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ANALYSIS OF MULTIPLE AXISYMMETRIC ANNULAR CRACKS

EBRAHIM ASADI, SHAHRIAR FARIBORZ AND MOJTABA AYATOLLAHI

The solution of axisymmetric Volterra climb and glide dislocations in an infinite domain is obtained
by means of the Hankel transforms. The distributed dislocation technique is used to construct integral
equations for a system of coaxial annular cracks where the domain is under axisymmetric tensile load.
These equations are solved numerically to obtain the dislocation density on the surfaces of the cracks.
The dislocation densities are employed to determine stress intensity factors for annular and penny-shaped
cracks.

1. Introduction

Large elastic bodies containing multiple interacting cracks situated far from the boundary may be consid-
ered as infinite regions weakened by cracks. An infinite domain containing a penny-shaped crack under
axisymmetric tension is the simplest three-dimensional problem in fracture mechanics. The solution
of this problem dates back to an article by Sneddon [1946], wherein the exact solution to the problem
was derived. The solution of a penny-shaped crack under general loading in the form of Fourier series is
rendered in the book by Kassir and Sih [1975]. Guidera and Lardner [1975] used the Somigliana formula
to analyze a penny-shaped crack. The component of displacement discontinuity was presented as the
solution of a system of three integral equations. A penny-shaped crack in a transversely isotropic infinite
body subjected to arbitrary normal and shear tractions was solved by Fabrikant [1987]. Collins [1962]
treated the problem of an infinite elastic solid containing two parallel penny-shaped cracks where the axis
of symmetry of the problem passed through the centers of the cracks. In his study, the representation of
displacement field devised by Green and Zerna [1954] was used to reduce the problem to the solution of
a system of four Fredholm integral equations. The formulation, however, becomes extremely involved
where the number of cracks increases. Isida et al. [1985] analyzed two elliptical parallel cracks by
means of the body force method. Interaction among multiple penny-shaped cracks was studied by several
investigators, see for example [Kachanov and Laures 1989] and for the most recently published article
[Zhan and Wang 2006]. In the former article, the method developed by the first author for the analysis
of several cracks was employed to study the interaction of arbitrarily located penny-shaped cracks in a
three-dimensional body. In the latter study, the boundary collocation technique and average method for
surface traction of cracks were used to solve the governing equations. The stress intensity factor for an
annular crack situated in an infinite space under general loading was determined by Nied and Erdogan
[1983] and by Selvadurai and Singh [1985] and Clements and Ang [1988] under axisymmetric normal
loading. Eigenstrain solutions for axisymmetric crack problems in terms of Lipschitz–Hankel integrals
was derived by Korsunsky [1995]. The stress fields are hypersingular at the eigenstrain ring yielding
hypersingular integral equations for the ensuing crack problem.

Keywords: infinite domain, axisymmetric, annular crack, Volterra dislocation, dislocation density, Hankel transform.
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In the present paper, utilizing the Popkovich–Neuber potentials, the solution of axisymmetric climb
and glide edge dislocations is carried out by means of the Hankel transformation in an infinite isotropic
domain. The stress components exhibit the well-known Cauchy-type singularity at dislocation location.
The distributed dislocation method Hills et al. [1996] is employed to formulate integral equations for
the dislocation density functions on a system of annular and/or penny-shaped coaxial cracks under the
axisymmetric remote tensile load. These equations are of Cauchy singular type which are solved numer-
ically. The modes I and II stress intensity factors at the crack edges are obtained and the interaction of
two coaxial cracks is investigated. The interaction of annular cracks embedded in a half-space or strip
under axisymmetric conditions may be analyzed by the procedure devised in this article.

2. Solution of the Volterra ring dislocation

In the linear theory of elasticity for isotropic materials neglecting the body force, the displacement vector
u may be represented in terms of a harmonic vector B and a harmonic scalar B0 that is, the well-known
Popkovich–Neuber solution [Lur’e 1964] as

u = B−
1

4(1− ν)
grad( R · B+ B0), (1)

where ν is the Poisson’s ratio of the material and R is the position vector. For axisymmetric problems it
is convenient to utilize cylindrical coordinates and choose B = B3k, where k is the unit vector in axial
direction. Therefore, the components of displacement vector by virtue of R = rer + zez yield

ur =−
1

4(1− ν)

(
∂B0

∂r
+ z

∂B3

∂r

)
, uθ = 0, uz =

3− 4ν
4(1− ν)

B3−
1

4(1− ν)

(
∂B0

∂z
+ z

∂B3

∂z

)
. (2)

The constitutive relationships in axisymmetric problems of linear elasticity are

σrr =
2µ

1− 2ν

[
(1− ν)

∂ur

∂r
+ ν

(
ur

r
+
∂uz

∂z

)]
, σθθ =

2µ
1− 2ν

[
(1− ν)

ur

r
+ ν

(
∂ur

∂r
+
∂uz

∂z

)]
,

σzz =
2µ

1− 2ν

[
(1− ν)

∂uz

∂z
+ ν

(
ur

r
+
∂ur

∂r

)]
, σr z = µ

(
∂ur

∂z
+
∂uz

∂r

)
, σrθ = σθ z = 0,

(3)

where µ is the elastic shear modulus of the material. Substituting (2) into (3), we arrive at the stress
components in terms of the potentials B0 and B3:


σrr

σθθ
σzz

σr z

=
µ

2(1− ν)



2ν
∂B3

∂z
−
∂2

∂r2 (B0+ zB3)

2ν
∂B3

∂z
−

1
r
∂

∂r
(B0+ zB3)

2(1− ν)
∂B3

∂z
−

(
∂2 B0

∂z2 + z
∂2 B3

∂z2

)
(1− 2ν)

∂B3

∂r
−
∂

∂r

(
∂B0

∂z
+ z

∂B3

∂z

)


. (4)
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The conditions representing a Volterra-type climb ring dislocation located at r = a, z = 0 in a three
dimensional infinite domain with the line of dislocation in radial direction are

uz(r, 0+)− uz(r, 0−)= δz H(a− r). (5)

The conditions for a glide dislocation read as

ur (r, 0+)− ur (r, 0−)= δr H(a− r), (6)

where in (5) and (6), δz and δr designate the dislocation Burgers vectors and H(· · · ) is the Heaviside
step-function. Moreover, the continuity of traction vector on the line of dislocation requires that

σzz(r, 0+)= σzz(r, 0−) and σr z(r, 0+)= σr z(r, 0−). (7)

For climb edge dislocation the problem is symmetric with respect to the plane z = 0, whereas it is
antisymmetric for glide dislocation. Therefore, it is convenient to analyze the two problems separately.
For the symmetric problem the half-space z > 0 is subjected to the boundary conditions

uz(r, 0)=
δz

2
H(a− r) and σr z(r, 0)= 0. (8)

The boundary conditions for glide dislocation for the region z > 0 are

ur (r, 0)=
δr

2
H(a− r) and σzz(r, 0)= 0. (9)

Consequently, the dislocation solutions for the climb and glide dislocations reduce to the solutions of
two harmonic equations

∂2 Bi

∂r2 +
1
r
∂Bi

∂r
+
∂2 Bi

∂z2 = 0 i = 0, 3, z > 0, (10)

subjected to boundary conditions (8) and (9), respectively. The solution to (10) is achieved by means of
the Hankel transform. The Hankel transform of order ν of a sufficiently regular function f (r) is defined
[Sneddon 1972] as

F(ξ)=
∫
∞

0
r f (r)Jν(ξr)dr , (11)

where Jν(· · · ) is the Bessel function of first kind of order ν. The inversion of Hankel transform yields

f (r)=
∫
∞

0
ξF(ξ)Jν(ξr)dξ . (12)

The zero order Hankel transform of (10), assuming that the potentials are O(r−α) as r→∞ for some
α > 0.5, leads to two second order ordinary differential equations

d2 B̄i (ξ, z)
dz2 − ξ 2 B̄i (ξ, z)= 0 i = 0, 3, z > 0, (13)

where B̄0(ξ, z) and B̄3(ξ, z) are zero order Hankel transforms of B0(r, z) and B3(r, z), respectively. The
solution of (13) and (14), which is finite as z→∞, is readily known

B̄i (ξ, z)= Qi (ξ)e−ξ z i = 0, 3. (14)
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We substitute boundary conditions (8) and (9) into (2) and (4), take the Hankel transform of the resultant
equations and utilize (14) to obtain

Q0(ξ)= (2ν− 1)a
J1(ξa)
ξ 2 δz, Q3(r, z)= a

J1(ξa)
ξ

δz (15)

for climb and

Q0(ξ)= (ν− 1)aπ
η(ξ, a)
ξ 2 δr Q3(r, z)=

aπ
2
η(ξ, a)
ξ

δr (16)

for glide dislocation. In (16) the function η(ξ, a) is defined as

η(ξ, a)= J0(ξa)H1(ξa)− J1(ξa)H0(ξa), (17)

where Hν(· · · ) stands for the Struve function of order ν [Abramowitz and Stegun 1964]. The displace-
ment and stress components in view of (14)–(16), (12), (2) and (4) yield

ur =
a

4(1− ν)

∫
∞

0

[
δz(2ν− 1+ ξ z)J1(ξa)+πδr

(
ν− 1+

ξ z
2

)
η(ξ, a)

]
J1(ξr)e−ξ z dξ,

uz =
a

4(1− ν)

∫
∞

0

[
δz(2(1− ν)+ ξ z)J1(ξa)+

πδr

2
(1− 2ν+ ξ z)η(ξ, a)

]
J0(ξr)e−ξ z dξ,

σrr =
µa

2(1− ν)

{
δz

∫
∞

0
J1(ξa)

[
ξ(ξ z− 1)J0(ξr)+

1
r
(1− 2ν− ξ z)J1(ξr)

]
e−ξ z dξ

+
πδr

2

∫
∞

0
η(ξ, a)

[
ξ(ξ z− 2)J0(ξr)+

1
r
(2(1− ν)− ξ z)J1(ξr)

]
e−ξ z dξ

}
,

σθθ =
µa

2(1− ν)

{
δz

∫
∞

0
J1(ξa)

[
−2νξ J0(ξr)+

1
r
(2ν− 1+ ξ z)J1(ξr)

]
e−ξ z dξ

+
πδr

2

∫
∞

0
η(ξ, a)

[
−2ξν J0(ξr)+

1
r
(2(ν− 1)+ ξ z)J1(ξr)

]
e−ξ z dξ

}
,

σzz =
−µa

2(1− ν)

∫
∞

0

[
δzξ(1+ ξ z)J1(ξa)+

πδr

2
ξ 2zη(ξ, a)

]
J0(ξr)e−ξ z dξ,

σr z =
µa

2(1− ν)

∫
∞

0

[
−δzξ

2z J1(ξa)+
πδr

2
ξ(1− ξ z)η(ξ, a)

]
J1(ξr)e−ξ zdξ, z > 0.

(18)

The stress and displacement fields for climb ring dislocation were obtained by Kroupa [1960] using the
Galerkin solution of linear elasticity theory and solving the ensuing biharmonic equation. The solution
in [Kroupa 1960] may be recovered by putting δr = 0 in (18). In order to study the asymptotic behavior
of stress components σzz and σr z at the dislocation location, we set z = 0 in the last two equations in (18),
and arrive at

σzz(r, 0)=−
µaδz

2(1− ν)

∫
∞

0
ξ J1(ξa)J0(ξr)dξ, (19)
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σr z(r, 0)=
µaπδr

4(1− ν)

∫
∞

0
ξ J1(ξr)η(ξ, a)dξ, z > 0.

These two integrals can be found in [Gradshteyn and Ryzhik 1980], and substituting their values gives

σzz(r, 0)=
µδza

π(1− ν)
E(r/a)
r2− a2 , r < a,

σr z(r, 0)=
µπaδr

4(1− ν)

{∫
∞

0
ξ J1(ξr)

[
J0(ξa)

(
H1(ξa)−

2
π
− Y1(ξa)

)
− J1(ξa)(H0(ξa)−

2
πξa
− Y0(ξa))

]
dξ

−
2
πar
+

4
π2 E(r/a)

[
a/r

r2− a2 +
1

ar

]}
, r < a,

σzz(r, 0)=
µδzr

π(1− ν)

[
E(a/r)
r2− a2 −

K (a/r)
r2

]
, r > a,

σr z(r, 0)=
µπaδr

4(1− ν)

{∫
∞

0
ξ J1(ξr)

[
J0(ξa)

(
H1(ξa)−

2
π
− Y1(ξa)

)
− J1(ξa)

(
H0(ξa)−

2
πξa
− Y0(ξa)

)]
dξ

−
2

raπ
+

4
π2

[
E(a/r)
r2− a2 +

E(a/r)− K (a/r)
a2

]}
, r > a.

(20)

In (20) K (· · · ) and E(· · · ) are the complete elliptic integrals of the first and second kind, and Yν(· · · )
is the Bessel function of the second kind of order ν. The integrals in (20) are regular; thus, the stress
components are Cauchy singular as r → a, which is a well-known feature of the stress fields caused
by Volterra-type dislocations. It is noteworthy to mention that the assumption of axisymmetry of glide
dislocation implies the vanishing of Burgers vector δr at the origin of coordinates leading to σr z(0, 0)= 0.
Moreover, the asymptotic expansion of complete elliptic integral shows that E(r)=π/2+O(r2) as r→ 0.
Therefore, the stress fields in (20) are bounded at the origin.

3. Axisymmetric crack formulation

Let climb and glide dislocations with densities Bz(ρ) and Br (ρ) respectively be distributed on an annular
crack situated at z = z0 with inner radius ρ and outer radius ρ+ dρ. The axial and shear stress at a point
with coordinates (r, z) due to the above distribution of dislocations on the crack surface are

σzz(r, z)=−
µ

2(1− ν)

[
ρBzdρ

∫
∞

0
ξ(1+ ξ |z− z0| )J1(ξρ)J0(ξr) e−ξ |z−z0|dξ

+
ρπBr dρ

2

∫
∞

0
ξ 2 sgn(z− z0)|z− z0|η(ξ, ρ)J0(ξr)e−ξ |z−z0|dξ

]
,
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σr z(r, z)=
µ

2(1− ν)

[
−ρBzdρ

∫
∞

0
ξ 2 sgn(z− z0)|z− z0| J1(ξρ)J1(ξr) e−ξ |z−z0|dξ

+
ρπBr dρ

2

∫
∞

0
ξ(1− ξ |z− z0|)J1(ξr)η(ξ, ρ)e−ξ |z−z0|dξ

]
.

Let the medium be weakened by N1 annular and N − N1 penny-shaped coaxial cracks situated at the
axial coordinates z j , j = 1, 2, . . . , N . The inner and outer radii of annular cracks are aj and bj , j =
1, 2, . . . , N1 respectively and the radii of penny-shaped cracks are bj , j = N1+ 1, . . . , N . The cracks
configurations may be expressed in parametric form as

rj (s)= rcj + L j s, −1< s < 1, j = 1, 2, . . . , N , (21)

where rcj = (bj + aj )/2 and L j = (bj − aj )/2. The traction components on the surface of i-th crack
caused by dislocations distributed on all N cracks surfaces yield

σzz(ri (s), zi )=
µ

2(1− ν)

N∑
j=1

L j

∫ 1

−1

[
Kzz(ri (s), rj (t))Bz j (t)+ Kzr (ri (s), rj (t))Br j (t)

]
dt,

σr z(ri (s), zi )=
µ

2(1− ν)

N∑
j=1

L j

∫ 1

−1

[
Kr z(ri (s), rj (t))Bz j (t)+ Krr (ri (s), rj (t))Br j (t)

]
dt,

(22)

where the kernels in the above equations are

Kzz(ri (s), rj (t))=
∫
∞

0
−ξrj (t)(1+ ξ |zi − z j | )J1(ξrj (t))J0(ξri (s)) e−ξ |zi−z j |dξ,

Kzr (ri (s), rj (t))=
π

2

∫
∞

0
−ξ 2rj (t) sgn(zi − z j )|zi − z j |η(ξ, rj (t))J0(ξri (s))e−ξ |zi−z j |dξ,

Kr z(ri (s), rj (t))=
∫
∞

0
−ξ 2rj (t) sgn(zi − z j )|zi − z j | J1(ξrj (t))J1(ξri (s)) e−ξ |zi−z j |dξ,

Krr (ri (s), rj (t))=
π

2

∫
∞

0
ξrj (t)(1− ξ |zi − z j |)η(ξ, rj (t))J1(ξri (s))e−ξ |zi−z j |dξ .

(23)

Since stress components (20) are Cauchy singular at the dislocation location, the system of integral
equations(22) for the density functions are Cauchy singular for i = j as s→ t . Employing the definition
of the dislocation density function, the crack opening displacement for an annular crack becomes

u+k j (s)− u−k j (s)= L j

∫ s

−1
Bk j (t)dt, k = z, r. (24)

The displacement field is single-valued away from the crack surfaces. Thus, the dislocation density for
the j-th annular crack is subjected to the closure requirement∫ 1

−1
Bk j (t)dt = 0, j = 1, 2, . . . , N1, k = z, r. (25)

To obtain the dislocation density, the integral equations (22) and (25) are to be solved simultaneously.
The stress fields exhibit a square-root singularity at the crack tips. Therefore, the dislocation densities
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for annular cracks are taken as

Bk j (t)=
gk j (t)
√

1− t2
, −1≤ t ≤ 1, j = 1, 2, . . . , N1, k = z, r. (26)

A penny-shaped crack is considered as an annular edge crack. Taking the embedded crack tip at t = 1,
the dislocation density functions for penny-shaped cracks may be written as

Bk j (t)= gk j (t)

√
1+ t
1− t

, −1≤ t ≤ 1, j = N1+ 1, . . . , N , k = z, r. (27)

The functions gk j (t) in (26)–(27) are continuous in −1 ≤ t ≤ 1. The numerical solution of integral
equations (22) and (25) is carried out by the procedure developed in [Faal et al. 2006]. Substituting (26)
and (27) into (22) and (25) and discretizing the domain −1 ≤ t ≤ 1 by n + 1 segments, the integral
equations are reduced to the following system of N × n linear algebraic equations:

H11 H12 H13 . . . H1N

H21 H22 H23 . . . H2N

H31 H32 H33 . . . H3N
...

...
...

. . . . . .

HN1 HN2 HN3 . . . HN N




g1(tk)
g2(tk)
g3(tk)
...

gN (tk)

=


q1(sr )

q2(sr )

q3(sr )
...

q N (sr )

 , (28)

where the collocation points are

sr = cos
(πr

n

)
, r = 1, . . . , n− 1 and tk = cos

(
π

2k− 1
2n

)
, k = 1, . . . , n. (29)

The components of the matrix and vectors in (28) are

Hi j =



A j1ki j (s1, t1) A j2ki j (s1, t2) · · · A jnki j (s1, tn)
A j1ki j (s2, t1) A j2ki j (s2, t2) · · · A jnki j (s2, tn)

...
...

...

A j1ki j (sn−1, t1) A j2ki j (sn−1, t2) · · · A jnki j (sn−1, tn)
A j1 Bi j (t1) A j2 Bi j (t2) . . . A jn Bi j (tn)


,

g j (tk)=
[
gz j (t1) gr j (t1) · · · gz j (tn) gr j (tn)

]T
, j = 1, . . . , N , (30)

q j (sr )=
[
σzz(rj (s1), z j ) σr z(rj (s1), z j ) · · · σzz(rj (sn−1), z j )σr z(rj (sn−1), z j )

]T
,

j = 1, 2, . . . , N1,

q j (sr )=
[
σzz(rj (s1), z j ) σr z(rj (s1), z j ) · · · σzz(rj (sn−1), z j ) σr z(rj (sn−1), z j )

σzz(rj (−1), z j ) σr z(rj (−1), z j )
]T
, j = N1+ 1, . . . , N ,
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where superscript T stands for transposition and

A jk =
π

n

{
1, j = 1, 2, . . . , N1,

1+ tk, j = N1+ 1, . . . , N , k = 1, 2, . . . , n,

Bi j =
π

n

{
δi j L i , j = 1, 2, . . . , N1,

ki j (−1, tk), j = N1+ 1, . . . , N , k = 1, 2, . . . , n,

ki j (sr , tk)= L j

[
Kzz(ri (s), rj (t)) Kzr (ri (s), rj (t))
Kr z(ri (s), rj (t)) Krr (ri (s), rj (t))

]
.

(31)

In (31), δi j in the Bi j is the Kronecker delta and the components of matrix ki j (sr , tk) are defined in
(23). The modes I and II stress intensity factors for an annular crack with inner and outer radii, a and b,
respectively, are defined as{

ka
I

ka
I I

}
= lim

r→a−

√
2(a− r)

{
σzz(r, 0)
σr z(r, 0)

}
and

{
kb

I
kb

I I

}
= lim

r→b+

√
2(r − b)

{
σzz(r, 0)
σr z(r, 0)

}
. (32)

Substituting the axial and shear stress components into (32) yields{
kaj

I
kaj

I I

}
=

√
L j

2(1− ν)

{
gz j (−1)
gr j (−1)

}
and

{
kbj

I
kbj

I I

}
=−

√
L j

2(1− ν)

{
gz j (1)
gr j (1)

}
, j = 1, 2, . . . , N1. (33)

Analogously, for the penny-shaped crack, stress intensity factors becomes{
k j

I
k j

I I

}
=−

√
L j

√
2(1− ν)

{
gz j (1)
gr j (1)

}
, j = N1+ 1, . . . , N . (34)

The solution of the system (28) should be substituted into (33) and (34) to determine stress intensity
factors.

4. Numerical results

In what follows, the Poisson’s ratio of the medium ν = 0.25 and remote constant tensile traction σ0 is
applied in the axial direction. In the first example, we consider an annular crack with inner and outer
radii a and b, respectively. The nondimensional stress intensity factors K/K , where K = σ0

√
(b− a)/2

for different crack aspect ratios a/b together with the results obtained in [10, 12], are given in Table 1.
The nondimensional stress intensity factors K I /K 0

I and K I I /K 0
I of two parallel penny-shaped cracks

with radius a, where K 0
I = σ0

√
a/π is the stress intensity factor of a penny-shaped crack with radius

a situated in an infinite domain, are presented in Table 2 for different values of distance d between the
cracks and compared against those of [Isida et al. 1985; Kachanov and Laures 1989; Zhan and Wang
2006]. The interaction of parallel cracks results in the mode II stress intensity factor which decays by
increasing the distance between cracks. As it may be observed, except for K I /K 0

I where d/2a = 0.05,
the results of the above two examples are in excellent agreement with the cited references confirming
the validity of the methodology.

The applicability of the procedure is demonstrated by solving two examples with more complicated
geometries. Two concentric cracks, a penny-shaped crack surrounded by an annular crack are considered.
The dimensions of the annular crack, b/2 and b, remain fixed, whereas the radius of the penny-shaped
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a/b
Present [Clements and Ang 1988] [Nied and Erdogan 1983]

K a/K K b/K K a/K K b/K K a/K K b/K

0.01 5.7720 0.9013 5.784 0.901 5.922 0.900
0.1 1.9698 0.9091 1.972 0.909 1.972 0.909
0.2 1.5005 0.9180 1.502 0.918 1.502 0.918
0.3 1.3091 0.9270 1.310 0.927 1.310 0.927
0.4 1.2035 0.9363 1.204 0.936 1.204 0.936
0.5 1.1363 0.9461 1.137 0.946 1.137 0.946
0.6 1.0907 0.9559 1.091 0.956 1.089 0.957
0.7 1.0576 0.9662 1.058 0.966 1.057 0.967
0.8 1.0329 0.9768 1.033 0.977 1.032 0.978
0.9 1.0141 0.9880 1.015 0.988 1.014 0.988
0.99 1.0008 0.9983 1.001 0.998 1.001 0.99

Table 1. Stress intensity factors of an annular crack.

d/2a
Present [ZW 2006] [I+ 1985] [KL 1989]

K I /K 0
I K I I /K 0

I K I /K 0
I K I I /K 0

I K I /K 0
I K I I /K 0

I K I /K 0
I

0.05 0.6966 0.1923 ——— ——— ——— ——— 0.7386
0.15 0.7351 0.1623 ——— ——— ——— ——— ———
0.25 0.7671 0.1381 0.7678 0.1382 0.7759 0.1390 0.7678
0.35 0.7950 0.1173 0.7955 0.1173 ——— ——— 0.7898
0.5 0.8313 0.0903 0.8316 0.0903 0.8356 0.0910 0.8249
0.75 0.8810 0.0551 0.8813 0.0551 0.8828 0.0549 0.8781
1 0.9185 0.0322 0.9187 0.0322 0.9189 0.0325 0.9176
1.5 0.9617 0.0114 0.9616 0.0114 0.9613 0.0115 0.9614
2 0.9841 0.0040 0.9802 ——— 0.9802 0.0041 ———
5 1.0000 0.0000 0.9983 ——— 0.9990 ——— ———

Table 2. Interaction of two parallel identical penny-shaped cracks under normal loading.
[ZW 2006] = [Zhan and Wang 2006]; [I+ 1985] = [Isida et al. 1985]; [KL 1989] =
[Kachanov and Laures 1989].

crack, a, changes. Figure 1 shows the nondimensional mode I stress intensity factors K/K0 of the two
cracks, where K0 = σ0

√
b/π . The variation of K/K0 at the outer edge of the annular crack is negligible,

which may be attributed to the large distance between this edge and the penny-shaped crack.
In the last example two interacting identical annular cracks with a/b = 0.5 are considered. The

dimensionless stress intensity factors at the inner and outer edges are given in Table 3. For d/b ≥ 5
the interaction vanishes and the problem reduces to an annular crack in infinite medium. It is, however,
interesting to note that the mode II stress intensity factor at the inner edge of cracks does not decrease
monotonically with increasing distance between cracks. For cracks with the present dimensions, K a

I I/K
has a local maximum at d/b ' 1.5.
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Figure 1. Stress intensity factors of two interacting concentric cracks.

d/b K a
I /K K b

I /K K a
I I/K K b

I I/K

0.05 0.7937 0.6637 0.2049 0.1771
0.15 0.8372 0.7053 0.1566 0.1423
0.25 0.8729 0.7386 0.1179 0.1176
0.35 0.9049 0.7676 0.0842 0.0961
0.5 0.9481 0.8059 0.0427 0.0704
0.75 1.0057 0.8530 0.0025 0.0446
1 1.0414 0.8810 0.0129 0.0315
1.5 1.0790 0.9079 0.0162 0.0191
2 1.0977 0.9230 0.0087 0.0088
5 1.1362 0.9461 0.0000 0.0000

Table 3. Interaction of two parallel identical annular cracks under normal loading for
a/b = 0.5.
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CLASSICAL AND MIXED ADVANCED MODELS FOR SANDWICH PLATES
EMBEDDING FUNCTIONALLY GRADED CORES

SALVATORE BRISCHETTO

This paper analyzes the bending response of several sandwich plates with a functionally graded core,
using advanced equivalent single layer (ESL) and layerwise (LW) models with linear to fourth-order
expansion in the thickness direction. The functionally graded properties of the core have been approxi-
mated by means of Legendre polynomials. The ESL and LW theories have been developed according to
the principle of virtual displacements and Reissner’s mixed variational theorem; in the latter case, both
displacements and transverse shear/normal stresses have been assumed as primary variables. Closed-
form solutions for simply supported sandwich plates loaded by a transverse distribution of harmonic
pressure are discussed. Various assessments have been made of the proposed theories with respect to the
available results. Our obtained results show that, depending on the chosen functionally graded core, the
use of advanced models may turn out to be mandatory with respect to classical theories (for example,
first-order shear deformation theory). It has been shown that the use of a core in functionally graded
material can offer some advantages with respect to the classical cores that have been widely employed in
open literature. A benchmark has been proposed which consists of a sandwich plate with two isotropic
faces (ceramic and metallic) and various functionally graded cores. That benchmark could be useful in
assessing future refined computational models.

1. Introduction

Functionally graded materials (FGMs) are composite materials made up of two or more constituent
phases with a continuously variable composition. FGMs are usually associated with particulate compos-
ites where the volume fraction of particles varies in one or several directions. One of the advantages
of a monotonous variation of volume fraction of the constituent phases is the elimination of stress dis-
continuity, which is often encountered in laminated composites and accordingly leads to the avoidance
of delamination-related problems. FGMs present a number of advantages that make them attractive in
potential future applications, such as a reduction of in-plane and transverse through-the-thickness stresses,
an improved residual stress distribution, enhanced thermal properties, higher fracture toughness, and
reduced stress intensity factors [Birman and Byrd 2007]. For these reasons, an accurate evaluation of
displacements, strains, stresses, and vibrations can be fundamental in the design of such structures.

Several three-dimensional solutions are proposed in the literature for the case of simple problems
in one-layered FGM structures. Among these, the three-dimensional elasticity solution proposed by
Kashtalyan [2004] for a functionally graded simply supported plate subjected to transverse loading is of
particular interest. Young’s modulus of the plate is assumed to vary exponentially through the thickness

Keywords: functionally graded materials, sandwich plates with an FGM core, Carrera’s unified formulation, classical models,
mixed models, equivalent single layer theories, layerwise theories, Legendre polynomials.
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and the Poisson’s ratio is assumed to be constant. Reddy and Cheng [2001] propose a three-dimensional
thermomechanical solution for simply supported functionally graded rectangular plates by means of an
asymptotic method. The locally effective material properties are estimated by the scheme from [Mori and
Tanaka 1973]. Vel and Batra [2002; 2003; 2004] give exact three-dimensional solutions for functionally
graded rectangular plates in the case of mechanical and thermal loads on its top and/or bottom surfaces,
time-dependent thermal loads, and free and forced vibrations.

Here are some classical and advanced two-dimensional models for these structures made up of one
FGM layer: Zenkour [2006] presents the static response for a simply supported functionally graded
rectangular plate subjected to a transverse load, where a generalized shear deformation theory is used
and the material properties of the plate are assumed to be graded in the thickness direction, according
to a simple power-law distribution in terms of the volume fractions of the constituents. Chi and Chung
[2006] use the classical plate theory and Fourier series expansion to investigate an elastic, rectangular,
and simply supported, FGM plate of medium thickness subjected to transverse loading. Ramirez et al.
[2006] obtain a solution for an FGM plate by using a discrete layer theory in combination with the
Ritz method in which the plate is divided into an arbitrary number of homogeneous and/or FGM layers.
Two types of functionally graded materials are considered: an exponential variation of the mechanical
properties through the thickness of the plate, and mechanical properties as a function of the fiber ori-
entation, which varies quadratically through the laminate thickness. Another method used to analyze
the static deformations of a simply supported functionally graded plate modeled by a third-order shear
deformation theory is the use of the collocation multiquadric radial basis functions proposed by Ferreira
et al. [2005]. As far as the dynamic analysis is concerned, Qian et al. [2004] investigate the free and
forced vibrations of a thick rectangular functionally graded elastic plate using a higher-order shear and
normal deformable plate theory and a meshless local Petrov–Galerkin method, Batra and Jin [2005]
use first-order shear deformation theory (FSDT) coupled with the finite element method to study free
vibrations of a functionally graded anisotropic rectangular plate with the objective of maximizing one
of its first five natural frequencies. Nguyen et al. [2008] identify the transverse shear factor by means of
energy equivalence for a one-layered FGM plate in the case of first-order shear deformation theory.

All the works mentioned above refer to the case of plates made up of one FGM layer, where the
three-dimensional solutions represent very interesting reference solutions and the other two-dimensional
models are valuable tools to investigate such problems. The main aim of the present paper is the use
of FGMs in multilayer structures. These graded layers can be used as face sheets or as core and its
employment can be very efficient to solve some problems usually connected to classical sandwich struc-
tures. /’Avila [2007] considers sandwich beams with a functionally graded core. The proposed failure
mode model accurately predicts the failure mechanisms. The best performance is obtained when the
core layer with the highest density is located right below the upper face-sheets. Cheng and Zhong [2007]
consider a finite crack with constant length propagating in the functionally graded layer. The structure
is a functionally graded strip between two dissimilar homogeneous layers. The importance of graded
parameters in the dynamic fracture behavior is clearly demonstrated. Considering a functionally graded
transition zone between a hard TiC coating and a WC-Co substrate, Dahan et al. [2001] show that the
critical load and the wear resistance depend on the concentration profile within the transition layer. The
Ti-rich profiles displayed the highest critical load and the lowest wear rate. The transition response
of a crack embedded in a functionally graded material layer sandwiched between two dissimilar elastic
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layers is analyzed under antiplane shear impact loads by Li and Fan [2007]. The effects of crack position,
material properties, and the FGM layer thickness are investigated. Xia and Shen [2008] use a high-order
shear deformation theory to investigate small and large amplitude vibrations of a compressively and
thermally postbuckled sandwich plate with FGM face sheets. When the volume fraction index increases,
the fundamental frequency increases in the prebuckling region, but decreases in the postbuckling region.
The resulting fracture behavior under impact loading conditions in sandwich structures comprising an
FGM core has been illustrated by Kirugulige et al. [2005]. These results show a significant reduction in
stress intensification in the presence of compositional gradients compared to conventional constructions.
The results concerning a sandwich with a homogeneous core and FGM face sheets by Shen and Li [2008]
show that the thermal buckling load is modified when using FGM faces. Zhao et al. [2008] investigate
the effects of FGM coatings on the thermal shock resistance of a sandwich plate with functionally graded
coatings. A two-dimensional solution for the bending analysis, buckling study, and free vibrations of a
functionally graded sandwich plate is the sinusoidal shear deformation plate theory by Zenkour [2005a;
2005b]. The exact thermoelasticity solution of Shodja et al. [2007] analyzes a thick composite structure
consisting of homogeneous and functionally graded layers; stress concentration effects are eliminated
and interfacial shear stresses are reduced. The three-dimensional finite element simulations by Etemadi
et al. [2008] analyze low velocity impact behavior of sandwich beams with an FGM core. For sandwich
beams with functionally graded cores, the maximum contact force increases and the maximum strain
decreases compared to those of sandwich beams with a homogeneous core. Anderson [2003] developed
an analytical three-dimensional elasticity solution method for a sandwich composite with a functionally
graded core subjected to a transverse loading by a rigid spherical indentor. The effects of FGM face
sheets and a homogeneous core, or homogeneous face sheets and an FGM core on the free vibrations of
sandwich plates with simply supported or clamped edges, are analyzed by Li et al. [2008] by means of
a three dimensional linear elasticity theory. The benefits of the use of an FGM core in a sandwich plate
for the stresses are analyzed by Kashtalyan and Menshykova [2009] using a three-dimensional solution.

In conclusion, the use of FGM face sheets and/or core in sandwich structures can be very useful to
contrast failure mechanisms and crack propagations, to increase critical and buckling loads, to decrease
the wear rate, the stress concentration effects and the interfacial shear stresses, and to improve thermal
shock resistance. The importance of new accurate plate theories to investigate such types of sandwich
structures, as done in [Zhu and Sankar 2007] in the case of a thermal protection system panel with a
functionally graded foam core, is therefore clear.

In the present paper, in order to obtain advanced two-dimensional models for sandwich structures with
FGM layers, Carrera’s unified formulation [1995; 2002], known as CUF, has been extended to materials
with properties that are functionally graded through the thickness direction. This extension was made for
the classical advanced models in [Carrera et al. 2008] and for the mixed ones in [Brischetto and Carrera
2008]. In the first case, the principle of virtual displacements (PVD) was used, while in the second
paper, Reissner’s mixed variational theorem (RMVT) was employed to model both displacements and
transverse shear/ normal stresses. The classical and mixed advanced hierarchical models presented in
these two papers were developed for multilayer FGM plates. Applications were only made for single-
layered FGM structures. In the present paper, considering sandwich plates with an FGM core, the models
obtained in [Carrera et al. 2008] and [Brischetto and Carrera 2008] are validated for multilayer FGM
plates. For material properties, only spatial dependence has been considered. These properties have
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been considered independent of temperature; the dependence on temperature will be added in future
work, where the heat conduction problem will be accounted for. The most important features about the
extension of CUF to FGMs have been discussed in Section 2, then Section 3 introduces the employed
kinematic models. Section 4 deals with the results and discussion, and the conclusions are given in
Section 5.

2. Extension of CUF to FGMs

The application of a two dimensional method for plates allows the unknown variables to be expressed in
a set of thickness functions that only depend on the thickness coordinate z and the correspondent variable
which depends on the in-plane coordinates (x, y).

CUF is a technique which handles a large variety of plate/shell modelings in a unified manner [Carrera
1995; 2002]. According to CUF, the governing equations are written in terms of a few fundamental nuclei
which do not formally depend on

• the order of expansion N used in the z-direction, and

• the variables description: layerwise (LW) or equivalent single layer (ESL).

The generic variable a(x, y, z), for instance a displacement, and its variation δa(x, y, z) are therefore
written according to the general expansion

a(x, y, z)= Fτ (z)aτ (x, y), δa(x, y, z)= Fs(z)δas(x, y) for τ, s = 1, . . . , N , (1)

where the bold letters denote arrays, (x ,y) are the in-plane coordinates and z the thickness one, and Fτ (z)
and Fs(z) are thickness functions. The summation convention is assumed with repeated indexes τ and s.
The order of expansion N goes from first to fourth order, and depending on the used thickness functions
F(z), one model could be ESL when the variable is assumed for the whole multilayer and LW when the
variable is considered independent in each layer.

A model for the analysis of FGM plates must accurately describe the continuous variations of the
material characteristics (mechanical, thermal, or electric) along the thickness. The present section focuses
on the procedure that allows the CUF to be expanded to the analysis of FGM layers. These layers could
be single or embedded in other classical and/or FGM layers. For the FGM layers, Legendre polynomials
have been used to approximate the elastic coefficients in the thickness z.

The variation of the material characteristics is usually given in terms of exponential and/or polynomial
functions applied directly to engineering constants such as Young’s moduli Ei , shear moduli Gi j and/or
Poisson’s ratio νi j , or directly to material stiffnesses Ci j with i, j = 1, 6. Since a relation between the
engineering constants and the material stiffnesses holds in each point of the plate, only the second case
can actually be treated. The variation of the stiffness matrix is generally given by multiplying it by a
function of z

C(z)= C0 ∗ g(z), (2)

where C0 is the reference stiffness matrix and g(z) gives the variation along z. By applying the ideas
behind the CUF, the following expansion is made

C(z)= Fb(z)Cb+ Fγ (z)Cγ + Ft(z)C t = Fr Cr , (3)
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where the thickness functions Fγ are the same that will be used for the LW expansion in the next section

Ft =
P0+ P1

2
, Fb =

P0− P1

2
, Fγ = Pγ − Pγ−2 γ = 2, . . . , Nr , (4)

where Pj = Pj (ζk) is the Legendre polynomial of j-th order defined in the domain −1≤ ζk ≤ 1.
The actual C is then recovered as a weighted summation on the terms Cr . The weights are given

by the thickness functions Fr . The order of the expansion can be arbitrarily chosen. Due to the usual
complicated laws used for g(z) in the open literature, the expansion has been in this work extended to
Nr = 10. Anyway, when a simple polynomial g(z) is applied lower values of Nr could be used.

The procedure to include the varying stiffnesses in the model requires to compute the Cr matrices.
This task can be accomplished solving for each component Ci jr a simple algebraic system of order Nr .
After that the actual values of C at Nr different locations along the thickness (z1, . . . , zNr ) have been
calculated, leading to the formula

Ci j (z1)

...

Ci j (zNr )

=


Fb(z1) · · · Fγ (z1) · · · Ft(z1)

...
...

...

Fb(zNr ) · · · Fγ (zNr ) · · · Ft(zNr )




Ci jb
...

Ci jr
...

Ci j t

 . (5)

In the case of classical layers with constant material properties the formula in Equation (3) is not consid-
ered and the elastic coefficients are constant in the rigidity matrices.

A detailed description of the CUF extended to FGMs is reported in [Carrera et al. 2008] for the PVD
(only the displacements are considered as primary variables) and in [Brischetto and Carrera 2008] for the
RMVT (both displacements and transverse shear/normal stresses as primary variables). Further details
regarding the assembly procedure (expansion in z for the primary variables and material properties,
multilayer assembly procedure) and the governing equations can be found in these same two papers.

3. Description of kinematics

The proposed two-dimensional models have been coded according to the CUF. Details can be found in
previous authors’ works [Carrera1995; 2002; Brischetto and Carrera 2008; Carrera et al. 2008]. In order
to explore how the various kinematic assumptions can affect the response of typical two-dimensional
structures, a large variety of plates/shells theories have been considered here.

Plates of constant thickness h are considered. The geometry and reference system are shown in
Figure 1. The displacement components ux , u y , and uz are measured with respect to the x , y, and z
axes. The latter axis denotes the trough-the-thickness direction. � is the plate reference surface. Plain-
stress/plain-strain conditions have been assumed according to what indicated in the paper concerning the
Poisson’s locking phenomena for plates [Carrera and Brischetto 2008].

Higher-order theories. Higher-order theories (HOTs) consider the same order of expansion in the thick-
ness direction for the three displacements components (including the transverse one). These theories are
obtained in the ESL overview.
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Figure 1. Notations and load configuration for the plates considered.

HOTs including transverse normal strains. Higher-order terms can be introduced in the kinematic as-
sumptions in order to obtain refinements of classical lamination theory (CLT) and FSDT models

uτ (x, y, z)= u0τ (x, y)+ zi uiτ (x, y) with τ = x, y, z and i = 1, N . (6)

The summation convention for the repeated indexes has been adopted. N is the order of expansion, which
is taken as a free parameter. In the numerical investigation N is considered to be as low as 1 and as high
as 4. According to the acronym system developed within CUF, the related theories are named ED1–ED4.
The letter E denotes that the kinematic is preserved for the whole layers, as in the ESL approach, while D
denotes that only displacement unknowns are used and the last number states the through-the-thickness
expansion order.

HOTs including zigzag effects. The EDN models are not able to describe the discontinuity of the first
derivative with correspondence to the layer interfaces, known as the zigzag effects [Carrera 2003] and
peculiar of laminates mechanics. It can be introduced via the Murakami’s zigzag function (MZZF)
[Murakami 1986], which was proposed in the framework of RMVT applications. The dimensionless
layer coordinate ζk = (2zk)/hk is further introduced, being hk the thickness of the k-th layer and zk the
layer thickness coordinate. MZZF is defined according to the formula

MZZF= (−1)kζk . (7)

MZZF has the following properties: it is piecewise linear function of the layer coordinate zk , it has unit
amplitude for the whole layers, and its slope takes opposite sign between two-adjacent layers, since its
amplitude layer is independent of thickness. The displacement field accounting for MZZF takes the form

uτ (x, y, z)=u(x, y)0τ+zr u(x, y)rτ+(−1)kζku(x, y)Zτ with τ = x, y, z and r =1, 2, . . . , N−1. (8)

Subscript Z refers to the introduced zigzag term. Higher-order distributions in the z-direction are in-
troduced by polynomials of degree r . Modifications of EDN directed to include MZZF are denoted
EDZN .
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The classical theories. The classical theory CLT, based on assumptions made by Cauchy [1828], Poisson
[1829], and Kirchhoff [1850], discards transverse shear and through-the-thickness deformations. The
displacement model related to CLT can be written in the form

uτ (x, y, z)= u0τ (x, y)− z
∂u0z(x, y)

∂τ
with τ = x, y and uz(x, y, z)= u0z(x, y), (9)

stating that the section remain plane and orthogonal to the plate reference surface �. Here u0 denotes the
displacement value relative to the reference surface �. Transverse shear stresses are discarded by CLT.

Transverse shear deformation can be introduced according to the Reissner–Mindlin kinematic assump-
tions [Reissner 1945; Mindlin 1951]:

uτ (x, y, z)= u0τ (x, y)+ zu1τ (x, y) with τ = x, y and uz(x, y, z)= u0z(x, y). (10)

This theory is also called FSDT. Transverse shear stresses show a priori constant piecewise distribution.
FSDT can be obtained from ED1 by considering a constant transverse displacement through the thickness.
CLT is obtained from FSDT considering an infinite shear correction factor. In both CLT and FSDT,
the Poisson locking phenomenon is contrasted by means of the plane-stress conditions, as indicated in
[Carrera and Brischetto 2008]. In the proposed analysis of FGM structures, the shear correction factor
has not been used for the correction of FSDT because the well-known value χ = 5/6 is calculated for a
homogeneous material. The shear correction factor for a general laminate depends on lamina properties
and lamination scheme [Reddy 2004].

