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A WAVE-BASED DAMAGE INDEX FOR THE ANALYSIS OF THE FILTERED
RESPONSE OF DAMAGED BEAMS

NICOLE APETRE, MASSIMO RUZZENE, SATHYANARAYA HANAGUD AND S. GOPALAKRISHNAN

This paper introduces a wave propagation-based damage index which relies on the evaluation of the strain
energy distribution associated with propagating waves. The presence of localized damages typically
distorts the wavefield by causing reflections and diffractions. The evaluation of such distortions, in
reference to the wavefield corresponding to the undamaged structure, can be used as an indicator which
potentially locates, quantifies and classifies the damage.

The damage index formulation is first illustrated through a numerical model of a beam with a small
notch, modeled as a localized thickness reduction. The beam’s wave propagation response is simulated
through the combined application of perturbation techniques and the spectral finite element method. The
perturbation approach and a first order model for the beam capture the coupling between bending and
axial behavior caused by the damage, and allow the prediction of mode conversion phenomena. The
perturbation solution allows direct comparison between undamaged and damaged strain energy contribu-
tions, which are directly associated with perturbation solutions of different orders. The resulting damage
index locates the damage along the beam length and estimates its severity.

Experimentally, the damage index is implemented by considering full wavefield measurements ob-
tained through a scanning laser vibrometer. The undamaged reference response is derived directly from
measurements on the damaged component, through the application of a filtering procedure operating in
the wavenumber/frequency domain.

1. Introduction

The objective of a structural health monitoring (SHM) system is to identify anomalies or damages such
as cracks, delaminations, and disbonds in structures. The term identification includes the determination
of the existence of damages, their location, and their size as accurately as possible. In the literature, the
amount of information that can be obtained regarding a damaged structure is typically classified into five
levels: (1) identification of the presence of damage, (2) determination of the location of the damage, (3)
classification of the type of damage, (4) quantification of its extent, and (5) estimation of the remaining
life of the component under investigation. The definition of an effective measure of damage responds to
the requirements of the first 4 stages, and ideally provides inputs to step (5). Damage indices proposed in
the literature from an SHM perspective are meant to identify and locate the damage, and, in some cases,
to provide an indication regarding the extent of the damage and its progression.

Keywords: damage measure, damage index, notched beam, spectral finite element method, perturbation techniques, first order
beam theory.
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Many SHM techniques developed over the years are based on the detection of changes in the modal
behavior of the monitored components. A valuable review of the state-of-the-art in modal-based SHM
can be found in [Doebling et al. 1996]. The existing techniques vary on the basis of the type of dynamic
response signals used for the analysis, and on the features or parameters considered as damage indicators.
Examples include techniques based on changes in modal frequencies [Ostachowicz and Krawczuk 1991;
Kim and Stubbs 2003], in measured mode shapes and their spatial derivatives (curvatures) [Pandey et al.
1991; Lestari 2001; Luo and Hanagud 1997; Ho and Ewins 1999], in calculated mean modal strain
energies [Sharma et al. 2006; Choi and Stubbs 2004; Cornwell et al. 1999] and in measured flexibility
coefficients. Although effective, these methods generally are not sensitive enough to to detect small
damages, and often require comparisons with baseline measurements on undamaged specimens. Their
lack in sensitivity and their inability to discriminate damage from changes in the operating conditions
of modal-based methods can be overcome through the application of guided ultrasonic waves (GUWs)
inspections [Staszewski et al. 2004; Rose 2002; Raghavan and Cesnik 2007]. Guided waves, such as
Lamb waves, show sensitivity to a variety of damage types and have the ability to travel relatively long
distances within the structure under investigation. For this reason, GUWs are particularly suitable for
SHM applications, which may employ a built-in sensor/actuator network to interrogate and assess the
state of health of the structure [Staszewski et al. 2004; Rose 2002; Giurgiutiu et al. 2003; Giurgiutiu
2005; 2008]. Alternatively, full wavefield measurements can be obtained through scanning laser vi-
brometers, which allow the implementation of strain energy-based damage index [Sharma et al. 2006],
and of frequency/wavenumber filtering techniques for improved damage visualization [Ruzzene 2007].
Interaction of the ultrasonic waves with various scatterers that represent arbitrary thickness variation was
study by experimental techniques and was validated with analytical and numerical models such as hybrid
boundary element method [Cho and Rose 1996; Cho 2000], finite difference method and finite element
method [Kazys et al. 2006; Basri and Chiu 2004], local interaction simulation approach [Ruzzene et al.
2005] and acoustic wavefield imaging [Michaels et al. 2005].

This paper extends the approach in [Ruzzene 2007], by introducing a wave propagation-based damage
index which relies on the estimation of the strain energy associated with waves reflected by damage.
The approach is illustrated through numerically simulated data which are obtained from the model of
a notched beam. The model considers damage as a small, localized thickness reduction, which allows
the application of perturbation techniques [Apetre et al. 2008; Lestari 2001]. The resulting perturbation
equations are solved in the frequency domain using the spectral finite element method (SFEM) [Doyle
1997; Lee et al. 2000]. SFEM, developed from matrix structural methods [Przemieniecki 1968], is using
a discrete Fourier transform to translate a problem to the frequency domain where an exact solution can
be found.

In the field of SHM, the SFEM has been previously used for example in [Kumar et al. 2004] to describe
the behavior of a first-order shear deformable beam with a transverse crack. Also, the SFE model of
a cracked Timoshenko beam is presented in [Krawczuk et al. 2003], where a massless spring, with
bending and shear flexibilities computed using Castigliano’s theorem and the laws of fracture mechanics
is used to model the crack. A review of damage detection using SFEM is presented in [Ostachowicz
2008]. The perturbation approach applied herein leads to a set of linear equations for increasing order
of the perturbation parameter. In this context, the separation between the response of the undamaged
structure (zero order perturbation solution) and the changes introduced by damage (first order perturbation
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solution) is immediate. The proposed damage index formulation is defined as the ratio of the strain energy
distribution associated with perturbations due to damage and the strain energy of the undamaged structure,
which in the numerical model respectively correspond to the first order and zero order solutions. The
formulation can be easily extended for the analysis of full-field experimental data according to procedures
outlined in [Ruzzene 2007].

The paper is organized as follows. Section 2 describes the numerical model of the notched beam,
while Section 3 presents the damage index formulation and a set of illustrative numerical examples. The
experimental implementation of the concept with the simultaneous application of frequency/wavenumber
filtering procedures are presented in Section 4. A summary of the main results of the work is finally
presented in Section 5.

2. Wave propagation model for notched beams

Damage description. A detailed derivation of the governing differential equations for a notched Euler-
Bernoulli beam is presented in [Apetre et al. 2008]. Here for completeness, a short summary of the
derivation is given. The dynamic behavior of the notched beam shown in Figure 1 is described by a set
of governing equations derived through the Hamilton principle. The defect is modeled as a reduction
in thickness of depth h,4, extending over a length Al, placed at the distance x;. As seen in the figure,
x € [0, L] denotes the horizontal coordinate, whereas the vertical coordinate z varies in the interval

ce[-2 2a—2ep0) @-1)

where ¢ = hy/ h, and where y;(x) = H (x — (x4 — Al)) — H(x — x4) is a damage function with H denoting
the Heaviside function. Both the stiffness and the mass loss due to the edge notch are considered. The
moment of inertia at the damage location is truncated at & order as

ILi=11-¢)~I1(1-3e¢), (2-2)

where [ is the moment of inertia of the undamaged beam. Thus the expressions for the stiffness and
mass distribution along the beam are [Lestari 2001]

El;(x) = EI[1—3eys(x)] and mgq(x) =m[l —eya(x)], (2-3)

where EI and m are the stiffness and the mass of the undamaged beam.

A Z,W
ha f
....... > T,U <> h
Al I
A\
-~ - ———-——-Td - - - - — = 4 -
- - - - - - = = — - L - ——-==—- == >

Figure 1. Beam geometry.
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Perturbation equations. The governing equations for the notched beam and the appropriate set of bound-
ary conditions are derived using Hamilton’s Principle. The required kinetic and strain energies, and the
work of external forces are formulated using the first-order approximation

u(x, z, t):u(x,t)—z%—ljc), w(x,z, 1) =w(x,t), (2-4)

where u(x, t) and w(x, t) are the axial and transverse displacements in the reference plane z = 0, respec-
tively. Application of Hamilton’s Principle yields the following set of differential equations:

h
I:EAM’X + (—u,x + u),xxz)EAyd(x)e] — m[l — eyd(x)]ii — mTheyd(x)u'),xx = filx, 1), (2-5)

[_Elw,xx + (_u,x + W xx %)E%hyd(x)g] xx+ mTh[i,igyd(x)]’x - m[l - 8Yd(x)]1b = f2(x7 1), (2-6)

where E is the Young’s modulus, A is the lateral area, & is beam thickness, m is the mass per unit
length, and f)(x, t), f>(x, t) denote the applied distributed generalized loads, assumed for simplicity to
be applied along the reference plane z = 0. The important feature of equations (2-5), (2-6) is the coupling
between the axial and transverse displacement resulting from the damage description considered. It is
noted that in the absence of damage, the small parameter ¢ becomes zero and equations (2-5), (2-6)
reduce to the classical uncoupled equations governing bending and axial behavior of a symmetric beam.

The governing equations can be conveniently expressed in the frequency domain through the applica-
tion of the Fourier transform, by letting the applied generalized loads f;(x,t) (with j =1, 2) be

Fite, )= fi(x, o), 2-7)
k

where i = +/—1, and fjk (x, wy) denotes the harmonic component of the generalized load at frequency
wy [Doyle 1997]. Accordingly, the beam’s axial and transverse displacements can be written as

(e, 1) = D" Ak (x, o)™, wlx, 1) =D by (x, )e ™, (2-8)
k k

where i (x, wy), Wi (x, wy) are the displacements corresponding to the kth harmonic component. In the
remainder of the paper, the subscript k is dropped to simplify notation, so that w; = w, g (x, wy) =i (x, w),
Wi (x, w) = w(x, w).

Next, the axial and vertical displacements of the beam in the reference plane are expanded as pertur-
bations (in terms of a small parameter &) of the axial and vertical displacement of the undamaged beam

u(x, w) = a© (x, ) — sﬁ(l)(x, w) — 0(e?), (2-9)

where @t = {i ®}7. Substituting (2-8), (2-9) into the differential system (2-5), (2-6) and collecting the
coefficients of ¥ and ¢! results in the set of differential equations

N N N A0
P Mu(o)(x, ) —i—E]u,(gl (x, w)+ Ezufgl (x,w) = f( )(x, ), (2-10)

A(1
¢ MV (x, ) + B0 (v, 0) + B2t 1) (v, 0) =1 (x, ), -11)
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2
mw- 0 EA O 0 0
M_[ 0 me]’ El_[o 0]’ EZ_[O —EI:|’ (2-12)
where A = bh and I = bh3 /12, In (2-11), f‘(l)(x, w) is the load on the first order perturbation equation,

which is a function of the zero order displacement 4@ and is responsible for the axial-bending coupling.
Its explicit expression can be found in [Apetre et al. 2008].

where

Spectral finite element discretization. The equation for the £° term corresponds to the uncoupled gov-
erning equation for the undamaged beam in the frequency domain, while the first order perturbation
equation has the same form, with an applied generalized load that is a function of 4. A common
strategy for the solution of the equations (2-10), (2-11) is based on their formally identical form. Each
of the equations can in fact be written in matrix form as

Mu(x, o) + Ejt v, (x, ©) + E2l 44 (x, ©) = q(x, 0), (2-13)

where coefficients are 2 x 2 matrices. We assume that the beam can be divided into finite elements
where an element j of length L; connects two nodes (Figure 2). The behavior of each node is de-
scribed by 3 degrees of freedom, so that the element’s vector of degrees of freedom is defined as
d; ={ij, 01, W1jx, Uzj, W2j, uA)zj,x}T. The displacement G (x, w) within element j is obtained
as an interpolation of the nodal degrees of freedom d;

u(x,w) =N;(x, 0)d;(w), (2-14)

where N (x, o) is the matrix of dynamic shape functions, which are obtained from the solution of the
homogeneous governing equation [Doyle 1997]. The application of the dynamic shape functions as
interpolation functions is the main feature of the SFEM, which otherwise maintains the formalism of
conventional FEs as demonstrated by the theoretical description of this section. Accordingly, the dynamic
shape functions N (x, ) provide a description of the displacement variation within an element, which
is as exact as the homogeneous distributed parameter model used for the description of the problem at
hand [Doyle 1997]. In the case considered here, it can be shown that the generalized load in the first
order (¢') perturbation equations reduces to a concentrated nodal load if a node is placed at the damage
location. Then, the solution of the homogeneous beam equations and the proper description of nodal
loads corresponding to the presence of damage based on the formulation presented above can be used
to obtain exact dynamic shape functions and accurate representations of the beam’s displacements in
the frequency range corresponding to the applied load. This approach can also be applied when loads
are generally distributed along the element length. In this case the dynamic shape functions do not
reproduce exactly the displacement field within the element, and some approximation is introduced. The
s Qg Wije, M

T/ ijaQQjT Zij,z,sz

U2y , NQ;
T = 0 Ulga N1] T = Lj

Figure 2. Spectral finite element with nodal displacements and loads.
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application of nodes at damage and load locations do not cause a dramatic increase in the computational
cost, since only a node needs to be added at each damage and loading site, as opposed to the highly
refined meshes that are required for the accurate simulation of wave propagation phenomena with FEs
based on the polynomial interpolation of the nodal degrees of freedom. Therefore, the presented modeling
approach still represents an efficient tool for the analysis of wave propagation in the considered class
of damaged structures. Refinements of the formulation, allowing the accurate representation of general
load distributions and of damage locations within the element will be discussed in a forthcoming paper.
Based on the weak formulation of the governing equations (2-13), we can derive the equation

Kj(w)d;(w) =f;(w), (2-15)

where K (w) is the element stiffness matrix at frequency w, defined as

Joxx

L.
Kj(w):/o I{er(x,a))MNj(x, a))—N]T,x(x,w)Ele,x(x,w)+NT ()C, w)Ele,xx(xaw)}dxa (2_16)

and where f; is the vector of applied nodal loads

Lj
fi(w) =/ N7 (x, w)q (x, w)dx, (2-17)
0

Numerical results. The numerical model is used to simulate the response of beams with notches, and
specifically to illustrate mode conversion phenomena captured by the model considered. The results are
obtained by first transforming the time history of the applied load in the frequency domain through the
application of the fast Fourier transform (FFT) algorithm. The nodal displacements corresponding to the
various harmonic components are then computed through inversion of the dynamic stiffness matrix of
the structure according to (2-17). At each frequency, the displacements’ variation along the elements’
length is obtained through interpolation using the dynamic shape functions (2-14). Final application of
the inverse FFT provides the displacements’ variation in time.

An aluminum (Young’s modulus E = 70 GPa, density p = 2750kg/m?) beam of length L = I m,
thickness 4 = 1 x 1072 m and width » = 5 x 1072 m is considered in the simulations. The beam has a
notch of length Al =1 x 107> m and depth Ay, located at x; = 3L /4. The beam is modeled using two
spectral elements for a total of nine degrees of freedom (Figure 3). The applied load is a longitudinal tip
force whose variation in time is described by a Hanning modulated sine burst at 500 kHz (Figure 4).

Figure 5 shows the variation of the displacements in time and space, while Figure 6 shows snapshots
of the beam’s deformed configuration at three instants in time. The longitudinal wave generated by the
applied load propagates from the tip of the beam and gets partially reflected and converted when it reaches
the notch at xp = 3L /4. Mode conversion phenomena such as the one illustrated in this example are

P Q)
A o>
éh) :d =1L

Figure 3. Schematic of the clamped-free beam with a longitudinal tip load, modeled
using two spectral elements.



WAVE-BASED DAMAGE INDEX FOR THE FILTERED RESPONSE OF DAMAGED BEAMS 1611
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Figure 4. Modulated sinusoidal pulse load in time and frequency domain.
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Figure 5. Longitudinal (left) and transverse (right) displacement as functions of time
and longitudinal coordinate. Notch length A/ = 0.001 m.

very important as they may be exploited to increase the sensitivity of damage detection and interpretation
techniques.

3. Wave-based damage index formulation

Theoretical background. The perturbation analysis is used to define a damage index (DI) which locates
the notch and estimates its severity. The definition is such that the DI has value 1 at undamaged locations,
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Figure 6. Longitudinal (left) and transversal (right) displacements as function of longi-
tudinal coordinate, for three instants in time.

while it deviates from unity in the vicinity of the notch. The formulation is based on the estimation of the
distribution of strain energy associated with propagating and reflected waves. In the proposed approach,
which follows procedures previously applied on modal curvature data of notched plates [Sharma et al.
2006], the beam is divided into N segments, over which the strain energy is evaluated through integration
over the segment length. At a given instant of time ¢, the strain energy over segment p, defined by
X € [xp, xp41], is obtained by summing contributions from axial and bending deformations

1 [Xp+!
AUL(t) =U(xpp1, 1) — Ulxp, t) = 5/ [EAu?,(x, 1) + ETw?, (x, )] dx, (3-1)
Xp
where u and w can be considered as superpositions of the solutions obtained for various orders of the
perturbation parameter of (2-9). Substituting the displacement expansions and truncating at the second
order yields the following approximate expression for the strain energy of the damaged beam

AU, ()~ AUD (1) —e AU (1) — O(e?), (3-2)
where N
AUV (1) = % / [EAWQ (&, ) + EIw Q. (x, 1)1 ]dx (3-3)

corresponds to the strain energy of the undamaged beam, and where

AUI(,I)(t) = / [EAu(O) (x, t)u(l)(x 1)+ Elw(o) (x, t)w(l) (x, t)]dx (3-4)

Xp
is the contribution due to damage. In preparation for the analysis of experimental data, the integrals
are estimated numerically by using a set of spline functions. This leads to continuous strain energy
functions AU © (x, t) and AU (x, t). Based on (3-4) and the numerical results presented in the previous
section, displacement perturbations occur only when waves reach the notch location. Accordingly, the
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corresponding strain energy perturbation AU [(,1)(x, t) originates at the damage location, where it reaches
its maximum value [Sharma et al. 2006], to progressively decrease in value as the secondary wave
produced by the damage propagates away from the damage. The damage index can be thus defined as
a ratio between the strain energies associated with the 1st order perturbation, to the strain energy of the
undamaged beam, as quantified by the zero order solution

AU(x,t) AUD (x, 1)
= Nl 7
AU (x, 1) AUO (x, 1)

Equation (3-5) explicitly shows how the deviation from unity of the DI is directly proportional to the
perturbation parameter ¢ which defines the notch depth. The location of damage along the beam length
is instead identified by a peak of the AUM (x, 1)/ AU © (x, t) function occurring at the damage site.

The above damage index is time-dependent, and it is convenient to consider its cumulative value over
a selected time interval

d(x,1) (3-5)

@@ﬁiﬂﬂnﬂwt (3-6)
t
to obtain a function depending uniquely on the spatial coordinate.

Numerical examples. Three examples are presented to demonstrate the effectiveness of the proposed
damage index formulation as a damage locator and estimator. In all the cases, the beam is simply
supported and is excited at a given point by a 5-cycle sinusoidal load. The beam is made of aluminum
with Young’s modulus E = 70 GPa and density p = 2750 kg/m® and has length of L = 1 m, thickness & =
1 x 1072 m and width b =5 x 10~2 m. The simulation is performed over a time interval which corresponds
to the time required for the injected pulse to reach the boundary. The corresponding cumulative DIs are
calculated according to (3-6), and plotted in Figure 7. As expected, damage is highlighted by a clear
deviation from unity at the damage site. It is important to note how the DI values increase with the notch
depth & p and also shows a monotonic dependence upon the damage width Al.

The first configuration considers a 5-cycle sinusoidal load applied in the longitudinal direction at
xy = 0.6L and a notch located at xy = 0.4L. According to this load configuration, w® =0, and the
damage index reduces to
/ u,(g)u,(,lc) dx

J@ydx
Figure 7, top left, shows that for a given notch depth /4 p, the DI increases with the damage width Al.

The results for a transverse load shown in the top right part of the same figure also confirm the damage

index behavior. In this last case, the DI can be approximated as

dix,t)=1—¢ (3-7)

/ w(,?zc w()g dx

dix,f)=1—g>—"_"" "
[(wP)2dx

(3-8)
since #(®) = 0. The graph shows that for a given damage width A/, the DI increases with the notch depth
hp.

In these two cases, the coupling between longitudinal and transverse displacements due to the damage
is of order O(&?) so it is neglected. To include coupling at O(¢), the third configuration considers a 5-cycle
sinusoidal load applied in both longitudinal and direction at x y = L /2 and a notch located at xy = L /4.
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Figure 7. Cumulative damage index results for (left) a horizontal applied load, with
hg/h =1/4 and varying damage length (Al = 0.005, 0.007, 0.01 m); and (right) a verti-
cal applied load, with A/ = 0.005 m and varying damage depth (hy/h =1/6,1/4,1/2).
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Figure 8. Cumulative damage index results for both horizontal and vertical applied
loads, with A/ = 0.01 m and varying damage depth (h,/h = 1/20, 1/15, 1/10).

Both zero order longitudinal and transverse displacements are present and the DI is given by (3-6). The
resulting DI is plotted in Figure 8 for a given damage width A/ and for various notch depths 4. Once
more we see that the DI increases as s p increases.

4. Experimental implementation

This section presents the extension of the DI concept to the analysis of experimental data. The presented
results demonstrate the effectiveness of the DI as a damage indicator, and show its practicality as an
inspection tool. The case of a homogeneous plate with a transverse notch is considered. The results in
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this section therefore cannot be directly compared with those obtained analytically as the analytical results
are obtained for an Euler-Bernoulli beam. Refinements of the analytical formulation to include Lamb
modes thus allowing the accurate simulation of the experiments presented here are under development
and will be discussed in future papers. However, the objective is to illustrate the application of the
concept in a practical setting and to demonstrate how it may be applied to correctly identify the presence
of damage.

Experimental evaluation of the DI requires information regarding the undamaged response of the
component under investigation and of the perturbation of its response due to the presence of damage.
While in the numerical model such information was directly obtained as a by-product of the adopted
numerical approach, the effective analysis of experimental data requires the ability to separate these
two pieces of information. Preferably, this should be done without need to rely on historical data on
the undamaged part. This is here achieved through the application of simple filtering strategies in
the wavenumber/frequency domain, which are enabled by the elevated spatial resolution provided by
scanning devices such as a scanning laser Doppler vibrometer [Ruzzene 2007]. A summary of this
filtering approach, used to remove the reflections due to damage, is presented in the next section, which
is followed by the illustration of how the filtering procedure can be used in conjunction with the DI to
detect damage in a structure.

Filtering procedure for the estimation of undamaged response. The basic concept behind the filtering
technique under consideration is illustrated here for the case of propagating waves in a one-dimensional
rod. The data is obtained based on SFE model described in Section 2. Additional details, including
the application to two dimensional problems and a more in-depth description can be found in [Ruzzene
2007]. It is assumed that the clamped-free rod is excited at its free end by a modulated harmonic load,
which generates a wave. The injected wave interacts with the damage located at x; = L /2, again modeled
as a thickness reduction corresponding to i,/ h = 0.1, where it is reflected.

The graphs on the left on Figure 9 are snapshots of the rod response at instants of time before, during
and after the wave interaction with the notch. After the reflection, the rod’s displacement is given by

u(x,t)=u(i)(x,t)+u(r)(x,t), 4-1)

where one can consider u¥) (x, r) as the Oth order term in the perturbation solution. The two-dimensional
FFT in space and time of the rod response is also given by the superposition of contributions from incident
and reflected waves

ik, w) =ak, o) +ia" (k, w). (4-2)

Its representation in the frequency/wavenumber domain shown on the right in Figure 9 highlights the
presence of the main pulse propagating along the x > 0 direction, and of the reflected pulse propagating
in the opposite direction (x < 0). As a result, the two corresponding peaks of the two-dimensional
FFT appear centered at w = wq, k = +ko. In particular, the reflected pulse has lower amplitude, it is
characterized by the same frequency, and appears in the k£ > O region of the wavenumber/frequency
domain. The two-dimensional representation hence effectively separates incident and reflected wave
components. This allows the application of simple filtering strategies, which remove the reflected wave
from the recorder signal, thus providing an approximation of the response of the structure in the absence
of the damage. For example, a two-dimensional Hanning window can be used to eliminate the reflected
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Figure 9. Left: Snapshots of rod deformed configuration at three instants of time. Right:
2D frequency/wavenumber domain representation; the solid box highlights the reflected
component, and the dashed box the incident component.
wave and to obtain the frequency/wavenumber spectrum shown in Figure 10, left. Mathematically, the

windowing process can be simply expressed as a function product between the wave’s two-dimensional
FFT and a two-dimensional window function

15

k[rad/m]
S o
o =) o

|
=

-15

2D (k, w) ~ [1 — H(k — ko,  — wo) Ja(k, w), (4-3)

-4

x 10° x 10

0 0.2 04 05 06 0.8 1
-5

x 10

0 0.2 0.4 05 0.6 0.8 1
x107°

Axial displacement[m]
o
—

‘ ‘ ‘ ‘ ‘ 2 . . i . . J
2 4 6 8 10 0 0.2 04 05 0.6 0.8 1
wlrad/s) % 10° Axial coordinate [m)]

Figure 10. Representation of filtered (incident) axial displacement in the two-
dimensional frequency domain (left), and the corresponding deformed configurations
at three instants of time (right).
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where H (k — ko, ® — wg) denotes the windowing function centered at kg, wg. The incident space-time
domain signal can then be reconstructed through inverse Fourier transformation. The incident signal
obtained upon filtering at the same instant considered in the left half of Figure 9 is shown in the right
half of Figure 10, to demonstrate how the windowing procedure removes the reflected propagating pulse
while leaving the response corresponding to the undamaged beam practically unaltered. The separated
incident and the total signals can be used for the damage index estimation according to the definition
provided above. The result in terms of cumulative damage index for the simple case discussed in this
section is plotted in Figure 11.

Experimental set-up for wavefield measurements. A schematic of the set-up is shown in Figure 12. The
experimental results are obtained using piezoceramic discs as actuators and a scanning laser Doppler

J\/V\/\/\/_ Actuator Plate
Function generator 2 I——> Voltage Amplifier —> e
X Sinusoidal

/\/ burst
Low-frequency »| LDV Head
signal (1 Hz) —

Function generator 1 \
Trigger|
Plate
Phase response
information|
A
Reconstructed
D';Q wave-form

Signal processing

Figure 12. Schematic of experimental set-up for wavefield measurement.
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vibrometer (SLDV) as a sensor. The SLDV (Polytec PI, Model PSV400M2) allows frequency sampling
up to 1 MHz, which enables GUWs detection and visualization. In the wave propagation tests, the
piezodiscs are driven by a sinusoidal burst generated by a signal generator. The
resulting elastic waves are recorded at the measurement grid points defined on the
scanning system. The operation of the SLDV requires the generation of a pulse at
each grid point in order to record the corresponding response. Phase information is
retained by triggering the excitation signal through a low frequency signal (10 Hz),
which also defines the scanning rate. Upon completion of measurements at all
grid points, the recorded responses are postprocessed to obtain full images of the
propagating wavefield within the region of inspection.

Shown on the right is a detail top view of a typical test specimen: in this case,
an aluminum plate of dimensions 0.76m x 0.76m x 3.05 x 10~> m. The damage
isa 27 x 1073 m long and 1 x 1073 m deep grove which was cut in the plate at
the location shown. The figure also shows a typical line of measurement points
(in the case presented below the number of points is 69). The wave is generated
by a surface bonded piezotransducer excited by a 5-cycle, 110 kHz sinusoidal
pulse. The responses at the grid points is recorded, stored, and converted for
postprocessing. In particular, the responses are interpolated using spline functions,
which can be conveniently differentiated for strain energy evaluation.

Experimental results. The time-spatial variation of the plate response shows the presence of a low am-
plitude Sy mode, which propagates faster than the Agp mode (Figure 13). The significant difference
in amplitude recorded for the two modes is related to their polarization (Sp is mostly in-plane, while
Ap is mostly out-of-plane) and to the limitation of the currently available SLDV which only measures
out-of-plane displacement or velocity components. When the Sy mode reaches the crack location, it is
partially converted into Ag, as well as reflected and transmitted. The detailed spatial information obtained

o008

5
t[s] x10

Figure 13. Space-time variation of recorded response showing multimodal wave propa-
gation, mode conversion and reflection at crack location.



WAVE-BASED DAMAGE INDEX FOR THE FILTERED RESPONSE OF DAMAGED BEAMS 1619

wa.u]

"0 o1 02 03 04 05 06 07 08 098 | O 01 02 03 04 05 06 07 08 08 1
t[s] w10 t[s] x 10t

Figure 14. Left: Response at location A of Figure 13. Right: Filtered Sy response (thick
line) and reflected Ay mode (thin line).

from the SLDV can be used to effectively separate the Sop mode from the Ap mode through filtering in
the frequency/wavenumber domain. Proper design of the filtering window allows in fact the separation
of incident and reflected waves as well as the decoupling of different modes propagating at the same
frequency. Figure 14, left shows the time response recorded at location A, while the right half of the
same figure compares the two reconstructed signals corresponding to the Sy mode and the reflected Ay
mode.

