as

8= ψ
(
‖C‖→∞

)
=−〈ϕ〉0 = constant .

Thus, the average bond energy sets a limit for the energy accumulation. This conclusion generally
does not depend on the choice of the particle potential and is valid for any interaction that includes a
possible particle separation.

Contrary to the conclusion above traditional hyperelastic models of materials do not include the energy
limiter. The stored energy of hyperelastic materials is defined as ψ =W. Here W is used for the strain
energy of the intact material, which can be characterized as ‖C‖→∞ ⇒ ψ =W →∞, where ‖ · · · ‖
is a tensorial norm.

In other words, the increasing strain increases the accumulated energy unlimitedly. Evidently, the
consideration of only intact materials is restrictive and unphysical. The energy increase of a real material
should be limited, as shown above:

‖C‖→∞ ⇒ ψ→8= constant, (2-3)

where the average bond energy, 8= constant, can be called the material failure energy.
Equation (2-3) presents the fundamental idea of introducing a limiter of the stored energy in the

elasticity theory. Such a limiter induces material softening, indicating material failure, automatically.
The choice of the limited stored energy expression should generally be material-specific. Nonetheless, a
somewhat universal formula [Volokh 2007b] can be introduced to enrich the already existing models of
intact materials with the failure description

ψ(W )=8−8 exp
(
−W
8

)
, (2-4)

where ψ(W = 0)= 0 and ψ(W =∞)=8.
Formula (2-4) obeys the condition ‖C‖→∞ ⇒ ψ(W (C))→8 and, in the case of the intact material

behavior, W �8, we have ψ(W )≈W preserving the features of the intact material.
Taking (2-4) into account, the constitutive equation can be written in the general form

σ = 2J−1 F
∂ψ

∂C
FT
= 2J−1 F

∂W
∂C

FT exp
(
−W
8

)
, (2-5)

where σ is the Cauchy stress tensor, J = det F, and the exponential multiplier enforces material softening.
Constitutive equation (2-5) is especially effective for incompressible soft materials undergoing finite
deformations. We strongly emphasize again, however, that the best form of the energy function is not
universal and should be material/problem-specific.

In what follows we will extend the idea of the energy limiter to viscous deformations and examine
the role of the rate-dependence in the description of material failure.
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3. Softening hyperviscoelasticity at small deformations

We use a rheological model of the standard solid shown in Figure 1 as a prototype for the integral
formulation of the constitutive law.

 
 
 
 
 
 
 
 

 

f
E

KE

Figure 1. Rheological model of the standard solid.

3.1. Constitutive law. Following Simo and Hughes [1998] we define the hyperviscoelastic constitutive
law in the form

σ (t)=
∂ψ̂ (ε)

∂ε
1+

∫ t

−∞

m(t − τ)
∂

∂τ

(
dev

∂ψ
(
e(τ )

)
∂e

)
dτ, (3-1)

where
ε = tr ε, e= dev ε ≡ ε− 1

3ε1,
and ε is a linearized strain, that is, the symmetric part of the displacement gradient.

The relaxation function is defined in the form

m(t − τ)= β∞+β exp
(
−

t − τ
θ

)
, β∞ =

E∞
E∞+ E

, β =
E

E∞+ E
, θ =

η

E
,

where β∞ and β are dimensionless relative moduli and θ is the relaxation time (see Figure 1).
The elastic potential is decomposed into the volumetric and distortional parts accordingly as

ψ(ε)= ψ̂ (ε)+ψ(e), (3-2)

and the hyperelastic constitutive law is derived as

σ =
∂ψ

∂ε
=
∂ψ̂

∂ε
1+ dev

∂ψ

∂e
. (3-3)

We define the separate potentials with softening that have not been considered in the literature yet,

ψ̂ (ε)=81−81

(
1+

√
K
81
ε

)
exp

(
−

√
K
81
ε

)
, ψ(e)=82−82 exp

(
−
µ

82
e : e

)
, (3-4)

where K and µ are the bulk and shear moduli of the isotropic Hookean solid and 81 and 82 are the
failure energies for volumetric and distortional deformations. By introducing different failure constants
we increase the flexibility of the phenomenological description of material failure.

Substituting (3-4) in (3-3) we have

σ = K̃ ε1+ 2µ̃e, K̃ = K exp
(
−

√
K
81
ε

)
, µ̃= µ exp

(
−
µ

82
e : e

)
. (3-5)
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Linearization of these equations leads to the classical linear elasticity with K̃ = K and µ̃= µ.
The motivation for the specific forms of the softening hyperelastic potentials (3-4) comes from the

consideration of two simple deformations.
Firstly, in the case of hydrostatic tension (3-5)1 takes the form

σ = σ11 = σ22 = σ33 = K ε exp
(
−

√
K
81
ε

)
,

and its graph is shown in Figure 2, left.
Evidently, the hydrostatic compression does not lead to material failure while the hydrostatic tension

does. The maximum point on the tension branch of the curve corresponds to the onset of static instability
when the material failure starts propagating.

Secondly, in the case of pure shear, e12, (3-5)1 takes the form

σ12 = 2µe12 exp
(
−
µ

82
e2

12

)
,

and its graph is shown in Figure 2, right.
Evidently, the skew-symmetry of the failure response is desirable and expected.

3.2. Simple shear. In this subsection we examine rate-dependent response of the model described above
in the case of simple shear

σ12(t)= 2µ
∫ t

0

[
β∞+β exp

(
−

t − τ
θ

)] ∂

∂τ

[
e12 exp

(
−
µ

82
e2

12

)]
dτ , (3-6)

where there is no stressing until t = 0.
Further simplifications are due to the assumption of the constant stretch/strain rate as γ̇ = constant .

The latter assumption leads to the simple formulae for time

t =
e12

γ̇
, τ =

ξ12

γ̇
,

σ
K

-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03

-0.0015

-0.001

-0.0005

0

0.0005

0.001

K

V

H

5
1 10/  )K

σ12
µ

-0.01 -0.005 0 0.005 0.01
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Figure 2. Left: Hydrostatic tension σ/K . Right: Simple shear σ12/µ.
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Figure 3. Simple shear for various strain rates.

where ξ12 = e12(τ ) and, consequently, (3-6) takes the form

σ12(t)= 2µ
∫ e12

0

[
β∞+β exp

(
−

e12− ξ12

θγ̇

)] ∂

∂ξ12

[
ξ12 exp

(
−
µ

82
ξ 2

12

)]
dξ12. (3-7)

Stress-strain curves defined by (3-7) are present in Figure 3 for different strain rates.
Evidently, material stiffness and strength — the curve maximum — increase with the increasing defor-

mation rate for a given relaxation time. This conclusion is expected intuitively. Moreover, the stable
(prior to failure) branches of the response curves are limited by the curve corresponding to γ̇ θ→ 0 from
the bottom and γ̇ θ→∞ from the top. Physically the limit cases correspond to the very slow quasistatic
response and the fastest instantaneous response of the material accordingly. Interestingly, the range of
the strength variation depends on the relative contribution of the elastic springs in the rheological model
shown in Figure 1. The greater the contribution of the spring corresponding to the dashpot, E , the larger
the strength range.

4. Softening hyperviscoelasticity at finite deformations

The integral hyperviscoelasticity formulation for small deformations considered in the previous section
can be equivalently reformulated in the differential form [Simo and Hughes 1998]. Unfortunately, in
the case of finite deformation the integral and differential formulations are not necessarily equivalent
in general. There are plenty of integral formulations of nonlinear viscoelasticity. We should mention,
however, that the foundations of the theory have been set by Green and Rivlin [1957; 1959] and Green
et al. [1959]. Further developments are reviewed in [Lockett 1972; Carreau et al. 1997; Hoo Fatt and
Ouyang 2007], for example. There are also numerous differential formulations of nonlinear viscoelas-
ticity based on the introduction of internal variables and their evolution equations. The most popular
scheme includes the multiplicative decomposition of the deformation gradient into elastic and inelastic
parts [Lubliner 1985; Lion 1996; Govindjee and Reese 1997; 1998; Bergström and Boyce 1998; Huber
and Tsakmakis 2000; Amin et al. 2006; Hoo Fatt and Ouyang 2008]. Despite its popularity the scheme
including the multiplicative decomposition of the deformation gradient is not entirely perfect: the inter-
mediate elastically-relaxed configuration cannot be determined uniquely. Indeed, it is always possible to
superimpose a local rotation on such a configuration without violating the multiplicative decomposition.
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The nonuniqueness of the multiplicative decomposition is often eliminated by a specific and explicit
choice of the deformation or by the use of certain computational schemes, which regularize the problem
implicitly. Unfortunately, the artificial regularizations cannot improve the general formulation. Since
the elastically-relaxed configuration is not unique one may question the necessity to define it. Instead
of looking for a specific elastically-relaxed configuration it is possible to look only for a family of such
configurations enjoying the same metric. In the latter case there is no need in the use of the nonunique
multiplicative decomposition of the deformation gradient and it is enough to track the evolution of the
metric tensor of possible elastically-relaxed configurations. Such a line of thought was pioneered by
Eckart [1948] and further developed in [Leonov 1976; Rubin 1994; Rubin and Bodner 2002]. It is worth
mentioning that the refusal to look for a unique elastically-relaxed configuration is justified by the fact
that such a configuration is incompatible and, consequently, unobservable physically.

4.1. Constitutive law. We will use the rheological model shown in Figure 1 as a prototype for the non-
linear model too. The springs should be thought of as nonlinear in this case. We extend (3-1) to finite
deformations directly following Simo and Hughes [1998]:

τ (t)= J
∂ψ̂ (ε)

∂ε
1+

∫ t

−∞

m(t − τ)
∂

∂τ

(
dev

[
2F(τ )

∂ψ
(
C(τ )

)
∂C

FT (τ )

])
dτ,

where τ = Jσ is the so-called Kirchhoff stress tensor and

ε = J = det F, F = J−1/3 F(det F = 1), C = FT F. (4-1)

The stored energy is also decomposed analogously to (3-2) as ψ(C)= ψ̂ (ε)+ψ(C), and the hypere-
lastic constitutive law is derived as

τ = J
∂ψ̂

∂ε
1+ dev

[
2F

∂ψ

∂C
FT
]
.

We mention that the idea to extend the volumetric-distortional decomposition of small strains to the
case of large strains based on the volume-preserving deformation gradient, (4-1)2, is due to Flory [1961].

Though the formulation above is the most general the majority of soft materials undergoing finite
deformations are incompressible. The latter means that the analytical formulation can be simplified as

ε = J = det F = 1, (4-2)

F = F, C = C, ψ(C)= ψ(C), σ = τ =−p1+ dev
[
2F

∂ψ

∂C
FT
]
, (4-3)

and

σ (t)= τ (t)=−p1+
∫ t

−∞

m(t − τ)
∂

∂τ

(
dev

[
2F(τ )

∂ψ
(
C(τ )

)
∂C

FT (τ )

])
dτ, (4-4)

where the indefinite Lagrange multiplier, p, is used to enforce the incompressibility condition (4-2).
We further use a stored energy with softening that was calibrated for analysis of the material of the

abdominal aortic aneurysm [Volokh and Vorp 2008]

ψ(I1)=8−8 exp
[
−
α1

8
(I1− 3)−

α2

8
(I1− 3)2

]
, (4-5)
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Figure 4. Theory versus experiment for the uniaxial tension test [Volokh and Vorp 2008].

where I1 = tr C , α1 and α2 are the elasticity constants of the material, and 8 is the failure energy, which
is another material constant controlling its softening.

The uniaxial tension test results are shown in Figure 4, where model (4-5) was fitted with the following
constants: α1 = 10.3 N/cm2, α2 = 18.0 N/cm2, and 8= 40.2 N/cm2.

Substituting (4-5) in (4-4) we have

σ (t)=−p1+
∫ t

−∞

m(t − τ)
∂

∂τ

(
dev

[
2ψ1(τ )B(τ )

])
dτ,

where B = F FT and

ψ1 ≡
∂ψ

∂ I1
=
[
α1+ 2α2(I1− 3)

]
exp

[
−
α1

8
(I1− 3)−

α2

8
(I1− 3)2

]
.

4.2. Uniaxial tension. In the case of the uniaxial tension we have the following simplifications within
the Cartesian coordinate framework {k1, k2, k3}:

F = λk1⊗ k1+ λ
−1/2(k2⊗ k2+ k3⊗ k3), B = λ2k1⊗ k1+ λ

−1(k2⊗ k2+ k3⊗ k3),

where λ is the axial stretch.
The nontrivial stress components accordingly take the forms

σ11(t)=−p+
4
3

∫ t

−∞

m(t − τ)
∂

∂τ

(
ψ1(τ )

[
λ2(τ )− λ−1(τ )

])
dτ, (4-6)

σ22(t)= σ33(t)=−p−
2
3

∫ t

−∞

m(t − τ)
∂

∂τ

(
2ψ1(τ )

[
λ2(τ )− λ−1(τ )

])
dτ. (4-7)

Since σ22(t)= σ33(t)= 0 we can find the Lagrange multiplier from (4-7) and substitute it in (4-6) getting
the final formula

σ11(t)= 2
∫ t

0
m(t − τ)

∂

∂τ

(
ψ1(τ )

[
λ2(τ )− λ−1(τ )

])
dτ, (4-8)

where ξ = λ(τ) and the lower integration boundary has been shifted assuming no stressing before time
t = 0.

Further simplifications are due to the assumption of the constant stretch/strain rate

ξ̇ = λ̇= γ̇ = constant .
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Figure 5. Uniaxial tension for various strain rates.

The latter assumption leads to the simple formulae

t =
λ− 1
γ̇

, τ =
ξ − 1
γ̇

,

for the times; consequently, (4-8) takes the form

σ11(t)= 2
∫ λ

1

[
β∞+β exp

(
−
λ− ξ

γ̇ θ

)] ∂
∂ξ

[
ψ1(ξ)(ξ

2
− ξ−1)

]
dξ. (4-9)

Computations based on (4-9) are shown in Figure 5 for various stretch rates. We also scaled the material
constants α1→ α1/β∞, α2→ α2/β∞, and 8→8/β∞ in order to preserve the form of the quasistatic
curve, γ̇ θ→ 0, shown in Figure 5.

As in the case of small deformations, material stiffness and strength increase with the increasing
deformation rate for a given relaxation time. The stable (prior to failure) branches of the response curves
are limited by the curve corresponding to γ̇ θ → 0 from the bottom and γ̇ θ →∞ from the top. The
range of the strength variation depends on the relative contribution of the elastic springs in the rheological
model shown in Figure 1. The greater the contribution of the spring corresponding to the dashpot the
larger the strength range. There is a complete analogy between the cases of small and finite deformations
as expected.

5. Discussion

A new approach for modeling rate-dependent failure of materials has been proposed. Its basic idea is
the introduction of energy limiters in the constitutive description of materials. Such limiters control
softening providing a failure account. The energy limiters were introduced in the models of isotropic
Hookean solids, which are suitable for a description of quasibrittle failure in ceramics, concrete, glass, or
even metals at high-velocity dynamic processes where the plastic deformation can be ignored. Besides,
the energy limiters were considered for soft materials at finite deformations. It should be clearly realized
that the proposed approach is suitable for materials whose failure is due to the bond rupture and cannot
be used for materials that fail due to large plastic deformations. If failure is accompanied by a gradual
accumulation of inelastic deformations then the approach of damage mechanics is probably more relevant
and should be used.
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Though we used essentially different material models in the considered examples of small and finite
deformations the qualitative results are very similar. Particularly, we observed that the increasing rate
of deformations leads to the increase of both stiffness and strength of the material. Such a conclusion
corresponds well to the experimental observations. Moreover, while the existing viscoelasticity theories
can describe the phenomenon of material stiffening under increasing deformation rate it is for the first
time that the presented approach clearly predicts the increase of the material strength (and not only
stiffening) with the increase of the deformation rate.

Concerning the limitations of the presented computations it should be emphasized that the considered
examples include only proportional loading and there are no returning deformation waves. Such waves
may lead to the material healing within the hyperelastic framework, which should be suppressed. To
avoid the material healing in the finite element computations it is possible, for example, to reduce the
values of the material parameters by orders of magnitude in the elements, which reached the critical
failure energy or arrived at zero stresses. This circle of questions is beyond the scope of the present note
where only a principal possibility of inducing a failure description in nonlinear viscoelasticity has been
considered. Nonetheless, the finite element implementation of the proposed method is important and
will be considered in a separate work.
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DYNAMICS OF DISCRETE FRAMED STRUCTURES:
A UNIFIED HOMOGENIZED DESCRIPTION

STEPHANE HANS AND CLAUDE BOUTIN

The dynamic behavior of discrete periodic one-dimensional structures is approached by considering
transverse vibrations of structures made of repeated unbraced frames. Assuming the frame size is small
compared to the modal wavelength, equivalent macroscopic beam descriptions are obtained by the ho-
mogenization method of periodic discrete media. The macroscopic parameters are expressed as functions
of the mechanical and geometrical properties of the frame elements.

Depending on the order of magnitude (relative to the scale ratio) of the shear force, the global bending
and the inner bending, four families of beams are shown to be possible. A generic beam governed by a
differential equation of the sixth degree is shown to encompass all the other types.

Simple criteria are established to identify the relevant model for real structures. A comparison of these
theoretical results with numerical modeling is satisfactory even in the case of weak scale separation. In
fact, an investigation of the higher orders terms shows that zero order descriptions are valid up to the
second order. Lastly, analogies with micromorphic media are discussed.

1. Introduction

Understanding the behavior of reticulated materials and structures is of interest in aeronautics (lattice
beams), in civil engineering (buildings), in materials science (mechanics of foam or glass wool), in
biomechanics (vegetable tissue or bones), and so on. When the dimensions of the representative cell are
smaller than the overall size, such three-, two-, or one-dimensional systems may be described respectively
by effective continuum media, plate or beam models. Numerous studies have been aimed at relating the
local structure to the global behavior. Particularly, periodic lattices have been studied through various
approaches such as transfer matrices, variational calculus [Kerr and Accorsi 1985], and finite difference
operators [Renton 1984]; see also the reviews [Noor 1988; Mead 1996]. Asymptotic homogenization
methods [Sánchez-Palencia 1980] have been developed for homogeneous and periodic beams [Trabucho
and Viaño 1996; Buannic and Cartraud 2001a; 2001b], for periodic discrete structures [Bakhvalov and
Panasenko 1989; Caillerie et al. 1989], and in parallel with the homogenization of periodic media with
multiple parameters and scale changes [Cioranescu and Saint Jean Paulin 1999]. Amongst the applica-
tions of homogenization of periodic discrete media (HPDM) we mention the papers [Tollenaere 1994;
Moreau and Caillerie 1998; Boutin and Hans 2003], dealing respectively with the statics, buckling and
dynamics of trusses; [Pradel and Sab 1998], on the constitutive laws of foams; and [Le Corre et al. 2004],
involving fluid mechanics.

The present study, initially motivated by earthquake engineering, is concerned with the dynamics
of framed beams, which may be seen as “idealized buildings”. Among the numerous possible basic

Keywords: discrete structure, modal analysis, beam theory, homogenization, micromorphic media.
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cell architectures of one-dimensional repetitive structures, HPDM investigation of an orthogonal grid
geometry is of interest for the following reasons:

– The lack of bracing means that cells have a much lower shear stiffness than compression stiffness.
In this case, which is not uncommon in structural engineering, the method of multiple parameters
and scale changes [Cioranescu and Saint Jean Paulin 1999] captures the leading order (compression)
but misses the shear properties, which are found to vanish (with a loss of convexity of the elastic
potential), whereas in fact they are of lower order. HPDM overcomes this bias and predicts behaviors
that are not derivable by more classical upscaling methods. See [Buannic and Cartraud 2001a;
2001b], for example.

– It will be shown that the diversity of beam-like behaviors of repetitive structures [Stephen 1999] is
recovered by varying the mechanical properties of the basic frame elements. The high contrast of
shear and compression deformability enriches the local kinematics, inducing new beam-like models.
The macro behaviors can be classified according to three intrinsic mechanical parameters charac-
terizing the cell. Since these global parameters can be derived for any cell (braced or not), framed
beams can be considered as an archetypical case and the results extended to other kind of reticulated
beams.

– The strength of HPDM is to derive, without any prerequisite other than scale separation, a rigorous
and analytical continuous beam-like description in direct relation with the characteristics of the cell
elements. The formulation enables a parametric study and provides a clear understanding of the
several mechanisms governing the global behavior. The continuous description also highlights and
simplifies the modal analysis of the structure. This global vision is not accessible through finite
element modeling, which gives accurate numerical descriptions attached to a particular structure.

A first investigation on this topic was initiated in [Boutin and Hans 2003]. The wider objectives of
the present work are:

– To work out all possible transverse dynamic behaviors of these structures and to define in each case
the equivalent beam modeling. Depending on the mechanical properties of the cell, four families of
beams are identified. A generic beam, governed by a differential equation of sixth degree, is proved
to include all other mechanisms. This macro beam modeling involves three kinematic variables,
namely section translation, rotation and inner deformation dual to shear force, bending and inner
moments.

– To provide criteria to identify which model is relevant to a given real structure and to analyze the
range of validity and the accuracy of the continuum modeling. It is demonstrated that the maximum
number of homogenizable modes is of the order of a third of the number of cells. By investigating
correctors of higher orders, the zero order description is shown to be correct up to second order. This
may explain the fairly good accuracy of the continuum beam method that is observed numerically.

– To point out the analogy between these descriptions and those of micromorphic materials such as
Cosserat media or inner deformation media. Using a dimensional analysis based on the intrinsic
parameters of the cell, the conditions under which a reticulated medium may behave as a generalized
medium at the zero order are presented and discussed.
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The principles of the method will be given in Section 2 and applied to framed structures in Section 3.
The beam models are presented in Section 4. Their applications and numerical validation are discussed in
Section 5. Analogies with micromorphic media are developed in Section 6. The detailed implementation
of HPDM for framed structures is reported in Section 7.

2. The method of homogenization of discrete periodic media (HDPM)

The modal analysis of periodic lattices of interconnected beams is performed by HDPM in two steps
[Tollenaere and Caillerie 1998]: discretization of the balance of the structure under harmonic vibrations,
followed by the homogenization, leading to a continuous model obtained from the discrete description.
An outline of this method is given now; a detailed exposition including an example is given in Section 7.

Discretization of the dynamic balance. The structures we consider (see Figure 1 on page 1713) are
made of plate behaving as pure Euler-Bernoulli beam in out-of-plane motion. They are assembled with
perfectly stiff connections. Thus, the motions of each endpoint connected to the same node are identical
and define the discrete nodal kinematic variables of the system. The discretization consists in integrating
the dynamic balance (in harmonic regime) of the beams, the unknown displacements and rotations at
their endpoints being taken as boundary conditions. Forces applied by an element on its endpoints are
then expressed explicitly as functions of the nodal kinematic variables; see (7-7). The dynamic balance
of each element being satisfied, it remains to express the balance of forces applied by the elements
connected to a same node. Thus, the balance of the whole structure is rigorously reduced to the balance
of the set of nodes; that is, the discrete description using only the nodal variables is fully equivalent to
the complete description.

Asymptotic expansions. The key assumption of HPDM is scale separation. This means that the cell
size ` (in the direction of the periodicity) is small compared to the unknown characteristic size L of the
deformation of the structure under vibrations. Thus the scale ratio ε = `/L is such that ε � 1. The
existence of a macroscale implies that HDPM is limited to low frequency modes whose wavelength is
large compared to the cell size. In this case, the forces and displacements vary slowly from one node
to the next and can be considered as the discrete values of continuous functions to be determined. For
this purpose, a macroscopic space variable x is introduced along the periodicity axis and variables are
expressed as continuous functions of x coinciding with the discrete variable at any node n (x = xn). For
instance, a continuous displacement Uε(x) is defined in such a way that

Uε(x = xn)=U (node n).

These quantities, assumed to converge when ε tends to zero, are expanded in powers of ε. This
introduces the continuous functions U i of order i :

Uε(x)=U 0(x)+ ε U 1(x)+ ε2 U 2(x)+ · · · . (2-1)

Later on, the physically observable variables of a given order in ε will be denoted by a tilde; for example,

Ũ i (x)= εiU i (x).

All unknowns, including the modal frequency, will be expanded in powers of ε.



1712 STEPHANE HANS AND CLAUDE BOUTIN

Since `= εL is small with respect to x , the variation in variables between neighboring nodes n−1 and
n+1 is expressible using Taylor series; this in turn leads to the macroscopic derivatives. For instance,

U (n± 1)=U 0(xn)+ ε
(
U 1(xn)± L U 0′(xn)

)
+ ε2(U 2(xn)± L U 1′(xn)+

1
2 L2 U 0′′(xn)

)
+ · · ·

Here, the periodicity is explicitly used and the constant internodal distance enables one to express these
Taylor expansions with a single parameter ε. Finally, scale separation requires that, at the modal fre-
quency of the global system, the wavelength generated in each local element be much longer than
the element’s length. Consequently, nodal forces can be developed in Taylor series with respect to ε
(expressions are given in Section 7D).

Normalization. To account properly for the local physics, it is necessary to integrate correctly the prop-
erties of the cell through a normalization. Indeed, the method of asymptotic expansions is based on
the identification of terms of the same power of ε in the expansions of the balance equations. The
identification makes sense under the condition that ε tends to 0.

The normalization consists in scaling the geometric and mechanical characteristics of the element
according to the powers of ε. As for the modal frequency, scaling is imposed by the balance of elastic
and inertia forces at the macro level. Such a normalization insures that each mechanical effect appears
at the same order whatever the value of ε. Therefore, the same physics is kept at the limit ε→ 0, which
represents the homogenized model.

Macroscopic description. Expansions in powers of ε are introduced in the nodal balances. The relations
obtained being valid for any small enough ε, the orders can be separated. This leads to balance equations
for each order, whose resolution defines the macroscopic governing equations. The descriptions presented
in Section 4 are limited to the leading order. Correctors of interest in the case of poor scale separation
are examined in Section 5.

3. Class of structures

Our study focuses on the harmonic transverse vibrations in the plane (e1, e2) of structures constituted by
a pile of a large number N of identical unbraced frames called cells (Figure 1). Cell elements, of length
h in the direction e3, are linked by stiff massless connections and behave as Euler-Bernoulli beams. The
following notation will be used:

– Level n contains two nodes, n1 on the left and n2 on the right. Cell n is made of one horizontal
element f n (the floor) of level n, supported by two vertical elements wn1 and wn2 (walls) linking
level n− 1 and level n.

– The parameters of walls (i = w) and floors (i = f ) are: length `i ; thickness ai ; section area Ai ;
inertia in direction e3 Ii = a3

i h/12; density ρi ; elastic modulus Ei (Young’s modulus EY in the
case of beam or EY /(1−ν) in the case of plates as considered here). The height of the structure is
H = N`w.