Layerwise theories. Multilayered plates can be analyzed by kinematic assumptions which are indepen-
dent in each layer. Following Reddy [2004] these approaches are called here LW theories.

The LW description yields, thus, displacement variables that are independent in each layer. The Taylor
expansion of the thickness, adopted in the previous paragraphs for ESL cases, is not convenient for LW
description. Displacement interlaminar continuity can be imposed more conveniently by employing
interface values as unknown variables. The LW description assumes the form

uk
τ = Ft uk

τ t + Fb uk
τb+ Fr uk

τr with τ = x, y, z, r = 2, 3, . . . , N , k = 1, 2, . . . , Nl . (11)

Subscript t and b denote values related to the top and the bottom of layer, respectively. The thickness
functions Fτ (ζk) have been defined by

Ft =
P0+ P1

2
, Fb =

P0− P1

2
, Fr = Pr − Pr−2, r = 2, 3, . . . , N , (12)

in which Pj = Pj (ζk) is the j-th order Legendre polynomial defined for −1≤ ζk ≤ 1. In the numerical
investigations the maximum order is four, and the relevant polynomials are

P0 = 1, P1 = ζk, P2 = (3ζ 2
k − 1)/2, P3 =

5ζ 3
k

2
−

3ζk

2
, P4 =

35ζ 4
k

8
−

15ζ 2
k

4
+

3
8
. (13)

The preceding functions have the following interesting properties:

when ζk = 1: Ft = 1, Fb = 0, Fr = 0; when ζk =−1: Ft = 0, Fb = 1, Fr = 0. (14)
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The top and bottom values have been used as unknown variables. The interlaminar compatibility of
displacement can therefore be easily linked:

uk
τ t = u(k+1)

τb , k = 1, Nl − 1. (15)

The acronyms for these theories are LD1–LD4, the L standing for LW.

Mixed theories based on Reissner’s mixed variational theorem. The kinematics described previously
is not able to furnish interlaminar continuity of transverse shear and normal stresses at the interfaces
between two adjacent layers in the case of multilayer structures. RMVT [Reissner 1984] offers the
possibility to fulfil a priori the interlaminar continuity. Both displacements and transverse shear/normal
stresses can be assumed within the RMVT framework as primary variables.

Layerwise mixed theories. In the LW case the displacement model in (11) is also used for the transverse
shear/normal stresses:

σ k
τ z = Ftσ

k
τ zt
+ Fbσ

k
τ zb
+ Frσ

k
τ zr

with τ = x, y, z, r = 2, 3, . . . , N , k = 1, 2, . . . , Nl . (16)

The interlaminar transverse shear and normal stresses continuity can be, therefore, easily linked:

σ k
τ zt
= σ (k+1)

τ zb
with τ = x, y, z, k = 1, Nl − 1. (17)

These models are denoted as LM1–LM4, where M means mixed models based on RMVT.

Equivalent single layer mixed theories. Mixed theories along with an ESL description can be formulated
referring to the displacement model in (6) and the LW stress assumptions in (16). These are referred
to as EM1–EM4. The theories accounting for the zigzag shape of the displacements are indicated as
EMZ1–EMZ3. A further letter C could be added in the acronyms to emphasize the continuity of the
transverse shear/normal stresses.

4. Results and discussion

All the examples presented in this section consider a simply supported square plate with a bisinusoidal
mechanical load applied to the top surface; see Figure 1. The applied load is

pz(x, y)= p̄z sin
(mπ

a
x
)

sin
(nπ

b
y
)
, (18)

where a and b are the plate dimensions, x and y are the in-plane coordinates and z is the thickness
coordinate. The load amplitude is p̄z = 1.0 Pa and the wavelengths in the x and y directions are m= n= 1.

Assessment 1: one-layered no-FGM plate. The plate is made of aluminum Al2024 with Young’s modu-
lus E = 73 GPa and Poisson’s ratio ν = 0.34. The global thickness is h = 0.001 m and the thickness ratio
is a/h = 10. The three-dimensional solution for the dimensionless transverse displacement w̄ considered
in the middle of the plate is given in [Carrera and Brischetto 2008]. The transverse normal stress σzz at
the top is given by the loading conditions. Table 1 compares a classical theory (FSDT) and advanced
classical and mixed models with the three-dimensional solution, to demonstrating how the models for
functionally graded materials can degenerate into models for materials with constant properties through
thickness z. The fictitious layers (Figure 2) have been introduced to validate the multilayer assembly
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Figure 2. Assessment 1: Isotropic square plate with fictitious layers.

One layer Two layers Four layers
w̄(0) σzz(h/2) w̄(0) σzz(h/2) w̄(0) σzz(h/2)

3D 2.8655 1.0000 2.8655 1.0000 2.8655 1.0000
FSDT 2.7238 1.5659 2.7238 1.5659 2.7238 1.5659
ED4 2.8655 1.0001 2.8655 1.0001 2.8655 1.0001
EM4 2.8655 1.0001 2.8655 1.0001 2.8655 1.0001
LD4 2.8655 1.0001 2.8655 1.0001 2.8655 1.0000
LM4 2.8655 1.0001 2.8655 1.0000 2.8655 1.0000

Table 1. Assessment 1: Isotropic square plate with thickness ratio a/h = 10. The 3D
case corresponds to [Carrera and Brischetto 2008]. Results for one layer, two and four
fictitious layers. The dimensionless transverse displacement is w̄ = 100Eh3uz/( p̄za4).

procedure. Though a shear correction factor χ = 5/6 could be used for FSDT in case of homogeneous
and isotropic plates, χ = 1 has been employed to be consistent with the case of FGM structures.

Assessment 2: one-layered FGM plate. The considered plate is one-layered with Young’s modulus E(z)
changing in the thickness direction z, according to Zenkour’s formula [2006]

E(z)= Em + (Ec− Em)
(2z+ h

2h

)κ
. (19)

The plate is completely metallic at the bottom (Em = 70 GPa) and completely ceramic at the top (Ec =

380 GPa). A constant Poisson ratio ν = 0.3 and a thickness ratio a/h = 10 are considered. Varying the
thickness coordinate z from −h/2 to h/2, Young’s modulus changes with continuity, as illustrated in
Figure 3, where the exponential κ varies from 1 to 10. The global thickness is h = 0.1 m. A detailed
investigation was made in [Carrera et al. 2008] for PVD models and in [Brischetto and Carrera 2008]
for RMVT models. The FSDT model is compared in Table 2 with some advanced ones (κ = 1), with
the solution from [Zenkour 2006] (a generalized shear deformation model), and with a discrete layer
quasi-three-dimensional solution previously presented in [Carrera et al. 2008]. The fictitious layers, as
illustrated in Figure 4, have been considered to demonstrate that the present models are able to carry out
the multilayer FGM assembly procedure.
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Figure 3. Young’s modulus E(z) versus z for different values of the parameter κ con-
sidered in the Zenkour’s formula (19).

Figure 4. Assessment 2: Functionally graded plate with linear (κ = 1) Zenkour’s law
[2006] and fictitious layers.

One Two Three Four
w̄(0) w̄(0) w̄(0) w̄(0)

Z 0.5889 0.5889 0.5889 0.5889
CBR 0.5875 0.5875 0.5875 0.5875
FSDT 0.4812 0.4812 0.4812 0.4812
ED4 0.5875 0.5875 0.5875 0.5875
EM4 0.5875 0.5875 0.5875 0.5875
LD4 0.5875 0.5875 0.5875 0.5875
LM4 0.5875 0.5875 0.5875 0.5875

Table 2. Assessment 2: Functionally graded square plate with thickness ratio a/h =
10 and exponential κ = 1 for Zenkour’s formula [2006] (row marked Z). CBR stands
for [Carrera et al. 2008]. Results are shown for one layer and for two, three and four
fictitious layers. The dimensionless transverse displacement is w̄ = 10Ech3uz/( p̄za4).
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Assessment 3: sandwich FGM plate. A further validation for the employed ESL and LW models, based
on PVD and RMVT, is made with the three-dimensional solution proposed by Kashtalyan and Men-
shykova [2009] for the case of a three-layered plate with a core in FGM; see Figure 5. The global
thickness of the plate is h0 = 2h where h and −h represent the top and bottom coordinates of the plate,
respectively. hc and −hc are the coordinates of the bottom fourth layer and the top first layer, respectively.
The global thickness of the core is 2hc. The plate has a global thickness h0 = 1.0 m, the thickness of

Figure 5. Assessment 3: Examples of different sandwich plates with core in FGM, fol-
lowing [Kashtalyan and Menshykova 2009].
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the two faces is h f = 0.1h0, and the thickness of the core is 2hc = 0.8h0. The considered thickness
ratio is a/h0 = 3. The reference Young’s modulus is E0 = 73 GPa with Poisson’s ratio ν = 0.3, and
the two faces consequently have a constant shear modulus G f = G0 = 28.08 GPa (layers 1 and 4). The
core can be divided into parts 2 and 3. The value of the shear modulus in the middle reference surface is
indicated with Gc. In layer 2, the exponential law for the shear modulus is G(z)=G0 exp[−γ (z/hc+1)]
with hc = 0.4 m and −0.4 ≤ z ≤ 0. For layer 3, the exponential law is G(z) = G0 exp[γ (z/hc − 1)]
with hc = 0.4 m and 0 ≤ z ≤ 0.4. Four different cases will be considered, as illustrated in Figure
5, that correspond to four different shear modulus ratios Gc/G f (0.9, 0.99, 0.999, 1.0), which means
values of the exponential γ equal to 0.105360, 0.010050, 0.001000 and 0.0, respectively. The case
Gc/G f = 1.0 means a three-layered plate with the same classical material. Table 3 (page 26) considers
the dimensionless transverse displacement w̄ in the middle for different values of Gc/G f ; the transverse
normal stress σzz at the top and bottom of the plate is investigated in Table 4. The three-dimensional
reference solution is given by Kashtalyan and Menshykova [2009]. For the displacements, when the shear
modulus ratio is close to 1.0, both LW and ESL models are able to give the three-dimensional response,
but the requested order of expansion in z is lower for the LW models. In the case of Gc/G f = 0.9,
the use of LW models and higher orders of expansion is mandatory. The addition of MZZF [Murakami
1986] to ESL models is not so effective as in the case of classical sandwich structures where the typical
zigzag form of the displacement is observable. The comments made for the PVD models in Table 3 are
confirmed for the RMVT models on the right-hand side of the same table. To obtain the correct values
of the stresses, LW and higher orders of expansions are requested, as suggested by Table 4.

The advantage of RMVT models is clearly demonstrated in the case of LW models with lower orders
of expansions and in the case of ESL theories. These conclusions become much clearer if we consider
Figures 6 and 7. In Figure 6, where the displacements are plotted along the thickness, it is evident that
the use of a higher order of expansion is fundamental. In Figure 7, in the case of transverse shear/normal
stresses σxz and σzz , for a shear modulus ratio Gc/G f = 0.9, the use of RMVT models is mandatory.
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Figure 6. Assessment 3: Displacements ū = G0ux/( p̄zh0) and w̄ = G0uz/( p̄zh0) vs. z,
for the sandwich plate with core in FGM proposed in [Kashtalyan and Menshykova
2009]. The shear modulus is Gc/G f = 0.9.
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Figure 7. Assessment 3: Sandwich plates with core in FGM according to the solution
and formula from [Kashtalyan and Menshykova 2009]. Gc/G f = 0.9 (left column) and
Gc/G f = 0.999 (right column). σxy , σxz and σzz versus z.
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Gc/G f 0.9 0.99 0.999 1.0

3D 1.4227 1.3500 1.3433 1.3430

FSDT 1.1924 1.1714 1.1690 1.1687
ED1 1.1924 1.1714 1.1690 1.1687
ED2 1.3067 1.2820 1.2792 1.2789
ED3 1.4223 1.3518 1.3453 1.3446
ED4 1.4199 1.3496 1.3432 1.3424

EDZ1 1.1999 1.1796 1.1772 1.1769
EDZ2 1.3027 1.2728 1.2750 1.2747
EDZ3 1.4179 1.3472 1.3407 1.3400

LD1 1.3584 1.3190 1.3149 1.3144
LD2 1.4213 1.3476 1.3413 1.3406
LD3 1.4227 1.3495 1.3432 1.3425
LD4 1.4227 1.3496 1.3432 1.3426

Gc/G f 0.9 0.99 0.999 1.0

3D 1.4227 1.3500 1.3433 1.3430

EM1 1.1936 1.1714 1.1690 1.1687
EM2 1.3069 1.2820 1.2792 1.2789
EM3 1.4224 1.3518 1.3453 1.3446
EM4 1.4200 1.3496 1.3432 1.3424

EMZ1 1.2022 1.1808 1.1783 1.1781
EMZ2 1.3023 1.2774 1.2746 1.2742
EMZ3 1.4176 1.3470 1.3405 1.3398

LM1 1.4029 1.3498 1.3445 1.3439
LM2 1.4190 1.3464 1.3402 1.3395
LM3 1.4228 1.3498 1.3435 1.3428
LM4 1.4227 1.3495 1.3432 1.3425

Table 3. Assessment 3: Sandwich plate with core in functionally graded material and
two external isotropic faces. The three-dimensional solution is from [Kashtalyan and
Menshykova 2009]. The thickness ratio is a/h = 3 and the dimensionless transverse
displacement is w̄=G0uz/( p̄zh0) evaluated at z = 0. Left: classical model and advanced
models based on PVD; right: advanced models based on RMVT.

σzz(h/2) σzz(−h/2)
Gc/G f 0.9 0.99 0.999 1.0 0.9 0.99 0.999 1.0

L.C. 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000

FSDT 1.1536 1.1709 1.1723 1.1724 −1.536 −1.1709 −1.723 −1.1724
ED3 1.1766 1.2226 1.2266 1.2271 −0.3439 −0.2374 −0.2278 −0.2267
ED4 0.9060 0.9940 1.0026 1.0035 −0.0738 −0.0043 0.0016 0.0023
EDZ1 1.2727 1.2496 1.2473 1.2471 −0.2456 −0.2852 −0.2894 −0.2899
EDZ3 0.9060 0.9671 0.9726 0.9732 −0.0738 0.0219 0.0304 0.0313
LD2 1.0119 1.0119 1.0119 1.0119 −0.0105 −0.0104 −0.0104 −0.0104
LD4 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000

EM3 1.1453 1.2196 1.2263 1.2271 −0.3444 −0.2374 −0.2278 −0.2267
EM4 0.9319 0.9968 1.0028 1.0035 −0.0732 −0.0043 0.0016 0.0023
EMZ1 1.4291 1.3544 1.3472 1.3464 −0.3527 −0.3837 −0.3866 −0.3869
EMZ3 1.0023 1.0334 1.0363 1.0366 −0.1435 −0.0419 −0.0328 −0.0318
LM2 1.0046 1.0071 1.0067 1.0066 −0.0130 0.0036 0.0043 0.0043
LM4 1.0002 1.0001 1.0001 1.0000 0.0000 0.0000 0.0000 0.0000

Table 4. Assessment 3: Values of σzz on plate surface for the same setup as in Table 3.
L.C. means loading condition (expected value of σzz).
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The stresses obtained a priori are in fact continuous in the thickness z direction. The use of ESL models
is not effective for the evaluation of such stresses for either cases of Gc/G f = 0.9 or Gc/G f = 0.999.
If we consider a value of Gc/G f close to 1.0, the use of PVD models is sufficient, as illustrated in the
right column of Figure 7.

Proposed benchmark. The three proposed assessments have been used to validate the extension of CUF
to multilayer functionally graded plates and to highlight the capability of some advanced models with
respect to the classical ones. This allows these models to be used with confidence in order to investigate
a new benchmark proposed for the first time in this paper. A three-layered plate is considered: the
bottom layer is metallic made with Young’s modulus Em = 70 GPa and the top layer is in ceramic with
Ec = 380 GPa. The core consists of an FGM with Young’s modulus varying in z according to Zenkour’s
formula [2006], given here as Equation (19). The proposed plate is given in Figure 8, where the thickness
of each face is h f = 0.1h and the core has hc = 0.8h. In the core, the Young’s modulus E(z) changes
exponentially in z according to an exponential parameter κ that can assume values of 1, 5 or 10, Figure 3.
A fourth case has been added: a core with a constant Young’s modulus, that is, an average between Ec

and Em . Poisson’s ratio is constant for the three layers (ν = 0.3). Two thickness ratios are investigated,
a/h = 4 and a/h = 100, corresponding to h = 0.25 and 0.01.

Table 5 shows the displacements, Table 6 the in-plane stresses and Table 7 (on page 31) the transverse
shear/normal stresses obtained. The results given by advanced models, such as LD4 and LM4, could
be considered as reference values for models that will be proposed in the future by other scientists. In
the case of a thick plate (a/h = 4), the use of LW models is mandatory, if we consider thin plates
(a/h = 100), ESL models could be used by employing higher-order expansions. The in-plane stress
σxx is considered in Figure 9, top, for κ equal to 1 and 10. Even though the plate is thick, the four
theories considered are effective; an ESL model with parabolic expansion in z is enough. In the case
of the transverse normal stress σzz , the use of LW models is mandatory; see Figure 9, bottom. In the
case of κ = 10, the mixed model gives better values of σzz through the thickness z with respect to the
LD4 theory. Some small problems have been pointed out near the top and the bottom of the plate, even
though an LM4 theory is employed. This happens because the plate considered is very thick. Such
problems disappear in the case of thin plates. In Figure 10, where an advanced model such as LD4 has

Figure 8. Benchmark: Three-layered plate with core in FGM, either obeying the law
(19) proposed in [Zenkour 2006], or made of isotropic material (E = 225 GPa).
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a/
h
=

10
0

a/
h
=

4

κ = 1 κ = 5 κ = 10 E = 225 GPa
w̄(0) ū(−2h/5) w̄(0) ū(−2h/5) w̄(0) ū(−2h/5) w̄(0) ū(−2h/5)

FSDT 0.6346 0.2084 0.8636 0.2937 0.9120 0.2969 0.5441 0.1470
ED2 0.7520 0.2475 1.0634 0.3530 1.1143 0.3603 0.6274 0.1794
ED4 0.7627 0.2505 1.1314 0.3504 1.2172 0.3629 0.6504 0.1844
EMZ1 0.6655 0.2180 0.9513 0.3060 1.0554 0.3134 0.5859 0.1592
LD4 0.7629 0.2499 1.1327 0.3530 1.2232 0.3663 0.6511 0.1852
LM4 0.7629 0.2499 1.1329 0.3536 1.2244 0.3667 0.6511 0.1852

FSDT 0.4958 0.0083 0.6441 0.0117 0.6592 0.0119 0.4053 0.0059
ED2 0.6073 0.0102 0.7891 0.0144 0.8075 0.0145 0.4964 0.0072
ED4 0.6073 0.0102 0.7892 0.0144 0.8077 0.0145 0.4965 0.0072
EMZ1 0.5083 0.0085 0.6601 0.0120 0.6801 0.0122 0.4215 0.0061
LD4 0.6073 0.0102 0.7892 0.0144 0.8077 0.0145 0.4965 0.0072
LM4 0.6073 0.0102 0.7892 0.0144 0.8077 0.0145 0.4965 0.0072

Table 5. Benchmark: Dimensionless normal displacement w̄ = 10Ech3uz/( p̄za4) and
dimensionless in-plane displacement ū = 10Ech3ux/( p̄za4) for a sandwich square plate
with core in FGM, using Zenkour’s formula (19).

a/
h
=

10
0

a/
h
=

4

κ = 1 κ = 5 κ = 10 E = 225 GPa
σ̄xx(h/3) σ̄xy(h/3) σ̄xx(h/3) σ̄xy(h/3) σ̄xx(h/3) σ̄xy(h/3) σ̄xx(h/3) σ̄xy(h/3)

FSDT 0.6973 −0.2775 0.5003 −0.2121 0.4198 −0.1679 0.4941 −0.1976
ED2 0.6636 −0.3094 0.4938 −0.2211 0.3872 −0.1711 0.4742 −0.2179
ED4 0.6544 −0.3007 0.4834 −0.2022 0.3823 −0.1479 0.4663 −0.2065
EMZ1 0.7707 −0.2551 0.6303 −0.1799 0.5309 −0.1375 0.5554 −0.1835
LD4 0.6530 −0.3007 0.4693 −0.1999 0.3627 −0.1412 0.4801 −0.2070
LM4 0.6531 −0.3007 0.4672 −0.1996 0.3611 −0.1403 0.4801 −0.2070

FSDT 17.344 −6.9375 13.258 −5.3033 10.495 −4.1981 12.352 −4.9408
ED2 15.784 −8.4972 12.066 −6.4950 9.5510 −5.1413 11.241 −6.0515
ED4 15.784 −8.4968 12.065 −6.4943 9.5509 −5.1404 11.241 −6.0511
EMZ1 18.928 −7.1107 15.244 −5.4326 12.597 −4.3287 13.554 −5.1375
LD4 15.784 −8.4968 12.065 −6.4942 9.5501 −5.1402 11.242 −6.0511
LM4 15.784 −8.4968 12.065 −6.4942 9.5500 −5.1401 11.242 −6.0511

Table 6. Benchmark: Dimensionless in-plane stresses σ̄xx = hσxx/(a p̄z) and σ̄xy =

hσxy/(a p̄z) for a sandwich square plate with core in FGM, using Zenkour’s formula
(19).

been chosen, the displacements and the stresses are investigated in the thickness z direction for the case
of four different cores (κ = 1, κ = 5, κ = 10, and Ec = constant= 225 GPa) and for the thickness ratio
a/h = 10. The displacements in the z direction obtained using a core with a constant Young’s modulus
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Figure 9. Benchmark: Sandwich plate with core in FGM. In-plane stress σxx (top row)
and transverse-normal stress σzz (bottom row) versus z for κ = 1 (left) and κ = 10 (right).
The thickness ratio is a/h = 4.

are more conservative than the FGM core cases (top row in Figure 10). On the contrary, the use of an
FGM core allows in-plane stresses σxx and σxy continuous in the z direction to be obtained, which is
not possible with a “classical” core, and the typical discontinuity of in-plane stresses for the sandwich
structures is clearly shown (middle row in Figure 10). The discontinuity exhibited by the FGM core in
the case of transverse shear and normal stresses σxz and σzz in Figure 10 is due to the use of a PVD
model. These stresses can actually be obtained continuously in z if we use a mixed model, as already
seen in Figure 7.

5. Conclusions

This paper has investigated the static response of several sandwich plates that include different types
of functionally graded layers. Conclusions have been outlined, regarding the modeling tools used for
these types of structure and the design of sandwich plates including a core in FGM. It has been shown
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Figure 10. Benchmark: For the sandwich plate with core in FGM, displacements
(ū, w̄) = 10(ux , uz)Ech3/( p̄za4) and stresses σxx , σxy , σxz and σzz versus z for LD4
theory. In addition to the values κ = 1, 5, 10 in Zenkour’s formula (19), we consider an
isotropic material with E = 225 GPa for the core (“E = co”). Thickness ratio: a/h= 10.
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a/
h
=

10
0

a/
h
=

4

κ = 1 κ = 5 κ = 10 E = 225 GPa
σ̄xz(0) σ̄zz(0) σ̄xz(0) σ̄zz(0) σ̄xz(0) σ̄zz(0) σ̄xz(0) σ̄zz(0)

FSDT 0.1591 −0.1811 0.0891 −0.1113 0.0906 −0.0965 0.1591 −0.0677
ED2 0.1913 0.0743 0.1205 0.0429 0.1177 0.0453 0.1704 0.0959
ED4 0.2374 0.0912 0.1925 0.0833 0.2015 0.0970 0.2400 0.1157
EMZ1 0.1923 −0.0002 0.1327 0.0051 0.1409 0.0403 0.1950 0.1272
LD4 0.2345 0.0922 0.1998 0.0911 0.2113 0.1064 0.2405 0.1058
LM4 0.2345 0.0922 0.2026 0.0924 0.2124 0.1067 0.2403 0.1058

FSDT 0.1591 −4.5270 0.0891 −2.7824 0.0906 −2.4115 0.1591 −1.6935
ED2 0.1945 0.0084 0.1225 0.0018 0.1192 0.0019 0.1726 0.0039
ED4 0.2403 0.0037 0.1965 0.0034 0.2043 0.0039 0.2415 0.0046
EMZ1 0.1950 −2.7104 0.1350 −1.6383 0.1378 −1.2957 0.1955 −0.1044
LD4 0.2375 0.0038 0.2046 0.0037 0.2149 0.0043 0.2417 0.0042
LM4 0.2375 0.0038 0.2055 0.0037 0.2122 0.0042 0.2417 0.0042

Table 7. Benchmark: Dimensionless transverse shear stress σ̄xz = hσxz/(a p̄z) and trans-
verse normal stress σ̄zz = hσzz/(a p̄z) for a sandwich square plate with core in FGM,
using Zenkour’s formula (19).

that in order to investigate multilayer plates embedding FGM layers, the use of advanced models is
mandatory, in particular for thick and moderately thick plates as well as for complicated laws in the z
direction given for the material properties. To obtain a quasi-three-dimensional response, LW models
and high orders of expansion are necessary. Mixed models are convenient for particular variables such as
transverse shear/normal stresses. In the design of sandwich plates, the use of FGM cores can represent
a valid alternative to classical materials, because they allow particular features, such as the continuity of
in-plane stresses in the thickness direction, that conventional cores do not allow. The discussion about
the optimum design of multilayer plates including FGM layers could be the subject of future works.
In them the heat conduction problem will be considered and material properties will be dependent on
temperature.
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VIBRATION SUPPRESSION ANALYSIS OF FGM SHELLS WITH HIGHER
ORDER SHEAR DEFORMATION THEORY

SURESH CHANDRA PRADHAN

Analytical solutions of functionally graded material (FGM) shells with embedded magnetostrictive lay-
ers are presented in this study. These magnetostrictive layers are used for vibration suppression in the
functionally graded shells. Higher order shear deformation theory is employed to study the vibration
suppression characteristics. The exact solution for the FGM shell with simply supported boundary con-
ditions is based on the Navier solution procedure. Negative velocity feedback control is used. The para-
metric effect of the location of the magnetostrictive layers, material properties, and control parameters
on the suppression effect are investigated in detail. Higher order shear deformation theory has significant
influence on the prediction of the vibration response of thick shells. Further, it is found that the shortest
vibration suppression time is achieved by placing the actuating layers farthest from the neutral plane,
that the use of thinner smart material layers leads to better vibration attenuation characteristics, and that
the vibration suppression time is longer for a smaller value of the feedback control coefficient.

A list of symbols can be found starting on page 54.

1. Introduction

A number of materials have been used in sensor/actuator applications. Piezoelectric materials, magne-
tostrictive materials, shape memory alloys, and electrorheological fluids have all been integrated with
structures to make smart structures. Among these materials piezoelectric, electrostrictive, and magne-
tostrictive materials have the capability to serve as both sensors and actuators. Piezoelectric materials
exhibit a linear relationship between the electric field and strains for low field values (up to 100 V/mm).
This relationship is nonlinear for large fields, and the material exhibits hysteresis. Further, piezoelectric
materials show dielectric aging and hence lack reproducibility of strains, that is, a drift from zero state
of strain is observed under cyclic electric field applications.

An ideal actuator, for distributed embedded application, should have high energy density, negligible
weight, and point excitation with a wide frequency bandwidth. Terfenol-D, a magnetostrictive material,
has the characteristics of being able to produce strains up to 2000 and an energy density as high as
0.0025 J m−3 in response to a magnetic field. Goodfriend and Shoop [1992] reviewed the material prop-
erties of Terfenol-D with regard to its use in vibration isolation. Anjanappa and Bi [1994] investigated the
feasibility of using embedded magnetostrictive mini actuators for smart structure applications, such as
vibration suppression of beams. Bryant et al. [1993] presented experimental results of a magnetostrictive
Terfenol-D rod used in dual capacity as a passive structural support element and an active vibration
control actuator. Krishna Murty et al. [1997] proposed magnetostrictive actuators that take advantage of
the ease with which the actuators can be embedded and the use of the remote excitation capability of

Keywords: functionally graded materials, higher order, shear deformation, vibration, shell.
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magnetostrictive particles as new actuators for smart structures. This work is limited to flexible beam
theory.

Friedmann et al. [2001] used the magnetostrictive material Terfenol-D in high speed helicopter rotors
and studied the vibration reduction characteristics. Vibration and shape control of flexible structures
are achieved with the help of actuators and a control law. The response of functionally graded material
(FGM) shells is also studied by Loy et al. [1999], Pradhan et al. [2000], Woo and Meguid [2001], and
He et al. [2002]. Many modern techniques have been developed in recent years to meet the challenge
of designing controllers that suit the function under the required conditions. There have been a number
of studies on vibration control of flexible structures using magnetostrictive materials [Bryant et al. 1993;
Anjanappa and Bi 1994; Krishna Murty et al. 1997; Giurgiutiu et al. 2001; Pradhan et al. 2001]. Higher
order shear deformation theory (HSDT) is discussed in [Reddy 1984a; 1984b]. Kadoli and Ganesan
[2006], Haddadpour et al. [2007], Li [2008], Pradyumna and Bandyopadhyay [2008], and Matsunaga
[2009] described various vibration analyses of functionally graded materials. Although there have been
important research efforts devoted to characterizing the properties of Terfelon-D, fundamental informa-
tion about the variation in elastomagnetic material properties in a thick functionally graded shell is not
available.

In the present work vibration control of functionally graded shells is studied using HSDT. Exact solu-
tions are developed for simply supported doubly curved functionally graded shells with magnetostrictive
layers. This closed form solution exists for FGM shells where the coefficients A16, A26, B16, B26, D16,
D26, and A45 are equal to zero. A simple negative velocity feedback control is used to actively control
the dynamic response of the structure through a closed loop control. Numerical results of the vibration
suppression effect for various locations of the magnetostrictive layers, material properties, and control
parameters are presented. The influence of HSDT on thick FGM shells is also investigated.

2. Theoretical formulation

Kinematic description. Figure 1, left, shows a differential element of a doubly curved shell element
with constant curvatures along two coordinate directions (ξ1, ξ2), where (ξ1, ξ2, ζ ) denote the orthogonal
curvilinear coordinates such that the ξ1 and ξ2 curves are the lines of curvature on the middle surface
(ζ = 0). Thus, in the doubly curved shell panel considered here, the lines of the principal curvature
coincide with the coordinate lines. The values of the principal radii of curvature of the middle surface
are denoted by R1 and R2. The position vector of a point (ξ1, ξ2, 0) on the middle surface is denoted by
r , and the position of an arbitrary point (ξ1, ξ2, ζ ) is denoted by R (see Figure 1, top right). The square
of the distance ds between points (ξ1, ξ2, 0) and (ξ1+ dξ1, ξ2+ dξ2, 0) is determined as [Pradhan 2005]

(ds)2 = d r.d r = α2
1(dξ1)

2
+α2

2(dξ2)
2, (1)

in which d r = g1dξ1+ g2dξ2, the vectors g1 and g2 (gi = ∂ r/∂ξi ) are tangent to the ξ1 and ξ2 coordinate
lines and α1, α2 are the surface metrics:

α2
1 = g1.g1, α2

2 = g2.g2 (2)

The square of the distance d S between (ξ1, ξ2, ζ ) and (ξ1+ dξ1, ξ2+ dξ2, ζ + dζ ) is given by

(d S)2 = d R.d R = L2
1(dξ1)

2
+ L2

2(dξ2)
2
+ L2

3(dζ )
2, (3)
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Figure 1. Geometry and stress resultants of a doubly curved shell.

in which d R =
∂R
∂ξ1

dξ1+
∂R
∂ξ2

dξ2+
∂R
∂ζ

dζ and L1, L2, and L3 are the Lamé coefficients

L1 = α1

(
1+ ζ

R1

)
, L2 = α2

(
1+ ζ

R2

)
, L3 = 1. (4)

Displacement field. We assume the following form of the displacement field, consistent with the assump-
tions of a thick shell theory as explained in [Reddy and Liu 1985]:

ū1(ξ1, ξ2, ζ, t)= L1
α1

u1(ξ1, ξ2, t)+ ζφ1(ξ1, ξ2, t)−C1ζ
3
(
φ1+

∂u3
α1∂ξ1

)
,

ū2(ξ1, ξ2, ζ, t)= L2
α2

u2(ξ1, ξ2, t)+ ζφ2(ξ1, ξ2, t)−C1ζ
3
(
φ2+

∂u3
α1∂ξ2

)
,

ū3(ξ1, ξ2, ζ, t)= u3(ξ1, ξ2, t),

(5)

where
1
∂xi
=

1
αi

1
∂ξi

(i = 1, 2), (6)

(ū1, ū2, ū3) are the displacements of a point (ξ1, ξ2, ζ ) along the (ξ1, ξ2, ζ ) coordinates, and (u1, u2, u3)

are the displacements of a point (ξ1, ξ2, 0) on the mid surface of the shell. C1 is a constant, which
depends on shell thickness. The strain-displacement relations are written as

ε1

ε2

ε6

=

ε0

1

ε0
2

ε0
6

+ ζ

ε1

1

ε1
2

ε1
6

+ ζ 3


ε2

1

ε2
2

ε2
6

 ,
{
γ4

γ5

}
=

{
γ 0

4

γ 0
5

}
+ ζ 2

{
γ 1

4

γ 1
5

}
, (7)
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where


ε0

1

ε0
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ε0
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∂u1
∂x1
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1
R1

u3

∂u2
∂x2
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1
R2

u3
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∂x2
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1
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∂φ2
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∂x2
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∂u3
∂x1

 ,
{
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φ2+

∂u3
∂x2
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∂x1

 , (8)

and (φ1, φ2) are rotations of a transverse normal line about the ξ2 and ξ1 coordinate axes, respectively:

φ1 =−
∂u3
∂ξ1

, φ2 =−
∂u3
∂ξ2

. (9)

The constants C1 and C2 are defined as

C1 =
4

3h2 , C2 = 3C1. (10)

Constitutive relations. Suppose that the shell is composed of N functionally graded layers. The stress-
strain relations of the k-th layer, whether structural layer or actuating/sensing layer, in the shell coordinate
system are given as

σ1

σ2

σ4

σ5

σ6



(k)

=


Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q44 0 0
0 0 0 Q55 0
0 0 0 0 Q66


(k)

ε1

ε2

ε4

ε5

ε6

− ζ


ce31

e32

0
0

e36



(k)

H, (11)

where Q(k)
i j are the stiffnesses of the k-th layer and

Q11 =
EFGM

1− ν2
FGM

, Q12 =
νFGM EFGM

1− ν2
FGM

, Q22 = Q11, Q44 = Q55 = Q66 = GFGM. (12)

The superscript k on Qi j as well as on the engineering constants EFGM, νFGM, and so on are omitted
for brevity. In Equation (11), H denotes the intensity of the magnetic field. H is applied normal to the
thickness of the shell. ei j are the magnetostrictive material coefficients.

Feedback control. A velocity feedback control is used in the present study. In the velocity feedback
control, the magnetic field intensity H is expressed in terms of the coil current I (ξ1, ξ2, t) as

H(ξ1, ξ2, t)= kc I (ξ1, ξ2, t). (13)

Current I is related to the transverse velocity u̇3 component as

I (ξ1, ξ2, t)= c(t)∂u3
∂t

(14)
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where kc is the magnetic coil constant and is related to the number of coil turns nc, the coil width bc, and
the coil radius rc by

kc =
nc√

b2
c + 4r2

c

. (15)

The parameter c(t) is known as the control gain.

Equations of motion. The equations of motion are derived from the dynamic version of the principle
of virtual work. By integrating the displacement gradients by parts and setting the coefficients δu1, δu2,
δu3, δφ1, and δφ2 to zero separately (the moment terms in the first two equations are omitted) we get

∂N1
∂x1
+
∂N6
∂x2
= I 1

∂2u1
∂t2 + I 2

∂2φ1
∂t2 − I 3

∂2u3
∂t2 ,

∂N6
∂x1
+
∂N2
∂x2
= J 1

∂2u2
∂t2 + J 2

∂2φ2
∂t2 − J 3

∂2u3
∂t2 ,

∂Q1
∂x1
+
∂Q2
∂x2
−C2

(
∂K1
∂x1
+
∂K2
∂x2

)
+C1

(
∂2 P1

∂x2
1
+ 2 ∂2 P6

∂x1∂x2
+
∂2 P2

∂x2
2

)
−

N1
R1
−

N2
R2
+ q

= I 3
∂3u1
∂x1∂t2 + I 5

∂3φ1
∂x1∂t2 + J 3

∂3u2
∂x2∂t2 + J 5

∂3φ2
∂x2∂t2 + I1

∂2u3
∂t2 −C2

1 I7

(
∂4u3

∂x2
1∂t2
+

∂4u3

∂x2
2∂t2

)
,

∂M1
∂x1
+
∂M6
∂x2
− Q1+C2K1−C1

(
∂P1
∂x1
+
∂P6
∂x2

)
= I 2

∂2u1
∂t2 + I 4

∂2φ1
∂t2 − I 5

∂3u3
∂x1∂t2 ,

∂M6
∂x1
+
∂M2
∂x2
− Q2+C2K2−C1

(
∂P6
∂x1
+
∂P2
∂x2

)
= J 2

∂2u2
∂t2 + J 4

∂2φ2
∂t2 − J 5

∂3u3
∂x2∂t2 , (16)

where the forces Ni , the moments Mi , the third-order moments Pi , and the shear forces Q1, Q2, K1, and
K2 are defined as

(Ni ,Mi , Pi )=

N∑
k=1

∫ ζk

ζk−1

σ
(k)
i (1, ζ, ζ 3)dζ (i = 1, 2, 6),

(Q1, K1)=

N∑
k=1

∫ ζk

ζk−1

σ
(k)
5 (1, ζ 2)dζ, (Q2, K2)=

N∑
k=1

∫ ζk

ζk−1

σ
(k)
4 (1, ζ 2)dζ.

(17)

The inertia-driven terms I i and J i are defined as

I 1 = I1+
2
R1

I2, I 2 = I3+
1
R1

I3−C1

(
I4+

1
R1

I5

)
, I 3 = C1

(
I4+

1
R1

I5

)
,

J 1 = I1+
2
R2

I2, J 2 = I3+
1
R2

I3−C1

(
I4+

1
R2

I5

)
, J 3 = C1

(
I4+

1
R2

I5

)
,

I 4 = I3−C1

(
2I5−C1 I7

)
, I 5 = C1

(
2I5−C1 I7

)
, J 4 = I 4, J 5 = I 5.

(18)

The inertia terms are defined as

(I1, I2, I3, I4, I5, I7)=

N∑
k=1

∫ ζk

ζk−1

ρ(k)(1, ζ, ζ 2, ζ 3, ζ 4, ζ 6)dζ, (19)

where ρ(k) is the density of the k-th layer and N is the number of layers in the laminate.
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Shell constitutive equation. Using Equations (7) and (11) in (17) we get the following constitutive equa-
tions for the actuator embedded shell:
{N }
{M}
{P}

=
[A] [B] [E][B] [D] [F]
[E] [F] [H ]



{ε0
}

{ε1
}

{ε2
}

−

{N }
{M}
{P}


M

,

{
{Q}
{K }

}
=

[
[A] [D]
[D] [F]

]{
γ 0

γ 1

}
−

{
{Q}
{K }

}M

, (20)

where the shell stiffness coefficients (Ai j , Bi j , Di j , Ei j , Fi j , and Hi j for i, j = 1, 2, 6) are defined by

(Ai j , Bi j , Di j , Ei j , Fi j , Hi j )=

N∑
k=1

∫ ζk+1

ζk

Q̄(k)
i j (1, ζ, ζ

2, ζ 3, ζ 4, ζ 6)dζ (21)

and the shell stiffness coefficients (Ai j , Di j , and Fi j for i, j = 4, 5) are defined by

(Ai j , Di j , Fi j )=

N∑
k=1

∫ ζk+1

ζk

Q̄(k)
i j (1, ζ

2, ζ 4)dζ (i, j = 4, 5). (22)

The magnetostrictive stress resultants ({N M
i }, {M

M
i }, and {K M

i } for i = 1, 2) are defined by{
N M

1

N M
2

}
=

N∑
k=m1,m2,...

∫ ζk+1

ζk

{
ē31

ē32

}
Hζ dζ = ckc

N∑
k=m1,m2,...

∫ ζk+1

ζk

{
ē31

ē32

}
∂u3

∂t
dζ ≡

{
A31

A32

}
∂u3

∂t
,

{
M M

1

M M
2

}
=

N∑
k=m1,m2,...

∫ ζk+1

ζk

{
ē31

ē32

}
ζHζ dζ = ckc

N∑
k=m1,m2,...

∫ ζk+1

ζk

{
ē31

ē32

}
∂u3

∂t
ζ dζ ≡

{
B31

B32

}
∂u3

∂t
,

{
K M

1

K M
2

}
=

N∑
k=m1,m2,...

∫ ζk+1

ζk

{
ē31

ē32

}
ζ 3 Hζ dζ = ckc

N∑
k=m1,m2,...

∫ ζk+1

ζk

{
ē31

ē32

}
∂u3

∂t
ζ 3 dζ ≡

{
C31

C32

}
∂u3

∂t
,

(23)

where

Ai j = ckc

∑
k=m1,m2,...

ē(k)i j (ζk+1− ζk), i = 3, j = 1, 2,

Bi j =
1
2 ckc

∑
k=m1,m2,...

ē(k)i j (ζ
2
k+1− ζ

2
k ), i = 3, j = 1, 2,

Ci j =
1
4 ckc

∑
k=m1,m2,...

ē(k)i j (ζ
4
k+1− ζ

4
k ), i = 3, j = 1, 2,

(24)

and m1, m2, . . . denote the layer numbers of the magnetostrictive (or any actuating/sensing) layers.

Functionally graded material. The material properties PFGM of the FGM are controlled by the volume
fractions V f i and the individual material properties Pi of the constituent materials:

PFGM =

nm∑
i=1

Pi V f i . (25)
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Figure 2. Left: functionally graded shell with embedded magnetostrictive layers. Right:
exploded sectional view.

In the present case two different materials are particle mixed to form the FGM material. A schematic of
the FGM shell with magnetostrictive layers is shown in Figure 2. The left half of the figure shows two
layers of magnetostrictive materials placed symmetrically away from the neutral plane of the FGM shell.
A zoomed view of section AA is shown on the right. Assuming there are no defects like voids or foreign
particles in the FGM material, the sum of the volume fractions of all the constituent materials is unity:

nm∑
i=1

V f i = 1. (26)

For example, metal and ceramic materials (nm = 2) are mixed to form the FGM shell. The volume
fractions of the metal and ceramic materials are calculated by simple integration of the distribution
over a domain. Different problems of interest have different expressions for the volume fractions. For
bending problems of plates and shells the volume fractions of the metal (Vm) and ceramic (Vc) materials
are defined as

Vm =

(h−2z
2h

)Rn
, Vc = 1− Vm, (27)

where z is the thickness coordinate (−h/2 ≤ z ≤ h/2) and h represents the shell thickness. Rn is the
power law exponent (0 ≤ Rn ≤∞). Here Vm varies from 100% to 0% as z varies from −h/2 to h/2.
Similarly Vc varies from 0% to 100% as z varies from −h/2 to h/2. For various Rn values the average Vm

and Vc are depicted in the top and bottom of Figure 3, respectively. The Young’s modulus and Poisson’s
ratio of a FGM shell made up of two different materials are expressed as

EFGM = (E2− E1)
(2z+h

2h

)Rn
+ E1, νFGM = (ν2− ν1)

(2z+h
2h

)Rn
+ ν1. (28)

E1, E2, and EFGM are the Young’s moduli of the constituent materials and the FGM material, respectively.
ν1, ν2, and νFGM are the Poisson’s ratios of the constituent materials and the FGM material, respectively.
From Equation (28) we note that at z = −h/2, the FGM material properties are the same as those of
material 1, while at z = h/2, they are the same as those of material 2. Thus, the FGM material properties
vary smoothly across the thickness, from material 1 at the inner surface to material 2 at the outer surface.
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Figure 3. Volume fractions of metal and ceramic materials in the FGM shell.