Figure 15 shows the variation of the plate incident and reflected responses in time and space as col-
ormap plots. Both responses contain both Sy and Ay modes.
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Figure 15. Filtered incident (left) and reflected (right) response as function of time and
longitudinal coordinate.
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Figure 16. Left: Raw test data (transverse displacement) as function of longitudinal co-
ordinate at three instants. Right: Filtered incident (dotted line) and reflected (continuous
line) waves as function of longitudinal coordinate at the same three moments.

Figure 16 shows snapshots of the displacements’ variation along the beam at three instants of time as
raw data and also as filtered data. A very clear separation between the incident and the reflected waves
is presented in Figure 16, right.

Analytically the damage index was defined as the ratio of strain energies associated with damaged
and undamaged beams. Due to the mode conversion phenomena, the damage index obtained from the
experimental data is defined as the ratio of strain energies associated with the damaged beam and with
the incident Sy mode denoted by Sé (Figure 14, left)

AU (x,t)

dx, 1) = ———, (4-4)
AU(Sé)(x, 1)
where the stain energy associated with Sé is defined as
1
AUS (x, 1) = / [0S (e, )] dx (4-5)

and where w0 is the displacement associated with the Sé. As in the analytically defined damage
measure of (3-6), a cumulative damage index is considered and the result is plotted in Figure 17. Due
to the significant difference in amplitude recorded for the two modes the ratio d(x, t) gives very large
values. But the ratio still has a peak at the location of the damage (Figure 17). Refinements of the
proposed DI will be further investigated and in future papers.

5. Conclusions and future work

This paper presents a wave-based damage index and illustrates the model by applying it to both analytical
and experimental data. The formulation is first supported by a numerical method which simulates the
effects of a notch damage on a propagating elastic wave. The numerical technique combines the SFEM
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Figure 17. Cumulative damage index of experimental data.

and perturbation techniques and allows the prediction of reflections and mode conversion phenomena
associated with wave/damage interactions.

The damage index formulation is based on the distribution of strain energy within the structure. The
technique is implemented by estimating the undamaged response through a filtering process that operates
in the frequency/wavenumber domain to separate wave components propagating in opposite directions.
Numerical results, based on the developed numerical model, as well as experimental data, obtained
through a scanning laser vibrometer show the effectiveness of the proposed formulation and its potentials
for implementation as a practical inspection tool for detection of the damage location. Future work will
include results for the quantification of the damage that are missing in the current development. Also a
similar concept will be developed for the case of multimodal signals.

The objective of the paper is to illustrate the effectiveness of the damage index for both analytical and
experimental data. The experimental data cannot be validated with the present numerical model, due to
the model’s limitation to describe higher Lamb modes. Future work includes extensions of the analytical
formulation, allowing accurate simulation of the experiments.

Future work will also extend the concept to practical aerospace structures in the presence of structural
features such as holes, rivets, or localized impedance changes which complicate the wavefield and its
interpretation, and make the identification of the presence of damage much more challenging. The
authors are already successful in applying the same tool for two dimensional data in the presence of
multiple scatterers. In future work, the authors will demonstrate how multiple scatterers contributions to
the scattered field can be resolved to obtain the characterization of the individual scatterers.
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GENERALIZED PLANE STRAIN FINITE-ELEMENT FORMULATION
FOR THERMAL AND ELECTRICAL BUCKLING ANALYSIS
OF PIEZO COMPOSITE BEAM

R. JEROME AND N. GANESAN

We develop a generalized plane strain (GPS) finite element formulation to predict the critical buckling
voltage and temperature of a piezo composite beam in more generality than the cases characterized by
plane strain and plane stress assumptions.

This generalized plane strain formulation represents the two-dimensional finite element model as
closely as possible to the three-dimensional finite element model. It is similar to the plane strain formu-
lation that reduces a three-dimensional stress-strain relation to a two-dimensional one, but in contrast
with most GPS formulations in the literature, it does not include out of plane degrees of freedom. In our
formulation the reduced two-dimensional stress-strain relation incorporates the effect of allowed/applied
strain &g in the dimension not included in the two-dimensional model. Further, since the goal is to deal
with thermal and electrical buckling analysis, an initial strain vector is incorporated in the formulation.

A finite element solver based on an eight-node quadrilateral element was developed under the new
formulation, and its results show good agreement with those reported by Varelis and Saravanos (2004)
and those obtained with ANSYS. The critical electrical and thermal buckling loads for examples other
than those characterized by plane stress and plane strain were analyzed, and it was found that they are
significantly influenced by «, the parameter controlling the out-of-plane strains.

1. Introduction

Finite element analysis of smart structures has attracted much attention in recent years due to its wide
range of applications. A significant amount of research has gone into the analysis of piezo composite
structures. A number of finite element (FE) models have been proposed for the analysis of smart struc-
tures; and a detailed survey is given in [Benjeddou 2000]. One of the main problems addressed is the
buckling analysis of smart structures.

Three-dimensional beam models can be simulated using two-dimensional in-plane elements by consid-
ering only the longitudinal cross-section of the three-dimensional beam model. The boundary conditions
and the loading conditions can be simulated more accurately in this two-dimensional model than in the
one-dimensional beam element model. Still, the two-dimensional analysis of the beam is based on either
the plane stress or plane strain assumption, and cases outside these assumptions cannot be handled by
two-dimensional in-plane elements. The generalized plane strain formulation can be used to model cases
other than plane stress and plane strain at the cost of additional degrees of freedom.

The generalized plane strain formulation has been discussed extensively in the literature and has been
used for several applications. Most composite problems are generalized plane strain in nature, and they

Keywords: generalized plane strain, finite element, piezo composite, beam, electrical buckling, thermal buckling.
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are often solved using three-dimensional finite element analysis. Lin and Yi [1991] used the generalized
plane strain formulation for the analysis of interlaminar stresses in viscoelastic composites. Krueger
et al. [2002] have critically compared the two-dimensional finite element modeling assumptions with
results from three-dimensional finite element analysis for composite skin-stiffener debonding. They have
proposed a method for analyzing the composite using one layer of brick elements instead of using plane
elements. Hu and Pagano [1997] presented a new method of solving generalized plane strain problems
by introducing out-of-plane thermal strains in a two-dimensional finite element analysis with the plane
strain model. They have done their proposed two-dimensional FE analysis using ANSYS and compared
the results and computation time with those of the three-dimensional FE models.

In most of the literature, a plate element has been used to model the piezo composite plate as well
as piezo composite beams for buckling analysis. Varelis and Saravanos [2002] developed a nonlinear
mechanics to describe piezoelectric laminated plates, including nonlinear effects due to large displace-
ments and rotations, and carried out a linear buckling analysis of plates by neglecting the nonlinear
stiffness matrix. Varelis and Saravanos [2004] carried out pre- and post-buckling analysis of plates.
Giannopoulos et al. [2007] presented a coupled formulation between thermal, electrical, and mechanical
fields incorporating nonlinearity due to large displacements, and solved for linear buckling by neglecting
the nonlinear stiffness matrix.

Plane Considered for the analysis

Electrode

Piezo Layer

f Polarization

-0
Figure 2. The plane of the finite element model used for thermal and electrical buckling
analysis, with electrical boundary conditions and kinematic constraints. For thermal
buckling analysis, the applied voltage is zero.
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This paper presents a generalized plane strain FE formulation for thermal and electrical buckling of
a piezo composite beam (Figure 1). The two-dimensional model is a cross-sectional one, as shown in
Figure 2. This contrasts with the plate finite elements generally used to model a piezo composite beam
[Varelis and Saravanos 2002; 2004; Giannopoulos et al. 2007]. Our generalized plane strain formula-
tion is similar to the standard plane strain formulation (which reduces a three-dimensional stress-strain
relation to a two-dimensional stress-strain relation), in that it does not include out-of-plane degrees of
freedom. Therefore, it has fewer degrees of freedom than the conventional generalized plane strain
formulation. As we shall see, however, this does not compromise its performance.

Our formulation includes the effect of out-of-plane strain (that is, in the direction not included in
the two-dimensional FE model) via a parameter o, which intervenes in the stress-strain relationship of
the beam. The effect of the out-of-plane strain is included in the formulation through the constitutive
relations.

We compare the performance of the plane strain model, the plane stress model and the newly developed
generalized plane strain model in calculating the critical buckling voltage and critical buckling tempera-
ture of a piezo composite beam. It turns out that the present model simulates the three-dimensional FE
model more closely than the conventional plane stress or plane strain two-dimensional FE model for the
same number of degrees of freedom.

The present formulation can be used to analyze beams inside a gap or a slot which constrains expansion
of the beam in the direction not included in the two-dimensional FE model.

List of symbols

Exxs Eyy, €7z Strains in the x, y and z directions
Oxx, Oyy, 07z Stresses in the x, y and z directions
€x0, £y0, €0 Initial strains in the x, y and z directions
sgy Free expansion strain in y direction
a;;,s Stress in the y direction for plane strain case
G

oy, Stress in the y direction for generalized plane strain
¢¥ allowed/applied strain in the z direction
a=¢" egy Ratio between allowed/applied strain to the free expansion strain in the z direction
{T'} Stress vector
{S} Stain vector
{So} Initial strain vector
{E} Electric field vector
{D} Electric displacement vector
[c], [s] Elastic constants matrices
[e] Dielectric constants matrix
[d], [e] Piezoelectric constants matrix
[c], [s] two-dimensional reduced elastic constants matrices
[e] two-dimensional reduced dielectric constants matrix
[d], [¢] two-dimensional reduced piezoelectric constants matrix
{u.} Elemental structural displacement degrees of freedom

{p.} Elemental electric potential degrees of freedom
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[N,] Shape function matrix for structural displacement
[N,] Shape function matrix for electric potential
[B,] Shape function derivative matrix for structural strain
[By] Shape function derivative matrix for electric field
[M] Elemental mass matrix
[K,.] Elemental structural stiffness matrix
[Kup] Elemental piezostructure coupling matrix
[Ky,] Elemental capacitance matrix
{f.} Elemental external mechanical force
{g.} Elemental electrical charge
[K,] Elemental geometric nonlinear matrix
s Elemental stress matrix
[M] Assembled mass matrix
[K,.] Assembled structural stiffness matrix
[K.,] Assembled piezostructure coupling matrix
[K,,] Assembled capacitance matrix
[K,] Assembled geometric nonlinear matrix
{f} Assembled external mechanical force
[Keq] Assembled equivalent capacitance matrix

2. Formulation

Generalized plane strain FE formulation. The three-dimensional stress-strain relation is given by

Exx = S110xx 1 5120yy + 8130,z + €x0, (D
Eyy = 8$210xx + 5220y + 5230 + €y0, ()
€77 = 5310xx + 8320y + §330,; + €20, 3)

where &, €y, and ¢, are the strains in the x, y and z directions and o,,, oy, and o, are the stresses
in the x, y and z directions. The strains ¢,0, £,0 and &, are the initial strains. Consider a plane strain
case where ¢,, = y,, = y,; = 0. Because of the assumption ¢,, = 0, Equation (3) becomes ¢,, =
$210xx + 8220y, + 5230, + &y0 = 0, which gives

521 523 €y0
Oyy = ———0Oxx — ——O0zz — . 4)
$22 $22 §22
0

This o, is required to resist the y direction strain ¢}, caused by the stresses oy, and o,;. Therefore,

0
yy

yy

oyy produces a strain equal to &7 but in the opposite direction, so the net strain in the y direction is
maintained at zero.

Based on this argument, Equation (4) can be recast as
0
$200yy = =&, = —$210xx — $2307z — €30. (5)

Substituting o, from (4) into (1) and (2) for the plane strain case implies, from (5), that we are incorpo-

rating the effect of —88), in the two-dimensional stress-strain relation. The stress-strain relationship then
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becomes
2
Exx S11—5875/522  s13—s12523/522 0 | | oxx ex0 — (S12/522)€y0
— 2
€z ( = | S13—5S12823/5220  s33—533/s22 O Oz (T 1620 (523/522)60 [ » (6)
Vxz 0 0 855 Txz Vxz0
which enforces the condition ¢, = 0.

Now consider the case where ¢, = a(}),y but y,, = yy; =0, that is, the y direction is allowed to expand
2y caused by the stresses oy, and o, has to be

freely, as shown in Figure 3. In this case the effect of ¢

incorporated into the two-dimensional stress-strain relation. From (5), it is clear that to produce positive

the stress o, should be in the opposite direction of the plane strain case. From (5) we get
(N

0
0 _
=5210xx + 52307, + €y0»
(8)

strain &,
G __ _PS)
5220y = 522 ( O'yy) =&y
G PS $21 523 €y0
= (_O-yy) = _G.XX + _UZZ D)
522 8§22 522

Oyy =
where ayG) and afys are the stresses in the y direction for the case ¢, = e?,y and for the plane strain case,
from (8) into (1) and (2), we obtain for the stress-strain relationship the equation
x0 + (512/522)€y0
)

respectively.
By substituting ayc);,
2
Exx S11+S7y/522  s13+5812523/5220 0 | | oxx
2
= | s13+512523/8522  S33+8y3/52 0 Oz (T 180+ (523/522)6y0 [ »
0 §55 Txz Vxz0

Ezz [ =
0

VXZ
which enforces the condition ¢, = egy.
Before enforcing this condition, however, the condition &y, = 0 has to be enforced, which means
there should not be any strain in the y direction. By enforcing the

0
yy?

that before applying the strain ¢

Figure 3. The beam is allowed to expand freely in y direction
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condition &y, = 0, the stress-strain relation becomes (6). Introducing the quantities

2 2

s $12523 s 512 523
! 12 ’ / 23 1 /
S|y =s11——=, S;3=813— s S33=S3 T, E 0= Ex0— —&y0, &,0=&0— —&y0, (10)
522 522 522 522 522
we can recast (6) as
!/ / /
Exx s1; s;3 0 Oxx €0
— / / /
€z (= |83 533 O Ozt 60 (- (11)
Vxz 0 0 sss Txz Vxz0

Next, the condition &y, = 88y has to be enforced on the y direction for the strain-free (¢,, = 0) stress-

0

oy the stress-strain relation becomes (9) . Now the

strain relation. By enforcing the condition &y, = ¢
stress-strain relation becomes

2
Exx S1y+S1p/522  s;3+s12823/522 0 Oxx o+ (s12/522)€0

_ p
€2 ( = | S;3+S12523/502  Sh3+5y3/500 0 oo (1850 + (523/522)830 (12)
Vxz 0 0 555 Txz Vxz0

The two conditions &y, =0 and &y, = egy can be enforced in any order; this is just a superposition of
one condition over the other. The condition ¢, = 0 enforces zero strain in the y direction, and &, = 83),
says the beam can expand freely in the y direction. By superimposing these two conditions, the beam
is forced to expand exactly the same amount as that of free expansion in the y direction. The derivation
for generalized plane strain is carried out based on this analogy.

For the generalized plane strain case we have ¢, = ¥ but y xy = ¥y = 0. In this case, &0 is the
allowed/applied strain in the y direction. If &° is specified as a multiple of egy, its effect can be taken
into account in the two-dimensional stress-strain relation.

Let the allowed/applied strain be ¢ = as(y)y, as shown in Figures 4 and 5. The reduced two-dimensional
stress-strain relation, incorporating the effect of £°, becomes

’ 2 1 I
Exx S| tasiy/sn sz tasinsys/sn 0 | | o ot alsi2/522)ey0
— / / 2 1
€z ( = | 813 T as128523/502  S33+asy/sn 0 ot 0t (523/522)€y0 ¢ > (13)
Vxz 0 0 555 Txz Vxz0

where s/, 5,, and s}, are given by (10) .

If @ in (13) is O, then (13) reduces to (6), which is a stress-strain relation for the plane strain case. If
the a in (13) is 1, then (13) reduces to (12), which is a stress-strain relation for the condition ¢, = e(y).y.
By substituting (10) into (12) , the stress-strain relation for the condition &y, = egy becomes

Exx s11 813 0 Oxx €x0
€z =153 533 0 oz ¢+ 1 €0 ¢ - (14)
Vxz 0 0 ss5(|2xz Vxz0

This is a simple two-dimensional stress-strain relation which completely does not constrain the strain

U, caused by the stresses o, and ..

8}’)”
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0<a<1

7 M Fixed koundary

a>1 a<0

Figure 5. Left: Beam expands more than the free expansion in the y direction by the
external load. Right: Beam gets compressed in the y direction by the external load.

The generalized plane strain stress-strain relations of (13) can be extended to generalized plane strain
two-dimensional piezostructure coupled stress-strain relations. The constitutive equations for a piezo-
electric material are

{T}=[c"1({S} — {So}) —[e]"{E}, (D} =Iel{S}+[e°E}, (15)

where {T'} is the stress vector, {S} the stain vector, {Sp} the initial strain vector, {E} the electric field
vector, {D} the electric displacement vector, [c] and [s] the elastic constants matrices, [¢] the dielectric
constants matrix, and [d] and [e] the piezoelectric constants matrix, and where superscript £ and S
indicate that the specified values are evaluated at constant £ and S.
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Equation (15) can be written in strain form as
{SY=[s"UTY+[dI"{E} + (S0}, (D} =[dNT}+["HE), (16)

where
le] =[dllcE],  [EFl1=[s517" (17)

Equation (16) can be recast as

(o= i) [+

This in turn can be expanded for the case where the polarization direction is the positive z axis as follows:

-

S [s11 s2 53 0 0 0 0 O dy| [T S10

S s12 52 803 0 0 0 O 0O dxp 1 S20

S3 s13 523 533 0 0 0 O O dyi3| |73 S30

Sy 0 0 0 s44 0 0 O dyy O T S40
1S ¢t=]0 0 0 0 555 0 ds 0 O Ts § +1Ss0¢ - (19)
S6 0O 0 0 0O 0 s¢¢6 O 0 O Ts S60

D] 0 0 0 0 d15 0 €11 0 0 E1 0

D2 0 0 0 d24 0 0 0 €22 0 E2 0

LD34 _d31 d32 d33 0 0 0 0 0 €33 | ‘E34 { 0 )

In the piezostructure coupled two-dimensional case, the xz plane is considered for analysis as shown
in Figure 2, and the y direction is the be the out-of-plane direction. Now consider the plane strain case,
where

Sy =84=58=0, (20)
D, =E,=0. (21

By substituting (20) into (19) , the second row of (19) becomes Sy = 51271+ 522 1o+ 52313 +d3p E34 S0 =0,
which gives
d S
Ty=—2q B B2p 20 22)
8§22 8§22 8§22 8§22

Substituting (22) into (19) and using (20) and (21), we obtain the reduced stress-strain relationship in
the plane strain case in the form

Si [s1; s;3 00 dy| [T S1o
53 si3 53 0 0 di T3 830
Sst=10 0 s55 dis O Ts ¢t +3Ss0¢ » (23)
D1 0 0 d15 €11 0 E1 0
D3 _dél d§3 0 0 8/33_ E3 0
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where
/ s 122 / 512523 p S§3
S11 =511 — —>»  S13=9513 — s, 33 =833 — —, (24)
8§22 8§22 8§22
2
s12d32 s23d32 ds,
/ / /
d31 =d3 — > d33 =d33 — s €33 =833 — —, (25)
22 §22 $22
S12 523
/ !
Sio=35810——50, S30=S30——>520. (26)
22 522

The arguments given for the pure elastic generalized plane strain case can be extended for the piezo-
structure coupled generalized plane strain case. The reduced two-dimensional piezostructure coupled
stress-strain relationship for the generalized plane strain case is given by

S1 st tosh, /s Sjytasiasa/sn 0 0 di+aspdsn/sn| [T Sio—as12820/522
S3 siytasinsas/sn  Sptasy/sn 0 0 diztaspdn/sn | | T S30—a523520/522
S5 = 0 0 555 d15 0 T5 + S50 ,
D] 0 0 d15 €11 0 E] 0

Ds dy toasndyn/sn distoasndn/sn 0 0 estads,/s» E; 0

which can be recast as

(s3] _[151 [&]T”{T}} {{Eo}} . e < 1 .
{{D}}_[[d] A T (5) = BUT)+ @7 E) + (o), (D) = [NT)+ BNE),

Using (17) , this can further be rewritten in stress form as
{TY=1[c1 (1S} — {So}) —[e)" {E}, (D}=I[e]{S}+I[EI{E}.

Finite element formulation. In order to model the piezo composite beam, an eight-node quadrilateral
element was developed. The finite element model of the piezo composite beam is shown in Figure 6.
Each node has three degrees of freedom: axial displacement (u;), transverse displacement (u3) and
electric potential (¢). The elemental degrees of freedom are

11 .2 2 3 3 g T T
{ME}:{ulﬂu:’,:u]’u}au])u?p"'7M17u3} s {¢€}:{¢17¢27¢379¢8} . (27)
X 3 n
4 7 3
35 55 55 55 55 55 55 55 55 55 55 55 55 55 5% 55 56 56 56 55 56 56 5 5% 58 \ 5 6 {
SEmamS 1 5 2

Figure 6. Finite element model of the piezo composite beam with kinematic constraints
and electrical boundary conditions for electrical buckling analysis and (with zero applied
voltage) for thermal buckling analysis.
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The displacement {u} = {u, u3}” and electric potential (¢) within the element can be expressed in
terms of element shape functions as

{u} =[N l{u.}, {o}= [N¢]{¢€}a
where

0 Ny O Na ... 0 Ng

Ny, Na, ..., Ng being the shape functions.
The strain displacement relation can be expressed as

Ny O N, 0 ... Ng O
|: : g 8 :|a [N¢]=[N1 N2 N3...NS],

M ouy/0xy
{S1=18¢= Ouz/oxs = [Bu]{uc},
S5 ouy/0x3+ dusz/ox;

where [B,] is the shape function derivative matrix:

aNl/a)q 0 (9N2/(3X1 0 8N8/6x1 0
[Bu] = 0 6N1/8x3 0 8N2/6X3 0 8N8/(3X3
aN1/6X3 6N1/8x1 8N2/6X3 aNz/axl 8N8/8X3 6Ng/ax1

The electric field-potential relation can be expressed as

_|Ei| _|-%9/ox1| _
{E}_{EJ_{—ago/axg}_[Bw]{%}’

where [By] is the shape function derivative matrix:

[B ]_ 8N1/axl 6N2/6x1 8N3/@X1 8N8/ax1
P17 6N, /ox3 ON»/ox3 0N3/oxs ... ONg/ox3 |’

After application of the variational principle, the coupled finite element matrix equation becomes (see
[Allik and Hughes 1970; Lerch 1990; Tzou and Tseng 1990])

[M]{i'ie}+[Kuu]{ue}+[Ku(p]{¢e}:{fe}: [K¢u]{ue}+[K¢(p]{(pe}:{ge}v (28)

where [M] = fv p[N]T[N] dV is the element mass,

[Kul= /V [B,1"[eE1[B1AV, [Kupl=[K,ul" = /V [B.1"[el"[B,1dV, [Kyyl= /V [B,1"[£1[B,1dV

are the stiffness, piezoelectric coupling and capacitance matrices, and
(£ = [ BATES AV + [ N (Bav 4 [ INT(RMQ LIV () (29)
4 4 Q

{ge}z—/g [N]"PdQ, —[N]"Q (30)
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are the external mechanical force and electrical charge. The first term in (29) is the element load vector
due to initial strains, and the other terms are body, surface, and point forces, respectively [Cook et al.
2003].

In order to do the buckling analysis, the geometric nonlinear matrix can be computed as [Cook et al.

2003]
1= [ 161" [s 0} [G] aV,
v 0 s
where
8N1/6X1 0 8N2/6X1 0 8Ng/axl 0
5 = O0x0 Txz0 and [G]Z 8N1/8X3 0 8N2/6X3 0 aNg/a)@ 0
Txz0 O0z0 0 6N1/8x1 0 aN2/8x1 0 aNg/axl
0 8N1/5‘X3 0 8N2/6X3 0 8N3/8X3

are the stress and shape function derivative matrices.
For static analysis and for the case where only a mechanical load exists, Equation (28) becomes, after
assembling the stiffness matrices,

[Kuul{u} + [Kupl{p} = {f}, [Koul{u}+[Kyol{p}=0: €1y

the assembled geometric nonlinear matrix is [ K ].
In the case of thermal buckling analysis, since only the thermal load exists, the right-hand side of
(31); is simply

=2 /V (B [€"1{So}dV,

and the assembled buckling eigenequation is
(K ] + ALK ;1) {ou} = {0}. (32)

In the case of electrical buckling analysis, the right-hand side of (31) is { f} = {0} and the known quantities
are only the voltages on the electrodes. Therefore, for electrical buckling, (31) becomes

Since the FE model is a cross section model, as shown in Figure 6, the voltages are known only at the
electrodes. There are other nodes in the piezo layer whose potentials have to be evaluated, and this in
a coupled way. To evaluate the voltages applied in the piezolayer in a coupled way, Equation (33); is
solved for {u} and it is substituted into (33), to get an equivalent stiffness matrix

[Keql = [Kppl + [Kpull K]~ (—[K 1)

Now [Kq] is a coupled capacitance matrix because the effect of the first equation of (33); has been
incorporated into the second equation of (33), and the unknown potentials can be evaluated using the
equation

[Keql{g} = {0}. (34)
The unknown potentials in the piezolayers have been determined by taking the known potentials to the
right-hand side and solving (34) , which is similar to the process of solving thermal problems where one
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knows temperatures on some nodes and the temperatures on the other nodes are evaluated. Once all the
potentials are known, (33); can be used to determine the displacements. The buckling eigenequation is
(32).

3. Results and discussion

A finite element solver was written implementing the formulation above. In this section we discuss some
validation tests and then new example calculations involving a system where neither plane stress nor
plain strain conditions are assumed.

Validation. The code was validated for electric buckling by comparison with the results in [Varelis and
Saravanos 2004]. The same example was also subjected to a three-dimensional FE computation in AN-
SYS; due to the limitations of ANSYS, a thermal analog of the linear electrical buckling problem [Dong
and Meng 2006] was solved as a proxy.

The example beam of Varelis and Saravanos is a three-layer [pzt/Al/pzt] composite with length 200 mm,
width 20 mm, thickness of each piezo layer 7, = 0.25 mm, and aluminum layer thickness 7, = 0.5 mm.
In the case o = 1 (the beam is allowed to expand freely in the y direction), we obtain these values for
the critical electrical buckling voltage:

present approach 189.6 V
ANSYS 3D model 188.8V 35)
[Varelis and Saravanos 2004] 188 V

We observe good agreement between all three results.

For thermal buckling validation, we took an example beam from [Giannopoulos et al. 2007]: a three-
layer [pzt/Al/pzt] composite with length 70 mm and width 5 mm. The thickness of each piezo layer is
t, =0.191 mm and that of the aluminium layer is 7, = 0.070 mm. The beam is subjected to a uniform
temperature rise above the ambient temperature, and again we take oo = 1. These are the values obtained
for the critical thermal buckling temperature:

present approach 29.7°C

(36)
ANSYS 3D model 28.3°C

No direct comparison is possible with the calculations in [Giannopoulos et al. 2007], since that reference
only contains the thermal buckling analysis of plates. However, we performed a three-dimensional anal-
ysis in ANSYS for the same problem solved by these authors, and it was found that the ANSY'S result
and their result agree very well.

Further examples. We next performed the thermal and electrical buckling analysis for an example
structure taken from [Giannopoulos et al. 2007], using different assumptions for the parameter «. In
the particular cases of plane stress assumptions and plane strain assumptions, the results obtained are
compared with those obtained with ANSYS; however, the more general case (neither plane stress nor
plane strain) has also been studied.

The beam is a three layer [pzt/Al/pzt] composite with length 70 mm and width 5 mm. The thickness
t, of each piezo layer is 0.191 mm and the aluminium layer thickness 7, is 0.070 mm.
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Electrical buckling. An equal voltage was applied to the piezolayers in the corresponding direction as
shown in Figure 6, so that pure compression is developed in the structure due to the kinematic constraints
imposed by the boundary conditions. The results obtained for the buckling voltage with our FE solver
under assumptions of plane stress, plane strain, and free expansion (a« = 1) are shown here along with
those obtained from an ANSYS solution of the thermal analog [Dong and Meng 2006] to our problem:

free expansion  plane stress  plane strain

ANSYS (3D/2D/2D) 98.3V 102.7V 78.4V (37)
present approach 97.5V 102.3V 78.2V

This shows good agreement between the ANSYS results and those from the present analysis; in
particular, our critical buckling voltage calculated using a = 1 (free expansion) matches closely the one
obtained using a three-dimensional analysis in ANSYS.