Local variables. At level n, the motion of node ni (i = 1, 2) in the plane (e1, e2) is described by the
displacements u1(ni ), u2(ni ) in the two directions and by the rotation θ(ni ). Because of longitudinal
symmetry, these six variables can be replaced by the three variables (U (n), α(n), V (n)) associated to the
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Figure 1. The class of unbraced framed structures studied in this paper (left) and the
basic frame and notations (right).

rigid body motion of the pair of nodes (n1, n2) and the three variables (θ(n), 1(n), 8(n)) corresponding
to the deformation of (n1, n2); see Figure 2. The expressions of the variables are

U (n) = (u1(n1)+ u1(n2))/2 Mean transverse displacement (along e1)
α(n) = (u2(n1)− u2(n2))/` f Rotation of level n
θ(n) = (θ(n1)+ θ(n2))/2 Mean rotation of nodes
V (n) = (u2(n1)+ u2(n2))/2 Mean axial displacement (along e2)
1(n) = u1(n2)− u1(n1) Transverse dilatation
8(n) = θ(n2)− θ(n1) Differential rotation of nodes

At level n, the action of cell n on cell n+ 1 consists in the transverse and longitudinal forces T(ni )

and N(ni ), and the moments M(ni ), i = 1, 2. These forces are exactly the opposite of those in the two
walls of cell n+ 1 at the connections with cell n. It is convenient to introduce the total and differential

Figure 2. Decoupling of transverse (left) and longitudinal (right) kinematics.
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forces defined by
Tt(n) = T(n1)+ T(n2) Total transverse force
M(n) = `f (N(n2)−N(n1)) Moment of the differential longitudinal force
Mt(n) = M(n1)+M(n2) Total inner moment
Nt(n) = N(n1)+ N(n2) Total longitudinal force
Td(n) = T(n2)− T(n1) Differential transverse force
Md(n) = M(n2)−M(n1) Differential inner moment

There are six nodal balance equations, derived in Section 7 as (7-8), (7-9):

Node n1: TE
wn1
− TB

w(n+1)1− NB
f n = 0, NE

wn1
− NB

w(n+1)1− TB
f n = 0, ME

wn1
−MB

w(n+1)1−MB
f n = 0, (3-1)

Node n2: TE
wn2
− TB

w(n+1)2+ NE
f n = 0, NE

wn2
− NB

w(n+1)2+ TE
f n = 0, ME

wn2
−MB

w(n+1)2+ME
f n = 0, (3-2)

Longitudinal symmetry enables to split them into two uncoupled sets of three equations, governing
independently the transverse and longitudinal vibrations. Transverse vibrations are described by U (n),
θ(n) and α(n) involved in the following balance equations associated with the forces Tt(n), Mt(n) and
M(n):

Balance of


Tt(n) given by (3-1)1+(3-2)1

M(n) given by (3-2)2−(3-1)2

Mt(n) given by (3-2)3+(3-1)3

(3-3)

We will focus on transverse vibrations, but longitudinal vibrations, described by the complementary set
(namely (3-1)1+(3-2)1, (3-2)2−(3-1)2, (3-2)3−(3-1)3) and involving V (n), 1(n) and 8(n) and the
forces Nt(n), Td(n) and Md(n), can be analyzed in the same manner [Boutin and Hans 2003].

Scaling. We consider structures whose walls and floors have similar lengths and are made of elastic
linear materials with moduli and densities of the same order of magnitude:

E f /Ew = O(1), ρ f /ρw = O(1), ` f /`w = O(1).

The various physics of the basic frame are introduced through the walls and floors thicknesses that may
be different, hence inducing a large range of contrast of stiffness between elements, in compression and
bending. Those properties are specified by scaling the wall and floor thicknesses:

aw/`w = O(εkw) and a f /`w = O(εk f ),

where kw and k f are fixed for each investigated structure. The reference frequency used for scaling the
modal frequencies is taken by convention as

ωr =
1
L

√
2 EwAw
3

, (3-4)

where 3 is the global linear mass of the structure. The modal frequency is scaled through the ratio
of the length of elements to their wavelength at this frequency. Because of linearity, the modes can
be normalized and the mean transverse displacement order is chosen at zero. The effective orders of
magnitude with respect to U 0/L of the rotation of the section α and of the mean nodal rotation θ , are
deduced through the homogenization process.
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Macroscopic parameters. In the expansions there appear naturally

(a) the linear masses of


the two walls, 3w = 2ρw Aw,

the floor, 3 f = ρ f A f ` f /`w,

the cell, 3 =3 f +3w;

(b) the bending stiffnesses of the two walls,
{

(inner bending) 2Ew Iw, where Iw = a3
wh/12,

(global bending) Ew I = Ew Aw `2
f /2;

(c) the macroscopic shear stiffnesses of


the two walls, Kw = 2κw `w, where κw = 12Ew Iw/`3

w,

the floor, K f = κ f `
2
f /`w, where κ f = 12E f I f /`

3
f ,

the cell, K−1
= K−1

w + K−1
f .

The macroscopic area moment of inertia I is that of a beam made of the two walls distant of ` f , and
κi = 12Ei Ii/`

3
i is the static bending stiffness of a bi-embedded beam.

4. Transverse dynamics of multi-framed structures

This section shows that the structures considered can exhibit four main kinds of behavior, according to
the frame characteristics. Starting from the three discrete kinematic variables U (n), α(n) and θ(n), the
beam-like model can be governed either

– by the single continuous variable U , corresponding to a shear beam,

– or by the two independent continuous variables U and α, corresponding to a slender-Timoshenko
beam,

– or by U and θ , corresponding to an inner bending / shear beam,

– or by the three independent continuous variables U , α and θ when transferred to a macroscopic
scale, in which case a double bending shear beam is obtained.

These models can be considered as particular cases of a generic beam.

Shear beam. The simplest macroscopic description is obtained (for instance) when walls and floors have
thicknesses of order ε2: in symbols, aw/`w = O(ε2) and a f /`w = O(ε2).

Leading macroscopic balance equations. In this case, the macroscopic transverse dynamics occurs at
frequency ω of order O(ωr (aw/`w))= O(ωrε

2), denoted for this reason ω̃2. The variables Ũ 0 and θ̃0

are of the zero order, while the section rotation α̃2 is of the second order. Considered to leading order,
Equations (3-3) give 

Kw

(
Ũ 0′′
+ θ̃0′

)
+3ω̃2

2 Ũ 0
= 0 (Tt)

Kw

(
Ũ 0′
+ θ̃0)

+ K f θ̃
0
= 0 (Mt)

K f θ̃
0
+ Ew I α̃2′′

= 0 (M)

(4-1)

These equations represent the balance of, respectively, transverse forces, inner moments and differential
axial forces (inducing a macroscopic moment). The relation (4-1)Mt defines the inner kinematic of the
section. Using this relation for eliminating θ̃0 in (4-1)Tt , we obtain a differential equation of second
degree in Ũ 0:

KŨ 0′′
+3ω̃2

2 Ũ 0
= 0. (4-2)
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Thus, Ũ 0 appears as the single driving macroscopic variable. The inner deformation of the section
measured by θ̃0 and the rotation α̃2 can be derived from the knowledge of Ũ 0 by means of the equations

θ̃0
=−

K
K f

Ũ 0′, α̃2′′
=

K
Ew I

Ũ 0′. (4-3)

Equivalent beam. These results allow one to construct an equivalent beam by defining the appropriate
behavior law. Equation (4-2) suggests that we define a macroscopic shear force T̃ 0 dual to the section
translation Ũ 0 whose variations balance the inertia:

Ũ 0′
=3ω̃2

2 Ũ 0. (4-4)

This gives
T̃ 0
=−K Ũ 0′. (4-5)

The force T̃ 0 results from the balance of transverse force Tt , but they are not identical; the former is
built from the elastic deformation (of the first order) exclusively, whereas Tt contains all the effects,
including the inertia. Equations (4-4) and (4-5) correspond to the macroscopic shear beam equivalent to
(4-2) and governed by the two dual variables, Ũ 0 and T̃ 0 that are sufficient to define the proper boundary
conditions for transverse vibrations. The macroscopic shear force is generated by the shear mechanism
of the frame. This latter results from the bending of frames beams bi-embedded at their endpoints, as
suggested by physical intuition and confirmed by the expression of K (item (c) on page 1715). The shear
beam reduces the three degrees of freedom at the local scale to one - the section translation - at the macro
scale. Although θ̃0 is of the zero order, it disappears, as α̃2, in the macro description. These last variables
have the status of ”hidden” internal variables driven by the macro variable, as indicated in (4-3). This
shear beam is the continuous version of the shear model widely used in earthquake engineering.

Slender-Timoshenko beam. Consider now structures whose wall and floor thicknesses are of the same
order as the scale ratio, so aw/`w = O(ε) and a f /`w = O(ε).

Leading macroscopic balance equations. In this case, detailed in Section 7F, transverse vibrations oc-
cur at frequency ω̃1 of order O(ωr (aw/`w)) = O(ωrε) and variables Ũ 0, θ̃0, α̃0 are of the zero order.
Considered to leading order, Equations (3-3) yield

Kw

(
Ũ 0′′
+ θ̃0′

)
+3ω̃2

1 Ũ 0
= 0 (Tt)

Kw

(
Ũ 0′
+ θ̃0)

+ K f
(
θ̃0
− α̃0)

= 0 (Mt)

K f
(
θ̃0
− α̃0)

+ Ew I α̃0′′
= 0 (M)

(4-6)

As above, the balance of inner moments (4-6)Mt provides the inner kinematic of the section,

θ̃0
= K

(
α̃0

Kw
−

Ũ 0′

K f

)
. (4-7)

The use of this relation to eliminate θ̃0 in (4-6)Tt and (4-6)M gives{
K
(
Ũ 0′′
+ α̃0′

)
+3ω̃2

1Ũ 0
= 0,

K
(
Ũ 0′
+ α̃0)

− Ew I α̃0′′
= 0.

(4-8)
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This shows that the translation Ũ 0 and the rotation α̃0 of the section are the two independent governing
variables, while θ̃0 is linked to them by (4-7). Combining the two parts of (4-8) we obtain

Ew I
(

Ũ 0′′′′
+
3ω̃2

1

K
Ũ 0′′

)
−3ω̃2

1 Ũ 0
= 0 (4-9)

Equivalent beam. The preceding description is close to that of a Timoshenko beam. The presence of two
kinematic variables leads us to introduce a shear force T̃ 0 dual to the translation and a bending moment
M̃0 dual to the section rotation. From (4-8), they are defined by

T̃ 0
=−K

(
Ũ 0′
+ α̃0), M̃0

= Ew I α̃0′, (4-10)

so that the macro description (4-8) is now

T̃ 0′
=3ω̃2

1 Ũ 0, M̃0′
=−T̃ 0 (4-11)

meaning that the variations of shear force balance the inertial effect, and those of bending moment
balance the shear force (as in classical beam theory). The macroscopic shear force (4-10)1 is generated
by the shear deformation of the cell already described for the shear beam. The shear distortion of the
cell now combines the gradient of the translation and the section rotation. The macroscopic bending
moment of the whole structure comes from simultaneous traction-compression of walls, as indicated by
the expression of the macro area moment of inertia I (item (b) on page 1715). The behavior laws (4-10)
are those of a beam described by

– the translation Ũ 0 and rotation α̃0 of the section, and

– the shear force T̃ 0 and bending moment M̃0.

which suffice to express the correct macroscopic boundary conditions. The number of degrees of freedom
is once again reduced since θ̃0 disappears from the macro description to become a “hidden” internal
variable defined from the driving variables by (4-7).

Despite similarities, this model does not exactly fit the usual Timoshenko beam for two reasons. First,
for massive beams, the Timoshenko correction due to shear only arises in case of small slenderness.
Here the shear effect is present even for large slenderness. Secondly, for a Timoshenko massive beam,
no effect of rotation inertia appears (although the discrete moment balances include all the contributions).
These differences come from the framed cell whose shear deformability is much larger than in a massive
beam and whose rotation inertia is much smaller (so its effect appears only at higher orders).

Note on the scaling. We will prove for the case at hand that transverse modes only occur for frequencies
ω = O(ωr (aw/`w)) (the arguments apply to other cases as well). At a frequency ω� ωr (aw/`w), the
inertia 3wω2Ũ 0 disappears from (4-6)Tt , so a quasistatic solution would be obtained. Conversely, at
a frequency ω � ωr (aw/`w), (4-6)Tt reduces to 3wω2Ũ 0

= 0, so Ũ 0
= 0. Thus, we are left with

equations involving α̃0 and θ̃0. Such gyration deformations without translation at the leading order do
not correspond to a transverse mode.

Inner bending / shear beam. A less usual behavior arises when aw = O(ε`w) and, say a f = O(ε5/3`w):
in other words, when the floors are significantly more flexible than the walls, since K f = O(ε2Kw).
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Leading macroscopic balance equations. In this case, transverse vibrations occur for frequencies ω̃2 of
order O(ωr (aw/`w)2); Ũ 0 and θ̃0 are of zero order, and α̃2 is of second order. The derivation of the
behavior requires considering the first two orders of the transverse force and inner moment balances,
(3-3)1 and (3-3)3, together with the leading order of the bending moment balance (3-3)2. We obtain

Kw

(
Ũ 0′′
+ θ̃0′

)
= 0 (Tt)

Kw

(
Ũ 2′′
+ θ̃2′

)
+3wω̃

2
2Ũ 0
+2Ew Iw

(
Ũ 0′′′′

+ 2θ̃0′′′
)
= 0 (Tt1)

Kw

(
Ũ 0′
+ θ̃0)

= 0 (Mt)

Kw

(
Ũ 2′
+ θ̃2)

+ K f θ̃
0
+2Ew Iw

(
2Ũ 0′′′

+ 2θ̃0′′
)
= 0 (Mt1)

K f θ̃
0

+Ew I α̃2′′
= 0 (M)

(4-12)

As before, the zero order nodal moment balance supplies the inner kinematic of the section:

Ũ 0′
+ θ̃0
= 0 (4-13)

The elimination of the second order terms between (4-12)Tt1 and (4-12)Mt1 leads to

2Ew Iw Ũ 0′′′′
= K f Ũ 0′′

+3wω̃
2
2 Ũ 0. (4-14)

The behavior (4-14) differs fundamentally from that of the slender-Timoshenko beam. Here, the fourth
degree term results from inner bending of walls. The quantity 2Ew Iw indicates the coupling between
walls, due to the nonlengthening of floors, very stiff in their axis. This coupling enforces the bi-embedded
bending of the floors (of very low transverse stiffness K f ), which in turn induces a transverse force. Equa-
tions (4-14) and (4-13) imply that the driving variables are the translation Ũ 0 and the inner deformation
of the section expressed by θ̃0. The section rotation, of order two, is a hidden internal variable defined
by

α̃2′′
=

K f

Ew I
Ũ 0′. (4-15)

Equivalent beam. According to these results, two macroscopic forces are defined, a shear force T̃ 0 dual
to the translation and an inner bending moment M̃0 dual to the inner deformation:

T̃ 0
=−K f Ũ 0′, M̃0

=−2Ew Iw θ̃0′. (4-16)

T̃ 0 takes a form similar to that of the previous beams, except that shear stiffness is induced by the floors
alone and the section rotation disappears. The inner moment M̃0 due to the simultaneous bending of the
walls is new. Using these variables, (4-13) and (4-14) become(

T̃ 0
+ M̃0′

)′
=3ω̃2

2 Ũ 0, θ̃0
=−Ũ 0′. (4-17)

The first of these equations means that the inertia is balanced by the variation of the total shear force,
which includes T̃ 0, induced by the shear of the cell, and the shear force M̃0′, due to the inner bending of
the walls. The inner moment balance (4-17)2 defines the inner kinematic of the section. In accordance
with (4-12)M, a global bending moment M̃0

= Ew I α̃2′ such that M̃0′
=−T̃ 0 could also be defined, but

its effect (traction-compression of walls) is insignificant.
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We conclude that the inner bending / shear beam is described by the following macroscopic variables,
sufficient to express the macroscopic boundary conditions:

– the section translation Ũ 0 and inner deformation associated to the rotation θ̃0;

– the shear force T̃ 0 and inner bending moment M̃0.

This beam model, where the cell inner deformation subsists as a macroscopic variable, is of the same
kind as the one proposed by [Kerr and Accorsi 1985].

Double bending shear beam. Here is now investigated the particular situation allowing the global bend-
ing, the inner bending of walls and the shear of the cell to have similar intensity. This specific case occurs
when aw/`w = O(1) and a f /`w = O(ε2/3) so that K f = O(ε2Kw).

Leading macroscopic balance equations. In this case, the transverse vibrations occur at frequency ω̃1 of
order O(ωr (aw/`w)) and Ũ 0, θ̃0, α̃0 are of zero order. As in the previous case, the determination of the
behavior requires the first two orders of the mean transverse force and inner moment balances, (3-3)1

and (3-3)3, and the leading order of global moment balance (3-3)2. We obtain

Kw

(
Ũ 0′′
+ θ̃0′

)
= 0 (Tt)

Kw

(
Ũ 2′′
+ θ̃2′

)
+ 3wω̃

2
1Ũ 0
+ 2Ew Iw

(
Ũ 0′′′′

+ 2θ̃0′′′
)
= 0 (Tt1)

Kw

(
Ũ 0′
+ θ̃0)

= 0 (Mt)

Kw

(
Ũ 2′
+ θ̃2)

+ K f
(
θ̃0
−α̃0)

+ 2Ew Iw
(
2Ũ 0′′′

+ 2θ̃0′′
)
= 0 (Mt1)

K f
(
θ̃0
−α̃0)

+ Ew I α̃0′′
= 0 (M)

(4-18)

This system is similar to that of the inner bending / shear beam, but α̃0 appears in (4-18)Mt1 and (4-18)M.
Elimination of the second order terms between (4-18)Tt1 and (4-18)Mt1 leads to

Ũ 0′
+ θ̃0
= 0, K f

(
θ̃0
− α̃0)

−3wω̃
2
1Ũ 0
+ 2Ew IwŨ 0′′′′)

= 0, K f
(
θ̃0
− α̃0)

+ Ew I α̃0′′
= 0. (4-19)

Combining these three equations gives the sixth-degree differential equation

2Ew IwEw I
K f

Ũ 0′′′′′′
− (2Ew Iw + Ew I ) Ũ 0′′′′

−
Ew I 3wω̃2

1

K f
Ũ 0′′
+3wω̃

2
1 Ũ 0
= 0. (4-20)

Equation (4-20) shows that this nonclassical beam integrates the three previously identified mechanisms
and requires three kinematic variables. Remarkably, the degrees of freedom at the macro scale are
identical to those at the micro scale. Consequently, this is the richest continuous modeling that can be
extracted from the class of discrete structures under study.

Equivalent beam. The beam-like description involves three forces dual to the section translation Ũ 0 and
rotation α̃0, the inner deformation θ̃0. They are defined by

shear force T̃ 0
=−K f

(
Ũ 0′
+ α̃0

)
bending moment M̃0

= Ew I α̃0′

inner moment M̃0
=−2Ew Iw θ̃0′

(4-21)
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and Equations (4-19) now read(
T̃ 0
+ M̃0′

)′
=3wω̃

2
1Ũ 0, M̃0′

=−T̃ 0, Ũ 0′
+ θ̃0
= 0 (4-22)

The beam model (4-21), (4-22) combines features of the inner bending shear beam and of the slender-
Timoshenko beam (for which K f /Kw = O(1) so that the shear force and the inner kinematic differ from
the present case). We conclude that the double bending shear beam requires six macroscopic boundary
conditions to be expressed with the above defined macroscopic variables.

Continuous family of macro behaviors. A systematic study demonstrates that the behaviors evolve grad-
ually according to the properties of the frame elements. To illustrate this, let us fix the thickness of walls
at aw/`w = O(ε) and decrease the thickness of the floors. The following descriptions are obtained (for
briefness, only the equations expressed with Ũ 0 are given):

a f

`w
= O(ε1/2) : Ew I

(
Ũ 0′′′′

+
3 f ω̃

2
5/4

Kw
Ũ 0′′

)
=3 f ω̃

2
5/4Ũ 0

a f

`w
= O(ε) : Ew I

(
Ũ 0′′′′

+
3ω̃2

1

K
Ũ 0′′

)
=3ω̃2

1Ũ 0

a f

`w
= O(ε3/2) : K f Ũ 0′′

+3wω̃
2
7/4Ũ 0

= 0

a f

`w
= O(ε5/3) : K f Ũ 0′′

+3wω̃
2
2 Ũ 0
= 2Ew IwŨ 0′′′′

a f

`w
= O(ε2) : 3wω̃

2
2Ũ 0
= 2Ew IwŨ 0′′′′

For floors thickness such that a f /`w = O(ε1/2) or O(ε), the global bending and shear of the cell (gov-
erned by the wall or the frame flexibility) are of the same magnitude and lead to slender Timoshenko
models. The decrease of the floor thickness increases their flexibility and in turn prevents the global
bending. Thus, in a first step, where a f /`w = O(ε3/2), a shear beam governed by the floor flexibility is
recorded; in a second step, where a f /`w = O(ε5/3), the inner bending of walls appears leading to an inner
bending / shear beam; and lastly, with a f /`w = O(ε2), the floor’s participation (which only synchronize
the wall motions) vanishes and an inner bending beam is obtained.

The second example concerns beams of identical walls and floors thickness. A continuous passage
from the global bending beam (as a perforated beam) through a Timoshenko beam and finally a shear
beam is observed when reducing the thicknesses:

aw
`w
= O

(a f

` f

)
= O(ε1/2) : Ew I Ũ 0′′′′

=3ω̃2
1Ũ 0,

aw
`w
= O

(a f

` f

)
= O(ε) : Ew I

(
Ũ 0′′′′

+
3ω̃2

1
K

Ũ 0′′
)
=3ω̃2

1Ũ 0,

aw
`w
= O

(a f

` f

)
= O(ε3/2) : KŨ 0′′

+3ω̃2
3/2Ũ 0

= 0.

(4-23)

To summarize, three elastic parameters determine the different macroscopic behaviors:

– the cell shear stiffness K , which may be reduced to the wall or floor stiffness (Kw or K f );
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– the global bending stiffness Ew I ;

– the inner bending stiffness 2Ew Iw.

Owing to scale separation, these parameters are given by the static properties of the elements (see (b)
and (c) on page 1715). The scaling of the thicknesses (then stiffnesses) is essential to capture the physics
and to identify all possible models. Without scaling, meaning in fact aw/`w = O(a f /` f ) = O(1), the
only model that could be obtained would be a global bending model, irrelevant for most cases.

Despite a common architecture, the various structures exhibit very different dynamic behaviors: for
instance, the eigenfrequencies fk follow the series of odd integers, fk/ f1 = (2k− 1) for cantilever shear
beam and are approximately proportional to the series of square odd integers, fk/ f1 ≈ (2k − 1)2/1.44
(k > 1), for the bending beam.

Generic beam model. The aim is to build a model that may degenerate to any of the previous model.
To include all the mechanisms, such a model must involve the three kinematic variables U , α, θ . This
generalization sacrifices the uniformity in order of magnitude of the several terms (i.e., according to the
value of the parameters, some terms could be negligible in this generalized model). For this reason, the
tilde and exponent order are removed from the variables. The natural way to associate in a generic beam
the slender-Timoshenko and inner bending shear beam properties is to define the following behavior
laws: 

shear force T =−K (U ′+α)
bending moment M = Ew I α′

inner moment M = 2Ew Iw U ′′
(4-24)

and the force and moment balance equations, associated with the inner kinematic of the section:

(T +M′)′ =3ω2 U, M ′ =−T, Kw(U ′+ θ)+ K f (θ −α)= 0. (4-25)

Thus, the sixth order equation governing the generic beam takes the generalized form

2Ew IwEw I
K

U ′′′′′′− (2Ew Iw + Ew I )U ′′′′−
Ew I
K

3ω2U ′′+3ω2U = 0. (4-26)

Energy balance and boundary conditions. The consistency of those definitions can be checked by estab-
lishing the energy balance of this generic beam. For this purpose, multiply (4-25)a by U and integrate
by part over the beam length H :∫ H

0
3ω2U 2dx =

∫ H

0

(
T ′+M′′

)
Udx =

[
(T +M′)U

]H
0 −

∫ H

0
(T +M′)U ′ dx .

Taking into account (4-25)2 and then integrating again by parts, the last integral becomes∫ H

0
T (U ′+α) dx +

∫ H

0
M ′α dx +

∫ H

0
M′U ′ dx

=

∫ H

0

(
T (U ′+α)−Mα′−MU ′′

)
dx + [Mα]H0 + [MU ′]H0 .
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Finally, using the behavior laws (4-24), we get∫ H

0
3ω2U 2 dx =

∫ H

0

(T 2

K
+

M2

Ew I
+

M2

2Ew Iw

)
dx︸ ︷︷ ︸

Elastic energy

+
[(

T +M′
)
U
]H

0 −
[
Mα

]H
0 −

[
MU ′

]H
0︸ ︷︷ ︸

Work of boundary conditions

(4-27)

This energy balance equation states the equality of the kinetic energy with the elastic energy associated to
the three mechanisms and the energy provided at the boundaries (which defines explicitly the appropriate
boundary conditions). This suggests that, to define the macroscopic constitutive laws of the equivalent
continuous beam, it is more general to use the three global cell parameters involved in the shear, global
and inner bending rather than the precise frame cell geometry. When expressed with these global cell
parameters, the beam-like descriptions established above may be employed for other symmetric cells, as
explained in the next section.

5. Behavior of real structures

This section deals with practical applications of the preceding results. Real structures, made up of a finite
(even if large) number of cells, themselves of finite size, match only imperfectly the homogenization
conditions stipulating that the scale ratio should tend to zero.

As a first consequence, the homogenized descriptions only provide reasonable approximations to the
behavior. What is meant by reasonable will be clarified in Section 5B, devoted to numerical modeling,
and in Section 5C, where the effective order of the corrector is analyzed. A second consequence is of
first importance for problems involving, in addition to the scale ratio, other small physical parameters
(here the thickness to length ratios). For a given structure, what is the proper choice amongst the possible
behaviors, or, in other words, what is the appropriate scaling?

5A. Identification of the relevant modeling. To establish the modeling, hence the proper scaling for a
real structure, let’s proceed as follows. Consider a given periodic structure of cell size `, vibrating at
macro scale and admit for the moment that the physical macro length L associated to these oscillations
can be correctly assessed. Since ` is known, the finite physical scale ratio

ε̃ =
`

L
of this structure under these vibrations is therefore defined. The numerical finite value of each small
parameter (here geometrical) characterizing the real cell can also be quantified and equalized to the
physical scale ratio ε̃ at a particular power. This power, then replaced by a close integer or rational
number, supply unambiguously the physical scaling consistent with the real problem in consideration.