Two different FGM materials are considered in the present study: FGM1 consists of stainless steel
and nickel (Figure 2b), while FGM2 consists of nickel and aluminum oxide. The material properties of
stainless steel, nickel, and aluminum oxide are listed in Table 1. The material properties of the FGM
shells are calculated at room temperature.

Young’s Modulus E (GPa) Poisson’s ratio Density (kg m−3)
Stainless steel 201.04 0.3262 7900
Nickel 244.27 0.2882 8909
Aluminum oxide 349.55 0.260 3970

Table 1. Material properties of FGM constituent materials.



VIBRATION SUPPRESSION ANALYSIS OF FGM SHELLS WITH HIGHER ORDER SHEAR DEFORMATION 43

3. Analytical solution

The equations of motion (16) can be expressed in terms of the displacements (u1, u2, u3, φ1, φ2) by
substituting the force and moment resultants from (20). Further, one can derive the equation of motion
(16) for homogeneous shells. An exact solution for the partial differential equations (16) on arbitrary
domains and for general boundary conditions is not possible. However, for simply supported shells
whose projection in the x1, x2-plane is a rectangle and for a lamination scheme of antisymmetric cross-
ply or symmetric cross-ply type the equations (16) are solved exactly. The Navier solution exists if
Ai6 = Bi6 = Di6 = Ei6 = Fi6 = Hi6 = 0 (i = 1, 2), and A45 = D45 = F45 = 0 [Reddy 1984a]. The
simply-supported boundary conditions for the HSDT are assumed to be

u1(x1, 0, t)= 0, u1(x1, b, t)= 0, u2(0, x2, t)= 0, u2(a, x2, t)= 0,

u3(x1, 0, t)= 0, u3(x2, b, t)= 0, u3(0, x2, t)= 0, u3(a, x2, t)= 0,

N1(0, x2, t)= 0, N1(a, x2, t)= 0, N2(x1, 0, t)= 0, N2(x1, b, t)= 0,

M1(0, x2, t)= 0, M1(a, x2, t)= 0, M2(x1, 0, t)= 0, M2(x1, b, t)= 0,

P1(0, x2, t)= 0, P1(a, x2, t)= 0, P2(x1, 0, t)= 0, P2(x1, b, t)= 0,

φ1(x1, 0, t)= 0, φ1(x1, b, t)= 0, φ2(0, x2, t)= 0, φ2(a, x2, t)= 0,

(29)

where a and b denote the lengths along the x1 and x2 axes, respectively. The boundary conditions in (29)
are satisfied by the following expansions [Reddy 2004]:

u1(x1, x2, t)=
∞∑

n=1

∞∑
m=1

Umn(t) cosαx1 sinβx2, u2(x1, x2, t)=
∞∑

n=1

∞∑
m=1

Vmn(t) sinαx1 cosβx2,

u3(x1, x2, t)=
∞∑

n=1

∞∑
m=1

Wmn(t) sinαx1 sinβx2,

φ1(x1, x2, t)=
∞∑

n=1

∞∑
m=1

Xmn(t) cosαx1 sinβx2, φ2(x1, x2, t)=
∞∑

n=1

∞∑
m=1

Ymn(t) sinαx1 cosβx2.

(30)

Substituting (30) into (16), we obtain
S11 S12 S13 S14 S15

S21 S22 S23 S24 S25

S31 S32 S33 S34 S35

S41 S42 S43 S44 S45

S51 S52 S53 S54 S55




Umn

Vmn

Wmn

Xmn

Ymn

+


0 0 C13 0 0
0 0 C23 0 0
0 0 C33 0 0
0 0 C43 0 0
0 0 C53 0 0




U̇mn

V̇mn

Ẇmn

Ẋmn

Ẏmn



+


M11 0 M13 M14 0

0 M22 M23 0 M25

M31 M32 M33 M34 M35

M41 0 M43 M44 0
0 M52 M53 0 M55




Ümn

V̈mn

Ẅmn

Ẍmn

Ÿmn

=


0
0

Qmn

0
0

 , (31)
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S11 = A11α
2
+ A66β

2, S12 = S21 = A12αβ + A66αβ,

S13 = S31 =−A11
1
R1
α− A12

1
R2
α−C1 E11α

3
−C1 E12αβ

2
−C1 E662αβ2,

S14 = S41 = B11α
2
−C1 E11α

2
+ B66β

2
−C1 E66β

2, S15 = S51 = B12αβ −C1 E12αβ + B66αβ −C1 E66αβ,

S22 = A66α
2
+ A22β

2, S23 = S32 =−2C1 E66α
2β − A12

1
R1
β − A22

1
R2
β −C1 E12α

2β −C1 E22β
3,

S24 = S42 = B66αβ −C1 E66αβ + B12αβ −C1 E12αβ, S25 = S52 = B66α
2
−C1 E66α

2
+ B22β

2
−C1 E22β

2,

S33 = A55α
2
− 2C2 D55α

2
+ A44β

2
− 2C2 D44β

2
+C2

2 F55α
2
+C2

2 F44β
2

+ 2C1 E11
1
R1
α2
+ 2C1 E12

1
R2
α2
+C2

1 H11α
4
+C2

1 H12α
2β2
+ 2C2

1 H66α
2β2
+ 2C1 E12

1
R1
β2

+ 2C1 E22
1
R2
β2
+C2

1 H12α
2β2
+C2

1 H22β
4
− A11

1
R2

1
− 2 1

R1 R2
A12− A22

1
R2

2
,

S34 = S43 = A55α− 2C2 D55α+C2
2 F55α−C1 F11α

3
+C2

1 H11α
3
− 2C1 F66αβ

2

+ 2C2
1 H66αβ

2
+C2

1 H12αβ
2
−

1
R1

B11α+C1
1
R1

E11α−
1
R2

B12α+C1
1
R2

E12α,

S35 = S53 = A44β − 2C2 D44β +C2
2 F44β −C1 F12α

2β +C2
1 H12α

2β − 2C1 F66α
2β + 2C2

1 H66α
2β

−C1 F22β
3
+C2

1 H22β
3
−

1
R1

B12β +C1
1
R1

E12β −
1
R2

B22β +C1
1
R2

E22β,

S44 = D11α
2
− 2C1 F11α

2
+ D66β

2
− 2C1 F66β

2
− A55+ 2C2 D55−C2

2 F55+C2
1 H11α

2
+C2

1 H66β
2,

S45 = S54 = D66αβ + D12αβ − 2C1 F66αβ − 2C1 F12αβ +C2
1 H12αβ −C1 F66αβ +C2

1 H66αβ,

S55 = D66α
2
− 2C1 F66α

2
+ D22β

2
− 2C1 F22β

2
− A44+ 2C2 D44−C2

2 F44+C2
1 H66α

2
+C2

1 H22β
2,

C13 =A31α, C23 =A32β, C33 =−C31α
2
−C32β

2
+

A31

R1
+

A32

R2
,

C43 =B31α−C1C31α, C53 =B32β −C1C32β,

M11 = Ī1, M12 = M21 = M15 = M51 = M24 = M42 = M45 = M54 = 0, M13 = M31 = Ī3α,

M14 = M41 = Ī2, M22 = J̄1, M23 = M32 = J̄3β, M25 = M52 = J̄2,

M33 = Ī1+C2
1 I7(α

2
+β2), M34 = M43 = Ī5α, M35 = M53 = J̄5β, M44 = Ī4, M55 = J̄4,

Table 2. Definition of the variables appearing in Equation (31). The magnetostrictive
coefficients A31, A32, B31, B32, C31, and C32 are defined in (24).

where Si j , Ci j , and Mi j (i, j = 1, 2, . . . , 5) are defined in Table 2. For vibration control, we assume
q = 0 and seek the solution of the ordinary differential equations (31) in the form

Umn(t)=U0eλt , Vmn(t)= V0eλt , Wmn(t)=W0eλt , Xmn(t)= X0eλt , Ymn(t)= Y0eλt . (32)

Substituting (32) into (31), and defining

S̄i j = Si j + λCi j + λ
2 Mi j (i, j = 1, 2, 3, 4, 5), (33)
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we obtain as the condition for a nontrivial solution∣∣∣∣∣∣∣∣∣∣

S̄11 S̄12 S̄13 S̄14 S̄15

S̄21 S̄22 S̄23 S̄24 S̄25

S̄31 S̄32 S̄33 S̄34 S̄35

S̄41 S̄42 S̄43 S̄44 S̄45

S̄51 S̄52 S̄53 S̄54 S̄55

∣∣∣∣∣∣∣∣∣∣
= 0. (34)

This equation gives five sets of eigenvalues. The lowest one corresponds to the transverse motion. The
eigenvalue can be written as λ= −α+ iωd , so that the damped motion is given by

u3(x1, x2, t)= 1
ωd

e−αt sinωd t sin nπx1
a

sin nπx2
b

. (35)

In arriving at the last solution, the following boundary conditions are used:

u1(x1, x2, 0)= 0, u̇1(x1, x2, 0)= 0, u2(x1, x2, 0)= 0, u̇2(x1, x2, 0)= 0, u3(x1, x2, 0)= 0,

u̇3(x1, x2, 0)= 1, φ1(x1, x2, 0)= 0, φ̇1(x1, x2, 0)= 0, φ2(x1, x2, 0)= 0, φ̇2(x1, x2, 0)= 0.
(36)

4. Results and discussion

In the present work a theoretical analysis of a functionally graded material (FGM) shell, consisting of
layers of magnetostrictive material, is carried out. The magnetostrictive material is assumed to impart
vibration control through a velocity dependent feedback law that controls the current to the magnetic
coils energizing the magnetostrictive material. Higher order shear deformation theory (HSDT) is used
in the derivation. Numerical simulation results are presented. The effect of various parameters on the
vibration suppression time is studied. These parameters are: the location of the magnetostrictive layer
relative to the neutral plane, the thickness of the magnetostrictive layer, the higher modes of vibration,
the material properties of the magnetostrictive material, and the material properties of the FGM material.
The influence of HSDT on the vibration response of thick shells is also investigated.

The FGM shell is considered to have dimensions 1 m × 1 m. Two types of FGM shells are considered:
FGM1, made up of stainless steel and nickel, and FGM2, made up of nickel and aluminum oxide. The
material properties of the constituent materials were listed in Table 1. Two layers of magnetostrictive
materials are placed symmetrically away from the neutral plane of the FGM shell, as shown in Figure 2.
The magnetostrictive material properties are taken as Em = 26.5 GPa, νm = 0.0, ρm = 9250 kgm−3,
c(t)rc = 104. The numerical values of various material and structural constants based on different
locations of the magnetostrictive layers and different FGM material properties are listed in Tables 3
and 4. In this study, the vibration suppression time (ts) is defined as the time required to reduce the
uncontrolled vibration amplitude to one-tenth of its initial amplitude. In the present numerical simulations
the suppression time and the thickness of the magnetostrictive layer are denoted by ts and hm , respectively.
Zm represents the distance between the location of the magnetostrictive layer and the neutral plane.

Effect of magnetostrictive layer location. The effect of the location of the magnetostrictive layers on the
vibration suppression is studied. Figure 2 shows the location of the magnetostrictive layers in the FGM
shells. Transverse deflection values are plotted as functions of time in Figure 4 for several Zm values:
3.5 mm, 5.5 mm, 7.5 mm and 9.5 mm. For Zm = 9.5 mm Figure 4d shows the shortest suppression time,
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Zm/ F11/ H11/ D11/ F12/ H12/ D12/ F22/ H22/ D22/

m 10 Nm3 10−3 Nm5 106 Nm 10 Nm3 10−3 Nm5 105 Nm 10 Nm3 10−3 Nm5 106 Nm

0.0095 0.624 0.375 0.124 0.178 0.103 0.366 0.624 0.375 0.124
0.0085 0.752 0.534 0.132 0.222 0.157 0.393 0.752 0.534 0.132
0.0075 0.843 0.622 0.139 0.253 0.187 0.417 0.843 0.622 0.139
0.0065 0.904 0.668 0.145 0.274 0.203 0.438 0.904 0.668 0.145
0.0055 0.942 0.689 0.150 0.287 0.210 0.456 0.942 0.689 0.150
0.0045 0.964 0.698 0.155 0.294 0.213 0.471 0.964 0.698 0.155
0.0035 0.976 0.701 0.158 0.298 0.214 0.483 0.976 0.701 0.158
0.0025 0.981 0.702 0.161 0.300 0.215 0.492 0.981 0.702 0.161
0.0015 0.983 0.702 0.163 0.301 0.215 0.498 0.983 0.702 0.163
0.0005 0.983 0.702 0.164 0.301 0.215 0.501 0.983 0.702 0.164

Zm/ F66/ H66/ D66/ F44/ D44/ A44/ F55/ D55/

m 10 Nm3 10−3 Nm5 105 Nm 10 Nm3 105 Nm5 1010 Nm−1 10 Nm3 105 Nm

0.0095 0.223 0.136 0.438 0.223 0.438 0.156 0.223 0.438
0.0085 0.265 0.188 0.464 0.265 0.464 0.156 0.265 0.464
0.0075 0.295 0.217 0.487 0.295 0.487 0.156 0.295 0.487
0.0065 0.315 0.232 0.507 0.315 0.507 0.156 0.315 0.507
0.0055 0.328 0.239 0.525 0.328 0.525 0.156 0.328 0.525
0.0045 0.335 0.242 0.539 0.335 0.539 0.156 0.335 0.539
0.0035 0.339 0.243 0.551 0.339 0.551 0.156 0.339 0.551
0.0025 0.340 0.244 0.559 0.340 0.559 0.156 0.340 0.559
0.0015 0.341 0.244 0.565 0.341 0.565 0.156 0.341 0.565
0.0005 0.341 0.244 0.568 0.341 0.568 0.156 0.341 0.568

Zm/ C1/ C2/ I1/ I3/ I5/ I7/ −B31/ −C31/

m 104 m−2 105 m−2 102 kgm−2 10−2 kg 10−6 kgm2 1010 kgm4 102 10−2

0.0095 0.333 0.100 0.849 0.288 0.175 0.126 0.841 0.761
0.0085 0.333 0.100 0.849 0.288 0.175 0.126 0.752 0.545
0.0075 0.333 0.100 0.849 0.285 0.171 0.126 0.664 0.375
0.0065 0.333 0.100 0.849 0.284 0.170 0.121 0.575 0.244
0.0055 0.333 0.100 0.849 0.283 0.169 0.120 0.487 0.148
0.0045 0.333 0.100 0.849 0.282 0.168 0.120 0.398 0.082
0.0035 0.333 0.100 0.849 0.281 0.168 0.120 0.310 0.039
0.0025 0.333 0.100 0.849 0.281 0.168 0.120 0.221 0.014
0.0015 0.333 0.100 0.849 0.280 0.168 0.120 0.133 0.003
0.0005 0.333 0.100 0.849 0.280 0.168 0.120 0.044 0.000

Table 3. Coefficients of the FGM1 (stainless steel-nickel) shell.
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Zm/ F11/ H11/ D11/ F12/ H12/ D12/ F22/ H22/ D22/

m 10 Nm3 10−3 Nm5 106 Nm 10 Nm3 10−3 Nm5 105 Nm 10 Nm3 10−3 Nm5 106 Nm

0.0095 0.801 0.478 0.161 0.207 0.119 0.426 0.801 0.478 0.161
0.0085 0.974 0.691 0.171 0.258 0.182 0.457 0.974 0.691 0.171
0.0075 1.095 0.809 0.181 0.294 0.218 0.485 1.095 0.809 0.181
0.0065 1.177 0.871 0.189 0.318 0.236 0.509 1.177 0.871 0.189
0.0055 1.228 0.899 0.196 0.333 0.244 0.530 1.228 0.899 0.196
0.0045 1.258 0.911 0.202 0.342 0.248 0.547 1.258 0.911 0.202
0.0035 1.274 0.915 0.207 0.347 0.249 0.561 1.274 0.915 0.207
0.0025 1.281 0.916 0.210 0.349 0.249 0.572 1.281 0.916 0.210
0.0015 1.283 0.916 0.212 0.349 0.249 0.579 1.283 0.916 0.212
0.0005 1.283 0.916 0.214 0.349 0.249 0.583 1.283 0.916 0.214

Zm/ F66/ H66/ D66/ F44/ D44/ A44/ F55/ D55/

m 10 Nm3 10−3 Nm5 105 Nm 10 Nm3 105 Nm5 1010 Nm−1 10 Nm3 105 Nm

0.0095 0.297 0.179 0.591 0.297 0.591 0.212 0.297 0.591
0.0085 0.358 0.254 0.628 0.358 0.628 0.212 0.358 0.628
0.0075 0.401 0.296 0.661 0.401 0.661 0.212 0.401 0.661
0.0065 0.429 0.317 0.690 0.429 0.690 0.212 0.429 0.690
0.0055 0.447 0.327 0.715 0.447 0.715 0.212 0.447 0.715
0.0045 0.458 0.332 0.736 0.458 0.736 0.212 0.458 0.736
0.0035 0.463 0.333 0.752 0.463 0.752 0.212 0.463 0.752
0.0025 0.466 0.333 0.765 0.466 0.765 0.212 0.466 0.765
0.0015 0.467 0.333 0.773 0.467 0.773 0.212 0.467 0.773
0.0005 0.467 0.333 0.777 0.467 0.777 0.212 0.467 0.777

Zm/ C1/ C2/ I1/ I3/ I5/ I7/ −B31/ −C31/

m 104 m−2 105 m−2 102 kgm−2 10−2 kg 10−6 kgm2 1010 kgm4 102 10−2

0.0095 0.333 0.100 0.672 0.240 0.152 0.113 0.841 0.761
0.0085 0.333 0.100 0.672 0.235 0.144 0.103 0.752 0.545
0.0075 0.333 0.100 0.672 0.230 0.138 0.097 0.664 0.375
0.0065 0.333 0.100 0.672 0.226 0.134 0.094 0.575 0.244
0.0055 0.333 0.100 0.672 0.223 0.131 0.093 0.487 0.148
0.0045 0.333 0.100 0.672 0.220 0.130 0.092 0.398 0.082
0.0035 0.333 0.100 0.672 0.218 0.129 0.092 0.310 0.039
0.0025 0.333 0.100 0.672 0.216 0.129 0.092 0.221 0.014
0.0015 0.333 0.100 0.672 0.215 0.129 0.092 0.133 0.003
0.0005 0.333 0.100 0.672 0.215 0.129 0.092 0.044 0.000

Table 4. Coefficients of the FGM2 (nickel-aluminum oxide) shell.
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Figure 4. Comparison of uncontrolled (dashed line) and controlled (solid line) motion
at the midpoint of the FGM1 shell for various locations of the magnetostrictive layers,
(a) Zm = 3.5 mm, (b) Zm = 5.5 mm, (c) Zm = 7.5 mm and (d) Zm = 9.5 mm.

ts = 0.22 s, while for Zm = 3.5 mm Figure 4a shows the longest suppression time, ts = 0.59 s. From
Figure 4, the shortest suppression time is observed when the magnetostrictive layers are placed farther
away from the neutral plane. Similarly, from Figure 4 one can observe that the longest suppression time
occurs when the magnetostrictive layer is located closest to the neutral plane of the shell.

The influence on the damping of the vibration response of the distance between the magnetostrictive
layers and the neutral plane of the shell in the thickness direction is shown in Tables 5–7. In Tables 5
and 6, the value of λ0 increases when the magnetostrictive layer is located farther away from the neutral
axis, indicating faster vibration suppression. This is due to the larger bending moment created by the
actuating force in the magnetostrictive layers. Further, it is observed that the damping parameter B31 and
the associated normalized value of Bn increase as the magnetostrictive layers are moved away from the
neutral plane. These damping parameters are listed in Tables 3 and 4. These results agree qualitatively
with those presented in [Pradhan et al. 2001; He et al. 2002; Pradhan 2005].

Effect of thickness of magnetostrictive layers. The vibration response of the FGM1 shell for various
thicknesses of the magnetostrictive layers (hm) is studied. Magnetostrictive damping coefficients and
natural frequencies for various thicknesses of the magnetostrictive layers are listed in Tables 5–6. These
damping coefficients and natural frequencies refer to the first mode of vibration. The vibration suppres-
sion time for hm values of 1 mm, 2 mm, 3 mm, and 5 mm are listed in Tables 5 and 6. These computations
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Zm(m) −λ0 ±ωd Wmax(mm) ts(s) tn

0.0095 9.760 778.57 1.259 0.244 0.055
0.0085 8.731 803.46 1.222 0.268 0.060
0.0075 7.702 828.79 1.184 0.305 0.068
0.0065 6.673 848.44 1.154 0.350 0.078
0.0055 5.645 862.38 1.113 0.410 0.092
0.0045 4.618 873.60 1.116 0.505 0.113
0.0035 3.591 886.54 1.097 0.647 0.145
0.0025 2.564 893.99 1.087 0.909 0.204
0.0015 1.612 892.53 1.091 1.501 0.336
0.0005 0.537 894.26 1.093 4.463 1.000

Zm(m) −λ0 ±ωd Wmax(mm) ts(s) tn

0.009 18.317 663.54 1.410 0.135 0.118
0.008 16.276 726.37 1.323 0.141 0.124
0.007 14.237 770.68 1.261 0.165 0.145
0.006 12.198 806.39 1.209 0.197 0.173
0.005 10.161 834.35 1.169 0.228 0.200
0.004 8.125 854.79 1.140 0.288 0.252
0.003 6.091 875.41 1.110 0.382 0.335
0.002 4.060 881.40 1.105 0.579 0.507
0.001 2.029 893.62 1.089 1.141 1.000

Zm(m) −λ0 ±ωd Wmax(mm) ts(s) tn

0.0085 25.702 562.13 1.636 0.092 0.179
0.0075 22.669 661.05 1.401 0.107 0.208
0.0065 19.637 723.98 1.318 0.124 0.241
0.0055 16.607 772.53 1.252 0.140 0.272
0.0045 13.578 812.17 1.196 0.172 0.334
0.0035 10.553 839.35 1.160 0.226 0.439
0.0025 7.533 858.58 1.135 0.309 0.600
0.0015 4.517 881.17 1.104 0.515 1.000

Table 5. Suppression time ratio for various locations of the magnetostrictive layers in
the FGM1 shells, for hm = 1 mm (top), hm = 2 mm (middle), and hm = 3 mm (bottom).
Zm is expressed in units of m, Wmax in units of mm, and ts in units of s.

are carried out for various locations (Zm) of the magnetostrictive layers. The vibration suppression time
ts versus the distance Zm of the magnetostrictive layers from the neutral plane for various hm are plotted
in Figure 5. This includes magnetostrictive layers with hm values of 1 mm, 2 mm and 3 mm at various
locations. Figure 5 shows that the curve changes more rapidly for a thinner magnetostrictive layer.
Further, thin magnetostrictive layers kept away from the neutral plane exhibit better attenuation. The
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C(t)rc = 104 C(t)rc = 103

Zm −λ0 ±ωd Wmax ts tn −λ0 ±ωd Wmax ts tn

0.0075 37.086 414.69 2.071 0.079 0.414 3.709 416.33 2.356 0.623 0.303
0.0065 32.119 565.15 1.594 0.081 0.424 3.212 566.06 1.735 0.724 0.383
0.0055 27.154 669.16 1.377 0.096 0.503 2.715 669.70 1.445 0.856 0.453
0.0045 22.188 743.32 1.282 0.104 0.545 2.219 743.65 1.334 1.024 0.542
0.0035 17.228 792.14 1.219 0.137 0.717 1.723 792.33 1.258 1.303 0.689
0.0025 12.279 831.79 1.168 0.191 1.000 1.228 831.88 1.194 1.890 1.000

Table 6. Suppression time ratio for two values of control gain and various locations of
the magnetostrictive layers in the FGM1 shells hm = 5 mm. Zm is expressed in units of
m, Wmax in units of mm, and ts in units of s.

FSDT HSDT
h/a Wmax (mm) ts (s) Wmax (mm) ts (s)

5 0.085 0.0395 0.129 0.0535
10 0.196 0.0294 0.258 0.0501

100 1.226 0.222 1.259 0.244

Table 7. Vibration suppression using FSDT and HSDT.
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Figure 5. Vibration suppression time (ts) for various thicknesses of magnetostrictive
layers (hm).

results presented here agree qualitatively with the results presented in [Pradhan et al. 2001; He et al.
2002; Pradhan 2005].
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Figure 6. Vibration suppression of higher modes at the midpoint of the FGM1 shell
(a) n = 1, (b) n = 3, (c) n = 5, and (d) n = 7.

Effect of vibration modes. The effect of higher modes of vibration on the vibration suppression time is
studied for the FGM1 shell. Transverse deflection versus time for various cases of the FGM shells are
plotted in the next three figures. The parts of Figure 6 show the transient response of modes 1, 3, 5, and
7, respectively. It is observed that attenuation favors the higher modes. This is clearly seen in Figure 7,
where modes 1 and 3 are compared for the FGM1 and FGM2 shells. These figures indicate that mode
3 attenuates at a significantly faster rate compared to mode 1. The results in Figure 6 also show that
the vibration suppression time decreases very rapidly as the vibration mode number increases. These
vibration results for various modes agree qualitatively with the results presented in [Pradhan et al. 2001;
Pradhan 2005].

Effect of intensity of control gain. The values of ts for values of the intensity of control gain C(t) rc

of 1,000 and 10,000 are computed and the results are listed in Table 6. This shows that increase in the
intensity of control gain results in a proportional increase in the vibration suppression time. From the
results listed in Table 6, it is interesting to note that ts is directly proportional to the control gain of the
applied magnetic field.

Effect of material properties of FGM shell. The effect of the material properties of the FGM shell on
the vibration suppression time is studied. Figure 8 displays the vibration suppression for the FGM1 and
FGM2 shells. For this comparison study Zm is assumed to be 9.5 mm. From Figure 8, it is observed that
the FGM1 shell has lower frequency compared with the FGM2 shell. This confirms that the FGM1 shell
has lower flexural rigidity and thus a lower frequency compared with the FGM2 shell. These results
agree qualitatively with the results presented in [Pradhan et al. 2001; Pradhan 2005].
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Figure 7. Comparison of controlled motion at the midpoint of the FGM1 (top) and
FGM2 (bottom) shells for vibration modes n = 1 and n = 3.
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Figure 8. Vibration suppression of the FGM1 and FGM2 shells for Zm = 9.5 mm.

Effect of higher order shear deformation theory. From Table 6, it is observed that when employing
HSDT, tn is dependent on the intensity of the control gain. Under FSDT we observe that tn is independent
of the intensity of the control gain. These results agree qualitatively with the results presented in [Pradhan
et al. 2001; Pradhan 2005]. tn is found to depend on the intensity of the control gain. This reveals that
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Figure 9. Vibration suppression using FSDT and HSDT for a/h ratios of 100 (left) and
10 (right).

HSDT analysis takes into account the effect of the control gain on the vibration response. Results are
obtained for various a/h ratios and listed in Table 7. Here h and a represent the thickness of the shell
and the arc length of the shell boundaries. From Table 7 and Figure 9 one could observe that as the
thickness of the shell decreases the maximum deflection increases for both FSDT and HSDT. Further
maximum deflections predicted by HSDT are larger than those from FSDT. For an a/h ratio of 5 the
maximum deflection predicted by HSDT is 51% larger than that from FSDT, while for an a/h ratio of
100 the maximum deflection predicted by HSDT is only 2% larger than that from FSDT. Further, the ts
predicted by HSDT is larger than the corresponding results of FSDT. This is due to the fact that HSDT
takes into account the shear forces along the thickness of the thick FGM shell. This study suggests that
HSDT should be considered for the analysis of the thick FGM shell.

5. Conclusions

A theoretical formulation for a FGM shell with embedded magnetostrictive layers has been presented.
The analytical solutions for the case of simply-supported boundary conditions has been derived, and
numerical results are presented. The formulation is based on HSDT, and the analytical solution for the
simply-supported shell is based on the Navier solution approach. The effects on the vibration suppression
time of the material properties of the FGM shell, the thicknesses of the magnetostrictive layers, and the
locations of the magnetostrictive layers have been examined in detail. It was found that attenuation effects
were better if the magnetostrictive layers were placed farther away from the neutral plane. Attenuation
effects were also better when the magnetostrictive layers were relatively thinner. The suppression time
ratio was directly proportional to the control gain of the applied magnetic field. Furthermore, the influence
of higher order shear deformation shell theory is significant for thick FGM shells.
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List of symbols

A31,A32,B31,B32,C31,C32 magnetostrictive coefficients
α, β positive real number
α1, α2 surface metrics
ε1, ε2, ε6, γ4, γ5 total strains
ε0

1, ε
0
2, ε

0
6, γ

0
4 , γ

0
5 strains from classical shell theory

ε1
1, ε

1
2, ε

1
6, γ

1
4 , γ

1
5 , ε

2
1, ε

2
2, ε

2
1 strains from HSDT

ξ1, ξ2, ζ orthogonal curvilinear coordinates
λ eigenvalue
λ0 arbitrary constant
φ1, φ2 rotational displacements
ν1, ν2 Poisson’s ratios of material 1 and material 2
νFGM Poisson’s ratio of FGM material 1 and material 2
νm Poisson’s ratio of magnetostrictive material
ρ(K ) density of k-th layer
ρm density of magnetostrictive material
σ1, σ2, σ4, σ5, σ6 stress components
ωd damping frequency
a length of the shell
b breadth of the shell
bc coil width
c(t) control gain
d A1, d A2 elementary areas across the thickness of the shell
ds square of the distance on the middle surface
d S square of the distance
e(k)31 , e(k)32 , e(k)36 magnetostrictive material properties of k-th layer
g1, g2 tangents to ξ1, ξ2

h thickness of the shell
hm thickness of magnetostrictive layer
kc magnetostrictive coil constant
m,m1,m2, n positive integers
nc number of coil turns
nm number of constituent materials in the FGM
q uniformly distributed load in the transverse direction
r position vector on the middle surface
rc coil radius
tn normalized value of ts
ts suppression time ratio
u1, u2, u3 displacements at the middle surface
ū1, ū2, ū3 displacements along ξ1, ξ2, ζ

z thickness coordinate
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[ ]
0 contribution due to classical shell theory
[ ]

M contribution due to magnetostrictive layer
Ai j , Bi j , Di j , Ei j , Fi j , Hi j stiffness coefficients of FGM material
C1,C2 constants which depend on thickness of the shell
E1, E2 Young’s moduli of material 1 and material 2
EFGM Young’s modulus of FGM material
Em Young’s modulus of magnetostrictive material
GFGM shear modulus of FGM material
H magnetic field intensity
I coil current intensity
L1, L2, L3 Lamé coefficients
M M moments due to the magnetostrictive layer
N number of layers assumed for computation
N M forces due to the magnetostrictive layer
PFGM material property of the FGM material

Q(k)
i j stiffness coefficients of k-th layer

R position vector of arbitrary point
R1, R2 principal radii of curvature of the middle surface of the shell
Rn positive real number
Si j ,Ci j ,Mi j coefficients of stiffness, damping and mass matrices
Si j coefficients of solution matrix
Vc volume fraction of ceramic material
V f i volume fraction of the constituents of FGM material
Vm volume fraction of metal material
Wmax maximum amplitude in transverse direction
Zm transverse location of magnetostrictive layer in the FGM shell
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VISCOELASTIC STATE OF A SEMI-INFINITE MEDIUM WITH MULTIPLE
CIRCULAR ELASTIC INHOMOGENEITIES

ANDREY V. PYATIGORETS AND SOFIA G. MOGILEVSKAYA

This paper is concerned with the problem of an isotropic, linear viscoelastic half-plane containing mul-
tiple, isotropic, circular elastic inhomogeneities. Three types of loading conditions are allowed at the
boundary of the half-plane: a point force, a force uniformly distributed over a segment, and a force
uniformly distributed over the whole boundary of the half-plane. The half-plane is subjected to far-
field stress that acts parallel to its boundary. The inhomogeneities are perfectly bonded to the material
matrix. An inhomogeneity with zero elastic properties is treated as a hole; its boundary can be either
traction free or subjected to uniform pressure. The analysis is based on the use of the elastic-viscoelastic
correspondence principle. The problem in the Laplace space is reduced to the complementary problems
for the bulk material of the perforated half-plane and the bulk material of each circular disc. Each prob-
lem is described by the transformed complex Somigliana’s traction identity. The transformed complex
boundary parameters at each circular boundary are approximated by a truncated complex Fourier series.
Numerical inversion of the Laplace transform is used to obtain the time domain solutions everywhere in
the half-plane and inside the inhomogeneities. The method allows one to adopt a variety of viscoelastic
models. A number of numerical examples demonstrate the accuracy and efficiency of the method.

1. Introduction

The problem of an isotropic, linearly viscoelastic half-plane containing multiple, nonoverlapping circular
inhomogeneities is of practical importance in the area of mechanics of composite materials. Analysis of
the relevant literature reveals that the problem has not yet received significant attention.

Standard numerical methods such as the finite element method and the boundary element method can
be used to solve the problems of viscoelastic media containing inhomogeneities. These methods require
very fine meshes to adequately approximate the inhomogeneities or their boundaries and usually employ
a time stepping procedure. In addition, the finite element method cannot directly model an infinite or
semi-infinite area. As a result, these methods are computational intensive due to their large number of
degrees of freedom.

There are few numerical methods custom designed to directly simulate the behavior of viscoelastic
composite materials. The problem of an infinite, linear viscoelastic plane containing multiple, nonover-
lapping, circular elastic inhomogeneities was considered in [Huang et al. 2005a] for the Kelvin visco-
elastic model and in [Huang et al. 2005b] for the Boltzmann viscoelastic model. The numerical approach
presented in these papers combines a direct boundary integral method, Fourier series approximations
for the boundary unknowns, and a time-stepping algorithm. The method assumes a time-independent

Keywords: viscoelastic half-plane, multiple circular elastic inhomogeneities, correspondence principle, direct boundary
integral method, numerical Laplace inversion.
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viscoelastic Poisson’s ratio. The same assumption was used by Zatula and Lavrenyuk [1995] and Kamin-
skii et al. [2002], who solved a system of boundary-temporal integral equations with the standard colloca-
tion boundary element method to model a viscoelastic half-plane containing circular or rectangular elastic
inhomogeneities. The boundary conditions at the surface of the half-plane included a load distributed
over a segment. Numerical results were presented for the case of one and two inhomogeneities only.

Kaloerov and Mironenko [2007] considered a linearly viscoelastic plate containing a row of aligned
isotropic, elastic, elliptical inhomogeneities or cracks. The authors assumed that the bulk modulus of
the plate is constant, while its Poisson’s ratio at every moment in time t differs from the instantaneous
value at t = 0 by a small parameter. Expanding the Kolosov–Muskhelishvili potentials for the problem
in infinite series with respect to this parameter and equating the coefficients of the same powers of the
parameter, the authors obtain the system of boundary conditions for the unknown functions. These
functions themselves were represented by the infinite complex series. The coefficients in these series
were determined by the least-squares method. The disadvantage of this technique is that the accuracy of
this approach may depend on the choice of the small parameter.

The elastic problems of a piece-wise homogeneous half-plane containing multiple inhomogeneities
have been studied extensively. A comprehensive review of the literature related to the elastic case is
given by Legros et al. [2004] and Kushch et al. [2006].

This paper is concerned with the problem of an isotropic, linearly viscoelastic half-plane containing
multiple, isotropic, circular elastic inhomogeneities. Three types of loading conditions are allowed at
the boundary of the half-plane: a point force, a force uniformly distributed over a segment, and a force
uniformly distributed over the whole boundary of the half-plane. The half-plane is subjected to far-
field stress that acts parallel to its boundary. The analysis in the present paper is based on the use
of the elastic-viscoelastic correspondence principle. The problem in Laplace space is reduced to the
complementary problems for the bulk material of the perforated half-plane and the bulk material of each
circular disc. Each problem is described by the transformed complex Somigliana’s traction identity. The
transformed complex boundary parameters at each circular boundary are approximated by a truncated
complex Fourier series. Numerical inversion of the Laplace transform is used to obtain the time domain
solutions everywhere in the half-plane and inside the inhomogeneities. The method does not assume a
time-independent viscoelastic Poisson’s ratio and allows one to adopt a variety of viscoelastic models.
The method described in the present paper is an extension of [Pyatigorets et al. 2008], where the problem
of an isotropic, linearly viscoelastic half-plane containing multiple holes was considered. The inversion
of the Laplace transform in the latter problem could be performed analytically, which is not the case for
the more general problem considered in the present paper.

The paper is organized as follows. After formulating the problem in Section 2, the system of gov-
erning boundary integral equations, written in the Laplace domain separately for each inhomogeneity
and the viscoelastic matrix, is analyzed in Section 3. In Section 4, the approximations of the unknown
displacements and tractions at the boundaries of the inhomogeneities are introduced. Using the Taylor
series expansion method one arrives at the system of linear equations, where the vector of unknowns
consists of the Fourier coefficients for the boundary parameters. The viscoelastic analogs of the Kolosov–
Muskhelishvili potentials are used to obtain the displacements, strains, and stresses in the Laplace domain.
The section concludes with a description of the procedure for the numerical inversion of the Laplace
transform and discussion of the sources of errors. Three examples, presented in Section 5, show the
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accuracy and effectiveness of the method. Two different constitutive models are used in the numerical
modeling. The first example is aimed at comparing the results obtained by the present approach with
those obtained by the finite element method. The second example investigates the influence of the elastic
properties of the inhomogeneity on the behavior of the hoop stress at a point on its boundary. The
third example studies the asymptotic behavior of stress state in the viscoelastic half-plane and inside the
inhomogeneity for the case when the Burgers model is used to describe the shear response of the bulk
material of the half-plane. Several closing remarks conclude the paper.

2. Problem formulation

Consider an isotropic, linearly viscoelastic half-plane (y ≤ 0) containing an arbitrary number N of
nonoverlapping, arbitrarily located, circular, isotropic elastic inhomogeneities, as shown in Figure 1a.
The elastic properties of the inhomogeneities (shear moduli µk and Poisson’s ratios νk , k = 1, . . . , N )
are assumed to be arbitrary. A hole is treated as a particular case of an inhomogeneity with zero elastic
properties. Let Rk , zk , and Lk denote the radius, the center, and the boundary of the k-th inhomogeneity.

Three types of loading conditions are allowed at the surface y = 0 of the half-plane. These loads are:
a point force F(t) applied at point a, a force F(t) uniformly distributed over the segment (a, b), a force
F(t) uniformly distributed over the whole boundary of the half-plane. The far-field stress σ∞(t) acts
parallel to the boundary of the half-plane. Perfect bonding is assumed between each inhomogeneity and
the bulk material of the half-plane. In the case of a hole, its boundary is assumed to be either traction
free or subjected to uniform pressure −pk(t), k = 1, . . . , Nh (where Nh is the number of holes). For
practical applications it is sufficient to assume the following time-dependent behavior for the functions
pk(t), F(t), and σ∞(t):

pk(t)= p̃k · f p(t), k = 1, . . . , Nh, F(t)= F̃ · fF (t), σ∞(t)= σ̃∞ · f∞(t), (1)

where the constants p̃k, σ̃
∞ are real and the constant F̃ is complex (F̃ = F̃x + i F̃y , i =

√
−1). The

first expression from (1) implies similar time-dependent behavior for all the functions pk(t), the second
expression implies that the time-dependent behavior of the normal and tangential components of the
surface loads is similar, and the third expression is added for consistency.

Figure 1. Problem formulation.
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The viscoelastic model is not specified at this point, as the method enables the adoption of various
models. The evolution of stresses, strains, and displacements in the viscoelastic half-plane and inside
the inhomogeneities are to be determined.

3. Basic equations

The problem considered here can be decomposed into Nd = N − Nh problems for each elastic disc and
a complementary problem for the half-plane containing N cavities. The problems are interrelated by the
condition of perfect bonding between the matrix and the discs.

The analysis is based on the elastic-viscoelastic correspondence principle. According to the principle,
the solution of the problem in the time domain can be directly obtained from the solution of the corre-
sponding elastic problem by applying the inverse Laplace transform to s-dependent quantities [Findley
et al. 1976], where s is the transform parameter.

The Laplace transform of a real function f (t) is defined as

f̂ (s)= L
[

f (t)
]
=

∫
∞

0
f (t)e−st dt, (2)

where s in general is a complex number. The inverse Laplace transform is given by the Bromwich integral

f (t)= L−1[ f̂ (s)
]
=

1
2π i

∫ γ+i ·∞

γ−i ·∞
f̂ (s)est ds, (3)

where γ is a vertical contour in the complex plane to the right of all singularities of f̂ (s).

3.1. The system of boundary integral equations in the Laplace domain. The system of governing equa-
tions in the Laplace domain is obtained by using a direct boundary integral method. This formulation
is based on the use of the transformed Somigliana’s displacement identity, which is a corollary of the
reciprocal theorem (the principle of virtual work). The identity expresses the displacements at a point
within an elastic region in terms of the integrals of the tractions and displacements over its boundary.
Using the strain-displacement relation, Hooke’s law, and the stress-traction relation, one can arrive then
at the integral identity for the traction at the inner point of the region (Somigliana’s traction identity). The
tractions at the boundary of the region can be obtained through the limiting process in which the inner
point of the region is allowed to approach the boundary of the region [Mogilevskaya and Linkov 1998;
Mogilevskaya 2000]. Somigliana’s identities can be written either in the time domain [Carini et al. 1991]
or in the Laplace domain. In the following we use complex variable identities in the Laplace domain
[Huang et al. 2006a]. Thus, the system of governing equations includes the following equations:

(I) The viscoelastic analog of Somigliana’s traction identity at the boundary of the k-th disc, k=1, . . . ,Nd :

2π i
κk + 1
4µk

σ̂ d
k (ξ ; s)=

1− κk

2µk

∫
Lk

σ̂ d
k (τ ; s)

dτ
τ − ξ

−
κk

2µk

∫
Lk

σ̂ d
k (τ ; s)

∂

∂ξ
K1(τ, ξ)dτ

+
1

2µk

∫
Lk

σ̂ d
k (τ ; s)

∂

∂ξ
K2(τ, ξ)d τ̄ + 2

∫
Lk

ûd
k (τ ; s)
(τ − ξ)2

dτ

−

∫
Lk

ûd
k (τ ; s)

∂2

∂τ∂ξ
K1(τ, ξ)dτ −

∫
Lk

ûd
k (τ ; s)

∂2

∂τ̄ ∂ξ
K2(τ, ξ)d τ̄ . (4)
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Here ξ = ξx+ iξy , τ = τx+ iτy are complex coordinates of the points (ξx , ξy) ∈ Lk and (τx , τy) ∈ Lk ; s is
the Laplace transform parameter; σ̂ d

k (τ ; s)= σ̂
d
kn(τ ; s)+ i σ̂ d

kl(τ ; s) is the unknown transformed complex
traction at the point τ in the local coordinate system shown in Figure 1b; ûd

k (τ ; s)= ûd
kx(τ ; s)+ i ûd

ky(τ ; s)
is the unknown transformed complex displacement at the point τ in a global coordinate system; κk

is the Kolosov–Muskhelishvili parameter for the k-th disc, equal to 3 − 4νk for plane strain and to
(3− νk)/(1+ νk) for plane stress; a bar over a symbol denotes complex conjugation; and a hat over a
symbol denotes the transformed quantity (in the Laplace domain). The direction of travel is counter-
clockwise for the boundary Lk .