It is also clear that the calculated critical buckling voltage varies greatly with the constraints assumed.
This dependence was explored further by varying the value of a in the calculation using the present
approach. For o = 1 (free expansion), as we have seen, we obtained 97.5V, then 91.8 V for a = 0.75,
and 86.7V for a = 0.5, 82.2V for a = 0.25, and finally 78.2V, for a = 0 (plane strain assumption). The
decrease in the critical buckling voltage with a can be rationalized by observing that as o is reduced,
compressive stress is increased in the y direction (perpendicular to the plane of the FE model), which in
turn increases the voltage produced in the piezo layer. The developed voltage is such that it causes the
piezo layer to expand in the other two directions (in the plane of the FE model). This expansion causes
additional compressive stress due to the imposed kinematic constrains on the boundary, which in turn
makes the structure buckle at lower voltages.

We extended the computation to a < 0, meaning that external strain is applied in compression (Figure
5, right), and to a > 1, meaning that external strain is applied in tension (Figure 5, left). When o <0
the trend just discussed still holds true: the calculated critical buckling voltage decreases in tandem with
o. Thus for a < 0 we have 74.6V at a = —0.25 and 71.3V at o = —0.5. When a > 1 the critical
buckling voltage increases (103.9V at o = 1.25 and 111.3V at o = 1.5); this is because the expansion
in the y direction produces voltage in such a way that the piezo layer contracts in the xz plane. Due to
the kinematic constraints imposed by the boundary condition, this produces tensile stress opposed to the
compressive stress produced by electrical actuation, resulting in an increase in the buckling voltage.

Thermal buckling. The analysis carried out in the preceding paragraphs was repeated for thermal buck-
ling. Here the setup as the same as in Figure 6, but there is no applied voltage. Instead, the beam
is subjected to a uniform temperature rise above the ambient temperature. The buckling temperatures
obtained in the calculations under various assumptions are as follows:

free expansion plane stress  plane strain

ANSYS (3D/2D/2D) 28.30°C 29.62°C 22.56°C (38)
present approach 29.66 °C 29.66°C 22.44°C

Again we see good agreement between the ANSYS calculations and those based on the present approach.
Further, the calculations yield the same critical buckling temperature using the plane stress assumption
or using a = 1 (free expansion). This is because the thermal expansion mechanism is given by the initial



1638 R. JEROME AND N. GANESAN

strain vector {So}, which is not reduced under the plane stress assumption. More precisely, when the

three-dimensional stress-strain relation (1) is reduced to a two-dimensional stress-strain relation based

on the plane stress assumption (7, = Ty = T =0, Dy = E5 =0), the initial strain vector {Sp} is unchanged.
Here are the results given by the present approach for various values of a:

a=-0.5 19.9529°C a=0.25 23.9296°C a=1 29.6673°C
a=-025 21.1288°C a=0.75 27.4970°C a=15 35.1063°C
a=0 22.4481°C a=05 25.6004°C a=125 32.1751°C

We see that the critical buckling temperature increases with a. This is because, as o decreases, the
compressive stress in the direction perpendicular to the FE model increases, which makes the material
expand in the other two directions due to the Poisson effect. This expansion causes additional compres-
sive stress in the beam due to the kinematic constraints imposed by the boundary condition, reducing the
critical buckling temperature. The influence of a on the critical buckling temperature is similar to that
of the influence in critical buckling voltage as discussed earlier.

Combined thermal and electrical buckling. In the combined thermal and electrical buckling analysis,
the critical electrical buckling voltage was predicted for different uniform temperature increases in the
beam. All analyses carried out for electrical and thermal buckling were also repeated for combined
thermal and electrical buckling. The results obtained under different assumptions are presented in Figure
7 (comparison with ANSYS calculation performed on the thermal analog [Dong and Meng 2006]) and
in Figure 8 (dependence on a). The results are similar to those just discussed.

—=— ANSYS 3D

—=— ANSYS Plane Stress
—=— ANSYS Plane Strain H
—+— Present o =1

—+— Present Plane Stress
—+— Present Plane Strain

304

)
=
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Temperature [':C]
o

=
o
T

D | 1 | | | | |
0 110 20 30 40 50 60 70 80

Voltage (V)

Figure 7. Values of critical buckling voltage obtained with the present approach and
with ANSYS [Varelis and Saravanos 2004].
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Figure 8. Influence of a on the combined thermal and electrical buckling analysis.

4. Conclusion

A generalized plane strain FE formulation was developed to predict the critical buckling voltage and
critical buckling temperature of a piezo composite beam for cases other than those characterized by
plane strain and plane stress assumptions. The two-dimensional FE formulation presented in this paper
is capable of describing the strain &° allowed/applied in the direction which is not included in the two-
dimensional FE model, (here the y direction) if the strain £° is specified in terms of the free expansion
strain ggy. An eight-node quadrilateral element was developed based on the new formulation, and the
FE solver results were validated by comparison to the results in [Varelis and Saravanos 2004] and those
obtained with ANSYS. These results are in good agreement with each other. The critical electrical
and thermal buckling load for the cases other than those characterized by plane stress and plane strain,
which can be handled by the present two-dimensional FE solver, was analyzed, and it was found that the
influence of a on the critical buckling voltage as well as the critical buckling temperature is significant.
Since the present formulation varies only in the constitutive equation matrix reduction, this formulation
can be easily incorporated into the existing piezostructure coupled FE solvers.
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THREE-DIMENSIONAL NONLINEAR ANALYSES OF SCARF REPAIR IN
COMPOSITE LAMINATES AND SANDWICH PANELS

MANABENDRA DAS, ERDOGAN MADENCI AND DAMODAR R. AMBUR

A special-purpose analysis tool based on the finite element method is presented for parametric design
studies of composite laminates and sandwich panels with scarf repairs. This design tool provides the
complete three-dimensional stress and strain fields in scarf-repaired panels without any requirements on
the nature of the lamination and the type of loading. The adherends are modeled using a plate element
based on a higher-order single-layer theory, and the adhesive is modeled using a solid element. The
higher-order nature of the plate theory makes it suitable for analyzing thick laminates and sandwich pan-
els comprised of numerous plies. The model takes into account geometric nonlinearity in the adherends
and assumes a bilinear stress-strain relationship for the adhesive. The responses of composite laminates
with single- and double-sided repairs and sandwich panels with both full and partial repairs of the top
face sheets are investigated.

1. Introduction

Bonded joints and repairs, in a variety of forms such as lap, step, and scarf, have become the most
common types of repairs for composite laminated and sandwich panels. The objective of a scarf repair
is to restore the static strength and durability of a composite structure that contains damage due to
unexpected impact loading on the structure, crack occurrence within the structure after longtime use,
and environmental reasons. Panels with scarf joints do not experience excessive secondary bending and
the magnitude of transverse shear and peel stress concentration is not as severe as in lap and step joints.
In fact in the case of homogeneous adherends, the stress variation inside the adhesive remains fairly
uniform. In the case of panels made of composite laminates, however, a nonuniform stress variation
inside the adhesive has been observed [Johnson 1989]. Therefore, a detailed analysis of composite
laminates for the accurate prediction of the stress and strain fields becomes critical for failure analysis.
Moreover, geometric nonlinearity due to adherend bending and material nonlinearity of the adhesive
should be taken into account for realistic predictions. With the increasing use of sandwich panels in
aircraft structures, the development of repair methods and analysis tools to investigate the responses of
these panels with scarf repair has become very important [Tomblin et al. 2004].

Analytical and numerical methods have been used in the past to examine scarf joints [Hart-Smith
1973; Erdogan and Ratwani 1971]. These methods are two dimensional in nature and the scarf repair
is analyzed based on a representative scarf joint. In a scarf joint, the entire load is transferred through
the adhesive bond, as opposed to both the undamaged base material and the repair sharing the load in
the case of a scarf repair. The two dimensional scarf joint model over-predicts the stresses inside the
adhesive and therefore underestimates the strength of the repaired panel [Soutis and Hu 1997]. Moreover,

Keywords: scarf repair, laminate, sandwich panels, nonlinear analyses.
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the adherends are assumed to be homogeneous, and arbitrary boundary conditions and loading cannot
be imposed. More recently, Mortensen and Thomsen [1997] employed the classical plate theory to
model the adherends and a nonlinear material model for the adhesive. The analysis permits adherend
bending as well as arbitrary load and boundary conditions. Finite element analysis can be employed to
overcome the limitations of the analytical methods. While comparing different finite element models
for scarf repair analysis, Odi and Friend [2002] noticed that although a considerable amount of work
had been done on bonded joints, the number of numerical analysis methods devoted to bonded repair
was inadequate. Johnson [1989] carried out a finite element analysis of scarf joints to investigate the
nonuniform stress variation in nonhomogeneous laminated composites. It was observed that due to
discontinuity in adherend stiffness, the stress variation had an oscillating trend with peaks in the vicinity
of the 0° plies. Similar characteristics were observed by Harman and Wang [2006], who carried out
both analytical and finite element analyses to investigate the influence of a varying scarf angle on the
shear stress distribution. Gunnion and Herszberg [2006] conducted two- and three-dimensional finite
element analyses and investigated the influence of various parameters on the average and peak values
of shear and peel stress. Their work was later extended to accommodate the elastic-plastic nature of
the adhesive [Wang and Gunnion 2008]. Baker et al. [1999] carried out a combined experimental and
computational analysis where a detailed three-dimensional finite element model was created and the
tapered scarf was modeled as a series of steps. In several studies finite element models have been used to
investigate the effect of scarf angle and stacking sequence on the failure load of panels with scarf repair
[Du et al. 2004; Kumar et al. 2006; Campilho et al. 2007]. Very often, instead of discretizing each layer
of the laminate, average material properties are utilized to represent a specific stacking sequence [Soutis
and Hu 1997; Kumar et al. 2006]. This approach reduces the size of the model considerably but the
oscillating variation of the stress field inside the adhesive layer is not captured. Although detailed three-
dimensional finite element analyses of scarf joints using solid elements can be used to provide accurate
results, these models tend to be computationally expensive due to the presence of the thin adhesive layer
and the numerous layers of plies in the laminate or the face sheet of a sandwich panel. Mesh refinement
can be significant, especially in the case of nonlinear analysis where a fine mesh might be required for
convergence. Moreover, difficulties associated with parameterizing the meshing process requires extra
effort in creating a new mesh every time a panel with a different number of plies, adhesive thicknesses,
or panel dimensions is to be analyzed.

An alternative to this approach is to use an element based on a single-layer theory, which utilizes a
modest number of degrees of freedom for the entire FE model and provides accurate results. The current
analysis utilizes one such plate element [Das et al. 2005; Das et al. 2006] for the adherents and a separate
solid element for the adhesive layer in between the adherents. The tapered scarf is modeled as a stepped
joint with numerous steps in order to replicate the taper as closely as possible. The analysis incorporates
geometric and material nonlinearity in the adherent and adhesive elements, respectively. A bilinear stress
strain relationship is used for the material model and geometric nonlinearity is incorporated based on
the total Lagrangian formulation. The model accounts for finite boundaries, the presence of a cutout or
grind-out in the skin, general loading conditions, material anisotropy, different thicknesses of the repair
patch and skin, and different repair and parent materials. The material properties are input for each ply
without any limitation on refinement in the thickness direction. While it is computationally robust and
fast, it leads to accurate stress predictions in each specific ply and the adhesive layer.
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Figure 1. Top view of a panel with scarf repair under arbitrary loading conditions.

2. Problem definition

This study concerns the analysis of scarf repairs of composite laminates and sandwich panels. The top
view of a composite laminate, or sandwich panel, with a scarf repair is illustrated in Figure 1. The panels
have a rectangular geometry with length L, and width L,. As shown in Figure 1, the panel is subjected
to forces, moments, and prescribed displacements at the edges. The composite laminate is made of
several plies with orthotropic material properties. The laminate can have either a single-sided repair or a
double-sided repair, as shown in Figures 2a and 2b. The sandwich panel can have either the full top face
sheet or only a portion of it under the repair as shown in Figures 2c and 2d. The face sheets, as well as
the core, can be composed of homogeneous, elastic, and orthotropic material layers. The problem posed
herein concerns the determination of the complete three-dimensional stress and strain fields in the base
and repair adherend and in the thin adhesive layer.

3. Present approach

The tapered scarf is modeled as a series of steps and each step consists of the adhesive layer in between
the repair and base adherend. Plate elements, based on the {3,2}-order theory, and solid elements are
utilized to model each step along the scarf repair. As shown in Figure 3, the base and repair adherends are
represented through separate plate elements, through the thickness. The adhesive layer on the other hand
is modeled using a solid element. Since all the plate elements are required to have a constant thickness,
a fictitious material with a very low stiffness value is used in the region where the adherent does not
occupy any space, as shown in Figure 3. A similar approach was adopted by Bair et al. [1991] for their
FE model based on shell elements.

Since the nodes of the plate elements are placed along the mid-surface, they are not aligned with the
nodes of the adhesive element. Hence, the nodes of the adhesive elements are offset to the mid-surface of
the adherend elements so that they coincide with the nodes of the adherend element [Carpenter 1973]. The
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Figure 2. Side view of a composite panel with (a) single- and (b) double-sided repairs
and a sandwich panel with (c) full repair of the top face sheet and (d) partial repair of
the top face sheet.

details of the element formulation for the plate and solid elements are given in subsequent sections. The
stiffness matrix and the unknown displacement vector of the super element, comprised of the adhesive
and adherends, have the following forms

Kl +K;, K
_ b bb br T _ T ., T
Kscarr = [ KS KPP+ KS ) USCARF = {"b v, }’ ey
rb r rr178%x78
REPAIR
ADHESIVE i :
BASE D
/ — 1 //’r“’i/
o = + + 4‘,;’_' ______ i___‘___._._'.‘_x
Fictitious /}\\
Material \//7 // \‘\\\
. P
SUPERELEMENT BASE ADHESIVE REPAIR
PlateElement SolidElement PlateElement

Figure 3. The scarf super element comprised of the two adherend plate elements with
the solid adhesive element in between them.
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Figure 4. A triangular plate element with three nodes having 13 degrees of freedom at
each node.

where K f and K” are the stiffness matrix of the base and repair adherend plate elements, respectively,
and K corresponds to the stiffness matrix of the adhesive element. The displacement vector consists of
the nodal unknowns, v; and v,, that correspond to the base and repair plate elements, respectively. The
region outside the repair zone is modeled using a single layer of plate elements.

4. Plate element

The plate element for the adherends is based on the {3,2}-order single-layer theory [Cook and Tessler
1998; Barut et al. 2001]. The triangular element contains 13 degrees of freedom at each node, as
shown in Figure 4. These degrees of freedom consist of two in-plane displacements, (u#, v), two out-
of-plane rotations, (6, 6/y), and three transverse nodal displacements, (w, w1, wy), and their derivatives,
(wx, Wy, W1, W1y, W2,x, W2,y). The weighted-average in-plane displacement components in the x-
and y-directions are denoted by u and v, respectively. The weighted-average transverse displacement
is denoted by w. The weighted-average bending rotations about the negative x- and positive y-axes are
denoted by 60, and 6y, respectively. Their positive sign convention is shown in Figure 4. The transverse
displacements, not weighted-averaged, (w, w;), represent the symmetric and antisymmetric expansion
modes through the thickness of the element.
As shown by Barut et al. [2001], the displacement components of the plate are defined as

1 2
ux(x, Y, Z) = M(X, Y)+h60y(xa y)+ (_ - %)hwl,x(xa y)

AR ° (2a)

+h(§_?)[Z(e)’(xny)+w,)€(xvy))+w2,x(xay)]9

1 2
uy(x,y,Z)=v(x,y)+hc“9x(x,y)+(6—T)hwl,y(x,y)

3 (2b)

h(e—< é(0(x )+ wy(x, y)) +way(x, y)

+ 5 3 4 x\X, Yy Y >y 2,y > Y) |
uz(x: Y, Z) = U)(X, }’)+w1(X, y)C+U)2(X, y)({z_ 1/5), (20)

where ¢ = z/h is the normalized thickness and varies in the range —1 < ¢ < 1. In accordance with the
{3,2} plate theory, the in-plane displacement components vary cubically and the transverse displacement
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component varies quadratically across the thickness of the panel. At any point in the panel, the in-
plane displacement components in the x- and y-directions are represented by u, (x, y, z) and u,(x, y, z),
respectively, and the transverse displacement component by u,(x, y, z).

The definitions of the stress and moment resultants and the form of the resultant strain and curvatures
are provided in [Barut et al. 2001]. The resultant stresses and moments are expressed in terms of the
strain and curvature components as

N A B0 €
My=|BT" D 0|k}, 3)

0 0 0G| |y

where

N = {Nxx0, Nyy0, Nzz0, Nxyo, Nxxts Nyy1, Niyi }, (4a)
M" = {Mz0, Myyo, Mz20, Myo, M1, Myy1, May1 }, (4b)
Q" ={0y:0, Qx:0}, (4c)
€ = {£2x0, €390, €2205 Vxy0» Exxls Eyyls Yyl }s (4d)
K" = {Kx0, Kyy0s K2205 Kxy0» Kxxls Kyyls Kayl J (de)
y" = {ry:0, 7220} (4)

The explicit forms of A, B, D, and G are given in [Barut et al. 2001]. This constitutive relation can also
be expressed in terms of the compliance matrix C in the form E = CS, where E" = {e” «7 y7} and
ST = {N T mT QT}. The governing equations concerning the equilibrium equations and continuity of
interelement displacements along the element edges are derived utilizing the principle of virtual work.
The resulting equations of equilibrium and boundary conditions are derived in [Barut et al. 2001]. The
kinematic continuity conditions are imposed not only on the weighted-average displacements and slopes,
(u,v,w, 8, 0)), but also on the derivatives of the higher-order displacement modes, (w1, w>), in the
transverse direction. Therefore, the finite element implementation of the equilibrium equations requires
at least C! interelement continuity for the out-of-plane displacement modes of w, w1, and w,. Because
of this requirement, the finite element implementation of the total potential energy functional in terms
of the assumed displacement field becomes rather difficult. The hybrid energy functional formulation
overcomes the difficulty of the C! interelement continuity requirement because the displacements, as
well as the slopes, are independently assumed only along element boundaries, which can be rendered
identical along the common boundaries of adjacent elements. However, the kinematic compatibility
between the displacements and slopes along the element boundaries is preserved in order to avoid a
possible shear-locking phenomenon. Also, as part of the hybrid energy functional formulation, the stress
and moment resultants within the element are selected such that they satisfy the equilibrium equations.
The hybrid energy functional for an element, [1y, is defined as

1
My :—/ STCSa’A—/ T!u,dr, 6))
2 Ja, r,
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in which the element boundary is denoted by I', and its area by A.. The vectors T, and u; include the
components of the boundary forces and boundary displacements, respectively. In accordance with the hy-
brid energy formulation, the resultant stress vector, S, must satisfy the equilibrium equations identically.
The derivation of the resultant stress vector, S, satisfying the equilibrium equations is presented in [Das
et al. 2005]. Also, the boundary displacement vector, u,gk), containing the assumed boundary displace-
ment components, and the boundary stress vector, T(k), containing the resultant stresses and moments
corresponding to the boundary displacement vector u[(’k), are given in [Das et al. 2005]. Substituting for
the stress vector, the boundary displacement and boundary stress vectors in the hybrid energy functional
result in

My =3b"Hb+A"cb+ R, b— R v—b" Gv+1I,, (6)
where

H:/ PTCPdA, G =
2

Ky >
kT

3 @)
1

R,,:/ S§CPdA,  R,=> / STBOBPL®ar, HO:E/ StcCsyda,
A, =1 /Tw A,

in which the explicit definition of each of the matrices and vectors is given in [Das et al. 2005]. In matrix
form, the hybrid energy functional, I1y, can be rewritten as

AT A A AT~ AT A~
My =15 Hb+R,b—RTv+b Gv-+II,, )
where

AT ~ [H T o7 ~ [G
b ={p", 1"}, H:[C 0}, R, ={R].0"}, Gz[o].

In accordance with the concept of energy minimization, the first variation of the hybrid energy functional
with respect to the unknown vector b of generalized coordinates yields

55T(ﬁ$+kb—év)=0 or i:IA{_l(Gv—IA{b). )
With this explicit solution form, the hybrid energy functional becomes
My =—3v"kpv+ fiv+To, (10)
in which the linear stiffness matrix k; and the resultant force (load) vector f, are defined as
k=G H 'G and fIT=R,H 'G-R,. (11)

Finally, the element equilibrium equation is obtained by requiring the first variation of the hybrid
energy functional to vanish

oMy =ovl (kpv— fy) =0. (12)

For arbitrary variation of Jdv, the element equilibrium equations become

kv = fo. (13)
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The nonlinear analysis is based on the total Lagrangian formulation. The principle of virtual work in
the total Lagrangian formulation is given by

t+At (k) (k) 10y, __ st+Atgn
AZO SOGEW @y = 5!, (14)
k

In this expression, the left subscript indicates the configuration by which the quantity is measured and the
left superscript refers to the configuration of the body at a specific time. The right superscript refers to
the kth component of the Piola-Kirchoff stress, S, and Green strain, E, resultant vector. The right-hand
side of Equation (14) represents the virtual work done by the conservative external forces on the virtual
displacements. The Piola-Kirchoff stress are decomposed between times ¢ and ¢ + At as

rrargl) — 1 g 4o g®), (15)

The incremental Piola-Kirchoff stress vector, S*), represents the incremental loading between 7 + At
and 7, and (S *) represents the known component from time 7. The Green strain at any state r + Af can
be written in terms of linear and nonlinear components as

At o (k At g (k At 70
(FAEW =GN ED 45 B, (16)
This expression can be written in terms of the unknown displacement as
T
srarp® — g (tv+v)+%(’v+v)TB§\l,‘)L(’v+v), (17)

where Bgc) and BE\],()L are the linear and nonlinear strain-displacement relationship vector and matrix,
respectively, corresponding to the kth strain resultant component. Based on the hybrid formulation, the
linear strain-displacement relationship matrix can be expressed as

B,=CPH 'G. (18)

The matrix B E\I,C)L is obtained based on von Karman assumptions and therefore the current analysis is
applicable only for small rotations. The incremental strain o E*) can be obtained by finding the difference
between the strain at state  + A¢ and ¢

GE® =M p® gt — g7y L iy T %) o 1 1yTRE) 5. (19)
The virtual strain increment can be expressed as
S0E® = B® sv+ 9" BY sv+ " BY) sv. (20)
Based on Equations (15) and (19), the expression for stress can now be written in terms of the unknown
displacements as
. T . .
SO = (5O 4> CHED = (5O 1> ¢! (B(L’) v+ 0" B v+ %vTBﬁﬁv), 21)
J J

where Cj_k1 represents the linear relationship between the resultant stresses and strains. Substituting the
expressions for virtual incremental strain and total stress from Equations (20) and (21) into the virtual
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work expression and neglecting the higher order terms results in

T
([ (ZSsbcsnt + S5 scim sl 5 sty nt”
ko T

+ZB(")LfvcjkfvTB(") +ZOS(")B(k)) )v=fe—ZBS(")B(L")—ZBS(")B%‘)L’I)- (22)
k k

The final nonlinear system of finite element equations can be written as
K'v=F", (23)

where K¥ = k; +k, +k, and °F = f . — fi.- The matrices kg, k,, and k, are the linear, initial
displacement, and geometric stiffness matrices, respectively, and f; and f, are the internal and external
force vectors, respectively. The explicit form of these matrices and vectors is as follows

ky :ﬁv (;;B(L“cﬂjlef)r)dov, (24a)
:%V(;;B(L">c;klvTB("’L+ZB“‘)f vCBY +ZB(k)’ CRl TB(k))dOV, (24b)
k, = / . (Z S(")B(k))do (24c)
fi :%V (ng<k)B(L")+ng<’<>B§§)Lfv)d°V. (24d)

k k

Note that by combining the linear strain-displacement relationship matrix given in Equation (18) with
Equation (24a), the linear stiffness matrix obtained from the hybrid formulation, Equation (11), can be
reproduced.

5. Adhesive element

A solid element with six nodes is used for the adhesive layer. Unlike the plate element, the adhesive
element is based on a displacement formulation and each node has three degrees of freedom. The dis-
placement field varies linearly both in the in-plane and transverse directions. Therefore, the displacement
field inside the adhesive can be expressed as

N 0 N 0 vd
s _ [+ xy bot
N _|: 0 Nﬂ:||: 0 ny:| {vtop}’ )

where u® = {u? uy uS }7 and vgot and vfop consist of the nodal displacements corresponding to the bottom
and top surfaces, respectlvely. As mentioned earlier, the nodes of the solid element do not coincide with
the nodes of the adherend plate element. Therefore, in order to enforce continuity, the nodes of the
adhesive elements are offset to the mid-surface of the adherend elements. The displacements at the
nodes of the solid element are expressed in terms of the nodal displacements of the plate element, as
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Figure 5. Offset nodes of the solid element for the adhesive.

shown in Figure 5, based on the following transformation

s P
Viop 0 T,]||v
where v}f’ and v” are nodal displacements of the base and repair plate element, and T} and T, are
transformation matrices. The transformation matrices are constructed based on the definition of through-
the-thickness variation of the displacement field inside the adherend plate, as given in Equation (2).

Combining Equations (25) and (26), the displacement field inside the adhesive element can now be
expressed in terms of the degrees of freedom associated with the plate elements as

N 0 1[N, 0 [TD o 7[oF
S _ n+ Xy ) b
c=[N w18 e o] )

Using the displacement variation given in Equation (27), the strain field inside the element takes the
form
oP
es:BS{ I;}, 28)

v,

where BY is the strain-displacement transformation matrix. Instead of using a typical shear lag model,
the adhesive layer takes into account the presence of all six components of strain such that

SS:{gxx Eyy €7z Vyz Vxz ny}T- (29)

The stiffness matrix is therefore defined as

S S

T K2 K

KS=/ B* DSBSdV=[ bo {g’] ) (30)
SV Koy Ko ligus

where D? is the stress-strain relationship matrix. The isotropic adhesive material has a bilinear relation

between the effective transverse shear stress, s, and effective transverse shear strain, y.f. The effective

transverse shear stress and strain in the adhesive are defined as

Teft = /T3, + T}, (31a)
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Figure 6. Bilinear relationship between effective stress and strain.

Vet =75 T VA (31b)

As shown in Figure 6, the initial shear modulus of the bilinear adhesive behavior is denoted by G, and
it reduces to G, when the effective transverse shear strain, y.¢, reaches the critical shear strain, y.. For a
given value of effective shear strain, the effective shear stress can be obtained from Figure 6. Thereafter,
the effective shear modulus can be obtained as

and

Geft = Teff/ eff- (32)
Moreover, the effective Young’s modulus can be expressed as
Eefr =2Ges(1 +v). (33)

Note that due to the dependence of the effective modulus on the effective strain, the system of equations
become nonlinear.

6. Results and discussion

The current analysis tool is validated against an analytical solution and the commercial finite element
analysis software ANSYS. Although both two-dimensional and three-dimensional models were created
using ANSYS, only the three-dimensional results are reported here. In the ANSYS model, two layers
of elements were used for each ply in the adherends and the adhesive was divided into three layers of
elements. PLANE 42 and SOLID 45 elements were used for the two-dimensional and three-dimensional
model, respectively. Similar to the approximation made in the current analysis tool, a series of steps were
used to represent the scarf, instead of modeling it as a smooth taper. The adhesive along with each ply
in the laminate was divided into multiple steps and one layer of solid element was used for every step.
The first problem involves the linear analysis of a two-dimensional scarf joint previously considered by
[Erdogan and Ratwani 1971]. The scarf joint is subjected to in-plane stress, and its geometry is shown in
Figure 7. The first adherend is made of aluminum with an elastic modulus E = 1.0 x 107 psi and Poisson’s
ratio v = 0.3. The second adherend is made of boron-epoxy with elastic moduli E, = 3.24 x 107 psi
and E, = 3.5 x 10° psi, shear modulus G = 1.23 x 10° psi, and Poisson’s ratio v, = 0.23. An epoxy



1652 MANABENDRA DAS, ERDOGAN MADENCI AND DAMODAR R. AMBUR

]
o .
<«— / 0.033in 7
l ADHERENT 1 ADHERENT 2

t=0.001in

« 3.0in >

Figure 7. Schematics of the scarf joint.

material with elastic modulus E = 4.45 x 10° psi and shear modulus G = 1.65 x 10° psi is used for the
thin adhesive layer. Since the analytical analysis does not permit the adherends to bend, for this problem,
the bending deformations were suppressed in the finite element analysis as well. The transverse shear
stress variation inside the adhesive layer is shown in Figure 8. Unlike a lap or step joint, the scarf joint
has a fairly uniform variation of shear stress inside the adhesive. The difference in the results from the
analytical and current finite element analysis is due to the presence of stress-free boundary condition at
the edges. The current finite element solution tries to satisfy the stress boundary condition whereas the
analytical results do not capture this feature.