Performing homogenization with this scaling consists in replacing the physical value ε̃ by a mathe-
matical ε tending to zero. By doing so, the relative orders of magnitude of the physical terms are kept
identical from the real cell to the continuous model obtained at the limit. Finally, the real structure can be
seen as an imperfect realization (for the small but finite mathematical value ε = ε̃) of the homogenized
continuous model built with the proper scaling. The smaller ε̃ is, the better would be the continuous
approximation. Thus, in real cases it is possible to identify the right continuous description, provided
that the macro length L is reliably estimated.
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Macroscopic length of modal vibrations. Length L is evaluated by a dimensional analysis realized at the
macroscopic scale, which gives classically [Boutin and Auriault 1990]

L =
O(U )

O(∂xU )
(5-1)

This estimation is consistent with the asymptotic expansion since the increment of the macroscopic
variable on one cell, ` ∂xU , has to be of order ε compared to its current value, U. This implies: ` ∂xU =
O(εU ) = O(`U/L), leading to (5-1). Apply this result to the k-th eigenmode of cantilever beams
(embedded at base and free at the top) of length H (the cantilever conditions are taken for concreteness):

– For shear beams, the modal analysis shows that modal shape are expressed on the basis of two
exponentials {e(±i x/Lk)}, Lk being solutions of cos(H/Lk)= 0 so that Lk = 2H/(π(2k− 1)). From
the estimation (5-1), Lk is the researched characteristic length of the k-th mode of shear beams.

– For bending beams, the decomposition basis is
{
e(±i x/Lk), e(±x/Lk)

}
, where Lk is a solution of

cos(H/Lk) = 1/ cosh(H/Lk), whose zeros are close to Lk ' 2H/(π(2k − 1)). Here again from
(5-1), Lk is the characteristic length of the k-th mode of bending beams.

– For other beams combining shear and one (or two) bending effects, two (or three) spatial constants
appear in the basis of exponentials. It can be proved algebraically that the smaller value (which
must be considered for defining the characteristic length) is always close to Lk ' 2H/(π(2k− 1)).

Thus, for an N -level structure (H = N `w) and independently of the model, the macroscopic length
Lk of the k-th embedded-free mode is known and the physical scale parameter is related to the mode
number and to the number of cells:

ε̃k =
`

Lk
'
π(2k− 1)

2N
, Lk '

2H
π(2k− 1)

(5-2)

To illustrate (5-2), consider the first mode of a ten-level building as in Figure 1. From (5-2) ε̃1 = 0.15
and if `w = ` f = 3 m and aw = a f = 50 cm = O(ε̃1`w), a slender-Timoshenko beam is expected. If
aw = a f = 20 cm= O(ε̃1.5

1 `w), the behavior would be that of a shear beam, and so on.
Interestingly, (5-2) indicates that the maximum number of modes respecting the scale separation is

limited to N/3 (a third of the number of cells), beyond which HPDM is irrelevant.

Identification criterion based on dimensionless parameters. To identify the global behavior of a given
structure, more physical insight, as well as generality, would be obtained by working in terms of macro-
scopic elastic coefficients of the cell rather than in terms of its elements thicknesses. In this aim, since the
macro lengths are quite similar whatever the modeling, a dimensional analysis is realized on the generic
beam. The change of variables x = x/L (with the mode to be specified later) transforms the governing
equation (4-26) into

C γU∗′′′′′′− (1+ γ) U∗′′′′−�2 U∗′′+
�2

C
U∗ = 0, (5-3)

where, by construction, the dimensionless terms marked with ∗ are O(1) and

C =
Ew I
K L2 , γ =

2Ew Iw
Ew I

=
2Iw

I
, �2

=
3ω2L2

K
. (5-4)
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C evaluates the global bending effect compared to shear effect and γ the inner bending compared to
global bending. C and γ supply efficient identification criteria of behavior: according to their order of
magnitude with respect to ε̃, Equation (5-3) degenerates into simplified forms in such a way that all the
models are recovered. For instance, if C = O(1) and γ = O(ε̃), the terms related to Cγ and γ disappear
and the resulting model is

U∗′′′′+�2 U∗′′−
�2

C
U∗ = 0,

which corresponds to a slender Timoshenko beam, and similarly for the other cases. By doing so, seven
behaviors are obtained depending on the value of C , Cγ and γ compared to ε̃ and ε̃−1. A synthetic
representation (Figure 3) is deduced by mapping the domain of validity of each behavior according to
the two parameters p and q defined by

C = ε̃ p and γ = ε̃q . (5-5)

We remark that γ and the constant β defined by

β =
Ew I
K`2

w

=
Ew I
K L2

( L
`w

)2
= C ε̃−2

= ε̃ p−2 (5-6)

Figure 3. Domains of validity of the equivalent beams according to values of p and q
defined by C = ε̃ p and γ = ε̃q . Beams made of a given cell are located on a straight line
issued from point P (p = 2, q = 0). On this line, the representative point moves away
from P when increasing the order k of the mode and closer to P when increasing the
number N of cells. For example, the two dotted straight lines correspond to the behavior
of the first mode in function of the number of levels (numbered points) for the F1 and
F2 structures studied in Section 5B.
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provide two intrinsic parameters of the cell (for the structures being studied, aw < `w = O(` f ) implies
γ < 1). Therefore, values of p and q enabling one to define the behavior of beams made of a given cell
(β and γ fixed) are determined in the following manner: in terms of ε̃— which depends on the number
of cells and on the mode number; see (5-2) — p and q are given by

(p− 2) log ε̃ = logβ and q log ε̃ = log γ;

then, eliminating ε̃, we get
(p− 2) log γ− q logβ = 0. (5-7)

Thus, in the (p, q) plane, the possible behaviors of beams made of a given cell necessarily lie on the
straight line issuing from point P (p = 2, q = 0) of (5-7). For beams made of a given number of cells,
the position on the line moves away from P as the mode number is increased (ε̃ increases). Conversely,
for a given mode number, the position on the line approaches P as the number of cells increases (and
ε̃ decreases). Consequently, the modes of a given structure are not necessarily described by a unique
macroscopic model. For instance, the description could be a bending beam for the first few modes, then
a slender-Timoshenko beam and finally a shear beam for the higher modes: see Figure 3. Conversely,
at a given mode order, if the number of cells is increased, the opposite evolution from shear to bending
beam arises. This corresponds to the well known effect of slenderness in beam theory.

5B. Numerical validation. To investigate the relevance of the homogenized descriptions for structures
of finite number of cells, we made comparisons with numerical simulations. We modeled a large number
of fictitious structures, each made of basic frames having walls and floor of length 3 m and modulus
E = 200 GPa. The diversity that allows most of the cases to be covered was introduced in two ways.
First, the number N of cells varies from 5 to 1000; secondly, two basic frame have been used:

– F1, whose walls and floor thicknesses are identical (0.1 m), and

– F2, whose walls are thicker (1 m) than the floor (0.15 m).

For each of these structures, considering clamped-free boundary conditions, the four first eigenmodes
were calculated using three independent methods:

– First, a direct numerical treatment of the structure was carried out with the finite element code RDM6,
using a beam element for meshing each beam of the structure. The convergence criterion was based
on the relative eigenfrequency error being less than 10−4.

– Next, the eigenmodes were determined using generic beam modeling, with appropriate intrinsic pa-
rameters for the basic frames (β = 675 and γ = 1/2700 for F1, and β = 1336 and γ = 1/27 for F2) and
appropriate boundary conditions (U = 0, α = 0, θ = 0 on the clamped base, and T = 0, M = 0, M= 0
on the top). The resolution (not presented here) followed the modal method; the eigenfrequencies are
the zeros of the 6× 6 determinant of equations describing the boundary conditions.

– Finally, the proper modeling of each structure is identified from the calculated values of C and γ,
compared to ε̃= π/2N power. The proper boundary conditions are expressed with the macro variables
of the identified model, and the eigenmodes are determined; following this approach, F1-structures
are always well modeled by a slender-Timoshenko beam, but simpler models are efficient: shear beam
when N < 30; global bending beam when N > 300 (Figure 6, top). The F2-structures vary from an
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Figure 4. Fundamental mode shape of F1-structures (left) and F2-structures (right)
made of 10, 100 or 1000 identical frames. For comparison, all the structures are drawn
at the same size.

inner bending beam (N < 20) to a generic beam close to a shear beam (N ≈ 60) and tend to a global
bending beam for N > 200 (Figure 3 and 6, bottom).

The analysis of the results focuses on three points:

(1) the diversity of behaviors, illustrated by the variety of the mode shapes (Figure 4),

(2) a comparison of the eigenfrequencies derived by the three methods (Figures 5 and 6), and

(3) the series of eigenfrequency ratios fi/ f1 for i = 2, 3, 4 (Figure 6). This series of ratios characterizes
very efficiently the nature of the behavior, and so constitutes a stringent criterion for the reliability
of equivalent beams. Shear and bending beams correspond respectively to the series (1, 3, 5, 7) and
(1, 6.25, 17.36, 34.03).

Figure 5 shows excellent agreement of the generic beam modeling with the numerical calculations.
This highlights the relevance of the analytical generic beam for the wide range of cases we tested. Even
with poor scale separation (and even very poor, e.g., the fourth mode of the five-frame structure), the
generic beam provides surprisingly good results. An attempt to explain this observation is made in
Section 5C.

The comparison in Figure 6 between the results derived from the proper specific beam and the generic
beam (and numerical modeling) shows that both coincide only in the validity range established theo-
retically. As expected, outside this range, both significantly diverge, meaning that the specific model
loses its relevancy, and has to be replaced by the actual proper beam in this other range. The continuous
evolution from one model to another is consistent with that predicted above (Figure 3). To summarize:

– In the scale separation frequency range, the tested structures reach most of the possible cases (shear,
slender-Timoshenko, double bending, generic beam); it appears that every case can be described ac-
curately by one of these modeling, meaning that all the physical mechanisms are properly described
by the homogenized behavior.
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Figure 5. Eigenfrequencies of the four first modes of F1 structures (top) and F2 struc-
tures (bottom), versus the number of frames. Comparison between generic beam model-
ing and numerical calculations (left) and errors evaluation in percent (right).

– The interest and the accuracy of the generic beam clearly appears, specially in intermediate cases
where none of the simplified beams provides sufficiently accurate results.

– The proposed procedure of determining the proper macro beam for a specific case is confirmed
numerically.

– Complementary to the generic beam, the interest and the accuracy of the relevant homogenized
beam model, of easier use than the generic beam model, are confirmed in their own validity range.
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Figure 6. Comparison between generic beam modeling and identified proper beam
model (top: shear and slender-Timoshenko, F1-structures; bottom: inner bending beam
and global bending, F2-structures). On the left are shown the eigenfrequencies of the
first and fourth modes; other modes are not drawn for the clarity. On the right, ratios
fi/ f1 versus the number of frames.

5C. Effective corrector order: the slender-Timoshenko case. The numerical examples have shown that
HPDM provides accurate results even though the scale separation is poor. A possible explanation may
be found in the effective order of magnitude of the terms neglected by the zero order description. In fact,
despite the form of the expansion (2-1), it will be shown that the corrector is of order ε2 (at least for
slender-Timoshenko beams). This argument is in favor of a largest extent of validity and reliability of
the homogenized description.
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Investigate high order terms for improving the description in the presence of poor scale separation
have already been proposed for continuous media [Bensoussan et al. 1978; Bakhvalov and Panasenko
1989; Gambin and Kröner 1989; Boutin and Auriault 1993], for discrete media [Verna 1991; Tollenaere
1994; Pradel and Sab 1998] and for beams [Buannic and Cartraud 2001a; 2001b]. A detailed analysis
of higher order correctors is beyond the scope of this paper; the single case of the slender-Timoshenko
beam is studied hereafter to identify its effective order.

Macroscopic balance equations at the first order. To pursue at the next order the resolution begun in
Section 4 and Section 7, the balance equations concerning Ũ 1, θ̃1, α̃1 are established, whose beam
theory interpretation is similar to that of the zero order. The behavior laws remain identical:

T̃ 1
=−K

(
α̃1
+ Ũ 1′

)
, M̃1

= Ew I α̃1′, (5-8)

whereas the balance equations read (ω̃2 is the second term of the modal frequency expansion):

T̃ 1′
−3ω̃2

1 Ũ 1
= 23ω̃1ω̃2 Ũ 0, M̃1′

=−T̃ 1. (5-9)

The difference with (4-11) comes from the term induced by the zero order solution Ũ 0, playing the role
of an inner body force. Combining (5-8) and (5-9), we see that the first order is governed by

0[Ũ 1
] = Ew I

(
Ũ 1′′′′
+
3ω̃2

1

K
Ũ 1′′

)
−3ω̃2

1 Ũ 1
=

2ω̃2

ω̃1
Ew I Ũ 0′′′′, (5-10)

where the differential operator 0 is the same as at the zero order; see (4-9).

Cancellation of the first order. The first corrective term generally presents a particular energetic property.
In composite media, the work of the first corrector under the zero order solution is null at the period scale;
see for example [Boutin and Auriault 1993; 1995]. For discrete media, a similar result was obtained for
braced framed structures in [Tollenaere 1994].

This property is related to the Fredholm alternative [Bensoussan et al. 1978]. In fact, the order zero
solution is the eigenfunction associated to the null eigenvalue of the differential operator. This latter
being unmodified at the next order, a solution exists if and only if the source term is orthogonal to the
eigenfunction with eigenvalue zero, which is the order zero solution.

We apply this idea here by calculating the virtual work of Ũ 0 under Ũ 1 and reciprocally, these motions
being governed by

0
[
Ũ 0
]
= 0, 0

[
Ũ 1
]
=

2ω̃2

ω̃1
Ew I Ũ 0′′′′. (5-11)

For simplicity we consider cantilever beams, so the energy at the boundary conditions cancels out.
Algebra similar to that presented in Section 4 gives∫ H

0
0
[
Ũ 0] Ũ 1dx =W

(
Ũ 0, Ũ 1)

+ Ec
(
Ũ 0, Ũ 1)

= 0 (5-12)

and∫ H

0

(
0
[
Ũ 1]
−

2 ω̃2

ω̃1
Ew I Ũ 0′′′′

)
Ũ 0dx =W

(
Ũ 0, Ũ 1)

+Ec
(
Ũ 0, Ũ 1)

+

∫ H

0
23ω̃1ω̃2

(
Ũ 0)2dx = 0, (5-13)
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where the elastic energy W and the virtual kinetic energy Ec take on the form

W
(
Ũ 0, Ũ 1)

=

∫ H

0

( T̃ 0T̃ 1

K
+

M̃0 M̃1

Ew I

)
dx, Ec

(
Ũ 0, Ũ 1)

=

∫ H

0
3ω̃2

1 Ũ 0 Ũ 1dx .

Comparison of (5-12) and (5-13) leads directly to ω̃2= 0, and then the source term induced by Ũ 0 cancels
out in the first order balance (5-11)2. Therefore the equations describing the zero and first order are
identical, and the first order can be set to zero without restriction. Consequently, the first corrector of the
continuous description is only O(ε2). It can be inferred from the general argument of the demonstration
that this still holds in the other cases.

6. Analogy with micromorphic media

This section points out an analogy between the derived beam behavior and the behavior of micromorphic
materials [Eringen 1968]. Toward this aim, we use the physical insight gathered from the dimensional
analysis of one-dimensional periodic structures to investigate the features of bi-dimensional periodic
structures. For convenience this section focuses on the first mode of transverse vibration polarized in the
direction e2, propagating in the direction e1. Similar arguments apply for higher modes.

From one- to two-dimensional structures. Consider a cell Frame of shear stiffness K , inner bending
stiffness E Iw and global bending stiffness E I corresponding to the intrinsic coefficients β = E I/K`2

w

and γ = Iw/I . From this frame, build a periodic Beam = Ne1 × Frame, made of Ne1 frame cells repeated
in the direction e1, as in Figure 1. The first transverse mode behavior of the Beam is driven by

CB = β
(
π

2Ne1

)2
, γB = γ.

Now build the two-dimensional periodic
Structure by repeating Ne2 times in the trans-
verse direction e2 the same primitive Beam :

Structure=Ne2×Beam=Ne1×(Ne2×Frame).

(See figure on the right.) Taking advan-
tage of the periodicity in the e1 direction,
apply to this Structure the one-dimensional
homogenization process.

The properties of the cell made of Ne2

copies of Frame (with Ne2 + 1 walls) can
be estimated from those of the basic frame
Frame: the shear stiffness is O(Ne2 K ), the
inner bending stiffness is O(Ne2 E Iw), and
the global bending stiffness is O(N 3

e2
E I ).

Thus the behavior of Structure under the first
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Figure 7. Behavior of the Structure = Ne2 × Beam in relation to that of the primitive
Beam = Ne1 × Frame.

transverse mode is driven by the two dimensionless parameters related to those of the primitive frame
Frame:

CS =

(
πNe2

2Ne1

)2
β > CB, γS =

( 1
Ne2

)2
γ < γB, CSγS = CBγB =

(
π

2Ne1

)2
βγ. (6-1)

The scale ratio is the same for both Beam and Structure, since they have the same number Ne1 of cells in
the direction e1:

ε̃S = ε̃B = ε̃ = π/(2Ne1).

Therefore, introducing (pS, qS) and (pB, qB) such that

CS = ε̃
pS , γS = ε̃

qS , CB = ε̃
pB , γB = ε̃

qB ,

the relations (6-1) lead to pS + qS = pB + qB , pS < pB , and qS > qB , meaning that in the plane (p, q)
of Figure 7, the points S (pS, qS) and B (pB, qB) representing Structure and Beam lie on the diagonal
of slope −1 going through B. According to the results of Section 5A, the behaviors of the Beam and
Structure are of the same nature if pB ≤−1, but may differ if pB >−1.

Micromorphic media. Consider a Layer of a “cellular material” of finite thickness Ne1`w and infinite
length by making Ne2 tend to∞. From the same reasoning, the point L (pL , qL ) representative for the
Layer submitted to transverse motion of infinite lateral extent is such that

pL + qL = pB + qB, |pL |, qL →+∞.

Two possibilities appear (see Figure 7):

– CBγB ≤ ε̃ = π/(2Ne1). The behavior of the Layer is necessarily that of a shear beam. The single
remaining macroscopic kinematic variable is the translation, which satisfies periodicity in the two
directions. Thus, at the leading order the layer behaves as a classical Cauchy medium, as could be
derived via two-dimensional periodic homogenization. (For the cell under study, this case occurs when
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Figure 8. Macroscopic behaviors of a medium whose basic frame is characterized by
the intrinsic parameters β and γ, when submitted to a shear in the direction e1 polarized
in the direction e2 acting on the Domain = Ne2 × Ne1 × Frame.

the properties of the elements of the frame are of the same order: an isotropic or weakly anisotropic
cellular material.)

– CBγB ≥ ε̃ = π/(2Ne1). In this case, the Layer tends to behave as an inner bending beam (with or
without shear). The description requires that the translation and the inner deformation both satisfy
periodicity in the two directions. The inner deformation introduces local rotation (θ) inside the cell,
but no rigid body rotation of the cell itself (α = 0). Thus, this micromorphic behavior is neither that
of a Cauchy medium nor that of a Cosserat material. (For the cell under study, this case requires walls
significantly stiffer than the floor: a strongly anisotropic cellular material.)

Finally, consider an infinite media made of the frame Frame and assume that, in a Domain restricted to
Ne2×Ne1× Frame, appropriate boundary conditions impose normally to the direction e1 a shear polarized
in the direction e2. The equivalent behavior of the medium in the Domain is given by comparing the two
parameters

CD =

(
πNe2

2Ne1

)2
β, γD =

( 1
Ne2

)2
γ

with the power of ε̃. Four behaviors (see Figure 8) can occur, according to the independent kinematic
variable(s):

(1) The sole kinematic variable is the translation U . This situation (shear beams) is observed when
CDγD ≤ ε̃ and CD ≥ ε̃

−1. In terms of domain geometry, these conditions require, in the direction
normal to the shear motion, that

Ne1 ≥ βγπ/2

(i.e., a number of cells higher than the intrinsic critical number 1
2πβγ = E Iw/K`2

w) and, in the
direction of the shear motion, that

Ne2 ≥

(
π
2

Ne1

)3/2 1
√
β
,
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(i.e., a weak slenderness whose aspect ratio is governed by Ne1 and β = E I/K`2
w). The equivalent

continuum behavior within the domain is that of a Cauchy medium.

(2) The kinematic variables are the translation U and the inner rotation θ . This occurs when CDγD ≥ ε̃

and CD ≥ ε̃
−1 (inner bending beam with or without shear), which means

Ne1 ≤
π
2
βγ, Ne2 ≥

( 2
π

Ne1

)3/2 1
√
β
.

The equivalent continuum behavior within the domain is that of a micromorphic medium with inner
deformation.

(3) The kinematic variables are the translation U and the rotation α. This happens when CDγD ≤ ε̃ and
CD ≤ ε̃

−1 (slender-Timoshenko and bending beams), i.e.,

Ne1 ≥
π
2
βγ, Ne2 ≤

( 2
π

Ne1

)3/2 1
√
β
.

In this case the cell rotation breaks the lateral periodicity, whereas the periodicity in the perpen-
dicular direction is kept. For this reason, such a phenomenon is not be described by the usual two-
dimensional homogenization (which would impose the periodicity in both directions). Nevertheless,
the deformation presents a scale separation in a single direction that enables the treatment by a one-
dimensional homogenization. In such a domain, the effects of global bending and shear are of same
order and the medium behaves as a Cosserat medium.

(4) Finally, all three variables U , α and θ can be kinematic variables; this situation obtains when CDγD ≥

ε̃ and CD ≤ ε̃
−1 (generic beam). This is possible only for a restricted domain geometry defined by

Ne1 ≤
π
2
βγ, Ne2 ≤

( 2
π

Ne1

)3/2 1
√
β
.

The behavior is that of a complex micromorphic medium with inner deformation and rotation. Such
behavior cannot be derived if the periodicity is assumed in both directions.

Note that to respect the scale separation, the micromorphic behavior with inner deformation can only
be observed if the critical number 1

2πβγ is significantly larger than 1 (referring to the frames studied in
Section 5B, this is the case for F2 but not for F1). Cells such that 1

2πβγ� 1 require a lack of diagonal
bracing, since a diagonal element, which works in extension and prevents the cell flexibility, increases
considerably the shear stiffness up to K = O(E`2) and the global and inner bending become of the same
order, so that β = O(1), γ = O(1) and 1

2πβγ = O(1).

7. Implementing HMPD for framed structures

This section revisits in some detail the homogenization of the class of structures considered. Sections
7A–7D are an exposition of the discrete formulation of the global dynamic balance equations, following
[Tollenaere 1994]. This material is then developed for square lattice beams in 7E and applied to the case
of a slender-Timoshenko beam in 7F.
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Figure 9. Notation for the deformation of a beam element in the plane (e1, e2).

7A. Local balance of the elements. Consider a beam element from point B to point E , of length `,
section A, and inertia Ib (Figure 9). In the local beam frame, s stands for the coordinate along the axis,
and u, v, θ for the axial and transverse displacements and the rotation respectively. No external force
is applied along the beam and the axial force N, the shear force T and the bending moment M act by
convention from the left part to the right part. To describe global vibrations at the (unknown) modal
frequencies f = ω/2π of the whole structure, any variable reads Q(s, t)= Q(s) eiωt . By linearity, the
time dependence is systematically simplified.

For longitudinal vibrations, the balance on the beam axis e1, together with the compression behavior,
can be written as

N′(s)= ρ Aω2 u(s), N(s)=−E Au′(s) (7-1)

(primes stands for differentiation with respect to s). This leads to the governing equation

`2
L u′′(s)=−u(s), where `L =

√
E/ρω2. (7-2)

The compression wavelength of the element is 2π`L .
For transverse (bending) vibrations, we have the balance of shear force of axis e2 and moment of axis

e3, plus the bending behavior law:

T′(s)= ρ Aω2 v(s), M′(s)=−T(s), M(s)=−E Ib v
′′(s). (7-3)

Together these yield

`4
T v
′′′′(s)= v(s), where `T =

4
√

E Ib/ρ Aω2. (7-4)

The transverse bending wavelength of the element is 2π`T . The longitudinal and transverse wavelengths
are linked by the purely geometric relationship

`4
T

`2
L
=

Ib

A
. (7-5)

7B. Nodal forces and moment. Now integrate equations (7-2) and (7-4) between the origin B and the
end E using the unknown displacements u B , uE , vB , vE and rotations θ B and θ E of the endpoints as
boundary conditions (Figure 9). The forces at the endpoints, expressed in the local frame of the element
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and deduced from the beam behavior laws, take on the form

NB
= N(u B, uE), NE

=−N(uE , u B),

TB
= T(vB, vE , θ B, θ E), TE

=−T(vE , vB,−θ E ,−θ B),

MB
= M(vB, vE , θ B, θ E), ME

= M(vE , vB,−θ E ,−θ B),

(7-6)

where we have set, with `∗i = `/`i , c∗i = cos `∗i , s∗i = sin `∗i , ch∗i = cosh `∗i , sh∗i = sinh `∗i (i = T, L),

N(u1, u2)=
E A
`L

u1cos(`∗L)− u2

sin `∗L
,

T(v1, v2, θ1, θ2)=
E Ib

`3
T

v1(ch∗T s∗T + sh∗T c∗T )− v2(s∗T + sh∗T )+
(
θ1s∗T sh∗T − θ2(c∗T − ch∗T )

)
`T

c∗T ch∗T − 1
,

M(v1, v2, θ1, θ2)=
E Ib

`2
T

v1s∗T sh∗T + v2(c∗T − ch∗T )+
(
θ1(ch∗T s∗T − sh∗T c∗T )− θ2(s∗T − sh∗T )

)
`T

1− c∗T ch∗T
.

(7-7)

7C. Discrete dynamic balance. To express the node balance of the whole structure, the geometry of the
frame is explicitly used. Level n contains two nodes (Figure 1): node n1 on the left (end of wall wn1,
origin of wall w(n+ 1)1 and of floor f n) and node n2 on the right (end of wall wn2 and floor n, origin
of wall w(n+ 1)2). The equilibrium of the forces (in directions e1 and e2) and the moment (e3) read at
any level n:

Node n1: TE
wn1
− TB

w(n+1)1− NB
f n = 0, NE

wn1
− NB

w(n+1)1− TB
f n = 0, ME

wn1
−MB

w(n+1)1−MB
f n = 0, (7-8)

Node n2: TE
wn2
− TB

w(n+1)2+ NE
f n = 0, NE

wn2
− NB

w(n+1)2+ TE
f n = 0, ME

wn2
−MB

w(n+1)2+ME
f n = 0, (7-9)

where, in view of (7-6) and (7-7), the forces subscripted with wni (i = 1 or 2), at the endpoints of the
wall wni , are functions of the motions of nodes (n − 1)i and ni , and the forces subscripted f n at the
floor are functions of the motions of nodes n1 and n2 (Figure 2). Equations (7-8) and (7-9) encode the
exact discrete expression of the balance of the structure.