The kernels K1 and K2 in (4) corresponding to the Kelvin fundamental solution are [Mogilevskaya
and Linkov 1998]

K1(τ, ξ)= ln
τ − ξ

τ̄ − ξ̄
, K2(τ, ξ)=

τ − ξ

τ̄ − ξ̄
. (5)

(II) The viscoelastic analog of Somigliana’s traction identity at the boundary of the k-th cavity located
in the viscoelastic half-plane, k = 1, . . . , N ,

N∑
j=1

{
2
∫

L j

ûh
j (τ ; s)

(τ − ξ)2
dτ −

∫
L j

ûh
j (τ ; s)

∂2

∂τ∂ξ

[
K1(τ, ξ)+ K3(τ, ξ)+ K4(τ, ξ)

]
dτ

−

∫
L j

ûh
j (τ ; s)

∂2

∂τ̄ ∂ξ

[
K2(τ, ξ)+ K5(τ, ξ)+ K6(τ, ξ)

]
dτ
}
−π i

κ̂(s)+ 1
2µ̂(s)

σ̂ h
k (ξ ; s)

−
1

2µ̂(s)

N∑
j=1

{(
κ̂(s)−1

) ∫
L j

σ̂ h
j (τ ; s)

τ − ξ
dτ+

∫
L j

σ̂ h
j (τ ; s)

∂

∂ξ

[
κ̂(s)K1(τ, ξ)+ κ̂(s)K3(τ, ξ)−K4(τ, ξ)

]
dτ

−

∫
L j

σ̂ h
j (τ ; s)

∂

∂ξ

[
K2(τ, ξ)+ K6(τ, ξ)− κ̂(s)K5(τ, ξ)

]
d τ̄
}
=−2π i

κ̂(s)+ 1
4µ̂(s)

σ̂ add
k (ξ ; s), (6)

where ûh
j (τ ; s)= ûh

j x(τ ; s)+ i ûh
jy(τ ; s) is the unknown transformed complex displacement at the point

τ ∈ L j , σ̂ h
j (τ ; s)= σ̂

h
jn(τ ; s)+ i σ̂ h

jl(τ ; s) is the unknown transformed complex traction at the point τ ∈ L j

in the local coordinate system shown in Figure 1a, and κ̂(s) and µ̂(s) are the transformed Kolosov–
Muskhelishvili parameter and the shear modulus of the bulk material of the half-plane, respectively. The
direction of travel is clockwise for the boundary L j .

In addition to the kernels K1 and K2 from (5) the following kernels appear in system (6):

K3(τ, ξ)= ln(τ̄ − ξ), K4(τ, ξ)= ln(τ − ξ̄ )+ (ξ − ξ̄ )
τ̄ − τ

(τ − ξ̄ )2
,

K5(τ, ξ)=
ξ−ξ̄
τ−τ̄

, K6(τ, ξ)=−
τ−ξ
τ̄−ξ

.

(7)

The integral kernels K3–K6 are parts of Melan’s fundamental solution [1932] (a point force applied at an
internal point of a half-plane). Due to the use of this fundamental solution, the boundary of the half-plane
is not involved in the governing system (6).

The function σ̂ add
k (ξ ; s) on the right-hand side of (6) is a complex function that represents the combined

influence of the transformed far-field stress σ̂∞(s) and transformed force F̂(s) applied at the boundary
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of the half-plane. It is expressed as

σ̂ add
k (ξ ; s)= 2σ̂∞k (ξ ; s)+ σ̂

F
k (ξ ; s), (8)

where σ̂∞k (ξ ; s) is the transformed traction at the trace of the boundary of the k-th cavity (k = 1, . . . , N )
due to the far-field stress and σ̂ F

k (ξ ; s) is the transformed traction at the same boundary due to the force
applied at the boundary of the half-plane. Both terms on the right-hand side of (8) are obtained by using
s-varying Kolosov–Muskhelishvili potentials ϕ̂(ξ ; s) and ψ̂(ξ ; s) (see [Muskhelishvili 1959]) and the
formula

σ̂ (ξ ; s)=
∂

∂ξ
ϕ̂(ξ ; s)+

∂

∂ξ
ϕ̂(ξ ; s)+

d ξ̄
dξ

[
ξ
∂2

∂ξ 2 ϕ̂(ξ ; s)+
∂

∂ξ
ψ̂(ξ ; s)

]
(9)

(see [Rabotnov 1988]), where d ξ̄ /dξ = exp(−2iβ), and β is the angle between the axis Ox and the
tangent at the point ξ ∈ Lk . The potentials ϕ̂ and ψ̂ for the far-field stress and the load applied at the
boundary of the half-plane are given in [Pyatigorets et al. 2008].

Equations (5) and (6) are complemented by the following boundary conditions. For the case when the
k-th inhomogeneity is a hole, the traction σ̂ h

k (τ ; s) in (6) is σ̂ h
k (τ ; s) = − p̂k(s). For the case when the

k-th inhomogeneity is an elastic disc, the conditions for perfect bonding are

ûh
k (ξ ; s)= ûd

k (ξ ; s)= ûk(ξ ; s), ξ ∈ Lk,

σ̂ h
k (ξ ; s)= σ̂

d
k (ξ ; s)= σ̂k(ξ ; s), ξ ∈ Lk .

(10)

3.2. Calculation of the s-dependent fields in the composite system. The transformed stresses and dis-
placements at any point in the viscoelastic half-plane and inside the elastic discs are obtained using the
following analogs of the Kolosov–Muskhelishvili formulae:

2µ̂(s)û(z; s)= κ̂(s)ϕ̂(z; s)− z ∂
∂z
ϕ̂(z; s)− ψ̂(z; s),

σ̂xx(z; s)+ σ̂yy(z; s)= 4 Re
[
∂
∂z
ϕ̂(z; s)

]
,

σ̂yy(z; s)− σ̂xx(z; s)+ 2i σ̂xy(z; s)= 2
[
z̄ ∂

2

∂z2 ϕ̂(z; s)+
∂
∂z
ψ̂(z; s)

]
.

(11)

The strains are expressed through the stresses in the Laplace domain as
ε̂xx + ε̂yy =

1− 2ν̂
2µ̂

(σ̂xx + σ̂yy),

ε̂yy − ε̂xx + 2i ε̂xy =
1

2µ̂
(σ̂yy − σ̂xx + 2i σ̂xy).

(12)

The corresponding sets of material properties for the inhomogeneities and the matrix should be used in
(11) and (12) for the evaluation of viscoelastic fields. The expressions for the potentials involved in (11)
and (12) are:
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(a) Potentials for the k-th elastic disc (µ̂(s)= µk and κ̂(s)= κk):

ϕ̂k(z; s)=−
1

2π i(κk + 1)

[∫
Lk

σ̂ d
k (τ ; s) ln(τ − z)dτ − 2µk

∫
Lk

ûk(τ ; s)
τ − z

dτ
]
,

ψ̂k(z; s)=−
1

2π i(κk + 1)

{[∫
Lk

σ̂ d
k (τ ; s)

τ̄dτ
τ − z

+ κk

∫
Lk

σ̂ d
k (τ ; s) ln(τ − z)d τ̄

]

+ 2µk

[∫
Lk

ûk(τ ; s)
τ − z

dτ −
∫

Lk

ûk(τ ; s)
τ − z

d τ̄ +
∫

Lk

ûk(τ ; s)τ̄
(τ − z)2

dτ
]}
.

(13)

Expressions (13) are obtained by Laplace transforming the corresponding elastic potentials given in
[Mogilevskaya et al. 2008].

(b) Potentials for the bulk material of the viscoelastic half-plane:

ϕ̂(z; s)= ϕ̂plane(z; s)+ ϕ̂aux(z; s)+ ϕ̂F (z; s),

ψ̂(z; s)= ψ̂plane(z; s)+ ψ̂aux(z; s)+ ψ̂F (z; s),
(14)

where ϕ̂plane(z;s) and ψ̂plane(z;s) are the potentials due to Kelvin’s fundamental solution and ϕ̂aux(z;s)
and ψ̂aux(z; s) are additional potentials associated with the use of Green’s functions specific for a half-
plane problem. The potentials ϕ̂F (z; s) and ψ̂F (z; s) are given in [Pyatigorets et al. 2008] and the rest
are obtained by applying the Laplace transform to their elastic analogs [Mogilevskaya 2000]:

ϕ̂plane(z; s)=−
1

2π i(κ̂(s)+ 1)

N∑
j=1

[∫
L j

σ̂ h
j (τ ; s) ln(τ−z)dτ−2µ̂(s)

∫
L j

û j (τ ; s)
τ − z

dτ
]
+
σ̂∞(s)

4
z,

ψ̂plane(z; s)=−
1

2π i(κ̂(s)+ 1)

N∑
j=1

{[∫
L j

σ̂ h
j (τ ; s)

τ̄dτ
τ − z

+ κ̂(s)
∫

L j

σ̂ h
j (τ ; s) ln(τ − z)d τ̄

]

+ 2µ̂(s)
[∫

L j

û j (τ ; s)
τ − z

dτ −
∫

L j

û j (τ ; s)
τ − z

d τ̄ +
∫

L j

û j (τ ; s)τ̄
(τ − z)2

dτ
]}
−
σ̂∞(s)

2
z,

(15)

ϕ̂aux(z; s)=−
1

2π i(κ̂(s)+ 1)

N∑
j=1

{[
κ̂(s)

∫
L j

σ̂ h
j (τ ; s) ln(τ̄ − z)dτ +

∫
L j

σ̂ h
j (τ ; s)

τ − z
τ̄ − z

d τ̄
]

+ 2µ̂(s)
[∫

L j

û j (τ ; s)
τ̄ − z

d τ̄ −
∫

L j

û j (τ ; s)d
τ − z
τ̄ − z

]}
,

ψ̂aux(z; s)=−
1

2π i(κ̂(s)+ 1)

N∑
j=1

{
z
[
κ̂(s)

∫
L j

σ̂ h
j (τ ; s)

dτ
τ̄ − z

−

∫
L j

σ̂ h
j (τ ; s)

∂

∂z
τ − z
τ̄ − z

d τ̄

+ 2µ̂(s)
(∫

L j

û j (τ ; s)d
∂

∂z
τ − z
τ̄ − z

−

∫
L j

û j (τ ; s)
d τ̄

(τ̄ − z)2

)]
+

∫
L j

σ̂ h
j (τ ; s) ln(τ̄ − z)d τ̄ − 2µ̂(s)

∫
L j

û j (τ ; s)
τ̄ − z

d τ̄
}
.

(16)
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4. Numerical solution

4.1. Fourier series approximation of the unknowns at the boundaries. The unknown transformed
stresses σ̂k(τ ; s) at each boundary Lk are approximated by the truncated complex Fourier series

σ̂k(τ ; s)=
Mk∑

m=1

T̂−mk(s)gm
k (τ )+ T̂0k(s)+

Mk∑
m=1

T̂mk(s)g−m
k (τ ), τ ∈ Lk, k = 1, . . . , Nd , (17)

where the function gk(τ ) is defined as

gk(τ )=
Rk
τ−zk

= exp(−iθk). (18)

The unknown transformed displacements ûk(τ ; s) at the boundary Lk are represented by the series

ûk(τ ; s)=
Mk−1∑
m=1

B̂−mk(s)gm
k (τ )+ B̂0k(s)+

Mk+1∑
m=1

B̂mk(s)g−m
k (τ ), τ ∈ Lk, k = 1, . . . , N . (19)

Note that the Fourier series in (19) are truncated differently from the series representation (17). The
reason for this is explained in [Mogilevskaya et al. 2008].

4.2. System of complex algebraic equations. After substituting (17) and (19) into Somigliana’s traction
identity (4) and following a procedure similar to the one described in [Mogilevskaya et al. 2008] for the
elastic case, one arrives at the expressions

T̂−1k(s)= 0,

κk−1
2µk

T̂0k(s)=
2
Rk

Re B̂1k(s),

1
2µk

T̂−mk(s)=
m−1

Rk
B̂−(m−1)k(s), m ≥ 2,

κk
2µk

T̂mk(s)=
m+1

Rk
B̂(m+1)k(s), m ≥ 1.

(20)

Expression (17) can now be rewritten using (20) as

σ̂k(τ ; s)=
2µk

Rk

[Mk−1∑
m=1

m B̂−mk(s)gm+1
k (τ )+

2
κk − 1

Re B̂1k(s)+
1
κk

Mk+1∑
m=2

m B̂mk(s)g1−m
k (τ )

]
,

k = 1, . . . , Nd . (21)

After substituting (19) and (21) in Somigliana’s traction identity (6), the s-dependent Fourier coeffi-
cients B̂mk(s) can be taken out from the integrals, and all the space integrals can be evaluated analytically.
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As a result, one arrives at the following system of complex integral equations:

3̂kk(ξ ; s)+
Nh∑
j=1
j 6=k

3̂k j (ξ ; s)+
N∑

r=Nh+1

Ĝkr (ξ ; s)=−
κ̂ + 1
4µ̂

(
p̂k + σ̂

add
k (ξ ; s)

)
+

Nh∑
j=1

p̂j 0̂j (ξ ; s),

ξ ∈ Lk, k = 1, . . . , Nh,

Nh∑
j=1

3̂l j (ξ ; s)+
[
Ĝll(ξ ; s)−

κ̂ + 1
2µ̂

σ̂l(ξ ; s)
]
+

N∑
r=Nh+1

r 6=l

Ĝlr (ξ ; s)=−
κ̂ + 1
4µ̂

σ̂ add
l (ξ ; s)+

Nh∑
j=1

p̂j 0̂j (ξ ; s),

ξ ∈ L l, l = Nh + 1, . . . , N .

(22)

The left-hand sides of (22) contain the unknown displacements at the boundaries of the cavities, while
the right-hand sides contain the known boundary tractions only. The following operators appear in (22):

• operators 3̂k j (ξ ; s) (k, j = 1, . . . , Nh) obtained after evaluation of the integrals in (6) containing
the unknown Fourier coefficients over the boundaries of the holes;

• operators Ĝk j (ξ ; s) (k, j = Nh, . . . , N ) obtained after evaluation of the integrals in (6) containing
the unknown Fourier coefficients over the boundaries of those cavities that later are occupied by the
elastic discs;

• operators 0̂j (ξ ; s) ( j = 1, . . . , Nh) obtained after evaluation of the integrals in (6) containing the
known tractions p̂j over the boundaries of the holes ( p̂j is factored out in (22) ).

The coefficients B̂0k(s) and the imaginary part of B̂1k(s) are not involved in the system of govern-
ing equations (22). These coefficients are responsible for the rigid body translation (B0k) and rotation
(Im B1k) and can be found from a procedure described in [Wang et al. 2003].

The expressions for the operators 3̂αβ and 0̂j can be obtained by applying the Laplace transform to
the corresponding expressions used in [Dejoie et al. 2006]. Operators Ĝαβ differ from the expressions
for 3̂αβ by additional s-dependent multipliers in front of the unknown coefficients B̂−mk(s), Re B̂1k(s),
and B̂mk(s) (m =−(Mk − 1), . . . ,Mk + 1, k = Nh + 1, . . . , N ; see Appendix A). These multipliers are

α̂1k =−

(
µk
µ̂
− 1

)
in front of B̂−mk(s),

α̂2k =−

(
µk
κk−1

κ̂−1
µ̂
− 1

)
in front of Re B̂1k(s),

α̂3k =−

(
µk
κk

κ̂
µ̂
− 1

)
in front of B̂mk(s).

(23)

4.3. System of real linear algebraic equations. The Taylor expansion method (the so-called addition
theorem) described in [Wang et al. 2003] can be used to obtain a system of linear algebraic equations
from (22). In this method, all the functions gm

j (ξ) involved in the representations of the unknowns at the
j-th boundary can be reexpanded in terms of infinite series of functions gk(ξ) as

gm
j (ξ)= gm

j (zk)

∞∑
q=0

(
m+ q − 1

q

)
gq

k (z j )g
−q
k (ξ) for all j 6= k and j, k = 1, . . . , N , (24)
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where
(m+q−1

q

)
represents a binomial coefficient as usual. The functions gj (ξ) can similarly be reex-

panded in terms of functions gk(ξ) due to the fact that

gj (ξ)= g−1
j (ξ).

As a result, all the operators 3̂αβ and Ĝαβ in the left-hand side of (22) are expressed through the functions
gq

k (ξ). Similarly, the operators 0̂j in the right-hand side of (22) can be expressed through the same func-
tions. Using the orthogonality properties of the complex Fourier series, one can equate the coefficients
in front of the terms gq

k (ξ) with the same powers in both sides of the obtained expressions. A finite
system of linear equations with the number of equations equal to the number of unknown coefficients
B̂mk, k = 1, . . . , N , is obtained if one neglects the terms with powers q > Mk and q <−Mk in the Taylor
series for every k.

As a result, one arrives at a system of
∑N

k=1(2Mk + 1) complex linear equations in the Laplace
domain; namely, for k = 1, . . . , N , we can write

ϒ̂kk,q(B̂mk)+
N∑

j=1
j 6=k

ϒ̂k j,q(B̂mj )+1k · =̂k(B̂qk)

=



−
κ̂+1
4µ̂

σ̂∞−
1−1k
µ̂

p̂k −
κ̂+1
4µ̂

�k,0(F̂)+
κ̂−1
2µ̂

Nh∑
j=1

p̂j4k j,0, for q = 0,

−
κ̂+1
4µ̂

σ̂∞−
κ̂+1
4µ̂

�k,2(F̂)+
κ̂−1
2µ̂

Nh∑
j=1

p̂j4k j,2, for q = 2,

−
κ̂+1
4µ̂

�k,q(F̂)+
κ̂−1
2µ̂

Nh∑
j=1

p̂j4k j,q , for q 6=0, 1, 2, −Mk≤q≤Mk,

(25)

where

=̂k(B̂qk)=
κ̂+1
µ̂

µk

Rk
·



1−q
α̂3kκk

B̂(1−q)k, if q ≤−1,

2
α̂2k(κk−1)

Re B̂1k, if q = 0,

q−1
α̂1k

B̂(1−q)k, if q ≥ 2,

(26)

and 1k takes the value 0 if Lk is the boundary of a hole and the value 1 if Lk is the boundary of a cavity
later occupied by an elastic disc. In general, the coefficients B̂mk are different from the coefficients B̂mk

as they may include the multipliers given by (23). The operators ϒ̂kk,q , ϒ̂k j,q , �k,q , and 4k j,q can be
found in [Pyatigorets et al. 2008]1 if one takes into account the specific method of truncating Fourier
series in the present approach.

Separating the real and imaginary parts in complex equations (25) and taking into account that (25)
is real for q = 0, one arrives at a linear system of

∑N
k=1(4Mk − 1) equations. The resulting system of

linear equations can be written in matrix form as[
A+ Ŵ (s)

]
· B̂(s)= D̂(s), (27)

1Due to misprints, all inequalities q ≤−1 present in [Pyatigorets et al. 2008, appendices A–C] should be read as (−q)≤−1.
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where the s-independent matrix A is

A =



block 1︷ ︸︸ ︷
A11 . . . A1N h
...

. . .
...

ANh1 . . . ANh Nh

block 2︷ ︸︸ ︷
A1(N h+1) . . . A1(N h+N d )

...
. . .

...

ANh(N h+1) . . . ANh(N h+N d )

A(N h+1)1 . . . A1N h
...

. . .
...

A(N h+N d )1 . . . A(N h+N d )N h︸ ︷︷ ︸
block 3

A(N h+1)(N h+1) . . . A(N h+1)(N h+N d )
...

. . .
...

A(N h+N d )(N h+N d ) . . . A(N h+N d )(N h+N d )︸ ︷︷ ︸
block 4


. (28)

The matrix A consists of four blocks:

• block 1, the influence of a hole on another hole;

• block 2, the influence of a hole on a cavity occupied by an elastic disc;

• block 3, the influence of a cavity occupied by an elastic disc on a hole;

• block 4, the influence of a cavity occupied by an elastic disc on another cavity occupied by an elastic
disc.

The expressions for submatrices Ajk are available in [Pyatigorets et al. 2008] if one takes into account
the differing truncation of Fourier series in the present approach. The matrix Ŵ (s) is deduced from the
expression for the operator =̂k . This matrix is largely sparse and has the form

Ŵ (s)=



0 · · · 0
...
. . .

...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...
. . .

...

0 · · · 0

Ŵ(N h+1)(N h+1) · · · 0
...

. . .
...

0 · · · ŴN N


, (29)

where the only nonzero submatrices Ŵkk(s) are of dimension (4Mk−1)× (4Mk−1), k = Nh+1, . . . , N .
They have the form

Ŵkk(s)=−
κ̂ + 1
µ̂

µk

Rk
·

m=−(Mk−1) m=Mk+1
−−−−−−−−−−−−−−−−−−−−−−−−−→

q−1
α1k

0 0

0 2
α2k(κk−1)

0

0 0 q+1
α3kκk



y

q=Mk

q=−Mk

. (30)

The vector of unknowns B̂(s) is given as
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B̂(s)=



B̂1(s)
...

B̂Nh (s)

B̂Nh+1(s)
...

B̂N (s)


, (31)

with the subvectors B̂k(s) defined as

B̂k(s)= B̂k(s)=



Re B̂−(Mk−1)k

Im B̂−(Mk−1)k
...

Re B̂−1k

Im B̂−1k

Re B̂1k

Re B̂2k

Im B̂2k
...

Re B̂(Mk+1)k

Im B̂(Mk+1)k



, B̂j (s)=



α̂1 j ·Re B̂−(Mj−1) j

α̂1 j · Im B̂−(Mj−1) j
...

α̂1 j ·Re B̂−1 j

α̂1 j · Im B̂−1 j

α̂2 j ·Re B̂1 j

α̂3 j ·Re B̂2 j

α̂3 j · Im B̂2 j
...

α̂3 j ·Re B̂(Mj+1) j

α̂3 j · Im B̂(Mj+1) j



, (32)

where k = 1, . . . , Nh and j = Nh + 1, . . . , N .
The right-hand vector in (27) can be deduced from the expressions for the operators �k,q and 4k j,q in

[Pyatigorets et al. 2008]. It contains N subvectors consisting of 4Mk − 1, k = 1, . . . , N , elements, and
its transpose is [

D̂(s)
]T
=
[
D̂1(s), D̂2(s), . . . , D̂Nh (s), D̂Nh+1(s), . . . , D̂N (s)

]
. (33)

4.4. Solution in the time domain.

An algorithm for the numerical inversion of the Laplace transform. After the solution of system (27),
the potentials involved in expressions (11) and (12) can be written in terms of s-dependent coefficients.
Thus, the transformed fields can be expressed explicitly via the coefficients. To obtain the viscoelastic
fields in the time domain, one needs to apply the inverse Laplace transform to the s-dependent terms
involved in the transformed fields.

In the general case, the system (27) cannot be solved analytically as its both sides depend on the trans-
form parameter s. This fact suggests that a procedure for numerical inversion of the Laplace transform
should be used. Most of the methods of numerical Laplace inversion are based on the approximation
of the integral (3) by a sum of s-dependent functions evaluated at certain points and multiplied by coef-
ficients specific to a given point. For reviews of some popular methods, see [Davies and Martin 1979;
Cheng et al. 1994].
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Here we used the numerical Laplace inversion method proposed in [Stehfest 1970]. The series ap-
proximation for the Stehfest algorithm is given by

f (t)≈ ln 2
t

NSt∑
n=1

Cn f̂
(

n ln 2
t

)
, (34)

where NSt is even and the coefficients Cn are

Cn = (−1)n+NSt/2
min(n,NSt/2)∑
k=(n+1)/2

k NSt/2(2k)!
(NSt/2− k)! k! (k− 1)! (n− k)! (2k− n)!

. (35)

The detailed derivation of expressions (34) and (35) can be found in [Stehfest 1970; Kumar 2000].
The number of terms NSt in the series is relatively small and usually varies in the range 2≤ NSt ≤ 20 that
makes the calculation procedure fast in comparison with some other methods; see the charts in [Davies
and Martin 1979]. Due to its simplicity the algorithm can be easily implemented in various programming
languages. In addition, the algorithm does not require knowledge of the poles of the integrand (see (3)).
For the case of monotonic smooth functions quite accurate results are reported by Davies and Martin
[1979], Cheng et al. [1994], and Stehfest [1970]. However, no accurate results of the inversion should
be expected for discontinuous functions or functions containing sharp peaks or rapid oscillations.

As the number of terms in approximation (34) does not change during the calculation of viscoelastic
fields, the coefficients Cn are evaluated only once and stored in the computer memory.

Calculation of viscoelastic fields in the time domain. In order to find the viscoelastic potentials in the
time domain, one has to solve system (27) for each moment of time t and each point n in the Stehfest
algorithm in accordance with expression (34). The Gauss–Seidel iterative algorithm combined with
an algorithm based on LU decomposition is adopted to find the explicit solution of system (27). This
technique provides a good convergence rate even if the dimension of matrix A is very large. After that
all s-dependent terms involved in potentials (13)–(16) have to be evaluated at points (n ln 2/t). The
expressions for the potentials in terms of the Fourier coefficients B̂mk(s) are given in Appendix B. The
final step assumes the summation of expressions (11) and (12) for the viscoelastic fields over all points
n in accordance with (34) for each moment of time t .

The stresses and strains in the time domain are uniquely expressed via potentials (13)–(16). However,
the displacements in the time domain are defined up to some additional terms that could be found after
the rigid body motion is fixed, as in [Mogilevskaya et al. 2008].

Error analysis. Three sources of errors can be identified in the present method:

(i) the error due to the use of the truncated series in the approximations (19) and (21),

(ii) the error related to the iterative solution of system (27), and

(iii) the error due to the use of the numerical inversion of the Laplace transform.

Error (i) can be effectively controlled by using an appropriate number Mk of Fourier terms for the
approximations of the displacements and tractions at k-th circular boundary. The value of Mk for this
boundary must be determined in the numerical solution process; it depends mostly on the geometry of
the problem, and the following procedure is suggested for evaluating it. First, system (27) is solved for
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time 0 to find the instantaneous, “elastic” Fourier coefficients. These coefficients are then substituted in
the original equation (6), and the normalized difference ε between the left-hand side and the right-hand
side of the equation is compared with the predefined accuracy parameter εspec. If ε exceeds εspec, the
number of Fourier terms is increased. The iterations stop when the specified accuracy level is achieved
for every circular boundary. The procedure is described in detail in [Mogilevskaya and Crouch 2001].

Error (ii) can be easily controlled by comparing the solution obtained at a current step of iteration
with the solution from the previous step. The iterations in the Gauss–Seidel algorithm proceed until the
desired degree of accuracy is achieved. In most cases considered in the present work, no more than
30–50 iterations are required for an accuracy around 10−8.

Error (iii) for the Stehfest algorithm of the inversion cannot be controlled automatically, but several
indirect means to control it are available:

• The stresses at the boundary of the half-plane obtained numerically by using the present approach
can be compared with the prescribed boundary conditions.

• For several linear viscoelastic models (for example, standard solid and Burgers models), the instan-
taneous (t = 0) or large (t →∞) time response is the same as for the elastic model. Thus, one
can compare the solution obtained by the present approach with the solution of the corresponding
elastic problem, which sometimes can be found analytically.

• For the problem of an infinite or semi-infinite perforated viscoelastic plane subjected to constant
loading, the stresses in the matrix do not depend on time and are exactly the same as those for the
corresponding elastic problem [Huang et al. 2006b; Pyatigorets et al. 2008]. Thus, one may consider
the problem in which the inhomogeneities have very small shear moduli so they can simulate the
holes in the numerical analysis. The stresses obtained from the solution of this problem should be
the same or very close to the stresses obtained from the corresponding elastic problem.

• The viscoelastic stresses, displacements, and strains obtained using the present approach should
be consistent with each other. For example, the strains at any time moment can be obtained via
transformed Kolosov–Muskhelishvili potentials; see (11) and (12). At the same time, it is easy
to find the horizontal strains along a horizontal path or the vertical strains along a vertical path by
numerically differentiating the corresponding displacements. In addition, the time-dependent strains
inside the elastic inhomogeneities can be found from the stresses by using Hooke’s law. The strains
found by using both approaches should be in good agreement with each other.

• The comparison of the selected examples with the finite element analysis can provide an idea about
the accuracy of the method and the accuracy of the inverse Laplace transform depending on the
number of terms in (34).

An extensive study of the accuracy of the numerical inverse Laplace transform was conducted using
the means listed above. It was found that for the case of constant loading and for the constitutive models
presented in the next section, the best accuracy is achieved when NSt ranges from 8 to 10. However, a
smaller number of terms in the Stehfest algorithm should be used (NSt = 4 to 6) for the calculation of
the stresses near the singular points (where the stresses may be subjected to rapid variations). In such
cases, the use of a large number NSt may cause the sum in (34) to diverge [Stehfest 1970; Cheng et al.
1994]. This effect is usually observed at small times only, and the error introduced by the reduction of
the number of terms in (34) is relatively small. See Section 5.1 for some details.
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Time-dependent loading is not considered in the present work. For this case the Stehfest algorithm
does not provide accurate results. However, the method described in the present paper is not restricted
by the use of any particular procedure in the numerical inversion of the Laplace transform.

5. Examples

Two constitutive models for the material matrix are considered in the following numerical examples. The
condition of plane strain is assumed hereafter.

For model I it is assumed that the material of the matrix responds as a standard solid (Boltzmann
viscoelastic model) in shear (Figure 2, left), and elastically in bulk. Such behavior is quite realistic as
the shear modulus for many polymeric solids relaxes much more than its bulk modulus. The constitutive
equations for the model are

E1+E2
E1

σi j (t)+
η
E1
σ̇i j (t)= 2E2εi j (t)+ 2ηε̇i j (t), i 6= j and σkk(t)= 3K εkk(t), (36)

where σi j and εi j , i 6= j , are the deviatoric stress and strain, σkk and εkk are the volumetric stress and
strain, E1 and E2 are the elastic moduli of the springs (Figure 2, left), η is the viscosity of the dashpot,
K is bulk modulus, and the dot denotes the time derivative. The s-varying analogs of the shear modulus
and Kolosov–Muskhelishvili constant are obtained from the procedure described by Wang and Crouch
[1982]. They are

µ̂(s)=
E1(E2+ ηs)
E1+ E2+ ηs

, κ̂(s)= 1+
6E1(E2+ ηs)

E1(E2+ ηs)+ 3K (E1+ E2+ ηs)
. (37)

For the sake of simplicity, the following values for the material parameters of the viscoelastic matrix are
used for all the examples described by the first constitutive model:

E1 = 8× 103σ0, E2 = 2× 103σ0, η = 5× 103σ0 · sec, K = 17333.3σ0. (38)

The constant σ0 serves to normalize all the loads and stresses. All elastic moduli can also be expressed
via this parameter.

Model II assumes that the bulk material of the viscoelastic matrix behaves according to Burgers model
(Figure 2, right) in shear and elastically in bulk. The constitutive equations for this model are

σ̈i j (t)+
(E1
η1
+

E1
η2
+

E2
η2

)
σ̇i j (t)+

E1 E2
η1η2

σi j (t)= 2E2ε̈i j (t)+ 2 E1 E2
η2

ε̇i j (t), i 6= j,

σkk(t)= 3K εkk(t).
(39)

Figure 2, right, explains the meanings of the parameters involved in (39). The expressions for the s-
varying shear modulus and the Kolosov–Muskhelishvili parameter can be obtained after applying the

Figure 2. Left: the Boltzmann model. Right: the Burgers model.
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Laplace transform to expressions (39). They are

µ̂(s)=
E1s

(
s+ E2

η2

)
s2+ s

(E1
η1
+

E1
η2
+

E2
η2

)
+

E1 E2
η1η2

,

κ̂(s)= 1+
6E1s

(
s+ E2

η2

)
E1s2+

E1 E2
η2

s+ 3K
[

s2+ s
(E1
η1
+

E1
η2
+

E2
η2

)
+

E1 E2
η1η2

] .
(40)

The parameters of the springs and the bulk modulus are taken to be the same as for the first model,
and the viscosities of the dashpots are η1 = 7× 103σ0 · sec and η2 = η; see (38).

It is worth noting that the Poisson’s ratio ν(t) of the viscoelastic matrix is time-dependent for both
constitutive models.

In all the examples presented below it is assumed that the loads applied to the boundaries of half-plane
do not vary in time. Thus, the functions in (1) are taken as f∞(t)= 1, f p(t)= 1, fF (t)= 1, the Laplace
transform of which gives

f̂∞(s)=
1
s
, f̂ p(s)=

1
s
, f̂F (s)=

1
s
. (41)

5.1. Verification with finite element software ANSYS (model I). Consider the problem of a viscoelastic
half-plane containing two holes and one rigid inhomogeneity as shown in Figure 3. The problem is
solved using the present approach and the finite element software ANSYS.

A rectangular domain of size 600R1× 500R1 (width × height) is used for the finite element analysis.
In order to achieve a high degree of accuracy, the rigid disc is meshed with approximately 23100 quadri-
lateral 8-node elements, while 131400 elements of the same type are used for the viscoelastic matrix.

Figure 3. Problem geometry for Example 1.
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The use of such a large number of elements is not dictated by any factor; possibly a smaller number of
elements can be used to achieve satisfactory accuracy in the results (however, it was found that the use of
a mesh with a total of about 35000 elements results in a significantly less accurate solution). The Prony
series is adopted to approximate the relaxation of the shear modulus of the matrix. A time stepping
algorithm is applied to obtain the time domain solution from the time t = 0 till time t = 10 sec with time
step δt = 0.5 sec.

The stresses and strains obtained by both approaches can be compared directly. To compare the dis-
placements it is necessary to introduce proper constraints in the finite element model and to constrain rigid
body motion in the present approach. The procedure is described in detail in [Pyatigorets et al. 2008].

In the present method, the accuracy parameter εspec is specified at the level εspec = 10−5. The number
of Fourier terms Mk used in the approximation of the boundary displacements is as follows:

Left hole Elastic disc Right hole
Mk = 18 23 20

Using ten terms in sum (34) provides quite accurate results for the numerical Laplace inversion. The
calculations with the present method take 8–10 seconds on a Dell computer workstation (Intel P4 3.6 GHz,
2 GB RAM), while the finite element calculations require about 7 hours at the same computer workstation
(no special optimization technique is used).

Some illustrative examples are given in Figures 4–7. Figures 4 and 5 show very good agreement
between the results for the displacements and strains calculated with both approaches. The graphs in
Figures 4 and 5 are plotted for several time instances only (0, 8, and 10 sec), however, good agreement
is found for all time moments for which the solution is found. The comparison of the time-dependent
stresses, obtained by the present approach for two values of NSt = 10 and NSt = 2, with the results from
the finite element analysis is illustrated in Figures 6 and 7. One can see that for NSt = 10, the stresses
exhibit very good agreement with those obtained by ANSYS (see Figure 6). For the case of NSt = 2
some discrepancy in the results given in Figure 7 is observed at small time values only; at larger time
the error reduces greatly. Similar behavior is observed for all the examples considered in the paper. As
the discrepancy is sufficiently small it seems reasonable to use a smaller number of terms in the Stehfest
algorithm when large NSt causes the sum (34) to diverge.

The same procedure was performed to compare the viscoelastic fields for the case of a point force
and a force distributed over the whole boundary of the half-plane. The results for these cases also reveal
good agreement with the results from the finite element analysis.

5.2. Example with a single inhomogeneity (model I). Consider a viscoelastic half-plane containing a
single inhomogeneity. The material properties of the half-plane are described by constitutive model I.
Four types of loading conditions are considered:

(i) a far-field stress σ∞ = σ0 acting parallel to the boundary of the half-plane;

(ii) a point force F = −σ0 acting perpendicular to the boundary of the half-plane along the axis of
symmetry;

(iii) a force F = −σ0 acting perpendicular to the boundary of the half-plane and distributed over the
interval of length 2R whose center is located on the axis of symmetry;
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Figure 4. Variation of the displacements along the path (−3R1,−5R1)÷ (0, 0) at time
t = 8 sec.

Figure 5. Variation of the horizontal strain along the path (−5R1,−R1)÷ (5R1,−R1).

(iv) a normal force F =−σ0 uniformly distributed over the whole boundary of the half-plane.

In this example we study the influence of the shear modulus of the inhomogeneity on the hoop stress
at point A (the closest point to the boundary of the half-plane that is located on the intersection of the
boundary of the inhomogeneity and the axis of symmetry).

The Poisson’s ratio of elastic inhomogeneity is set to ν = 0.35, while the shear modulus is varied from
µinh = 10−3σ0 to µinh = 8 · 105σ0. It is convenient to normalize µinh by the instantaneous shear modulus
of the viscoelastic matrix µ|t=0 = 8000σ0. This value is equal to the elastic modulus E1 in constitutive
model I, as the dashpot does not exhibit instantaneous deformation (see Figure 2, left). Ten terms are
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Figure 6. Variation of the normalized stresses at the point (−2.28R1,−2.3R1) located
inside the viscoelastic matrix (NSt = 10).

Figure 7. Variation of the normalized stresses at the point (−2.28R1,−2.3R1) located
in the viscoelastic matrix (NSt = 2).

used in the procedure of numerical inversion of the Laplace transform, (34), and the number of Fourier
terms Mk required to achieve the accuracy level εspec = 10−5 is the following:

Type of load Far-field stress Concentrated force Force over a segment Force over the boundary
Mk 37 209 34 22
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The fact that the hoop stress at point A is equal to the stress σxx(t) allows for additional verification of
the method and the computer code. Consider the case when the shear modulus of the inhomogeneity is
close to zero and far-field stress is applied parallel to the boundary of the half-plane. For the inhomogene-
ity located far away from the boundary of the half-plane, the stresses in the vicinity of the inhomogeneity
will not be affected by that boundary and will be the same as in the case of a full plane. In addition, the
stresses for this case do not depend on time, and are exactly the same as the stresses in the corresponding
“elastic” problem: σxx/σ

∞
= 3. The hoop stress found by the present method for µinh = 10−3σ0 and

zcenter = (0,−2000R) agrees with the elastic solution up to 6 significant digits for any moment in time.
The variation of hoop stress at point A versus the shear modulus of the inhomogeneity is shown

in Figures 8–11 for all types of loading. The plots reveal that the hoop stresses vary greatly with the
variation of the shear modulus of the inhomogeneity. However, in all four cases, the hoop stresses
exhibit an asymptotic behavior when µinh/µ→ 0 (the case of a hole) or µinh/µ→∞ (the case of a
stiff inhomogeneity). In case (i), the hoop stress is tensile (Figure 8), while in case (iv) it is compressive
(Figure 11). The hoop stress changes sign for two remaining cases of loading (Figures 9 and 10).

The hoop stress at point A depends greatly on the separation distance between the inhomogeneity
and the boundary of the half-plane. The investigation of this dependency for the case of a hole located
in a viscoelastic half-plane is given in [Pyatigorets et al. 2008]. It is interesting to compare the results
obtained by the present approach with the results presented in the latter paper. It has been found that
the hoop stresses obtained by the present method for µinh = 10−3σ0 match with the results provided by
Pyatigorets et al. [2008] up to the third decimal number for any moment in time.

5.3. Example with two inhomogeneities (model II). Two inhomogeneities with different elastic prop-
erties are considered in this example. The geometry of the problem is shown in Figure 12. Both inho-
mogeneities have the same radii R and their centers are located on the same horizontal line y =−1.4R.

Figure 8. Variation of the normalized hoop stress at point A for loading case (i).
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Figure 9. Variation of the normalized hoop stress at point A for loading case (ii).

Figure 10. Variation of the normalized hoop stress at point A for loading case (iii).

The separation distance between the inhomogeneities is 0.4R. The far-field stress σ0 acts parallel to the
boundary of the half-plane. The bulk material of the half-plane behaves according to constitutive model
II. The properties of the elastic inhomogeneities are as follows:

• Left inhomogeneity: ν = 0.35, µ= 32000σ0 (very rigid inhomogeneity);

• Right inhomogeneity: ν = 0.35, µ= 400σ0 (very soft inhomogeneity).
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Figure 11. Variation of the normalized hoop stress at point A for loading case (iv).

The distribution of maximum shear stresses is found for different moments in time. The maximum
shear stress at a point is given by the expression

τmax(z, t)= 1
2

(
σ1(z, t)− σ2(z, t)

)
,

where σ1(z, t) is the major in-plane principal stress and σ2(z, t) is the minor in-plane principal stress. The
location of maximum shear stress can provide valuable information about the initiation and propagation
of cracks.

The accuracy parameter εspec is set to 10−5. To achieve this accuracy 51 terms in Fourier series (Mk =

25) are required for each inhomogeneity. The number of terms NSt used in the algorithm for the numerical
inverse Laplace transform is set to 8. It was found that when one uses 10 terms in approximation (34),
the results of the approximation begin to diverge at certain points of the space domain. For additional
verification of the results obtained in this example a finite element model was built. The solution found
using our approach (for NSt = 8) shows very good agreement with the one obtained via finite elements.

Figure 12. Problem geometry for Example 3.
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Figure 13. Contours of τmax(z, t)/σ0 at time t = 0 sec.

Figure 14. Contours of τmax(z, t)/σ0 at time t = 5 sec.

The contour plots of τmax(z, t)/σ0 are given in the next three figures for three moments in time: t =
0 sec, t = 5 sec, and t = 300 sec. At the start (Figure 13), the highest shear stress concentration is
seen to be localized between the soft inhomogeneity and the boundary of the half-plane. At the same
time the stresses inside the inhomogeneity are much lower than in the surrounding bulk material. These
results are expected as the distribution of stresses is similar to the one observed for the problem of the
perforated half-plane. The stresses inside the stiff inhomogeneity are about the same magnitude as in
the surrounding matrix. The next snapshot (Figure 14) reveals that stresses inside the inhomogeneities
increase rapidly approaching the magnitude of the far-field stress σ0 inside the stiff inhomogeneity. The
distribution of the stresses in the matrix also changes considerably, but the maximum magnitude of τmax
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Figure 15. Contours of τmax(z, t)/σ0 at time t = 300 sec.

decreases from the level of 2σ0 to the level of σ0. The distribution of stresses at large times (exemplified
by Figure 15) becomes symmetric relative to the line x = 0. At time t = 300 sec the magnitude of the
maximum shear stress almost reaches the level of 2σ0 again, but the maximum stresses are localized
inside the inhomogeneities.

The symmetric distribution of maximum shear stresses observed at large times (despite the fact that
the material properties of the inhomogeneities are very different) allows one to suggest that for the case
of constitutive model II and constant loading, the stresses at large times do not depend on the material
properties of the viscoelastic matrix and elastic inhomogeneities. To support this conclusion, stress
components are found at a number of points inside the half-plane for several different sets of material
properties of the matrix and inhomogeneites. The illustrative results for the case of vertical stress σyy

are presented in Figures 16 and 17. The first set of material properties corresponds to that stated above
in the current example. The second set is

E1 = 1000σ0, E2 = 6000σ0, η1 = 3000σ0 · sec, η2 = 9000σ0 · sec, K = 24999σ0,

Left inhomogeneity: ν = 0.4, µ= 1200σ0,

Right inhomogeneity: ν = 0.2, µ= 16000σ0.

The stresses are found at the points A= (−0.4R,−1.4R) and A′ = (0.4R,−1.4R) located inside the left
and right inhomogeneities, respectively, and at the points B = (−0.8R,−0.2R) and B ′ = (0.8R,−0.2R)
located inside the matrix. The results, presented in Figures 16 and 17, reveal that the stresses at large
times, indeed, do not depend on the material properties, although they depend on the geometry of the
problem and on the loading, meaning stresses are statically determined. Similar behavior of stresses is
observed for other types of loading considered in the present paper. As a hole can be treated as inhomo-
geneity with zero elastic properties the same conclusion can be made for the case of more complicated
geometries including multiple holes and elastic inhomogeneities. We emphasize that the strains and
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Figure 16. Variation of the normalized vertical stress at points A and A′.

Figure 17. Variation of the normalized vertical stress at points B and B ′.

displacements depend on the material properties even when time is large. These results are supported by
the results from the finite element analysis.

Note that the numerical analysis for the case when the viscoelastic matrix is described by constitutive
model I reveals that the stresses do not exhibit asymptotic behavior at large times. It is the viscous flow
introduced by the combination of dashpots in the Burger model that is responsible for the steady solution
at large times.
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5.4. Asymptotic behavior at large times (model II). In some cases, it is possible to find analytically the
behavior of the time-dependent stresses at large times. To illustrate this, we consider the case of a single
inhomogeneity in the full plane. For this problem system (6) reduces to the single equation

− 2
∫

L

ûh(τ ; s)
(τ − ξ)2

dτ +
∫

L
ûh(τ ; s)

∂2K1(τ, ξ)

∂τ∂ξ
dτ +

∫
L

ûh(τ ; s)
∂2K2(τ, ξ)

∂τ̄ ∂ξ
dτ

+
κ̂(s)

2µ̂(s)

[∫
L
σ̂ h(τ ; s)

∂K1(τ, ξ)

∂ξ
dτ −

∫
L
σ̂ h(τ ; s)

∂K2(τ, ξ)

∂ξ
d τ̄
]

+
κ̂(s)−1
2µ̂(s)

∫
L

σ̂ h(τ ; s)
τ − ξ

dτ +π i
κ̂(s)+ 1
2µ̂(s)

σ̂ h(ξ ; s)= 2π i
κ̂(s)+ 1
4µ̂(s)

(
1+ g2(ξ)

)
σ̂∞(s), (42)

where L is the boundary of the hole occupied by the inhomogeneity. As there are only two terms g0(ξ)≡ 1
and g2(ξ) on the right-hand side of Equation (42), the only nonzero Fourier coefficients B̂m(s) present
in approximations (19) are B̂−1(s) and B̂1(s). These coefficients are found from the solution of (42) and
can be expressed as

B̂−1(s)=
σ̂∞(s)

4
κ̂(s)+ 1

µ̂(s)+ κ̂(s)µd
R, Re B̂1(s)=

σ̂∞(s)
8

κ̂(s)+ 1
µ̂(s)+ 2µd/(κd − 1)

R, (43)

where R is the radius of the inhomogeneity, and µd and κd are its shear modulus and Kolosov–
Muskhelishvili parameter, respectively.