The nonuniform variation of adhesive stress in a composite laminated joint is investigated next. The
two-dimensional joint has a stacking sequence of (45/90/ — 45/0)s, and each ply has a thickness of
0.0072 in. The total length of the panel is 12.32 in, and the scarf ratio is 30.0. The material properties of
the plies in the base and repair adherends are given in Table 1. The 0.01-inch-thick adhesive has linear
material properties with shear modulus G = 6.0 x 10* psi and Poisson’s ratio v = 0.3. The panel is
subjected to an in-plane force of N, = 1000.01bs/in; the stresses in the adhesive are shown in Figure
9. Unlike the homogeneous adherends, the stress distribution in the laminated joints has an oscillating
trend and locations of the peaks are in the vicinity of the 0° degree plies. The transverse shear stress,

1.2

X

E——

T T

o
™

ANALYTICAL
——0—— PRESENT

I
o

Normalized Shear Stress, /0,
o
N

<
[N

NI TRRTIN ST N NN NVENT NN SN RRTAN NN R
0 0.5 1 1.5 2 25 3

x,inches

0

Figure 8. Shear stress variation inside the adhesive layer of a scarf joint.
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Figure 9. Stress variation inside the adhesive layer of a scarf joint.

Oy, 18 the dominant component whereas the magnitude of transverse normal stress, oy, is much smaller
even though the laminate has an unsymmetrical stacking sequence. Since the adhesive element is not
based on a typical shear-lag-type model, the in-plane normal stress, o, can also be computed using the
current analysis; the results are shown in Figure 9.

The next problem involves the three-dimensional scarf repair analysis of a composite laminate with
a single-sided repair. The panel has length and width of 40in and 28 in, respectively. The inner ra-
dius of the scarf repair is 0.251n, and the scarf ratio is 30.0. The laminate has a stacking sequence
of (45/90/—45/0)s,, and each ply has a thickness of 0.0072in. The adhesive thickness and material
properties of the base, repair, and adhesive are the same as the scarf joint discussed earlier. The linear
and geometrically nonlinear responses of the repaired laminate under two loading conditions have been
analyzed. In the first case, a moment of M, = 10.01bs-in/in is applied at the edges of the panel. The

Base Repair Core
E\(psi) 1.85 x 107 1.58 x 107 1.50 x 10?
E;(psi) 1.00 x 10° 8.50 x 10° 7.50 x 10!
E3(psi) 1.00 x 10° 8.50 x 10° 2.00 x 10°
G 12(psi) 5.20 x 10° 4.40 x 10° 1.00 x 10°
G 13(psi) 5.20 x 10° 4.40 x 10° 1.00 x 10°
G23(psi) 3.30 x 10° 2.80 x 10° 4.00 x 10*
V12 0.34 0.34 1.20
V13 0.34 0.34 1.00 x 107>
V23 0.53 0.53 1.00 x 107

Table 1. Material properties for the base, repair, and core
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Figure 10. Shear stress, 7,,, variation obtained from (a) the current analysis and (b)
ANSYS for a composite panel with a single-sided repair under moment loading.

transverse shear stress inside the adhesive along the x-axis is shown in Figure 10a. The deformations
due to the applied loading are not significant enough and therefore there is hardly any difference between
the results from the linear and nonlinear analyses. The variation of the transverse shear stress obtained
from ANSYS is shown in Figure 10b; the results are in good agreement with the current analysis. In
the second case, the laminate is subjected to a moment of M, = 10.01bs-in/in along with an in-plane
force of Ny = 100.01bs/in. Even though the panel does not experience large deformations, there is a
considerable difference between the solutions obtained from the linear and nonlinear analyses, as shown
in Figure 11a. This is due the presence of in-plane forces that introduce the stress stiffening effect, which
is not considered in the linear analysis. The results obtained from ANSYS are shown in Figure 11b; they
match the results obtained form the current analysis.

A composite laminate with a double-sided repair is considered next. The geometry, stacking sequence,
and material properties are same as the previous problem, which involved a laminate with a single-sided
repair. The panel is subjected to an in-plane force of N, = 1000.01bs/in. The stress variations inside the
adhesive along lines that are 0°, 30°, 60°, and 90° from the x-axis are shown in Figures 12a and 12b.
Since both the stacking sequence and the nature of the repair are symmetrical, the variations of shear
stresses 7., and 7y, are shown only inside the adhesive layer between the top repair and the base. A
dominant peak is observed at the inner edge of the repair, which is also the location where two 0° plies
exist. As expected the shear stress, 7,,, is dominant along the direction of loading, that is, the x-axis,
whereas the g, component has significant stress concentration in the 30°-60° region.

A sandwich panel with full repair of the top face sheet is considered next. The panel has length and
width of 40in and 28 in, respectively. The inner radius of the scarf repair is 0.25 inch, and the scarf
ratio is 30.0. The top face sheet has 40 plies with a stacking sequence of (45/90/—45/0)s, and the
bottom face sheet has 8 plies with a stacking sequence of (45/90/—45/0),. Each ply has a thickness of
0.00721in, and the core is 1.0in thick. The material properties of the undamaged top and bottom face
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Figure 11. Shear stress, 7,,, variation obtained from (a) the current analysis and (b)
ANSYS for a composite panel with a single-sided repair under combined moment and
in-plane loading.

sheets correspond to the base material in Table 1. The material properties of the repair and core are
also given in Table 1. The adhesive, which is 0.01 in thick, has a bilinear stress-strain relationship. The
shear moduli of the adhesive are G| = 6.0 x 10* psi and G, = 6.0 x 10? psi, and the Poisson’s ratio is
v = 0.3. The adhesive has a critical shear strain values of y. = 0.04. The edge of the sandwich panel

300

250

200

150

100

50

Transverse Shear Stress - T, , psi

-50

0t

LA L L L L L

R NENNENE IR SVANENES SRS ANEE SR WA W

0

0.5 1 1.5 2 25 3 3.5

Radial Distance r, inches

4 45

Transverse Shear Stress - T, , psi

100

& o
S o <)

LA N A N O B

N
o
=]

-150

o b b b b b b b

0

0.5 1 1.5 2 25 3

Radial Distance r, inches

3.5 4 4.5

Figure 12. Shear stresses, (a) 7,, and (b) 7, inside the adhesive between the top repair
and base of a composite panel with a double-sided repair.
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Figure 13. (a) Shear strain, y,,, and (b) shear stress, 7,,, variations obtained from the
current analysis for a sandwich under prescribed displacement.

is subjected to a displacement of u, = 0.2 in. Under the influence of the prescribed displacement, the
effective strain inside the adhesive exceeds the critical strain, thereby triggering the nonlinear material
response. The transverse shear strain, y,., and stress, g,,, inside the adhesive along the x-axis are shown
in Figure 13. Since the effective strain in certain regions exceeds the critical value of y. = 0.04, the
elastic modulus in those regions gets degraded. This leads to higher strain values in comparison to the
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Figure 14. (a) Shear strain, y,,, and (b) shear stress, 7,,, variations obtained from AN-
SYS for a sandwich under prescribed displacement.
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linear response, reduced stresses in these regions, and an additional load carried by the face sheet in the
undamaged region. As shown in Figure 14, the results from ANSYS show a similar trend.

7. Conclusion

An analysis tool for scarf repair analysis of composite laminates and sandwich panels has been developed.
Apart from analyzing two-dimensional scarf joints, the current tool can be used for three-dimensional
analysis of scarf repair. Composite laminates with single-sided or double-sided repairs and sandwich
panels with complete or partial repairs of the top face sheet can be analyzed. The analysis takes into
account both geometric and material nonlinearity. The loading, material properties, and panel geometry
can be arbitrary. Although computationally efficient, the stress and strain fields can be accurately pre-
dicted. Depending on the type and magnitude of loading, there can be a considerable difference between
the linear and nonlinear solutions.
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CRACK FRONT POSITION AND CRACK BACK POSITION TECHNIQUES FOR
EVALUATING THE T-STRESS AT CRACK TIP USING FUNCTIONS OF A
COMPLEX VARIABLE

Y. Z. CHEN, Z. X. WANG AND X. Y. LIN

In this paper, the crack front position and the crack back position techniques for evaluating the 7-stress
using complex variables are suggested. In the crack front technique, an expression for stress components
in the crack front position is expressed through a complex variable. The limit value of the expression
from the crack front position will give the T-stress. In the crack back technique, the other expression of
stress components in the crack back position is expressed through the complex variable. The limit value
of the expression from the crack back position will give the T-stress. The suggested techniques are used
to evaluate T-stress in the arc crack and the curved crack problems. It is found from a detailed derivation
that both techniques give the same result in the crack problem. Numerical examples are carried out for
two problems: an elliptic crack with a central crack and a curved crack with parabolic configuration.

1. Introduction

The T-stress term at the vicinity of a crack tip was introduced in earlier years [Williams 1957; Rice 1974].
The T-stress term may affect the plastic zone ahead of crack tip [Larsson and Carlsson 1973; Betegon
and Hancock 1991]. In addition, the 7T-stress has significant influence on the directional stability for the
crack growth path [Rice 1974; Melin 2002]. A maximum tensile stress criterion for the onset of crack
growth was suggested, which considers the role of the stress intensity factors and 7T-stress [Smith et al.
2006]. The T-stress before and after crack kinking in two-dimensional elastic solids was studied [Li
and Xu 2007]. Contributions from the T-stress before crack kinking to the T-stress and stress intensity
factors of the kinked crack are clearly described.

A variety of methods were used to evaluate the T-stress. The Eshelby technique was used [Kfouri
1998]. The T-stress evaluation is completed by using the weight function method [Sham 1989; 1991;
Chen 1997]. The boundary collocation method and the weight function were developed to evaluate the
T-stress [Fett 1997; 1998a; 1998b; 2001; Fett and Rizzi 2005].

The finite element method was used to evaluate the 7-stress in crack problems [Ayatollahi et al. 1998;
Chen et al. 2001]. A hybrid finite element at the vicinity of the crack tip was suggested [Tong et al. 1973;
Cheung and Chen 1991; Karihaloo and Xiao 2001; Xiao and Karihaloo 2002; Xiao et al. 2004]. The
formulation of a hybrid finite element depends on the Williams expansion. The element is embedded in
the usual finite elements. Once the problem is solved, the higher-order terms as well as the 7-stress in
the expansion are obtainable. Using the HCE (hybrid crack element), the higher-order terms in the stress
distribution of a three-point bend beam are evaluated [Karihaloo and Xiao 2001]. The problem for an
edge crack in a finite plate with wedge force on the crack face was studied [Xiao and Karihaloo 2002].

Keywords: T-stress, crack, crack front position technique, crack back position technique, arc crack, numerical solution.
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The problem was reduced to a problem of a traction-free edge crack with loading on the outer boundary.
The usage of the Williams expansion and the boundary collocation method gave the final solution.

A stress difference method was developed to evaluate the T-stress in the crack problem [Yang and
Ravi-Chandar 1999]. It was proved that a limit of the difference between two normal stress components
ahead of a crack tip would give the T-stress.

Using the dislocation distribution method and the singular integral equation, several T-stress problems
were solved [Broberg 2005]. Those problems include the problems of: (i) two collinear cracks, (ii) an
edge crack, and (iii) cracks emanating from a circular hole. A Fredholm integral equation was used to
evaluate the 7T-stress in the multiple crack problems [Chen 1994]. The solved problems were limited
to the line crack case. In addition, a compendium of the 7-stress solutions in the crack problems was
carried out [Sherry et al. 1995].

From the methodology for evaluating the T-stress, researchers suggested two techniques for obtaining
the T-stress in the line crack case. In the stress difference method, the 7-stress is obtained from the
stress difference in crack front position [ Yang and Ravi-Chandar 1999]. In the mode I fracture case, the
T-stress evaluation was related to a stress evaluation in the crack back position [Ayatollahi et al. 1998].
The mentioned derivations were related to the real analysis only. It is seen that those methods are not easy
to use in some complicated cases, for example, for evaluating the 7-stress in the curved crack problem.

It is known that in most cases the complex potentials in the plane elasticity crack problem can be
formulated successfully [Savruk 1981; Chen and Lin 2006]. In addition, the stress components can be
expressed by the complex potentials explicitly. Therefore, it is a particular advantage to use a complex
variable for evaluating the SIF (stress intensity factor) as well as the T-stress. In this paper, the crack
front position and crack back position techniques for evaluating 7-stress using the complex variable are
suggested. In the crack front technique, an expression for stress components in the crack front position is
expressed through the complex variable. The limit value of the expression from the crack front position
will give the T-stress. In addition, in the crack back technique, the other expression for stress components
in the crack back position is expressed through the complex variable. The limit value of the expression
from the crack back position will give the T-stress. It is found from a detailed derivation that both
techniques give the same result in the crack problem.

2. Basic equations in the crack front position and the crack back position techniques

In the crack front position technique, the T-stress is evaluated in the front position of the crack. In
addition, in the crack back position technique, the T-stress is evaluated in the back position of the crack.
The two techniques with usage of a complex variable are introduced below.

2.1. The stress expansions in the vicinity of crack tip. The stress distribution near a crack tip under
the traction-free crack face was investigated early on by Williams [1957]. A little modification for the
Williams expansion is suggested below. It is assumed that the crack face has the following loadings
(Figure 1)

+ s — + s =
O-y _O-y _pC5 O-xy_o-xy_qc“ (1)
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From the Williams expansion, the stresses at the crack tip area can be expressed as

[Gx ny}_ K [fn(@) f12(9)]+ Ki1 [811(9) 812(9)]+[T Clc] @)

oxy 0y | 2rr L[1200) f20)]  V2rr [812(0) 822(0) de Pec

where the first two terms in the expansion form are singular at the crack tip, K;, K;; denote the mode
I and mode II stress intensity factors respectively, and the functions f;;(0), g;;(6) represent the angular
distributions of stresses at crack tip. In Equation (2), the third term is finite and bounded. The term 7 is
denoted as the T-stress and can be regarded as the stress acting parallel to the crack flanks. In Equation
(1) the term O (r'/?) has been neglected for clarity. In addition, the angular distribution can be expressed
as [Williams 1957]

/m 1 —sin(8/2) sin(36/2) g1l —sin(#/2)[2 + cos(#/2) cos(30/2)]
f12 | =cos(@/2)| sin(@/2)cos(30/2) |, g2 | =1 cos(@/2)[1—sin(@/2)sin(36/2)] |. (3)
fa 1 + sin(6/2) sin(30/2) g2 sin(6/2) cos(6/2) cos(36/2)

Clearly, substituting 6 = £x into Equation (2) will yield the stresses o, = p. and oy, = q., which are
applied on the crack face.

Note that Equation (2) represents a pattern of stress distribution at the vicinity of crack tip. It is easily
seen that the stress field defined by Figure 1 was solely determined by two factors: (1) the tractions
ay+ =0y, = Pe, 0;; = o,, = q. applied on the crack face, (2) the tractions applied along the outer
boundary CDEFGH in Figure 1. Therefore, the tractions o,” =0, = p, 0;; = 0., = qc applied on the
crack face cannot alone determine the K;, K;; and T values. Alternatively, there is no definite relation
between (i) the tractions o) =0y =pc, o-;; =0, =4c applied on the crack face and (ii) the stress field
and the T-stress at the crack tip. In this study, it is assumed that p. and g, are given beforehand. In this

case, the K, K;; and T values will be determined by the tractions applied on the boundary CDEFGH.

uy
AN /
csyzcs;zpC
I N LY
Gx _ny_ q. .
....... r
H | g-. /{Ve
S el CoX
C S, S,
| ™~

Figure 1. A finite cracked plate with loadings on the crack face.
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Let & =0 and r = s; in Figure 1, from Equations (2), (3), we have

K 12 K 1/2y
Oy = —l— T+0(@,"), oy = —I— -+ 0(s, 4
Therefore, from Equation (4), the following equation is obtained
T = lim (ax oy) + pe or T=-— hm (oy —0x) + P 5)

A]—) s1—>

This equation will be used for the crack front position technique. In fact, this equation was suggested in
[Yang and Ravi-Chandar 1999].

The necessity for introducing Equations (1), (2), and (5) can be seen from an example described in
Section 5. In the example, the T-stress in the curve crack problem is evaluated. In the problem, the stress
field of the original problem must be decomposed into the uniform stress field and the perturbation stress
field. In the perturbation stress field, the crack face is applied by the normal and shear tractions. Clearly,
for investigating the 7-stress in the perturbation field (in Figure 2b), the usage of Equations (1), (2), and
(5) is necessary simply because the normal and shear tractions are applied on the crack face. When some
solutions to the traction-free condition on the crack face are available, we simply let p. =0 and g. =0
in the relevant equations.

Alternatively, let § = = and r = s, in Figure 1, and from Equations (2), (3) we have

2K[]

oF=— +T+0(s), = pe+ 0(s)%). 6
X N (5,"7) = Pc (5,"7) (6)
In addition, let @ = —xz and r = s,, and we have
_ 1/2 1/2
o. = +T+O 5,'7), =pc+ O0(s," 7). 7
o’ o’ o G, O, O,

A

AY

(o} (o}

N(p) T(p)
GNTtp\ A@v

z z+dz

ty B

v
A
v

Same in magnitude and opposite in direction for oy, oNT

(0) (@ (b)
Figure 2. Superposition method: (o) the original field, a curved crack in an infinite plate
S =4 (a) the uniform field, a perfect
plate with remote loading 6° = p;, or 0.° = py, or 6,y = g, the subscript u denoting
the uniform field; (b) the perturbation field, a curved crack with loading on the crack
face, the subscript p denoting the perturbation field.

with the remote loading a)?o =p, 010X =pj,oroxy
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In Equations (6) and (7), a7, a;r (o, ay_) denote the stress component along the upper (lower) side,

respectively (Figure 1). Therefore, from Equations (6) and (7), the following equation is obtained:
T = lim{[(c}f +o)+(c +0)1/2}—p. or T=Ilim{(c) +0,)/2}. (8)
s7—>0 Y Y sp—0

Equation (8) can be used for the general case, which is first suggested by us in this paper.
In the case of a mode I fracture, or K;; = 0, the above-mentioned equations can be reduced to
T = lim {U;'—i—a',"}—pcz lim{oc +o,}—p. or T = lim a;: lim o . )
s7—0 Y s—0 Y so—0 sp—0

This equation will be used in the crack back position technique. In fact, Equation (9) was suggested in
[Ayatollahi et al. 1998].

2.2. T-stress expressions in crack front position and crack back position techniques using a complex
variable. The following analysis depends on the complex variable function method in plane elasticity
[Muskhelishvili 1953]. In this method, the stresses (oy, gy, 0xy), the resultant forces (X, Y), and the
displacements (u, v) are expressed in terms of complex potentials ¢ (z), v (z), ®(z) = ¢'(z), and ¥ (z) =
w'(z) such that

oy + 0y =4Re O(z), (10)
oy —ioy, =2Re ®(z) +20'(z) + ¥ (2), (11)
oy — 0y +2i0yy, =220 (2) + ¥ (2)), (12)

or
oy — 0y —2iayy, =20 (2) + ¥ (2)), (13)
f==Y+iX=¢@)+29'@) + v (), (14)
2G(u+iv) = k¢ (z) —2¢9'(2) — v (2), (15)

where 7z = x 4+ iy denotes a complex variable, G is the shear modulus of elasticity, k = (3 —v)/(1 +v)
is for the plane stress problems, ¥ = 3 — 4v is for the plane strain problems, and v is the Poisson’s ratio.
In the present study, the plane strain condition is assumed thoroughly.

It is assumed that a concrete crack problem, for example, the problem shown by Figure 1 has been
solved. Alternatively, the relevant complex potentials are obtained in advance. Therefore, from Equa-
tions (5) and (12), we have

T = —Re(O'y — Oy +2i0'xy)|z=sl,51ﬁ0 + Pe

_ (16)
= _2 Re(Zq) (Z) + lP(Z))|Z=Sl,51—>0 + pC5
(see Figure 1). This is the formula for evaluating the 7T-stress in the crack front position technique.
In addition, from Equations (8) and (10) we have (Figure 1)
T = lim{[(o," +0,) + (o, +0,)1/2} = pc
SZ—)O (17)

=2 Re((D+ (Z) + (D_(Z))|z:—x2,s2—>0 — Pec-

This is the formula for evaluating the 7-stress in the crack back position technique.
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3. Closed form solution for the 7-stress in an arc crack using the crack front position and crack
back position techniques

A closed form solution for the T-stress in the arc crack by using the crack front position and crack back
position techniques is introduced below. The configuration of the arc crack is shown in Figure 3. The
arc crack has a spanning angle 2o with the remote loading ¢, 6%, 0,. In addition to two complex
potentials @ (z) and ¥(z), the following complex potential Q(z) is introduced:

Q(z):&)(é) —éci)/(%) —Zizly(%) (18)

Here and after, for example, the following definition is used [Muskhelishvili 1953]

-1 1
o(-)=o(3). (19)
Z z
After some manipulation, the stress components in (7, @) coordinates can be expressed as [Muskhelishvili
1953]

o, +0y =4Re D(7), (20)
0, — g — 2o,y = —20(2) +2fz(%) +2z(z - %.)‘P(z). Q1)

0620 there is a solution as follows

For the arc crack problem under the remote loading ¢ °, 0y, 05y

[Muskhelishvili 1953]:

Q) =F@)+FRE, Q@k)=FN"+FR”R), (22)
v oo o
— ..
®
§

ty B

Figure 3. An arc crack.
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where _
o=t (cara+ 24 2). Ro=rt ] (23)
1 T 2X(2) o ! z 2) 2(2) = > T
1 = AT + (T + B0 sin2(00/2) cos2(a /2
Co=~(I' = Ty)sin*(a/2) + + @+ S.lﬂz(a/ ) cos“(a/ ),
? 2(1 + sin*(a:/2))
Ci=—-C,cosa,
D, =2T —C,, o
Dy =-Tcosa,
Dy =Ty,
cX+0o® c® —g®
F=——— h="7+ig 25)
X(2) =+/(z—exp(—ia))(z —exp(ia)) (taking the branch lim X (z)/z = 1). (26)
77— 00

The T-stress at the crack tip A is evaluated by using the crack front position technique. Similar to
Equation (16), the T-stress at the crack tip A can be evaluated by (Figure 3)

Th =—Refo, — 0y — 2i0—r¢9}|z:exp(iﬂ),ﬁ>a,/}—>a + Pe, (27)
where the point z = exp(iff) with f > «a is actually located in front of the crack tip A (Figure 3).
Considering (i) the traction-free crack face, where p. =0, (ii) z —1/z =0 for z = exp(if), and (iii)
substituting Equation (21) into (27), the above-mentioned equation can be reduced to

T, = 2Re(CI>(z) _ Q(l (28)

z ))z:exp(iﬁ),ﬁ>a,ﬁ—>a '
Substituting Equations (22), (23), and (24) into (28) yields

- 11— 3

To =2Re(D, +T'1exp(—2ia)) =0° (— cos2a + (1 —cosa)3+ cosa))
2(3 —cosa)

(1 —cosa)?

(o.¢]
: 2004
+o, (cos o+ 23 —cosa)

) — 26 sin2a, (29)

which was obtained previously by using a different method [Chen 2000].
Since o + 0y (= 0, + 0p) is invariant, similar to Equation (17), the T-stress in the crack back position
technique can be defined as

Ta ={[(o," +0,) + (6, +0,)1/2Hi=exp(ip). p<a, f>a — Pe- (30)

Considering the traction-free crack face, where p. = 0, and substituting Equations (20) and (22) into
(30), the above-mentioned equation can be reduced to

Ta =2Re(QF (1) + O (1)) lr=exp(if). p <a, f—a- (3D
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In the crack back position, or for t = exp(if), where B < a, we have X1 () = —X~(¢), where X (1),
X~ (t) denotes the value of X (z) at z =™, the positive side, and z = ¢, the negative side, respectively.
Considering this point and substituting (22) into (31) yields the same result as shown by Equation (29):

T4 =2Re(D, + Ty exp(—2ia)). (29)

4. Evaluation of the T-stress for an elliptic plate with a central crack and normal loading on the
contour

In the following analysis, we can let (z) = z¢'(z) + v (2), Q(z) = @' (z). From Equations (10)—(15), the
stresses (oy, 0y, 0xy), the resultant forces (X, Y), and the displacements (u, v) are expressed in terms of
the complex potentials ¢(z) and w(z) in the following form:

ox+0, =4Re D(z),

- _ 32

oy — 0y +2i0y, =20(2) —2(z — 2)D'(2) — 2Q(2), G2
f==Y4+iX=¢G)+ -9 k) +wQ), (33)
2G(u+iv) =xd(z) — (2 —2)¢'(2) — 0 (2). (34)

For an elliptic plate with a crack under the condition of symmetric loading (Figure 4), the complex
potentials can be expressed in the form [Chen 1983]:

#(z) = ¢1(2) + h2(2), (35)
o(2) = 01(2) + 02(2), (36)
where
M
$1(D) =01(x) = D X ()27, (37)
k=1
M
$2(2) = —mn(z) = Z bzt (38)
k=1
X(z) =vz%2—a? (taking the branch lim X(2)/z=1). (39)

A4

Figure 4. An elliptic plate with a central crack and normal loading p.
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In Equations (37) and (38), a; and by (k=1, 2, ..., M) are real undetermined coefficients. The complex
potentials shown by Equations (37) and (38) satisfy the traction-free condition [Chen 1983]. Therefore,
only the condition on the elliptic boundary needs to be satisfied for the complex potentials. The eigenex-
pansion variational method is used to evaluate the coefficients a; and by (k =1,2, ..., M) [Chen 1983].
In Equations (37) and (38), we can denote

D(z) = ¢ (2) = Q1(z) = 0 (2), (40)
D1 (z) = 5(2) = —Qa(z) = —w}(2). (41)

Note that, for z = sy, 51 > a and s; — a, we have ®1(z) — Q(z) =0 and ®,(z) — Q(z) = 2D, (2).
If the crack front position method is used, from Equations (5) and (32), and p. = 0, we have

M
T = lim (0 —0y) =4 lim D,y(z) =4 Z br (2k — 1)a* 2. (42)

7=51,81>a,s1—>a 7=51,81>a,s1—~>a
k=1
If the crack back position method is used, from Equations (8) and (32), and p. = 0, we have

T = lim {lof +0,)+ (0, +0,)1/2) = lim 2Re{®dT(2) + D (2)}).  (43)
=852, 85 <a, sr—a =82, 8 <a,sr—a
For z =), 5 <a and s, — a, both @ (z) and @] (z) take pure imaginary values and @3 (z) = ®, (z)
takes a real value. Therefore, from Equations (43), the same result is obtainable

M
T =4 Z b2k — 1)a*—2. (44)
k=1

For the normal loading p (Figure 4), we choose M = 15 in Equations (37) and (38) in the eigenex-
pansion variational method [Chen 1983]. Finally, the computed results for the T-stress is expressed as

T =H(c/b,a/b)p, (45)

which are tabulated in Table 1. From Table 1 we see that, for a circular plate (¢/b = 1) with a central crack,
we have T = —0.0199P for a/b = 0.1, which is a rather small value. However, we have T = —3.8334p
for a/b = 0.9, which is a rather large value. It is also seen from tabulated results that the deviation of
the computed results for the ¢/b = 1 case from previously obtained results [Fett 2001] is rather small.

5. Evaluation for the 7T-stress in a curved crack using the crack front position and crack back
position techniques

The T-stress in the curved crack problem can also be evaluated with the usage of two techniques and the
relevant complex potentials. In addition, one numerical example is presented below.

For evaluating the T-stress at the crack tip, it is suitable to use the superposition method. The original
problem is shown in Figure 20. Without losing generality, it is assumed that the remote loading is
(e}

_ o o .. . .. .
oy" = pa2, 0r0,° = pi, or 0,y =q. The original field can be considered as a superposition of a uniform

field and a perturbation field, which are shown by Figure 2a-b, respectively. The T-stress at the crack
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a/b= 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
c/b=
05 —-0.0529 -0.1701 -0.2713 —-0.3012 —0.2418 —0.0982 0.0904  0.1489 —0.9572
1.0 —-0.0199 -0.0778 —0.1705 —-0.2960 —0.4603 —0.6870 —1.0447 —1.7523 —3.8334
1.0"  —0.0216 —0.0806 —0.1712 —0.2937 —0.4568 —0.6868 —1.0515 —1.7589 —3.8466
1.5 —-0.0114 —-0.0464 -0.1079 —-0.2023 —0.3439 -0.5636 —0.9370 —1.6859 —3.5710
20 —0.0090 -0.0373 -0.0887 —0.1713 —-0.3012 -0.5118 —-0.8803 —1.6178 —3.2109

Table 1. Nondimensional T-stresses H (c¢/b, a/b) for an elliptic plate with a central
crack and the normal loading p on contour (see Figure 4 and Equation (45)). ¥ From an
equation in [Fett 2001].

tip A is denoted by T4, which is composed of two portions and can be expressed as
Th =Taw) + Tap), (46)

where T4,y and T4(,) are derived from the uniform field and the perturbation field, respectively.