7D. Expansions of the nodal forces. The scale separation implies that at the frequency of an homoge-
nizable mode, the own wavelength of each beam is much larger than its length, and therefore `/`T � 1
and `/`L � 1. It follows that the forces can then be developed according to the powers of `∗T = `/`T

and `∗L = `/`L , giving

N(u1, u2)=
E A
`

(
u1− u2−

2u1+ u2

6
`∗2L −

8u1+ 7u2

360
`∗4L + O(`∗6L )

)
,

T(v1, v2, θ1, θ2)=
6E Ib

`3

(
2(v1− v2)+ `(θ1+ θ2)−

156v1+ 54v2+ `(22θ1− 13θ2)

2520
`∗4T + O(`∗8T )

)
,

M(v1, v2, θ1, θ2)=
2E Ib

`2

(
3(v1− v2)+ `(2θ1+ θ2)−

22v1+ 13v2+ `(4θ1− 3θ2)

840
`∗4T + O(`∗8T )

)
.
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7E. Balance equations for transverse vibrations. In this case, the discrete variables U (n), α(n), θ(n)
are governed by the discrete balance equations (3-3):

TE
wn1
+ TE

wn2
−
(

TB
w(n+1)1+ TB

w(n+1)2

)
− (NB

f n− NE
f n)= 0,

NE
wn2
− NE

wn1
−
(

NB
w(n+1)2− NB

w(n+1)1

)
− (TE

f n− TB
f n)= 0,

ME
wn1
+ME

wn2
−
(

MB
w(n+1)1+MB

w(n+1)2

)
− (MB

f n−ME
f n)= 0.

(7-10)

We now substitute the expansions for these quantities. For the case treated in the next section, it is
sufficient to take terms up to order (`/`T )

8
∼ ω4 and (`/`L)

4
∼ ω4. We obtain for the balance in the

transverse direction

24Ew Iw
` 2
w

(
U(n+1)− 2 Un +U(n−1)

` 2
w

[
1+ 3

280

(
`w
`Tw

)4
]
+
θ(n+1)− θ(n−1)

4 `w

[
1+ 13

2520

(
`w
`Tw

)4
]

+
Un

12

[(
`w
`Tw

)4
+
`w

` f

E f

Ew

A f `
2
w

2 Iw

( ` f

`L f

)2
])
= O

(
`w
`Tw

)8
+ O

( ` f

`L f

)4
. (7-11)

Similarly, the other two balance equations become

EwAw` 2
f

2

(
α(n+1)− 2αn +α(n−1)

` 2
w

[
1+ 1

6

(
`w
`Lw

)2
]
+
αn

`2
w

(
`w
`Lw

)2
)

+
12 E f I f

`w` f

(
θn −αn −

3 θn − 17αn

1680

( ` f

`T f

)4
)
= O

( ` f

`T f

)8
+ O

(
`w
`Lw

)4
,

24 Ew Iw
` 2
w

(
U(n+1)−U(n−1)

2 `w

[
1+ 13

2520

(
`w
`Tw

)4
]
+
θ(n+1)− 2 θn + θ(n−1)

6

[
1+ 1

280

(
`w
`Tw

)4
]

+ θn

[
1− 1

2520

(
`w
`Tw

)4
])
+

12 E f I f

`w` f

[
θn −αn +

2 θn − 9αn

2520

( ` f

`T f

)4
]
= O

( ` f

`T f

)8
+ O

(
`w
`Tw

)8
.

These equations may be modified in two steps. First we use the angular frequency ωr of (3-4), to obtain
(with i = f, w)(

`i
`T i

)4
=

(
`i
L

)2 2 EwAw` 2
i

Ei Ii

λi
3

(
ω
ωr

)2
,

(
`i
`Li

)2
=

(
`i
L

)2 2 EwAw
Ei Ai

λi
3

(
ω
ωr

)2
. (7-12)

We then introduce the continuous variables and their Taylor expansions. For instance,

U(n+1)− 2 Un +U(n−1)

` 2
w

=U ′′(x)+ O(ε2U ′′′′(x)).

7F. Slender-Timoshenko beam. We now narrow the analysis to the case

E f /Ew = O(1), ρ f /ρw = O(1), ` f /`w = O(1), aw/`w = O(ε), a f /`w = O(ε),

so
O
(
`w
`Tw

)4
= O

( ` f

`Tf

)4
= O

(
ω
ωr

)2
, O

(
`w
`Lw

)2
= O

( ` f

`L f

)2
= ε2O

(
ω
ωr

)2
. (7-13)

The transverse modes are attained when the inertia induced by the transverse motions is balanced by
the transverse elastic forces. Therefore, focusing on the balance in the transverse direction (7-11), and
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retaining the leading terms in the continuous representation, we get

2Ew Iw
` 2
w

(
12(U ′′+ θ ′)+

Aw` 2
w

Iw

U
L2

(
ω
ωr

)2
)
= O

(
Ew Iw
` 2
w

(
ω
ωr

)4
U ′′
)
. (7-14)

Since U ′′ = O(U/L2) and, in the slender-Timoshenko case under consideration, Aw` 2
w/Iw = O(ε−2),

the term 12(U ′′+ θ ′) on the left-hand side of (7-14) (the elastic force) will be of the same order as the
term following it (the inertia force) provided that

ω/ωr = O(ε), that is, ω = ω̃1.

This estimate enables us to write the expansions in powers of ε only. In the case under consideration,
the leading orders of the three balance equations become

24Ew Iw
` 2
w

(
Ũ 0′′
+ θ̃0′

)
+3ω̃2

1 Ũ 0
= 0,

EwAw` 2
f

2
α̃0′′
+

12 E f I f

`w` f
(θ̃0
− α̃0)= 0,

24 Ew Iw
` 2
w

(
Ũ 0′
+ θ̃0)

+
12 E f I f

`w` f
(θ̃0
− α̃0)= 0.

(7-15)

This achieves zero order homogenization and leads to (4-6).

8. Conclusion

An application of HPDM is presented for dynamics of one-dimensional structures. Associated with a
systematic use of scaling, the method provides four types of equivalent beam depending on the order of
magnitude of the geometrical (then mechanical) characteristics of the cell. A generic beam of the sixth
degree is shown to include all the mechanisms under transverse motions.

It is shown that, more than by the actual frame cell geometry, the macro behavior is governed by
the three global cell parameters involved in the shear, global and inner bending constitutive beam laws.
Then, expressed with those parameters, the beam-like descriptions may apply to other symmetric cells.
The same principle could also be used for compression modes [Boutin and Hans 2003] and for twisting
modes, not developed here.

Based on modal dimensional analysis, simple criteria of practical interest enable to identify the proper
model for real structures, and to realize an easy, computer time efficient, analysis of the behavior. This
approach provides large simplification for determining low frequency modes of discrete structures made
of N cells. Provided that the dynamic excitation of the basis respects the scale separation, more precisely
when its spectrum content does not exceed the frequency of the (N/3)-th mode, the complete dynamic
calculation may be replaced by

(1) the calculation of the macroscopic parameters of a single cell submitted to a static strain, and

(2) the solving of the one-dimensional problem with the identified parameters, using either the generic
beam model or the adequate specific beam.
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The fact that in the specific case 5C the zero order description is valid up to the second order may explain
the satisfactory accuracy of the beam modeling despite the weak scale separation.

Lastly, analogy with micromorphic media provides criteria to identify the nature of the effective behav-
ior of discrete media. This latter may vary from Cauchy to complex micromorphic behavior according
to the intrinsic parameters of the cell and the dimensions of the shearing zone.

The adaptability of the method enables extensions of this work from the field of structural dynam-
ics to that of mechanics of heterogeneous materials. Recent experiments on regular buildings have
demonstrated the reliability of this approach to describe the dynamics under shock, forced and ambient
vibrations in term of a few first eigenmodes [Boutin et al. 2005]. Applications in biomechanics may also
be envisaged.
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ANALYSIS OF IMPACT RESPONSE AND DAMAGE IN LAMINATED
COMPOSITE SHELL INVOLVING LARGE DEFORMATION AND MATERIAL

DEGRADATION

SURENDRA KUMAR

A nonlinear finite element analysis of impact response and impact-induced damage in curved composite
laminates subjected to transverse impact by a foreign object is carried out. An eight-noded isoparametric
quadrilateral shell element incorporating a nonlinear strain displacement relation due to large deflection
is developed based on the total Lagrangian approach. The nonlinear system of equations is solved using
a Newton–Raphson incremental-iterative method. Example problems of graphite/epoxy cylindrically
curved laminates with different curvature are considered and the influence of geometrical nonlinearity
on the impact response and the resulting damage is demonstrated. The concurrent effect of material
degradation due to impact damage is also investigated.

1. Introduction

The impact damage tolerance of aircraft structural composite materials is one of the most important
design considerations in designing aircraft structures. Accordingly, the understanding of impact response
and impact damage mechanisms has drawn the attention of many investigators. A summary of most of
the earlier work is reported in [Cantwell and Morton 1991; Abrate 1991; 1994].

In spite of the extensive literature available on the subject, issues associated with complex impact
damage phenomena and the effects of several parameters still require further investigation. Most impact
problems for laminated plates have been formulated using small deflection theory [Aggour and Sun 1988;
Wu and Springer 1988; Choi and Chang 1992; Nosier et al. 1994; Pradhan and Kumar 2000], which is ad-
equate if the impact load is small. However, it is necessary to include the effect of geometric nonlinearity
if the laminate undergoes a large deflection. Ambur et al. [1995] have shown that nonlinear effects can
be significant for thin plates subjected to low-velocity impact. The inclusion of geometrical nonlinearity
in prediction of impact response and damage in thin and moderately thick laminated composites helps in
improving the accuracy of the analysis. Chandrashekhara and Schroeder [1995] have studied the impact
response of laminated curved shells using a finite element formulation based on Sander’s shell theory
considering geometric nonlinearity in the sense of the von Karman strains. However, impact damage
was not investigated in their study. Kim et al. [1997] and Her and Liang [2004] have studied the effect of
curvature on dynamic response and impact damage in cylindrical shells using a 3-D finite element formu-
lation. However, the analyses of both these papers were linear and were based on small deflection theory.
The effect of failed laminas on the stiffness of the laminate was also not accounted for in determining the
impact response. Ganapathy and Rao [1998] used a 4-noded 48 degree of freedom shell element based

Keywords: finite element analysis, geometric nonlinearity, eight noded quadrilateral shell element, composite shell, impact,
material degradation.
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on the Kirchhoff-Love thin shell theory in the finite element analysis of cylindrical/spherical shell panels.
The authors used a form of classical Hertzian contact law and predicted matrix cracking failure by apply-
ing the general Tsai-Wu failure criterion for composite materials. Although geometrical nonlinearity was
included, the study assumes that low velocity impact force and deformation can be simulated by a static
model and hence does not compute impact response as a function of time. Krishnamurthy et al. [2001]
used a shell element based on the Mindlin-Reissener assumptions for transverse shear deformation in
their parametric study of laminated cylindrical composite shells. In another paper [Krishnamurthy et al.
2003], the authors extended their work on the impact response of a laminated composite cylindrical shell
as well as a full cylinder by incorporating the classical Fourier series method into the finite element
formulation and also predicted impact-induced damage deploying the semiempirical damage prediction
model of [Choi and Chang 1992]. According to the authors, the Fourier series method, which gives
information regarding the natural frequencies of vibration of the impacted structure, provided a proper
basis for adopting the appropriate size of the analysis time step. However, the paper doesn’t address
nonlinear effects. Zhu et al. [2006] incorporated the effects of strain rate dependency and inelastic
behavior of matrix material for analyzing the mechanical response of laminated shell. It was shown by
the authors that when the rate dependent modulus and inelastic effects are considered, the shell panels
have a considerable damping effect. The study was, however, concentrated on the transient response of
a laminated shell subjected to a suddenly applied static loading uniformly distributed over the bottom
surface of the panel and did not address damage phenomena. More recently, Kumar et al. [2007] have
carried out parametric studies on impact response and damage in curved composite laminates using a 3D
eight-noded layered brick element with incompatible modes and have investigated the effect of material
degradation on both impact response and damage. However, their finite element formulations were based
on linear deformation theory.

In the present paper, a nonlinear finite element transient dynamic analysis is carried out to predict the
impact response and the impact-induced damage in a laminated composite cylindrical shell subjected to
transverse impact by a metallic impactor. An eight-noded isoparametric quadrilateral shell element incor-
porating geometrical nonlinearity due to a large deflection is implemented based on the total Lagrangian
approach. The nonlinear system of equations resulting from the large displacement formulation and
nonlinear contact law are simultaneously solved iteratively using a Newton–Raphson method. Example
problems of graphite/epoxy cylindrically curved shells with different curvature are considered and the
influence of geometrical nonlinearity on the impact response and impact-induced damage is demonstrated.
The study also comprises the simultaneous effect of stiffness reduction of the damaged region in the
laminate on impact response and the resulting damage as the solution progresses with time.

2. Mathematical formulation

Basic equations. Consider the laminated doubly curved shell shown in Figure 1. The displacement field
at any point within the shell, according to a first order shear deformation theory is given by

u(x, y, z)= u0(x, y)+ zϕx(x, y),

v(x, y, z)= v0(x, y)+ zϕy(x, y),

w(x, y, z)= w0(x, y),

(1)



IMPACT RESPONSE IN LAMINATED COMPOSITE SHELL INVOLVING LARGE DEFORMATION 1743

  

Mass, m 
Nose radius, r 

Contact velocity, V0 

a

Z 

X

Y 

Ry 
Rx

h

xxxx
xxxx
xxxx

b 

Figure 1. Problem description of impact on a general doubly curved shell.

where u is the membrane displacement in the x-direction, v is the membrane displacement in the y-
direction and w is the out-of-plane transverse displacement in the z-direction. u0, v0 and w0 are the
midplane displacements. The positive ϕx and ϕy are the cross-sectional clockwise rotations around the
y- and x-axes, respectively.

The strain-displacement relations based on Sander’s shell theory [1959] and incorporating the geomet-
rical nonlinearity given by [Stein 1986] can be written as

εx = ε
0
x + zκx , εy = ε

0
y + zκy, γxy = γ

0
xy + zκxy, γyz = γ

0
yz, γxz = γ

0
xz, (2)

where

ε0
x =

∂u0

∂x
+
w0

Rx
+

1
2

[(∂u0

∂x

)2
+

(∂v0

∂x

)2
+

(
∂w0

∂x
−

u0

Rx

)2]
,

ε0
y =

∂v0

∂y
+
w0

Ry
+

1
2

[(∂u0

∂y

)2
+

(∂v0

∂y

)2
+

(
∂w0

∂y
−
v0

Ry

)2]
, (3a)

γ 0
xy =

∂u0

∂y
+
∂v0

∂x
+
∂u0

∂x
∂u0

∂y
+
∂v0

∂x
∂v0

∂y
+

(
∂w0

∂x
−

u0

Rx

)(
∂w0

∂y
−
v0

Ry

)
are the nonlinear mid-plane strains,

κx =
∂ϕx

∂x
, κy =

∂ϕy

∂y
, κxy =

∂ϕx

∂y
+
∂ϕy

∂x
+

1
2

(
1
Ry
−

1
Rx

)(
∂v0

∂x
−
∂u0

∂y

)
(3b)

are the changes in curvature, and

γ 0
yz = ϕy +

∂w0

∂y
−
v0

Ry
, γ 0

xz = ϕx +
∂w0

∂x
−

u0

Rx
(3c)
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are the transverse shear strains. In these equations, Rx and Ry are the radii of curvature in x and y
directions. In this equation, higher order terms for the derivatives of cross-sectional rotations and the
nonlinear terms in transverse shear strains have been neglected.

If we set
{ε̄} =

[
ε0

x ε0
y γ

0
xy κx κy κxy γ

0
yz γ

0
xz
]T
,

the laminate constitutive equation can be written as

{F} = [D̄]{ε̄}, (4)

where

{F}=
[
Nx Ny Nxy Mx My Mxy Q yz Qxz

]T
=

[ ∫ h/2

−h/2

(
σx σy τxy σx z σyz τxyz τyz τxz

)
dz
]T

(5)

is the generalized stress resultant vector1 and

[D̄] =

Ai j Bi j 0
Bi j Di j 0
0 0 Spq


is the laminate stiffness matrix, with components

(Ai j , Bi j , Di j )=

N∑
k=1

∫ zk

zk−1

C̄k
i j (1, z, z2) dz (i, j = 1, 2, 4). (6a)

(extensional, bending-stretching coupling and bending stiffness coefficients) and

Spq =

N∑
k=1

∫ zk

zk−1

αC̄k
pqdz (p, q = 5, 6). (6b)

(transverse shear stiffness coefficients). In the last two equations, N is the number of layers, α is the
shear correction factor, and C̄k

i j (i, j = 1, 2, 4, 5, 6) represent the transformed elastic constants for the
k-th layer, satisfying the relation

[C̄] = [T ]T [C][T ], (7)

where [T ] is the transformation matrix relating the strains in the ply principal directions to those in the
shell reference axis and [C] is elasticity matrix relating the strains within the ply to the stresses in the
ply coordinate system.

Finite element model. Using the principle of virtual work, the equation of equilibrium after including
the inertia forces at time tn+1 can be given as

{9n+1} =

∫∫
[B]T {Fn+1} dx dy+

∫∫
[N ]T [P]{ün+1} dx dy−{Rn+1}, (8)

1Here Nx , Ny , Nxy are the internal in-plane force resultants per unit length, Mx , My , Mxy are the internal moment resultants
and Qyz , Qxz are the transverse shear resultants per unit length.
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where {9n+1} is residual vector, [B] strain-displacement matrix corresponding to (3a)–(3c), {Fn+1} is
the stress resultant vector at any point, [N ] is the shape function matrix, {ün+1} is the acceleration vector
at any point and {Rn+1} is the applied load vector. The inertia matrix of the laminate [P] is defined as

[P] =


p 0 0 0 0
0 p 0 0 0
0 0 p 0 0
0 0 0 I 0
0 0 0 0 I

 , (9)

with

p =
N∑

k=1

∫ zk

zk−1

ρkdz and I =
N∑

k=1

∫ zk

zk−1

z2ρkdz, (10)

where ρk is the mass density of the k-th layer.
In the large displacement problem,

[B] = [BL ] + [BN L ]

and
{Fn+1} = [D̄]

[
[BL ] +

1
2 [BN L ]

]
{Un+1} = [D̄][B̄]{Un+1}, (11)

where [BL ] is the contribution from the linear part of the strain and 1
2 [BN L ] is the contribution from the

quadratic part of the strain and involves linear functions of the translational components of the element
nodal degree of freedom vector {Un+1}.

In (8),
{ün+1} = [N ]{Ün+1}. (12)

Using the Newmark time integration method with a constant average acceleration (α = 0.5 and β = 0.25),
the nodal acceleration vectors {Ün+1} can be expressed in terms of nodal displacements {Un+1} as

{Ün+1} =
1

β(1t)2
{Un+1}−

(
1

β(1t)2
{Un}+

1
β(1t)

{U̇n}+
1− 2β

2β
{Ün}

)
. (13)

Equations (12) and (13) can be put into (8), yielding

{9n+1} =

∫∫
[B]T {Fn+1} dx dy+

1
β(1t)2

(∫∫
[N ]T [P][N ] dx dy

)
{Un+1}−{RM

n+1}−{Rn+1}. (14)

{RM
n+1} can be thought of as the load vector due to inertia term at time tn+1 and is given by

{RM
n+1} = [M]

(
1

β(1t)2
{Un}+

1
β(1t)

{U̇n}+
1− 2β

2β
{Ün}

)
, (15)

with [M] =
∫∫
[N ]T [P][N ] dx dy the mass matrix.

In the present analysis, the nonlinear equation (14) is solved iteratively using a Newton–Raphson
scheme. It is, therefore, necessary to find the relation between {d9n+1} and {dUn+1} by taking the
variation of the residual force, (14), with respect to {Un+1}. This relation is

[K T
n+1] δ{Un+1} = δ{9n+1}, (16)
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where

[K T
n+1] =

∫∫
[B]T [D̄][B] dx dy+

∫∫
[G]T [Sn+1][G] dx dy

+
1

β(1t)2

(∫∫
[N ]T [P][N ] dx dy

)
−
δ{Rn+1}

δ{Un+1}
(17)

is the tangent stiffness matrix, in whose expression we have used the following notations:

[S] =
[

Nx [I ] Nxy[I ]
sym Ny[I ]

]
is the matrix of the stress resultant array (with [I ] the 3× 3 identity matrix), and [G] is matrix of shape
function derivatives, defined by

{gn+1} = [G]{Un+1},

where

{g} =
[
∂u0

∂x
∂v0

∂x

(
∂w0

∂x
−

u0

Rx

)
∂u0

∂y
∂v0

∂y

(
∂w0

∂y
−
v0

Ry

)]T

.

Calculation of contact force. In order to model contact conditions between the impactor and the lami-
nate, the modified version of the Hertzian contact law proposed by [Yang and Sun 1982] based on static
indentation tests for cylindrical shell is used in this study. This approach determines the relationship
between the contact force, Fc with the indentation depth, α. Since the contact region is generally small
in comparison with the dimensions of the shell, the resultant contact force is represented as a point load.

The contact laws as proposed in [Yang and Sun 1982] during loading, unloading and reloading phases
are not reproduced here for the sake of brevity; they can be written in a general form as

Fc
n+1 = φ(αn+1)= φ(dn+1−wn+1)= φ

(
dn + ḋn1t −

1
4

Fc
n + Fc

n+1

m
(1t)2−wn+1

)
, (18)

where ϕ represents a nonlinear relation, dn+1 is the displacement of the centre point of the impactor
at the (n+ 1)-th time-step and is calculated by applying Newmark’s method to the equation of motion
of the impactor as in (18). wn+1 is the displacement of the mid-surface of the laminate at the impact
point in the direction of impact. The last term in (17) consists of d Fc

n+1/dwn+1, which can be found by
differentiating (18).

Impact damage analysis. It is well known that damage in composite materials is generally complicated
consisting of multiple failure modes such as fibre breakage, fibre pullout, matrix cracking, fibre-matrix
debonding, delamination between plies, etc. Several investigators have demonstrated that upon impact
by a low-velocity projectile, the major part of the damage in the composite laminate is caused by matrix
cracking and delamination. Because the tensile failure stress for the fibre is high, damage caused by fibre
breakage is generally very limited and confined to the region under and near the contact area between the
impactor and the laminate. Based on the experimental observations on low-velocity impact, Choi et al.
[1991] reported that intraply matrix cracking is the initial damage mode. Delamination initiates once
the matrix crack reaches the interface between the ply groups having different fibre orientations after
propagating throughout the thickness of the ply group consisting of the cracked ply. This type of matrix
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crack can be referred to as the “critical matrix crack”. Several further investigations have indicated that
there exists a strong interaction between matrix cracking and delamination and the extent of delamination
propagation effectively depends upon the location of matrix cracks.

In the present study, a three-dimensional matrix failure criterion originally proposed in [Hashin 1980]
and modified in [Choi et al. 1991] is used. In the latter reference it was shown that there are only three
major stresses contributing to transverse matrix cracking in the principal material coordinate system.
These are the in-plane transverse normal stress σy , the interlaminar transverse shear stress τyz and the
out-of-plane normal stress σz . However, the out-of-plane normal stress σz is found to be negligibly
small compared to the others and decreases rapidly at locations away from the impacted area. Thus, the
criterion for the n-th plygroup is simplified as(

nσ̄y

nY

)2

+

(
nτ̄yz

nSi

)2

= e2
m, (19)

where

Y =

{
Yt if σ̄y ≥ 0,

Yc if σ̄y < 0.

In (19), x-y-z is the right-handed ply coordinate system with x-axis representing the fibre direction.
Yt Yc and Si are the in situ ply transverse tensile strength, in situ ply transverse compressive strength and
in situ interlaminar shear strength respectively within the laminate and em is the strength ratio which
indicates failure if its value exceeds unity. The bar over the stress components indicates that stresses are
averaged within the n-th ply in the thickness direction for predicting the critical matrix cracking.

Although the above equation was proposed in [Choi et al. 1991] for the case of line-loading impact,
several further investigators [Choi and Chang 1992; Pradhan and Kumar 2000; Her and Liang 2004;
Krishnamurthy et al. 2001; Krishnamurthy et al. 2003; Kumar et al. 2007] assumed this equation to be
equally applicable to point-nose impact. However, the present author is of the view that for point-nose
impact on curved laminates, the in-plane shear stress τxy as found in Hashin’s matrix failure criterion
[1980] must be incorporated in (19) for more accurate estimation.

In (19), in situ ply strength refers to the strength of a single ply within a laminate which is consider-
ably different from that measured directly from a unidirectional composite. This difference is generally
attributed to the thickness effect of the laminate, adjacent ply constraints and thermal residual stresses
[Flaggs and Kural 1982; Peters 1984; Chang and Lessard 1991]. Here empirical relations proposed by
[Chang and Lessard 1991] are adopted for calculating in situ ply strengths as a function of the laminate
thickness and stacking sequence. These relations are given as

Yt = Y 0
t

(
1+ A

sin(1θ)
N B

)
, Si = S0

xy

(
1+C

sin(1θ)
N D

)
. (20)

In (20), Y 0
t is the transverse tensile strength of a [90n]s laminate (n ≥ 6), S0

xy is the ply shear strength
measured from a unidirectional composite with more than eight layers, 1θ is the minimum ply angle
difference between the ply under consideration and its neighbouring plies and N is the number of consec-
utive plies of the same ply angle. A, B, C and D are material parameters determined from experiment
[Chang and Lessard 1991].
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A semiempirical criterion to estimate the extent of delamination in composite was proposed in [Choi
and Chang 1992], which is based on major stresses attributed to delamination formation. However, the
present paper is focussed only on the prediction of critical matrix cracking, since geometrical nonlinearity
and the material degradation concept used here will have similar effects on both critical matrix cracking
and delamination.

Material degradation concept. Once the critical matrix cracking is predicted at any point within a par-
ticular ply group of the shell using the criterion (19), the load carrying capability of the shell decreases.
This stiffness loss must be taken into account before the solution proceeds further. Two strategies can
be applied to describe the postfailure behaviour of the material. One option is to assume that material
fails instantaneously and stiffness values in the corresponding directions are immediately set to zero.
Another approach is to use a postfailure model such as those reported in [Ladevèze and LeDantec 1992;
Matzenmiller et al. 1995; Johnson et al. 2001; Iannucci and Willows 2006] based on continuum damage
mechanics approach. This postfailure model characterizes the growth of damage by a gradual decrease in
the corresponding stiffness values using some damage evolution parameter until they reach a final value
of zero. It is obvious that, this damage model will provide considerable improvement in the prediction
of damage as compared to the instantaneous failure model particularly for the impact of high velocity
ranges. This approach may also reduce or eliminate nodal oscillations which may occur in the case of
instantaneous failure because of the sudden release of finite amounts of energy. However, this modelling
strategy has an inherent complexity in implementation and requires knowledge of the energy dissipation
process as a function of the damage mode and its propagation, which must be determined experimentally
for a specific damage mode.