As an illustration, we investigate the behavior of the Kolosov–Muskhelishvili potential ϕ(z, t) at t→
∞. It follows from (15) that

ϕ̂(z, s)=−
µd − µ̂(s)

µ̂(s)+ κ̂(s)µd

R2

z− zc

σ̂∞(s)
2
+
σ̂∞(s)

4
z, z ∈matrix,

ϕ̂(z, s)=
µd

κd − 1
κ̂(s)+ 1

µ̂(s)+ 2µd/(κd − 1)
(z− zc)

σ̂∞(s)
4

, z ∈ elastic disc,

(44)

where zc is the complex coordinate of the center of the inhomogeneity.
The behavior of the potential in the time domain at the time t→∞ corresponds to the behavior of its

Laplace transform at s→ 0. Equations (40) give

µ̂(s)→ 0, κ̂(s)→ 1 when s→ 0. (45)

Using (44) and (45) and not accounting for the behavior of σ̂∞xx (s) at s→ 0 (this quantity should be
transformed back in the time domain), we get

ϕ̂(z, s)=
σ̂∞(s)

4

[
z− 2R2

z−zc

]
, z ∈matrix, s→ 0,

ϕ̂(z, s)= (z− zc)
σ̂∞(s)

4
, z ∈ elastic disc, s→ 0.

(46)
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Angle, deg t = 0 sec t = 5 sec t = 500 sec Equation (47)

Circular contour located inside the matrix (r = 1.1R)

0 1.359325 2.511734 2.652893 2.652893
15 1.311184 2.3092 2.431448 2.431447
30 1.179662 1.755867 1.826447 1.826446
45 0.99999999 1.00000011 1.00000012 1
60 0.820338 0.244133 0.173554 0.173554
75 0.688816 −0.3092 −0.431447 −0.431447
90 0.640676 −0.511733 −0.652893 −0.652893

Circular contour located inside the inhomogeneity (r = 0.8R)

0–360 1.076923 1.006881 1.00000006 1

Table 1. The values of σxx(z)+ σyy(z) found numerically and from (47).

Finally using (11) and (46) one arrives at

σxx(z)+ σyy(z)= σ∞
[

1+ 2 Re
( R

z−zc

)2
]
, z ∈matrix, t→∞,

σxx(z)+ σyy(z)= σ∞, z ∈ elastic disc, t→∞.

(47)

It follows from expressions (47) that, at large times, the sum of the horizontal and vertical stresses
inside the inhomogeneity is constant and equal to the value of the far-field stress. The results given by (47)
can be used as the benchmark solution. Consider a single inhomogeneity located far from the boundary
of the viscoelastic half-plane subjected to far-field stress σ∞. Let R = 1 and zc = (5R,−2000R). We
assume that the viscoelastic matrix obeys constitutive model II, νd = 0.2, and µd = 16000σ∞. Table 1
shows the results for the combination σxx(z)+ σyy(z) calculated at several points located on two circular
contours cocentrical with the boundary of the inhomogeneity. The first contour is located inside the
inhomogeneity and its radius is r = 0.8R; the radius of the contour located outside the inhomogeneity
is r = 1.1R. For both contours the angle is defined similarly to the angle shown in Figure 1b. Due to
the symmetry of the problem the values of σxx(z)+ σyy(z) are given for the first quarter of the complex
plane only. As one can see from Table 1, the combination σxx(z)+ σyy(z) tends to the results prescribed
by (47) when time is sufficiently large.

6. Conclusion

We have shown that the proposed method of solution of the problem of a semi-infinite, isotropic, linear
viscoelastic half-plane containing multiple, nonoverlapping circular inhomogeneities is efficient and ac-
curate. As the upper boundary of the half-plane may be subjected to different loading conditions, the
method can be successfully used in the modeling of indentation processes.

An important feature of the algorithm is that most of the derivation, including space integration and the
Laplace transform, is performed analytically. In the case of the perforated half-plane, when the method
reduces to the one presented in [Pyatigorets et al. 2008], the inversion of the Laplace transform can be



84 ANDREY V. PYATIGORETS AND SOFIA G. MOGILEVSKAYA

also performed analytically. However, in the general case of the inhomogeneities, it has to be performed
numerically.

An algorithm for numerical inversion of the Laplace transform proposed by Stehfest is used in the
present work. It is found that for the case of constant boundary conditions and for the constitutive models
presented in the paper, the algorithm provides accurate results. The results of the numerical simulations
indicate that the Stehfest algorithm does not provide accurate results for those problems where time-
dependent boundary conditions are prescribed. However, the method described in the present paper is
not restricted by the use of any particular procedure for the numerical inversion of the Laplace transform.

The major advantage of the algorithm is its time efficiency: problems containing large arrays of
inhomogeneities (tens/hundreds) can be accurately solved in a relatively small time on a standard single-
processor PC (seconds or minutes if the solution is found at a few spatial points and several hours if
the number of points is tens or hundreds of thousands). The calculation of viscoelastic fields can be
effectivelly parallelized on multiprocessor/multicore machines. A multithreading architecture is imple-
mented in the current version of the computer code that allows one to additionally speed up calculations
on multiprocessor machines. The present method allows one to easily modify constitutive viscoelastic
models in the computer code if the expressions for the transformed shear modulus and the Kolosov–
Muskhelishvili parameter are known.

Several numerical examples are considered in the paper. Interesting results are obtained from the
study of the hoop stress at a point on the boundary of a single inhomogeneity located in the vicinity of
the boundary of the half-plane. The study reveals that the hoop stress greatly depends on the material
properties of the inhomogeneity and can be tensile or compressive depending on the time moment and
shear modulus of the inhomogeneity. The results obtained for constitutive model II (Example 3) show
that the state of the stresses is statically determined at large times, with an asymptotic behavior as t→∞
determined only by the geometry of the problem. Nevertheless, the value of t when the stresses approach
the asymptotic behavior depends on the material parameters.

One of the future developments of the approach may include the consideration of imperfect interfaces
between the inhomogeneities and the matrix. Cracks or inhomogeneities of more general geometry can
also be incorporated, although the method would have to employ the boundary element technique.

Appendix A

The operator 3̂kk is the Laplace transform of the corresponding operator presented in [Dejoie et al. 2006]:

3̂kk(ξ ; s)=−
1
Rk

{
2 Re B̂1k +

Mk−1∑
m=1

m B̂−mk gm+1
k (ξ)+

Mk+1∑
m=2

B̂mk g1−m
k (ξ)

}
. (A.1)

The operator Ĝkk is given by

Ĝkk(ξ ; s)=
1
Rk

{
2
(
µk
κk−1

κ̂−1
µ̂
− 1

)
Re B̂1k

+

(
µk
µ̂
− 1

) Mk−1∑
m=1

m B̂−mk gm+1
k (ξ)+

(
µk
κk

κ̂
µ̂
− 1

) Mk+1∑
m=2

B̂mk g1−m
k (ξ)

}
=−

1
Rk

{
2α̂2k Re B̂1k + α̂1k

Mk−1∑
m=1

m B̂−mk gm+1
k (ξ)+ α̂3k

Mk+1∑
m=2

B̂mk g1−m
k (ξ)

}
. (A.2)
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Expression (A.2) differs from (A.1) by the presence of additional terms in front of unknown Fourier
coefficients B̂−mk , Re B̂1k , and B̂mk only. All other operators Ĝ jk can be obtained in a similar way from
the corresponding expressions given in [Dejoie et al. 2006].

Appendix B

Potentials for the k-th elastic disc derived from (13):

ϕ̂(z, s)=
2µk

κk − 1
Re B̂1k g−1

k (z)+
2µk

κk

Mk+1∑
m=2

B̂mk g−m
k (z)

=
2µk

κk − 1
1
α̂2k

Re B̂1k g−1
k (z)+

2µk

κk

1
α̂3k

Mk+1∑
m=2

B̂mk g−m
k (z), (B.1)

ψ̂(z, s)=− 2µk
κk−1

z̄k
Rk

Re B̂1k−
2µk
κk

[ z̄k
Rk
+gk(z)

] Mk+1∑
m=2

m B̂mk g−(m−1)
k (z)−2µk
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k (z)

=−
2µk
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−
2µk
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[ z̄k
Rk
+ gk(z)
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m=2

mB̂mk g−(m−1)
k (z)− 2µk

α̂1k

Mk−1∑
m=1

B̂−mk g−m
k (z). (B.2)

Similar expressions are used in [Mogilevskaya et al. 2008] for the calculation of elastic potentials.

Potentials for the matrix derived from (15) and (16):

ϕ̂plane(z; s)=
2µ̂
κ̂+1

N∑
k=1

Mk−1∑
m=1

B̂−mk gm
k (z)+

σ̂∞(s)
4

z, (B.3)

ψ̂plane(z; s)=−
κ̂−1
κ̂+1

Nh∑
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ϕ̂aux(z; s)=
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where
h j (z)=

Rj

z−z j
. (B.7)



86 ANDREY V. PYATIGORETS AND SOFIA G. MOGILEVSKAYA

The potentials ϕ̂F (z; s) and ψ̂F (z; s) are due to the use of Flamant’s fundamental solution, and they
do not depend on the displacements or stresses at the boundaries of the holes. The expressions for these
potentials are given in [Pyatigorets et al. 2008].
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COMPARATIVE STUDY OF SYMMETRIC AND ASYMMETRIC DEFORMATION
OF AL SINGLE CRYSTAL UNDER MICROSCALE LASER SHOCK PEENING

SINIŠA VUKELIĆ, YOUNENG WANG, JEFFREY W. KYSAR AND Y. LAWRENCE YAO

The process of laser shock peening induces compressive residual stresses in a material to improve ma-
terial fatigue life. For micron sized laser beams, the size of the laser-target interaction zone is of the
same order of magnitude as the target material grains and, thus, the target material must be considered
anisotropic and inhomogeneous. Single crystals are chosen to study the effects of the anisotropic me-
chanical properties. It is of further interest to investigate the response of symmetric and asymmetric slip
systems with respect to the shocked surface. In the present study, analytic, numerical, and experimental
aspects of laser shock peening on two different crystal surfaces, (110) and (11̄4), of aluminum single
crystals are studied. Anisotropic slip line theory is employed for the construction of slip line fields
for both orientations and compared with numerical results. Lattice rotations of the cross section are
measured using Electron Backscatter Diffraction (EBSD).

1. Introduction

Laser shock peening (LSP) is a surface treatment introduced in the 1960s [Clauer and Holbrook 1981;
Fabbro et al. 1990; Clauer and Lahrman 2001] as a potential replacement for shot peening, which has
the same goal of inducing compressive residual stresses on the surface of a material to improve fatigue
behavior and wear resistance of the target material. Shocks induced by a laser induce compressive
residual stresses of the same order of magnitude as those created by conventional shock peening, however,
the residual stresses generated by LSP penetrate deeper into the material resulting in the significant
improvement of material response to the cyclic loading [Hammersley et al. 2000]. Moreover, it is much
easier to control the position of laser beams, and the process as a whole is much more flexible.

More recently, microscale laser shock peening (µLSP) has been employed as a means to improve
reliability of various micro devices, such as MEMS (microelectromechanical systems). The process is
performed by coating the specimen with an ablative layer and submerging it into water, after which a
high intensity laser is directed at the ablative layer for 50 ns. The result is a plasma confined by the
surrounding fluid so that much of the energy is directed into the material as a shock pulse. The process is
considered to be primarily mechanical without any thermal effects that modify the microstructure. Most
of the initial work in this field was on polycrystalline materials [Zhang and Yao 2002; Fan et al. 2005].

Keywords: laser shock peening, single crystal, micromechanics, anisotropic slip line theory.
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the MRSEC Program of the National Science Foundation under Award Number DMR – 0213574 by the New York State
Office of Science, Technology and Academic Research (NYSTAR). Dr. Paul van der Wilt generously assisted during EBSD
measurements.
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However, since the laser beam spot size, usually several microns, is comparable to the average grain size
of most polycrystalline materials used in the fabrication of microdevices (aluminum, copper, etc.), at most
a few grains are affected by a single laser pulse. Thus the effects of anisotropy and heterogeneity have to
be taken into account to properly understand this process. This was the motivation for previous studies
[Chen et al. 2004a] in which the response of single crystals of aluminum and copper were examined
after laser treatment. Two different orientations of aluminum and copper single crystals were examined,
a numerical model was established, and the results were compared to experimental findings.

Anisotropic properties of single crystal materials have been studied extensively. One of the early
efforts was presented by Hill [1998], who extended the classical slip line theory [Hencky 1923] developed
for isotropic materials by substituting a circular yield surface with an elliptic one. Rice [1973] and Booker
and Davis [1972] went further in the generalization of slip line theory by expanding it to materials with
arbitrary anisotropy. Asaro [1983] summarized the principles of single crystal plasticity. Anisotropic slip
line theory as well as plasticity theory was applied to the problem of a flat punch impinged onto the surface
of a plastic medium of arbitrary anisotropy [Rice 1973]. The same theory was used by Rice [1987] and
Drugan [2001] for derivation of the asymptotic crack tip stress field solutions for elastic ideally-plastic
single crystals. An analytic solution for the stress distribution and deformation state around a cylindrical
void has been found in [Kysar 1997; 2001a; 2001b].

Single crystal plasticity and anisotropic slip line theory have also been employed to study the response
of single crystals under laser shock peening. The approach taken by Wang et al. [2008] was to approxi-
mate the Gaussian pressure loading from laser shocks as a punch problem with nonuniform pressure. An
aluminum single crystal of a nonsymmetric (11̄4) orientation was used in the study because only one slip
system was predicted to be active directly under the applied loading. The size of the deformed region
was estimated, and an approximate analytic solution was obtained and compared with findings acquired
from numerical analysis.

A symmetric orientation of the crystal is of interest because multiple slip systems are activated under a
Gaussian pressure distribution. This complicates the analytic derivation and raises issues of the difference
in material response and stress field distributions between nonsymmetric and symmetric cases. In the
present study, the (110) orientation is chosen because two slip systems are activated under loading, since
the symmetry of the yield surface simplifies the derivation of the deformation field. Furthermore, in real
applications, polycrystalline materials with textures involving mostly low Miller index grains are quite
common.

Thus, the objective of this work is a comparative study of aluminum single crystal behavior under
a Gaussian pressure distribution induced by µLSP for two different crystallographic surfaces, one non-
symmetric with high Miller index (11̄4) and the other symmetric with low Miller index (110). A line
of µLSP shocks exists in the (1̄10) on the respective surfaces in order to introduce an approximate
two-dimensional deformation state. The effects of anisotropy are emphasized, neglecting inertial terms
present due to the dynamic nature of the process, terms which are taken into account in [Vukelic et al.
≥ 2009]. The deformation state is characterized experimentally, and anisotropic slip line theory is used
to investigate the stress distribution and deformation state induced by laser shock peening of a single
crystal surface under plane strain conditions. In addition, the finite element method (FEM) is used for
the detailed analysis of single crystal plasticity as another perspective of the study. The results are clearly
approximate because inertia is neglected, however, the results give insight into the role of anisotropy.
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2. Experimental setup and characterization

Twelve dislocation-mediated plastic slip systems exist in the face-centered cubic aluminum, denoted as
{111} <<110>> , where {111} corresponds to the family of slip planes and <<110>> denotes the family of slip
directions. If a line loading is applied parallel to the (1̄10) direction, the twelve physical slip systems
reduce to three effective in-plane slip systems resulting in an approximate plane strain deformation [Rice
1973; 1987; Kysar et al. 2005]. Lines of laser shocks applied parallel to the (1̄10) direction on the (110)
and (11̄4) planes are called, respectively, the symmetric and asymmetric deformations. The symmetric
case admits slip on two effective in-plane slip systems in the region immediately below the laser shock.
The asymmetric case admits slip only on one effective slip system. The two experimental setups with
effective in-plane slip systems are shown in Figure 1. A detailed discussion about the formation of the
approximate two-dimensional deformation can be found in [Rice 1987; Kysar 2001a; Kysar et al. 2005].
The geometric conditions needed for plane strain conditions to be achieved are summarize in [Crone
et al. 2004].

Aluminum single crystals are used in this study grown via the Bridgeman method. The sample is
mounted on a three circle goniometer and its orientation is determined by Laue diffraction. The specimen
is cut to size with a wire electrical discharge machine (EDM) to within ±1◦ of the desired orientation, and
the resulting heat affected zone (HAZ) is removed via mechanical polishing. Finally, electropolishing is
used in order to remove any residual deformed material.

A frequency tripled Q-switched Nd:YAG laser with wavelength λ= 355 nm in TEM00 mode is used
for the µLSP experiments, with a beam diameter of 12µm, pulse duration of 50 ns, and laser intensity of
about 4 GW/cm2. A thin polycrystalline aluminum foil is used as an ablative coating applied tightly over
an evenly spread layer (approximately 10µm thick) of high vacuum grease. The specimen is placed into
a shallow container filled with distilled water to about two millimeters above the sample’s top surface as
shown in Figure 1. More details about laser shocking can be found in [Zhang and Yao 2002; Chen et al.
2004b]. To obtain an approximate two-dimensional deformation state, laser shocks are applied with a
25µm spacing along the (11̄0) direction.
µLSP induces deformation into the single crystal that can be characterized experimentally through

lattice rotation which is measured by comparing the as-deformed crystallographic orientation [Kysar
2001a; Wang et al. 2008] relative to the known undeformed state. Lattice orientation is measured using
Electron Backscatter Diffraction (EBSD) as a function of micrometer scale spatial position. In order
to get information about the depth of the affected region and magnitude of lattice rotation under the
surface, EBSD mapping is employed on a cross section of the sample. For these measurements, an
HKL Technology system attached to a JEOL JSM 5600LV scanning electron microscope (SEM) is used
with a scan area of 200µm ×200µm and 120µm ×120µm on the shocked surface and cross section,
respectively, with 3µm step size.

3. Numerical simulation conditions of single crystals

Finite element analysis is performed based on single crystal plasticity theory described by [Asaro 1983].
For the purpose of this analysis, a plane strain model is established based upon results of prior experiments
[Chen et al. 2004a; Wang et al. 2008; Vukelic et al. ≥ 2009] which demonstrate that the deformation is ap-
proximately two-dimensional at any cross section along a shock line parallel to a <<110>> crystallographic
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Figure 1: Experimental Setup; effective in-plane strain slip systems active corresponding to a) 
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Figure 1. Experimental setup: effective in-plane strain slip systems active correspond-
ing to the (110) orientation (left) and the (11̄4) orientation (right).

direction. The simulation assumes quasistatic conditions, which, although a gross oversimplification in
comparison to the highly dynamic character of µLSP, still gives insight into the role of the anisotropy,
especially in comparison to the analytic solution. Boundary conditions are specified, with reference to
the configuration in Figure 1, as follows: zero traction on the side edges; zero vertical displacement on
the bottom; and a Gaussian pressure distribution on the upper surface, given by

P(x)= P0 exp
(
−

x2

2R2

)
, (1)

where R is the plasma radius, x is the distance from the center of the Gaussian pressure distribution
and P0 is the peak pressure. The analysis is performed with the commercial finite element (FEM) pro-
gram ABAQUS/Standard with a user-defined material subroutine (UMAT) written by Huang [1991] and
modified by Kysar [1997]. The aluminum slip systems are assumed to have a critical shear strength of
τ ≈ 1 MPa; the peak pressure is taken to be P0/τ = 7.
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4. Single crystal micromechanics

According to [Asaro 1983], plastic deformation of a single crystal can be conceptually broken down
into three steps which, when combined, determine the overall deformation gradient F : first, plastic slip
through the undeformed crystal F P ; second, rigid body rotation F R; finally, elastic stretching of the
lattice Fe. Therefore, the deformation gradient tensor can be multiplicatively decomposed as

F = Fe
· F R
· F P . (2)

The first two terms of (2) can be combined together, and the general expression for the deformation
gradient becomes F = F∗ ·F P , where F P is the deformation related to the plastic shear and F∗ represents
the stretching and rotation of the crystal lattice. The velocity gradient, L , which is the sum of the spin
rate tensor, �, and deformation rate tensor, D, can also be calculated as L = Ḟ ·F−1. Furthermore, D and
� can be decomposed into D = D∗+ DP and �=�∗+�P . It can then be shown that the constitutive
equation in rate form is

τ∇ = L : D−
n∑
α=1

[L : P (α)+β(α)]·
(α)

λ , (3)

where L is the tensor of elastic moduli, τ∇ is the Jaumann rate of the Kirchhoff stress tensor, β(α) =
W (α)τ̇ − τ̇W (α), and γ̇ (α) is the shear strain rate on the slip system α. Another important issue is the
definition of the Schmid stress, also known as resolved shear stress, which is responsible for producing
an effective force on dislocations. From the general expression of the rate of work,

τ : D p
=

n∑
α=1

τ : Pα ·
(α)

λ , (4)

the Schmid stress on a particular slip system α is

τ (α) = P (α) : τ, (5)

with the Schmid tensor defined as P (α) = (n(α)⊗ s(α)+ s(α)⊗ n(α))/2, where n(α) is the unit normal of
the α-th {111} plane and s(α) is the unit vector corresponding to the α-th <<110>> slip direction.

5. Anisotropic slip line theory

Slip line theory for isotropic rigid-ideally plastic materials experiencing plane strain deformation has
been originally developed by Hencky [1923] and Prandtl [1923]. The stress distribution under a flat
punch with a constant pressure was first derived by Hill [1998] for anisotropic materials with an elliptic
yield surface using slip line theory and was solved with the generalized theory for arbitrary anisotropic
yield surface by Rice [1973] and Booker and Davis [1972]. Wang et al. [2008] employed anisotropic slip
line theory to investigate stress and deformation fields for the case of a Gaussian pressure distribution
on a single crystal surface for the asymmetric case. In essence, they assumed that the deformation from
µLSP can be thought of as being induced by a punch with a Gaussian pressure distribution, rather than
a constant pressure across the width of the punch.

Anisotropic slip line theory is employed to investigate the deformation field of a single face-centered
cubic crystal under µLSP for the symmetric case. Slip line theory treats incipient plane flow and it
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is assumed that plastic deformation occurs simultaneously over the domain of interest. The governing
equations are a set of equilibrium equations that have the form of hyperbolic partial differential equations;
the two families of characteristics, referred to as α and β lines, correspond, respectively, to slip directions
and slip plane normals in the case of anisotropic slip line theory applied to single crystals. More details
about anisotropic slip line theory can be found in [Rice 1973] and [Kysar et al. 2005].

6. Analytic treatment of deformation and stress field

6.1. Gaussian pressure distribution on a (110) crystallographic orientation. The stress and deforma-
tion states associated with a Gaussian pressure loading are derived by assuming that the pressure is
applied by a punch with a nonuniform pressure distribution. By this formulation, flat punch kinematics
is employed, but the distribution of the stresses under the punch is deformed by a Gaussian distribution.
The stress state in the triangular region immediately below the punch is at yield for both problems. Under
these conditions, one expects there to be a singular point associated with the edges of the punch about
which exist constant stress angular sectors. The only ambiguity in the derivation is to determine the
precise positions of the singular points relative to the Gaussian pressure distribution. Therefore, the
following procedure is employed to determine a scaling relationship for the positions of the singular
points, and a detailed numerical simulation is performed to locate the precise position. The derivation
for the (11̄4) case can be found in [Wang et al. 2008].

We first assume that a uniaxial stress state consisting of uniform pressure, P∗, is applied to the surface
to be shocked such that plastic deformation is incipient. Schmid’s law for a plane strain deformation state
with effective in-plane slip systems can be expressed as [Kysar et al. 2005]

σ12 = tanφ(α)
(
σ11− σ22

2

)
±
β(α)τ (α)

cos 2φ(α)
, (6)

where the superscript α denotes the active slip system, φ(α) represents the angle between the slip system
and the x1-axis, τ (α) is the critical resolved shear stress which can be experimentally determined, and β(α)

is a geometric ratio (β(1)=β(3)= 2/
√

3, β(2)=
√

3), defined by [Rice 1987]. As seen in Figure 1, for both
cases considered, there are three effective slip systems denoted by i , i i , and i i i , which can be activated,
as in Table 1. In order to find a scaling relation for the approximate position of the singular point, we find
the uniaxial stress at which plastic deformation initiates by solving (6) for P∗ with σ22 =−P∗, σ12 = 0
and σ11 = 0 to obtain

P∗ =±
2β(α)τ (α)

sin 2φ(α)
(7)

as the approximate pressure at which plastic deformation will initiate. This value of P∗ is equated to
P(x) in (1), and the corresponding value of x , denoted as x p, is

x p = R

√
ln

P2
0 sin2 φ

(2βτ)2
. (8)

This result is a scaling relation for the approximate position of the singular point. We further define
x ′p = cx p, where c is a dimensionless constant of order unity to be determined by detailed numerical
simulation to specify the precise location, x ′p, of the singular point.
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Active slip system φ for (110) case φ for (11̄4) case β

i 144.7◦ 35.3◦ 2/
√

3
i i 90.0◦ 160.5◦

√
3

i i i 35.3◦ 105.8◦ 2/
√

3

Table 1. Values of φ and β for active slip systems.

6.2. Analytic prediction of slip sectors for (110) and (11̄4) orientations. For a Gaussian pressure dis-
tribution applied to the (110) surface, the surface tractions are given by σ22 = −P(x) and σ12 = 0. If
one assumes incipient plastic deformation, it is evident that the stress state will coincide with vertex F
of the yield locus in Figure 2, left (see also Table 2 on page 97), so that both slip systems i and i i i are
activated under the pressure loading. From (7), the values of P∗ for the slip systems i and i i i are

(P∗)i =∓
2β(1)τ (1)

sin 2φ(1)
, (P∗)i i i =∓

2β(3)τ (3)

sin 2φ(3)
,

where the superscripts on P∗ denote the active slip system. Since φ(3) =−φ(1), as indicated in Figure
2, we have |P∗(1)| = |P∗(3)| so that both slip systems i and i i i are expected to be activated under the
Gaussian pressure distribution on the (110) surface, as expected. The approximate punch radius can then
be estimated for the (110) orientation from (8) based upon the values of φ1 and β1 in Table 1.

The slip line field is then constructed based upon the concepts of [Rice 1973; 1987], as shown in
Figure 3. There are constant stress angular sectors centered at each of the singular points; the boundaries
of these sectors are slip directions and slip normals which pass through the singular point. In addition,

Figure 2. Yield locus for the (110) orientation (left) and for the (11̄4) orientation (right).
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there are constant stress triangular regions at the periphery of the slip line field. Within the center
triangular region, the stress state corresponds to position F on the yield locus in Figure 2, right. From
Figure 3, top it can be seen that the symmetric yield locus gives rise to a symmetric slip line field. On the
other hand, the slip line field on the (11̄4) surface, shown in Figure 3, bottom, as constructed by Wang
et al. [2008] is asymmetric, reflecting the asymmetry of the yield locus for that orientation in Figure 2,
right. From both parts of Figure 3, the geometry of the slip line field also provides an estimate for the

(110)

(110)

Figure 3. Geometry of slip line field under Gaussian loading for the (11̄4) orientation
(top) and the (110) orientation (bottom).
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Vertex (σ11+ σ22)/2τ σ12/τ

A 1
2

√
3
2

√
3

B −
1
2

√
3
2

√
3

C −

√
3
2 0

D −
1
2

√
3
2 −

√
3

E 1
2

√
3
2 −

√
3

F
√

3
2 0

Vertex (σ11+ σ22)/2τ σ12/τ

H1 −
7
8

√
6 4

9

√
3

H2
1
4

√
6

√
3

H3
23
36

√
6 5

9

√
3

F 1
2

√
6 0

Q3
7
18

√
6 −

4
9

√
3

Q2 −
1
4

√
6 −

√
3

Q1 −
23
36

√
6 −

5
9

√
3

Q −
1
2

√
6 0

Table 2. Yield locus vertices for the (110) case (left) and the (11̄4) case (right).

size of the plastically deformed region for the (110) and (11̄4) cases, respectively:

L = 2xP

(
1+

1
cos2 φ

)
= 2cR

√
ln

P2
0 sin2 φ

(2βθ)2

(
1+

1
cos2 φ

)
,

L = 2xP(1+ cotφ+ tanφ)= 2
√

2cR(1+ cotφ+ tanφ)

√
ln
( P0

2A

)
+ ln sin 2φ.

(9)

6.3. Analytic prediction of stresses within slip systems. Rice [1987] derived for the asymptotic deforma-
tion and stress fields under plane strain conditions in elastic-ideally plastic single crystals. By satisfying
equilibrium and assuming that a particular angular sector is at yield, he showed that as r→ 0 the stress
state must be of a “constant stress type”. Furthermore, since the stress states along the crack flanks and
the prolongation of the crack are different, the stress field has to be divided into several constant stress
sectors separated by either elastic sectors or lines of discontinuity. For the case of a stationary crack,
if the entire domain is at yield, the stress state will necessarily follow the yield locus in stress space;
each vertex corresponds to the stress state in a constant angle sector. In the transition region between
sectors there is a discontinuity corresponding to the edge on the yield locus which connects two adjacent
vertices. These stress discontinuities are constrained to lie at certain angles and coincide with families of
slip lines and slip plane normals. Rice [1982] stated that an analogous approach can be used for punch
problems. The analytic prediction of the stress distribution under a Gaussian pressure distribution based
on anisotropic slip line theory in aluminum with (11̄4) orientation is discussed in detail in [Wang et al.
2008]. Although the (110) orientation is more complex because of double slip, a similar conclusion
about stress distribution can be drawn for it; see [Rice 1987].

The solution can be derived by assuming a Gaussian pressure distribution for x ≤ x ′p, and zero traction
boundary conditions for x > x ′p. Then, following established procedures [Rice 1973; 1987; Wang et al.
2008], the relationship between the change of average stress 1σ = 1

21(σ11+ σ22) and arc length 1L ,
which has units of stress, around the yield locus is

1
21(σ11+ σ22)=−1L . (10)
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Sector σ11/τcr σ22/τcr σ12/τcr Active slip systems

A −
3
2

√
6 −2

√
6

√
3 i, i i

B −
3
2

√
6 −

√
6

√
3 i i, i i i

C −
√

6 0 0 i, i i i

D −
3
2

√
6 −

√
6 −

√
3 i, i i

E −
3
2

√
6 −2

√
6 −

√
3 i i, i i i

Sector σ11/τcr σ22/τcr σ12/τcr Active slip systems

H −
√

6 0 0 i

H1 −
11
9

√
6 −

4
9

√
6 4

9

√
3 i, i i i

H2 −
4
3

√
6 −

11
6

√
6

√
3 i i, i i i

H3 −
13
9

√
6 −

49
18

√
6 5

9

√
3 i, i i

Q3 −
16
9

√
6 −

23
9

√
6 −

4
9

√
3 i, i i i

Q2 −
5
3

√
6 −

7
6

√
6 −

√
3 i i, i i i

Q1 −
14
9

√
6 −

5
18

√
6 −

5
9

√
3 i, i i

Q −
√

6 0 0 i

Table 3. Stresses within sectors for the (110) case (top) and the (11̄4) case (bottom).

Yield locus vertices can be found from geometry, and thus the arc length L can be calculated so that
stresses in each of the regions in Figure 3 can be derived. Table 3 shows the normalized values of stress
components in each sector for both the (110) and (11̄4) case. More detailed solutions for cracks and
cylindrical voids in single crystals case can be found in [Rice 1987; Kysar et al. 2005].

6.4. Analytic prediction of lattice rotation for (110) and (11̄4) orientations. As seen in Section 4, the
spin tensor � consists of �∗, which corresponds to lattice rotation, and �P , associated with plastic slip.
Following [Asaro 1983], the plastic part of �P is

�P
=

N∑
α=1

W (α)
· λ̇α, (11)

where α represents active slip systems, γ̇ is the rate of shear, and the tensor W is defined by

W (α)
=

1
2(s

(α)
⊗ n(α)− n(α)⊗ s(α)). (12)

Therefore, �∗ can be rewritten as

�∗ =�−
1
2

N∑
α=1

γ̇ (s(α)⊗ n(α)− n(α)⊗ s(α)) (13)
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which gives a relation between the spin tensor responsible for lattice rotation and the slip rate of each
active slip system. If n and s are projected onto the x1, x2 plane and rescaled as unit vectors N and S,
taking into account the plane strain condition, (8) can be expressed as

�∗ =�−
1
2

N∑
α=1

γ̇ (S(α)⊗ N (α)
− N (α)

⊗ S(α))β(α) (14)

From [Rice 1987] it follows that S1 = N2, S2 =−N1, so the term in parentheses reduces to a constant.
The only factors left under the summation are the strain rate and the β term, which is different for each
slip system, as discussed by Rice.

Unlike the (11̄4) case, in which only one slip system is active in the triangular regions, in the (110)
orientation there are two active slip systems. From the solution for the stresses, it can be shown that the
shear strain on each slip system has the same sign, so that the lattice spin induced by both slip systems
also has the same sign, which leads to the conclusion that the deformation associated with each slip
system adds to the total rotation. Furthermore, the (110) orientation is symmetric, and therefore each
active slip system equally contributes to the magnitude of the lattice deformation. On the other hand,
only one slip system is active for the (11̄4) case, which suggests that the overall lattice rotation might be
less than that in the symmetric case. A more detailed discussion about the numerical and experimental
results is given below.

7. Numerical results and comparison with experiments and analytic solutions

7.1. Slip sectors and shear strain increments. According to the analytic solution, the entire deformation
field is divided into sectors. In each of those sectors one or two slips are active. As discussed by
[Rice 1987], boundaries of sectors are slip directions and slip normals which represent lines of stress
discontinuity. The numerical model agrees well with the analytic solution as shown by [Wang et al.
2008] for (11̄4) case. In the case of the (110) orientation, the analytic results derived in the previous
section and superimposed on the numerical findings are in good agreement as well, as seen in Figure 4.
However, here, emphasis is placed on comparison between the deformation states of the symmetric and
asymmetric orientations. Both total shear as well as shear increments for each slip system are of interest.
Figure 4 depicts antisymmetry of shear strain increments associated with slips i and i i i . At the same
time, shear strain increment on slip system i i is symmetric about the center of the shock. The extent of
the shear strain increment of all slip systems agrees well with the deformation field derived analyticly,
if one chooses the consistent c to determine x ′p. Likewise, the (11̄4) calculations agree well with the
analytic solution (see Figure 5). The distribution of the shear strain increments is larger on the right side
of the deformation field.

7.2. Lattice rotation. Plastic deformation induced by µLSP causes crystallographic lattice rotation that
was characterized via Electron Backscatter Diffraction (EBSD). The region of interest is mapped after
laser treatment and its crystallographic orientation compared with the known initial state which serves
as a reference. More details about this method can be found in [Kysar and Briant 2002]. Results shown
here were reported elsewhere [Wang et al. 2008; Vukelic et al. ≥ 2009], and in this study they serve as
a comparison with the numerical model.
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Figure 4. Shear strain increment in each slip system at the end of the loading step for the
(110) orientation. Top left, increment in slip system i ; top right, slip system i i ; bottom
left, slip system i i i ; bottom right, total shear strain increment.

Figure 5. Shear strain increment in each slip system in the end of loading step for (11̄4)
orientation. Top left, increment in slip system i ; top right, slip system i i ; bottom left,
slip system i i i ; bottom right, total shear strain increment.
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Figure 6. Lattice rotation contour map on the (110) cross section. Positive rotation is
counterclockwise about the z-axis.

Lattice rotation results obtained from EBSD measurements of the cross-section are shown in Figure 6.
Antisymmetric rotation about the center of the shock line can be observed with blue regions correspond-
ing to counterclockwise rotation and red regions depicting clockwise rotation. Green areas in the field
represent unrotated parts of the crystal. From Figure 6a it can be seen that deformation of the (110) crystal
is approximately symmetric and slightly narrower than in the (11̄4) case. The magnitude of deformation
is largest close to the surface of the specimen and about 15 um away from the center of the shock line.
It can also be seen that directly under the center of the shock line is a region of unrotated crystal. The
magnitude of deformation is different for the symmetric and asymmetric cases; for the (110) orientation,
the lattice rotates between ±2.4◦, almost double of the rotation of the (11̄4) orientation which is about
±1.2◦. These results are consistent with analytic predictions derived in the previous section that the
double slip will cause a larger increase in the lattice rotation than the case of a single slip corresponding
to the (11̄4) orientation.

Numerical results of the in-plane lattice rotation are shown in Figure 7. One sees there good agreement
between simulation and experimental findings. The main trend for the case of counterclockwise and
clockwise rotations located directly under the center of the loading is apparent. The (110) orientation
gives a symmetric response as opposed to the asymmetric case of (11̄4). Also, the magnitude of the
lattice rotation is larger for the double slip case. However, there is a discrepancy between experimental
results and simulation, mainly seen in the magnitude of rotation. This arises from the limitations of the
FEM model in which the effects of inertia and work hardening are being neglected.

7.3. Stress distribution. The FEM results of residual stress, σ11, after unloading are shown in Figure
8. It can be seen that the stress field is symmetric in the (110) case and asymmetric in the (11̄4) case.
A region of compressive residual stress exists in the center region, whereas self-equilibrating regions of
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Figure 7. Lattice deformation contour by FEM for the (110) orientation (top) and the
(11̄4) orientation (bottom).

tensile residual stress is located far from the center, with the exception of two small regions of tensile
residual stress located at the tips of the assumed ends of the punch. The trend shown in Figure 8 sug-
gests that the process of µLSP is beneficial to the fatigue life and wear resistance of micro components
experiencing cyclic loading. Also, it should be noted that in previous studies [Wang et al. 2008], the
surface displacement after applying laser shocks onto the top surface has been measured by atomic force
microscopy (AFM) and optical profilometry [Vukelic et al. ≥ 2009], and the trend coincides with the
results captured by finite element simulation.

8. Conclusion

We presented a comparison between laser shock peening of two different orientations of aluminum single
crystals, one symmetric and one asymmetric. Anisotropic slip line theory was employed for the construc-
tion of slip line fields for both orientations and compared with numerical results. In addition, the stress
distribution in angular sectors has been calculated. For the double slip symmetric case, plastic deforma-
tion caused by two slip systems adds to the total deformation as characterized by the lattice rotations
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Figure 8. FEM simulation of residual stress distribution for the (110) orientation (top)
and the (11̄4) orientation (bottom).

which suggests that deformation in the symmetric orientation will be greater than in the asymmetric case.
A numerical model is established for a more detailed investigation of the µLSP process and compared
to experiments. Experimental measurement of lattice rotation via EBSD in the double slip case shows
that lattice rotation is twice as large as in the single slip case, which is consistent with the analytic work.
Future work will include the effect of heterogeneity through the study of the grain boundary response to
µLSP, which will be achieved by examination of bicrystals.
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SINIŠA VUKELIĆ: sv2147@columbia.edu
Columbia University, Mechanical Engineering Department, 500 W 120th Street, S. W. Mudd Building Room 220, MC 4703,
New York, NY 10027, United States

YOUNENG WANG: yw2119@columbia.edu
Columbia University, Mechanical Engineering Department, 500 W 120th Street, S. W. Mudd Building Room 220, MC 4703,
New York, NY 10027, United States

JEFFREY W. KYSAR: jk2079@columbia.edu
Columbia University, Mechanical Engineering Department, 500 W 120th Street, S. W. Mudd Building Room 220, MC 4703,
New York, NY 10027, United States

Y. LAWRENCE YAO: yly1@columbia.edu
Columbia University, Mechanical Engineering Department, 500 W 120th Street, S. W. Mudd Building Room 220, MC 4703,
New York, NY 10027, United States



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 4, No. 1, 2009

NONUNIFORM INTERFACIAL SLIP IN FIBROUS COMPOSITES

XU WANG

We consider a solitary circular elastic inclusion bonded to an infinite elastic matrix through a linear
viscous interface. Here the viscous interface with vanishing thickness can simulate the Nabarro–Herring
or Coble creep of a thin interphase layer between the fiber and the matrix. The interface drag parameter
is varied along the interface to reflect the real thickening and thinning of the interphase layer. In partic-
ular, we consider a special form of the interface function that yields closed-form solutions in terms of
elementary functions under four loading conditions: the matrix is subjected to remote uniform antiplane
shearing; a screw dislocation is located in the matrix; a screw dislocation is located inside the inclusion;
and uniform eigenstrains are imposed on the inclusion.

Our results show that a nonuniform interface parameter will induce an intrinsically nonuniform stress
field inside the inclusion when the matrix is subjected to remote uniform shearing or when uniform
eigenstrains are imposed on the inclusion, and will also result in a noncentral image force acting on the
screw dislocation. In addition, the nonuniformity of the interface will increase the characteristic time
of the composite. More interestingly our results show that there coexist at the same time a transient
stable and another transient unstable equilibrium positions for a screw dislocation in the matrix when
the viscous interface is extremely nonuniform and when the inclusion is stiffer than the matrix. Also
discussed is the overall time-dependent shear modulus of the fibrous composite by using the Mori–
Tanaka mean-field method.

Notation

w Out-of-plane displacement
σzx , σzy Stress components in the Cartesian coordinate system
σzr , σzθ Stress components in the polar coordinate system
γzx , γzy Engineering shear strains
µ Shear modulus
R Radius of the circular inclusion
β(θ) Nonuniform interface drag parameter
t Time
z Complex variable
c Volume fraction of the fiber
b Burgers vector
Fr , Fθ Image force components on the dislocation in polar coordinates

Superscript (1) and (2) denote, respectively, the physical quantities in the inclusion and matrix.

Keywords: fibrous composites, creep, interface, nonuniform interface drag parameter.
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1. Introduction

In fibrous composites an interphase layer is often introduced between the inclusion (fiber) and the matrix
to improve the attachment between the inclusion and the matrix, and to reduce the material mismatch
induced stress concentration at the interface (see [Ru 1999] and the references cited therein). Under
some conditions (for example at high temperatures), the creep behavior of the interphase layer should be
considered [Kim and McMeeking 1995; Fan and Wang 2003]. It is further assumed that the interphase
layer is creeping in the linear region controlled by Nabarro–Herring or Coble creep which is diffusion-
controlled [Frost and Ashby 1982; Kim and McMeeking 1995]. The creep behavior of the interphase
layer can be described by τ = ηγ̇ , where τ is the shear stress, η is the viscosity and γ̇ is the shear
strain rate. In this research it is assumed that the thickness h of the interphase layer is much smaller
that the radius R of the fiber, that is, h � R. As a result, γ̇ = δ̇/h, where δ̇ is the sliding velocity
(the differentiation of the relative sliding with respect to the time t). Consequently the slip boundary
condition on the interface can be written as τ = βδ̇, with β = η/h ≥ 0 being the interface drag parameter,
which is identical to the constitutive law for a viscous interface. If we take into consideration the fact
that the thickening and thinning of the interphase layer is quite possible during creep flow [Kim and
McMeeking 1995], then β = β(θ), with θ being the polar angle, is nonuniform along the interface. The
aim of this research is to investigate the influence of the nonuniformity of β = β(θ) on the response of
the fibrous composite with a viscous (or time-dependent sliding) interface. In general it is only possible
to derive series form solutions when β(θ) takes an arbitrary form. Here we focus on the special form
1/β(θ)= a0+ a1eiθ

+ ā1e−iθ , with a0 ≥ 2|a1|, for which closed-form solutions in terms of elementary
functions still exist.