The uniform field is defined for an infinite perfect plate with the remote loading o ° = ps, 6,.° = py, or
vy = q (Figure 2a). This stress field is easy to evaluate. The stress components along the prospective site
of the crack are denoted by oy, 07 ), OnT (), Where the subscript (1) denotes the stress components
defined in the uniform field. Clearly, for the right crack tip A, we have the following 7-stress contribution

(Figure 2a):

o

TaAw) = 0T (u), at point 14 = T ) (ta). 47)
In the notation for o7, (t4), the subscript T denotes the stress in the T-direction, () represents the
stress from the uniform field, and 74 denotes the location of a point for finding the 7-stress.
In the following, the perturbation field for the curved crack is studied (Figure 2b). It was proved that
the complex potentials for this field could be expressed as [Savruk 1981; Chen and Lin 2006]

1 g (t)dt 1 / g'(Hdrt
/ ) = @ —— , " — (D/ - , 48
Fo=o@=5 [£0% yo-ee-o [£00 @)
, 1 gndr 1 tg' (t)dt
=¥(iz)=— - =—— 49
Vi@ 2 2r /L t—z 2 Jp (t—2)% 9
where g’(¢) denotes the dislocation distribution along the curved crack and is defined by
dg(t
gt = %, (t € L, L — the curved crack). (50)

In Equation (50), g(¢) is the COD (crack opening displacement) function defined by
2Gi
g(t) = —Tll{(u(t) +ivt)t — (u(@) + iv(t))_}, (t € L, L — the curved crack), (51)
K

where (u(¢) +iv())*((u(t) +iv(t))”) denotes the displacement in the upper side (lower side) of the
curved crack, respectively.
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For the curved crack problem, a singular integral equation was suggested previously [Savruk 1981;
Chen and Lin 2006]:

1 [ g @)dt

- + M(to) = O'N(p)(to) + iO'NT(p)(to)a (t, € L), (52)
T ), t—1,
where
1 1 - _
M(t,) = —/ Ki(t,t,)g (t)dt + —/ Ky (t,1,)g (t)dt, (53)
27 L 27 L
L denotes the curved crack configuration, and
d t—t, 1 1 dt,
Ki(t,1 :—{1_ _}:— Y 54
1( 0) dto nt_[() t_t()—'_t_todto ( )
d (t—1t, 1 t—1, di,
Ky(t,t, :——{_ _}:_ - 55
28 1o) di, \i -1, -1, (G—-1,)%dt, (55)

For the perturbation field, the applied tractions on the crack face must be opposite to those from the
uniform field (Figure 2a-b). Clearly, the right hand term in Equation (52) is defined by

O'N(p)(to) + iO'NT(p)(to) = _(O'N(u) (to) + iO'NT(u) (%)), (to € L). (56)

In addition, the dislocation distribution g’(¢) should satisfy the following single-valued condition of
displacements [Savruk 1981; Chen and Lin 2006],

/ ¢/ (t)dt = 0. (57)
L

Substituting Equations (48) and (49) into (12) yields

Y 1 / gndt 1 [ (t—2)g'(t)dr
)y —Ox — 24lO0yy = — = — — — e e——
% ¢ Oxy T J, t—2 T JL ([ —Z)2

(58)

In the vicinity of the right crack tip A, we can assume the coordinates Ax,y, (Figure 2b). In these
coordinates, we have

(0y—0x—=2i0yy)x = (0y—0x—2i0yy)exp(—2id) = (
dta

L [ gmdt 1 [ (1—=2)g'(1)di\diy
J, )

T -z ), (-2 Jdt 59

with di, /dts = exp(—2i0). It is convenient to introduce the following equality

Re(—l/ 8/(l‘)dt+l/ 8/_(f) fh)zo‘ (60)
T J, t—2 T J t—2

Therefore, from Equations (59) and (60) we have

t_—Z T JL (t_—Z)z

(0y —0y)s = Re{(l/L g (t)dt _1 @)%}

T
—I—Re(—l/ g/(t)dt+l/g:(t)‘_h—). 61)

T J, t—2 T J;, t—2
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Similar to Equation (16), the T-stress in the perturbation field can be defined by

Tap) = —(0y = 0x)slz>14 + Pes (62)

where 74 denotes the complex value for the crack tip A, and z — ¢4 represents a limit from the crack
front position. In this case, we have

Pe=0N@p)(ta) = —oNw) (ta). (63)
Substituting Equations (61) and (63) into (62) yields
Tap) = —0N@w)(1a) —2Re M (t4), (64)

where the integral M (t4) = M (ta)|;,=, has been defined by Equation (53). Finally, from Equations (46),
(47), and (64), we have

Th =Taw +Tap) =07w)(ta) — onw)(ta) —2Re M(z4). (65)

A particular case is introduced below. It is assumed that there is a line crack in an infinite plate. In
this case, from Equations (53), (54), and (55) we find M (¢,) =0 and M(t4) = 0, and Equation (65) can
be reduced to

Ta =o0ru(ta) — onw) (ta). (66)
Therefore, the term —2 Re(M(z4)) in Equation (65) represents the influence caused by curvature to the
T-stress. For a straight-line crack, this term —2 Re(M (¢4)) is generally equal to zero.
On the other hand, the crack back technique is introduced below. From Equations (17) and (48), we
have

_ 2 [ g ()dt
Tat = 2Re(® (1) + 0 1)y — owin(t) =Re(> [

— 4). 67
Lt—1, )zﬁz,, N () (1a) ©7)

In Equation (67), the Plemelj formula is used for obtaining ®*(z,) and ®~ (¢,) [Muskhelishvili 1953].
Substituting Equation (52) into (67), the same result as shown by Equation (64) will be found. It is
seen that the two techniques give the same result.
Similarly, at the left crack tip B we have

Tg = Tpw) + Ta(p) = 07 (18) — o) (18) — 2Re(M (15)). (68)

Once the solution for the function g’(¢) is obtained, the SIFs (stress intensity factors) at the right crack
tip A and the left crack tip B can be evaluated by [Savruk 1981; Chen and Lin 2006]

(K1 —iKy)g =27 tlin;l |t —1alg' (1),
—>1A

(Kl—iKz)BZN/zﬂtlif? |t — 151" (2).
—IB

To obtain the final solution, successive steps for evaluating the T-stresses and SIFs in the numerical
solution are summarized as follows.

(69)

(i) The first step is to obtain the dislocation function g’(7) from the integral equation pair composed of
Equations (52) and (57).
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y="a(x/a)’

| x
2a

A

Figure 5. A parabolic crack.

(ii) The second step is to obtain two values M (t4) = M (t,);,=, and M (tp) = M (t,)l;,=1,, Where M (t,)
was defined by Equation (53).

(iii) The third step is to evaluate the T-stresses and SIFs at the crack tips by using Equations (65), (68),
and (69).

One numerical example is carried out: a parabolic curved crack is defined by (see Figure 5)
y=yalx/a)’. (70)

In computation, the curve length coordinates method is used to solve the singular integral equation [Chen
2004]. The computed T-stresses is expressed as

T=Gi(y)p (foro,”=p case), (71)
T =Ga(y)p (forcaseo;®=0."=p). (72)
The computed results for y = 0.1,0.2, ..., 1.0 are listed in Table 2. It is known that for a line crack
in horizontal position under loading o° = p we have T = —p. In addition, for a line crack in vertical

position under loading 6°° = p we have T = p. The tabulated results for G(y ) (for o7° = p) reflect the
following property. If the tangential angle J at the crack tip is changed gradually, the relevant T-stress is
also changed simultaneously, for example from 7 = —0.9051 p (for § = arctan 0.2) to from 7 = 0.6527p

(for 0 = arctan 2.0).

6. Conclusions

It is known that the T-stress is a particular term for a stress component parallel to the crack face in the
vicinity of the crack tip. However, depending on the position where the stress component is evaluated,
the situations for this particular term are quite different. We assume that the fracture is mode I and
the crack face is traction-free. In this case, the 7-stress is a term embedded in the singular value of

y 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
Gi(y) —0.9051 -0.6674 -0.3793 —0.1062 0.1185 0.2813 0.4276 0.5183 0.5936 0.6527
G.(y) 0.0184  0.0603 0.1015 0.1299  0.1409 0.1326 0.1301 0.1107 0.0946 0.0791

Table 2. Nondimensional T-stresses G1(y) (for o,° = p case) and G (y) (for 6.° =

ayoo = p case) for a parabolic crack (see Figure 5 and Equations (71), (72)).
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the stress component if the stress distribution at the crack front position is considered. However, if the
stress distribution at the crack back position is considered under the condition K;; = 0, the T-stress is a
regular term in the stress component. All of those situations cause people to investigate the crack front
position and crack back position techniques for evaluating the 7-stress. It is known that in the crack front
technique, one needs to evaluate a limit taking the form of lim,_,o(o, — o,). However, in this case, this
limit generally takes the type oo — co. This is an inconvenient point in computation.

In this study, all derivations including the T-stress are related to complex potentials. In this case, one
can use the two techniques to evaluate T-stress in more complicated crack problems, for example, in the
curved crack problem. In addition, the obtained 7-stress expression, or the equation shown by Equation
(65) for the curved crack, are a regular integral plus some terms.
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SPATIAL EVOLUTION OF HARMONIC VIBRATIONS IN LINEAR ELASTICITY

STAN CHIRITA AND MICHELE CIARLETTA

In the present paper we consider a prismatic cylinder occupied by an anisotropic homogeneous compress-
ible linear elastic material that is subject to zero body force and zero displacement on the lateral bound-
ary. The elasticity tensor is strongly elliptic and the motion is induced by a harmonic time—dependent
displacement specified pointwise over the base. We establish some spatial estimates for appropriate
cross—sectional measures associated with the harmonic vibrations that describe how the corresponding
amplitude evolves with respect to the axial distance at the excited base. The results are established for
finite as well as for semi-infinite cylinders (where alternatives results of Phragmén-Lindelof type are
obtained) and the exciting frequencies can take appropriate low and high values. In fact, for the low
frequency range the established spatial estimates are of exponential type, while for the high frequency
range the spatial estimates are of a certain algebraic type.

1. Introduction

In the construction of buildings, bridges, aircraft, nuclear reactors and automobiles, the engineer must
determine the depth to which local stresses, such as those produced by fasteners and at joints, or vibrations
can penetrate girders, [-beams, braces and other similar structural elements. The determination of the
extent of local or edge effects in structural systems allows the engineer to have a clear distinction between
the global structure (where strength of materials approximations can be used) and the local excited por-
tions which require a separate and more elaborate analysis based on some exact theories as that of linear
elasticity. The standard procedure used in engineering practice to determine the extent of local stresses
or edge effects is based on some form of the celebrated Saint Venant principle. A comprehensive surveys
of contemporary research concerning Saint Venant principle can be found in [Horgan and Knowles 1983;
Horgan 1989; 1996].

As regards elastic vibrations, it was observed in these papers that high frequency effects might be
expected to propagate with little spatial attenuation (see also [Boley 1955; 1960]). It is outlined in
[Horgan and Knowles 1983] that one would not expect to find unqualified decay estimates of the kind
concerning Saint—Venant’s principle in problems involving elastic wave propagation, even if the end
loads are self-equilibrated at each instant. In this connection, Flavin and Knops [1987] have carried out
an analysis of spatial decay for certain damped acoustic and elastodynamic problems in the low frequency
range which substantiates the early work of Boley. These results are extended to linear anisotropic

Keywords: spatial behavior, harmonic vibrations, linear elasticity, strongly elliptic elasticity tensor.
Chiritd’s work was supported by Romanian Ministry of Education and Research, CNCSIS Grant code ID-401, Contract no.
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materials in [Flavin et al. 1990]. It should be noted that all of the investigations mentioned in the foregoing
were concerned with elastic materials having a positive definite elasticity tensor.

In the present paper we address the question of spatial behavior of the harmonic vibrations in an
anisotropic elastic cylinder under the condition of strong ellipticity for the elasticity tensor. In this
respect, for vibrations in the low frequency range, our expected results describe exponential spatial
estimates similar with those previously established by Flavin et al. [1987; 1990]. Moreover, for harmonic
vibrations with appropriate high frequencies, the present results predict some algebraic spatial estimates,
confirming the foregoing observations made by Boley in related context.

We consider a prismatic cylinder occupied by an anisotropic linear elastic material and subjected to
zero body force and zero lateral boundary data and zero initial conditions. The motion is induced by a
harmonic time—dependent displacement specified pointwise over the base and the other end is subjected
to zero displacement (when a cylinder of finite extent is considered, to say). The elasticity tensor is
assumed to be strongly elliptic and so a very large class of anisotropic elastic materials is considered,
including those new materials with extreme and unusual physical properties like negative Poisson’s ratio
(that is, so called auxetic materials).

The primary purpose of the present paper is to examine how the amplitude of the harmonic vibration
evolves with respect to the axial variable. To this end we associate with the amplitude of the harmonic
vibration in concern, an appropriate cross—sectional integral function and further we prove that the strong
ellipticity conditions assure that it is an acceptable measure. This is possible thanks to some appropriate
auxiliary identities relating the amplitude of the harmonic vibrations. For these measures we are able to
establish some differential inequalities whose integration allows us to obtain spatial estimates describing
the spatial behavior of the amplitude in concern. In fact, when an identity of conservation energy type
is used then certain exponential spatial estimates are obtained for all frequencies lower than a critical
value. When a Rellich identity is involved then certain type of algebraic spatial estimates are established
for appropriate high frequencies. All results are illustrated for transversely isotropic materials as well as
for the rhombic systems.

2. Formulation of the problem

Consider a prismatic cylinder B C R? whose bounded uniform cross—section D C R? has piecewise con-
tinuously differentiable boundary o D. The origin of a rectangular Cartesian coordinate system is located
in the cylinder’s base and the positive x3—axis is directed along that of the cylinder. It is convenient to
introduce the further abbreviation

B, ={xeB:z> x3} 2.1

and, moreover, we employ D(x3) to indicate that relevant quantities are to be evaluated over the cross—
section whose distance from the origin is x3.

The cylinder is occupied by an anisotropic compressible elastic material and is subject to a deformation
in which the displacement field u (x, ¢) is a smooth function satisfying the requirements of the classical
dynamical theory of elasticity [Gurtin 1972]. The corresponding stress tensor S (x, t) has Cartesian
components given by

Srs = Crsmn€mn» (2.2)
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where
Emn = % (um,n + un,m) (23)

are the components of the strain tensor. Moreover, the constant elasticities Cy,,, possess the symmetries
Crsmn = Cmnrs = Csrmn, (24

and satisfy the strong ellipticity condition
Cysiimymygngn; > 0 for all nonzero vectors (my, my, m3), (n1,na,n3). 2.5

The cylinder is set in motion subject to a pointwise prescribed base harmonic time—dependent dis-
placement, zero body—force and zero displacement on the lateral surface and the other end (when a finite
cylinder is considered). Furthermore, the prescribed displacement is such that a classical solution exists
on the interval [0, co0). Consequently, the problem to be considered is specified by

(Crskiug,1),r = piis, (x,1) € B x [0, 00), (2.6)

uy (x,0) =u’(x), @, (x,00=u’(x), xeB, 2.7)
uy (x,1) =0, (x,1) € 0D x [0, L] x [0, 00), (2.8)

ur (2, 1) = fr (x1,x2) €, (x,1) € D(0) x [0, 00), (2.9)
ur (x,0)=0, (x,1) € D(L) x [0, 00), (2.10)

in the case where L is finite (say). In the limiting case L — oo a condition of the type (2.10) is unnecessary.
In the above relations we have used a superposed dot for denoting differentiation with respect to time and
a subscript comma indicates partial differentiation. Moreover, p is the constant positive mass density, @
is a positive constant (frequency of vibration), u?(x), L't? (x) and f; (x1, xp) are prescribed differentiable
functions compatible with the initial and lateral boundary conditions and i = +/—1 is the complex unit.
We are interested in the study of the spatial behavior of the solution u, of the above initial boundary
value problem (2.6)—(2.10).
To this end we use the decomposition

ur = Uy (x, 1) + 0, (x) ', (2.11)

where U, (transient solution) satisfies the above initial boundary value problem with null boundary con-
ditions and appropriate initial conditions, while v, satisfies the boundary value problem

(Crsuivr) , + po*o, =0, x€B, (2.12)
v, (x) =0, x€aD x[0,L], (2.13)
o (¥) = f (x1,%2), x€D(0), (2.14)
v, (x)=0, xeD(L), (2.15)

in the case where L is finite.
We note that the spatial behavior of the transient solution U, can be described by the methods de-
veloped in [Chiritd and Ciarletta 1999; Tibullo and Vaccaro 2008]. The exponential spatial decay of
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the amplitude v, of the forced oscillation has been established in [Flavin and Knops 1987; Flavin et al.
1990; Knops 1991] for isotropic and anisotropic elastic materials with a positive definite elasticity tensor,
provided the exciting frequency is less than a certain critical value. Considering an appropriate region
filled with an isotropic elastic material an algebraical spatial decay of the amplitude of vibration has been
established in [Chiritd and Quintanilla 1996] under the assumption that the elasticity tensor is positive
definite and without any restriction upon the frequency of vibration.

The main purpose of this paper consists of studying how the amplitude of harmonic vibration evolves
with respect to the axial distance at the excited base, provided the strong ellipticity condition is assumed
for the elasticity tensor. Under such hypotheses we will establish some appropriate algebraic and expo-
nential spatial estimates describing the spatial decay of the amplitude of harmonic vibration. In fact, for
all frequencies lower than a certain critical value we are able to establish exponential estimates describing
how the amplitude evolves with the distance to the excited end. While, for all frequencies greater than
an appropriate critical value, we can establish spatial estimates describing a specific algebraical behavior
of the amplitude. Moreover, some alternatives of Phragmén—Lindeldf type are established for the semi-
infinite cylinder.

Since the coefficients in the differential system (2.12) are real numbers, we can assume that v, are real
functions. Otherwise, we can proceed with the same method for the real part as well as for the imaginary
part of v,. So in what follows we shall consider the solution v, to be real functions.

3. Some auxiliary identities

Before proceeding to derive a priori estimates for a solution to equations (2.12)—(2.15), we need some
auxiliary identities concerning the equations (2.12), with the lateral boundary condition (2.13). Some of
these are achieved via some Rellich-like identities (used for example in [Chiritd et al. 2006; Chiritd and
Ciarletta 2008]).

Theorem 1. Let v, be a solution of the boundary value problem defined by relations (2.12) and (2.13).
Then

d
/ (Crsmnvr,svm,n - pwzvsvs) da = d_ C3smnvm,nvs da. (3.1)
D(x3) X3 JD(x3)
Proof. We form the identity
| o (Coomma) , + p?.) da=0. (3:2)
D(x3) ’
Now integrate by parts in succession and use the boundary condition (2.13) to find (3.1). (]

Theorem 2. Let v, be a solution of the boundary value problem defined by (2.12) and (2.13). Then

1
_/ (Crsmnvr,svm,n - 3p6020s0s) da
2 ()
d
=—-5_ (xpc3smnvs,pvm,n + %X3 (Cr3m31)r,30m,3 - Cram/fvr,avm,ﬁ +p6020s0s)) da
dx3 J p(xs)

ov, 0V

1 r m
— =x,n,C NN —ds, (3.3
/(; (x3)2 plpCramptlollp P 2 ( )
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where n, are the components of the outward unit normal vector to 0 D and 0/0n represents the normal
derivative.

Proof. We start with the identity

/D( )xpvs,p ((Crsklvk,l),r +pw20s> da=0 34
x3

which can be written as

1 1 2
/ (Crsmnvr,svm,n +xp (Ecrsmnvr,svm,n) » —Xp (§P60 UsUs) p) da
D(x3) ' ’

:/ (xpcrsmnvm,nvs,p) r da; (3.5)
D(x3) '

moreover,
1
2
P (Crxmnvr,svm,n —3pw Usvs) da = — (xpvr,pcrsmnvm,n) s da
2 Jp(ws) D(x3) ’

+/ (%xpcrsmnvr,svm,n) p da —
D(x3) ’

Using the divergence theorem and (2.13), we obtain from (3.6)

(%xppwzv,v,) da. (3.6)
D(x3) P

: C 3pw’osn) d
E D) ( rsmnVr,sOm,n — IPQ Usvs) a
X3
_ d 1 2
=5 (C3smnvm,nxpvs,p — 343 (Crsmnvr,svm,n —pw sts)) da
dx3 ;)

1
+/ (jxpnpcrsmnvr,xvm,n _xpvr,pcrpmnvm,nnp) ds. (3.7)
0D(x3)

At this point we note that the boundary condition (2.13) implies
v,3=0, xedD x|[0,L]. (3.8)

Moreover, we write v, , on the curve d D (x3) as v, = ny (0v,/0n)+ 14 (0v,/37), where 7, are the com-
ponents of the tangential unit vector, 8/0n is the normal derivative and 0/ is the tangential derivative.
In view of the boundary condition (2.13) we have (dv,/07) =0 on dD(x3) and hence we deduce that
Ur.q = Ny (00, /0n) on 6 D(x3). Thus, we obtain

ov, Ovy,

/ (xpan,amﬁvr,avm,ﬁ — 2xavr,aCrpmﬁvm,ﬁnp) ds = —/ Xpn,Crampnanp ds. (3.9)
0D(x3)

oD (x3) on 6_11
Substituting (3.9) into (3.7) we obtain (3.3). O
By combining these two theorems we obtain the following result.
Theorem 3. Let v, be a solution of the boundary value problem defined by (2.12) and (2.13). Then
d

2
dx (2C3rmnvm,nvr +2xp C3smnvs,pvm,n +x3 (Cr3m3vr,3vm,3 - Cr(xmﬁvr,a Om,B +pw DSDS)) da
3 JD(x3)

ov, 0v
:/ (C,smnvr,svm,n+pa)zvsvx) da—/ Xpny Croamphang T ds. (3.10)
D(x3) oD (x3) on on
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Remarks. (1) By using the integration by parts and the lateral boundary condition (2.13) we can establish
the identities

d
/ Ur30m,pda —/ Ur,pm3da = — OO, pda, (3.11)
D(x3) D(x3) dx3 Jp(xs)
d
Or30m,pda — Ur,pOm3da = T Uy, pOm da. (3.12)
D(x3) D(x3) X3 JD(x3)

(2) Theorem 1 can be viewed in connection with a (dynamic) virtual work expression, while Theorems 2
and 3 are closer to the mathematical Rellich identity often used in the study of structural stability. See
[Chirita et al. 2006; Chirita and Ciarletta 2008], for example.

4. Some spatial estimates for appropriate low frequencies

Throughout this section we will study the spatial evolution of the amplitude v, by starting with the identity
established in Theorem 1. To this end we combine the identity (3.1) with (3.11) and (3.12) in the same
manner like that used in [Chiritd and Ciarletta 2006]. Our objective consists of finding measures of the
amplitude that are able to furnish information on the spatial evolution of the amplitude v, for the entire
class of anisotropic strongly elliptic elastic materials. Since such task can be too complex for general
anisotropic elastic materials we will proceed to pursue our method for some particularly important classes
of anisotropic materials, namely those of transversely isotropic and rhombic systems. We recall that for
these systems we have established explicit necessary and sufficient conditions in [Chiritd et al. 2007]
characterizing the strong ellipticity condition.

4.1. Transversely isotropic materials. Many natural and man—made materials are classified as trans-
versely isotropic (or hexagonal). Such materials are characterized by the fact that one can find a line
that allows a rotation of the material about it without changing its properties. The plane, which is
perpendicular to this line (the axis of rotational symmetry) is called a plane of elastic symmetry or plane
of isotropy. A modern example for such a material are laminates made of randomly oriented chopped
fibers that are in general placed in a certain plane. The effective material properties for a bundled structure
have no profound direction in that plane, which then becomes a plane of elastic symmetry. Hence, each
plane that contains the axis of rotation is a plane of symmetry, and therefore, transversely isotropic
material admits an infinite number of elastic symmetries.

Necessary and sufficient conditions for strong ellipticity to hold for a transversely isotropic linearly
elastic solid are established in [Chiritd et al. 2007; Chiritd 2006]. In this connection we recall the standard
notation

c¢ij = Ciijj, i,j€{1,2,3} (notsummed), ¢ =c1, ¢23=c13,
cas=css=C3=Ci313, C66=Cra12= 1% (c11 —c12), 4.1)
corresponding to the direction of transverse isotropy coinciding with the x3 coordinate axis. Apart from

terms obtained by use of the symmetries (2.4), these are the only nonzero components C; ;. Then the
necessary and sufficient conditions for strong ellipticity to hold are (loc. cit.)

c11>0, 33>0, ¢55>0, ci1>cr, |c13+cs5] <css+4/cricss. 4.2)
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Combining relations (3.1), (3.11) and (3.12) and using (4.1), we obtain
d

T (va ((cs5 — )03, + €5504,3) +03(c33033 + (€13 4+ 2) (01,1 +02,2))) da
X3 JD(x3)

=/ (066(01,2—02,1)2—pw20ava)da—l—/ (011(1)1,1+1)2,2)2+C33v§,3+2(613+}¢)(01,1+02,2)U3,3)da
D(x3) D(x3)

+/ ((es5 (03 +07 3)+2(cs55—2)v1,303,1)+(c55 (03 5 +03 3)+2(cs55—2)v2,3032) —pw’v3) da,  (4.3)
D(x3)

where x € (0, 2¢ss) is a positive parameter at our disposal.
Now we choose the parameter » in such a way that

max (—013 —4/C11C33, 0) < x < min (2C55, —c13+ «/C11033) s “4.4)
SO
leis + x| < /criess,  [ess — x| <css. 4.5)

We deduce that ) ) ) )
css (031 +0713) +2(css —x) 01,3031 = i (03 +073),

4.6)
Cs55 (l)g,z + U§,3) +2 (C55 — }f) 02,3032 = V] (l)%,z + 0%3) 5

where

V) = min ()f, 26‘55 — )f) . (4.7)
Moreover, we have

e, +022)* +e3303 3 +2(ci3 +2) 01,1 + 0220033 =12 (01,1 +022) 7 +035),  (@8)

where
vy = L(en + 33— Ve — e33)? +4(crs +2)?). 4.9)

On the other hand, in view of the boundary condition (2.13), we obtain

/ Vg, pla,pda > i/ VaVg da, / 03,403 pda > l/ v% da, (4.10)
D(x3) D(x3) D(x3) D(x3)

where 4 > 0 is the first eigenvalue in the two-dimensional clamped membrane eigenvalue problem for
the cross section D (x3).
At this instant we introduce the critical frequency

w1 =\/% min (vq, min (ceg, V2)) 4.11)
and then assume that the frequency of vibration w is lower than w1, that is

0<w<w. 4.12)

Throughout in the remainder of this subsection we will assume that relations (4.4) and (4.12) hold
true. Then we introduce the function

1 (x3) = — /D | [ouess = 0w ssns) +os{essos + e+ 0) | do “13)
x3
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for all x3 € [0, L] and note that relations (4.3)—(4.12) imply

dl, . w?
—E(JQ) > min(ces, v2)| 1 — — Va,pVa,pda
3 2 D(x3)

2
+v2/ 1)%,3 da+ vy / 0,30g,3da 4 (1 — a)_z) / v3,p035da >0 (4.14)
D(x3) D(x3) ] D(x3)

and hence I,,(x3) is a nonincreasing function with respect to x3 on [0, L].
We have now all preliminary material in order to state and proof the following result.

Theorem 4. Let v, be the amplitude of a harmonic vibration whose frequency is lower than the critical
frequency w| given by (4.11). Then, for every x satisfying (4.4), the cross section integral I,,(x3) as
defined by (4.13) is an acceptable measure of the amplitude v, (that is, I,, (x3) > 0 and I,,(x3) = 0
implies that v, = 0) and it satisfies the spatial decay estimate

0<L(x3) <L, (0)e ™ forall x3€]0,L], (4.15)

where o is given by

i L max C55 + 4/C11€33 €33 Cs5 €33+ Cs5+4/Clic33
o1 A min (ces, v2) (1 —@?/wf)” 2v2" 2017 2vy (1 —?/w}) |

Proof. On the basis of the end boundary condition (2.15) and relation (4.13) we deduce that [, (L) =0,
so that we have

(4.16)

I,(x3) >0 forall x3€l0,L]. 4.17)

Thus, I, (x3) represents an acceptable measure for the amplitude v, of the harmonic vibration.
Now, by using the Schwarz and arithmetic-geometric mean inequalities, from (4.5) and (4.13) we
obtain the estimate

1 1
|1, (x3)] < —= (55 + /c11633 / Va.pUg.p da + ——=c33 v? . da
ﬂ( ) D) a,pla,p 2V D) 3,3
1 1
+ Cs5 04,30 ,3da+ C33+C55+m / 03 803, da. (4.18)
2T ey T 277 ) e T

By combining (4.14) and (4.18) we obtain the first order differential inequality

dl,
d—(X3) +o1L,(x3) <0 forall x;3€[0, L], (4.19)
X3
which, when integrated, furnishes the exponential spatial decay estimate (4.15). ([

4.2. Rhombic materials. Suppose the cylinder is filled with a rhombic elastic material with the group

63 generated by R7,, R7, (here Rf is the orthogonal tensor corresponding to a right—handed rotation

through the angle 6 € (0, 27), about an axis in the direction of the unit vector e). According to Gurtin



SPATIAL EVOLUTION OF HARMONIC VIBRATIONS IN LINEAR ELASTICITY 1683

[1972], this class of materials is characterized by
Cr123 = C1131 = Ci112 = Cop3 = €231 = C212 =0,
C3323 = C3331 = C3312 = C2331 = C2312 = C3112 =0,
ci1=Cri1, ¢ =Cnxn, c¢33==C333, ci2=C, c23=Co033,
31 =C3311, c4a=Co323, ¢55=C1313, 66 = Ci212- (4.20)
The strong ellipticity condition (2.5) becomes
crinimi + cn3m3 + c33n3m3 + ces (nima +nomy)* + cag (n3ma + noms)*

+cs5 (nyms3 + n3m1)2 + 2cipnyminomy + 2cpznomonsms + 2cyinzmznymy > 0, (4.21)

for all nonzero vectors (m1, ma, m3) and (n1, ny, n3). It is equivalent to the conditions [Chiritd et al.
2007]

c11>0, ¢2>0, ¢33>0, c4a>0, ¢55>0, cg6>0, 4.22)
—2c66 + 234/C11022 < C12 < 134/C11C22, —2c44 + 21/€22033 < €23 < 1] 4/C20C33,
—2cs55 + %54/011C33 <ci3 < %5«/0116‘33, (4.23)

where (x|, x}), (x5, x5) and (x5, »3) are solutions with respect to x, y and z of the equation x* + y* +
z2—2xyz— 1 =0, satisfying |x| < 1, |y| < 1,|z|] <1 and
re { 3 c3+2c4 } c < c13 ¢34 2cs5 } L e { c2 c12+2ces
V0033 Jcncs3 Jeress® Jercss Jenen” Jenen

} . (4.24)

This statement is equivalent with the relation (4.22) and all points P (x, y, z), with coordinates satisfying
(4.24) lie inside the region limited by the surface S(x, y, z7) = x4+ y2 +72 - 2xyz —1 =0, with |x| <1,
Iyl <1, ]z] < 1.