For the sake of simplicity, the instantaneous failure model is adopted in the present analysis and the
constitutive relation for the damaged element is modified by the use of the reduced material properties
such as the one reported in [Choi et al. 1991]. This reduced elastic property matrix can be modified for
the present shell element as given below:

[Cred] =


Ex 0 0 0 0
0 0 0 0 0
0 0 Gxy 0 0
0 0 0 0 0
0 0 0 0 Gzx

 . (21)

Equation (21) is derived based on the reasoning that the damaged region within the element cannot
endure any additional in-plane transverse tensile stress and interlaminar transverse shear stress due to
the presence of the matrix crack. In order to take into account the partial failure of the element within
a ply group, the [C] matrix is replaced by the [Cred] matrix in (7) during Gaussian integration only for
those gauss points of the ply group in the element where the failure criterion is satisfied.

This simplified instantaneous stiffness reduction method is reasonable for low-velocity impact in the
sense that a general tool is always sought for to predict the combined effect of various damage modes
on the performance of the composite structure with complex geometry and loading conditions. Further,
this approach will generally not lead to a singularity of the global finite element stiffness matrix, since in
the 2D shell element formulation, the whole thickness of the laminate is analysed as an aggregate. For
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the same reason, the nodal oscillations will be much less prominent as compared to three-dimensional
finite element solutions. Further, stiffness modifications on a gauss point basis will partly ensure gradual
stiffness reduction of failed elements.

3. Numerical results and discussions

The above nonlinear finite element formulation was implemented in a specially developed computer code
and successfully validated with existing numerical solutions available in literature.

Having validated the present approach, some example problems of T300/976 graphite/epoxy laminated
cylindrical shells with different curvatures have been considered to study the impact behaviour of curved
composite laminate. Effects of geometrical nonlinearity and material degradation on impact response and
resulting damage are also investigated. The problem description of impact on a general doubly curved
shell is also depicted in Figure 1. The impacted side is the first layer in the stacking sequence.

Validation problem: Impact response of a rectangular glass/epoxy laminated plate. A square E-glass
epoxy cross-ply [0/90/0] laminated plate with a side length of 140 mm and thickness 4.29 mm clamped
around the four edges is analyzed. The impactor is a blunt-ended steel circular cylinder having diameter
9.525 mm, length 25.4 mm and mass 0.01417 kg and traveling at an initial velocity of 22.6 ms−1. The
material properties of the 1002E-glass epoxy are taken as follows:

Ex = 40.0 GPa, Ey = Ez = 8.27 GPa, Gxy = Gxz = 4.13 GPa, G yz = 0.03 GPa,

νxy = νyz = νxz = 0.25, ρ = 1901.5 kg m−3.

The linear and nonlinear solutions of the plate central transverse deflection as a function of time have
been compared in Figure 2 with experimental results from [Takeda et al. 1981] and finite element results
from [Aggour and Sun 1988]. Good agreement is observed between the present result and the numerical
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 Figure 2. Comparison of plate central transverse deflection in a 140 mm × 140 mm
× 4.29 mm E-glass epoxy cross-ply laminate with clamped edges and impacted by
14.175 gm steel projectile at a velocity of 22.6 ms−1.
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result. The reasons of discrepancy between numerical and experimental results were well explained in
[Aggour and Sun 1988]. It is also apparent from the figure that nonlinear effect is not significant in this
case mainly because the plate central deflection is considerably less than the plate thickness.

Validation problem: Clamped [0/90] asymmetric cross-ply cylindrical shell panel subjected to uniform
load. As an example of large deflection of composite shell, the asymmetric cross-ply cylindrical shell
panel investigated in [Reddy and Chandrashekhara 1985] is considered. The radius and length of the
cylindrical shell panel are 64.5 m and 12.9 m respectively. The angle subtended by the arc is 0.2 radian.
The thickness of the shell is 64.5 mm. The material properties used are:

Ex = 172 GPa, Ey = Ez = 7 GPa, Gxy = G yz = Gxz = 3.5 GPa, νxy = νyz = νxz = 0.25.

The load-deflection curve of the nonlinear solution is given in Figure 3 along with the results of the
[Reddy and Chandrashekhara 1985]. Fairly good agreement is seen.

Impact response. T300/976 Graphite/epoxy cylindrical shells of different dimensions and curvatures
with [904/08/904] lay-up are considered. At first, [904/08/904] cylindrical shell is taken with a = b =
300 mm, Rx = R = 10a, and Ry =∞ in Figure 1. The shell is clamped on its edges and is subjected
to impact by a steel mass of 300 gm having a half sphere head of 10 mm diameter and initial velocity
7 ms−1. The material property data of fiberite T300/976 graphite/epoxy composite are considered as
follows [Choi and Chang 1992]:

• Material constants: ply thickness = 0.14224 mm, ρ = 1540 kg m−3, Ex = 156 GPa,
Ey = Ez = 9.09 GPa, Gxy = Gxz = 6.96 GPa, G yz = 3.24 GPa, νxy = νxz = 0.228, νyz = 0.4.

• Lamina strengths: Y 0
t = 45 MPa, Yc = 252 MPa, S0

xy = 105 MPa.

• Empirical parameters: A = 1.3, B = 0.7, C = 2.0, D = 1.0.
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IMPACT RESPONSE IN LAMINATED COMPOSITE SHELL INVOLVING LARGE DEFORMATION 1751

The results of contact force, impactor displacement and shell centre displacement are presented in
Figure 4 for both linear and nonlinear analyses. A reduction in maximum contact force and increase in
contact duration and maximum central deflection is observed in the nonlinear solution of the shell with
curvature R = a when compared with linear results. Although the peak contact force also increased in the
nonlinear solution of shell with curvature R = 10a, the contact duration and the maximum shell deflection
decreased significantly. The effect of shell curvature is also shown in the Figure. Both the contact duration
and the amplitude of shell response decrease with decrease in the shell radius indicating that increasing the
curvature has a stiffening effect on the cylindrical shell. However, the results signify that a nonlinear ap-
proach has caused a reduction in flexural rigidity of the shell having higher stiffness due to curvature while
this has resulted in an increase in flexural rigidity of the shell having lower curvature-induced stiffness.
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mass 300 gm having initial velocity of 7 ms−1.



1752 SURENDRA KUMAR

Impact-induced damage. The impact-induced damage in the form of critical matrix cracking is studied
for the above cylindrical shell. The shell with [904/08/904] lay-up with dimensions a = b = 300 mm
and curvature R = a is subjected to an impact by a steel mass of 300 gm and nose radius 5 mm traveling
at a velocity of 7 ms−1. Critical matrix cracking takes place in the bottom [904] ply group as shown in
Figure 5. The value of strength ratio, em (critical matrix cracking failure criterion) at any point in the
shell is found to be maximum in the bottom [904] ply group at time approximately 1056µs in case of
linear analysis and 1212µs in case of nonlinear analysis. The region where em is greater than or equal
to unity represents the location of the critical matrix cracking. The failure contour is extended much
wider along the fibre direction of the cracked [904] ply group than in the direction normal to the fibre
direction. Considerable changes in failure profile and a small increase in the damage region are observed
in the case of the nonlinear solution even if the maximum contact force was lower as compared to the
linear result (Figure 4). This occurs mainly because in the nonlinear case both the bending deformation
and hence the bending stress are higher which significantly contributes to matrix cracking. Though the
damage primarily occurs near the impact site, the figure indicates that for clamped shell panels damage
can also evolve near the boundaries.

Material degradation effects. The effect of reducing the stiffness of damaged elements within the lam-
inas concurrently while computing the impact response and damage is also studied. For this case, a
[904/08/904] layup cylindrical shell of dimensions a = b = 100 mm and curvature R = a is taken. The
impactor is a steel mass of 200 gm having a half sphere head of 10 mm diameter and initial velocity
5 ms−1. The nonlinear results of contact force, impactor displacement and shell center deflection are
plotted in Figure 6 for both the cases in which the reduction of stiffness was considered and was not
considered. There is a sizeable reduction in peak contact force and increase in both contact duration
and maximum shell deflection indicating that overall stiffness of the laminate has reduced considerably
when material degradation is incorporated in the solution. The value of the strength ratio, em at any
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Figure 5. Contours of maximum strength ratio em (A= 0.2, B = 0.5, C = 1.0) in bottom
[904] ply of [904/08/904] lay-up cylindrical shell (dimensions: a = b = 300 mm; R = a)
with clamped edges and impacted by a 300 gm mass at a velocity of 7 ms−1. Left: linear
analysis; right: nonlinear analysis.
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point in the shell is found to be a maximum at approximately 472µs in case of unmodified stiffness
and at approximately 608µs in case of modified stiffness. The critical matrix cracking profile is plotted
in Figure 7 for both the cases. A comparison of the two halves of the figure indicates that the critical
matrix cracking has further extended in the direction of the fibre and has reduced in the direction normal
to the fibre direction due to material degradation. This is mainly because loads that were sustained by
the elements prior to damage are consequently transferred to adjacent elements. It is obvious that this
stiffness modification concept will give better results and smooth failure contours with increasing mesh
density and decreasing analysis time-step as appropriate.

Although it would be more appropriate to present some sample results depicting improvements brought
by incorporating material degradation effects in the finite element solution, an indirect estimation can
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 Figure 6. Effect of material degradation on contact force, impactor displacement and
centre deflection in graphite/epoxy cylindrical shell ([904/08/904] lay-up) (a = b =
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Figure 7. Effect of material degradation on maximum strength ratio em (A= 0.2,
B= 0.5, C = 1.0) in bottom [904] ply of [904/08/904] lay-up cylindrical shell (dimen-
sions: a= b= 300 mm; R= a) with clamped edges and impacted by a 200 gm mass at a
velocity of 5 ms−1. Left: without material degradation; right: with material degradation.

be made with regard to the verification problem of Figure 2. One of the reasons cited in [Aggour and
Sun 1988] for the inconsistency between numerical and experimental results in Figure 2 was that as
the contact time between impactor and plate increases, the failure in the form of matrix cracking and
delamination may have started in the laminate reducing its overall stiffness and natural frequency. As
in Figure 6, it is expected that if the material degradation concept is integrated in the solution of prob-
lem of Figure 2, the contact duration will increase and the mismatch between finite element result and
experimental observation will reduce considerably.

4. Conclusion

A finite element and transient dynamic analysis of laminated composite cylindrical shells subjected to
transverse impact has been performed using a nonlinear finite element shell formulation and implemented
by a specially developed computer code. The tangent stiffness matrix accounting for the geometric
nonlinearity is formulated using a generalized Green’s strain tensor. The nonlinear system of equations
was solved using a Newton–Raphson incremental-iterative method by considering suitable displacement
and force convergence norms. Some numerical examples of graphite/epoxy laminated cylindrical shells
have been considered with different curvature and nonlinear geometrical effects on impact response
and the resulting damage has been studied. Some example problems are also considered in which the
stiffness of the failed elements within the laminate is concurrently reduced to account for their loss of
load-carrying capability due to matrix cracking. The following are some important observations made
from the present study:

1. When the geometrical nonlinearity was included, considerable changes in the time-variation of
contact force, impactor displacement and shell deflection occurred for the problems considered.
This difference in impact response is found to be significantly dependent on the shell curvature
considered.
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2. Although damage primarily occurs near the impact site, damage can also evolve near the boundaries
for clamped shell panels. A considerable change in the critical matrix cracking profile is noticed
when a nonlinear approach is used in the solution.

3. The material property degradation approach used here is found to provide reasonable results and
can be easily implemented in cases when a general tool is required to predict the combined effect of
various damage modes on the performance of the composite structure with complex geometry and
loading conditions.

4. When the stiffness of the failed region is reduced, there is a sizeable reduction in peak contact force
in combination with increase in both contact duration and maximum shell deflection. Owing to
material property degradation, the shape and extent of critical matrix cracking is noticeably changed
extending largely in fibre direction while shrinking in the direction normal to the fibre direction of
the cracked ply-group.
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DETERMINATION OF STRAIN GAGE LOCATIONS FOR THE ACCURATE
MEASUREMENT OF OPENING MODE STRESS INTENSITY FACTORS

B. KAUSHIK, K. S. R. K. MURTHY AND P. S. ROBI

The accuracy of measurement of opening mode stress intensity factors using the strain gage techniques
largely depends on location of the gages. The radial position of the strain gages is a major issue in mea-
surement of the stress intensity factors. This paper describes an approach to resolve this problem. The
present work proposes a method for practically accurate determination of a vital parameter designated
as (rmax) which in turn is extremely useful in judging the valid positions of the strain gages. The results
of the present investigation clearly show that the proposed method is simple and accurate values of rmax

can be determined.

1. Introduction

The stress intensity factor (SIF) is extensively employed when applying the principles of linear elastic
fracture mechanics (LEFM) to the analysis of the safety of engineering components containing cracks. It
is used to understand the severity of the cracks while calculating the static strength, fatigue crack growth
and life predictions. The SIF is of considerable importance in many engineering situations, since the
critical value of this parameter determines whether or not the existing crack will propagate.

The use of LEFM principles in preventing the fracture of engineering components depends largely on
the availability of accurate SIFs. As a result, analytical, numerical and experimental methods for SIF
determination in cracked bodies have been developed over the years.

Experimental methods, in particular, play an important role in complex situations [Sanford 2003] and
are essential to the validation and correct application of theoretical and numerical results. They include
the compliance method [Bonesteel et al. 1978; Newman 1981], photoelasticity [Gdoutos and Theocaris
1978; Hyde and Warrior 1990], caustics [Theocaris 1970; Konsta-Gdoutos 1996] and strain gage methods
[Dally and Berger 1993; Swamy et al. 2008]. Among these, the strain gage technique is relatively simple
and straightforward [Sanford 2003].

Four strain gage techniques [Dally and Sanford 1987; Wei and Zhao 1997; Kuang and Chen 1995;
Berger and Dally 1988] are currently available for experimental determination of mode I stress intensity
factors under static loading. Factors such as the local yielding effect at the crack tip, high strain gradients,
the three-dimensional state of stress at the crack tips and the finite size of the strain gages strongly affect
the performance of strain gage techniques.

Dally and Sanford [1987] were the first to develop a strain gage technique for measuring the static
opening mode stress intensity factor (KI ) in two dimensional isotropic bodies which overcomes these
difficulties. This was achieved by identifying the valid region around the crack tip for accurate mea-
surement of the strains. These authors proposed to determine the mode I SIF using a truncated strain

Keywords: stress intensity factors, cracks, fracture, strain gage, finite element analysis.
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series containing only three parameters. The chief advantage of their approach is that only one strain
gage is sufficient to determine the mode I SIF, by locating it at distances far away from the crack tip.
However, the radial location of the strain gage should be within the realm of applicability of the of
three-parameter representation. Thus this technique requires knowing beforehand the extent of validity
of the three-parameter representation. In general, this extent depends on configuration and boundary
conditions; no suggestions were made in [Dally and Sanford 1987] toward this end.

[Wei and Zhao 1997] and [Kuang and Chen 1995] devised different strain gage methods for measuring
the static mode I SIF. Two strain gages are needed for measuring the opening mode SIF in the approach
in the first of these papers. However, locations (radial distances) of the strain gages are suggested em-
pirically and necessitate a priori knowledge about the plastic zone size, which depends on the unknown
stress intensity factor of the configuration.

In contrast, Kuang and Chen [1995] used asymptotic strain expressions for the measurement of the
mode I SIF. They suggested that strain gages can be placed at distances greater than half the thickness of
the specimen from the crack tip despite the fact that at large distances from the crack tip the measured
strains cannot be accurately represented by asymptotic terms alone. Their results show that the measured
normalized SIF is a function of the applied loads, the thickness of the specimen and the angular position
θ from the crack axis.

A very large number of strain gages is needed to measure the opening mode SIFs in an overdeter-
ministic method proposed in [Berger and Dally 1988]. Among these techniques, the single strain gage
method [Dally and Sanford 1987] is most popular.

Apart from development of various techniques, another important direction in experimental determi-
nation of static stress intensity factors is the application of the existing techniques to corroborate the
analytical/numerical solutions of the SIFs. For example, application of photoelastic methods is dealt in
[Marloff et al. 1971; Chan and Chow 1979; Kazemi et al. 1989; Nurse et al. 1994] and caustics techniques
in [Baik et al. 1995; Lee and Hong 1993]. Such investigations establish the existing techniques as useful
tools in real design situations of great complexity. In spite of these potential applications of the strain gage
methods, very limited work has been reported to date [Swamy et al. 2008], particularly on applications
of Dally and Sanford’s single strain gage procedure in order to validate/suggest accurate mode I, static
SIFs of the complex configurations. This is true even in case of the other strain gage methods.

One important reason which hampered the potential application of Dally and Sanford’s method is the
uncertainty over the radial location (r) of the strain gage, where (r) is the radial distance from the crack
tip. Improper locations may lead to highly erroneous measurement of the surface strains. Theoretically,
the three-parameter strain series of Dally and Sanford accurately estimates the strain field up to a certain
radial distance, say rmax (depending on the angular position θ ) from the crack tip. This distance depends
on the given configuration and boundary conditions. As a result this quantity is not known a prior. From
the strain gradient analysis in [Dally and Sanford 1987] and the behavior of a crack with a plastic zone
ahead of it [Sanford 2003], it is preferable to paste the gages far way from the crack tip but not beyond
rmax. Therefore, it is evident that the knowledge of rmax is essential before conducting the experiments
so as to access whether the selected radial distance of the strain gage is meeting the above requirement or
not. If the chosen or guessed value of r is small then the measured strains may be severely affected due
to plasticity and strain gradient effects. On the other hand if it is greater than the unknown rmax, though
the above errors decrease rapidly but the measured strains may not be as per the theoretical predictions.
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Figure 1. Various regions at the crack tip [Dally and Sanford 1987].

It is worth noting that, at least a reasonably approximate value of the extent of validity of three-parameter
strain series or rmax is therefore needed for properly locating the gages. To the best of authors’ knowledge
no means are currently available to estimate the value of rmax in order to measure accurate opening mode
SIFs using the approach of [Dally and Sanford 1987].

The present work attempts to suggest a computational approach to determine reasonably accurate
values of rmax of a given configuration in line with the method of Dally and Sanford. The solution is
presented using the finite element analysis of cracked specimens. Single edge cracked plate problems
are considered with finite width and height to demonstrate the present approach. The outline of the paper
is as follows. First, theoretical background for numerical determination of rmax is presented in Section 2.
Section 3 presents numerical examples to demonstrate the proposed approach for determination of rmax.
Finally some concluding remarks are summarized in Section 3.

2. Theoretical background

The main underlying idea behind single strain gage technique of [Dally and Sanford 1987] is identification
of a suitable region around the crack tip within which accurate measurement of surface strains can be
made. Therefore, the region around a crack tip (traction free crack faces) is divided into three zones viz.
very near field, near field and far field zones as shown in Figure 1.

The very near field zone is close to the crack tip and first term of the strain series (singular strain term)
is sufficient to represent the strains. However, it is not a valid zone for accurate strain measurements
as the stress state in this region is three-dimensional (neither plane stress nor plane strain) [Rosakis and
Ravi-Chandar 1986] and the measured strains will be severely affected by plasticity effects. Also errors
in measuring the position of the strain gage are excessive if they are located very close to the crack tip.

The far field zone is again not suitable for collection of strain data because very large number of terms
in the strain series is required to yield accurate results. Therefore, Dally and Sanford identified that the
intermediate or near field zone is favorable and optimum zone for accurate measurement of the surface
strains. In this zone, a singular term and a small number of higher order terms accurately describe the
strain field.
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The near field strain equations are obtained using the generalized Westergaard approach proposed by
[Sanford 1979]. The modified Airy stress function in this approach is given by

φ = Re Z(z)+ y Im Z(z)+ Im Y (z), (1)

where
d Z
dz
= Z ,

d Z
dz
= Z ,

dY
dz
= Y (2)

and the complex analytic functions Z(z) and Y (z) are defined as

Z(z)=
∞∑

n=0

Anz(n−1)/2
=

K
√

2π z
+

∞∑
n=1

Anz(n−1)/2, Y (z)=
∞∑

m=0

Bmzm
=
σ0x

2
+

∞∑
m=1

Bmzm, (3)

which are series type functions (in terms of the complex variable z = x + iy) containing an infinite
number of coefficients A1, A2, . . . , B1, B2, . . . that can be determined using the boundary conditions of
a given problem. The stress components for the entire domain are represented by Dally and Sanford as

σxx = Re Z − y Im Z ′− y Im Y ′+ 2 Re Y,

σyy = Re Z + y Im Z ′+ y Im Y ′,

τxy =−y Re Z ′− y Re Y ′− Im Y.

(4)

Assuming plane stress conditions, the stress-strain relations are given by

εxx =
1
E
(σxx − νσyy), εyy =

1
E
(σyy − νσxx), γxy =

τxy

G
. (5)

Equations for the strain field can be obtained upon substituting (4) in (5)

Eεxx = (1− ν)Re Z − (1+ ν)y Im Z ′− (1+ ν)y Im Y ′+ 2 Re Y (6a)

Eεyy = (1− ν)Re Z + (1+ ν)y Im Z ′+ (1+ ν)y Im Y ′− 2ν Re Y (6b)

Gγxy =−y Re Y ′− Im Y − y Re Z ′ (6c)

Substitution of series form of complex functions Z(z) and Y (z) from (3) gives exact representation
of strain field in the domain with infinite number of unknown coefficients An and Bm . It is assumed
that the strain field in the near field zone can be sufficiently represented by the three-parameter series
with unknown coefficients A0, A1 and B0. The three-term representation of strain field in this region is
therefore

Eεxx = A0r−1/2 cos θ
2

(
(1−ν)−(1+ν) sin θ

2
sin 3θ

2

)
+2B0+A1r1/2 cos θ

2

(
(1−ν)+(1+ν) sin2 θ

2

)
,

Eεyy = A0r−1/2 cos θ
2

(
(1−ν)+(1+ν) sin θ

2
sin 3θ

2

)
−2νB0+A1r1/2 cos θ

2

(
(1−ν)−(1+ν) sin2 θ

2

)
,

2Gγxy = A0r−1/2
(

sin θ cos 3θ
2

)
−A1r1/2

(
sin θ cos θ

2

)
,

where A0, A1 and B0 are unknown coefficients that can be determined using the geometry of the specimen
and the boundary conditions. Using the definition of KI one can easily show that it is related to A0 by

KI =
√

2π A0. (7)
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Figure 2. Strain gage location and orientation [Dally and Sanford 1987].

A single strain gage is sufficient to measure the constant A0 (hence KI ) by placing and orienting the
strain gage as given below.

Using the strain transformation equations, the strain component εx ′x ′ at the point P located by r and
θ (Figure 2) is given by

2Gεx ′x ′ = A0r−1/2
(
κ cos θ

2
−

1
2

sin θ sin 3θ
2

cos 2α+ 1
2

sin θ cos 3θ
2

sin 2α
)

+ B0(κ + cos 2α)+ A1r1/2 cos
θ

2

(
κ + sin2 θ

2
cos 2α− 1

2
sin θ sin 2α

)
, (8)

where κ = 1−ν
1+ν

. The B0 term in this equation can be eliminated by selecting the angle α so that

cos 2α =−κ =−
1− ν
1+ ν

. (9)

Similarly the coefficient A1 vanishes if the angle θ is chosen so that

tan
θ

2
=− cot 2α. (10)

Thus by placing a single strain gage (Figure 2) with α and θ as defined by (9) and (10) one can measure
the strain εx ′x ′ , which in turn is related to KI by

εx ′x ′ =
1
√

r

[
KI

G
√

8π

(
κ cos

θ

2
−

1
2

sin θ sin
3θ
2

cos 2α+
1
2

sin θ cos
3θ
2

sin 2α
)]
. (11)

This equation accurately determines εx ′x ′ up to a radial distance of rmax. For a given configuration,
applied load, Young’s modulus E and Poisson’s ratio ν, the bracketed part on right-hand side of (11) is
a constant. Therefore

εx ′x ′ =
C
√

r
, (12)

where C is a constant. Taking the logarithm on both sides of (12) we get

ln εx ′x ′ =−
1
2 ln r + ln C. (13)

Equations (12) and (13) are valid along the line given by (10) until a radial distance of rmax. Thus a
log-log plot of (12) is a straight line of slope −0.5, with an intercept of ln C . The straight line property
generally breaks for r > rmax, because then more than three parameters are needed in (8) to estimate εx ′x ′ .
Using (13), the value of rmax can be accurately estimated.
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Figure 3. (a) Problem domain: Finite edge cracked plate subjected to uniform tension;
(b) half-model along with the symmetry boundary conditions used for the finite element
analysis.

3. Numerical examples

This section describes the proposed approach based on the finite element analysis of a given cracked
configuration for reasonably accurate estimation of the corresponding rmax. The method is presented
with the aid of numerical examples. For this purpose finite width and finite height edge cracked plates
subjected to uniform tensile stress are considered; see Figure 3(a). Due to symmetry only half the plate
is modeled, as shown in Figure 3(b). We generate different configurations, with a/w = 0.5, 0.6, 0.7, 0.8
and h/w = 0.3, 0.5, 1.0. The width w = 150 mm of the plate is fixed in all cases, as is the value of
1000 kPa for Young’s modulus. Plane stress conditions are assumed. ANSYS 9 and 11 was used for
the finite element analysis, with eight noded isoparametric quadrilateral elements (Q8). The crack tip is
modelled by collapsed Q8 quarter-point elements [Barsoum 1976].

Example 1: Determination of rmax using finite element analysis. The primary purpose of this example
is to demonstrate the basic procedure for determination reasonably accurate values of rmax of a config-
uration. The procedure is described using the edge cracked plates subjected to uniform tensile stress as
shown in Figure 3(a) with a/w = 0.5 and h/w = 0.3, 0.5, 1.0. A Poisson’s ratio of ν = 1/3 and an
applied stress value of 1.0 MPa are assumed for all three configurations. For ν = 1/3, the values of θ
and α both equal 60◦; see (9) and (10). To study the effect of mesh refinement on the convergence of
rmax, three meshes of increasing density are considered for each configuration; see Figures 4–6.

The meshes are designed so that nodes of several elements are made to lie along the radial line which
makes an angle of θ with the horizontal (60◦ for ν = 1/3). This line begins at the crack-tip and terminates
at the outer boundaries of the cracked plate. It should be noted that according to [Dally and Sanford 1987],
a single strain gage is required to be placed at an appropriate location on this line in the direction of α
in order to measure the linear strain εx ′x ′ (Figure 2). We call this the gage-line. The computed strains
in the global coordinates (using the finite element analysis) along the gage line are then transformed to
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Gage lineh/w = 0.3

Mesh1
Elements = 144     Nodes = 477

Mesh2
Elements = 1758     Nodes = 5457

Mesh3
Elements = 3045     Nodes = 9380

(a)

(b)

(c)

Figure 4. Different finite element meshes used for convergence study of rmax of a/w =
0.5 and h/w = 0.3 edge cracked configuration.

the linear strain εx ′x ′ in the direction defined by α = 60◦; see (8). The radial distances (r) of each of the
nodes on the gage line from the crack tip are then computed.