2. Basic formulae

We consider a domain in R2, infinite in extent, containing a solitary circular elastic inclusion of radius
R with elastic properties different from those of the surrounding matrix (Figure 1). The linearly elastic
materials occupying the inclusion and the matrix are assumed to be homogeneous and isotropic with
associated shear moduli µ1 and µ2. In this research we ignore the inertia effect for both the inclusion
and the matrix, and the two-phase composite is under antiplane shear deformations. Consequently the

circular inclusion
(µ1)

nonuniform
viscous interface

matrix
(µ2)

R

Figure 1. A circular elastic inclusion bonded to an infinite elastic matrix through a
nonuniform viscous interface.
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out-of-plane displacement w, the stress components σzx , σzy in the Cartesian coordinate system, and the
stress components σzr , σzθ in the polar coordinate system can be expressed in terms of a single analytic
function f (z, t) as

w = Im f (z, t), (1)

σzy + iσzx = µ f ′(z, t), (2)

σzθ + iσzr = µ
z
|z|

f ′(z, t), (3)

where t is the real time variable, whilst z = x + iy = reiθ is the complex variable, and f ′(z, t) =
∂ f (z, t)/∂z. The appearance of the real time variable t in the analytic function f is due to the influence
of the viscous interface between the inclusion and the surrounding matrix.

3. General solutions

In this section we will derive general solutions for the loading case in which the matrix is subjected to
an arbitrary type singularity (for example, remote uniform loading or a screw dislocation in the matrix).
It follows from the Introduction that the boundary conditions on the interface can be expressed as

σ (1)zr = σ
(2)
zr = β(θ)(ẇ

(2)
− ẇ(1)), r = R and t > 0, (4)

where the interface drag parameter β(θ) (≥ 0) is a periodic function of the polar angle θ . In this research
it is further assumed that β(θ) takes the following special form:

1
β(θ)

= a0+ a1eiθ
+ ā1e−iθ , (5)

where a0 ≥ 2|a1| to ensure a nonnegative value of β(θ).
The boundary conditions in (4) can also be equivalently expressed in terms of f1(z, t) defined in the

circular inclusion and f2(z, t) defined in the matrix as

µ1 f +1 (z, t)+µ1 f̄ −1
( R2

z
, t
)
= µ2 f −2 (z, t)+µ2 f̄ +2

( R2

z
, t
)
,

ḟ −2 (z, t)− ˙̄f +2
( R2

z
, t
)
− ḟ +1 (z, t)+ ˙̄f −1

( R2

z
, t
)
=

µ1
β(θ)R

(
z f
′
+

1 (z, t)− R2

z
f̄
′
−

1

( R2

z
, t
))

(|z| = R).

(6)

It follows from (6)1 that

f2(z, t)= µ1
µ2

f̄1

( R2

z
, t
)
+ f0(z)− f̄0

( R2

z

)
, f̄2

( R2

z
, t
)
=
µ1
µ2

f1(z, t)+ f̄0

( R2

z

)
− f0(z), (7)

where f0(z), which is time-independent, is the complex potential for a singularity in an infinite homoge-
neous material with shear modulus µ2. For example, when the matrix is subjected to uniform loading at
infinity, f0(z) is given by

f0(z)=
σ∞zy + iσ∞zx

µ2
z. (8)
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When the matrix is only subjected to a screw dislocation with Burgers vector b at z = z0 = x0+ iy0,
then f0(z) is

f0(z)=
b

2π
ln(z− z0). (9)

Substituting (7) into (6)2 and eliminating f −2 (z) and f̄ +2 (R
2/z), we finally arrive at

ḟ +1 (z, t)+ µ1µ2
Rη(θ)(µ1+µ2)

z f
′
+

1 (z, t)= ˙̄f −1
( R2

z
, t
)
+

µ1µ2
Rβ(θ)(µ1+µ2)

R2

z
f̄
′
−

1

( R2

z
, t
)
(|z| = R). (10)

In view of the expression (5) for β(θ), it follows that the left-hand side of (10) is analytic within
the circle |z| = R, while the right-hand side of (10) is analytic outside the circle, including the point
at infinity. By applying Liouville’s theorem, we arrive at the following partial differential equation for
f1(z, t):

ḟ1(z, t)+
µ1µ2

Rβ(θ)(µ1+µ2)
z f ′1(z, t)= 0, (|z|< R). (11)

The above equation is still difficult to solve in its present form in view of the fact that β(θ) is varied
along the circular interface. In order to solve the above equation, we introduce the following conformal
mapping function

z = m(ζ )=
ζ − ρ

(ρ̄/R2)ζ − 1
, (12)

where
ρ =−

2ā1

a0+

√
a2

0 − 4|a1|2
R (|ρ|< R). (13)

Now (11) can be simplified in the ζ -domain as

ḟ1(ζ, t)+ λζ f ′1(ζ, t)= 0 (|ζ |< R), (14)

where

λ=

√
a2

0 − 4|a1|2µ1µ2

R(µ1+µ2)
. (15)

In writing (14), for convenience f1(z, t)= f1(m(ζ ), t)= f1(ζ, t) has been adopted. It is observed that
not only a0 but also a1, which characterizes the nonuniformity of the interface, enters the expression of
λ, which is the inverse of the characteristic time t0. The nonuniformity of the interface will increase the
characteristic time. The general solution to (14) can be easily obtained as f1(ζ, t)= f1(exp(−λt)ζ, 0).
Finally, the general solution in the original z-plane can be given as

f1(z, t)= f1

(
z(R2 exp(−λt)− ρρ̄)+ ρR2(1− exp(−λt))

zρ̄(exp(−λt)− 1)+ R2− ρρ̄ exp(−λt)
, 0
)

(|z|< R), (16)

which indicates that once the initial value f1(z, 0) is known, it is enough to replace the complex variable
z by

z(R2 exp(−λt)− ρρ̄)+ ρR2
− ρR2 exp(−λt)

zρ̄(exp(−λt)− 1)+ R2− ρρ̄ exp(−λt)
to arrive at f1(z, t).
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At the initial time t = 0 the interface is a perfect one due to the fact that at t = 0 the displacement
across the interface has no time to experience any jump [Fan and Wang 2003]. As a result we can obtain
the initial value f1(z, 0) as

f1(z, 0)=
2µ2

µ1+µ2
f0(z). (17)

Then f1(z, t) in (16) can be more specifically expressed as

f1(z, t)=
2µ2

µ1+µ2
f0

(
z(R2 exp(−λt)− ρρ̄)+ ρR2(1− exp(−λt))

zρ̄(exp(−λt)− 1)+ R2− ρρ̄ exp(−λt)

)
(|z|< R). (18)

Substituting this into (7)1, we arrive at the expression of f2(z, t) as

f2(z, t)=
2µ1

µ1+µ2
f0

(
z̄ρR2(1− exp(−λt))+ R2(R2 exp(−λt)− ρρ̄)

z̄(R2− ρρ̄ exp(−λt))+ ρ̄R2(exp(−λt)− 1)

)
+ f0(z)− f̄0

( R2

z

)
(|z|> R). (19)

4. Specific results for an arbitrary singularity in the matrix

We now address some specific loadings to demonstrate the general solutions obtained.

4.1. Remote uniform loading. When the matrix is subjected to uniform loading, it follows from (8) for
the specific expression of f0(z) and the general solutions (18) and (19) that

f1(z, t)=
2(σ∞zy + iσ∞zx )

µ1+µ2

z(R2 exp(−λt)− ρρ̄)+ ρR2(1− exp(−λt))
zρ̄(exp(−λt)− 1)+ R2− ρρ̄ exp(−λt)

(|z|< R), (20)

f2(z, t)=
2µ1(σ

∞
zy − iσ∞zx )

µ2(µ1+µ2)

zρ̄R2(1− exp(−λt))+ R2(R2 exp(−λt)− ρρ̄)
z(R2− ρρ̄ exp(−λt))+ ρR2(exp(−λt)− 1)

−
σ∞zy − iσ∞zx

µ2

R2

z
+
σ∞zy + iσ∞zx

µ2
z (|z|> R). (21)

Thus the time-dependent stresses in the two-phase composite can be easily obtained as

σ (1)zy + iσ (1)zx =
2µ1(σ

∞
zy + iσ∞zx )

µ1+µ2

(R2
− ρρ̄)2 exp(−λt)

(zρ̄(exp(−λt)− 1)+ R2− ρρ̄ exp(−λt))2
(|z|< R), (22)

σ (2)zy + iσ (2)zx = (σ
∞

zy − iσ∞zx )

(
R2

z2 −
2µ1

(µ1+µ2)

R2(R2
− ρρ̄)2 exp(−λt)

(z(R2− ρρ̄ exp(−λt))+ ρR2(exp(−λt)− 1))2

)
+ σ∞zy + iσ∞zx (|z|> R). (23)

Clearly the internal stress field is intrinsically nonuniform when t > 0 due to the nonuniformity of
the sliding interface (ρ 6= 0). To highlight this, we show in Figure 2 the nonuniform distributions of the
internal stress components

σ̃zy =
µ1+µ2

2µ1

σ
(1)
zy

σ∞zy
and σ̃zx =

µ1+µ2

2µ1

σ
(1)
zx

σ∞zy



112 XU WANG

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

θ (Deg)

5

2

1

0.5

0.2

t=0
∼

σ∼zy

0 20 40 60 80 100 120 140 160 180
0

0.05

0.1

0.15

0.2

0.25

θ (Deg)

5

2

0.2

0.5

1

t=0
∼

σ∼zx

Figure 2. Nonuniform distribution of the internal stress components σ̃zy and σ̃zx along
the circular interface z = Reiθ at times t̃ = λt = 0, 0.2, 0.5, 1, 2, 5, with ρ = 0.5R, when
the matrix is only subjected to σ∞zy .

along the circular interface z = Reiθ at six different times t̃ = λt = 0, 0.2, 0.5, 1, 2, 5 with ρ = 0.5R
when the matrix is only subjected to σ∞zy . It is clearly observed that the internal stresses are nonuniformly
distributed along the interface when t > 0 and that nonzero σ (1)zx will also be induced by σ∞zy when t > 0
(notice that σ∞zy will not induce the stress component σ (1)zx when the interface is uniform). In addition
the internal stress level of σ̃zy will monotonically decrease as the time evolves, whilst that of σ̃zx attains
a maximum value at a certain moment. When t→∞ the internal stresses approach zero since the fact
that the viscous interface will finally become a free-sliding one which does not sustain any shear force.

The time-dependent average stresses σ (1)zy and σ (1)zx within the circular inclusion, which are equivalent
to the stresses at the center of the circular inclusion [Ru and Schiavone 1997], can be obtained as

σ =
σ
(1)
zy + iσ (1)zx

σ∞zy + iσ∞zx
=

2µ1

µ1+µ2

(R2
− ρρ̄)2 exp(−λt)

(R2− ρρ̄ exp(−λt))2
, (24)

which is a monotonically decreasing function of the time t .
The displacement jump across the circular interface can be obtained as

1w = w(2)−w(1)

=
2R|Reiθ

− ρ|2(1− exp(−λt))
µ2

Im
σ∞zy + iσ∞zx

e−iθ (R2− ρρ̄ exp(−λt))− Rρ̄(1− exp(−λt))
. (25)

The obtained results for an isolated inclusion can be further employed to predict the effective properties
of a two-phase composite consisting of equal-sized circular isotropic cylinders (with shear modulus µ1)

of radius R randomly dispersed in a homogeneous isotropic matrix of shear modulus µ2. Here we adopt
the Mori–Tanaka mean field method [Mori and Tanaka 1973; He and Lim 2001] to derive the effective
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properties of the composite. Somewhat to our surprise, we find that the overall behavior of the fibrous
composite under longitudinal shearing is still isotropic even though the interface drag parameter β(θ)
is varied along the interface. In addition the overall constitutive law for the fibrous composite can be
represented by

〈σzy〉 = µc〈γzy〉, 〈σzx 〉 = µc〈γzx 〉, (26)

where 〈∗〉 stands for the average value, µc stands for the time-dependent effective shear modulus. Here
γzy = ∂w/∂y and γzx = ∂w/∂x are the engineering shear strains in view of the fact that the in-plane
displacements are zero.

In order to describe the overall behavior of the composite, we focus on a representative volume element
(RVE). In addition we assume that the RVE is subjected to the antiplane shearing σ∞zy . The volume-
averaged values within the RVE can be proved to be [He and Lim 2001]

〈σzy〉 = c〈σzy〉 f + (1− c)〈σzy〉m,

〈γzy〉 = c〈γzy〉 f + (1− c)〈γzy〉m +
c
πR2

∫
l
1wn̂2dl,

(27)

where c is the volume fraction of the fiber, 〈 〉 f and 〈 〉m refer to the averages over volumes of the
fiber and matrix respectively, the line integral is taken along the perimeter l of a typical fiber, 1w is
the displacement jump across the interface, and n̂2 is the y-component of the unit normal vector on the
interface in the outward direction with respect to the fiber. In addition 〈σzy〉 = σ

∞
zy . Here the Mori–Tanaka

mean-field approximation is adopted to evaluate 〈σzy〉 f . Under this approximation 〈σzy〉 f is equal to the
average value of σzy in an isolated fiber embedded in an infinitely extended matrix that is subjected to
the shear stress 〈σzy〉m at infinity. Then it follows from (24) and (27)1 that

〈σzy〉m =
σ∞zy

1−
(

c− c
2µ1

µ1+µ2

(R2
− ρρ̄)2 exp(−λt)

(R2− ρρ̄ exp(−λt))2

) . (28)

The average shear strain in the fiber and in the matrix can be found as

〈γzy〉 f =
〈σzy〉 f

µ1
, 〈γzy〉m =

〈σzy〉m

µ2
, (29)

and the surface integral in (27)2 can be finally carried out as follows

1
πR2

∫
l
1wn2dl = 2〈σzy〉m

(1− exp(−λt))
µ2

R4
− |ρ|4 exp(−λt)

(R2− |ρ|2 exp(−λt))2
. (30)

Equation (25) and the residue theorem have been utilized to derive (30). By using (28), (29) and (30),
Equation (27)2 can be finally expressed as

〈γzy〉 =

1+ c
(

1−
2µ1

µ1+µ2

(R2
− |ρ|2)2 exp(−λt)

(R2− |ρ|2 exp(−λt))2

)
1− c

(
1−

2µ1

µ1+µ2

(R2
− |ρ|2)2 exp(−λt)

(R2− |ρ|2 exp(−λt))2

) σ∞zy

µ2
, (31)
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Comparison of (26) with (31) will immediately lead to the time-dependent effective modulus as

µc = µ2

1− c
(

1−
2µ1

µ1+µ2

(R2
− |ρ|2)2 exp(−λt)

(R2− |ρ|2 exp(−λt))2

)
1+ c

(
1−

2µ1

µ1+µ2

(R2
− |ρ|2)2 exp(−λt)

(R2− |ρ|2 exp(−λt))2

) , (32)

which will reduce to the value obtained by [He and Lim 2001] when ρ = 0 for a homogeneous interface.

4.2. A screw dislocation in the matrix. When the matrix is only subjected to a screw dislocation with
Burgers vector b at z= z0, it follows from (9) for the specific expression of f0(z) and the general solutions
(18) and (19) that

f1(z, t)=
µ2b

π(µ1+µ2)
ln
(

z(R2 exp(−λt)− ρρ̄)+ ρR2(1− exp(−λt))
zρ̄(exp(−λt)− 1)+ R2− ρρ̄ exp(−λt)

− z0

)
(|z|< R), (33)

f2(z, t)=
µ1b

π(µ1+µ2)
ln
(

zρ̄R2(1− exp(−λt))+ R2(R2 exp(−λt)− ρρ̄)
z(R2− ρρ̄ exp(−λt))+ ρR2(exp(−λt)− 1)

− z̄0

)
+

b
2π

ln
z(z− z0)

z̄0z− R2 (|z|> R). (34)

Equation (33) implies that the solution in the inclusion can be considered as the superposition of the
following two moving dislocations in a homogeneous infinite elastic plane with the shear modulus µ1:

(i) a dislocation 2µ2
µ1+µ2

b located at the moving singular point

z =
z0(R2

− ρρ̄ exp(−λt))− ρR2(1− exp(−λt))
(R2 exp(−λt)− ρρ̄)− z0ρ̄(exp(−λt)− 1)

,

which originates from z = z0 and moves toward z = R2/ρ̄;

(ii) a dislocation − 2µ2
µ1+µ2

b located at the moving singular point

z =
R2
− ρρ̄ exp(−λt)

ρ̄(1− exp(−λt))
,

which originates from z =∞ and moves toward z = R2/ρ̄.

The two moving image dislocations (or more precisely a moving dislocation dipole), both of which are
located outside the inclusion, will finally converge to the same point z = R2/ρ̄, as seen in Figure 3. The
sum of the two moving dislocations is always zero.

Equation (34) implies that the solution in the matrix can be considered as the superposition of the
following three static dislocations and two moving dislocations in a homogeneous infinite elastic plane
with the shear modulus µ2:

(i) a dislocation b located at the original static singular point z = z0;

(ii) a dislocation −b located at the static singular point z = R2/z̄0;

(iii) a dislocation b located at the static singular point z = 0;
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Figure 3. Loci of the moving image dislocations when the original dislocation is located
in the matrix. The image dislocations outside the circle r = R are those for the inclusion;
those within the circle r = R are for the matrix.

(iv) a dislocation 2µ1
µ1+µ2

b located at the moving singular point

z =
z̄0ρR2(exp(−λt)− 1)− R2(R2 exp(−λt)− ρρ̄)
ρ̄R2(1− exp(−λt))− z̄0(R2− ρρ̄ exp(−λt))

,

which originates from z = R2/z̄0 and moves toward z = ρ;

(v) a dislocation − 2µ1
µ1+µ2

b located at the moving singular point

z =
ρR2(1− exp(−λt))
R2− ρρ̄ exp(−λt)

,

which originates from z = 0 and moves toward z = ρ.

Except for the original dislocation at z = z0, all the other four image dislocations are located within
the inclusion. The two moving dislocations (or more precisely a moving dislocation dipole) will finally
converge to the same point z = ρ, as also illustrated in Figure 3. The sum of these five dislocations is b.

In the polar coordinate system, the time-dependent image force acting on the screw dislocation is (see
[Lazar 2007])

Fr − i Fθ

=
µ1µ2b2

π(µ1+µ2)

R2(R2
− |ρ|2)2 exp(−λt)

|z0|2(R2− |ρ|2 exp(−λt))− 2 Re(z0ρ̄)R2(1− exp(−λt))− R2(R2 exp(−λt)− |ρ|2)

×
1

|z0|((R2− |ρ|2 exp(−λt))+ z−1
0 ρR2(exp(−λt)− 1))

−
µ2b2

2π
R2

|z0|(|z0|2− R2)
, (35)

where Fr and Fθ are respectively the radial and tangential components of the image force. When ρ = 0
for a homogeneous viscous interface, this reduces to that derived in [Wang et al. 2008]. On the other hand,
when t = 0, the expression above reduces to Dundurs’ classical solution [1967] for a perfect interface.
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Figure 4. Distribution of the image force F̃ on a screw dislocation located on the posi-
tive x-axis in the matrix when µ1 = 3µ2, ρ = 0.98R and λt = 0.2.

It is observed that in general the image force is not a central force due to the existence of the nonzero
tangential component Fθ . This noncentral image force is solely caused by the nonuniformity of the
viscous interface (that is, ρ 6= 0). Only when Arg(z0)= Arg(ρ) or Arg(z0)= Arg(ρ)−π will the image
force be a central one with Fθ = 0.

It has been found that there exists a transient unstable equilibrium position (Fr = Fθ = 0) for a
screw dislocation interacting with a homogeneous viscous interface when the inclusion is stiffer than
the matrix [Wang et al. 2008]. Our present results show that when the nonuniformity of the interface
is extremely serious (|ρ| → R) and when the inclusion is stiffer than the matrix, a transient stable
equilibrium position and another transient unstable equilibrium position may exist at the same time. To
highlight this unique feature, we show in Figure 4 the distribution of the image force F̃ = (2πR/µ2b2)Fr ,
on a screw dislocation located on the positive x-axis in the matrix when µ1 = 3µ2, ρ = 0.98R and
λt = 0.2. It is observed from (35) that Fθ = 0 when ρ and z0 are both real. It can be seen in Figure 4
that x0 = 1.0022R, which is extremely close to the interface, is a transient unstable equilibrium position,
whilst x0 = 1.0598R, which is further away from the interface, is a transient stable equilibrium position.

5. Other loading conditions

The general solutions derived in Section 3 are only valid for an arbitrary type singularity located in the
matrix. In fact the method in Section 3 can be extended to other loading conditions. In the following we
will address two other type loading conditions: (i) a screw dislocation inside the inclusion; (ii) uniform
eigenstrains imposed on the inclusion.
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5.1. A screw dislocation inside the inclusion. The analysis of a screw dislocation inside the inclusion
is similar to, but a little bit more difficult than, the above analysis of a screw dislocation in the matrix.
Here the specific intermediate procedure will be suppressed. When the screw dislocation is located at
z = z0 in the inclusion, the two analytic functions can be finally obtained as

f1(z, t)=
µ2b

π(µ1+µ2)
ln
(

zρ̄R2(1− exp(λt))+ R2(R2 exp(λt)− ρρ̄)
z(R2− ρρ̄ exp(λt))+ ρR2(exp(λt)− 1)

− z̄0

)
−

µ2b
π(µ1+µ2)

ln
zρ̄R2(1− exp(λt))+ R2(R2 exp(λt)− ρρ̄)

z(R2− ρρ̄ exp(λt))+ ρR2(exp(λt)− 1)
+

b
2π

ln
z− z0

z̄0z− R2 (|z|< R), (36)

f2(z, t)=
µ1b

π(µ1+µ2)
ln
(

z(R2 exp(λt)− ρρ̄)+ ρR2(1− exp(λt))
zρ̄(exp(λt)− 1)+ R2− ρρ̄ exp(λt)

− z0

)
−

µ1b
π(µ1+µ2)

ln
z(R2 exp(λt)− ρρ̄)+ ρR2(1− exp(λt))

zρ̄(exp(λt)− 1)+ R2− ρρ̄ exp(λt)
+

b
2π

ln z (|z|> R). (37)

Equation (36) implies that the solution in the inclusion can be considered as the superposition of the
following two static dislocations and two moving dislocations in a homogeneous infinite elastic plane
with the shear modulus µ1:

(i) a dislocation b located at the original static singular point z = z0;
(ii) a dislocation −b located at the static singular point z = R2/z̄0;

(iii) a dislocation 2µ2
µ1+µ2

b located at the moving singular point

z =
z̄0ρR2(exp(λt)− 1)− R2(R2 exp(λt)− ρρ̄)
ρ̄R2(1− exp(λt))− z̄0(R2− ρρ̄ exp(λt))

,

which originates from z = R2/z̄0 and moves toward z = (R2/ρ̄);

(iv) a dislocation − 2µ2
µ1+µ2

b located at the moving singular point

z =
R2(R2 exp(λt)− ρρ̄)
ρ̄R2(exp(λt)− 1)

,

which originates from z =∞ and moves toward z = R2/ρ̄.

Except for the original dislocation at z = z0, all other image dislocations are located outside the inclusion.
The two moving dislocations (or more precisely a moving dislocation dipole) will finally converge to the
same point z = R2/ρ̄, as seen in Figure 5. The sum of these four dislocations is zero.

Equation (37) implies that the solution in the matrix can be considered as the superposition of the
following one static dislocation and two moving dislocations in a homogeneous infinite elastic plane
with shear modulus µ2:

(i) a dislocation b located at the static singular point z = 0;

(ii) a dislocation 2µ1
µ1+µ2

b located at the moving singular point

z =
z0(R2

− ρρ̄ exp(λt))− ρR2(1− exp(λt))
(R2 exp(λt)− ρρ̄)− z0ρ̄(exp(λt)− 1)

,

which originates from z = z0 and moves toward z = ρ;
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Figure 5. Loci of the moving image dislocations when the original dislocation is located
inside the inclusion. The image dislocations outside the circle r = R are those for the
inclusion; those within the circle r = R are for the matrix.

(iii) a dislocation − 2µ1
µ1+µ2

b located at the moving singular point

z =
ρR2(exp(λt)− 1)
R2 exp(λt)− ρρ̄

,

which originates from z = 0 and moves toward z = ρ.

All four image dislocations are located within the inclusion. The two moving dislocations (or more
precisely a moving dislocation dipole) will finally converge to the same point z = ρ, as also illustrated
in Figure 5. The sum of these three dislocations is b.

5.2. Uniform eigenstrains imposed on the inclusion. When only uniform eigenstrains ε∗zx and ε∗zy are
imposed on the circular inclusion, the two analytic functions can be finally derived as

f1(z, t)=−
2µ2(ε

∗
zy + iε∗zx)

µ1+µ2

z(R2 exp(−λt)− ρρ̄)+ ρR2(1− exp(−λt))
zρ̄(exp(−λt)− 1)+ R2− ρρ̄ exp(−λt)

(|z|< R), (38)

f2(z, t)=−
2µ1(ε

∗
zy − iε∗zx)

µ1+µ2

zρ̄R2(1− exp(−λt))+ R2(R2 exp(−λt)− ρρ̄)
z(R2− ρρ̄ exp(−λt))+ R2ρ(exp(−λt)− 1)

(|z|> R). (39)

It is observed that the internal stress field is also nonuniform when uniform eigenstrains are imposed
on the inclusion with a nonuniform viscous interface.

6. Conclusions

We obtained closed-form solutions in terms of elementary functions for a circular elastic inclusion bonded
to an infinite elastic matrix through a circumferentially inhomogeneous viscous interface. Here the
interface drag parameter takes the special form 1/β(θ)= a0+ a1eiθ

+ ā1e−iθ , which can grasp the main
feature of the nonuniformity of the interface.
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We first obtained the general solutions for an arbitrary type singularity located in the matrix. Then
the general solutions were applied to two specific loading cases: when the matrix is subjected to remote
uniform shearing, and when a screw dislocation is located in the matrix. The effective shear modulus
was obtained using the Mori–Tanaka method. We also interpreted the obtained dislocation solution in
terms of image moving and static dislocations.

We then discussed other two loading conditions: a screw dislocation inside the inclusion, and uniform
eigenstrains imposed on the inclusion.

The dislocation solutions obtained in this research can be easily applied to study a curved or a straight
crack interacting with the inclusion [Cheeseman and Santare 2000; 2001].
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INVESTIGATING THE SECONDARY BUCKLING OF THIN FILMS WITH A
MODEL BASED ON ELASTIC RODS WITH HINGES

GUILLAUME PARRY, CHRISTOPHE COUPEAU, JÉRÔME COLIN AND ALAIN CIMETIÈRE

Thin films are usually submitted to high residual compression stresses which cause them to delaminate
and buckle. We focus on the case in which delaminated areas take the form of long rectangular strips.
The most commonly observed buckling equilibria that develop on such strip-delaminated areas are the
straight-sided wrinkle, the row of bubbles, and the telephone cord wrinkle. An analytical model, based
on elastic rods with hinges and taking into account the contact between film and substrate, is set up
for the study of the post-buckling regime of the transition from straight-sided wrinkles to bubbles. The
existence of snap-through is investigated; previous numerical studies revealed that this phenomenon can
sometimes occur. The present analytical approach excludes numerical artifacts that can easily arise due
to the high sensitivity of this problem to initial imperfections. The model reveals a critical bubble aspect
ratio associated with the snap-through, and the existence of several simultaneous bubble equilibria.

1. The thin film secondary buckling problem and its mechanical description

The mechanical behavior of stressed multilayers and thin films has been the object of several investiga-
tions over the past twenty years in the fields of solid mechanics [Hutchinson and Suo 1991; Moon et al.
2004; Evans and Hutchinson 2007; Tvergaard and Hutchinson 2008] and materials sciences [Gille and
Rau 1984; Abdallah et al. 2008]. Coatings are involved in a wide range of technological applications
from microelectronic devices to thermal barrier coatings used in aero-engines.

High residual compressive stresses tend to arise in thin films deposited on substrates. The stress levels
can be high and can reach, for instance, a few GPa in the case of thin metallic films prepared by sputtering
deposition methods. The films may consequently delaminate and buckle spontaneously under the effects
of high stress. Delamination and buckling are closely related; buckling occurs on the delaminated areas
of the film where the flat equilibrium shape is no longer stable. Many buckling shapes can be observed
on a delaminated area depending on the area’s shape and on the stresses present in the film.

In the present text, we shall focus our attention on equilibria developing on rectangular areas of infinite
length, which we shall refer to as “strip-delaminated” areas. The most common buckling equilibria on
such domains are the straight-sided wrinkle, the row of bubbles, and the telephone cord wrinkle. Evidence
from experiment [George et al. 2002] and analytical theory [Audoly 1999] suggests that both the bubbles
and the telephone cord equilibria can result from the buckling of the straight-sided wrinkle. In those
studies the delaminated strip was modeled as a von Karman plate and the perturbation method was used
on the straight-sided wrinkle. Since the straight-sided wrinkle is itself a post-buckling state of the flat film
(a primary buckling), the two other equilibria are often referred to as “secondary buckling” equilibria. A

Keywords: mechanical properties of thin films, static buckling, instability, variational and optimizational methods, elastic rods
with hinges models.
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stability diagram of the different secondary buckling equilibria has been recently determined [Parry et al.
2006]. The boundaries of the stability domains of the different equilibria are associated with critical
values of some nondimensional loading parameters, stress level, elastic properties, delaminated strip
width, and film thickness. The delaminated strip was also modeled as a plate, and the stability domains
have been obtained through finite element calculations, taking into account large displacements and the
contact between film and substrate. This allows one to follow the buckled structure in the advanced post-
critical regime. Investigation of these secondary buckling equilibria is still active [Jagla 2007; Gruttmann
and Pham 2008; Song et al. 2008].

Numerical exploration by means of the finite element method has proved to be valuable for gaining
a better understanding of thin film secondary buckling phenomena. It has enabled us to follow the post-
critical paths far from the straight-sided wrinkle equilibrium [Parry et al. 2006]. Nevertheless, because
it consists in following along equilibrium branches, using initial imperfections with shapes designed to
guide the solution toward the desired equilibrium branch in the neighborhood of the bifurcation point,
this type of exploration is “local” in the sense of the loading space: it does not offer a global vision and
understanding of the whole equilibrium branch structure. For a given loading and for a chosen set of
parameters, the exact number of possible branches (that is, of possible buckling states) is not known a
priori. It is consequently possible to miss a bifurcation point or snap-through.

In this context, a simplified model based on elastic rods with hinges has been developed in order
to study analytically the secondary buckling of the strip-delaminated structure, especially the transition
from straight-sided wrinkle to bubbles. A two-parameter model, capable of characterizing the straight-
sided buckle to bubbles transition, has been set up. Such simplified models have proved to be valuable in
analyzing post-critical buckling phenomena [Thompson and Hunt 1973; Arbocz et al. 1987]. The idea is
to provide intrinsic characteristics of the transition, explicitly investigating the parameters’ dependence
and avoiding numerical artifacts.

The equations derived from the simplified model have to be simple enough to be solved by analytical
methods, or at least to involve only very basic numerical tools. In the meantime, the model has to be
realistic enough to conserve the post-critical behavior of the original structure. As we will show, the
simplified model fulfills the above requirements.

Although the model is simplified compared to the original thin film, it shows behavior similar to thin
films, and, therefore, can help by giving some explanation of the buckling behavior for such films. The
phenomena are qualitatively well reproduced, and the critical values (critical a/b ratio, critical load) can
also be predicted quantitatively with good accuracy.

2. Experimental results for the strip-delaminated thin films buckling problem

In this section, we present experimental results for the uniaxial compression of nickel thin films on
polycarbonate substrates leading to strip buckling patterns. A summary of the experimental observations
related to secondary buckling patterns is made.

Recent experiments [Coupeau et al. 1998] have been carried out on nickel thin films deposited on poly-
carbonate substrates using in situ atomic force microscopy (AFM) imaging together with a compression
device. Uniaxial compression of the substrate is performed, with two purposes (Figure 1).
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Figure 1. Uniaxial compression of a nickel thin film on a polycarbonate substrate. Left:
Nickel thin film on polycarbonate substrate. Equibiaxial stress of magnitude σ0 in the
film. Middle: An uniaxial compression is applied to the substrate leading to strip-shaped
delamination and straight-sided wrinkle formation. This structure is stable because of
the high transversal compression. The small arrows indicate the stress variations in the
film. Right: As the external compression is released, the straight wrinkle bifurcates into
a row of bubbles. The stress state is back to the initial equibiaxial stress of magnitude σ0

in the adherent parts of the film.

• The first purpose is to induce the strip-delamination pattern on the film; a network of parallel strips
develops perpendicularly to the compression axis (Figure 1, middle; σexp is the stress induced in the
substrate by the experimental device).

• The second purpose is to modify the initially equibiaxial stress state in the film (Figure 1, left), and
hence the loading applied to the delaminated strips. The variation of the stress state in the film due
to external compression is depicted in the middle part of the same figure.

Denote by σt and σl the stress components in the adherent part of the film, taken in the transversal
and longitudinal directions of the strip, respectively (these are principal values, as the compression di-
rection is perpendicular to the strips). The loading applied to the delaminated part of the film is in fact
a displacement prescribed by the substrate along the boundaries of the delaminated area. The values σt

and σl are directly related to this imposed displacement.
Before applying external compression, the film is only submitted to an equibiaxial compression state

due to the internal stress (σt = σl ≡ σ0) (first and left parts of Figure 1). During the uniaxial compres-
sion of the substrate, the stress component in the film becomes more compressive in the compression
direction (that is, in the transversal direction of the strip) whereas the stress component perpendicular to
the compression direction (that is, in the longitudinal direction of the strip) becomes less compressive
(middle part of same figure). This behavior results from the difference between the Poisson’s coefficients
of the two materials (νfilm < νsubstrate). The ratio of stress components in the longitudinal and transversal
directions of the strip (σl/σt ) is a critical parameter which triggers the transition between the straight-
sided equilibrium and the secondary buckling equilibria (bubbles or telephone cord).

Secondary buckling occurrs while the external compression is released (Figure 1, right). As a matter of
fact, a large external compression promotes a transversal stress component higher than the longitudinal
one, leading to a stable straight-sided wrinkle (Figure 1, middle). While the external compression is
released, the σl/σt ratio increases, destabilizing the straight-sided wrinkle and a bubble or telephone
cord equilibrium then arises.
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The only irreversible step of the experiment is the delamination of the interface, which determines
the width of the strips during the first compression. The buckling itself is purely elastic (reversible) and
the experiment can be repeated with multiple cycles. It is worth noting that the delaminated strip width
does not evolve during the successive loading/unloading. The interaction of debonding with buckling of
the film is not studied in this article. Many studies on this topic have been published (for example see
[Thouless et al. 1992; Faulhaber et al. 2006]).

The reversibility of buckling in the above described experiment allows one to observe, in-situ, different
areas of the film and to follow the different equilibria in their post-critical regime while the external
compression is modified. Remarkable observations are:

(a) both bubbles and telephone cords can be found on the same sample;

(b) the transition from straight-sided wrinkle to bubbles is characterized by snap-through under partic-
ular conditions;

(c) some bubbles are rather shallow, remaining on top of the straight-sided wrinkle, whereas others are
much deeper, settling down to the substrate level, as observed in Figure 2.

These experimental observations reveal the strong nonlinear character of the problem. Transitions occurr
in configurations where large out-of-plane displacements are involved. The film-substrate contact is a
source of nonlinearity as well. The wrinkle-to-bubbles transition is thus particularly complex.

The questions arising in point (a) were addressed in [Parry et al. 2006]. It was found that, for a given
loading, bubbles tend to appear on the narrowest strips whereas telephone cords develop on wider ones.

The question pointed out in point (b), the snap-through in the wrinkle-to-bubbles transition, has been
explored in [Parry et al. 2005] by means of the finite element method. The length-over-width ratio for
the bubbles turns out to be a critical parameter for the nature of the transition.

Figure 2. AFM image of a row of bubbles. Left: Detail of a row formed after the
collapse of a straight-sided wrinkle. The other wrinkles in the neighborhood have a
telephone cord buckling pattern. Two points are spotted, both located between two suc-
cessive bubbles. Right: A slight depression is observed at point α, whereas the film is
completely redeposited on the substrate at point β.
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Figure 3. Structure sensibility to initial imperfections. Left: Mechanical model used in
finite element computations. One unit cell (length a, width b) of the delaminated strip
is modeled as a plate, with prescribed displacements at edges. Initial shape imperfection
is on the order of b/1500. The straight-sided wrinkle bifurcates into a bubble structure
(top right), or into a telephone cord structure (bottom right).

The two principal aims of the simplified model are to investigate point (c), which has not been ad-
dressed previously, and to explore further point (b). The latter point is difficult to address using plate
theory and numerical methods because of the multiplicity of parameters and sensitivity of the secondary
buckling to initial imperfections.

An example of this sensitivity is illustrated in Figure 3. In this example, a plate of length a and width
b relies on a rigid support (Figure 3, left). The plate is submitted to displacements along its boundaries.
The displacement components are normal to the plate edges. This plate represents one unit cell of the
buckling mode: b is the strip width and a is the length of one bubble or the telephone cord spatial
period. Two buckling calculations are carried out using two different initial geometric imperfections.
The imperfections are very small, their amplitude being on the order of b/1500. In the first calculation
(Figure 3, right top), the imperfection shape is “symmetric”, imitating a bubble. As the amplitude of
the prescribed displacement increases, the plane structure first bifurcates in a straight-sided wrinkle; the
secondary buckling under a bubble shape then occurs. In the second case (Figure 3, right bottom), an
“antisymmetric” imperfection inspired by the telephone cord shape is introduced; the structure follows
the same evolution as the process just described, from the plane structure to the straight-sided buckle,
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but it finally bifurcates into a telephone cord shape as the loading is increased. These calculations show
the key dependence of the numerical results on the initial imperfection used to carry out the calculation.

3. The simplified rod and spring model for buckling and post-buckling

The simplified system is composed of elastic rods, connected by hinges (Figure 4). The bending stiffness
is obtained by introducing rotational springs between the rods. The arrows represent the prescribed load
or displacement applied perpendicularly to the edges.

ϕ

ψ

θ

x2

x1

Imposed force 
or displacement

a
b

Figure 4. Rods and springs structure. The variables ψ , ϕ, and θ are the rotations of the
rods with respect to the horizontal plane. The arrows stand for imposed forces or dis-
placements.

The structure depicted in Figure 4 is one unit cell of width b and length a of the buckled structure
that arises during secondary buckling. It represents a structure of spatial periodicity a, a straight-sided
wrinkle, or a flat structure.

A state of deformation is characterized by two angular parameters ϕ and ψ . For convenience, a third
parameter θ is introduced which is a function of the two degrees of freedom ϕ and ψ (θ ≡ θ(ϕ, ψ)).
When ϕ = 0 and θ =ψ , the straight-sided wrinkle can be recognized. The value θ = 0 indicates the point
at which the post-critical regime is advanced enough such that the bubble edges come in contact with the
substrate. All the other values ϕ, ψ , and θ describe states that are in the post-critical secondary buckling
regime. It is worth noting here that the telephone cord buckle cannot be described by this model. In order
to do so, the introduction of one additional parameter is necessary which would not allow us to preserve
the simplicity and the clarity of our statements. The present study focuses on the wrinkle-to-bubbles
transition.

The potential energy V of the structure is defined as

V = Eb
el+ E s

el−Wext, (1)

where Eb
el is the bending elastic deformation energy, E s

el the stretching elastic deformation energy, and
Wext the work of external forces. The bending part of the elastic deformation energy is composed of the
following terms:

Eb
el =

1
2C1ψ

2
+

1
2C1θ

2
+

1
2C2ϕ

2
+C3ϕ(ψ − θ), (2)
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where C1 and C2 are the pure bending stiffness coefficients associated with bending around the Ox1 and
Ox2 axes, respectively, and C3 is the shear stiffness coefficient. The shear energy is chosen to be the
simplest polynomial that vanishes for ϕ = 0 and ψ − θ = 0.

It is necessary to carefully choose these three coefficients to obtain a realistic behavior of the simplified
model. In order to find the coefficients, the behavior of the bars system is identified with the behavior of a
rectangular plate of same dimensions (length a and width b) at the onset of buckling. The identification of
the critical loads, for a well chosen set of buckling modes, allows for the determination of the coefficients.

For this identification step, the structure is loaded in its initial (flat) plane by forces applied normal to
the edges (see Figure 5). Denote by f the force per unit length of the structure edge, so the total load
applied on an edge parallel to the x1 direction is f a. This load is distributed on the four hinges, with
f a/4 at the extremities and f a/2 in the middle (as suggested by the periodicity conditions). The same
argument holds for the load applied along the edges parallel to the x2 direction.

The two chosen buckling modes that we wish to use for identification are:

• The straight-sided wrinkle (Figure 5, left), characterized by ϕ = 0 (hence θ = ψ), arising from
the flat equilibrium. This buckling mode does not activate shear, and makes it possible to identify
coefficients C1 and C2.

• The bubble mode (Figure 5, right), arising from the flat equilibrium. This mode activates shear, and
allows for the determination of C3.

θ = ψ

ψfa/4 fa/4

fa/2

fa/4

fa/4

fa/2

ψ
f a/4

f a/4

f a/2

f a/4

f a/4

f a/2

f b/4

f b/2

f b/4

f b/4

f b/2

f b/4

ϕ

Figure 5. Buckling modes used for bending stiffness identification. Left: Straight-
sided wrinkle mode. Right: Four times clamped plate or “deposited bubble” structure.

As the identification is made for incipient buckling, it is assumed that the deformation occurrs without
stretching of the middle plane. In this case, the potential energy of the bars structure is written as

V = 1
2C1θ

2(ϕ,ψ)+ 1
2C1ψ

2
+

1
2C2ϕ

2
+C3ϕ

(
ψ − θ(ϕ, ψ)

)
− 2

(
f a

2
(1− cosϕ)b

2

)
− 2

(
f b

2
(
1− cos θ(ϕ, ψ)

)a
2

)
− 2

(
f b

2
(1− cosψ)a

2

)
. (3)

We now describe the first step of the identification process, that is, the determination of C1 using the
straight-sided wrinkle equilibrium (Figure 5, left). It is possible to find an exact solution of the von
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Karman equation for this straight-sided wrinkle problem, for example, [Hutchinson and Suo 1991]. The
critical value fc of the force per unit length associated with this buckling mode is fc = 4π2 D/b2 (with
D the flexural stiffness of the plate). As far as the bars structure is concerned, this equilibrium is charac-
terized by ϕ = 0 and θ = ψ . The critical value of the load is fc = 2C1/(ba). We deduce that

C1 = 2π2 D
a
b
, C2 = 2π2 D

b
a
. (4)

We next describe the second step of the identification process, that is, the determination of C3 using the
bubble equilibrium (Figure 5, right). There is no exact solution for the buckling problem of a rectangular
plate clamped along all edges. Nonetheless, a good approximation for the solution to this problem is

w(x, y)= wm
4

(
1− cos 2π

a
x
)(

1− cos 2π
b

y
)
. (5)

An approximate critical buckling load is obtained by setting the work of external forces 1W equal to
the bending energy1Ub of the plate for any amplitude wm of the lateral deflection. These two expressions
1W and 1Ub can be written as

1W =
1
2

∫ a

0

∫ b

0

(
f
(∂w
∂x

)2
+ f

(∂w
∂y

)2)
dx dy,

1Ub =
D
2

∫ a

0

∫ b

0

((∂2w

∂x2 +
∂2w

∂y2

)2
− 2(1− ν)

(∂2w

∂x2

∂2w

∂y2 −

( ∂2w

∂x∂y

)2))
dx dy,

which provides the value for the approximate critical buckling load,

fc =
4π2 D

b2

2ã2
+ 3+ 3ã4

3ã2(1+ ã2)
, (6)

with ã = a/b. Finite-element parametric studies show that this analytical formula for the bubble buckling
load is quite accurate.