In the case of a rhombic material the relation (4.3) is replaced by

d
— [v1 (cs501,3+(css—x2)v3,1)+02 (cas02,3+(cas—2x1)032)

dX3 D(x3)
" 403 ((c13+22)01,1+(c23+21)v2 243303 3) |da

=/ [c1107 1 +e2203 53303 342(c1a+23)01,102,24+2(C13+22)01,103 342(c23+ 212,203 3] da
D(x3)

+/ [co6(v7 2403 1)+2(ce6—23)v1,202,1 ] da+/ [c55(v3 1407 3)+2(cs5—22)v1,303,1 ] da
D(x3) D(x3)

+/ [C44(U§,2+D%’3)+2(C44—%1)02’303,2] da—/ pwtvsvsda, (4.25)
D(x3) D(x3)

where x; € [0, 2ca4], 22 € [0, 2¢s5] and x3 € [0, 2¢g6] are positive parameters at our disposal. In view
of the assumptions (4.22) and (4.23) we can choose x; € [0, 2ca4], 22 € [0, 2¢s5], 23 € [0, 2¢66] so that
P(x,y, z), with coordinates
€23+ X c13+x2 2+ x3
X=— P 7=

y —_—
v 022033’ RV C11C33’ v 011022,
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lies inside the region limited by the surface S(x, y, 7). With these choices we have

Ca4 (v%,z + 03,3) + 2 (c44 — 21) 023032 > &) (v§,2 + v%g) , (4.26)
ess (031 03 3) +2 (55— x2) v1 3031 = & (03 +075), 4.27)
C66 (1)12,2 + vil) +2(ce6 —2#3) 012021 > &3 (1)12’2 + v%’l) , (4.28)
C1107 | + 203 5 + 3303 3+ 2 (c12 + 23) 01,1022
+2 (c13+x2) 01,1033+ 2 (23 + 1) 022033 > &4 (07 | + 03, +033) (4.29)
where
&1 =min (2c44 — 21, 201), & =min (2css — x2, %2), &3 =min (2ce6 — %3, X3) (4.30)

and ¢, is the lowest positive eigenvalue of the 3 x 3 matrix

C11 cp+x3 ci3tx
cl2+ 3 2 c+x |- (4.31)
ci3txy ¢33+ €33

So we have to introduce the function
Je(x3) = — / [01((css — x#2)v3,1 + c5501.3) + 02 ((cas — 21)03,2 + C4402.3)
D(x3)

+03((c13+ x2)v1,1 + (c23 + 21)v22 + 3303 3) | da (4.32)
and note that identity (4.25) and relations (4.10) and (4.26)—(4.29) imply

dJ w?
——Z(x3) > / (54 (012,1 +U§,2) +& (012,2 + U%,l) - p_va,ﬁva,ﬂ) da
dX3 D(x3) A
2 ,  po? 2 2 2
+/ (5103,2 + ooy — Tvs,a03,a) da +/ (G1o33 4+l s+ G035 3)da. (4.33)
D(x3) D(x3)
At this point we introduce the critical frequency
A . .
W = \/ [ min (min (&1, &) , min (&3, €4)) (4.34)
and assume that the vibration frequency w is lower than w;:
0<w<ws. (4.35)
Thus, we have
dJ . w? ) ?
——""(x3) >min (&, &) (1——2)/ Vg, pVq,p da+min (&1, &) (1——2)/ 03,403,q da
dX3 wz D(x3) CO2 D(x3)

+ / (G102 +Ew?, + &2 ) da > 0. (436)
D(x3)

Consequently, J,,(x3) is a nonincreasing function with respect to x3 on [0, L].
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Theorem 5. Let v, be the amplitude of a harmonic vibration whose frequency is lower than the critical
frequency wy of (4.34). Then the cross section integral J,(x3) as defined by (4.32) is an acceptable
measure of the amplitude v, (that is, J,,(x3) > 0 and J,, (x3) = 0 implies that v, = 0) and it satisfies the
spatial decay estimate

0<J,(x3) <J, (0)e " forall x3 €0, L], (4.37)
where o, is given by
1 1 max (2css 4 /C11€33, 2¢44 + 4/C22C33)
— = ——max ’
o 22 min (&, &) (1 — w?/w3)

cag css ey max (cas, 0s5) + /033 (Ve + /o +/e33)
&0 & & min (&1, &) (1 — w?/w3)

] . (4.38)

Proof. On the basis of the end boundary condition (2.15) and relation (4.32) we deduce that J,, (L) =0,
so that we have

Je(x3) >0 forall x3e[0,L]. (4.39)

Thus, J, (x3) represents an acceptable measure for the amplitude v, of the harmonic vibration.
We further note that

lcas — 1| < cas, |css — o] <css, |c13+ x| < i /fcric33, ez +x1| < \/c2c33. (4.40)

On this basis and by using the Schwarz and arithmetic-geometric mean inequalities and (4.10), we obtain
from (4.32) the estimate

1
| e (x3)| < =G max (2css 4 4/C11€33, 2¢44 + 4/C22C33) / Vg, pla,p da
D(x3)

N
1
+—— [max (ca4, cs5) + /€33 (V11 + ez + /c33) ] 03,403 4 da
2\/1 D(x3)
+L (C33v§3 +C441)%3 —|—C55D%3) da. (4.41)
2V Jp(s) ’ ’ ’

By combining (4.36), (4.38) and (4.41) we obtain the first order differential inequality
dJ,
d—(x3) +02J,(x3) <0 forall x5 €0, L], (4.42)
X3

whose integration furnishes the spatial decay expressed by (4.37). U

The analysis of this section can be extended to the case of a semi-infinite cylinder, that is the case
when L — oco. We shall exemplify this for the case of measure J,,(x3). In view of (4.25) and (4.32), by
an integration [x3, L], we obtain

Je(x3) = S (L) = E (x3, L), (4.43)
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where
E(x3, L) = / (CllUil 02003 53303 3 2(Cr2+23)01,102,2+2(C13+22)v1,103,3
B(x3,L)

+2(c23+21)02,203,3+ o6 (V] 203 1) +2(Co6 — 23)01,202,1+ €55 (V3 | +07 3)
+2(cs5—x2)v1,303,1 +C44(v§,2+v§,3)+2(C44—%1)02,303,2—pwzvsvs)dv >0, (444

with B (x3, L) = By, \ By and B,, is defined by relation (2.1). We conclude that J,, (00) =lim; o J, (L)
exists and is finite if and only if there is finite the energetic measure E (x3) =lim;_, » E (x3, L) associated
with the amplitude o, in the cylinder B,,. Since J,(x3) is a nonincreasing function with respect to x3,
there are the only two possibilities: (a) J, (x3) > 0 for all x3 € [0, 00) or (b) there exists x5 € [0, 00) so
that J, (x}) <O.

In the case (a) we can apply the same procedure as in the above to obtain the spatial decay estimate
(4.37). So in what follows we shall consider the case (b), that is we will suppose that J,, (xgk) < 0. Then
we have

Jy(x3) <0 forall x3 € [x],00), (4.45)
so that (4.36), (4.38), (4.41) and (4.45) now give
dJ,
p (X3) — 0'2],{()63) <0 forall x3€]0,L], (4.46)
x3
which implies
—J,(x3) > —J,, (x3) €3 5) forall x3 € [x}, 00) (4.47)
and hence J,, (00) = —oo and the energetic measure E (x3) is infinite.

We may summarize this analysis in the following alternative of Phragmén—Lindelof type result.

Theorem 6. In the context of a semi-infinite cylinder made of a rhombic elastic material, for all harmonic
vibrations with frequency lower than the critical value w,, the amplitude v, either has a finite energetic
measure E(x3) and then we have

E(x3) < E(0)e™?%  forall x; € [0, 00), (4.48)

or it has an infinite energetic measure and then —J, (x3) goes to infinity faster than the exponential
ey

5. Spatial estimates for appropriate high frequencies

Throughout this section we will study the spatial evolution of the amplitude v, by starting with the
identity established in Theorem 3. To this end we note that the strong ellipticity condition (2.5) implies
that

Ci313¢k > 0 for all nonzero vectors ¢, 5.1

and
Craspmmsngng > 0 for all nonzero vectors (mp,ma, m3), (ny,nz). 5.2)

We further assume that 0D is star shaped with respect to the origin so that x,n, > ho > 0, with hg
constant.
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On this basis we observe that

ov, 0y, ov, 0v,
0 5/ x,,n,,Cmmﬂnanﬂ—r—ds < dC/ 4 ds, (5.3)
0D(x3) on on aD(x3) on on
where C = /CrumpCromp and
d= sup /xux4. 5.4
(xl,xz)eaD
Further, we introduce
8al)r %ds 1
mo= max 2229 x— —dCm, (5.5)
%3€[0.L] /vrvr da P
D
and assume that
o> ok (5.6)
Whereas one cannot, in general, obtain mg explicitly, we have the crude bound
ov, 0v,
. sp On On ds
mo<mp, with m;y= sup “—=—F—-—7-—. 6.7

vi€Hy (D) / 0,0, da
D

So, when m is finite, we can take w* = la’ Cm and obtain an explicit critical value for the frequency
of vibration. P
Then the identity (3.10), relations (5.3) and (5.6), and the definition of m¢ in (5.5) give

d

2
E [2C3rmnvm,nvr + 2xp C3smnvs,pvm,n + x3 (Cr3m3l)r,3vm,3 - Cramﬁvr,(xvm,ﬁ + pw Usvs)] da
3 JD(x3)

2/ Crsmnvr,svm,nda- (5.8)
D(x3)

Our objective now is to find measures of the amplitude that are able to furnish information on the
spatial evolution of the amplitude v, for the entire class of anisotropic strongly elliptic elastic materials.
We now pursue our method for transversely isotropic and rhombic systems.

5.1. Transversely isotropic materials. We first consider the class of transversely isotropic materials as
defined in Section 4.1. Relations (5.8), (3.11) and (3.12) give
d
T (Ua ((2css—x)v3,442¢5504,3) + 03 (20330334 (201342) 04,0 )
3 JD(x3)
+ 2C55xpva,p (03,(1 +Da,3) + 2xpv3,p (C13Ua,a +C33U3,3)
+x3 [055(012,3+v%,3)+0331)§,3—066(01,2—02,1)2—611(01,1+02,2)2

2
—2€1304,003,3—C5503,403,0 —2C5504,303 4+ p@ sts]) da
2 2 2
Z/ ce6(v1,2—02,1)" da +/ [c11(1,1402,2) +c3303 34+2(c13+2) (1,1+02,2)03 3] da
D(x3) D(x3)

+ [css (05,1 +D12,3)+2(055—%)01,303,14-655 (D§,2+v§73)+2(C55—%)02,303,2] da, (5.9)
D(x3)
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where x € (0, 2c55) is a positive parameter chosen in such way to satisfy relation (4.4). Therefore, we
can introduce the function

Fx(x3) = — / (Ua ((2css — 2#)03,4 + 2¢5504,3) + 03(2¢33033 + (2¢13 4 2)v40)
D(x3)
+2¢55% 504, (03,6 +04.3) + 2x,03 ,(C1304,64 + €33033)
+x3 [655(012,3 + 05,3) + C3sv§,3 —ce6(01,2 —02,1)> — c11(1,1 +022)?

2
—2C130g,403,3 — C5503,403,4 — 2C5504,303,4 + PO Usvs]) da (5.10)

and note that relations (4.4), (4.6), (4.8) and (5.9) imply

dg, .
———(x3) > min(cgg, v2) Va,pla,pda + vz/ 1)%’3 da + vl/ Va,30a3da+ vl/ 03,403, pda
dxs D(x3) D) D(x3) D)

> 0. (5.11)

Thus, ¢, (x3) is a nonincreasing function with respect to x3 on [0, L].

Theorem 7. Let v, be the amplitude of a harmonic vibration whose frequency is greater than the critical
frequency

dmy
ol = T\/%%] + 26%2 + (c11 — 612)2 + 2c§5.

Then the cross section integral $,, (x3) as defined by (5.10) is an acceptable measure of the amplitude v,
(that is, $,,(x3) > 0 and 9, (x3) = 0 implies that v, = 0) and it satisfies the spatial decay estimate

0<9,(x3) <9, (0) (1 + §x3)71/ﬁ forall x3 €0, L], (5.12)

where a. and f are positive constants computable in terms of the elastic coefficients, A, d, w and p.

Proof. On the basis of the end boundary condition (2.15) and relation (5.10) we deduce that $,, (L) =0,
so that we have

$(x3) >0 forall x3€[0,L]. (5.13)
Thus, ¢, (x3) represents an acceptable measure for the amplitude v, of the harmonic vibration.

On the other hand, by using the Schwarz and arithmetic-geometric mean inequalities, from (4.10),
(5.4) and (5.10) we obtain the estimates

/ ( [Ua ((2css — #)v3,4 + 2¢5504,3) + 03 (233033 + (2013 4 %)04,q) | da
D(x3)

css
—=(2c¢s55 + 4/c11033) Vg, fUa,p da+ —= / Vg,30q,3 da
f D(x3) D(xy)
33

1
+ —=(2c¢55 + ¢33+ /c11633) 03, av3ada+_ 0336161 (5.14)
\/Z D(x3) D(x3)
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/ [2¢55%pv0,p (03,0 + 04,3) + 2,03, 5 (C1300,4 + €3303,3) | da
D(x3)

<d(cs5+2|ci3l) Va,pVa,p da +2d055/ Vg,30q,3 da
D(x3) D(x3)
+d2cs5 4+ 2¢33 + |c13]) 03 4 03,q da + 2dcs; / 1)%’3 da, (5.15)
D(x3) D(x3)

2 2 2 2 2
/ [ess(f 3 +033)+ 33033 — Ce6(01,2 —02,1)” — c11(v1,1 +02,2)
D(x3)

2
— 2C1300,403,3 — C5503,403,0 — 2C5504,303 4 + pw° 0,0, | da

2
(6]

< (maX(Cn, ce6) + 2 |c13| + P ) / Vo, pVq,p da +2¢55 / V,30q,3da
A ) I D) D(xs)

2

@

+(2c55+p_)/ 03.403.0 da+ (c33 +|c13)) v3sda. (5.16)
4] Ipe) D(x3)

Therefore, if we use the estimates (5.14)—(5.16) in (5.10) and then use (5.11), we obtain the differential
inequality

s,
[$(x3)] < —(a +ﬂx3)d—(x3) forall x3 € [0, L], (5.17)
X3
where
azmaX{; [(i—i-d)Css-i- Jeiiess +2d|01%|]
min(ces, v2) | \\/2 Vi

i|:2(% +d>css+(ﬁ+2d)633+\/—m+d|cl3|i|

vy
Uil(% +2d)ess, V—Z(% + 2d)C33} , (5.18)

2 2
f = max .;(max(cn, ce6) + 2 |c13| + &), l(2055 + 22 ), 2C55, catlesl | (5.19)
min (cg6, V2) A vy A vy V)

To integrate the differential inequality (5.17) we write it in the form

which, multiplied by exp( ‘dt/(a + ﬁt)) and then integrated with respect to x3, gives the estimate
(5.12). O

5.2. Rhombic materials. For a rhombic material, we proceed similarly. Relation (5.8) combined with
(3.11) and (3.12) gives
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d
———$x(x3)
dxs
2 2 2
> / (c110].1 + 2203 5+ 3303 34+ 2(c12+23)v1,102,2 +2(c13 4+ 22)01,103,3 +2(c23 + 21 )2,203.3) da
D(x3)

+/ (co607 o+ o603 1 +2(Co6—23)01,202,1) da-i-/ (cs503.1 +es507 3+2(css —x2)1,303,1) da
D(x3) D(x3)

+/ (6440572 + C44D§,3 +2(cas — 21)v2,3032) da, (5.21)
D(x3)
where x|, xp, x3 satisfy the conditions requested in Section 4.2 and we have introduced the function

Fr(x3) = —/ (01 ((2css — x2)3,1 +2¢5501,3) + 02((2c44 — 21)032 + 24402,3)
P +03((2c13 + 22)v1,1 + (2c23 4 21)v2,2 + 203303 3) 4 255,01, (03,1 +01,3)
+2c44x 02, (032 +02.3) +2x,03 ,(c1301,1 + 23022 + €33033)
+X3 [0550%,3 + C44U%,3 + C330§,3 —ce6(v1,2+ 1)2,1)2

— (c1107 1 €203 , +2€1201,102,2+C5503 | +C4403 ) + pw2vsvs]) da. (5.22)

Now (4.26)—(4.29) and (5.21) give

y (x3) Z/ (54(0%,1+U§,2)+f3(0%,2+l)§,1)+flv§,2+f2vg,1) dCH—/ (5105,3+§20i3+f41)§,3) da
3 D(x3) D(x3)

> 0: (5.23)

hence $,(x3) is a nonincreasing function with respect to x3 on [0, L]. Moreover, by means of the end
condition (2.15) and relation (5.22) we obtain $, (L) = 0 and hence $, (x3) > 0 for all x3 € [0, L], that
is $,(x3) is a measure of the amplitude of the harmonic vibration.

By using the Schwarz and arithmetic-geometric mean inequalities and with the aid of (4.10), (4.40)
and (5.4), we obtain

/ (1)1 ((2css —x2)v3,1 4 2¢5501,3) + 02 ((2c44 — 21)032 +2€4402,3)
D(x3)
+03(Qc13+ 22011 + (a3 + 21022+ 203303,3)) da

1
< ﬁ / [(3css++/criess )Dil + (3cas + /022033 )“3,2 +26550f,2 + 264403,1
D(x3)
+ (334 cas+ 2055 +4/C11633 + /022633 )03

+(c33 4 2caa + ¢55+ /C11633 + /22033 )Diz +6‘550i3 +C44v§,3 +033D§,3] da, (5.24)

/ (2e55x,01, (3,1 +01,3) + 24402, (032 +02.3) +2x,03 , (C1301,1 + 23022+ €33033)) da
D(x3)

< d/ [(css+1c13))oT 4 (cas+1c231)03 o +e5507 5, +Caav3 | +(e33+2es5+ |erz]+leas o3
D(x3)

+(c334 244+ le13] +1c23)v3 5 + 265507 3 + 204403 5 + 3303 3| da,  (5.25)
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2 2 2 2
/ [c5501 3+ ca4v3 3+ 3303 3 — cos(01,2+02,1)
D(x3)

2 2 2 2 2
— (61101,1 +C2005 5+ 2c1201,1022+ C5503 1 + C4403 ) + pw vsvs] da

2 2 2
< / [(011 +lcia| + %)vil + (C22+ lci2| + %)v%z—i- (26‘66+ %)(vifrvil)
D(x3)

2 2
—|—(C55 + %)032,,1 + <C44 + %)v%}z +C551)]2’3 —|—C44D§’3 +C331)%’3j| da. (5.26)

To conclude, we obtain from (5.22)—(5.26) a first order differential inequality of type (5.17), where now
we have

1 1 1 2 1 2
o=max { — | —= (3¢s5++/cr1c33) +d (c55+|c , —C —+d), —c —4d),
[54(ﬂ( ss++/c11¢33) +d (css |13|)) Z ss(ﬁ ) Z 44(ﬁ )
1 1 1 1 1 1
—\| — (Bcaa ++/cone3z) +d (caa+|c , —¢css\ —=+2d), —c —+2d),
54(ﬂ( 44+ +/€22033) +d (cas+| 23|)) A (ﬁ ) 2 44(ﬂ )
1 1
—(— (caa+2¢s5+ 33+ /Cl1033+ /€22033) +d (€334 255+ |c13] + |Cz3|)),
o \V2
1 1
f_l(ﬁ (2cas+ess+c33++/Cr1c33+ /€22633) +d (334 2ca4+ |c13] + |6’23|)),

1 1
= —+d);, (627
54633(«/7 )} 27
1 2 1 2 1 2
ﬁZmaX{a(011+|C12|+%),a(022+|C12|+%), 5(26664‘%):

1 pa)z) 1 ( pa)Z) 1 ]
—ess+225), — (can+22), ezt (5.28
5 (6‘55 7 G\t 7 (5.28)

Therefore, the spatial evolution of the amplitude is described by the estimate (5.12), where a and
are given now by relations (5.27) and (5.28) and wj is replaced by

dm
w} = 70 2+ ek +cd, ks 203, +4ck. (5.29)
The analysis of this section can be extended to a semi-infinite cylinder using the procedure developed

at the end of the above section.

6. Concluding remarks

We have addressed some exponential and algebraic spatial estimates for describing how the amplitude of
a harmonic vibration evolves in an anisotropic elastic cylinder. The discussion is based on the assumption
regarding the strong ellipticity of the elasticity tensor. This hypothesis allows us to obtain results valid for
a very large class of anisotropic elastic materials, including auxetic materials (which, having a negative
Poisson’s ratio or negative stiffness, expand laterally when stretched in contrast to ordinary materials;
see [Park and Lakes 2007], for example).
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Exponential spatial decay estimates are predicted for harmonic vibrations whose frequency is lower
than a certain critical value, as defined by relations (4.11) and (4.34), for example. However, as we can
see from relations (4.15), (4.16), (4.37) and (4.38), these estimates fall to give information regarding the
spatial evolution for harmonic vibrations with frequency close to the critical value.

On the other hand, the algebraic spatial estimate (5.12) proves how the spatial behavior evolves in the
case of harmonic vibrations with frequency greater than the critical value w* as defined in (5.5).

The extent to which our present results cover the entire range of frequencies remains open question.
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SOFTENING HYPERVISCOELASTICITY FOR MODELING RATE-DEPENDENT
MATERIAL FAILURE

KONSTANTIN VOLOKH AND PAVEL TRAPPER

New models of viscoelastic solids at small and finite deformations are proposed that describe material
failure by enforcing the energy limiter — the average bond energy. Basically, the bond energy defines
the energy that is necessary to separate two attracting particles. In the case of a solid composed of many
particles there exists a magnitude of the average bond energy that is necessary to separate particles in a
small material volume. The average bond energy can be calculated if a statistical distribution of the bond
density is known for a particular material. Alternatively, the average bond energy can be determined in
macroscopic experiments if the energy limiter is introduced in a material constitutive model. Traditional
viscoelastic models of materials do not have energy limiters and, consequently, they allow for unlimited
energy accumulation under the strain increase. The latter is unphysical, of course, because no material
can sustain large enough deformations without failure. The average bond energy is the energy limiter
that controls material softening, which indicates failure. Thus, by limiting the stored energy we include
a description of material failure in the constitutive model. Viscoelasticity including energy limiters can
be called softening hyperviscoelasticity. We present two softening hyperviscoelasticity models for small
and finite deformations. In all cases the elastic and viscoelastic responses are described by potentials
with limiters, which control material softening. The models are studied in the case of simple shear and
uniaxial tension. The results of the calculations show that softening hyperviscoelasticity can be used for
analysis of rate-dependent failure of materials.

1. Introduction

Existing continuum mechanics approaches for modeling material failure can be divided in two groups:
surface and bulk models. The surface models, pioneered by Barenblatt [1959], are called cohesive zone
models (CZMs) in the modern literature. They present material surfaces — cohesive zones — where dis-
placement discontinuities occur. The discontinuities are enhanced with constitutive laws relating normal
and tangential displacement jumps with the corresponding tractions. There are plenty of proposals of
constitutive equations for cohesive zones [Dugdale 1960; Rice and Wang 1989; Tvergaard and Hutchin-
son 1992; Xu and Needleman 1994; Camacho and Ortiz 1996]. All CZMs are constructed qualitatively
as follows: tractions increase, reach a maximum, and then approach zero with increasing separation.
Such a scenario is in harmony with our intuitive understanding of the rupture process. Since the work
by Needleman [1987] CZMs are used increasingly in finite element simulations of many phenomena,
such as crack tip plasticity and creep, crazing in polymers, adhesively bonded joints, interface cracks in
bimaterials, delamination in composites and multilayers, and fast crack propagation in polymers. Cohe-
sive zones can be inside finite elements or along their boundaries [Xu and Needleman 1994; Belytschko

Keywords: softening, failure, hyperelasticity, viscosity, material, rate-dependence.
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et al. 2001; De Borst 2001]. Crack nucleation, propagation, branching, kinking, and arrest are natural
outcomes of the computations where the discontinuity surfaces are spread over the bulk material. This
is in contrast to the traditional approach of fracture mechanics where stress analysis is separated from
a description of the actual process of material failure. The CZM approach is natural for simulation of
fracture at the internal material interfaces in polycrystals, composites, and multilayers. It is less natural
for modeling bulk fracture because it leads to the simultaneous use of two material models for the same
real material: one model describes the bulk while the other model describes a CZM imbedded in the bulk.
Such a two-model approach is rather artificial physically. It seems preferable to incorporate a material
failure law directly in the constitutive description of the bulk.

Remarkably, the first models of bulk failure — damage mechanics — proposed by Kachanov [1958]
and Rabotnov [1963] for analysis of the gradual failure accumulation and propagation in creep and
fatigue appeared almost simultaneously with the cohesive zone approach. The need to describe the failure
accumulation, that is, evolution of the material microstructure, explains why damage mechanics is very
similar to plasticity theories including the internal damage variable (inelastic strain), the critical threshold
condition (yield surface), and the damage evolution equation (flow rule). The subsequent development of
the formalism of damage mechanics [Kachanov 1986; Krajcinovic 1996; Skrzypek and Ganczarski 1999;
Lemaitre and Desmorat 2005] left its physical origin well behind the mathematical and computational
techniques and, eventually, led to the use of damage mechanics for the description of any bulk failure.
Theoretically, the approach of damage mechanics is very flexible and allows reflecting physical processes
triggering macroscopic damage at small length scales. Practically, the experimental calibration of damage
theories is not trivial because it is difficult to measure the damage parameter directly. The experimental
calibration should be implicit and include both the damage evolution equation and criticality condition.

A physically motivated alternative to damage mechanics in the cases of failure related with the bond
rupture has been considered recently by Gao and Klein [1998] and Klein and Gao [1998] who showed
how to mix the atomic/molecular and continuum descriptions in order to simulate material failure. They
applied the Cauchy—Born rule linking micro and macro scales to empirical potentials, which include
a possibility of the full atomic separation. The continuum-atomistic link led to the formulation of the
macroscopic strain energy potentials allowing for the stress/strain softening and strain localization. The
continuum-atomistic method is very effective at small length scales where purely atomistic analysis
becomes computationally intensive. Unfortunately, a direct use of the continuum-atomistic method in
macroscopic failure problems is not very feasible because its computer implementation includes a nu-
merically involved procedure of the averaging of the interatomic potentials over a representative volume.

In order to bypass the computational intensity of the continuum-atomistic method while preserving
its sound physical basis the softening hyperelasticity approach was proposed by Volokh [2004; 2007a;
2007b]. The basic idea of the approach was to formulate an expression of the stored macroscopic en-
ergy, which would include the energy limiter — the average bond energy. Such a limiter automatically
induces strain softening, that is, a material failure description, in the constitutive law. The softening
hyperelasticity approach is computationally simple yet physically appealing. The approach proved itself
in a number of problems varying from failure of brittle materials to rubbers and soft biological tissues
[Volokh 2007a; 2007b; 2008a; 2008b; Trapper and Volokh 2008; Volokh and Trapper 2008; Volokh
and Vorp 2008]. Besides Gei et al. [2004] used a variant of softening hyperelasticity for modeling
plastic softening. One should be careful, however, with doing that because material failure during plastic
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deformation is essentially due to microstructural changes rather than the bond rupture and the approach
of energy limiters may not be applicable in this case on physical grounds.