Figures 7 and 8 show plots of log εx ′x ′ as a function of log r , computed from each of the three meshes of
h/w= 0.3, 0.5, 1.0. The crack tip point is not plotted, as the radius of this point is zero. It is interesting to
notice from all the plots of Figures 7 and 8 that the linear trend in logarithmic axes distinctly exists until a
radial distance. This trend can be clearly observed in all the three meshes of each of the h/w value. The re-
sults presented in Figures 7 and 8 also strongly confirm that the selection of coefficients (A0, B0, A1) that
are retained in the three-parameter strain series (8) appears to be valid. The end point of the linear portion
of the plots (Figures 7 and 8) clearly indicates the terminal point of validity of the three-parameter strain
series (8) or rmax in accordance with the single gage approach of [Dally and Sanford 1987] — see (13).

Since the εx ′x ′ values are obtained numerically, we see that the slope of a line segment between any two
data points (Figures 7 and 8) belonging to the fine meshes is close to the theoretical value of −0.5 (13) —
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Gage lineh/w = 0.5 

Mesh1
Elements = 410     Nodes = 1305

Mesh2
Elements = 1581     Nodes = 4892

Mesh3
Elements = 5499     Nodes = 16794

(a)

(b)

(c)

Figure 5. Different finite element meshes used for convergence study of rmax of a/w =
0.5 and h/w = 0.5 edge cracked configuration.

more so than for coarse meshes. A line of slope −0.5 is included in Figures 7 and 8 for comparison. Thus
a reasonably accurate value of rmax can be estimated as the terminal point of the straight line portion on
logarithmic axes. These terminal points are also indicated in Figures 7 and 8. The precise value of rmax

is not essential for locating the strain gages, because they do not have to be placed precisely at rmax.
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Gage lineh/w = 1.0

Mesh1
Elements = 253     Nodes = 816

Mesh2
Elements = 1119     Nodes = 3478

(b)

Mesh3
Elements = 3519     Nodes = 10792

(c)Figure 6. Different finite element meshes used for convergence study of rmax of a/w =
0.5 and h/w = 1.0 edge cracked configuration.

Figure 7. Linear and nonlinear variation of ln(εx ′x ′) with ln(r) along the gage line for
the sequence of meshes (a/w = 0.5, h/w = 0.3, ν = 1/3) shown in Figure 4.

Table 1 presents the values of rmax obtained from the graphs of Figures 7 and 8. The convergence of
log(εx ′x ′) along the gage line for increasing mesh density of all the configurations is shown in Figure 9
along with the line of slope −0.5. No significant improvement of log εx ′x ′ values along the gage line can
be noticed in Figure 9 for any configuration. As a result no noticeable differences in values of rmax can be
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Figure 8. Variation of ln(εx ′x ′) with ln(r) along the gage line for the sequence of meshes
(a/w = 0.5, h/w = 0.5, ν = 1/3) of Figure 5 (top three graphs) and the sequence of
meshes (a/w = 0.5, h/w = 1.0, ν = 1/3) of Figure 6 (bottom graphs).
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Figure 9. Convergence of rmax with the mesh refinement of various edge cracked con-
figurations, with a/w = 0.5.

observed as the meshes are refined. The results presented in Figure 9 and Table 1 lead to the conclusion
that a single finite element mesh with a reasonable density appropriate to the given configuration is
sufficient to provide a fairly accurate value of rmax.

Next, in order to demonstrate the effect of Poisson’s ratio on values of rmax, two edge cracked plates
having a/w = 0.5, h/w = 0.3 and having different Poisson’s ratios (ν = 0.25 and 0.3) is considered.
Figure 10 shows corresponding finite element mesh of the domain having ν = 0.25 for determination of
rmax. It can be noticed from (8) and (10) that, not only the values of θ and α would change because of
change in the Poisson’s ratio but also the magnitude of εx ′x ′ at every point on the gage line. Corresponding
to ν = 0.25 the values of θ and α are 73.74◦ and 63.43◦ respectively — see (9) and (10). Figure 11 shows
the variation of εx ′x ′ (and hence rmax) with Poisson’s ratio on the logarithmic axes. The results obtained

h/w = 0.3 h/w = 0.5 h/w = 1.0
rmax (mm) rmax/w rmax (mm) rmax/w rmax (mm) rmax/w

Mesh1 33.5 0.22 56.8 0.38 60.0 0.40
Mesh2 33.2 0.22 54.0 0.36 58.0 0.39
Mesh3 36.0 0.24 55.6 0.37 58.2 0.39

Table 1. Convergence of rmax with the mesh refinement of different edge cracked speci-
mens (a/w = 0.5).
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h/w = 0.3Gage line (T = 73.740)

Mesh for Q = 0.25
Elements = 3345     Nodes = 10266

Figure 10. A fine mesh finite idealization of the edge cracked configuration with a/w =
0.5, h/w = 0.3 (Figure 3) and Poisson’s ratio = 0.25.

Figure 11. Variation of rmax with the Poisson’s ratio.

using the meshes in Figure 4(c) and Figure 10 are employed to plot the graphs of Figure 11. These results
appear to show that higher is the value of ν, the larger is rmax, indicating that the finite element analysis
of a single mesh of the experimental configuration with exact material properties can aid in obtaining
reasonably accurate values of rmax graphically.

Example 2: Dependence of the extent of the three parameter zone on the crack length. The goal of this
example is to demonstrate effect of the crack length on the value of rmax. For this purpose the problem
of edge cracked plate having h/w = 1.0 and different values of a/w = 0.5, 0.6, 0.7, 0.8 subjected to
uniform tensile stress (Figure 3(a)) is chosen. A Poisson’s ratio of ν = 1/3 and an applied stress value
of 1.0 MPa are assumed for all the configurations. Only one finite element mesh (fine mesh) of each of
the above configurations is employed in the analysis. Figure 12 shows fine meshes of the edge cracked
plates with a/w = 0.6, 0.7, 0.8. The third mesh in Figure 6 is employed for a/w = 0.5.

Figure 13 shows the variation of log εx ′x ′ with log r on the gage line of each configuration. It also shows
the extent of validity of the three-parameter zone, that is, the value rmax of the edge cracked plate as the
crack length is increased. These values of rmax are shown in Table 2. The results in this figure and table
indicate that the extent of three-parameter zone decreases as the crack length increases. In other words,
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a/w = 0.6
Elements = 3673     Nodes = 11266

a/w = 0.7
Elements = 3529     Nodes = 10840

(a) (b)

a/w = 0.8
Elements = 3335     Nodes = 10258

Figure 12. Finite element meshes of edge cracked plates with increasing crack length
(h/w = 1.0).

as the cracked domain becomes more finite, the rmax value decreases. The same observation can be made
from the results of Table 1, and a similar conclusion was reached by Chona et al. [1983] using photoelastic
studies, applied to the singular solutions in an effort to identify the singularity-dominated zone.

a/w rmax (mm) rmax/w

0.5 58.2 0.39
0.6 35.7 0.24
0.7 27.7 0.18
0.8 15.1 0.10

Table 2. Variation of rmax with a/w(h/w = 1.0).
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Figure 13. Dependence of the extent of the three-parameter zone on length of the crack.

Conclusions

The present work outlines the theoretical basis for determination of rmax in accordance with the single
strain gage method of [Dally and Sanford 1987] which in turn can be used to justify the selected radial
location of the gages. The present work attempts to propose a method of finding the reasonably accurate
rmax of a given experimental specimen using the finite element analysis. The numerical examples clearly
demonstrate that reasonably accurate values of rmax can be determined using the proposed approach. The
dependence of rmax on the geometry of the specimen and Poisson’s ratio is demonstrated.
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MICROSTRUCTURE-BASED MODELING OF ELASTIC FUNCTIONALLY
GRADED MATERIALS: ONE-DIMENSIONAL CASE

ZAHRA SHARIF-KHODAEI AND JAN ZEMAN

Functionally graded materials (FGMs) are two-phase composites with continuously changing microstruc-
ture adapted to performance requirements. Traditionally, the overall behavior of FGMs has been deter-
mined using local averaging techniques or a given smooth variation of material properties. Although
these models are computationally efficient, their validity and accuracy remain questionable, since a link
with the underlying microstructure (including its randomness) is not clear. In this paper, we propose
a numerical modeling strategy for the linear elastic analysis of FGMs systematically based on a realis-
tic microstructural model. The overall response of FGMs is addressed in the framework of stochastic
Hashin–Shtrikman variational principles. To allow for the analysis of finite bodies, recently introduced
discretization schemes based on the finite element method and the boundary element method are em-
ployed to obtain statistics of local fields. Representative numerical examples are presented to compare
the performance and limitations of both schemes. To gain insight into similarities and differences be-
tween these methods and to minimize technicalities, the analysis is performed in the one-dimensional
setting.

1. Introduction

Generally speaking, the ultimate goal of every design is a product which fully utilizes the properties
of the materials used in its construction. This philosophy, in the larger context, naturally leads to the
appearance of multiphase composites with microstructure adapted to operation conditions [Petrtýl et al.
1996; Bendsøe and Sigmund 2004; Ray et al. 2005]. Functionally graded materials (FGMs) present one
important man-made class of such material systems. Since their introduction in 1984 in Japan as barrier
materials for high-temperature components, FGMs have proved to be an attractive choice for numerous
applications such as wear resistant coatings, optical fibers, electrical razor blades and biomedical tools
[Neubrand and Rodel 1997; Uemura 2003]. To provide a concrete example, consider a microstructure of
Al2O3/Y-ZrO2 ceramics (see Figure 1) engineered for the production of all-ceramic hip bearings. In this
case, controlled composition and porosity allow us to achieve better long-term performance and hence
lower clinical risks when compared to traditional metallic materials [Anné et al. 2006].

As typical of all composites, the analysis of FGMs is complicated by the fact that the explicit discrete
modeling of the material microstructure results in a problem which is intractable due to its huge number
of degrees of freedom (DOFs) and/or its intrinsic randomness. Models with given smoothly varying
material data are often employed as the most straightforward answer to this obstacle. When the spatial
nonhomogeneity is assumed to follow a sufficiently simple form, this premise opens the route to very

Keywords: functionally graded materials, statistically nonuniform composites, microstructural model of fully penetrable
spheres, Hashin–Shtrikman variational principles, finite element method, boundary element method.
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Figure 1. Graded microstructure of Al2O3/Y-ZrO2 ceramics. (Courtesy of J. Vleugels,
K.U. Leuven.)

efficient numerical schemes, such as specialized finite elements [Santare and Lambros 2000], boundary
element techniques [Sutradhar and Paulino 2004], meshless methods [Ching and Chen 2007], and local
integral equations [Sládek et al. 2005]. Thanks to their simplicity, these methods can be rather easily
generalized to more complex issues such as coupled thermal-mechanical problems [Noda 1999] or crack
propagation [Kandula et al. 2005]. Although this approach is very appealing from the computational
point of view, its validity remains rather questionable as it contains no direct link to the underlying
heterogeneous microstructure.

One possibility in establishing such a connection is to assert that the FGM locally behaves as a homo-
geneous composite characterized by a given volume fraction distribution and then use well established
local effective media theories; see [Milton 2002; Böhm 2008] for more details. Local averaging tech-
niques have attracted considerable attention due to their simplicity comparable to the previous class of
models; see [Markworth et al. 1995; Cho and Ha 2001] for an overview and comparison of various local
micromechanical models in the context of FGMs. An exemplary illustration of the capabilities of this
modeling paradigm is the work [Goupee and Vel 2006] which provides an efficient algorithm for FGM
composition optimization when taking into account coupled thermomechanical effects. Still, despite a
substantial improvement in the physical relevance of the model, local averaging methods may lead to
inaccurate results. This was demonstrated by systematic studies [Reiter et al. 1997; Reiter and Dvorak
1998], which clearly show that the local averaging technique needs to be adapted to the detailed character
of the microstructure in a neighborhood of the point under consideration. When considering the local
averaging techniques, however, such information is evidently not available as all the microstructural data
was lumped into volume fractions only.

Another appealing approach to FGM modeling is an adaptive discrete modeling of the structure. In
order to avoid the fully detailed problem, a simplified model based on, for example, local averaging
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techniques is solved first. Then, in regions where the influence of the discreteness of the microstructure
is most pronounced, the microstructure with all its details is recovered to obtain an accurate solution.
Such a modeling strategy has been, for example, adopted in [Grujicic and Zhang 1998] when using the
Voronoi cell finite element method, introduced by Ghosh et al. [1995] or more recently in [Vemaganti and
Deshmukh 2006], in the framework of goal oriented modeling. Without a doubt, this approach yields the
most accurate results for a given distribution of phases. However, its extension to include the inevitable
randomness of the microstructure seems to be an open problem.

The systematic treatment of FGMs as random, statistically nonhomogeneous composites offers, on the
other hand, a possibility to apply the machinery of statistical continuum mechanics [Beran 1968; Torquato
2001]. In this framework, overall response of the media is interpreted using the ensemble, rather then
spatial, averages of the involved quantities. The first class of methods stems from the description of
the material composition by a nonstationary random field. This approach was pioneered by Ferrante
and Graham-Brady [2005] and further refined in [Rahman and Chakraborty 2007], where the random
field description was applied to the volume fractions of the involved phases and the overall statistics
were obtained using local averaging methods. Such a strategy, however, inevitably leads to the same
difficulties as in the case of deterministic analysis with a given variation of volume fractions. Alternative
methods exploit the tools of mechanics of heterogeneous media. This gives rise to a correct treatment
of nonlocal effects when combined with appropriate techniques for estimating the statistics of local
fields. Examples of FGM oriented studies include the work of Buryachenko and Rammerstorfer [2001]
who employ the multiparticle effective field method or the study by Luciano and Willis [2004] based
on the Hashin–Shtrikman energy principles; see also [Buryachenko 2007] for a comprehensive list of
references in this field. Both works, however, being analytically based, concentrate on deriving explicit
constitutive equations for FGMs and therefore work with infinite bodies neglecting the finite size of the
microstructure.

The goal of this paper is to make the first step in formulating a numerical model which is free of
the above discussed limitations. The microstructural description is systematically derived from a fully
penetrable sphere model introduced by Quintanilla and Torquato [1997], which is briefly reviewed in
Section 2. The statistics of local fields then follow from reformulation of the Hashin–Shtrikman (H–S)
variational principles introduced, for example, in [Willis 1977; Willis 1981] and summarized in the cur-
rent context in Section 3 together with the Galerkin scheme allowing us to treat general bodies proposed
by Luciano and Willis [2005] or Procházka and Šejnoha [2003]. Section 4 covers the application of
the finite element method (FEM) following [Luciano and Willis 2005; Luciano and Willis 2006] and the
boundary element method (BEM) in the spirit of [Procházka and Šejnoha 2003]. Finally, based on results
of a parametric study executed in Section 5, the comparison of both numerical schemes when applied
to FGM modeling is performed in Section 6 together with a discussion of future improvements of the
model. In order to make the presentation self-contained and to minimize technicalities, the attention is
restricted to an one-dimensional elasticity problem (or, equivalently, to a simple laminate subject to body
forces varying in one direction [Luciano and Willis 2001]).

In the following text, we adopt the matrix notation commonly used in the finite element literature.
Hence, a, a and A denote a scalar quantity, a vector (column matrix), and a general matrix, respectively.
Other symbols and abbreviations are introduced in the text as needed.



1776 ZAHRA SHARIF-KHODAEI AND JAN ZEMAN

2. Microstructural model

As already indicated, the morphological description adopted in this work is the one-dimensional case
of a microstructural model studied in [Quintanilla and Torquato 1997]. A particular realization can be
depicted as a collection of N rods of length ` distributed within a structure of length L , see Figure 2.
The position of the i-th rod is specified by the x coordinate of its reference point xi , which in our case
coincides with the midpoint of a rod.

PSfrag replacements
`

Lx

xi

Figure 2. Example of microstructural model realization.

The microstructure gradation is prescribed by an intensity function ρ(x), with the product ρ(x) dx
giving the expected number of reference points in an infinitesimal neighborhood around x . Using the
theory of general Poisson processes, the probability of finding exactly m points located in a finite-sized
interval I is given by Quintanilla and Torquato [1997]

Pm(I )=
µρ(I )m

m!
exp

(
−µρ(I )

)
, with µρ(I )=

∫
I
ρ(x) dx . (1)

Further, to provide a suitable framework for the description of the microstructure related to the model,
we attach the symbol α to a particular microstructure realization (see Figure 2) from a sample space S

endowed with a probability measure p. Then, the ensemble average of a random function f (x, α) is
defined as1

〈 f 〉(x)=
∫

S

f (x, α)p(α) dα.

Now, interpret Figure 2 as a distribution of white and black phases. For a given configuration α, the
distribution of a phase r is described by the characteristic function χr (x;α) as

χr (x;α)=

{
1 if x is located in phase r,

0 otherwise,
(2)

where r = 1 is reserved for the white phase (matrix) while r = 2 denotes the black phase (rod). The
elementary statistical characterization of the model is provided by the one-point probability function
Sr , defined as Sr (x) = 〈χr 〉(x), giving the probability of finding a point x included in the phase r .
Recognizing that the probability of locating x in the white phase coincides with the probability that the
interval I (x)= [x − `/2, x + `/2] will not be occupied by any reference point and using (1), we obtain

S1(x)= P0
(
I (x)

)
= exp

(
−

∫ x+`/2

x−`/2
ρ(t) dt

)
.

1To simplify the exposition, we introduce the following notation: for a real-valued random function f (x, α) : R×S→ R,
by writing f (x;α) we mean a deterministic function of x ∈ R related to a given fixed realization (that is, f (x;α) : R→ R). In
other words, f (x;α) := f (x, β)|β=α .



MICROSTRUCTURE-BASED MODELING OF ELASTIC FUNCTIONALLY GRADED MATERIALS 1777

The one-point probability function S2(x) follows from the identity

S1(x)+ S2(x)= 1, (3)

which is a direct consequence of the adopted definition of the characteristic function; recall (2).
By analogy, we can introduce the two-point probability function Srs as

Srs(x, y)=
∫

S

χr (x, α)χs(y, α)p(α) dα,

quantifying the probability that a point x will be located in phase r while y stays in the phase s. For
r = s = 1, the descriptor coincides with the probability that the union of intervals I (x) and I (y) will not
be occupied by a reference point, yielding

S11(x, y)= P0
(
I (x)∪ I (y)

)
. (4)

The remaining functions Srs can be directly expressed from S11 by exploiting identity (3). In particular:

S12(x, y)= S1(x)− S11(x, y),

S21(x, y)= S1(y)− S11(x, y),

S22(x, y)= 1− S1(x)− S1(y)+ S11(x, y).

Finally, to provide a concrete example, consider a piecewise linear intensity function

ρ(x)=


ρa, 0≤ x ≤ a,
ρa + kρ(x − a), a < x ≤ b,
ρb, b < x ≤ L ,
0, otherwise,

where kρ = (ρb− ρa)/(b− a). The corresponding one- and two-point probability functions, evaluated
using an adaptive Simpson quadrature [Gander and Gautschi 2000], are shown in Figure 3. Obviously,
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the shape of the one-point probability function directly follows from the intensity profile (up to some
boundary effects due to the extension of ρ by zero outside of � and smoothing phenomena with the length
scale ` demonstrating the “geometrical” size effect present in the model). The two-point probability
function then contains further details of the distribution of individual constituents.

3. Hashin–Shtrikman variational principles

The geometrical description introduced provides a solid basis for the formulation of a stochastic model
of one-dimensional binary functionally graded bodies. We will concentrate on the simplest case of linear
elasticity with deterministic properties of single components.

3.1. Problem statement. Consider a bar of cross-sectional area 1 m2, represented by the interval �=
(0, L) with the boundaries ∂�= {0, L}, fixed at ∂�u , subject to a body force b(x) and tractions t at ∂�t

(see Figure 4). For a given realization α, the displacement field u(x;α) follows from the energy min-
imization problem u(x;α) = arg minv(x)∈V5(v(x);α), where arg minx∈X f (x) denotes the minimizer
of f on X , V is the realization-independent set of kinematically admissible displacements, v is a test
displacement field, and the energy functional 5 is defined as

5
(
v(x);α

)
=

1
2

∫
�

ε
(
v(x)

)
E(x;α)ε

(
v(x)

)
dx −

∫
�

v(x)b(x) dx −
(
v(x)t(x)

)∣∣∣
∂�t
,

with the strain field ε(v(x))= dv
dx
(x) and the Young modulus E in the form

E(x;α)= χ1(x;α)E1+χ2(x;α)E2, (5)

where Ei denotes the deterministic Young modulus of the i-th phase.
Now, given the probability distribution p(α), the ensemble average of displacement fields follows

from the variational problem [Luciano and Willis 2005]:

〈u〉(x)=
∫

S

(
arg min

v(x,α)∈V×S
5
(
v(x), α

))
p(α) dα. (6)

In theory, the previous relation fully specifies the distribution of displacement fields. The exact specifica-
tion of the set S is, however, very complex and the probability distribution p(α) is generally not known.
Therefore, the solution needs to be based on partial geometrical data such as the one- and two-point
probability functions introduced in Section 2.

3.2. Hashin–Shtrikman decomposition. Following the seminal ideas of Hashin and Shtrikman [1962]
and Willis [1977], the solution of the stochastic problem is sought as a superposition of two auxiliary
problems, each characterized by constant material data E0.

�
�
�
�
�
�
�

�
�
�
�
�
�
�
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Figure 4. The one-dimensional elasticity problem associated with realization α.
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Figure 5. Problem decomposition: top, deterministic reference case; bottom, stochastic
polarization problem.

In the first reference case (Figure 5, top), the homogeneous structure is subject to the body force b and
the boundary tractions t . The second, the polarization problem shown in Figure 5, bottom, corresponds
to a homogeneous body loaded by polarization stress τ arising from the stress equivalence conditions
σ(x;α)= E(x;α)ε(x;α)= E0ε(x;α)+ τ(x;α). The unknown polarization stress now becomes a new
variable to be determined as the stationary point of the two-field Hashin–Shtrikman–Willis functional (see
[Willis 1977; Procházka and Šejnoha 2004] and [Bittnar and Šejnoha 1996, Chapter 1.8], for example)(

u(x;α), τ (x;α)
)
= arg min

v(x)∈V
stat

θ(x;α)∈T(α)
U
(
v(x), θ(x;α);α

)
, (7)

where θ denotes an admissible polarization stress from the realization-dependent set T(α), arg stat
x∈X

f (x)
stands for a stationary point of f on X , and a new energy functional U is defined as

U
(
v(x), θ(x;α);α

)
=

1
2

∫
�

ε
(
v(x)

)
E0ε

(
v(x)

)
dx −

∫
�

v(x)b(x) dx −
(
v(x)t(x)

)∣∣∣
∂�t

+

∫
�

θ(x;α)ε
(
v(x)

)
dx +

1
2

∫
�

θ(x;α)
(
E(x;α)− E0)−1

θ(x;α) dx . (8)

The minimization with respect to v in (7) can be efficiently performed using the Green’s function
technique. To that end, we introduce a decomposition of the displacement field

u(x;α)= u0(x)+ u1(x;α), (9)

where u0 solves the reference problem, while u1 denotes the displacement field due to a test stress
polarization field θ . Note that the determination of u0 is a standard task, which can be generally solved
by a suitable numerical technique (see Sections 4.1 and 4.2). By introducing the Green’s function of the
reference problem satisfying

E0 ∂
2G0

∂x2 (x, y)+ δ(x − y)= 0,

with boundary conditions (n denotes the outer normal, recall Figure 4)

G0(x, y)= 0 for x ∈ ∂�u, T 0(x, y)= E0 ∂G0(x, y)
∂x

n(x)= 0 for x ∈ ∂�t , (10)
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we relate the u1 component and the associated strain field ε1 to the polarization stresses θ via [Luciano
and Willis 2005]

u1(x;α)=−
∫
�

∂G0(x, y)
∂y

θ(y;α) dy =−
∫
�

10(x, y)θ(y;α) dx,

ε
(
u1(x;α)

)
=−

∫
�

∂2G0(x, y)
∂x∂y

θ(y;α) dy =−
∫
�

00(x, y)θ(y;α) dx .

(11)

By exploiting the optimality properties of the minimizing displacement u(x;α) and upon exchanging
the order of optimization, Equation (8) can be, after some steps described in, for example, [Willis 1981;
Luciano and Willis 2005], recast solely in terms of the polarizations

τ(x;α)= arg stat
θ(x;α)∈T(α)

H
(
θ(x;α);α

)
,

where the condensed energy functional is defined as

H
(
θ(x;α);α

)
= min
v(x)∈V

U
(
v(x), θ(x;α);α

)
=50(u0(x))+

∫
�

θ(x;α)ε
(
u0(x)

)
dx

−
1
2

∫
θ(x;α)

(
E(x;α)− E0)−1

θ(x;α) dx −
1
2

∫
�

∫
�

θ(x;α)00(x, y)θ(y;α) dx dy,

with 50 denoting the total energy of the reference structure.
With the Hashin–Shtrikman machinery at hand, the stochastic problem introduced by (6) can be solved

by repeating the previous arguments in the probabilistic framework. In particular, taking the ensemble
average of (9) and (11)1 yields

〈u〉(x)= u0(x)−
∫
�

10(x, y)〈τ 〉(y) dy, (12)

where the expectation 〈τ 〉 is a solution of the variational problem

〈τ 〉(x)=
∫

S

(
arg stat

θ(x,α)∈T(α)×S
H(θ(x, α), α)

)
p(α) dα. (13)

Again, due to limited knowledge of the detailed statistical characterization of the phase distribution, the
previous variational problem can only be solved approximately. In particular, we postulate the following
form of the polarization stresses:

τ(x, α)≈ χ1(x, α)τ1(x)+χ2(x, α)τ2(x),

θ(x, α)≈ χ1(x, α)θ1(x)+χ2(x, α)θ2(x),

where τr and θr are now the realization-independent polarization stresses related to the r -th phase. Plug-
ging the approximation into (13) leads, after some manipulations detailed in [Willis 1981; Šejnoha and
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Zeman 2000], to the variational principle

(
τ1(x), τ2(x)

)
= arg stat

(θ1(x),θ2(x))
50(u0(x)

)
+

2∑
r=1

∫
�

θr (x)Sr (x)ε
(
u0(x)

)
dx

−
1
2

2∑
r=1

∫
�

θr (x)Sr (x)(Er − E0)−1θr (x) dx −
1
2

2∑
r=1

2∑
s=1

∫
�

∫
�

θr (x)Srs(x, y)00(x, y)θs(y) dx dy,

meaning that the true phase polarization stresses τr satisfy the optimality conditions (r = 1, 2)∫
�

θr (x)Sr (x)(Er − E0)−1τr (x) dx

+

2∑
s=1

∫
�

∫
�

θr (x)Srs(x, y)00(x, y)τs(y) dy dx =
∫
�

θr (x)Sr (x)ε
(
u0(x)

)
dx, (14)

for arbitrary θr .