We now calculate the critical load associated with the system of bars. The potential energy given by
equation (3) is used here. The relationship between the angles is sin θ = sinψ− (a/b) sinϕ, which under
the small displacement hypothesis becomes θ = ψ − (a/b)ϕ. The bubble equilibrium is characterized
by θ = 0. Taking into account these equalities yields

fc =
4π2 D

b2

3C3/(Dπ2)ã2
+ 3+ 3ã4

3ã2(1+ ã2)
, (7)

from which C3 =
2
3π

2 D is identified.

4. The unilateral buckling problem with two degrees of freedom

The displacements along the delaminated areas of the film are in fact imposed by the substrate. Let
us call u1 and u2 the two components of the displacement imposed on the edges of the strip (Figure 6,
left). We introduce the notation u1 =

1
2aε1 and u2 =

1
2 bε2, where ε1 and ε2 are the biaxial strains in the

adherent part of the film, due to the substrate action. During loading, the lengths of the rods change as
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u2

u2

u1

u1

ψ

u2 u2

b / 2

L

Figure 6. System of elastic rods under prescribed displacement. Left: Displacements
u1 and u2 prescribed on the edges of the structure. Right: Relationships between dis-
placement and current rod lenght.

illustrated in the case of the transversal rods, with rotation identified by the angular variable ψ in Figure
6, right.

In order to introduce the stretching energy component into the rod system, we have to identify an
equivalent compression stiffness for each rod. This is done by matching the uniaxial compression stiff-
ness of the rod system with that of a plate with the same dimensions. An illustration is given in Figure 7.
The total compression force acting on the edge parallel to direction x1 is F = σha. For a displacement
1L of the edge, the stiffness of the plate is denoted K , with F = K1L . Since σ = E(21L/b), we
identify K = 2E(a/b)h. This stiffness is distributed between the middle rod (k ′ = E(a/b)h) and the
side rods (k ′′ = 1

2 E(a/b)h for each rod, for symmetry reasons).
The same arguments hold for compression in the other direction (x2 direction). The global stiffness

is then K = 2E(b/a)h. It is distributed among the different rods as well.

b / 2

a

f= σ.h k” = E h
2

a
b

k” = E h
2

a
b

k’ = E h a
b

Figure 7. Rod-and-spring structure. The variables ψ , ϕ and θ are the rotations of the
rods with respect to the horizontal plane. The arrows stand for imposed forces or dis-
placements.
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The next step is to express the length variation for each rod as a function of the angular variables. An
example is depicted in Figure 6, right, for the middle transversal rod which is associated with the rotation
parameter ψ . The initial length for this rod is b/2. For a given value of ψ , the length L of the rod is
given by 1

2 b = L cosψ + u2. The length variation of the rod is

1L = b
2

(
1− 1−ε2

cosψ

)
.

The contact between the structure and the support, assumed to be rigid, is managed by the introduction
of a reaction force, denoted R, exerted “upwards” by the support on the mobile lateral hinges (Figure 8).

ψ

ϕ

θ = 0

R/2
R/2

b
u1

u2

Figure 8. Contact force R due to the rigid support, applied to the central hinges when
they come into contact with the support.

The vertical displacement d of a lateral hinge is linked to the lateral displacement and to θ by

d =
(b

2
− u2

)
tan θ = b

2
(
1− ε2

)
tan θ. (8)

The displacement d and the reaction R satisfy the conditions

d ≥ 0, R ≥ 0, Rd = 0.

In order to take into account the unilateral contact, we introduce the potential energy of the system, which
reads, in a nondimensional form Ṽ = V/(π2 D),

Ṽ = ãθ2
+ ãψ2

+
1
ã
ϕ2
+

2
3
ϕ(ψ − θ)+ k̃ãε2

1

+ k̃ã
(

1−
1− ε1

cosϕ

)2
+ k̃ã

(
1−

1− ε2

cos θ

)2
+ k̃ã

(
1−

1− ε2

cosψ

)2
− λd(θ), (9)

where

k̃ =
Ehb2

4π2 D
, ã =

a
b
, λ=

Rb
2π2 D

.

At equilibrium, λ and d(θ) satisfy the complementary conditions

λ≥ 0, λd(θ)= 0.
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In the following, we will omit the symbol ˜ and handle only nondimensional values. Note that k̃
expresses the competition between the stretching stiffness and the bending stiffness. Also note that the
cosine terms account for the geometric nonlinearities. The notation ε1 = ρε, ε2 = ε is introduced for the
prescribed strains, with ρ, the biaxial prescribed displacement ratio.

5. Analysis of the equilibria

The rod system has two angular degrees of freedom, ϕ and ψ . The shape of the potential energy indi-
cates that the underlying equilibrium equations of the systems are nonlinear. The equilibrium equations
are solved for the rod system subjected to displacements U = (u1, u2) as a simplified model for the
delaminated film strip subjected to biaxial deformation ε = (ε1, ε2). A sensitivity study of equilibrium
stability with respect to the various parameters is carried out in order to characterize the transition from
straight-sided wrinkle to bubbles.

The model experiment to which the results of this study can be compared is the previously described
case of a 50 nm nickel thin film on a Polycarbonate substrate. A Young’s modulus of 160 GPa has been
experimentally determined for the film by using nano-indentation. The Poisson ratio is ν = 0.31. The
width b of the delaminated area is around 3µm. Using these data, a value of approximately 1000 is
found for the parameter k̃.

Due to the fact that the substrate is relatively compliant compared to the film, the boundaries of the
delaminated film can move slightly toward each other during delamination, leading to a relaxation in the
direction x2 (along the width of the delaminated strip). Hence ε2 is smaller than ε1 in the experimental
case. The parameter ρ is set to 1.2 here in order to fit the non-equibiaxial loading conditions of the
experiment.

The two variable parameters of the study are the aspect ratio of the unit cell a/b, accounting for
the spatial periodicity of the bubble distribution, and the loading parameter ε, representing the level of
compressive deformation prescribed by the substrate.

For each pair of parameters (ε, a/b) a two-step procedure is carried out. The first step is the search
of equilibria for which the system does not come into contact with the rigid support (θ > 0, λ= 0). We
will describe such equilibria as “contact-free”. The second step is to check the existence of a contact
equilibrium (θ = 0, λ> 0). The potential energy can be computed for the different equilibria, and stability
of the contact-free equilibria can be studied.

5.1. Search for contact-free equilibria (θ > 0, λ = 0). We set V1(ϕ, ψ, ε) = V (ϕ, ψ, λ = 0, ε). The
equilibrium equations for the contact-free equilibria are given by

∂V1

∂ψ
= f1(ϕ, ψ, ε)= 0,

∂V1

∂ϕ
= f2(ϕ, ψ, ε)= 0.

(10)

The method consists in plotting the curves C1 and C2 representing f1 = 0 and f2 = 0, respectively, in the
(ϕ, ψ) plane limited to the (ψ ≥ 0, θ(ϕ, ψ) > 0) area for a given value of the loading parameter ε. Each
couple of coordinates (ψ, ϕ) at an intersection point of the two curves corresponds to an equilibrium
state.
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Once a particular equilibrium (ϕ1, ψ1) has been identified, the Hessian matrix for the potential energy
(∂2V/∂ui∂u j for 1≤ i ≤ 2, 1≤ j ≤ 2) is computed with u = (ϕ, ψ) in order to determine the shape of
the potential energy in the neighborhood of equilibrium. The two eigenvalues, λ1 and λ2, of this Hessian
matrix are computed and their sign is analyzed.

(a) If λ1 and λ2 are both strictly positive, the equilibrium is at a local strict minimum of the potential
energy.

(b) If λ1 and λ2 are both negative, the equilibrium is at a maximum of the potential energy.

(c) If λ1 and λ2 have different signs, the equilibrium is at a saddle point of the potential energy.

Following the second variation stability criterion, only case (a) is associated with a stable equilibrium.
As we shall see, two types of equilibria are discovered this way. The first one is the expected straight
sided wrinkle (SSW) equilibrium, with ϕ = 0 and ψ > 0. The second one is a shallow-bubble (SB)
equilibrium, with ψ > θ > 0. This last equilibrium can represent experimentally observed equilibria that
are characterized by shallow undulations at the top of SSW.

5.2. Search for contact equilibria (θ = 0, λ ≥ 0). Our model allows for the existence of a contact
equilibrium subjected to a nonzero reaction force from the support (λ > 0). This is the representation of
the deep-bubble (DB) equilibrium, experimentally observed when the film comes into contact with the
substrate as bubbles form from the SSW equilibrium.

Write V2(ψ, λ, ε)= V (ϕ = (b/a)ψ,ψ, λ, ε). The equilibrium equations in the case of contact yield

∂V2

∂ψ
= g1(ψ, λ, ε)= 0,

∂V2

∂λ
= g2(ψ, λ, ε)= 0.

(11)

For a particular set of values for (a/b, ε), the solution to the above system indicates if a contact equilib-
rium exists (solution with ψ > 0 and λ > 0), as well as the value of ψ for the given equilibrium (that is,
the bubble height).

5.3. Results. Three different post-critical behaviors can by identified, depending on the a/b ratio. We
will address the problem of the equilibrium transition in light of three cases corresponding to the ratios
a/b = 0.9, 1, and 1.1. These cases are in the range of those observed experimentally. For each case,
deformation levels from low to high are considered. Increasing the deformation level gives rise to new
equilibria and can also trigger a change in the stability of those equilibria. The results are depicted in
Figures 9, 10, and 11. Curves C1 and C2 have been drawn in solid and dashed lines, respectively. Each
intersection point of the curves indicates the existence of an equilibrium. The trivial planar equilibrium
(ϕ = 0, ψ = 0) and the SSW equilibrium (ϕ = 0, ψ 6= 0) are easily identified.

The potential V has also been plotted in each case in order to observe its shape in the neighborhood
of each equilibrium. It is possible to see whether the equilibrium is a minimum, a maximum, or a saddle
point of the potential, and hence to indicate its stability. Only the part where ψ > a

bϕ (that is, θ ≥ 0) is
relevant. The other part shows the existence of a bilateral equilibrium, which is not possible here because
of the rigid support.
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Figure 9. Equilibria for a/b = 0.9. Top: ε = 0.002; planar equilibrium (ϕ = 0, ψ = 0)
and straight-sided equilibrium ϕ = 0 can be identified on the vertical axis. Middle:
ε = 0.004; a stable shallow-bubble equilibrium arises, and the straight-sided equilibrium
is unstable. Bottom: ε = 0.015; same equilibria as for ε = 0.004.



134 GUILLAUME PARRY, CHRISTOPHE COUPEAU, JÉRÔME COLIN AND ALAIN CIMETIÈRE

0

0.02

0.04

0.06

0.08

0.1

 

0.02 0.04 0.06 0.08 0.1

 
M

\

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Straight Sided Wrinkle (min)  

T = 0

C1

C2

0.017

0.018

0.0185

0.019

0.0195

0.02

0

0.01

0.02

0.03

0.04

0.05

0.06

0
0.01

0.02
0.03

0.04
0.05

0.06

Straight Sided Wrinkle (min)  

ϕ
ψ

V

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 

0.02 0.04 0.06 0.08 0.1 0.12 0.14

 M

\

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

T = 0

C1

C2

Deep Bubble  

0.065

0.07

0.075

0.08

0

0.02

0.04

0.06

0.08

0.1

0

0.02

0.04

0.06

0.08

0.1

ϕ
ψ

V

Straight Sided Wrinkle 
(saddle)  

0

0.1

0.2

0.3

0.4

 

0.1 0.2 0.3 0.4

 M

\

C1

C2
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

T = 0

Deep Bubble  

0.6

0.8

0.9

1

1.1

1.2

0

0.05

0.1

0.15

0.2

0.25

0
0.05

0.1
0.15

0.2
0.25

ϕ

ψ

V

Straight Sided Wrinkle 
(saddle)  

Figure 10. Equilibria for a/b = 1. Top: ε = 0.002; planar equilibrium (ϕ = 0, ψ = 0)
and straight-sided equilibrium ϕ = 0 can be identified on the vertical axis. Middle:
ε = 0.004; deep-bubble equilibrium is arising, and the other equilibria are unstable.
Bottom: ε = 0.015; same observation as for ε = 0.004.
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Figure 11. Equilibria for a/b = 1.1. Top: ε = 0.001; planar equilibrium (ϕ = 0, ψ = 0)
and straight-sided equilibrium ϕ = 0 can be identified on the vertical axis. Middle:
ε = 0.004; A shallow bubble equilibrium (unstable) and a deep bubble equilibrium
are identified. Bottom: ε = 0.010. The same equilibria can be identified for higher
deformation levels.
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Short bubbles (a/b = 0.9). The case of short bubbles is illustrated in Figure 9 for a/b = 0.9. A stable
SB (shallow-bubble) equilibrium rapidly arises as the deformation level is raised. This buckling mode,
characterized by values of ϕ that are rather small compared to ψ can be connected to experimental obser-
vations of small undulations (or incipient bubbles) on top of straight-sided wrinkles. It is experimentally
observed that these undulations are short. As the deformation level ε increases, these undulations become
deeper.

There is no deep-bubble equilibrium for this a/b ratio (no solution for the contact equilibrium problem).
It is interesting to note that there are no experimental observations of short deep bubbles. We expect these
to arise for higher levels of a/b.

Intermediate case (a/b = 1). For small values of the deformation ε (Figure 10, top), the SSW (straight-
sided wrinkle) equilibrium is stable. There is no other equilibrium, except the trivial flat equilibrium,
which is unstable.

Over a critical value of the deformation, the SSW becomes unstable. The existence of a deep-bubble
equilibrium arises simultaneously with this loss of stability (Figure 10, middle and bottom). The potential
energy of the DB (deep-bubble) equilibrium is lower than that of the SSW (s equilibrium, and in fact
occupies the potential energy minimum. When losing its stability, the SSW will hence evolve toward a
DB equilibrium. It is interesting to see, from the shape of the curves, that the transition cannot evolve
smoothly. Because of the absence of a SB equilibrium, the structure cannot continuously evolve from
SSW to DB. Snap-through is to be expected.

Longer bubbles (a/b = 1.1). The case a/b ≥ 1.1 is illustrated in Figure 11. For small values of ε,
the SSW is the only nonplanar equilibrium (top) and is stable (at a potential energy minimum). As ε
increases, an SB and a DB equilibria arise (middle and bottom), and the SSW loses its stability. The SB
equilibrium is unstable and the system evolves to the DB equilibrium at the potential energy minimum.

It is worth noting that the SSW and the SB equilibria are close to each other in the (ψ, ϕ) space. Some
defects on the wrinkle could trigger the shallow-bubble saddle-point mode in a transient way, which
would lead to a snap-through to the deep-bubble equilibrium. This phenomenon has been observed both
numerically and experimentally over a critical a/b ratio of the bubbles [Parry et al. 2005].

6. Conclusion

The results of this study clarify and give an explanation for various experimental observations of the
post-critical buckling of delaminated films. First of all, some undulations are sometimes experimentally
observed on the top of the straight-sided wrinkles (Figure 2). These undulations are short and shallow
and neighbor areas with deep bubbles that are obviously longer. This is in agreement with the conclusion
that the shallow bubbles equilibrium is stable for small values of a/b.

Experimental observations show that above a given length of the bubbles there is a transition between
the straight-sided wrinkle and a bubble equilibrium where the edges of the bubbles are touching the sub-
strate. It is also observed that for a critical value of a/b, between 1.1 and 1.2, the transition is subcritical
[Parry et al. 2005]. This is in good agreement with the results of the rod model, both qualitatively and
quantitatively, because it has been shown that for a critical value of the a/b ratio the shallow-bubble
equilibrium becomes unstable and that the deep-bubble equilibrium is stable. If some undulations are
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present on the top of the straight-sided wrinkle, due to defects or imperfections, the saddle-point shallow-
bubble equilibrium can be briefly met immediately preceding the deep-bubble equilibrium with an abrupt
transition.

The ability of this model to accurately represent the transitions in the post-critical regime of this
buckling film system (qualitatively but also quantitatively, and with only a few variables) encourages
further exploration and motivates work that will model the trigger behavior of plates and films for various
post-critical regimes.
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FUNDAMENTAL SOLUTION IN THE THEORY OF VISCOELASTIC MIXTURES

SIMONA DE CICCO AND MERAB SVANADZE

In the first part of the paper, we derive a linear theory of thermoviscoelastic binary mixtures. Then, the
fundamental solution of the system of linear coupled partial differential equations of steady oscillations
(steady vibrations) of the theory of viscoelastic binary mixtures is constructed in terms of elementary
functions, and basic properties are established.

1. Introduction

The theory of mixtures was introduced to describe the mechanics of materials in which two or more
constituents coexist. The crucial factor that differentiates this theory from other classical approaches is
the matter of scale. The theory of mixtures is intended to study the behavior of a material at the small scale
of its inhomogeneities and the states of its individual constituents. The great abstraction that a material
can be modeled as a single homogeneous continuum is avoided. In contrast with approaches that use
averaging producers, the theory of mixtures permits to define the motion, mass density, stress tensor,
internal energy, temperature, entropy and other relevant physical quantities, for every single constituent
of the continuum. In the case of the diffusion of a fluid through a porous solid or of one solid through
another, this information is critical. The theory of mixtures overcomes the inadequacy of classical the-
ories which cannot predict the stresses in the solid in a diffusion process. Moreover, the theory allows
for the possibility of studying another two distinct physical phenomena: chemical reactions and multiple
temperatures. These issues are important in the mechanics of geological and biological materials. For
the history of the problem and the analysis of the results we refer to [Bowen 1976; Atkin and Craine
1976b; 1976a; Bedford and Drumheller 1983; Samohyl 1987; Rajagopal and Tao 1995]. Starting from
the origin of the modern formulation of the theory a variety of mathematical models have been developed
in order to study mixtures exhibiting complex mechanical behaviors.

In the last three decades there has been interest in the formulation of thermomechanical theories of
viscoelastic mixtures. There exist various continuum theories of viscoelastic composites [Marinov 1978;
McCarthy and Tiersten 1983; Hills and Roberts 1987; 1988; Aboudi 2000; Iesan and Quintanilla 2002].
A nonlinear theory of heat-conducting viscoelastic mixtures in a Lagrangian description was presented
by Iesan [2004]. In this theory the mixture consists of two constituents: a porous elastic solid and a
viscous fluid. A linear variant of this theory was developed by Quintanilla [2005], and the existence and
exponential decay of solutions are proved.

Iesan and Nappa [2008] introduced a nonlinear theory of heat-conducting mixtures where the individ-
ual components are modelled as Kelvin–Voigt viscoelastic materials. The basic equations are obtained
using a Lagrangian description (in contrast with mixtures of fluids), which naturally yields an Eulerian

Keywords: mixtures, thermoviscoelasticity, constitutive equations, fundamental solution.
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description. We remark that material and spatial descriptions lead to different theories with different
meaning of displacement vector field. Moreover the latter does not allow us to consider boundary condi-
tions in the reference configuration.

For investigating boundary value problems of the theory of elasticity and thermoelasticity with the
potential method (boundary integral method) it is necessary to construct fundamental solutions of systems
of partial differential equations and establish their basic properties [Kupradze 1965; Kupradze et al.
1979].

Several methods are known for constructing fundamental solutions of differential equations of the
classical theory of elasticity and thermoelasticity [Gurtin 1972, Chapter 9; Hetnarski and Ignaczak 2004,
Chapter 7; Kupradze et al. 1979, Chapter 2]. The fundamental solutions of equations of the linear theory
of binary mixtures for elastic solids have been constructed by Svanadze [1988; 1990]. Useful information
on fundamental solutions of differential equations is contained in [Hörmander 1983, Chapters 10 and 12;
Lopatinsky 1951].

In the first part of this paper (Sections 2 and 3), we derive a linear theory of thermoviscoelastic
mixtures, assuming that the constituents have a common temperature and that the mixture is subjected to
a thermodynamical process that satisfies the Clausius–Duhem inequality. The intended applications of
the theory are to viscoelastic composite materials, to viscoelastic mixtures of two compatible polymers,
or to cortical bone. For a review of the literature on viscoelastic properties of cortical bone the reader is
referred to [Lakes 2001]. As in [Iesan and Nappa 2008], with the aim to specify the boundary conditions
in the reference configuration, a Lagrangian description is adopted. The constitutive equations are derived
independently from nonlinear theory. In contrast with the theory of mixtures of fluids we find that the
diffusive force depends on both relative displacement and relative velocity. This constitutive relation
generalizes Darcy’s law and is frame-independent. We recall that, as observed by Wilmanski [2003],
Darcy’s law is frame-dependent.

In the second part of this paper (Sections 4 and 5), the fundamental solution of the system of linear
coupled partial differential equations of steady vibrations of the theory of viscoelastic binary mixtures is
constructed in terms of elementary functions, and basic properties are established.

2. Basic equations

The mixtures under consideration consist of two interacting continua s1 and s2. We assume that at time
t0 the body occupies the region B of Euclidean three-dimensional space E3 and is bounded by piecewise
smooth surface ∂B. In describing the motion of the body, we refer to the configuration at time t0 and
to a fixed system of rectangular Cartesian axes. We use vector and Cartesian tensor notation with Latin
indices having the values 1, 2, 3. Greek indices are understood to range over the integers 1, 2 and a
summation convention is not used for these indices. Bold letters denote vectors and tensors.

In the following X and Y are the positions of typical particles of s1 and s2 in the reference positions.
Following Bedford and Stern [1972], we assume that X = Y , so that the particles occupy the same
position in the reference configuration. The motion of the mixture is given by

x = x(X, t), y = y(X, t), (X, t) ∈ B× I, (2-1)

where I = [t0,∞).
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We consider arbitrary material regions Pα of each constituent which coincide at time t0 with a region
P . We postulate an energy balance in the form [Green and Naghdi 1965; 1969; 1972]

d
dt

2∑
α=1

∫
P
ρα(e+ 1

2v
(α)
· v(α)) dv =

2∑
α=1

(∫
P
ρα( f (α) · v(α)+ r) dv−

∫
∂P
( t̃(α) · v(α)+ q(α)) da

)
, (2-2)

where e is the internal energy of the mixture per unit mass, v(α) is the velocity vector field associated
with the constituent sα , f (α) is the body force per unit mass acting on the constituent sα , t̃(α) is the partial
stress vector, r is the external volume supply per unit mass per unit time, q(α) is the heat flux per unit
area per unit time associated with the constituent sα, and ρα is the mass density of the constituent sα.

Let u(α) be the displacement vector field associated with the constituent sα. In the linear theory we
assume that u(α) = εu′(α), with ε being a constant small enough for squares and higher powers to be
neglected, and with u′(α) independent of ε. The functions (2-1) can be expressed in the form

x = X + u(1), y = X + u(2). (2-3)

By (2-2) and (2-3) we get

2∑
α=1

∫
P
(ρα ė+ ρα u̇(α) · ü(α)) dv =

2∑
α=1

(∫
P
(ρα f (α) · u̇(α)+ ρr) dv−

∫
∂P
( t̃(α) · u̇(α)+ q(α)) da

)
. (2-4)

Following Green and Naghdi [1965], (2-4) is also true when u̇(α) is replaced by u(α)+ c, with c an
arbitrary constant vector, so that by subtraction we have

2∑
α=1

(∫
P
ρα(ü(α)− f (α))dv−

∫
∂P

t̃(α)da
)
= 0. (2-5)

From (2-5) we obtain

t̃(1)+ t̃(2) = (t(1)+ t(2))T n, (2-6)

where t(α)T is the transpose of the stress tensor t(α) associated with the constituent sα, and n is the unit
outward normal vector to the surface ∂P . It follows from (2-5) and (2-6) that

2∑
α=1

(div t(α)
T
+ ρα f (α)− ρα ü(α))= 0. (2-7)

On taking into account (2-6) and (2-7), (2-4) can be written in the form∫
P

(
ρė+ 1

2(ρ1ü(1)− ρ2ü(2)) · (u̇(1)− u̇(2))− 1
2(ρ1 f (1)− ρ2 f (2)) · (u̇(1)− u̇(2))

−
1
2(t

(1)
+ t(2))T · (Ḣ (1)

+ Ḣ (2)
)− ρr

)
dv =

∫
∂P

( 1
2( t̃

(1)
− t̃(2)) · (u̇(1)− u̇(2))+ q

)
da, (2-8)

where
H (α)
=∇u(α), q = q(1)+ q(2), ρ = ρ1+ ρ2.
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With an argument similar to that used in obtaining (2-6) from (2-5), we obtain

1
2

(
t̃(1)− t̃(2)− (t(1)− t(2))T n

)
· (u̇(1)− u̇(2))+ q − q · n= 0, (2-9)

where q is the heat flux vector. We introduce the notation

p= 1
2

(
div(t(1)− t(2))T + ρ1 f (1)− ρ2 f (2)− (ρ1ü(1)− ρ2ü(2))

)
. (2-10)

Introducing (2-9) and (2-10) into Equation (2-8) and applying the resulting equation to an arbitrary region
P , we obtain

ρė = t(1)
T
· Ḣ (1)

+ t(2)
T
· Ḣ (2)

+ p · ḋ+ ρr + div q, (2-11)

where

d = u(1)− u(2). (2-12)

From (2-10) and (2-11) we get the motion equations of the mixture:

div t(1)
T
− p+ ρ1 f (1) = ρ1ü(1), div t(2)

T
+ p+ ρ2 f (2) = ρ2ü(2). (2-13)

As in [Green and Naghdi 1965], we now consider motions of the mixture which are such that the velocities
differ from those of the given motion only by a superposed uniform rigid body angular velocity, the
continua occupying the same position at time t . In this case Ḣ (1) and Ḣ (2) are replaced by Ḣ (1)

+�

and Ḣ (2)
+�, respectively, and ḋ is replaced by ḋ+�d, where � is an arbitrary skew symmetric tensor.

Equation (2-13) implies that

t(1)+ t(2) = (t(1)+ t(2))T . (2-14)

Now we assume that the constituents have a common temperature and adopt the following entropy pro-
duction inequality [Green and Naghdi 1965; 1972]:

d
dt

∫
P
ρη dv−

∫
P

1
θ
ρr dv−

∫
∂P

1
θ

q da ≥ 0, (2-15)

where η is the entropy per unit mass of the mixture, and θ(> 0) is the absolute temperature. If we get
q = q · n the inequality (2-15) reduces to

ρθη̇− ρr − div q+
1
θ

q ·2≥ 0, (2-16)

where 2=∇θ . Introducing the Helmotz free energy ψ = e− ηθ , the energy Equation (2-11) takes the
form

ρ(ψ̇ + θ̇η+ θη̇)= t(1)
T
· Ḣ (1)

+ t(2)
T
· Ḣ (2)

+ p · ḋ+ ρr + div q. (2-17)

Taking (2-17) into account, the inequality (2-16) becomes

t(1)
T
· Ḣ (1)

+ t(2)
T
· Ḣ (2)

+ p · ḋ− σ̇ − ρηθ̇ +
1
θ

q ·2≥ 0, (2-18)

where σ = ρψ .
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3. Constitutive equations

In what follows we assume that the constituents sα are viscoelastic materials of Kelvin–Voigt type. We
consider materials characterized by the following set of independent constitutive variables

S = (H (1), H (2), d, Ḣ (1)
, Ḣ (2)

, ḋ, θ,2; X).

The constitutive equations take the form

σ = σ(S), t(α) = t(α)(S), p= p(S), η = η(S), q = q(S), (3-1)

where the response functionals are assumed to be sufficiently smooth. We assume that there are not
internal constraints. In order to satisfy the axiom of material-frame indifference, the functionals (3-1)
must be expressible in the form

σ = σ̃ (S0), t(α) = t̃(α)(S0), p= p̃(S0), η = η̃(S0), q = q̃(S0), (3-2)

where
S0
= (E, G, d, Ė, Ġ, ḋ, θ,2; X), (3-3)

and

E =
1
2
(H (1)

+ H (1)T ), G = H (1)T
+ H (2). (3-4)

In view of (3-2), (3-3), and (3-4), the inequality (2-18) implies that σ is independent by Ė, Ġ, ḋ and 2,
that is

σ =U (E, G, d, θ; X). (3-5)

Moreover we have

ρη =−
∂U
∂θ
. (3-6)

Using (3-5) and (3-6) the inequality (2-18) reduces to(
t(1)

T
−
∂U
∂E
−

(∂U
∂G

)T
)
· Ḣ (1)

+

(
t(2)

T
−
∂U
∂G

)
· Ḣ (2)

+

(
p−

∂U
∂d

)
· ḋ+

1
θ

q ·2≥ 0. (3-7)

We introduce the notations

τ (1) = t(1)−
∂U
∂E
−
∂U
∂G

, τ (2) = t(2)− (
∂U
∂G

)T , π = p−
∂U
∂d
. (3-8)

The functions τ (α) and π are the dissipative parts of t(α) and p. The inequality (3-7) may be written in
the form

τ (1)
T
· Ḣ (1)

+ τ (2)
T
· Ḣ (2)

+π · ḋ+
1
θ

q ·2≥ 0. (3-9)

Let us introduce the functions 0 and 3 by

τ (1) = 0(S0)+3(S0), τ (2) =3T (S0). (3-10)

From (2-14) we deduce that

τ (1)+ τ (2) = (τ (1)+ τ (2))T , 0 = 0T . (3-11)
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In view of (3-10) and (3-11) the dissipation inequality (3-9) becomes

0 · Ė+3 · Ġ+π · ḋ+
1
θ

q ·2≥ 0. (3-12)

The inequality (3-12) implies that

0(S∗)= 0, 3(S∗)= 0, π(S∗)= 0, q(S∗)= 0, (3-13)

where
S∗ = (E, G, d, 0, 0, 0, θ, 0; X).

With the help of (3-6), (3-8), and (3-10), the energy balance reduces to

ρθη̇ = 0 · Ė+3 · Ġ+π · ḋ+ ρr + div q. (3-14)

Let us denote
θ = T + T0, T = εT

′

, εn ∼= 0 for n ≥ 2, (3-15)

where T0 is the constant absolute temperature of the body in the reference configuration and T
′

is inde-
pendent of ε. In what follows we consider the case of centrosymmetric materials. We assume that U has
the form

U = 1
2 E · AE+ E · BG+ 1

2 G ·C G+ 1
2 d · a d− (β(1) · E+β(2) · G)T − 1

2a0T 2, (3-16)

where A, B and C are fourth order tensors, a, β(1) and β(2) are second order tensors, and a0 is a constant.
The constitutive coefficients have the symmetries

Ai jrs = A j irs = Arsi j , Bi jrs = B j irs, Ci jrs = Crsi j , ai j = a j i , β
(1)
i j = β

(1)
j i . (3-17)

Letting be M a fourth order tensor, the transpose of M is the unique tensor MT with the property

M p · q = p ·MT q,

where p and q are second order tensors. Consequently by (3-17) we have A= AT and C = CT . From
(3-6), (3-8) and (3-16) we obtain

t(1) = (A+ BT )E+ (B+C)G− (β(1)+β(2))T + τ (1),

t(2)
T
= BT E+C G−β(2)T + τ (2)

T
,

p= ad+π , ρη = β(1) · E+β(2) · G+ a0T . (3-18)

The relations (3-13) leads to

0 = A∗ Ė+C∗Ġ, 3= B∗ Ė+ D∗Ġ, π = a∗ ḋ+ b∗∇T, q = k∇T + f ḋ, (3-19)

where A∗, B∗, C∗, and D∗ are fourth order tensors and a∗, b∗, k, and f are second order tensors. Using
(3-19) the relations (3-10) can be put in the form

τ (1) = (A∗+ B∗)Ė+ (C∗+ D∗)Ġ, τ (2)
T
= B∗ Ė+ D∗Ġ. (3-20)
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Taking into account (3-15) the energy Equation (3-14) reduces to

ρT0η̇ = ρr + div q. (3-21)

The basic equations of linear viscoelastic mixtures are: the equations of motion (2-13), the equation
of energy (3-21), the constitutive equations (3-18) and (3-20), and the geometric equations (2-12) and
(3-4). We remark that the relation (3-18)3 generalizes Darcy’s law. This relation has been obtained from
constitutive assumptions and is frame-independent. In the case of isotropy, the constitutive equations
(3-18) and (3-20) take the form

t(1) = 2(µ+ ζ )E+ (λ+ ν)(tr E)I + (2κ + ζ )G+ (2γ + ζ )GT

+ (α+ ν)(tr G)I − (β(1)+β(2))T I + 2(µ∗+ ζ ∗1 )Ė

+ (λ∗+ ν∗1 )(tr Ė)I + (2κ∗+ ζ ∗)Ġ+ (2γ ∗+ ζ ∗)ĠT
+ (α∗+ ν∗)(tr Ġ)I,

t(2) = 2ζ E+ ν(tr E)I + 2κGT
+ 2γG+α(tr G)I −β(2)T I

+2ζ ∗1 Ė+ ν∗1 (tr Ė)I + 2γ ∗Ġ+ 2κ∗ĠT
+α∗(tr Ġ)I,

p= ad+ a∗ ḋ+ b∗∇T, ρη = β(1)tr E+β(2)tr G+ a0T, q = k∇T + f ḋ, (3-22)

where λ, µ, γ, . . . , f are constitutive coefficients, I = (δ jl)3×3 is the unit matrix, δl j is the Kronecker
delta, u(1) = (u(1)1 , u(1)2 , u(1)3 ), u(2) = (u(2)1 , u(2)2 , u(2)3 ).

We introduce the notations

α1 = µ+ 2κ + 2ζ, α2 = λ+µ+α+ 2ν+ 2γ + 2ζ,

α3 = 2γ + ζ, α4 = α+ ν+ 2κ + ζ,

α5 = 2κ, α6 = α+ 2γ,

α∗1 = µ
∗
+ 2κ∗+ ζ ∗+ ζ ∗1 , α∗2 = λ

∗
+µ∗+α∗+ ν∗+ ν∗1 + 2γ ∗+ ζ ∗+ ζ ∗1 ,

α∗3 = 2γ ∗+ ζ ∗, α∗4 = α
∗
+ ν∗+ 2κ∗+ ζ ∗,

α∗5 = 2γ ∗+ ζ ∗1 , α∗6 = α
∗
+ ν∗1 + 2κ∗+ ζ ∗1 ,

α∗7 = 2κ∗, α∗8 = α
∗
+ 2γ ∗,

β1 = β
(1)
+β(2)+ b∗, β2 = β

(2)
− b∗,

β3 = T0(β
(1)
+β(2)), β4 = T0 β

(2).

(3-23)

From (2-12), (2-13), (3-4), and (3-21)–(3-23) we have

α11u(1)+α2∇ div u(1)+α31u(2)+α4∇ div u(2)− a(u(1)− u(2))
+α∗11u̇(1)+α∗2∇ div u̇(1)+α∗31u̇(2)+α∗4∇ div u̇(2)−a∗(u̇(1)− u̇(2))−β1∇T +ρ1 f (1)= ρ1ü(1),

α31u(1)+α4∇ div u(1)+α51u(2)+α6∇ div u(2)+ a(u(1)− u(2))
+α∗51u̇(1)+ α∗6∇ div u̇(1)+α∗71u̇(2)+α∗8∇ div u̇(2)+a∗(u̇(1)− u̇(2))−β2∇T+ρ2 f (2)=ρ2ü(2),

k1T − a0T0 Ṫ − div(β3u̇(1)+β4u̇(2))+ f div(u̇(1)− u̇(2))+ ρr = 0. (3-24)
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The system (3-24) can be written as

â11u(1)+ â2∇ div u(1)+ â31u(2)+ â4∇ div u(2)− ξ̂ (u(1)−u(2))+β1∇T +ρ1 f (1) = ρ1ü(1),

â51u(1)+ â6∇ div u(1)+ â71u(2)+ â8∇ div u(2)+ ξ̂ (u(1)−u(2))+β2∇T +ρ2 f (2) = ρ2ü(2),

k1T −a0T0 Ṫ −(T0β1−T0 b∗− f ) div u̇(1)−(T0β2+T0 b∗+ f ) div u̇(2)+ρr = 0,

(3-25)

where

â j = α j +α
∗

j
∂

∂t
, âl = αl−2+α

∗

l
∂

∂t
, ξ̂ = a+ a∗

∂

∂t
, j = 1, 2, 3, 4, l = 5, 6, 7, 8.

In the isothermal case from (3-25) we obtain the following system of equations of motion in the linear
theory of viscoelastic mixtures:

â11u(1)+ â2∇ div u(1)+ â31u(2)+ â4∇ div u(2)− ξ̂ (u(1)− u(2))+ ρ1 f (1) = ρ1ü(1),

â51u(1)+ â6∇ div u(1)+ â71u(2)+ â8∇ div u(2)+ ξ̂ (u(1)− u(2))+ ρ2 f (2) = ρ2ü(2).
(3-26)

If the body forces f (1) and f (2) are assumed to be absent, and the partial displacement vectors u(1)

and u(1) are postulated to have a harmonic time variation, that is,

u( j)(x, t)= Re [w( j)(x)e−iωt
], j = 1, 2,

then from system of equations of motion (3-26) we obtain the following system of equations of steady
vibration in the linear theory of viscoelastic mixtures:

a11w
(1)
+ a2∇ divw(1)+ a31w

(2)
+ a4∇ divw(2)+ ξ1w

(1)
+ ξw(2) = 0,

a51w
(1)
+ a6∇ divw(1)+ a71w

(2)
+ a8∇ divw(2)+ ξw(1)+ ξ2w

(2)
= 0,

(3-27)

where ω is the oscillation frequency (ω > 0), and

a j = α j − iωα∗j , al = αl−2− iωα∗l , j = 1, 2, 3, 4, l = 5, 6, 7, 8,

ξ = a− iωa∗, ξs = ρsω
2
− ξ, s = 1, 2.

In the second part of this paper (Sections 4 and 5) the fundamental solution of the system (3-27) is
constructed in terms of elementary functions, and basic properties are established.

4. Fundamental solution of the system of equations of steady vibration

We introduce the matrix differential operator

R(Dx)= (Rmn(Dx))6×6,

where

Rl j (Dx)= (a11+ ξ1)δl j + a2
∂2

∂xl∂x j
, Rl; j+3(Dx) = (a31+ ξ)δl j + a4

∂2

∂xl∂x j
,

Rl+3; j (Dx)= (a51+ ξ)δl j + a6
∂2

∂xl∂x j
, Rl+3; j+3(Dx)= (a71+ ξ2)δl j + a8

∂2

∂xl∂x j
,



FUNDAMENTAL SOLUTION IN THE THEORY OF VISCOELASTIC MIXTURES 147

x = (x1, x2, x3), Dx =
( ∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
, ξs = ρsω

2
− ξ, s = 1, 2, l, j = 1, 2, 3.

The system (3-27) can be written as
R(Dx)W(x)= 0,

where W = (w(1),w(2)) is a six-component vector function on E3.
We assume that the constitutive coefficients satisfy the condition

(a1a7− a3a5)[(a1+ a2)(a7+ a8)− (a3+ a4)(a5+ a6)] 6= 0. (4-1)

Definition. The fundamental solution of the system (3-27) (the fundamental matrix of operator R(Dx))
is the matrix 9(x) = (9l j (x))6×6 satisfying the condition [Hörmander 1983, Chapter 10; Lopatinsky
1951]

R(Dx)9(x)= δ(x)J, (4-2)

where δ is the Dirac delta, J = (δl j )6×6 is the unit matrix, and x ∈ E3.

We consider the system of equations

a11w
(1)
+ a2∇ divw(1)+ a51w

(2)
+ a6∇ divw(2)+ ξ1w

(1)
+ ξw(2) = F′,

a31w
(1)
+ a4∇ divw(1)+ a71w

(2)
+ a8∇ divw(2)+ ξw(1)+ ξ2w

(2)
= F′′,

(4-3)

where F′ and F′′ are three-component vector functions on E3.
As one may easily verify, the system (4-3) can be written in the form

RT (Dx)W(x)= F(x), (4-4)

where RT is the transpose of matrix R, F = (F′, F′′), and x ∈ E3.
Applying the operator div to (4-3)1 and (4-3)2 we have

[(a1+ a2)1+ ξ1] div w(1)+ [(a5+ a6)1+ ξ ] div w(2) = div F′,

[(a3+ a4)1+ ξ ] div w(1)+ [(a7+ a8)1+ ξ2] div w(2) = div F′′.
(4-5)

The system (4-5) may be written in matrix form:

Q(1)V = f , (4-6)

where V = (div w(1), div w(2)), f = ( f1, f2)= (div F′, div F′′), and

Q(1)= (Ql j (1))2×2 =

(
(a1+ a2)1+ ξ1 (a5+ a6)1+ ξ

(a3+ a4)1+ ξ (a7+ a8)1+ ξ2

)
3×3

.

System (4-6) implies
31(1)V =8, (4-7)
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where

8= (81,82), 8 j =
1
d1

2∑
l=1

Q′l j fl, 31(1)=
1
d1

det Q(1),

d1 = (a1+ a2)(a7+ a8)− (a3+ a4)(a5+ a6), j = 1, 2, (4-8)

and Q′l j is the cofactor of the element Ql j of the matrix Q,

Q∗11 = (a7+ a8)1+ ξ2, Q∗12 =−((a3+ a4)1+ ξ),

Q∗21 =−((a5+ a6)1+ ξ), Q∗22 = (a1+ a2)1+ ξ1.

It is easily seen that
31(1)= (1+ k2

1)(1+ k2
2),

where k2
1 and k2

2 are the roots of the equation 31(−χ)= 0 (with respect to χ ).
Applying the operator 31(1) to (4-3)1 and (4-3)2, and taking (4-7) into account, we obtain

31(1)((a11+ ξ1)w
(1)
+ (a51+ ξ)w

(2))= F1,

31(1)((a31+ ξ)w
(1)
+ (a71+ ξ2)w

(2))= F2,
(4-9)

where
F1 =31(1)F′−∇ (a281+ a682), F2 =31(1)F′′−∇ (a481+ a882). (4-10)

From system (4-9) we have

31(1)32(1)w
(1)
= H1, 31(1)32(1)w

(2)
= H2, (4-11)

where

32(1)=
1
d2

det Z(1), d2 = a1a7− a3a5, Z(1)=
(

a11+ ξ1 a51+ ξ

a31+ ξ a71+ ξ2

)
2×2

,

and
H j =

1
d2

2∑
l=1

Z ′l j (1)Fl, j = 1, 2. (4-12)

Z ′l j is the cofactor of the element Zl j of the matrix Z.

Z ′11 = a71+ ξ2, Z ′12 =−a31− ξ,

Z ′21 =−a51− ξ, Z ′22 = a11+ ξ1.

Obviously, 32(1)= (1+ k2
4)(1+ k2

5), where k2
4 and k2

5 are the roots of the equation 32(−χ)= 0
(with respect to χ ).

On the basis of (4-11) we get
3̃(1)W(x)= H(x), (4-13)

where H = (H1, H2) and 3̃(1) is the diagonal matrix

3̃(1)= (3̃l j (1))6×6, 3̃11(1)= 3̃22(1)= · · · = 3̃66(1)=31(1)32(1),

3̃mn(1)= 0, m, n = 1, 2, . . . , 6, m 6= n.
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In what follows we use the notations

ml1(1)=
1
d1

(
a2 Q′l1(1)+ a6 Q′l2(1)

)
, ml2(1)=

1
d1

(
a4 Q′l1(1)+ a8 Q′l2(1)

)
,

nl j (1)=−
1
d2

2∑
p=1

mlp Z ′pj , l, j = 1, 2. (4-14)

In view of (4-8), (4-10), and (4-14), from (4-12) we have

H j =

( 1
d2

Z ′1 j (1)31(1)I + n1 j (1)∇div
)

F′+
( 1

d2
Z ′2 j (1)31(1)I + n2 j (1)∇ div

)
F′′, j = 1, 2,

(4-15)
where I = (δl j )3×3 is the unit matrix.