It should be noted that softening hyperelasticity has been used for the prediction of the global mate-
rial/structural instability in all mentioned works. To extend the approach to problems of dynamic failure
propagation it is necessary to include rate-dependence in the constitutive description. In other words,
the softening hyperelasticity should be extended to the softening hyperviscoelasticity, which is the main
goal of the present work. Including viscosity in the constitutive framework is important physically. It
is also important computationally because viscosity naturally regularizes the potentially ill conditioned
problems related to tracking the propagation of dynamic failure.

The outline of the paper is as follows. Section 2 introduces the idea of the energy limiters providing a
physical multiscale link for the phenomenological quantity of the average bond energy. Sections 3 and
4 present the softening hyperviscoelasticity theories for small and finite deformations respectively. A
general discussion of the new theories is present in Section 5.

2. Energy limiters

To motivate the introduction of energy limiters and softening hyperelasticity we briefly describe the
continuum-atomistic link. A more detailed exposition of the issue can be found in [Volokh and Trapper
2008; Trapper and Volokh 2008], for example.

Interaction of two particles (atoms, molecules, et cetera) can be described as

w(F)=o(F)— g, po =ming ¢(F =1). (2-1)

Here v is the particle interaction potential; F is the one-dimensional deformation gradient mapping the
distance between particles from the reference, L, to the current, [, state: [ = F L. To be specific we
choose the Lennard-Jones potential, for example, ¢(l) = 4e((c/1)'?> — (¢/1)®), where ¢ and ¢ are the
bond energy and length constants accordingly. By direct computation we can find the energy limiter or
the failure energy, ®@. Indeed, increasing deformation we cannot increase the energy unlimitedly:

w(F — 00) = —po = ® = constant. (2-2)

Analogously to the case of the pair interaction it is possible to consider particle assemblies. Applying
the assumption of applicability of continuum mechanics to the description of such assemblies, meaning
using the Cauchy—Born rule, it is possible to derive a stored energy function analogously to (2-1),

w(C) = (p(C)) —(p)o, (p)o =ming (p(C =1)).

Here C = F'F is the right Cauchy—Green deformation tensor and F = dx/0X is the deformation
gradient of a generic material macroparticle of body € occupying position X at the reference state and
position x(X) at the current state of deformation. The average means

wen=vi' [ {(afer)”~ (i) ) eov
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in the case of the Lennard-Jones potential, where the tensorial norm designates stretch in a bond direction,
Dy is the volumetric bond density function, V{ is the integration volume defined by the range of influence
of ¢, and V} is the reference representative volume.

Analogously to (2-2), we can find the energy limiter, ®, increasing the deformation unlimitedly as

® =y (JIC]| - o0) = —(p)o = constant .

Thus, the average bond energy sets a limit for the energy accumulation. This conclusion generally
does not depend on the choice of the particle potential and is valid for any interaction that includes a
possible particle separation.

Contrary to the conclusion above traditional hyperelastic models of materials do not include the energy
limiter. The stored energy of hyperelastic materials is defined as w = W. Here W is used for the strain
energy of the intact material, which can be characterized as ||C|| > o0 = w = W — oo, where || - - - ||
is a tensorial norm.

In other words, the increasing strain increases the accumulated energy unlimitedly. Evidently, the
consideration of only intact materials is restrictive and unphysical. The energy increase of a real material
should be limited, as shown above:

IC|| > o0 = w — ® = constant, (2-3)

where the average bond energy, ® = constant, can be called the material failure energy.

Equation (2-3) presents the fundamental idea of introducing a limiter of the stored energy in the
elasticity theory. Such a limiter induces material softening, indicating material failure, automatically.
The choice of the limited stored energy expression should generally be material-specific. Nonetheless, a
somewhat universal formula [Volokh 2007b] can be introduced to enrich the already existing models of
intact materials with the failure description

(W) = (D—CI)exp(%), (2-4)

where (W =0) =0 and (W = 00) = ©.

Formula (2-4) obeys the condition ||C|| — co = w(W(C)) — @ and, in the case of the intact material
behavior, W « @, we have (W) ~ W preserving the features of the intact material.

Taking (2-4) into account, the constitutive equation can be written in the general form

o oW
o= 2J‘1F6—WFT —27'F <L

C scf' eXp(%)’ (2-3)

where o is the Cauchy stress tensor, J = det F, and the exponential multiplier enforces material softening.
Constitutive equation (2-5) is especially effective for incompressible soft materials undergoing finite
deformations. We strongly emphasize again, however, that the best form of the energy function is not
universal and should be material/problem-specific.

In what follows we will extend the idea of the energy limiter to viscous deformations and examine
the role of the rate-dependence in the description of material failure.
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3. Softening hyperviscoelasticity at small deformations

We use a rheological model of the standard solid shown in Figure 1 as a prototype for the integral
formulation of the constitutive law.

E

©

E 1
Figure 1. Rheological model of the standard solid.

3.1. Constitutive law. Following Simo and Hughes [1998] we define the hyperviscoelastic constitutive
law in the form

oy ! 0 oy (e
(1) = ‘”(8)1+/ m(t—r)—(devm)dr, 3-1)
de - ot de
where
e=tre, e=deveze—%el,

and ¢ is a linearized strain, that is, the symmetric part of the displacement gradient.
The relaxation function is defined in the form

t—1 E E n
m(t—r):ﬂoo—i—ﬁexp(— 9 ), ,Boo=ﬁs B= E-1E 9=E,
o 0

where fo, and S are dimensionless relative moduli and @ is the relaxation time (see Figure 1).
The elastic potential is decomposed into the volumetric and distortional parts accordingly as

w(e) =y (e)+yle), (3-2)

and the hyperelastic constitutive law is derived as

0 oy oy
o= _ —l//l—i—dev—l//.
oe Oe oe
We define the separate potentials with softening that have not been considered in the literature yet,

K K _
W (e) = O —CI)1(1—|- 1518) exp(— /ag), w(e)= @2—®zexp(—§2e : e), (3-4)

where K and u are the bulk and shear moduli of the isotropic Hookean solid and ®; and @, are the
failure energies for volumetric and distortional deformations. By introducing different failure constants
we increase the flexibility of the phenomenological description of material failure.

Substituting (3-4) in (3-3) we have

. - | K
o =Kel+2pe, K=Kexp(— ae), ,&:,uexp(—(%e:e). (3-5)
1 2

(3-3)
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Linearization of these equations leads to the classical linear elasticity with K = K and n=u.

The motivation for the specific forms of the softening hyperelastic potentials (3-4) comes from the
consideration of two simple deformations.

Firstly, in the case of hydrostatic tension (3-5); takes the form

| K
0 =011 20222033=K86Xp(— 318)’

and its graph is shown in Figure 2, left.

Evidently, the hydrostatic compression does not lead to material failure while the hydrostatic tension
does. The maximum point on the tension branch of the curve corresponds to the onset of static instability
when the material failure starts propagating.

Secondly, in the case of pure shear, e, (3-5); takes the form

u
o12 =2uern eXP(—(F2 6%2),

and its graph is shown in Figure 2, right.
Evidently, the skew-symmetry of the failure response is desirable and expected.

3.2. Simple shear. In this subsection we examine rate-dependent response of the model described above
in the case of simple shear

_ ! =ty @ M o
Glz(f)—zﬂ/o |:,Boo+ﬁexp( 2 ):| ar|:€126XP( @2312):|dfa (3-6)

where there is no stressing until = 0.
Further simplifications are due to the assumption of the constant stretch/strain rate as y = constant.
The latter assumption leads to the simple formulae for time

0.001 /\
/ 0.002

0. 0005 N

\
T —
0 o2 N

-0. 0005 7

IES

-0.001 —\t
-0.00L \ / -
-10° -0.002 ul@, =10
-0. 0015 K /@1 —10 1 2
‘ \ \ ‘ ‘ \/ ‘
-0.005 0 0005 0.01 0.015 0.02 0.025 0.03 -0.01 -0.005 0 0.005 0.01
& €

Figure 2. Left: Hydrostatic tension o /K. Right: Simple shear a5/ .
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ul @, =10

0.0025 0.0025 p, =038
0.002 0.002
& 0.0015 & 0.0015
M 0.001 M 0.001
0.0005 0.0005
0 0

0 0.002 0.004 0.006 0.008 0.0l 0.012 0 0.002 0.004 0.006 0.008 0.0l 0.012

€ €

Figure 3. Simple shear for various strain rates.

where £12 = e12(7) and, consequently, (3-6) takes the form

. ‘e e — <12 0 M
o12() = 21 /O [ﬂoo+ﬂexP(— = )] aélz[fuexp(— @2512)]%12. (3-7)

Stress-strain curves defined by (3-7) are present in Figure 3 for different strain rates.

Evidently, material stiffness and strength — the curve maximum — increase with the increasing defor-
mation rate for a given relaxation time. This conclusion is expected intuitively. Moreover, the stable
(prior to failure) branches of the response curves are limited by the curve corresponding to y & — 0 from
the bottom and y & — oo from the top. Physically the limit cases correspond to the very slow quasistatic
response and the fastest instantaneous response of the material accordingly. Interestingly, the range of
the strength variation depends on the relative contribution of the elastic springs in the rheological model
shown in Figure 1. The greater the contribution of the spring corresponding to the dashpot, E, the larger
the strength range.

4. Softening hyperviscoelasticity at finite deformations

The integral hyperviscoelasticity formulation for small deformations considered in the previous section
can be equivalently reformulated in the differential form [Simo and Hughes 1998]. Unfortunately, in
the case of finite deformation the integral and differential formulations are not necessarily equivalent
in general. There are plenty of integral formulations of nonlinear viscoelasticity. We should mention,
however, that the foundations of the theory have been set by Green and Rivlin [1957; 1959] and Green
et al. [1959]. Further developments are reviewed in [Lockett 1972; Carreau et al. 1997; Hoo Fatt and
Ouyang 2007], for example. There are also numerous differential formulations of nonlinear viscoelas-
ticity based on the introduction of internal variables and their evolution equations. The most popular
scheme includes the multiplicative decomposition of the deformation gradient into elastic and inelastic
parts [Lubliner 1985; Lion 1996; Govindjee and Reese 1997; 1998; Bergstrom and Boyce 1998; Huber
and Tsakmakis 2000; Amin et al. 2006; Hoo Fatt and Ouyang 2008]. Despite its popularity the scheme
including the multiplicative decomposition of the deformation gradient is not entirely perfect: the inter-
mediate elastically-relaxed configuration cannot be determined uniquely. Indeed, it is always possible to
superimpose a local rotation on such a configuration without violating the multiplicative decomposition.
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The nonuniqueness of the multiplicative decomposition is often eliminated by a specific and explicit
choice of the deformation or by the use of certain computational schemes, which regularize the problem
implicitly. Unfortunately, the artificial regularizations cannot improve the general formulation. Since
the elastically-relaxed configuration is not unique one may question the necessity to define it. Instead
of looking for a specific elastically-relaxed configuration it is possible to look only for a family of such
configurations enjoying the same metric. In the latter case there is no need in the use of the nonunique
multiplicative decomposition of the deformation gradient and it is enough to track the evolution of the
metric tensor of possible elastically-relaxed configurations. Such a line of thought was pioneered by
Eckart [1948] and further developed in [Leonov 1976; Rubin 1994; Rubin and Bodner 2002]. It is worth
mentioning that the refusal to look for a unique elastically-relaxed configuration is justified by the fact
that such a configuration is incompatible and, consequently, unobservable physically.

4.1. Constitutive law. We will use the rheological model shown in Figure 1 as a prototype for the non-
linear model too. The springs should be thought of as nonlinear in this case. We extend (3-1) to finite
deformations directly following Simo and Hughes [1998]:

oy ! 0 _ oy (Ck)) -

T(t) = qu/ m(t — 1) —| dev ZF(‘[)MFT(T) dr,
oe oo ot oC

where T = Jo is the so-called Kirchhoff stress tensor and

¢=J=detF, F=J"'3F(detF=1), C=FTF. (4-1)

The stored energy is also decomposed analogously to (3-2) as y (C) = ¥ (¢) + w (C), and the hypere-
lastic constitutive law is derived as

oy —_0w —
T= J—Wl—i—deV[ZF—l/_/FT].
oe oC

We mention that the idea to extend the volumetric-distortional decomposition of small strains to the
case of large strains based on the volume-preserving deformation gradient, (4-1),, is due to Flory [1961].

Though the formulation above is the most general the majority of soft materials undergoing finite
deformations are incompressible. The latter means that the analytical formulation can be simplified as

e=J=detF =1, 4-2)
F=F, Cc=cC, w(C) =y (C), a:r:—pl-l—dev[ZFa—wFT], (4-3)
oC
and
o(t)=1t()=—-pl +/ m(t —1) %(dev[ZF(r)WFT(r)})d@ (4-4)

where the indefinite Lagrange multiplier, p, is used to enforce the incompressibility condition (4-2).
We further use a stored energy with softening that was calibrated for analysis of the material of the
abdominal aortic aneurysm [Volokh and Vorp 2008]

w1 = ®—vexp| T (1 =3 = L =37, +-5)



SOFTENING HYPERVISCOELASTICITY FOR MODELING RATE-DEPENDENT MATERIAL FAILURE 1703

100 e

e S
., Experiment Pai N

/ Theory

N 60 /.
o N
a1, Y,
20
0
1.4 1.6 1.8
2

Figure 4. Theory versus experiment for the uniaxial tension test [ Volokh and Vorp 2008].

where /1 =tr C, a1 and a are the elasticity constants of the material, and @ is the failure energy, which
is another material constant controlling its softening.

The uniaxial tension test results are shown in Figure 4, where model (4-5) was fitted with the following
constants: a; = 10.3 N/cm?, oy = 18.0 N/cm?, and @ = 40.2 N/cm?.

Substituting (4-5) in (4-4) we have

t

o(t)=—-pl +/ m(t — 1) %(dev[hyl(r)B(r)])dr,

—0o0

where B= FFT and
o 1%
w1 = v [a1 +202(11 — 3)] CXP[—E(Il -3)— 6(11 —3)2]-
1

4.2. Uniaxial tension. In the case of the uniaxial tension we have the following simplifications within
the Cartesian coordinate framework {k;, k», k3}:

F =)k @k + 2 " (ky®ky+ k3 ®k3), B=ki @k +2 " (ky ks + k3 ®k3),

where /4 is the axial stretch.
The nontrivial stress components accordingly take the forms

4 t
m==p+3 [ me=0Z(n@FEO - o)) 4-6)
2 [ 0 2 -1
= =-p-3 [ me-0 L (nOFO-7O)d @

Since 02, (t) = 033(t) = 0 we can find the Lagrange multiplier from (4-7) and substitute it in (4-6) getting
the final formula

o11() =2 /0 mie =) 2 (@[ - 17 @] ), (4-8)

where ¢ = A(7) and the lower integration boundary has been shifted assuming no stressing before time
t=0.
Further simplifications are due to the assumption of the constant stretch/strain rate

=) =19 =constant.
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Figure 5. Uniaxial tension for various strain rates.

The latter assumption leads to the simple formulae

A—1 -1
= T = o
l4 4
for the times; consequently, (4-8) takes the form
[ A—E\] o 2 1
=2 [ [/)’ooJrﬁexp(—y.—g)]%[w(é)(f —&h]ae. (4-9)

Computations based on (4-9) are shown in Figure 5 for various stretch rates. We also scaled the material
constants oy — a1/ foo, 02 —> 02/ Poo, and ® — @/, in order to preserve the form of the quasistatic
curve, y 8 — 0, shown in Figure 5.

As in the case of small deformations, material stiffness and strength increase with the increasing
deformation rate for a given relaxation time. The stable (prior to failure) branches of the response curves
are limited by the curve corresponding to y 8 — 0 from the bottom and y § — oo from the top. The
range of the strength variation depends on the relative contribution of the elastic springs in the rheological
model shown in Figure 1. The greater the contribution of the spring corresponding to the dashpot the
larger the strength range. There is a complete analogy between the cases of small and finite deformations
as expected.

5. Discussion

A new approach for modeling rate-dependent failure of materials has been proposed. Its basic idea is
the introduction of energy limiters in the constitutive description of materials. Such limiters control
softening providing a failure account. The energy limiters were introduced in the models of isotropic
Hookean solids, which are suitable for a description of quasibrittle failure in ceramics, concrete, glass, or
even metals at high-velocity dynamic processes where the plastic deformation can be ignored. Besides,
the energy limiters were considered for soft materials at finite deformations. It should be clearly realized
that the proposed approach is suitable for materials whose failure is due to the bond rupture and cannot
be used for materials that fail due to large plastic deformations. If failure is accompanied by a gradual
accumulation of inelastic deformations then the approach of damage mechanics is probably more relevant
and should be used.
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Though we used essentially different material models in the considered examples of small and finite
deformations the qualitative results are very similar. Particularly, we observed that the increasing rate
of deformations leads to the increase of both stiffness and strength of the material. Such a conclusion
corresponds well to the experimental observations. Moreover, while the existing viscoelasticity theories
can describe the phenomenon of material stiffening under increasing deformation rate it is for the first
time that the presented approach clearly predicts the increase of the material strength (and not only
stiffening) with the increase of the deformation rate.

Concerning the limitations of the presented computations it should be emphasized that the considered
examples include only proportional loading and there are no returning deformation waves. Such waves
may lead to the material healing within the hyperelastic framework, which should be suppressed. To
avoid the material healing in the finite element computations it is possible, for example, to reduce the
values of the material parameters by orders of magnitude in the elements, which reached the critical
failure energy or arrived at zero stresses. This circle of questions is beyond the scope of the present note
where only a principal possibility of inducing a failure description in nonlinear viscoelasticity has been
considered. Nonetheless, the finite element implementation of the proposed method is important and
will be considered in a separate work.
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DYNAMICS OF DISCRETE FRAMED STRUCTURES:
A UNIFIED HOMOGENIZED DESCRIPTION

STEPHANE HANS AND CLAUDE BOUTIN

The dynamic behavior of discrete periodic one-dimensional structures is approached by considering
transverse vibrations of structures made of repeated unbraced frames. Assuming the frame size is small
compared to the modal wavelength, equivalent macroscopic beam descriptions are obtained by the ho-
mogenization method of periodic discrete media. The macroscopic parameters are expressed as functions
of the mechanical and geometrical properties of the frame elements.

Depending on the order of magnitude (relative to the scale ratio) of the shear force, the global bending
and the inner bending, four families of beams are shown to be possible. A generic beam governed by a
differential equation of the sixth degree is shown to encompass all the other types.

Simple criteria are established to identify the relevant model for real structures. A comparison of these
theoretical results with numerical modeling is satisfactory even in the case of weak scale separation. In
fact, an investigation of the higher orders terms shows that zero order descriptions are valid up to the
second order. Lastly, analogies with micromorphic media are discussed.

1. Introduction

Understanding the behavior of reticulated materials and structures is of interest in aeronautics (lattice
beams), in civil engineering (buildings), in materials science (mechanics of foam or glass wool), in
biomechanics (vegetable tissue or bones), and so on. When the dimensions of the representative cell are
smaller than the overall size, such three-, two-, or one-dimensional systems may be described respectively
by effective continuum media, plate or beam models. Numerous studies have been aimed at relating the
local structure to the global behavior. Particularly, periodic lattices have been studied through various
approaches such as transfer matrices, variational calculus [Kerr and Accorsi 1985], and finite difference
operators [Renton 1984]; see also the reviews [Noor 1988; Mead 1996]. Asymptotic homogenization
methods [Sdnchez-Palencia 1980] have been developed for homogeneous and periodic beams [Trabucho
and Viafio 1996; Buannic and Cartraud 2001a; 2001b], for periodic discrete structures [Bakhvalov and
Panasenko 1989; Caillerie et al. 1989], and in parallel with the homogenization of periodic media with
multiple parameters and scale changes [Cioranescu and Saint Jean Paulin 1999]. Amongst the applica-
tions of homogenization of periodic discrete media (HPDM) we mention the papers [Tollenaere 1994;
Moreau and Caillerie 1998; Boutin and Hans 2003], dealing respectively with the statics, buckling and
dynamics of trusses; [Pradel and Sab 1998], on the constitutive laws of foams; and [Le Corre et al. 2004],
involving fluid mechanics.

The present study, initially motivated by earthquake engineering, is concerned with the dynamics
of framed beams, which may be seen as “idealized buildings”. Among the numerous possible basic

Keywords: discrete structure, modal analysis, beam theory, homogenization, micromorphic media.
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cell architectures of one-dimensional repetitive structures, HPDM investigation of an orthogonal grid
geometry is of interest for the following reasons:

— The lack of bracing means that cells have a much lower shear stiffness than compression stiffness.
In this case, which is not uncommon in structural engineering, the method of multiple parameters
and scale changes [Cioranescu and Saint Jean Paulin 1999] captures the leading order (compression)
but misses the shear properties, which are found to vanish (with a loss of convexity of the elastic
potential), whereas in fact they are of lower order. HPDM overcomes this bias and predicts behaviors
that are not derivable by more classical upscaling methods. See [Buannic and Cartraud 2001a;
2001b], for example.

— It will be shown that the diversity of beam-like behaviors of repetitive structures [Stephen 1999] is
recovered by varying the mechanical properties of the basic frame elements. The high contrast of
shear and compression deformability enriches the local kinematics, inducing new beam-like models.
The macro behaviors can be classified according to three intrinsic mechanical parameters charac-
terizing the cell. Since these global parameters can be derived for any cell (braced or not), framed
beams can be considered as an archetypical case and the results extended to other kind of reticulated
beams.

— The strength of HPDM is to derive, without any prerequisite other than scale separation, a rigorous
and analytical continuous beam-like description in direct relation with the characteristics of the cell
elements. The formulation enables a parametric study and provides a clear understanding of the
several mechanisms governing the global behavior. The continuous description also highlights and
simplifies the modal analysis of the structure. This global vision is not accessible through finite
element modeling, which gives accurate numerical descriptions attached to a particular structure.

A first investigation on this topic was initiated in [Boutin and Hans 2003]. The wider objectives of
the present work are:

— To work out all possible transverse dynamic behaviors of these structures and to define in each case
the equivalent beam modeling. Depending on the mechanical properties of the cell, four families of
beams are identified. A generic beam, governed by a differential equation of sixth degree, is proved
to include all other mechanisms. This macro beam modeling involves three kinematic variables,
namely section translation, rotation and inner deformation dual to shear force, bending and inner
moments.

— To provide criteria to identify which model is relevant to a given real structure and to analyze the
range of validity and the accuracy of the continuum modeling. It is demonstrated that the maximum
number of homogenizable modes is of the order of a third of the number of cells. By investigating
correctors of higher orders, the zero order description is shown to be correct up to second order. This
may explain the fairly good accuracy of the continuum beam method that is observed numerically.

— To point out the analogy between these descriptions and those of micromorphic materials such as
Cosserat media or inner deformation media. Using a dimensional analysis based on the intrinsic
parameters of the cell, the conditions under which a reticulated medium may behave as a generalized
medium at the zero order are presented and discussed.
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The principles of the method will be given in Section 2 and applied to framed structures in Section 3.
The beam models are presented in Section 4. Their applications and numerical validation are discussed in
Section 5. Analogies with micromorphic media are developed in Section 6. The detailed implementation
of HPDM for framed structures is reported in Section 7.

2. The method of homogenization of discrete periodic media (HDPM)

The modal analysis of periodic lattices of interconnected beams is performed by HDPM in two steps
[Tollenaere and Caillerie 1998]: discretization of the balance of the structure under harmonic vibrations,
followed by the homogenization, leading to a continuous model obtained from the discrete description.
An outline of this method is given now; a detailed exposition including an example is given in Section 7.

Discretization of the dynamic balance. The structures we consider (see Figure 1 on page 1713) are
made of plate behaving as pure Euler-Bernoulli beam in out-of-plane motion. They are assembled with
perfectly stiff connections. Thus, the motions of each endpoint connected to the same node are identical
and define the discrete nodal kinematic variables of the system. The discretization consists in integrating
the dynamic balance (in harmonic regime) of the beams, the unknown displacements and rotations at
their endpoints being taken as boundary conditions. Forces applied by an element on its endpoints are
then expressed explicitly as functions of the nodal kinematic variables; see (7-7). The dynamic balance
of each element being satisfied, it remains to express the balance of forces applied by the elements
connected to a same node. Thus, the balance of the whole structure is rigorously reduced to the balance
of the set of nodes; that is, the discrete description using only the nodal variables is fully equivalent to
the complete description.

Asymptotic expansions. The key assumption of HPDM is scale separation. This means that the cell
size ¢ (in the direction of the periodicity) is small compared to the unknown characteristic size L of the
deformation of the structure under vibrations. Thus the scale ratio ¢ = £/L is such that ¢ << 1. The
existence of a macroscale implies that HDPM is limited to low frequency modes whose wavelength is
large compared to the cell size. In this case, the forces and displacements vary slowly from one node
to the next and can be considered as the discrete values of continuous functions to be determined. For
this purpose, a macroscopic space variable x is introduced along the periodicity axis and variables are
expressed as continuous functions of x coinciding with the discrete variable at any node n (x = x,,). For
instance, a continuous displacement U, (x) is defined in such a way that

U.(x = x,) = U(node n).

These quantities, assumed to converge when ¢ tends to zero, are expanded in powers of ¢. This
introduces the continuous functions U' of order i:

Us(x)=Ux)+e U () + 2 U (x) +- - - . (2-1)
Later on, the physically observable variables of a given order in ¢ will be denoted by a tilde; for example,
Ul(x)=¢U'(x).

All unknowns, including the modal frequency, will be expanded in powers of ¢.
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Since ¢ = ¢L is small with respect to x, the variation in variables between neighboring nodes n—1 and
n+1 is expressible using Taylor series; this in turn leads to the macroscopic derivatives. For instance,

Un+1)=U"%,) —I—e(Ul(xn) +L Uol(xn)) +82(U2(xn) +L Ul/(x,,) + %LZ UON(xn)) 4

Here, the periodicity is explicitly used and the constant internodal distance enables one to express these
Taylor expansions with a single parameter €. Finally, scale separation requires that, at the modal fre-
quency of the global system, the wavelength generated in each local element be much longer than
the element’s length. Consequently, nodal forces can be developed in Taylor series with respect to ¢
(expressions are given in Section 7D).

Normalization. To account properly for the local physics, it is necessary to integrate correctly the prop-
erties of the cell through a normalization. Indeed, the method of asymptotic expansions is based on
the identification of terms of the same power of ¢ in the expansions of the balance equations. The
identification makes sense under the condition that ¢ tends to 0.

The normalization consists in scaling the geometric and mechanical characteristics of the element
according to the powers of €. As for the modal frequency, scaling is imposed by the balance of elastic
and inertia forces at the macro level. Such a normalization insures that each mechanical effect appears
at the same order whatever the value of &. Therefore, the same physics is kept at the limit ¢ — 0, which
represents the homogenized model.

Macroscopic description. Expansions in powers of ¢ are introduced in the nodal balances. The relations
obtained being valid for any small enough &, the orders can be separated. This leads to balance equations
for each order, whose resolution defines the macroscopic governing equations. The descriptions presented
in Section 4 are limited to the leading order. Correctors of interest in the case of poor scale separation
are examined in Section 5.

3. Class of structures

Our study focuses on the harmonic transverse vibrations in the plane (ej, e;) of structures constituted by
a pile of a large number N of identical unbraced frames called cells (Figure 1). Cell elements, of length
h in the direction e3, are linked by stiff massless connections and behave as Euler-Bernoulli beams. The
following notation will be used:

— Level n contains two nodes, n; on the left and n, on the right. Cell n is made of one horizontal
element fn (the floor) of level n, supported by two vertical elements wn; and wn, (walls) linking
level n — 1 and level n.

— The parameters of walls (i = w) and floors (i = f) are: length ¢;; thickness a;; section area A;;
inertia in direction e3 I; = a?h /12; density p;; elastic modulus E; (Young’s modulus Ey in the
case of beam or Ey/(1—v) in the case of plates as considered here). The height of the structure is
H=N¢,.