3.3. Discretization. Two ingredients are generally needed to convert the conditions (14) to the finite-
dimensional system: representation of the reference strain field and the Green’s function-related quanti-
ties and discretization of the phase polarization stresses. The first step is dealt with in detail in Section
4; now it suffices to consider the approximations ε0,h0(x),10,h0(x) and 00,h0(x, y), where h0 denotes a
parameter related to the discretization of the reference problem.2

Next, we reduce (14) to a finite-dimensional format using the standard Galerkin procedure. To that
end, we introduce the discretization of the phase polarization stresses

τr (x)≈ Nτh1(x)dτh0h1
r , θr (x)≈ Nτh1(x)dθh1

r , (15)

where Nτh1 is the matrix of (possibly discontinuous) shape functions controlled by the discretization
parameter h1; dθh1

r and dτh0h1
r denote the DOFs of trial and true polarization stresses, the latter related to

the discrete Green’s function. Introducing the approximations (15) in the variational statement (14) and
using the arbitrariness of dθh1

r leads to a system of linear equations

Kτh1
r dτh0h1

r +

2∑
s=1

Kτh0h1
rs dτh0h1

s = Rτh0h1
r , (16)

with the individual terms given by (r, s = 1, 2)

Kτh1
r =

∫
�

Nτh1(x)TSr (x)[Er − E0
]
−1Nτh1(x) dx, (17)

Kτh0h1
rs =

∫
�

∫
�

Nτh1(x)TSrs(x, y)00,h0(x, y)Nτh1(y) dx dy, (18)

Rτh0h1
r =

∫
�

Nτh1(x)TSr (x)ε0,h0(x) dx . (19)

2To be more precise, the goal is not to obtain accurate estimates of the Green’s function-related operators themselves, but
rather to approximate the action of the operators; see Section 5.2 for further discussion.
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Finally, once the approximate values of phase polarization stresses are available, the elementary sta-
tistics of the displacement field follow from the discretized form of (12):

〈u〉(x)≈ 〈u〉h0h1(x)= u0,h0(x)−
2∑

r=1

(∫
�

10,h0(x, y)Sr (y)Nτh1(y) dy
)

dτh0h1
r . (20)

Note that additional information such as conditional statistics can be extracted from the polarization
fields in postprocessing steps similar to (20); see [Luciano and Willis 2005; 2006] for more details.

4. Reference problem and Green’s function-related quantities

4.1. Finite element method. The solution of the reference problem follows the standard finite element
procedures, see for examples [Bittnar and Šejnoha 1996; Krysl 2006]. Nevertheless, we briefly repeat
the basic steps of the method for the sake of clarity.3 The reference displacement u0 follows from the
identity ∫

�

ε
(
v(x)

)
E0ε

(
u0(x)

)
dx =

∫
�

v(x)b(x) dx +
(
v(x)t(x)

)∣∣∣
∂�t
, (21)

which should hold for any test function v ∈ V. Within the conforming finite element approach, the
unknown displacement u0 and the test function v together with the associated strain field are sought in
a finite-dimensional subspace Vh0 ⊂ V

u0(x)≈ u0,h0(x)= Nuh0(x)duh0, v(x)≈ vh0(x)= Nuh0(x)dvh0, (22)

ε
(
u0(x)

)
≈ ε

(
u0,h0(x)

)
= Buh0(x)duh0, ε

(
v(x)

)
≈ ε

(
vh0(x)

)
= Buh0(x)dvh0, (23)

where Nuh0 is the displacement interpolation matrix and Buh0 denotes the displacement-to-strain matrix.
Using the discretized fields, (21) reduces to the system

Kuh0 duh0 = Ruh0, (24)

where

Kuh0 =

∫
�

Buh0(x)TE0Buh0(x) dx, Ruh0 =

∫
�

Nuh0(x)Tb(x) dx +
(
Nuh0(x)t(x)

)∣∣∣
∂�t
. (25)

Solving the system for duh0 enables us to obtain the ε0,h0 approximation using (23)1.
The discretized version of the Green’s function follows from (21) with t = 0 and b = δ(y− x) (see

(24) and (25)2),
G0(x, y)≈ G0,h0(x, y)= Nuh0(x)(Kuh0)−1Nuh0(y)T.

The remaining Green’s function-related quantities can now be expressed directly from (11) and (11)2,
leading to

10(x, y)≈10,h0(x, y)= Nuh0(x)(Kuh0)−1Buh0(y)T, (26)

00(x, y)≈ 00,h0(x, y)= Buh0(x)(Kuh0)−1Buh0(y)T. (27)

3Recall that for simplicity, we assume homogeneous Dirichlet boundary conditions only. The treatment of the nonhomoge-
neous data can be found in [Luciano and Willis 2005, Appendix A].
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4.2. Boundary element discretization. Following the standard BEM procedures (see for examples [Bit-
tnar and Šejnoha 1996; Duddeck 2002]), we start from the Betti identity written for the reference problem∫

�

d2v

dξ 2 (ξ)E
0u0(ξ) dξ =

(
n(ξ)ε(v(ξ))E0u0(ξ)− v(ξ)t0(ξ)

)∣∣∣
∂�(ξ)
−

∫
�

v(ξ)b(ξ) dξ, (28)

and apply the test displacement in the form v(ξ)= G0,∞(ξ, x), where G0,∞ is the infinite body Green’s
function defined as the solution of

E0 ∂
2G0,∞(ξ, x)

∂ξ 2 + δ(x − ξ)= 0,G0,∞(ξ, x)= G0,∞(x, ξ). (29)

In the one-dimensional setting, this quantity is provided by [Luciano and Willis 2001, Equation (13)]

G0,∞(x, ξ)=−
1

2E0 |x − ξ |,

and the integral identity (28), written for any x ∈�, receives the form

u0,h0(x)=
(
G0,∞(x, ξ)t0,h0(ξ)− T 0,∞(x, ξ)u0,h0(ξ)

)∣∣∣
∂�(ξ)
+

∫
�

G0,∞(x, ξ)b(ξ) dξ, (30)

where the tractions T 0,∞(x, ξ) are defined analogously to (10)2 as

T 0,∞(x, ξ)= E0 ∂G0,∞(x, ξ)
∂ξ

n(ξ)=
(
H(x − ξ)− 1

2

)
n(ξ), for ξ ∈ ∂�, (31)

and H denotes the Heaviside function. Imposing the consistency with boundary data for x→ 0+ and
x→ L− yields the system of two linear equations

E0u0,h0(L)− E0u0,h0(0)− Lt0,h0(L)=
∫
�

ξb(ξ) dξ, (32)

E0u0,h0(L)− E0u0,h0(0)− Lt0,h0(0)=
∫
�

(L − ξ)b(ξ) dξ. (33)

Since one component of the pair (u0,h0, t0,h0) is always specified on ∂� and ∂�u
6= ∅, the previous

system uniquely determines the unknown boundary data (that is, u0,h0 on ∂�t and t0,h0 on ∂�u), needed
to evaluate (30).4

Making use of the identity 2E0∂x G0,∞(x, ξ) = 1− 2H(x − ξ), the associated strain field can be
expressed as

ε0,h0(x)=
(
∂G0,∞(x, ξ)

∂x
t0,h0(ξ)

)∣∣∣∣
∂�(ξ)

+

∫
�

∂G0,∞(x, ξ)
∂x

b(ξ) dξ

=
1

2E0

(
t0,h0(L)− t0,h0(0)−

∫ x

0
b(ξ) dξ +

∫ L

x
b(ξ) dξ

)
. (34)

4It can be verified that (30) now provides the exact one-dimensional displacement field rather than an approximate one.
Nevertheless, to keep the following discussion valid in the multidimensional setting and consistent with Section 4.1, we keep
the index “h0” in the sequel.
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Analogously to the finite element treatment, the expression for the finite-body Green’s function starts
from (28) with b = δ(y − ξ) and boundary data (10). Following the specific form of (30) (and allow-
ing for a slight inconsistency in notation), we introduce a decomposition of the Green’s function into
the discretization-independent infinite-body part and the discretization-dependent boundary contribution
G0(x, y)≈ G0,∞(x, y)+G0,h0(x, y), where the boundary part, written for x ∈� and y ∈�, assumes
the form

G0,h0(x, y)=
(
G0,∞(x, ξ)T 0,h0(ξ, y)− T 0,∞(x, ξ)G0,h0(ξ, y)

)∣∣∣
∂�(ξ)

,

with the boundary displacements G0,h0 and tractions T 0,h0 at ξ ∈ ∂� due to a unit impulse at y determined
from a linear system (compare with (32) and (33))

E0G0,h0(L , y)− E0G0,h0(0, y)− LT 0,h0(L , y)= y, (35)

E0G0,h0(L , y)− E0G0,h0(0, y)− LT 0,h0(0, y)= L − y. (36)

The expression for 10 is derived following an analogous procedure. We exploit the infinite-body–
boundary split 10(x, y)≈10,∞(x, y)+10,h0(x, y), and obtain the first part directly from the definition
(11)

10,∞(x, y)=
∂G0,∞(x, y)

∂y
=

1
2E0

(
2H(x − y)− 1

)
.

The boundary-dependent part now follows from

10,h0(x, y)=
(

G0,∞(x, ξ)
∂T 0,h0(ξ, y)

∂y
− T 0,∞(x, ξ)

∂G0,h0(ξ, y)
∂y

)∣∣∣∣
∂�(ξ)

,

with the y-sensitivities of the boundary data evaluated from (35)–(36) as

E0 ∂G0,h0(L , y)
∂y

− E0 ∂G0,h0(0, y)
∂y

− L
∂T 0,h0(L , y)

∂y
= 1, (37)

E0 ∂G0,h0(L , y)
∂y

− E0 ∂G0,h0(0, y)
∂y

− L
∂T 0,h0(0, y)

∂y
=−1. (38)

The BEM-based approach is completed by approximating the 00 function. In particular, we get

00(x, y)≈ 00,∞(x, y)+00,h0(x, y), (39)

00,∞(x, y)=
∂10,∞(x, y)

∂x
=

1
E0 δ(x − y), (40)

00,h0(x, y)=
∂10,h0(x, y)

∂x
=

(
G0,∞(x, ξ)

∂x
∂T 0,h0(ξ, y)

∂y

)∣∣∣∣
∂�(ξ)

=
1

2E0

(
∂T 0,h0(L , y)

∂y
−
∂T 0,h0(0, y)

∂y

)
. (41)

Finally note that the previous procedure can be directly translated to multidimensional and/or vectorial
cases; see [Procházka and Šejnoha 2003, Section 3] for more details.
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5. Numerical examples

Before getting to the heart of the matter, we start by converting the relations (16)–(20) to the fully
discrete format by replacing the integrals by a numerical quadrature and selecting a specific form of
shape functions Nτh1 . To that end, we introduce a set of integration points {ζ1, ζ2, . . . , ζNζ } as well as
associated integration weights {w1, w2, . . . , wNζ } and evaluate the components of the system matrix and
right-hand side vector as

Kτh1
r ≈

Nζ∑
i=1

wi Nτh1(ζi )
TSr (ζi )[Er − E0

]
−1Nτh1(ζi ), (42)

Kτh0h1
rs ≈

Nζ∑
i=1

Nζ∑
j=1

wiw j Nτh1(ζi )
TSrs(ζi , ζ j )0

0,h0(ζi , ζ j )Nτh1(ζ j )

+

∫
�

∫
�

Nτh1(x)TSrs(x, y)00,∞(x, y)Nτh1(y) dx dy, (43)

Rτh0h1
r ≈

Nζ∑
i=1

Nτh1(ζi )
TSr (ζi )ε

0,h0(ζi ), (44)

〈u〉h0h1(x)≈ u0,h0(x)−
2∑

r=1

Nζ∑
i=1

wi1
0,h0(x, ζi )Sr (ζi )Nτh1(ζi )dτh0h1

r

−

2∑
r=1

(∫
�

10,∞(x, y)Sr (y)Nτh1(y) dy
)

dτh0h1
r , (45)

with the convention 00,∞
=10,∞

≡ 0 for the FEM-based approximation of the polarization problem. The
basis functions and integration schemes employed below, based on a uniform partitioning of � into Ne

cells �e of length h1 = L/Ne, are defined by Figure 6. In particular, the specification of the polarization
stress in terms of P0 shape functions requires 2Ne DOFs (meaning one DOF per cell and phase), while
the P1 and P−1 discretizations are parametrized using 2(Ne+ 1) or 4Ne values, respectively.

PSfrag replacements

h1
2

h1
2

ζe

we = h1

1 dτh0h1r,e

(a)

PSfrag replacements

h1√
3

ζ2e−1 ζ2e

w2e−1 = h1
2 w2e = h1

2

1
dτh0h1

r,2e−1 dτh0h1
r,2e

(b)

PSfrag replacements

h1

ζe ζe+1

we =
h1
2 we+1 =

h1
2

1dτh0h1r,e dτh0h1
r,e+1

(c)

Figure 6. Choice of shape functions and integration points related to the e-th cell:
(a) piecewise-constant basis functions (P0) and the Gauss–Legendre quadrature of or-
der 1 (GL1), (b) piecewise-linear discontinuous basis functions (P−1) and the Gauss–
Legendre quadrature of order 2 (GL2), and (c) piecewise linear continuous basis func-
tions (P1) and Newton–Cotes quadrature of order 1 (NC1). ◦ represent cell nodes, ©
degrees of freedom, and � integration points.
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Note that the BEM-related infinite-body contributions appearing in (43) and (45) are still kept explicit,
as they are available in the closed form and can be treated separately. In the present case, action of the
00,∞ operator is local — recall (41) — while the quantities related to 10,∞ are evaluated at cell nodal
points and linearly interpolated to the interior of a cell to account for the discontinuity of the integrand.

To summarize, the following factors significantly influence the accuracy of the discrete Hashin–
Shtrikman scheme:

• approximation of the Green’s function of the comparison body,

• the basis functions and numerical quadrature used to discretize the polarization problem,

• the Young’s modulus of the reference body E0,

• contrast of the Young moduli of individual phases (E2/E1),

• the characteristic size of the microstructure with respect to the analyzed domain (`/L).

All these aspects are studied in detail in the rest of this section. Two representative examples of structures
subject to a uniform body force b and homogeneous mixed and Dirichlet boundary data are considered,
see Figure 7,

statically determinate structure: u(0, α)= 0, t (L , α)= 0, (46)

statically indeterminate structure: u(0, α)= 0, u(L , α)= 0. (47)

In both cases, the heterogeneity distribution is quantified according to the model introduced in Section
2 with the one- and two-point probability functions plotted in Figure 3. Moreover, taking advantage of
the one-dimensional setting, we systematically compare the obtained numerical results against reliable
reference values determined by extensive Monte Carlo (MC) simulations, introduced next.

5.1. Direct simulation results. For the purpose of the following discussion, the reference values of the
average displacement fields 〈u〉MC(x) together with the 99.9% interval estimates [〈u−〉MC(x), 〈u+〉MC(x)]
are understood as the piecewise linear interpolants of discrete data sampled by the MC procedure de-
scribed in detail in the Appendix. In addition, the homogenized displacement field uH(x), corresponding
to a deterministic structure with the position-dependent elastic modulus

1
EH(x)

=
S1(x)

E1
+

S2(x)
E2

, (48)

is introduced to assess the performance of the local averaging approach. Figure 7 stores several repre-
sentative results plotted using dimensionless quantities.

As apparent from Figure 7, the obtained statistics of overall response exhibit rather narrow confidence
intervals, implying the reliability and accuracy of the MC estimates. For the statically determinate
structure, the locally homogenized solution coincides with the ensemble average of the displacement
fields, as demonstrated by the overlap of the simulation results with the homogenized data. The converse
is true (with the 99.9% confidence) for the statically indeterminate case, where these two results can
be visually distinguished from each other. The mismatch (which increases with increasing E2/E1 or
`/L) clearly demonstrates that even in the one-dimensional setting local averaging may lead to incorrect
values when treating nonhomogeneous random media. These results are consistent with the fact that
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Figure 7. Reference MC solution; (a) statically determinate and (b) indeterminate prob-
lems; MC results correspond to 99.9% confidence interval estimates, H refers to homog-
enized solution.

in the statically determinate case, the stress field σ(x, α) is independent of α as follows from the one-
dimensional equilibrium equations ∂xσ(x, α)+ b(x) = 0 and the deterministic value of the traction
at x = L due to the boundary condition provided by (46)2. In the latter case, however, the traction
value as well as the stress field become configuration-dependent. Such an effect does not appear in the
classical homogenization setting, where for `/L→ 0 the harmonic average is known to represent the
homogenized solution exactly [Murat and Tartar 1997]. This result naturally justifies the application of
approaches based on higher-order statistics to FGMs, with the H–S method being the most prominent
example.

5.2. Effect of the Green’s function approximation. In order to illustrate the effect of the approximate
Green’s function, we restrict our attention to the statistically determinate structure and employ the stan-
dard piecewise linear basis functions Nuh0 to evaluate the 00,h0 function in the FEM setting using (27).
Figure 8 allows us to perform the qualitative assessment of the results for different choices of basis
functions, integration schemes, and discretization parameters h0.

Evidently, a suitable choice of discretization parameter h0 is far from straightforward. From all the
possibilities presented in Figure 8a, only the combinations h1 = h0 with the P0/GL1 discretization
of the polarization problem and h1 = 2h0 with the P−1/GL2 scheme are capable of reproducing the
homogenized solution, while all the remaining possibilities lead to inaccurate results often accompanied
by an oscillatory response. On the other hand, the h0-independent BEM-based solutions show correct
response for all discretizations of the polarization problem (and are virtually independent of the scheme
used due to the sufficiently low value of the h1 parameter, see Section 5.5).

To shed a light on such phenomena, consider the FEM approximation of the 00,h0 function plotted in
Figure 9a. The piecewise linear basis functions used to express the reference displacements imply the
piecewise constant values of 00,h0(x, y) approximating the exact expression 1

E0 δ(x − y), see (39). As
pointed out by Luciano and Willis [2006], however, the accuracy of the HS scheme is governed by the
correct reproduction of the action of the 00(x, y) operator rather than the local values. In the present
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context, it follows from (44) that such a requirement is equivalent to the accurate representation of the
00(x, y) operator action for x coinciding with the integration points related to the selected numerical
quadrature. It can be verified that this condition is satisfied only for the two aforementioned discretiza-
tions of the reference problem. In particular, for the P0/GL1 combination we obtain (see Figures 9a and
10a) ∫

�e

00(ζe, ξ)τr (ξ) dξ ≈ we0
0,h0(ζe, ζe)dτh0h1

e,r = h1
1

E0h0
dτh0h1

e,r =
dτh0h1

e,r

E0 ,

meaning that the numerical scheme reproduces the action of 00 exactly.
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Figure 8. Influence of the approximate Green’s function for the statically determinate
problem: (a) FEM-based solution, and (b) BEM-based solution. E2/E1= 10, E0/E1= 5,
`/L = 0.1, and h1/`= 0.25.
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Figure 9. (a) Finite element approximation of the Green’s function and (b) convergence
rates of FEM vs. BEM; E2/E1 = 10, E0/E1 = 5, and `/L = 0.1.
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Figure 10. Valid combinations of the discretized Green’s function and the polarization
stresses: (a) P0/GL1 and (b) P−1/GL2; � are finite element nodes.

Using Figures 9a and 10b, we find the analysis of the P−1/GL2 discretization completely analogous:

∫
�e

00(ζ2e−1, ξ)τr (ξ) dξ ≈ w2e−10
0,h0(ζ2e−1, ζ2e−1)d

τh0h1
2e−1,r =

h1

2
1

E0h0
dτh0h1

2e−1,r =
dτh0h1

2e−1,r

E0 ,

∫
�e

00(ζ2e, ξ)τr (ξ) dξ ≈ w2e0
0,h0(ζ2e, ζ2e)d

τh0h1
2e,r =

dτh0h1
2e,r

E0 ,

which explains the good performance of the particular discretization scheme.
To allow for the quantitative comparison, we exploit the fact that the exact solution is available for

the statically determinate case and introduce a relative L2 error measure

ηh0h1
H =

∥∥〈u〉h0h1(x)− uH(x)
∥∥

L2(�)∥∥uH(x)
∥∥

L2(�)

. (49)

The resulting convergence rates of the FEM- and BEM-based approaches are shown in Figure 10b with
the integrals in (49) evaluated using an adaptive Simpson quadrature [Gander and Gautschi 2000] with
a relative accuracy of 10−6. Clearly, the performance of the BEM-based scheme is slightly superior to
the (properly tuned) FEM approach. By a sufficient resolution of the reference problem, however, both
approaches become comparable. Moreover, the results confirm the good performance of the P0 and P1

schemes when compared to the P−1 discretization, which requires about twice the number of DOFs of
the former schemes for the same cell dimensions h1 (recall Figure 6). Similar conclusions can also be
drawn for the statically indeterminate case. Therefore, in view of the above comments, we concentrate
on the BEM approach in the sequel and limit the choice of basis functions to P0 and P1 only.

5.3. Influence of the integration scheme and basis functions. Thus far, we have investigated the combi-
nation of the polarization numerical quadratures and shape functions, for which the location of integration
points coincides with the position of DOFs. Figure 11 shows the convergence plots for the relevant basis
function/integration scheme pairs. To address also the statically determinate case, the relative error is
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now related to the MC data, leading to the definition

ηh0h1
MC =

∥∥〈u〉h0h1(x)−〈u〉MC(x)
∥∥

L2(�)∥∥〈u〉MC(x)
∥∥

L2(�)

. (50)

In addition, two comparative values are introduced: the relative error of the homogenized solution H
(determined by (50) with 〈u〉h0h1 replaced by uH) and the relative error associated with the 〈u−〉MC or
〈u+〉MC function, appearing as the interval estimate (IE) line.

For the statistically determinate structure, the observed behavior is rather similar to the one reported
in Section 5.2. In particular, Figure 11a confirms that the H–S solution quickly reaches an accuracy
comparable with the confidence intervals (indicated by the grey area) and eventually converges to the
homogenized solution, with the exception of the P1/GL1 combination resulting in a singular system
matrix (16). Moreover, the superiority of the GL2 quadrature over the lower-order scheme is evident; the
proper representation of spatial statistics seems to be more important than smoothness of the polarization
shape functions.

Figure 11b shows the results for the statically indeterminate case. With 99.9% confidence, the results
quantitatively demonstrate that the homogenized solution differs from the MC data. The H–S solution
gives an error of about 50% of the value of the homogenized solution, but ceases to attain the accuracy
set by the confidence interval. It should be kept in mind that the H–S result actually delivers an estimate
pertinent to the fixed value of parameter E0 and all random one-dimensional media characterized by the
two-point statistics (4).

5.4. Influence of the reference media and phase contrast. Having identified the intrinsic limitation of
the H–S approach, we proceed with the last free parameter of the method: the choice of the reference
medium. To that end, we introduce the parameterization of the Young modulus

E0
= (1−ω)E1+ωE2.PSfrag replacements
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Figure 11. Influence of the choice of numerical discretization: (a) statically determinate
and (b) indeterminate structures; E2/E1 = 5, `/L = 0.1, E0/E1 = 3, and IE denotes the
error associated with the 99.9% confidence interval estimate.
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Figure 12. Influence of the choice of the reference media: (a) statically determinate and
(b) indeterminate structures; `/L = 0.1, and P0/GL2 discretization.

Note that for the phases indexed such that E1 < E2, ω = 0 and ω = 1 correspond to the rigorous lower
and upper bounds on the ensemble average of the energy stored in the structure and, consequently, to
the positive- or negative-definite system matrix [Procházka and Šejnoha 2004; Luciano and Willis 2005].
The intermediate values lead to energetic variational estimates and to a symmetric indefinite system
matrix. Figure 12 illuminates the effect of ω, plotted for two representative contrasts of the phase moduli
and h1/` ratios.

In the first case, see Figure 12a, the choice of the reference media has almost negligible effect on
the H–S solution error; the slight influence observed for the coarse discretization completely disappears
upon cell refinement. This is not very surprising, as the homogenized solution depends on the first-
order statistics only — recall (48) — and therefore can be retained by the discrete H–S method (up to
controllable errors) for any choice of E0. Results for the statically indeterminate structure, on the other
hand, show a significant sensitivity to the value of ω. By a proper adjustment of the reference medium,
the error can be reduced by an order of magnitude and can eventually reach the accuracy of extensive MC
sampling. With increasing phase moduli contrast, however, the range of such ω values rapidly decreases;
for E2/E1 = 100 one needs to satisfy 9 · 10−4 . ω . 1.5 · 10−3 in order to recover the MC results. It
is noteworthy that these values agree rather well with the particular choice of reference media used by
Matouš [2003] when modeling composites with a high phase contrast using the methodology proposed
by Dvorak and Srinivas [1999].

5.5. Influence of microstructure size. Finally, we investigate the influence of the microstructure size.
Figure 13 summarizes the obtained results for a moderate phase contrast and the optimal setting of the
H–S method identified in the previous sections. A similar conclusion can be reached for both case studies:
for all three `/L values, the H–S method is capable of reaching an accuracy of MC confidence intervals
for the cell length h1 approximately equal to half of the microscopic length scale `. In other words,
keeping the same number of DOFs as used to discretize the polarization problem, the accuracy of the
method increases with the increasing `/L ratio, which is exactly an opposite trend to that of the classical
deterministic homogenization.
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Figure 13. Influence of microstructure size: (a) statically determinate and (b) indeter-
minate structures; E2/E1 = 5, ω = 0.2, `/L = 0.05, and P0/GL2 discretization.

6. Conclusions

In the present work, the predictive capacities of numerical methods based on the Hashin–Shtrikman–
Willis variational principles, when applied to a specific model of functionally graded materials, have been
systematically assessed. By restricting attention to the one-dimensional setting, an extensive parametric
study has been executed and the results of numerical schemes have been verified against reliable large-
scale Monte Carlo (MC) simulations. On the basis of the obtained data, we are justified in stating that:

• The Hashin–Shtrikman based numerical method, when set up properly, is capable of delivering
results with accuracy comparable to detailed MC simulations and, consequently, of outperforming
local averaging schemes.

• When applying the finite element method (FEM) to the solution of reference problem, the employed
discretization has to be compatible with the numerics used to solve the polarization problem. If this
condition is satisfied, the additional FEM-induced errors quickly become irrelevant.

• For the discretization of the reference problem, it appears to be advantageous to combine a low order
(discontinuous) approximation of the polarization stresses with a higher order quadrature scheme
to concisely capture the heterogeneity distribution.

• The correct choice of the reference medium has the potential to substantially decrease the error.
Unfortunately, apart from [Dvorak and Srinivas 1999], we fail to give any a priori estimates of the
optimal value for statistically nonhomogeneous structures.