Local variables. At level n, the motion of node n; (i = 1,2) in the plane (e;, e;) is described by the
displacements u|(n;), u»(n;) in the two directions and by the rotation 6(n;). Because of longitudinal
symmetry, these six variables can be replaced by the three variables (U (1), a(n), V (n)) associated to the
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rigid body motion of the pair of nodes (11, ;) and the three variables (6(n), A(n), ®(n)) corresponding
to the deformation of (n, n,); see Figure 2. The expressions of the variables are

[ U(n)
a(n)
[ O(n)
[ V(n)
A(n)
[ ©(n)

(uy(n1) +ui(nz))/2
(u2(ny) —uz(n2))/ty
O (n1)+0(n2))/2

(ua(ny) +uz(n2))/2
ui(n) —uy(ny)
0(ny) —0(ny)

Mean transverse displacement (along e;)

Rotation of level n
Mean rotation of nodes

Mean axial displacement (along e;)

Transverse dilatation
Differential rotation of nodes

At level n, the action of cell n on cell n + 1 consists in the transverse and longitudinal forces T(n;)
and N(n;), and the moments M(n;), i = 1, 2. These forces are exactly the opposite of those in the two
walls of cell n + 1 at the connections with cell . It is convenient to introduce the total and differential

level n

level n

Figure 2. Decoupling of transverse (left) and longitudinal (right) kinematics.
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forces defined by
[ T,(n) = T(n;)+T(my) Total transverse force
1 M(n) = {y(N(n2)—N(n1)) Moment of the differential longitudinal force
| M;(n) = M(n;)+M(ny) Total inner moment
[ N,(n) = N(n;)+N(np) Total longitudinal force
1 Tq¢(n) = T(ny)—T(n;) Differential transverse force
| My(n) = M(nz) —M(n;) Differential inner moment

There are six nodal balance equations, derived in Section 7 as (7-8), (7-9):

E

wny

. E B E E B E E B E
Node n>: Twnz_ Tw(n+l)2+ an =0, anz_ Nw(n+l)2+ Tfn =0, Mwnz_ Mw(n+l)2+ an =0, (3-2)

E

. E B B __
Node n;: Tuml_Tw(n-‘rl)l_an_O’ N wny

B B B B
NlU(’H‘l)l_Tfn =0, M Mu)(n-i—l)]_an =0, (3'1)

Longitudinal symmetry enables to split them into two uncoupled sets of three equations, governing
independently the transverse and longitudinal vibrations. Transverse vibrations are described by U (n),
6(n) and a(n) involved in the following balance equations associated with the forces T;(n), M,(n) and

M(n): .
T;(n) given by (3-1);+(3-2);

Balance of { M(n)  given by (3-2), —(3-1), (3-3)
M;(n) given by (3-2)3+(3-1)3

We will focus on transverse vibrations, but longitudinal vibrations, described by the complementary set
(namely (3-1); +(3-2)1, (3-2)2 —(3-1)2, (3-2)3—(3-1)3) and involving V (n), A(n) and ®(n) and the
forces N;(n), T4(n) and My (n), can be analyzed in the same manner [Boutin and Hans 2003].

Scaling. We consider structures whose walls and floors have similar lengths and are made of elastic
linear materials with moduli and densities of the same order of magnitude:

Ef/Ey=0(),  pr/po=0(Q1),  {;/ly=0().

The various physics of the basic frame are introduced through the walls and floors thicknesses that may
be different, hence inducing a large range of contrast of stiffness between elements, in compression and
bending. Those properties are specified by scaling the wall and floor thicknesses:

aw/tw = O(e) and ap/t, = O (),

where k,, and k; are fixed for each investigated structure. The reference frequency used for scaling the
modal frequencies is taken by convention as

W, = l 2 EU)AU) (3_4)
r — L V A ’

where A is the global linear mass of the structure. The modal frequency is scaled through the ratio
of the length of elements to their wavelength at this frequency. Because of linearity, the modes can
be normalized and the mean transverse displacement order is chosen at zero. The effective orders of
magnitude with respect to U/ L of the rotation of the section a and of the mean nodal rotation &, are
deduced through the homogenization process.
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Macroscopic parameters. In the expansions there appear naturally

the two walls, A, =2p, Ay,
(a) the linear masses of the floor, N =prArty/t,,
the cell, A =Ar+Ay;

(inner bending) 2E,I,, where [, = ag)h/IZ,

(b) the bending stiffnesses of the two walls, (global bending) E,l = Ey Ay 5}2( /2

the two walls, K, =2x,{,, Wherex, =12F, Iw/ffo,
(c) the macroscopic shear stiffnesses of the floor, Ky =xy f]% /Cw, Where k= 12E; I;/€3,
- - ~1
the cell, K~! =Kw1+Kf )
The macroscopic area moment of inertia / is that of a beam made of the two walls distant of {7, and
ki =12E; I; /€ l3 is the static bending stiffness of a bi-embedded beam.

4. Transverse dynamics of multi-framed structures

This section shows that the structures considered can exhibit four main kinds of behavior, according to
the frame characteristics. Starting from the three discrete kinematic variables U (n), a(n) and 6(n), the
beam-like model can be governed either

— by the single continuous variable U, corresponding to a shear beam,

— or by the two independent continuous variables U and a, corresponding to a slender-Timoshenko
beam,

— or by U and @, corresponding to an inner bending / shear beam,

— or by the three independent continuous variables U, o and § when transferred to a macroscopic
scale, in which case a double bending shear beam is obtained.

These models can be considered as particular cases of a generic beam.

Shear beam. The simplest macroscopic description is obtained (for instance) when walls and floors have
thicknesses of order &2: in symbols, a,, /£, = O(¢?) and ar/Cy, = 0(&?).

Leading macroscopic balance equations. In this case, the macroscopic transverse dynamics occurs at
frequency w of order O (w,(a,/€w)) = O (w,&?), denoted for this reason @,. The variables U° and 6°
are of the zero order, while the section rotation &2 is of the second order. Considered to leading order,
Equations (3-3) give
Ko (0% +07)+ A3 T0°=0 (1))
Ko(0¥ +8%) +K;0°=0 (M) (4-1)
K0°+E 167" =0 (M)
These equations represent the balance of, respectively, transverse forces, inner moments and differential
axial forces (inducing a macroscopic moment). The relation (4-1)M; defines the inner kinematic of the
section. Using this relation for eliminating ° in (4-1)T,, we obtain a differential equation of second
degree in 0o
KUY + A&} T° =0. (4-2)
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Thus, U° appears as the single driving macroscopic variable. The inner deformation of the section
measured by 6° and the rotation &2 can be derived from the knowledge of U° by means of the equations

K 5o = _ K sy

——U =—U".
K, Y TE.

Equivalent beam. These results allow one to construct an equivalent beam by defining the appropriate

behavior law. Equation (4-2) suggests that we define a macroscopic shear force 79 dual to the section
translation U° whose variations balance the inertia:

9° = (4-3)

0% = A&} 0°. (4-4)

This gives

T0=—k0". (4-5)
The force T° results from the balance of transverse force T;, but they are not identical; the former is
built from the elastic deformation (of the first order) exclusively, whereas T; contains all the effects,
including the inertia. Equations (4-4) and (4-5) correspond to the macroscopic shear beam equivalent to
(4-2) and governed by the two dual variables, U° and T that are sufficient to define the proper boundary
conditions for transverse vibrations. The macroscopic shear force is generated by the shear mechanism
of the frame. This latter results from the bending of frames beams bi-embedded at their endpoints, as
suggested by physical intuition and confirmed by the expression of K (item (c) on page 1715). The shear
beam reduces the three degrees of freedom at the local scale to one - the section translation - at the macro
scale. Although Y is of the zero order, it disappears, as @2, in the macro description. These last variables
have the status of "hidden” internal variables driven by the macro variable, as indicated in (4-3). This
shear beam is the continuous version of the shear model widely used in earthquake engineering.

Slender-Timoshenko beam. Consider now structures whose wall and floor thicknesses are of the same
order as the scale ratio, so a,, /€, = O(¢) and ay/{,, = O(¢).

Leading macroscopic balance equations. In this case, detailed in Section 7F, transverse vibrations oc-
cur at frequency @; of order O (w,(ay/€,)) = O(w,&) and variables U 009, a0 are of the zero order.
Considered to leading order, Equations (3-3) yield

Ko(0” +0Y)+ A2 T°=0 (1)
Ko(0Y +0%) + K; (0°—a%) =0 (M) (4-6)
Ki(0°-a") +E, 13" =0 (m)

As above, the balance of inner moments (4-6)M, provides the inner kinematic of the section,
=0 70
~ U
g0 = K(—a _ —) 4-7)
The use of this relation to eliminate 6° in (4-6)T, and (4-6)M gives

K(UO” + &O/) + AC'Z)%UO — 0’
(4-8)

K0 +&% - E, 13" =0.
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This shows that the translation U° and the rotation &° of the section are the two independent governing
variables, while §° is linked to them by (4-7). Combining the two parts of (4-8) we obtain

- A@? - -
E,l (UO’"’ + e 0" ) —AG T =0 (4-9)

Equivalent beam. The preceding description is close to that of a Timoshenko beam. The presence of two
kinematic variables leads us to introduce a shear force 79 dual to the translation and a bending moment
MO dual to the section rotation. From (4-8), they are defined by

0=k (0 +&%, M°=E,I1a", (4-10)
so that the macro description (4-8) is now
T =Aa?0° MY =-7° 4-11)

meaning that the variations of shear force balance the inertial effect, and those of bending moment
balance the shear force (as in classical beam theory). The macroscopic shear force (4-10); is generated
by the shear deformation of the cell already described for the shear beam. The shear distortion of the
cell now combines the gradient of the translation and the section rotation. The macroscopic bending
moment of the whole structure comes from simultaneous traction-compression of walls, as indicated by
the expression of the macro area moment of inertia / (item (b) on page 1715). The behavior laws (4-10)
are those of a beam described by

— the translation U° and rotation ¢° of the section, and

— the shear force 7° and bending moment MO.

which suffice to express the correct macroscopic boundary conditions. The number of degrees of freedom
is once again reduced since #° disappears from the macro description to become a “hidden” internal
variable defined from the driving variables by (4-7).

Despite similarities, this model does not exactly fit the usual Timoshenko beam for two reasons. First,
for massive beams, the Timoshenko correction due to shear only arises in case of small slenderness.
Here the shear effect is present even for large slenderness. Secondly, for a Timoshenko massive beam,
no effect of rotation inertia appears (although the discrete moment balances include all the contributions).
These differences come from the framed cell whose shear deformability is much larger than in a massive
beam and whose rotation inertia is much smaller (so its effect appears only at higher orders).

Note on the scaling. We will prove for the case at hand that transverse modes only occur for frequencies
o = O(wr(ay/t,)) (the arguments apply to other cases as well). At a frequency v < w,(a, /), the
inertia A, w?0° disappears from (4-6)T;, so a quasistatic solution would be obtained. Conversely, at
a frequency w > w,(a,/€y), (4-6)T; reduces to Awa)szo =0, so U® = 0. Thus, we are left with
equations involving @° and #°. Such gyration deformations without translation at the leading order do
not correspond to a transverse mode.

Inner bending / shear beam. A less usual behavior arises when a,, = O (¢{,,) and, say ay = O (e33¢,):
in other words, when the floors are significantly more flexible than the walls, since Ky = 0(e’K ).
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Leading macroscopic balance equations. In this case, transverse vibrations occur for frequencies @, of
order O(w,(ay/€,)%); U and 6° are of zero order, and @2 is of second order. The derivation of the
behavior requires considering the first two orders of the transverse force and inner moment balances,
(3-3); and (3-3)3, together with the leading order of the bending moment balance (3-3),. We obtain

Ko (T +6) =0 (T))
K (0¥ +6%) + Ap@30° 42,1, (0" +20°") =0 (T41)
K, (T +0°) —0 (M) (4-12)
Ko(0¥ +0°) + K;0°  +2E,1,(20°" +20°) =0 (Mp)
K ;0" +E a2 =0 (M)

As before, the zero order nodal moment balance supplies the inner kinematic of the section:
09 +8°=0 (4-13)
The elimination of the second order terms between (4-12)T;; and (4-12)M;; leads to
2E, 1, U = K; 0 + A,@} O°. (4-14)

The behavior (4-14) differs fundamentally from that of the slender-Timoshenko beam. Here, the fourth
degree term results from inner bending of walls. The quantity 2E,,/,, indicates the coupling between
walls, due to the nonlengthening of floors, very stiff in their axis. This coupling enforces the bi-embedded
bending of the floors (of very low transverse stiffness Kr), which in turn induces a transverse force. Equa-
tions (4-14) and (4-13) imply that the driving variables are the translation U° and the inner deformation
of the section expressed by °. The section rotation, of order two, is a hidden internal variable defined
by

pra Ky e

4-15
Eyl 1

Equivalent beam. According to these results, two macroscopic forces are defined, a shear force T° dual
to the translation and an inner bending moment Ji(° dual to the inner deformation:

TO = _Kf ﬁo/, ./6(,0 = _2Eu)1w 9’0/. (4_16)

T° takes a form similar to that of the previous beams, except that shear stiffness is induced by the floors
alone and the section rotation disappears. The inner moment .IL° due to the simultaneous bending of the
walls is new. Using these variables, (4-13) and (4-14) become

(TO4+mY) = Aa3 0°,  4°=-0Y (4-17)
The first of these equations means that the inertia is balanced by the variation of the total shear force,
which includes T°, induced by the shear of the cell, and the shear force M 0/, due to the inner bending of
the walls. The inner moment balance (4-17);, defines the inner kinematic of the section. In accordance
with (4-12)M, a global bending moment M° = E,, I &2 such that M*" = —7° could also be defined, but
its effect (traction-compression of walls) is insignificant.
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We conclude that the inner bending / shear beam is described by the following macroscopic variables,
sufficient to express the macroscopic boundary conditions:

— the section translation U° and inner deformation associated to the rotation 50;

— the shear force 7° and inner bending moment MO

This beam model, where the cell inner deformation subsists as a macroscopic variable, is of the same
kind as the one proposed by [Kerr and Accorsi 1985].

Double bending shear beam. Here is now investigated the particular situation allowing the global bend-
ing, the inner bending of walls and the shear of the cell to have similar intensity. This specific case occurs
when a,, /€, = O(1) and as /€, = O(*?) so that Ky = O(%K,).

Leading macroscopic balance equations. In this case, the transverse vibrations occur at frequency @; of
order O (w,(ay/€y)) and U, 8°, a0 are of zero order. As in the previous case, the determination of the
behavior requires the first two orders of the mean transverse force and inner moment balances, (3-3);
and (3-3)3, and the leading order of global moment balance (3-3),. We obtain

Ky (0% +6) =0 (1)
K0 +6%) + AW@?0°+2E,1,(0°" +26°") =0 (1))
Ko (0" +6) =0 (M) (4-18)
Ko (0% +6%) + K7 (0°-°) +2E,1,20°"+26°") =0 (My)
Ky (0°-a°) + E 13" =0 (M)

This system is similar to that of the inner bending / shear beam, but &@° appears in (4-18)M,; and (4-18)M.
Elimination of the second order terms between (4-18)T;; and (4-18)M;; leads to

0'40°=0, Kp(0°—a") —Ap@0°+2E,1,0° =0, K;(0°—a°)+E,1a"" =0. (4-19)
Combining these three equations gives the sixth-degree differential equation

Eyl Ap@? -

2E, I, E,I ~ ; 22 U
wlwlyw UO////// _ (2Ew1w n Ewl) UO//// _ UO// + Awa)% UO =0. (4_20)

Ky Ky
Equation (4-20) shows that this nonclassical beam integrates the three previously identified mechanisms
and requires three kinematic variables. Remarkably, the degrees of freedom at the macro scale are
identical to those at the micro scale. Consequently, this is the richest continuous modeling that can be
extracted from the class of discrete structures under study.

Equivalent beam. The beam-like description involves three forces dual to the section translation U° and
rotation &°, the inner deformation §°. They are defined by

shear force 70 = —K; (0 +3a9)
bending moment M° =E,I ad 4-21)
inner moment MO = —2Ewlw9~0/
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and Equations (4-19) now read

(FO+ 1) = Ay 0°, 019 =79, §Y4d%=0 (4-22)
The beam model (4-21), (4-22) combines features of the inner bending shear beam and of the slender-
Timoshenko beam (for which K¢/K,, = O(1) so that the shear force and the inner kinematic differ from
the present case). We conclude that the double bending shear beam requires six macroscopic boundary
conditions to be expressed with the above defined macroscopic variables.

Continuous family of macro behaviors. A systematic study demonstrates that the behaviors evolve grad-
ually according to the properties of the frame elements. To illustrate this, let us fix the thickness of walls
at a,, /€, = O(¢) and decrease the thickness of the floors. The following descriptions are obtained (for
briefness, only the equations expressed with U are given):

ar 1,2 0" Afd’g/‘* 0" =2 750
w w
» - A@? - -

;’—f —0@) Ewl(Uo”” n TIUON) = AG*T°
w

ar - ~

g_f _ 0(83/2) : KfUON—i-Awa%MUO -0
w

ar ~ ~ ~

g—f = 0@ K0 4+ Ay U° = 2E,1,0°"
w

Z—f =0(% Awd)gﬁo = 2Ewlw00””
w

For floors thickness such that as/(,, = 0(g'/?) or O(¢), the global bending and shear of the cell (gov-
erned by the wall or the frame flexibility) are of the same magnitude and lead to slender Timoshenko
models. The decrease of the floor thickness increases their flexibility and in turn prevents the global
bending. Thus, in a first step, where ay /{,, = 0(&3/?), a shear beam governed by the floor flexibility is
recorded; in a second step, where ay /,, = O (¢3/3), the inner bending of walls appears leading to an inner
bending / shear beam; and lastly, with ay /¢, = 0(g?), the floor’s participation (which only synchronize
the wall motions) vanishes and an inner bending beam is obtained.

The second example concerns beams of identical walls and floors thickness. A continuous passage
from the global bending beam (as a perforated beam) through a Timoshenko beam and finally a shear
beam is observed when reducing the thicknesses:

(72=0(F)=06": EL 109" = NGO
- AG? ~ s
1o = 0(?_;) =0() Ewl(UO”” + =2 UO”) = AG}T°, (4-23)
w
a a ~ 1/ - ~
fu— o(#) =03 KO + A&3,0° = 0.

To summarize, three elastic parameters determine the different macroscopic behaviors:

— the cell shear stiffness K, which may be reduced to the wall or floor stiffness (K, or Ky);
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— the global bending stiffness E,,I;

— the inner bending stiffness 2F,,1,,,.

Owing to scale separation, these parameters are given by the static properties of the elements (see (b)
and (c) on page 1715). The scaling of the thicknesses (then stiffnesses) is essential to capture the physics
and to identify all possible models. Without scaling, meaning in fact a,,/{,, = O(ay/{y) = O(1), the
only model that could be obtained would be a global bending model, irrelevant for most cases.

Despite a common architecture, the various structures exhibit very different dynamic behaviors: for
instance, the eigenfrequencies f; follow the series of odd integers, fi/f1 = (2k — 1) for cantilever shear
beam and are approximately proportional to the series of square odd integers, fi/fi ~ (2k — 1)%/1.44
(k > 1), for the bending beam.

Generic beam model. The aim is to build a model that may degenerate to any of the previous model.
To include all the mechanisms, such a model must involve the three kinematic variables U, a, 8. This
generalization sacrifices the uniformity in order of magnitude of the several terms (i.e., according to the
value of the parameters, some terms could be negligible in this generalized model). For this reason, the
tilde and exponent order are removed from the variables. The natural way to associate in a generic beam
the slender-Timoshenko and inner bending shear beam properties is to define the following behavior
laws:

shear force T =—KU' +a)
bending moment M = E,lo’ (4-24)
inner moment M =2E,I,U"

and the force and moment balance equations, associated with the inner kinematic of the section:
(T+M) =A’U, M =-T, K, (U +6)+KsO0—a)=0. (4-25)
Thus, the sixth order equation governing the generic beam takes the generalized form

2E,ILE1

E,I
. U™ — (2Eyly+ Ey)U"" — %szUU + Aw?U =0. (4-26)

Energy balance and boundary conditions. The consistency of those definitions can be checked by estab-
lishing the energy balance of this generic beam. For this purpose, multiply (4-25)a by U and integrate
by part over the beam length H:

H H H
/ A?U%dx :/ (T"+M")Udx = [(T + MYV —/ (T + MU' dx.
0 0 0
Taking into account (4-25), and then integrating again by parts, the last integral becomes

H H H
/ T(U/—i-a)dx—i-/ M/adx+/ MU dx
0 0 0 .
=/ (TWU' +a)—Ma' —MU")dx + [Malf + MU'
0
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Finally, using the behavior laws (4-24), we get

H H 2 2 2
T M M P H H H
/0 szUzdx=/O (f+Ewl+m)dx+[(T+/l/t)U]o —[Ma]] —[mU]) @27

Elastic energy Work of boundary conditions

This energy balance equation states the equality of the kinetic energy with the elastic energy associated to
the three mechanisms and the energy provided at the boundaries (which defines explicitly the appropriate
boundary conditions). This suggests that, to define the macroscopic constitutive laws of the equivalent
continuous beam, it is more general to use the three global cell parameters involved in the shear, global
and inner bending rather than the precise frame cell geometry. When expressed with these global cell
parameters, the beam-like descriptions established above may be employed for other symmetric cells, as
explained in the next section.

5. Behavior of real structures

This section deals with practical applications of the preceding results. Real structures, made up of a finite
(even if large) number of cells, themselves of finite size, match only imperfectly the homogenization
conditions stipulating that the scale ratio should tend to zero.

As a first consequence, the homogenized descriptions only provide reasonable approximations to the
behavior. What is meant by reasonable will be clarified in Section 5B, devoted to numerical modeling,
and in Section 5C, where the effective order of the corrector is analyzed. A second consequence is of
first importance for problems involving, in addition to the scale ratio, other small physical parameters
(here the thickness to length ratios). For a given structure, what is the proper choice amongst the possible
behaviors, or, in other words, what is the appropriate scaling?

5A. Identification of the relevant modeling. To establish the modeling, hence the proper scaling for a
real structure, let’s proceed as follows. Consider a given periodic structure of cell size £, vibrating at
macro scale and admit for the moment that the physical macro length L associated to these oscillations
can be correctly assessed. Since ¢ is known, the finite physical scale ratio

4
F=—_
L
of this structure under these vibrations is therefore defined. The numerical finite value of each small
parameter (here geometrical) characterizing the real cell can also be quantified and equalized to the
physical scale ratio ¢ at a particular power. This power, then replaced by a close integer or rational
number, supply unambiguously the physical scaling consistent with the real problem in consideration.
Performing homogenization with this scaling consists in replacing the physical value & by a mathe-
matical ¢ tending to zero. By doing so, the relative orders of magnitude of the physical terms are kept
identical from the real cell to the continuous model obtained at the limit. Finally, the real structure can be
seen as an imperfect realization (for the small but finite mathematical value ¢ = ¢) of the homogenized
continuous model built with the proper scaling. The smaller ¢ is, the better would be the continuous
approximation. Thus, in real cases it is possible to identify the right continuous description, provided
that the macro length L is reliably estimated.
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Macroscopic length of modal vibrations. Length L is evaluated by a dimensional analysis realized at the
macroscopic scale, which gives classically [Boutin and Auriault 1990]
o)
~0@U)

(5-1)

This estimation is consistent with the asymptotic expansion since the increment of the macroscopic
variable on one cell, € 0, U, has to be of order ¢ compared to its current value, U. This implies: £ 0,U =
O(U) = 0({U/L), leading to (5-1). Apply this result to the k-th eigenmode of cantilever beams
(embedded at base and free at the top) of length H (the cantilever conditions are taken for concreteness):

— For shear beams, the modal analysis shows that modal shape are expressed on the basis of two
exponentials {e**/L0)} L, being solutions of cos(H /Ly) = 0 so that Ly = 2H /(z (2k — 1)). From
the estimation (5-1), L is the researched characteristic length of the k-th mode of shear beams.

— For bending beams, the decomposition basis is {e™/*/L0), /LY where Ly is a solution of
cos(H/Ly) = 1/ cosh(H/Ly), whose zeros are close to Ly >~ 2H /(x (2k — 1)). Here again from
(5-1), Ly is the characteristic length of the k-th mode of bending beams.

— For other beams combining shear and one (or two) bending effects, two (or three) spatial constants
appear in the basis of exponentials. It can be proved algebraically that the smaller value (which
must be considered for defining the characteristic length) is always close to Ly >~ 2H /(x (2k — 1)).

Thus, for an N-level structure (H = N {,,) and independently of the model, the macroscopic length
Ly of the k-th embedded-free mode is known and the physical scale parameter is related to the mode
number and to the number of cells:

0 w@2k—1) L. 2H
T Ly 2N KT ICk—1)

&k (5-2)
To illustrate (5-2), consider the first mode of a ten-level building as in Figure 1. From (5-2) &, = 0.15
and if £, = {y =3m and a, = af = 50cm = O(£1{,), a slender-Timoshenko beam is expected. If
a, =ay =20cm = 0(5}'5&0), the behavior would be that of a shear beam, and so on.

Interestingly, (5-2) indicates that the maximum number of modes respecting the scale separation is
limited to N /3 (a third of the number of cells), beyond which HPDM is irrelevant.

Identification criterion based on dimensionless parameters. To identify the global behavior of a given
structure, more physical insight, as well as generality, would be obtained by working in terms of macro-
scopic elastic coefficients of the cell rather than in terms of its elements thicknesses. In this aim, since the
macro lengths are quite similar whatever the modeling, a dimensional analysis is realized on the generic
beam. The change of variables x = x/L (with the mode to be specified later) transforms the governing

equation (4-26) into
Q?
Cy U _ (1+ ) U*" — 02 u*"’ + F U*=0, (5-3)

where, by construction, the dimensionless terms marked with x are O (1) and

o Enl _2Euly _2L,  p A@’L?

— 7 — s 5_4
KL? TR i K (5-4)
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C evaluates the global bending effect compared to shear effect and y the inner bending compared to
global bending. C and y supply efficient identification criteria of behavior: according to their order of
magnitude with respect to &, Equation (5-3) degenerates into simplified forms in such a way that all the
models are recovered. For instance, if C = O(1) and y = O (¢), the terms related to Cy and y disappear
and the resulting model is

s/ R QZ *
U= +QU _FU =0,

which corresponds to a slender Timoshenko beam, and similarly for the other cases. By doing so, seven
behaviors are obtained depending on the value of C, Cy and y compared to & and £~!. A synthetic
representation (Figure 3) is deduced by mapping the domain of validity of each behavior according to
the two parameters p and g defined by

C=3" and y=3". (5-5)

We remark that y and the constant £ defined by

_Eul _El (LN _ oo iy
P=xp =x2\z) =Cé =¢ (5-6)
K2~ KL2\{,
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Figure 3. Domains of validity of the equivalent beams according to values of p and ¢
defined by C = &7 and y = £9. Beams made of a given cell are located on a straight line
issued from point P (p = 2, g = 0). On this line, the representative point moves away
from P when increasing the order £ of the mode and closer to P when increasing the
number N of cells. For example, the two dotted straight lines correspond to the behavior
of the first mode in function of the number of levels (numbered points) for the F; and
F> structures studied in Section 5B.
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provide two intrinsic parameters of the cell (for the structures being studied, a,, < ¢, = O({y) implies
y < 1). Therefore, values of p and g enabling one to define the behavior of beams made of a given cell
(f and y fixed) are determined in the following manner: in terms of € — which depends on the number
of cells and on the mode number; see (5-2) — p and ¢ are given by

(p—2)loge =logf and glogé =1Ilogy;

then, eliminating &, we get

(p—2)logy —qlogpp =0. (5-7)
Thus, in the (p, ¢) plane, the possible behaviors of beams made of a given cell necessarily lie on the
straight line issuing from point P (p = 2, ¢ = 0) of (5-7). For beams made of a given number of cells,
the position on the line moves away from P as the mode number is increased (¢ increases). Conversely,
for a given mode number, the position on the line approaches P as the number of cells increases (and
¢ decreases). Consequently, the modes of a given structure are not necessarily described by a unique
macroscopic model. For instance, the description could be a bending beam for the first few modes, then
a slender-Timoshenko beam and finally a shear beam for the higher modes: see Figure 3. Conversely,
at a given mode order, if the number of cells is increased, the opposite evolution from shear to bending
beam arises. This corresponds to the well known effect of slenderness in beam theory.

5B. Numerical validation. To investigate the relevance of the homogenized descriptions for structures
of finite number of cells, we made comparisons with numerical simulations. We modeled a large number
of fictitious structures, each made of basic frames having walls and floor of length 3 m and modulus
E =200 GPa. The diversity that allows most of the cases to be covered was introduced in two ways.
First, the number N of cells varies from 5 to 1000; secondly, two basic frame have been used:

— Fy, whose walls and floor thicknesses are identical (0.1 m), and

— F,, whose walls are thicker (1 m) than the floor (0.15 m).

For each of these structures, considering clamped-free boundary conditions, the four first eigenmodes
were calculated using three independent methods:

— First, a direct numerical treatment of the structure was carried out with the finite element code RDM6,
using a beam element for meshing each beam of the structure. The convergence criterion was based
on the relative eigenfrequency error being less than 1074,

— Next, the eigenmodes were determined using generic beam modeling, with appropriate intrinsic pa-
rameters for the basic frames (f = 675 and y = 1/2700 for Fi, and f = 1336 and y = 1/27 for F3) and
appropriate boundary conditions (U =0, a =0, & = 0 on the clamped base, and T =0, M =0, M =0
on the top). The resolution (not presented here) followed the modal method; the eigenfrequencies are
the zeros of the 6 x 6 determinant of equations describing the boundary conditions.

— Finally, the proper modeling of each structure is identified from the calculated values of C and y,
compared to € =z /2N power. The proper boundary conditions are expre