• For accurate results, the characteristic cell size should be around 2–5 times smaller than the typical
dimensions of the constituents.

The bottleneck in the current implementation is the solution of system (16), since it leads to a fully
populated system matrix. Fortunately, as illustrated by Figure 14, the conditioning of the polarization
problem seems to be dominated by the phase contrast rather than the discretization of the reference
problem, which opens the way to efficient iterative techniques.
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Figure 14. Sensitivity of conditioning of system matrix of the polarization problem:
(a) statically determinate and (b) indeterminate structures; `/L = 0.05, ω= 0.2, P0/GL2

scheme, and the condition number is estimated using the algorithm from [Higham and
Tisseur 2000].

The next extension of the method would involve generalization to a multidimensional setting. For the
FEM-based treatment, the key aspect remains a more rigorous analysis of the combined effect of the
discretized 00 operator, basis functions and integration scheme employed for the polarization problem.
The multidimensional BEM approach, on the other hand, requires a careful treatment of the singularities
of the Green’s function-related quantities [Procházka and Šejnoha 2003] which are suppressed in the
current one-dimensional setting. Such work will be reported separately in our future publications.
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Appendix: Overview of the simulation procedure

A crude MC method is employed to estimate the statistics of the local fields. In particular, given a number
of simulations Nα, sampling points 0= y0 < y1 < . . . < yNs = L , and an upper bound on the intensity
ρ∗ ≥ supx∈[0,L] ρ(x), the following steps are repeated for α = 1, 2, . . . , Nα:

Microstructure generation: Construction of a microstructural sample is based on a two-step proce-
dure proposed for general Poisson processes in [Stoyan et al. 1987, Section 2.6]. First, the number
of reference points N ∗p(α) is determined by simulating a Poisson random variable with mean ρ∗L .
The coordinates of the reference points z∗1(α), z∗2(α), . . . , z∗N∗p(α)(α) then follow from a realization
of N ∗p(α) independent random variables uniformly distributed on a closed interval [0, L]. Second,
each point in the set is deleted with a probability 1−ρ(z∗p(α))/ρ

∗, leading to a (relabeled) sequence
of Np(α) particle centers z p(α).
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Solution of the one-dimensional problem: With the microstructure realization fixed, the displace-
ment of sampling points is computed by the recursion

uMC(ys;α)= uMC(ys−1;α)+

∫ ys

ys−1

t (0;α)−
∫ x

0 b(ξ) dξ
E(x;α)

dx, (A.1)

where the Young modulus is provided by (5) with the characteristic function χ1 defined as

χ1(x;α)= 1 ⇔ min
p=1,2,...,Np(α)

∣∣x − z p(α)
∣∣> `

2
,

and the boundary data u(0;α) and t (0;α) determined from a generalization of the system of bound-
ary equations (32)–(33).

After completing the sampling phase, the first- and second-order local statistics are assessed using the
unbiased values

〈u〉MC(ys)≈
1

Nα

Nα∑
α=1

uMC(ys;α), σ 2
MC(ys)≈

1
Nα − 1

Nα∑
α=1

(
〈uMC〉(ys)− uMC(ys;α)

)2
,

to arrive at the γ -confidence interval estimates [Rektorys 1994, Section 34.8]

〈u〉(ys) ∈
[
〈u−〉MC(ys), 〈u+〉MC(ys)

]
=

[
〈u〉MC(ys)− t(1+γ )/2,Nα−1

σMC(ys)
√

Nα
, 〈u〉MC(ys)+ t(1+γ )/2,Nα−1

σMC(ys)
√

Nα

]
,

where tβ,n denotes the inverse of the Student’s t distribution function for value β and n DOFs.
The reference results reported in Section 5 correspond to the values obtained for Nα =100,000 simula-

tions, confidence level γ = 99.9%, 101 equidistant sampling points, and with the integral (A.1) evaluated
with an adaptive Simpson quadrature [Gander and Gautschi 2000] with the relative tolerance set to 10−6.
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RECONSIDERING THE BOUNDARY CONDITIONS FOR A DYNAMIC,
TRANSIENT MODE I CRACK PROBLEM

TANYA L. LEISE, JAY R. WALTON AND YULIYA GORB

A careful examination of a dynamic mode I crack problem leads to the conclusion that the commonly
used boundary conditions do not always hold in the case of an applied crack face loading, so that a
modification is required to satisfy the equations. In particular, a transient compressive stress wave travels
along the crack faces, moving outward from the loading region on the crack face. This does not occur
in the quasistatic or steady state problems, and is a special feature of the transient dynamic problem
that is important during the time interval immediately following the application of crack face loading.
We demonstrate why the usual boundary conditions lead to a prediction of crack face interpenetration,
and then examine how to modify the boundary condition for a semi-infinite crack with a cohesive zone.
Numerical simulations illustrate the resulting approach.

1. Introductory remarks

The subject of the present contribution is unsteady, dynamic crack propagation in brittle polymers. The
subject has received considerable attention in the literature, mostly focused upon experimental and nu-
merical studies with comparatively few results obtained via analytical methods. Analytical solutions
to select canonical fracture boundary value problems have an important role to play in gaining a deep
understanding of the physical processes involved in dynamic fracture of polymeric materials and their
numerical simulation. However, constructing analytical solutions to such boundary values, even subject
to various simplifying idealizations, presents many technical obstacles.

There is a growing literature devoted to constructing analytical solutions to dynamic fracture boundary
value problems in the context of either linear elasticity or viscoelasticity. Broberg [1999] and Freund
[1990] give extensive accounts of these developments prior to 2000. Analytical solutions for dynamic
steady (constant crack speed) crack growth in linear viscoelastic materials have been constructed for
both mode III (antiplane shear) [Herrmann and Walton 1989; Walton 1987] and mode I (planar opening)
[Walton 1990; Herrmann and Walton 1994] fracture conditions.

For dynamic, unsteady crack growth, the catalog of analytical solutions in the literature is much
smaller, and almost entirely confined to mode III cracks in elastic material, two exceptions being a paper
by Saraikin and Slepyan [1979], which points the way to solving dynamically accelerating mode I cracks
in elastic material but does not explicitly exhibit a full solution for general loading, and those by Walton
and Leise [2003; 2004] which consider a mode III accelerating crack in a linear viscoelastic material.

Keywords: transient fracture analysis, opening mode crack, boundary conditions, Dirichlet-to-Neumann map.
This work was supported in part by the Army Research Laboratory under contract number W911NF-04-2-00-11 and in part by
award number KUS-C1-016-04 made by King Abdullah University of Science and Technology (KAUST).
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A number of analytical solutions for dynamic, accelerating mode III crack problems in the setting of
linear elasticity have been constructed, both without a cohesive zone [Walton and Herrmann 1992; Leise
and Walton 2001b; 2001a] and with a cohesive zone [Costanzo and Walton 1997; 1998]. The subject of
the present contribution is to generalize this work to the setting of mode I fracture with a cohesive zone
exhibiting nonlinear constitutive behavior modeling an infinitesimally thin evolving craze field in front
of an accelerating crack tip. In future work, we will show how this approach can be generalized to a
cohesive zone with nonlinear, time dependent constitutive behavior.

2. Mode I crack problem

Consider an infinite, isotropic, homogeneous elastic body with a planar crack along the xz-plane for
x < `(t) under mode I conditions, where x = `(t) locates the crack tip. We can reduce the problem to
the xy-plane since the displacement and stress are independent of z, and we can restrict attention to the
upper half-plane y > 0 if we apply a crack face loading symmetric with respect to the xz-plane. The
goal is to determine the crack face displacement due to a time-dependent loading, which we accomplish
by adapting the method of Saraikin and Slepyan [1979; 2002] to obtain a boundary integral equation
relating the stress and displacement along the x-axis for t > 0.

Let uk(x, y, t) denote the displacement and σi j (x, y, t) the components of the Cauchy stress tensor.
The equations of motion in the context of plane strain are

ρü1 = (2µ+ λ)u1,11+µu1,22+ (µ+ λ)u2,12,

ρü2 = (2µ+ λ)u2,22+µu2,11+ (µ+ λ)u1,12,

while the relevant constitutive relations are

σ12 = µ(u1,2+ u2,1), σ22= λu1,1+ (2µ+ λ)u2,2.

The initial conditions are
ui (x, y, 0)= 0 and u̇i (x, y, 0)= 0,

and we assume σi j → 0 as x2
+ y2
→∞. The mode I assumption is that σ12(x, 0, t)= 0, for all x and

t . The classical crack problem assumes a known loading on the crack faces:

σ22(x, 0, t)=3(x, t) for x < `(t).

Note that this implies that off the support of 3(x, t), the crack faces are stress free.
The classical crack tip model has u2(x, 0, t) = 0 for x > `(t) and a square root singularity in the

stress σ22 at the crack tip. Alternatively, one can insert a cohesive zone to the right of the crack tip and
impose a law such as σ22(x, 0, t)= F(u2(x, 0, t)) in the cohesive zone (thereby eliminating the crack tip
singularity in the stress). One can then use a critical crack opening displacement criterion to determine
the crack tip position: when the displacement at the edge of the cohesive zone reaches the critical value
δc, the material can no longer support stress and the crack extends. The function F should then satisfy
F(u)≥ 0, F(0)= 0, and F(δc)= 0.

We show below that this classical crack model (whether a sharp crack model or a cohesive zone model)
can exhibit a logical inconsistency by predicting crack surface interpenetration.
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3. Integral equation derivation

Defining Fourier and Laplace transforms (as used in [Saraikin and Slepyan 1979]) via

f̂ (p, y, t)=
∫
∞

−∞

ei px f (x, y, t)dx,

ˆ̄f (p, y, s)=
∫
∞

0
e−st f̂ (p, y, t)dt,

the transformed equations of motion become (assuming the initial conditions of uk(x, y, 0) = 0 and
u̇k(x, y, 0)= 0 for k = 1, 2)

ρs2 ˆ̄u1 =−p2(2µ+ λ) ˆ̄u1+µ
∂2

∂y2
ˆ̄u1− i p(µ+ λ)

∂

∂y
ˆ̄u2, (3-1)

ρs2 ˆ̄u2 = (2µ+ λ)
∂2

∂y2
ˆ̄u2− p2µ ˆ̄u2− i p(µ+ λ)

∂

∂y
ˆ̄u1, (3-2)

and the constitutive relations become

ˆ̄σ 12 = µ
( ∂
∂y
ˆ̄u1− i p ˆ̄u2

)
, (3-3)

ˆ̄σ 22 =−i pλ ˆ̄u1+ (2µ+ λ)
∂

∂y
ˆ̄u2. (3-4)

The general solutions of equations (3-1) and (3-2) that vanish as y→∞ are

ˆ̄u1 = A1(p, s)e−α(p,s)y + B1(p, s)e−β(p,s)y, (3-5)

ˆ̄u2 = A2(p, s)e−α(p,s)y + B2(p, s)e−β(p,s)y, (3-6)

where αA1 = i p A2, −i pB1 = βB2, and

α(p, s)=
√

p2+ s2/c2
L ,

β(p, s)=
√

p2+ s2/c2
S.

Here

cL =

√
2µ+ λ
ρ

is the longitudinal wave speed and cS =
√
µ/ρ is the shear wave speed. The functions α(p, s) and β(p, s)

are decomposed into square roots of linear functions, e.g., α(p, s) =
√

i p+ s/cL
√
−i p+ s/cL , taken

with positive real part (branch cut for
√
ζ is taken along negative real axis in the z-plane). Substituting

(3-5)–(3-6) into (3-3)–(3-4) and taking the limit y→ 0 yields

ˆ̄σ 12(p, 0, s)=
ρs2α(p, s)

p2−α(p, s)β(p, s)
ˆ̄u1(p, 0, s)− i p

(
2µ+

ρs2

p2−α(p, s)β(p, s)

)
ˆ̄u2(p, 0, s),

ˆ̄σ 22(p, 0, s)= i p
(

2µ+
ρs2

p2−α(p, s)β(p, s)

)
ˆ̄u1(p, 0, s)+

ρs2β(p, s)
p2−α(p, s)β(p, s)

ˆ̄u2(p, 0, s).
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The plane strain problem can be simplified to a single equation by assuming that there is no shear surface
traction, σ12(x, 0, t)= 0 for all x . This assumption leads to the relation

ˆ̄σ(p, s)=
µ2 R(p, s)
ρs2α(p, s)

ˆ̄u(p, s), (3-7)

where σ(x, t)= σ22(x, 0, t) and u(x, t)= u2(x, 0, t). The Rayleigh function R(p, s) is defined by

R(p, s)= 4p2α(p, s)β(p, s)− (2p2
+ s2/c2

S)
2.

Note that the Rayleigh function R(p, s) has zeros only at p =±is/cR . Define the transfer function ˆ̄S to
be

ˆ̄S(p, s)=
ρs2α(p, s)
µ2 R(p, s)

,

and let ˆ̄P = 1/ ˆ̄S. These transfer functions can be decomposed as

ˆ̄P(p, s)= ˆ̄P+(p, s) ˆ̄P−(p, s) and ˆ̄S(p, s)= ˆ̄S+(p, s) ˆ̄S−(p, s)

in such a manner that the functions S±(x, t) and P±(x, t) satisfy the following conditions:

S+(x, t)= P+(x, t)= 0 whenever x > cL t or x < 0, (3-8)

S−(x, t)= P−(x, t)= 0 whenever x <−cL t or x > 0. (3-9)

This leads to the integral equation (as derived in [Saraikin and Slepyan 1979]):

S+ ∗∗ σ = P− ∗∗ u, (3-10)

where double asterisks refer to convolution with respect to both x and t :

f ∗∗ g(x, t)=
∫ t

0

∫
∞

−∞

f (x − r, t − s)g(r, s) dr ds.

We use a slightly different factorization than [Saraikin and Slepyan 1979] (in which the goal was
to restrict the support of these functions in order to derive the stress intensity factor). The original
decomposition in [Saraikin and Slepyan 1979] and the one given below differ only by a factor of s, effec-
tively removing a time derivative from the expression for S+ and thereby easing numerical computations
involving that function. We do not need the stress intensity factor here, since we consider a cohesive
zone, so the changes to the support properties of S± due to this slight difference do not pose a difficulty
for us. This small alteration to the factorization is solely to reduce the complexity of the computations
of the stress and displacement expressions (which involve convolutions with S+ and a related function
T− defined below).

We decompose the transfer function ˆ̄S(p, s) as follows:

ˆ̄S+ =
√

as− i p
s(cs− i p)

D+(i p/s), ˆ̄S− =−
b2s
√

as+ i p
2µ(b2− a2)(cs+ i p)

D−(i p/s),



A DYNAMIC, TRANSIENT MODE I CRACK PROBLEM 1801

where a = 1
cL

, b = 1
cS

, c = 1
cR

, and

D±(i p/s)= 1+
∫ b

a

F1(u)du
u∓ i p/s

, F1(u)= γ (u) exp[ℵ(u)],

γ (u)=
4
π

u2
√

b2− u2
√

u2− a2√
(b2− 2u2)4+ 16u4(b2− u2)(u2− a2)

, ℵ(u)=
1
π

P.V .
∫ b

a
ϕ(α)

dα
α− u

,

ϕ(α)= tan−1 4α2
√

b2−α2
√
α2− a2

(b2− 2α2)2
= sin−1 4α2

√
b2−α2

√
α2− a2√

(b2− 2α2)4+ 16α4(b2−α2)(α2− a2)
.

The reciprocal of D±(i p/s) is given by

D−1
±
(i p/s)= 1+

∫ b

a

F2(u)du
u∓ i p/s

, where F2(u)=−γ (u) exp[−ℵ(u)].

4. Crack face interpenetration

We now carefully examine the integral equation S+ ∗∗σ = T− ∗∗Du= D(T− ∗∗u), where T− is defined as

P− = D ◦ T− and D =
(

c
∂

∂t
−
∂

∂x

)
.

Examination of the functions S+ and T− yields some unexpected results. The basic definitions are

G1(s)= 1− H(b− s)
∫ b

s
F1(u)

√
u− a
u− s

du
c− u

,

G2(s)= 1+ H(b− s)
∫ b

s
F2(u)

du
√

u− a
√

u− s
,

S+(x, t)=
H(x)
√
πx

H(t − ax)
[

G1(t/x)− H(c− t/x)B

√
c− a

c− t/x

]
,

T−(x, t)=−
2µ(b2

− a2)

b2

[
H(−x)
√
−πx

H(t + ax)G2(−t/x)
]
,

(4-1)

where

B = G1(a)= 1−
∫ b

a
F1(u)

du
c− u

.

See Figures 1 and 2 for graphs of G1(s)− H(c− s)B
√
(c− a)/(c− s) and G2(s).

Suppose (b/a)2 ≥ 2, corresponding to a nonnegative Poisson ratio λ. The numerical results shown in
Figures 1 and 2 indicate that the function T−(x, t) is always negative for −cL t < x < 0, while S+(x, t)
changes sign: S+(x, t) < 0 for cRt < x < cL t , limt/x→c− S+(x, t) = −∞ due to the term involving
1/
√

c− t/x , and S+(x, t) > 0 for 0< x < cRt .
Consider the following scenario. Suppose the loading σ−(x, t) = 3(x, t) has support on a fixed

interval (−d − L ,−d), on which it is always negative, and further suppose that the cohesive zone has
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b = 3b = 2

1.5 2.0 2.5 3.0 3.5 4.0
s

- 2.0

- 1.5

- 1.0

- 0.5

0.0

0.5

1.0

b = 3b = 2

1.0 1.5 2.0 2.5 3.0 3.5
s0.0

0.2

0.4

0.6

0.8

1.0

Figure 1. Graph of G1(s)− H(c− s)B
√
(c− a)/(c− s) on the left and of G2(s) on

the right for a = 1, b = 2.0, 3.0, and c ≈ 2.14, 3.17, respectively. The function
G1(s)− H(c− s)B

√
(c− a)/(c− s) involves a square root singularity and sign switch

at s = c = 1/cR . while G2(s) is always positive.

1.2 1.4 1.6 1.8 2.0
s

- 2.0

- 1.5

- 1.0

- 0.5

0.0

0.5

1.0
1.05 1.10 1.15 1.20

s

- 0.020

- 0.015

- 0.010

- 0.005

0.000

Figure 2. Graphs of G1(s)− H(c− s)B
√
(c− a)/(c− s) for a = 1, b = 1.5, and c ≈

1.68, showing that even for values of b close to a
√

2 this function remains negative on
the interval (a, c).

not yet begun opening (implying zero stress on the unloaded crack faces and to the right of the crack tip).
Let R be the region in the xt-plane defined by

−d + cRt < x <−d + cL t and t > 0.

If (x, t) ∈ R, then S+ is negative on the domain involved in the convolution (S+ ∗∗3)(x, t) and so this
convolution will be positive. See Figure 3. The integral equation relating stress and displacement is

S+ ∗∗3= D(T− ∗∗ u);

integrate both sides with respect to Rayleigh characteristic to remove the derivative D. If (x, t) ∈ R, then
this integral is along a line segment contained within R. Hence the integral of S+ ∗∗ σ will be positive if
(x, t) ∈ R. Since T− is nonpositive, the integral equation implies that the displacement must be negative
on some portion of the crack face. See Figure 4 for a simulation showing that this negative displacement
appears in the context of a cohesive zone as well.
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0.5
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1.5

Figure 3. Graph of S+(x, t) convolved with the loading (with L = 10) on the crack
face, where b = 2. Profiles of (S+ ∗∗3)(x, t) are shown for times t = 1, 2, . . . , 10 (in
dimensionless units). This convolution is usually negative, but at the extreme right is
positive, as only the region where S+ is negative is involved in the convolution for these
values.

5. Implications

This reasoning implies that we cannot assume zero stress on the unloaded (“free”) portion of the crack
faces. This would mean that other solution methods for mode I fracture that explicitly assume zero stress
on the unloaded portion of the crack faces are also missing the small compressive stress occurring behind
the longitudinal wave front. That is, we are not free to specify a priori the stress on the entire crack face
and the parts of the boundary where displacement is zero, contrary to common assumption.

1 2 3 4
x

2

4

6

8

10

u

Original BCs

Revised BCs

0 5 10 15 20 25
t0

1

2

3

4

x

Figure 4. Example with b = 2, showing negative displacements from integral equation
calculations under the assumption that the unloaded crack faces and the region to the
right of the cohesive zone will be stress-free. The graph on the left shows the dis-
placement profiles at times t = 1, 2, . . . , 10 (in dimensionless units), where the crack
tip begins accelerating at t ≈ 6.1. While these negative displacements are very small
compared to those in the loading interval, they do have a significant effect in preventing
the crack faces from properly opening and so significantly impact transient crack tip
calculations, as shown in the graph on the right of the crack tip position x = `(t).
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If the loading is changing — cycling, for example — the resulting boundary values could be quite
complicated and involve multiple regions where the stress must be computed. The problem becomes
similar to a crack closure problem, for which stresses on the crack faces must be computed.

6. Modification of the boundary conditions

Since negative displacement doesn’t make physical sense, the boundary conditions must be modified.
We can’t assume that the stress is always zero on the part of the crack face where the applied load is zero
(or in the region to the right of a cohesive zone). There can be a small compressive stress traveling at the
longitudinal wave speed that must be calculated as part of the solution (as depicted in Figure 5). Perhaps
this is due to the point on the crack face where the displacement first equals zero acting as a pivot: the
crack face to the left of the pivot is pushed up and so the crack face to the right tends to be pressed down.
This compressive stress wave will continue along the boundary, moving out from the applied loading
interval in both positive and negative directions.

Consider the integral equation (3-10) in the case that the loading increases in strength over time on a
loading interval [−d − L ,−d], where the right end is a nonzero distance from the crack tip. Let 3(x, t)
represent the crack face loading and u− the crack face displacement. Let u+ represent the cohesive zone
displacement, so that σ+ = F(u+) is the cohesive stress. Regions of compressive stress will travel out
from the left and right edges of the loading interval on the crack face with speed cL . Let the curve
x = r(t) mark the front edge of the region of compressive stress traveling to the right; this also marks
where the displacement becomes zero. Note that r(0)=−d < `(0), so x = r(t) begins to the left of the
crack tip path x = `(t) and typically crosses it. Let σr represent the stress in the region r(t) < x < cL t .
For x >−d − L , the integral equation (3-10) expands to

S+ ∗∗ F(u+)+ S+ ∗∗ σr + S+ ∗∗3= P− ∗∗ u++ P− ∗∗ u−. (6-1)

This can be used to solve for the displacements u+ and u−. We also need to calculate σr . Fortunately,

{

Applied loading to crack faces

u(x,t)>0

σ(x,t)<0

{

Opening

crack faces

u(x,t)>0

σ(x,t)=0

{

Closed

crack faces

u(x,t)=0

σ(x,t)<0

x=-d-L-cLt

x=-d-L x=-d
x=-d+cLt

This endpoint where u(x,t)=0 must

be determined (is moving in time).

Figure 5. New scheme with a compressive stress in front of the opening portion of the
crack faces. The curve x = r(t) where the opening displacement becomes zero and the
compressive stresses for x > r(t) must be determined.
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the T− ∗∗ u± terms in this case drop out, so the integral equation reduces to

S+ ∗∗ σr =−S+ ∗∗ F(u+)− S+ ∗∗3, (6-2)

for x > r(t).

7. Numerical methods

We discretize using a grid in characteristic coordinates η = t + ax and ξ = t − ax , after nondimension-
alizing the integral equations (length with respect to δc, time with respect to aδc, and stress with respect
to µ, where δc is the critical crack opening displacement). In the simulations shown in the figures, we
implicitly refer to the dimensionless slownesses a = 1, b = cL/cS , and c = cL/cR . We use continuous
piecewise linear approximations of the displacement (using triangles) and continuous piecewise quadratic
approximations of the stress on quadrilaterals. This is compatible with the various convolution domains,
including on the crack face and in the cohesive zone.

The basic process is to step with respect to increasing values of ξ . For each ξ value, we find nodal
values of the displacement and stress for increasing values of η on the grid. There are three cases:

(1) Solve (6-1) for u−(x, t) if x <min{`(t), r(t)}.
(2) Solve (6-1) for u+(x, t) if `(t) < x < r(t).
(3) Solve (6-2) for σr (x, t) if r(t) < x < cL t .

In each case, all the required values in the integral equation will be known from previous steps.
The computations are done efficiently by precomputing all needed convolutions on two prototype

triangles and a quadrilateral. These can then be used repeatedly to avoid redundant integrations. These
precomputed convolution values scale with the step size, so this lengthy set of computations only needs
to be done once.

For examples of simulations, see Figures 6 and 7. In these examples,3(x, t)= 0.08t (x+d)(x+d+L)
on [−d − L ,−d] and equals zero otherwise, where d = 0.2 and L = 10 (all in dimensionless units). The
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x

2
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1 2 3 4 5 6 7
x
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- 3

- 2

- 1

1

Σ

Figure 6. Example of a simulation using the revised scheme. Profiles of the displace-
ment u and stress σ for times t = 1, 2, . . . , 10, all in dimensionless units. See Section
7 for modeling details. The stress equals zero at the crack tip, is positive within the
cohesive zone, and negative in the region to the right of the cohesive zone.
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Figure 7. Comparison of crack tip paths and speeds for different ratios b = cL/cS , using
dimensionless units.

crack tip is initially located at x = 0, and begins to run once the opening displacement equals 1 at
the crack tip position (which is the left edge of the cohesive zone). The crack propagates according
to a critical crack opening displacement criterion. The cohesive zone law in dimensionless units is
F(u)= 6.75u(1− u)2 (maximum cohesive stress equals 1). The right edge path r(t) is determined by
calculating the value of η at which the displacement will first equal zero for the current value of ξ . We
use step size 4ξ =4η = 0.1 in all simulations.

8. Concluding remarks

The problem considered is that of the unsteady, dynamic propagation of a semi-infinite, pure mode I crack
in a brittle polymer. The bulk material is modeled as an infinite, homogeneous, isotropic linearly elastic
body with a crack with a cohesive zone ahead of the advancing crack tip. The cohesive zone constitutive
behavior is modeled through a nonlinear elastic-like response relation incorporating an evolving damage
parameter. It was shown that the classical crack paradigm that assumes zero stress outside the loading
interval and cohesive zone must be modified in this unsteady, dynamic mode I setting since it predicts
zones of crack face interpenetration in a neighborhood of the crack tip (Figure 4). Consequently, the
classical crack/cohesive zone model must be generalized to include a contact/slip zone between the fully
opened crack and the cohesive zone (Figure 5). The extent of the contact/slip zone must be determined
as part of the boundary value problem solution by imposition of the requirement that the displacement
discontinuity across the fracture plane (the crack opening displacement) must be everywhere nonnegative.
This effect is not seen in dynamic steady-state or transient quasistatic analyses or in the transient dynamic
mode III case; it follows from properties of the Dirichlet-to-Neumann map appropriate for transient,
dynamic mode I fracture problems.
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