Thus, from (4-15) we obtain
H(x)= LT (Dx)F(x), (4-16)

where

L = (L l j )6×6 =

(
L(1) L(2)

L(3) L(4)

)
6×6

, L(m) = (L(m)l j )3×3,

L(q)(Dx)=
1
d2

Z ′1q(1)31(1)I + n1q(1)∇ div,

L(q+2)(Dx)=
1
d2

Z ′2q(1)31(1)I + n2q(1)∇ div,

q = 1, 2, m = 1, 2, 3, 4. (4-17)

By virtue of (4-4) and (4-16), from (4-13) it follows that 3̃W = LT RT W . It is obvious that LT RT
= 3̃

and, hence,
R(Dx)L(Dx)= 3̃(1). (4-18)

We assume that k2
l 6= k2

j 6= 0, that l, j = 1, 2, 3, 4, and that l 6= j .
Let

Y(x)= (Ymn(x))6×6, Y11(x)= Y22(x)= · · · = Y66(x)=
4∑

j=1

η j h j (x), Ymn(x)= 0,

m, n = 1, 2, . . . , 6, m 6= n, (4-19)

where

h j (x)=−
1

4π |x|
eik j |x|, η j =

4∏
l 6= j, l=1

(k2
l − k2

j )
−1, j = 1, 2, 3, 4. (4-20)

Lemma 4.1. The matrix Y is the fundamental matrix of operator 3̃(1), that is

3̃(1)Y(x)= δ(x)J . (4-21)

Proof. It is sufficient to show that

31(1)32(1)Y11(x)= δ(x).
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Taking into account the equalities

4∑
j=1

η j = 0,
4∑

j=2

η j (k2
1 − k2

j )= 0,
4∑

j=3

η j (k2
1 − k2

j )(k
2
2 − k2

j )= 0,

η4(k2
1 − k2

4)(k
2
2 − k2

4)(k
2
3 − k2

4)= 1,

(1+ k2
l )h j (x)= δ(x)+ (k2

l − k2
j )h j (x), l, j = 1, 2, 3, 4, x ∈ E3,

from (4-19) we have

31(1)32(1)Y11(x)= (1+ k2
2)32(1)

4∑
j=1
η j
(
δ(x)+ (k2

1 − k2
j )h j (x)

)
=32(1)

4∑
j=2
η j (k2

1 − k2
j )
(
δ(x)+ (k2

2 − k2
j )h j (x)

)
= (1+ k2

4)
4∑

j=3
η j (k2

1 − k2
j )(k

2
2 − k2

j )
(
δ(x)+ (k2

3 − k2
j )h j (x)

)
= (1+ k2

4)h4(x)= δ(x). �

We introduce the matrix

9(x)= L(Dx)Y(x). (4-22)

Using identity (4-18) from (4-21) and (4-22) we obtain

R(Dx)9(x)= R(Dx)L(Dx)Y(x)= 3̃(1)Y(x)= δ(x)J .

Hence, 9(x) is a solution to (4-2). We have thereby proved:

Theorem 4.2. The matrix 9(x) defined by (4-22) is the fundamental solution of system (3-27).

Obviously, the matrix 9(x) can be written in the form

9 = (9mn)6×6 =

(
9(1) 9(2)

9(3) 9(4)

)
6×6

,

where

9( j)(x)= L( j)(Dx)Y11(x), j = 1, 2, 3, 4. (4-23)

5. Basic properties of the matrix 9(x)

Theorem 4.2 leads to the following results.

Corollary 5.1. Each column of the matrix 9(x) is the solution of system (3-27) at every point x ∈ E3

except the origin.
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Corollary 5.2. The fundamental solution of the system

a11w
(1)
+ a2∇ divw(1)+ a31w

(2)
+ a4∇ divw(2) = 0,

a51w
(1)
+ a6∇ divw(1)+ a71w

(2)
+ a8∇ divw(2) = 0,

(5-1)

is the matrix

9̃ = (9̃mn)6×6 =

(
9̃(1) 9̃(2)

9̃(3) 9̃(4)

)
6×6
,

where

9̃
(p)
= (9̃

(p)
l j )3×3,

9̃
(1)
l j =

(
a7+ a8

d1

∂2

∂xl∂x j
−

a7

d2

( ∂2

∂xl∂x j
−1δl j

))
h0(x),

9̃
(2)
l j =

(
−

a3+ a4

d1

∂2

∂xl∂x j
+

a3

d2

( ∂2

∂xl∂x j
−1δl j

))
h0(x),

9̃
(3)
l j =

(
−

a5+ a6

d1

∂2

∂xl∂x j
+

a5

d2

( ∂2

∂xl∂x j
−1δl j

))
h0(x),

9̃
(4)
l j =

(
a1+ a2

d1

∂2

∂xl∂x j
−

a1

d2

( ∂2

∂xl∂x j
−1δl j

))
h0(x),

h0(x)=−
|x|
8π
, l, j = 1, 2, 3, p = 1, 2, 3, 4. (5-2)

Obviously, the relations

9̃mn(x)= O(|x|−1), (5-3)

and
∂q

∂xq1
1 ∂xq2

2 ∂xq3
3
9̃mn(x)= O(|x|−1−q),

hold in a neighborhood of the origin, where m, n = 1, 2, . . . , 6, q = q1+ q2+ q3, q ≥ 1.
In what follows we shall use the following lemma.

Lemma 5.3. If condition (4-1) is satisfied, then

1nl j (1)=
1
d1

Q′l j (1)32(1)−
1
d2

Z ′l j (1)31(1), l, j = 1, 2. (5-4)

Proof. In view of (4-14), we have

d1d21 nl j (1)=−1
(
Z ′1 j (1)(a2 Q′l1(1)+ a6 Q′l2(1))+ Z ′2 j (1)(a4 Q′l1(1)+ a8 Q′l2(1))

)
. (5-5)
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Taking into account the equalities

a21Q′l1+ a61Q′l2 = δ1l d131(1)− ((a11+ ξ1)Q′l1+ (a51+ ξ)Q′l2),

a41Q′l1+ a81Q′l2 = δ2l d131(1)− ((a31+ ξbot)Q′l1+ (a71+ ξ2)Q′l2),

(a11+ ξ1)Z ′1 j + (a31+ ξ)Z ′2 j = d2 δ1 j 32(1),

(a51+ ξ)Z ′1 j + (a71+ ξ2)Z ′2 j = d2 δ2 j 32(1),

from (5-5) we obtain

d1d21nl j (1)=

−d1(δ1l Z ′1 j+δ2l Z ′2 j )31(1)+
(
(a11+ξ1)Z ′1 j+(a31+ξ)Z ′2 j

)
Q′l1+

(
(a51+ξ)Z ′1 j+(a71+ξ2)Z ′2 j

)
Q′l2

=−d1 Z ′l j31(1)+ d2(δ1 j Q′l1+ δ2 j Q′l2)32(1)= d2 Q′l j32(1)− d1 Z ′l j31(1). �

In what follows we use the notations

dpj =η1 j Q′1p(−k2
j ), dp+2; j =η1 j Q′2p(−k2

j ), dpl=η1l Z ′1p(−k2
l ), dp+2;l=η1l Z ′2p(−k2

l ),

η1 j =
(−1) j

d1 k2
j (k

2
2 − k2

1)
, η1l =

(−1)l

d1 k2
l (k

2
4 − k2

3)
, p, j = 1, 2, l = 3, 4. (5-6)

Theorem 5.4. If x ∈ E3
\ {0}, then

9(p)
mq (x)=

∂2

∂xm∂xq

2∑
j=1

dpj h j (x)−
( ∂2

∂xm∂xq
−1δmq

) 4∑
l=3

dpl hl(x), (5-7)

m, q = 1, 2, 3, p = 1, 2, 3, 4.

Proof. On the basis of (4-17), (4-19), (5-4) and equality

h j (x)=−
1
k2

j
1h j (x), x ∈ E3

\ {0}, j = 1, 2, 3, 4,

from (4-23) we obtain

9(1)
mq(x)=

( 1
d2

Z ′11(1)31(1)δmq + n11(1)
∂2

∂xm∂xq

)
Y11(x)

=−

4∑
j=1

η j

k2
j

( 1
d2

Z ′11(1)31(1)+1n11(1)
) ∂2

∂xm∂xq
h j (x)

+

4∑
j=1

η j

d2 k2
j

Z ′11(1)31(1)
( ∂2

∂xm∂xq
−1δmq

)
h j (x)

=−
∂2

∂xm∂xq

4∑
j=1

η j

d1 k2
j

Q′11(−k2
j )32(−k2

j ) h j (x)

+

( ∂2

∂xm∂xq
−1δmq

) 4∑
j=1

η j

d2 k2
j

Z ′11(−k2
j )31(−k2

j ) h j (x). (5-8)



FUNDAMENTAL SOLUTION IN THE THEORY OF VISCOELASTIC MIXTURES 153

Using the identities (5-6) and the relations

η j31(−k2
j )=

{ 0, j = 1, 2,
(−1) j

k2
3−k2

4
, j = 3, 4, η j 32(−k2

j )=

{ (−1) j

k2
1−k2

2
, j = 1, 2,

0, j = 3, 4,

from (5-8) we have

9(1)
mq(x)=

∂2

∂xm∂xq

2∑
j=1

η1 j Q′11(−k2
j ) h j (x)−

( ∂2

∂xm∂xq
−1δmq

) 4∑
l=3

η1l Z ′11(−k2
l ) hl(x)

=
∂2

∂xm∂xq

2∑
j=1

d1 j h j (x)−
( ∂2

∂xm∂xq
−1δmq

) 4∑
l=3

d1l hl(x).

The other formulae of (5-7) can be proven quite similarly. �

Theorem 5.4 leads to the following result.

Corollary 5.5. If x ∈ E3
\{0}, then each element 9mn of the matrix 9(x) has the form

9mn(x)=
4∑

j=1

9mnj (x),

where 9mnj satisfies the condition

(1+ k2
j )9mnj (x)= 0, m, n = 1, 2, . . . , 6, j = 1, 2, 3, 4.

Theorem 5.6. The relations

9mn(x)− 9̃mn(x)= const+ O(|x|),
∂q

∂xq1
1 ∂xq2

2 ∂xq3
3
(9mn(x)− 9̃mn(x))= O(|x|1−q), (5-9)

and
9mn(x)= O(|x|−1), (5-10)

hold in a neighborhood of the origin, where m, n = 1, 2, . . . , 6, q = q1+ q2+ q3, q ≥ 1.

Proof. In view of (5-2) and (5-7) we obtain

9(1)
mq(x)− 9̃

(1)
mq(x)=

∂2

∂xm∂xq

( 2∑
j=1

d1 j h j (x)−
a7+ a8

d1
h0(x)

)
−

( ∂2

∂xm∂xq
−1δmq

)( 4∑
l=3

d1lhl(x)−
a7

d2
h0(x)

)
. (5-11)

In a neighborhood of the origin, from (4-20) we have

h p(x)=−
1

4π |x|

∞∑
n=0

(ikp|x|)n

n!
= h′(x)−

ikp

4π
− k2

ph0(x)+ h̃ p(x), (5-12)

where

h′(x)=−
1

4π |x|
, h̃ p(x)=−

1
4π |x|

∞∑
n=3

(ikp|x|)n

n!
, p = 1, 2, 3, 4.
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Obviously,

h̃ p(x)= O(|x|2),
∂

∂xl
h̃ p(x)= O(|x|),

∂2

∂xl∂x j
h̃ p(x)= const+ O(|x|),

l, j = 1, 2, 3, p = 1, 2, 3, 4. (5-13)

On the basis of (5-12) we obtain

2∑
j=1

d1 j h j (x)−
a7+ a8

d1
h0(x)

=

2∑
j=1

d1 j h′(x)−
( 2∑

j=1

d1 j k2
j +

a7+ a8

d1

)
h0(x)+

2∑
j=1

d1 j

(
−

ik j

4π
+ h̃ j (x)

)
,

4∑
l=3

d1l hl(x)−
a7

d2
h0(x)=

4∑
l=3

d1lh′(x)−
( 4∑

l=3

d1lk2
l +

a7

d2

)
h0(x)+

4∑
l=3

d1l

(
−

ikl

4π
+ h̃l(x)

)
. (5-14)

Taking into account the equalities (5-14) and

1h′(x)= 0 for x 6= 0,
2∑

j=1

d1 j =

4∑
l=3

d1l,

2∑
j=1

d1 j k2
j +

a7+ a8

d1
= 0,

4∑
l=3

d1lk2
l +

a7

d2
= 0,

from (5-11) we have

9(1)
mq(x)− 9̃

(1)
mq(x)=

∂2

∂xm∂xq

2∑
j=1

d1 j
(
h′(x)+ h̃ j (x)

)
−

( ∂2

∂xm∂xq
−1δmq

) 4∑
l=3

d1l
(
h′(x)+ h̃l(x)

)
=

∂2

∂xm∂xq

2∑
j=1

d1 j h̃ j (x)−
( ∂2

∂xm∂xq
−1δmq

) 4∑
l=3

d1l h̃l(x).

In view of (5-13), we obtain from this the relation (5-9)1, for m, n = 1, 2, 3. The other formulae of (5-9)
can be proven in a similar manner.

The relation (5-10) can be obtained easily from (5-9)1 and (5-3). �

Thus, the fundamental solution 9̃(x) of the system (5-1) is the singular part of the matrix 9(x) in a
neighborhood of the origin.

6. Concluding remark

The fundamental solution 9(x) of the system (3-27) makes it possible to investigate three-dimensional
boundary value problems of the linear theory of viscoelastic binary mixtures with the boundary integral
method (potential method). The main results obtained in the classical theory of elasticity, thermoelasticity
and micropolar theory of elasticity with the potential method are given in [Kupradze et al. 1979]. A wide
class of boundary value problems of steady vibration of the linear theory of thermoelasticity of binary
mixtures is investigated using the potential method by Burchuladze and Svanadze [2000].
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AN ENERGY-MOMENTUM CONSERVING ALGORITHM FOR NONLINEAR
TRANSIENT ANALYSIS WITHIN THE FRAMEWORK OF HYBRID ELEMENTS

C. S. JOG AND PHANI MOTAMARRI

This work deals with the formulation and implementation of an energy-momentum conserving algo-
rithm for conducting the nonlinear transient analysis of structures, within the framework of stress-based
hybrid elements. Hybrid elements, which are based on a two-field variational formulation, are much less
susceptible to locking than conventional displacement-based elements within the static framework. We
show that this advantage carries over to the transient case, so that not only are the solutions obtained
more accurate, but they are obtained in fewer iterations. We demonstrate the efficacy of the algorithm
on a wide range of problems such as ones involving dynamic buckling, complicated three-dimensional
motions, et cetera.

1. Introduction

In the absence of loading in a pure traction initial boundary-value problem, the linear and angular mo-
menta, and, if the body is elastic, the energy as well, are conserved. Simo and Tarnow [1992; 1994] were
the first to develop algorithmic approximations that would, similarly to continuum dynamics, conserve
these properties. Since with the use of these schemes there is no blow-up of the solution in the absence of
loading, these algorithms can be said to be inherently stable. For this reason, there has been an extensive
literature on these classes of time stepping algorithms. Laursen and Meng [2001] and Gonzalez [2000]
extended the method of Simo and Tarnow to nonlinear constitutive models, albeit by different methods.
Brank et al. [1998] and Sansour et al. [2004] considered the application of these methods to the motion
of shells. Betsch and Steinmann [2001] developed a time finite element method and introduced the
assumed strain method in time which simplifies the design of energy-momentum conserving algorithms
for nonlinear constitutive models. Armero and Romero [2001a; 2001b], Bauchau and Joo [1999; 2003],
and Kuhl et al. [Kuhl and Crisfield 1999; Kuhl and Ramm 1996; 1999] introduced the use of uncondi-
tionally stable energy-momentum conserving time-integration schemes with high-frequency numerical
dissipation. Balah and Al-Ghamedy [2005] extended the method of Simo and Tarnow to the nonlinear
dynamics of laminated shells. Most of the works cited above including that of Simo and Tarnow use the
displacement-based formulation.

It is well known that the standard displacement-based formulation locks in the case of static problems
for shell-type structures, and the adverse effects of this overstiff stiffness matrix are also seen in transient
problems. Ever since the pioneering work of Pian et al. [Pian and Sumihara 1984; Pian and Tong 1986],
it has been known that hybrid stress-based formulations are much less susceptible to locking than the
standard displacement-based formulation. Our goal in this work, which is a generalization of the work

Keywords: nonlinear transient analysis, hybrid elements, energy-momentum conservation.
We gratefully acknowledge the financial support of the ISRO-IISc Space Technology Cell.
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in [Jog and Kelkar 2006] to transient problems, is to develop the formulation and implementation of an
energy-momentum conserving time stepping strategy for three-dimensional hexahedral and axisymmetric
hybrid stress elements.

As pointed out in [Jog and Kelkar 2006], since the treatment is fully three-dimensional, it can be used
(with no modification of the formulation) in tackling problems as diverse as shells with variable thickness,
laminated composites, ply drop-offs on the one hand, and problems with thick geometries on the other.
Material nonlinearities are also handled easily since no reduction of the three-dimensional constitutive
relations based on plane-stress assumptions or any other such assumption needs to be carried out.

In Section 2, we present a two-field variational formulation for the transient nonlinear elasticity prob-
lem that enforces the balance of the linear momentum and the traction boundary condition, and the strain-
displacement relations in a weak sense. These variational statements are then linearized and discretized
in Section 3 to develop an incremental total Lagrangian finite element formulation. Next we show that the
stress interpolation function for higher-order hybrid elements, which are derived based on static consid-
erations alone, have to be modified slightly in order to prevent instabilities that can arise during transient
solutions of some problems. Several challenging numerical examples which include problems involving
dynamic buckling, impact problems, complicated three-dimensional motions of shell-type structures, et
cetera are presented in Section 4. We shall see in this section that not only do we obtain good coarse-
mesh accuracy, but also obtain the solutions to many demanding problems with comparatively large time
steps. Section 5 presents the conclusions.

We note the conventions followed throughout this work. Scalars are denoted by lightface letters, while
vectors and higher-order tensors are denoted by boldface letters. A · denotes contraction over one index,
and a colon contraction over two indices. For example, t · u = ti ui , S : E = Si j Ei j , et cetera, with the
summation convention over repeated indices implied. If G(T ) is a tensor-valued function of a tensor T ,
the directional derivative of G evaluated at T in the direction U , defined by

DG(T )[U] := d
dα

G(T +αU)
∣∣∣
α=0

, (1)

will play a key role in the linearizations that are carried out during the finite element formulation.

2. Formulation

In this section, we first present the two-field variational formulation that is later used to derive the finite
element equations. Since the deformed configuration is not known in advance, all equations are written
with respect to the reference configuration Ω whose boundary Γ is composed of two open, disjoint
regions: Γ = Γu ∪Γt . The spatial variables in the reference and deformed configurations are denoted
by X and x, respectively. We assume a one-to-one mapping χ that takes X to x, that is, x = χ(X, t)=
X+u(X, t), where u is the displacement field. The deformation gradient is given by F :=∇χ = I +∇u,
where the gradient is with respect to the material coordinates X ; the traction t0 is given by FSn0; and
we let

Ē(u) := 1
2

[
(∇u)+ (∇u)T + (∇u)T (∇u)

]
. (2)

Within the context of the two-field variational formulation developed below, the strains are recovered
from the stresses by means of the constitutive relation
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E = Ê(S) on Ω . (3)

This does not imply that the stress-strain relation S= Ŝ(E) has to be analytically inverted — only that,
given the state of stress, we find the state of strain using the stress-strain relation as discussed in [Jog
and Kelkar 2006].

The two-field variational principle on which our finite element formulation is based enforces the
balance of linear momentum, traction boundary condition, and the strain-displacement relation in a weak
sense. If

Vu := {uδ ∈ H 1(Ω) : uδ = 0 on Γu}, VS := {Sδ ∈ L2(Ω) : ST
δ = Sδ on Ω},

denote the space of variations of the displacements and the second Piola–Kirchhoff stress, the two-field
variational formulation obtained after incorporating the transient terms in the formulation presented in
[Jog and Kelkar 2006] is given by∫

Ω

ρ0uδ ·
∂v
∂t

dΩ +
∫
Ω

S : Ēδ dΩ =
∫
Ω

ρ0uδ · b0 dΩ +
∫
Γt

uδ · t̄
0 dΓ, ∀uδ ∈ Vu, (4)∫

Ω

Sδ :
[
Ē(u)− Ê(S)

]
dΩ = 0, ∀Sδ ∈ VS, (5)

where Ē is given by (2), and its variation Ēδ is given by

Ēδ(u, uδ)= 1
2

[
FT
∇uδ + (∇uδ)T F

]
=

1
2

[
(∇uδ)+ (∇uδ)T + (∇u)T (∇uδ)+ (∇uδ)T (∇u)

]
. (6)

In this variational formulation, ρ0 = (det F)ρ is the density in the reference configuration in terms of
the density ρ in the deformed configuration, v is the velocity, n0 is the outward normal to Γ , t0

:=∥∥(cof F)n0
∥∥t are the tractions defined on the reference configuration in terms of the actual tractions

t on the deformed configuration, and b0(X, t) := b(χ(X, t)) is the body force field on the reference
configuration.

In what follows, we shall develop a time stepping strategy where we focus attention on a typical time
interval [tn, tn+1], and let t1 := tn+1− tn denote the corresponding time step size. The variables at times
tn and tn+1 will be denoted by the subscripts n and n+ 1, respectively. We consider the material to be
hyperelastic with strain-energy density function Ŵ (E), so that the stress is given by

S= ∂Ŵ
∂E .

Within the context of our two-field variational formulation, we propose the following time stepping
scheme which, as we shall subsequently show, conserves linear and angular momentum and energy in
the absence of loading:

xn+1− xn

t1
=

un+1− un

t1
=
vn + vn+1

2
, (7)

∫
Ω

ρ0uδ ·
(
vn+1−vn

t1

)
dΩ +

∫
Ω

(
(Ēδ)n+(Ēδ)n+1

2

)
: Salg dΩ

=

∫
Ω

ρ0uδ · balg dΩ +
∫
Γt

uδ · t̄alg dΓ, ∀uδ ∈ Vu, (8)
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Ω

Sδ :
[
Ē(um)− Ê(Sm)

]
dΩ = 0, m = n, n+ 1, ∀Sδ ∈ VS, (9)

where balg = (b0
n+ b0

n+1)/2, t̄alg = ( t̄
0
n+ t̄0

n+1)/2, and, in terms of Ẽ(ξ) := [(1− ξ)En+ (1+ ξ)En+1]/2,
the algorithmic stress Salg given by

Salg =
1
2

∫ 1

−1

∂W (Ẽ)
∂ Ẽ

dξ, (10)

This formula is similar to that presented in [Betsch and Steinmann 2001], except that here E denotes the
strain recovered from the constitutive relation, and not from the strain-displacement relation.

We now prove that as in the continuum problem, for the pure traction initial boundary-value problem,
in the absence of tractions and body forces ( t̄alg = balg = 0), the linear and angular momenta, and total
(kinetic plus strain) energy are conserved.

2.1. Discrete linear and angular momentum conservation. To prove that the discrete linear momentum
is conserved, choose for all time uδ = c in (8), where c is a constant vector. This choice is permissible
since the entire boundary is free of displacement constraints. With this choice (Ēδ)n = (Ēδ)n+1 = 0, and
we get

c ·
∫
Ω

ρ0(vn+1− vn)dΩ = 0,

which by virtue of the arbitrariness of c, proves the conservation of the discrete linear momentum.
To prove the conservation of the discrete angular momentum, Jn+1 = Jn , choose

uδ = c× (xn + xn+1)=W(xn + xn+1),

where W is the skew-symmetric tensor of which c is the axial vector. Substituting ∇uδ =W(Fn+ Fn+1)

into (6), we get

(Ēδ)n + (Ēδ)n+1 =
1
2

[
(Fn + Fn+1)

T W(Fn + Fn+1)+ (Fn + Fn+1)
T W T (Fn + Fn+1)

]
= 0.

Using the property ( p× q) · r = p · (q× r), the first term in (8) simplifies to∫
Ω

ρ0c · (xn + xn+1)×

(
vn+1− vn

t1

)
dΩ

=
1
t1

c ·
∫
Ω

ρ0
[
2(xn+1× vn+1− xn × vn)− (xn+1− xn)× (vn + vn+1)

]
dΩ =

2
t1

c · [Jn+1− Jn],

the last equality following by (7). Thus, with the given choice of uδ and in the absence of loading, (8)
reduces to

c · [Jn+1− Jn] = 0,

which by virtue of the arbitrariness of c leads to Jn+1 = Jn .
By multiplying the spatially discretized versions of (8) and (9) by the vectors[
c1 c2 c3 c1 c2 c3 . . .

]
1×N and

[
−c3z(1)2 + c2z(1)3 c3z(1)1 − c1z(1)3 −c2z(1)1 + c1z(1)2 . . .

]
1×N ,
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where N is the total number of displacement degrees of freedom, c1, c2, and c3 are constants, and
z(i) = x(i)n + x(i)n+1, where i denotes the node number, we can show that the linear and angular momenta
are conserved even after spatial discretization has been carried out.

2.2. Discrete energy conservation. To prove conservation of energy for a hyperelastic material with Salg

given by (10), we choose uδ = un+1− un = xn+1− xn . Substituting ∇uδ = Fn+1− Fn into (6), we get

(Ēδ)n + (Ēδ)n+1 = [FT
n+1 Fn+1− FT

n Fn] = 2[Ēn+1− Ēn]. (11)

On choosing Sδ = Salg in (9) (this choice is permissible since Salg ∈ VS), we have∫
Ω

[
Ē(un)− Ê(Sn)

]
: Salg dΩ = 0,

∫
Ω

[
Ē(un+1)− Ê(Sn+1)

]
: Salg dΩ = 0,

which leads to ∫
Ω

[
Ē(un+1)− Ē(un)

]
: Salg dΩ =

∫
Ω

[
Ê(Sn+1)− Ê(Sn)

]
: Salg dΩ. (12)

Using (11) and (12), the second term in (8) simplifies to∫
Ω

[
(Ēδ)n + (Ēδ)n+1

2

]
: Salg dΩ =

∫
Ω

[
Ê(Sn+1)− Ê(Sn)

]
: Salg

=

∫
Ω

∂ Ẽ
∂ξ
:

∫ 1

−1

∂W (Ẽ)
∂ Ẽ

dξ (by (10))

=

∫
Ω

∫ 1

−1

∂W (Ẽ(ξ))
∂ξ

dξ = [Ŵn+1− Ŵn].

On using (7), the first term in (8) simplifies to∫
Ω

ρ0(un+1− un)
(
vn+1−vn

t1

)
dΩ = 1

2

∫
Ω

ρ0(vn+1+ vn) · (vn+1− vn)dΩ

=
1
2

∫
Ω

ρ0(vn+1 · vn+1− vn · vn)dΩ = (K.E.)n+1− (K.E.)n.

Combining all the above results, we get from (8) in the absence of loading

(K.E.)n + Ŵn = (K.E.)n+1+ Ŵn+1, (13)

which is the desired result.
Ideally speaking, energy dissipation should be introduced into the numerical algorithm by using an

appropriate numerical approximation of the continuum viscoelastic (or viscoelastoplastic) constitutive
relation while formulating Salg. Thus, the algorithmic stress can be taken to be the sum of a conserv-
ing part Scons — as given by (10) — and a dissipative part Sdiss which is a numerical approximation of
the viscoelastic part, that is, Salg = Scons + Sdiss. For illustrative purposes, we use the Kelvin–Voight
viscoelastic model in this work, which is

Sdiss =
α
t1
(Ēn+1− Ēn), α > 0.
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Since (Ēn+1− Ēn) : (Ēn+1− Ēn)≥ 0, instead of (13), we now get (K.E.)n+1+ Ŵn+1 ≤ (K.E.)n + Ŵn ,
which shows that the total energy is a nonincreasing function of time. The energy conserving algorithm
is recovered simply by setting α to zero. Having an energy dissipation strategy may be important when
one is interested simply in the static steady-state solution, say in buckling problems where finding the
static solution directly may involve the use of complicated path-following algorithms. In such cases, the
use of the exact viscoelastic constitutive model is not needed.

On using (10), we get for a Saint-Venant–Kirchhoff material,

Scons =
1
2 (Sn + Sn+1).

For general nonlinear constitutive models, firstly it may be difficult to evaluate Salg analytically (note
that the same problem exists for the single-field formulation also), and secondly even if one is able to
analytically find Salg, in the fully discrete setting, the choice Sδ = Salg may not lie in the admissible
stress space. If we use a trapezoidal approximation for evaluating the integral in (10) (which is a first-
order approximation similar to the approximations being made for the velocity and acceleration) for
Scons, meaning Scons = (Sn + Sn+1)/2, then one can realize the selection Sδ = Salg. As we shall show
in Section 4 (see Section 4.7), this turns out to be a good approximation for nonlinear material models.
With this approximation, and with the use of (7), (8) and (9) can be written as

2
∫
Ω

ρ0uδ·
(un+1− un

t2
1

−
vn

t1

)
dΩ+

∫
Ω

((Ēδ)n+(Ēδ)n+1

2

)
:

( Sn+Sn+1

2
+
α(Ēn+1−Ēn)

t1

)
dΩ

=

∫
Ω

ρ0uδ · balg dΩ +
∫
Γt

uδ · t̄alg dΓ, ∀uδ ∈ Vu, (14)∫
Ω

Sδ :
[
Ē(un+1)− Ê(Sn+1)

]
dΩ = 0, ∀Sδ ∈ VS. (15)

3. Linearization and finite element approximation

3.1. Linearization of the variational formulation. With a view towards developing an iterative finite
element scheme, we now linearize the variational statements in (14) and (15). For simplicity, we consider
the loads to be dead loads (meaning loads that are independent of the deformation u); the case of live
loads such as pressure loading can be treated by using the results in [Jog and Kelkar 2006]. Let the
superscripts k and k+ 1 denote the values of the field variables at the k and (k+ 1)-th iterative steps, and
let (u1, S1) denote the increments in the displacement and stress fields at time tn+1. Then, keeping in
view that u and S are independent field variables, and by an application of the chain and product rules,
we have, for example,

(S : Ēδ)
k+1
n+1 ≈ (S : Ēδ)

k
n+1+Du(S : Ēδ)(uk

n+1, Sk
n+1)[u1]+DS(S : Ēδ)(uk

n+1, Sk
n+1)[S1]

= (S : Ēδ)
k
n+1+

[
(∇uδ)Sn+1

]
: (∇u1)+S1 : (Ēδ)n+1,

(16)

Sδ :
[
Ē(uk+1

n+1)− Ê(Sk+1
n+1)

]
≈ Sδ :

[
Ē(uk

n+1)− Ê(Sk
n+1)

]
+Sδ : D Ē(uk

n+1)[u1]−Sδ :C−1
[S1], (17)

where C−1
= ∂ Ê/∂S is the (fourth-order) material compliance tensor and

D Ē(uk
n+1)[u1] =

1
2

[
(∇u1)+ (∇u1)T + (∇uk

n+1)
T (∇u1)+ (∇u1)T (∇uk

n+1)
]
. (18)
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The other terms in (14) and (15) are linearized in a similar manner to get the incremental forms of the
variational equations.

For a computer implementation, it is convenient to express second-order tensors as vectors and fourth-
order tensors as matrices. Hence, we define the engineering strains, stresses, and displacement-increment
gradients as

Ec(S)=



E11

E22

E33

2E12

2E23

2E13


, Ēc(u)=



Ē11

Ē22

Ē33

2Ē12

2Ē23

2Ē13


, Sc =



S11

S22

S33

S12

S23

S13


, (∇u1)c =



(∇u1)11

(∇u1)12

(∇u1)13

(∇u1)21

(∇u1)22

(∇u1)23

(∇u1)31

(∇u1)32

(∇u1)33


, (19)

the engineering form of the tensor D Ē(uk)[u1] as (with summation over i implied)

{
D Ē(uk

n+1)[u1]
}

c =



(∇u1)11+ (∇uk
n+1)i1(∇u1)i1

(∇u1)22+ (∇uk
n+1)i2(∇u1)i2

(∇u1)33+ (∇uk
n+1)i3(∇u1)i3

(∇u1)12+ (∇u1)21+ (∇uk
n+1)i1(∇u1)i2+ (∇uk

n+1)i2(∇u1)i1

(∇u1)23+ (∇u1)32+ (∇uk
n+1)i2(∇u1)i3+ (∇uk

n+1)i3(∇u1)i2

(∇u1)13+ (∇u1)31+ (∇uk
n+1)i1(∇u1)i3+ (∇uk

n+1)i3(∇u1)i1


, (20)

the stress matrix as

SM =



S11 S12 S13 0 0 0 0 0 0
S12 S22 S23 0 0 0 0 0 0
S31 S32 S33 0 0 0 0 0 0
0 0 0 S11 S12 S13 0 0 0
0 0 0 S12 S22 S23 0 0 0
0 0 0 S31 S32 S33 0 0 0
0 0 0 0 0 0 S11 S12 S13

0 0 0 0 0 0 S12 S22 S23

0 0 0 0 0 0 S31 S32 S33


, (21)

and the engineering form of the material constitutive tensor as

Cc =



C1111 C1122 C1133 C1112 C1123 C1113

C2211 C2222 C2233 C2212 C2223 C2213

C3311 C3322 C3333 C3312 C3323 C3313

C1211 C1222 C1233 C1212 C1223 C1213

C2311 C2322 C2333 C2312 C2323 C2313

C1311 C1322 C1333 C1312 C1323 C1313


. (22)
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Note that [Ēδ(uk
n+1)]c =

{
D Ē(uk

n+1)[uδ]
}

c, where uδ is the variation of u.
In terms of these engineering quantities, the incremental form of the variational statements (14) and

(15) is

2
t2
1

∫
Ω

ρ0uT
δ u1dΩ

+
1
4

∫
Ω

(
(∇uδ)Tc

[
Sn + Sk

n+1+
2α
t1
(Ēk

n+1− Ēn)
]

M
(∇u1)c

+
[
D Ē(un + uk

n+1)[uδ]
]T

c

[
(S1)c+

2α
t1

[
D Ē(uk

n+1)[u1]
]

c

])
dΩ

=

∫
Ω

ρ0uT
δ balg dΩ +

∫
Γt

uT
δ t̄alg dΓ − 2

∫
Ω

ρ0uT
δ

(uk
n+1− un

t2
1

−
vn

t1

)
−

1
4

∫
Ω

[
D Ē(un+uk

n+1)[uδ]
]T

c

[
(Sn)c+(Sk

n+1)c+
2α
t1

[
(Ēk

n+1)c−(Ēn)c
]]

dΩ, ∀uδ ∈Vu, (23)∫
Ω

(Sδ)Tc
[
D Ē(uk

n+1)[u1]
]

c dΩ −
∫
Ω

(Sδ)Tc C−1
c (S1)c dΩ

=

∫
Ω

(Sδ)Tc
[
Êc(Sk

n+1)− Ēc(uk
n+1)

]
dΩ, ∀Sδ ∈ VS. (24)

3.2. Finite element discretization. To obtain the finite element matrices, we introduce the discretizations

u = Nû, uδ = Nûδ, u1 = Nû1, Sc = Pβ, (Sδ)c = Pβδ, (S1)c = Pβ1. (25)

The shape functions N are the standard isoparametric displacement shape functions. The choice of the
stress interpolation functions P is discussed in Section 3.3. Using these interpolations, we have

{D Ē(uk
n+1)[u1]}c = (BL)n+1û1, (∇u1)c = BNL û1,

{D Ē(uk
n+1)[uδ]}c = (BL)n+1ûδ, (∇uδ)c = BNL ûδ,

where (BL)n+1 = BL1+ BL2, with

BL1 =



N1,1 0 0 N2,1 0 0 . . .

0 N1,2 0 0 N2,2 0 . . .

0 0 N1,3 0 0 N2,3 . . .

N1,2 N1,1 0 N2,2 N2,1 0 . . .

0 N1,3 N1,2 0 N2,3 N2,2 . . .

N1,3 0 N1,1 N2,3 0 N2,1 . . .


,

BL2=



(∇uk
n+1)11 N1,1 (∇uk

n+1)21 N1,1 (∇uk
n+1)31 N1,1 . . .

(∇uk
n+1)12 N1,2 (∇uk

n+1)22 N1,2 (∇uk
n+1)32 N1,2 . . .

(∇uk
n+1)13 N1,3 (∇uk

n+1)23 N1,3 (∇uk
n+1)33 N1,3 . . .

(∇uk
n+1)12 N1,1+(∇uk

n+1)11 N1,2 (∇uk
n+1)22 N1,1+(∇uk

n+1)21 N1,2 (∇uk
n+1)32 N1,1+(∇uk

n+1)31 N1,2 . . .

(∇uk
n+1)13 N1,2+(∇uk

n+1)12 N1,3 (∇uk
n+1)23 N1,2+(∇uk

n+1)22 N1,3 (∇uk
n+1)33 N1,2+(∇uk

n+1)32 N1,3 . . .

(∇uk
n+1)11 N1,3+(∇uk

n+1)13 N1,1 (∇uk
n+1)21 N1,3+(∇uk

n+1)23 N1,1 (∇uk
n+1)31 N1,3+(∇uk

n+1)33 N1,1 . . .


,
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BNL =



N1,1 0 0 N2,1 0 0 . . .

N1,2 0 0 N2,2 0 0 . . .

N1,3 0 0 N2,3 0 0 . . .

0 N1,1 0 0 N2,1 0 . . .

0 N1,2 0 0 N2,2 0 . . .

0 N1,3 0 0 N2,3 0 . . .

0 0 N1,1 0 0 N2,1 . . .

0 0 N1,2 0 0 N2,2 . . .

0 0 N1,3 0 0 N2,3 . . .


.

Let M :=
∫
Ω ρ0 NT N dΩ . Using the arbitrariness of ûδ and βδ, the matrix form of the incremental

equations (23) and (24) can be written as

Qû1+ GT
1 β1 = f 1, G2û1− Hβ1 = f 2, (26)

where

Q=
2M
t2
1

+
1
4

∫
Ω

BT
NL

[
Sn+Sk

n+1+
2α
t1
(Ēk

n+1− Ēn)
]

M
BNL dΩ+

α

2t1

∫
Ωe

[
(BL)n+(BL)

k
n+1
]T
(BL)

k
n+1 dΩ,

G1 =
1
4

∫
Ω

PT [(BL)n + (BL)
k
n+1
]
dΩ,

G2 =

∫
Ω

PT (BL)
k
n+1 dΩ,

H =
∫
Ω

PT C−1
c P dΩ,

f 1=

∫
Ω

ρ0 NT balg dΩ+
∫
Γt

NT t̄alg dΓ−1
4

∫
Ω

[
(BL)n+(BL)

k
n+1
]T
[

Sn+Sk
n+1+

2α
t1
[Ēk

n+1−Ēn]

]
c
dΩ

−
2
t2
1

∫
Ω

ρ0 NT (uk
n+1− un)dΩ +

2
t1

∫
Ω

ρ0 NT vn dΩ,

f 2 =

∫
Ω

PT [Êc(Sk
n+1)− Ēc(uk

n+1)
]
dΩ. (27)

Eliminating β1 in (26), we get

K û1 = f1, (28)

where

K = Q+GT
1 H−1G2 and f1 = f 1+ GT

1 H−1 f 2. (29)

Due to the presence of the mass matrix M, the stiffness matrix K does not become singular even in
dynamic buckling problems, circumventing the need for special strategies such as arc-length methods
that are needed to find the load-deflection curve within the static framework.

Since the stress interpolation is allowed to be discontinuous across element boundaries, H−1 is com-
posed of distinct block matrices H−1

(e) associated with each element. Thus, the element stiffness matrix
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is given by
K (e) = Q(e)+ (G(e))

T
1 H−1

(e)(G(e))2,

where, the subscript e indicates that the integrations in Equations (27) are carried out over the element
domain Ωe instead of over Ω . Once u1 is obtained from (28), the stresses are updated using Sk+1

c =

Sk
c + (S1)c, where

(S1)(e)c = P (e)(β1)(e) = P (e)H−1
(e)[G2u1− f 2](e),

and, finally, the strains Ek+1 are obtained using the constitutive relation Sk+1
= Ŝ(Ek+1). The velocity

field vn+1 is recovered using (7).
In a standard displacement-based isoparametric formulation, the stiffness matrix is given by

K disp
(e) = Q(e)+

1
4

∫
Ωe

[
(BL)n + (BL)

k
n+1
]T

Cc(BL)
k
n+1 dΩ, (30)

while f1 is simply given by f 1. Thus, the difference between the displacement-based and hybrid
stiffness matrices is in the second term, similar to the static case. As we shall see in Section 4, this
difference is critical in ensuring that the hybrid elements perform much better compared to displacement-
based elements.

3.3. Choice of the stress interpolation function. For the 8-node hexahedral element, we use the stress
interpolation given in [Pian and Tong 1986; Sze and Fan 1996], while for the 4-node axisymmetric
element, we use the stress interpolation in [Jog and Annabattula 2006], which uses the same in-plane
stress interpolation as the Pian–Sumihara 4-node quadrilateral element [Pian and Sumihara 1984]. These
elements satisfy the inf-sup conditions [Xue et al. 1985].

Lee and Rhiu [1986] have developed a procedure for finding the stress interpolation for a 9-node
planar quadrilateral element which leads to

Sξξ = β1+β2ξ +β3η+β4ξη+β13ξη
2,

Sηη = β5+β6ξ +β7η+β8ξη+β14ξ
2η,

Sξη = β9+β10ξ +β11η+β12ξη.

The terms η2 and ξ 2 are excluded from the interpolations for Sξξ and Sηη, respectively, since their
exclusion gives rise to a zero-energy mode that is noncommunicable, and hence harmless. Although the
above interpolation works extremely well for statics problems, we have found that when used within
the context of a 9-node axisymmetric element, the exclusion of these terms causes an instability in the
solution of the bar-impact problem discussed in Section 4.5. When the interpolation is modified so as to
include these terms, meaning when we use

Sξξ = β1+β2ξ +β3η+β4ξη+β5η
2
+β6ξη

2, Sξη = β13+β14ξ +β15η+β16ξη,

Sηη = β7+β8ξ +β9η+β10ξη+β11ξ
2
+β12ξ

2η, Sθθ = β17+β18ξ +β19η+β20ξη,
(31)

the instability no longer occurs. One could also use an interpolation of the form

Sξξ = β1+β2ξ +β3η+β4ξη+β5η
2
+β6ξη

2, Sξη = β13+β14ξ +β15η,

Sηη = β7+β8ξ +β9η+β10ξη+β11ξ
2
+β12ξ

2η, Sθθ = β16+ (J12ξ + J22η)β17,
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where J12 and J22 denote entries of the Jacobian matrix as in [Jog and Annabattula 2006]; this has the
same normal stress interpolation as (31), it uses the minimum number of β parameters, and results in a
full-rank stiffness matrix (apart from rigid-body modes). However, the exclusion of lower-order terms
from the Sξη and Sθθ interpolations leads to bad results even on statics problems. Thus, although the
20β model does result in a slight stiffening compared to the 17β model of [Jog and Annabattula 2006],
it is more robust within the framework of transient problems. Of course, since a static solution can be
considered to be steady-state solution of a transient problem, one should use the 20β model within the
static framework also.

In a similar manner, for the 27-node hexahedral element developed in [Jog 2005], one now uses a
normal stress interpolation that is obtained by differentiating the displacement interpolation field. Leav-
ing out some terms may result in a full-rank stiffness matrix and may yield extremely good results on
statics problems, as shown in [Jog 2005], but results in the same instability as mentioned above in the
bar-impact problem. Carrying out this modification, we now use the following interpolation:

Sξξ = β1+β2ξ +β3η+β4ζ +β5ξη+β6ηζ +β7ξζ +β8ξηζ +β9ξη
2
+β10ξζ

2

+β11ξηζ
2
+β12ξη

2ζ +β13ξη
2ζ 2
+β14η

2
+β15ζ

2
+β16η

2ζ +β17ηζ
2
+β18η

2ζ 2,

Sηη = β19+β20ξ +β21η+β22ζ +β23ξη+β24ηζ +β25ξζ +β26ξηζ +β27ξ
2η+β28ηζ

2

+β29ξ
2ηζ +β30ξηζ

2
+β31ξ

2ηζ 2
+β32ξ

2
+β33ζ

2
+β34ξ

2ζ +β35ξζ
2
+β36ξ

2ζ 2,

Sζ ζ = β37+β38ξ +β39η+β40ζ +β41ξη+β42ηζ +β43ξζ +β44ξηζ +β45ξ
2ζ +β46η

2ζ

+β47ξ
2ηζ +β48ξη

2ζ +β49ξ
2η2ζ +β50ξ

2
+β51η

2
+β52ξ

2η+β53ξη
2
+β54ξ

2η2,

Sξη = β55+β56ξ +β57η+β58ζ +β59ξη+β60ηζ +β61ξζ +β62ξηζ +β63ξζ
2
+β64ηζ

2,

Sηζ = β65+β66ξ +β67η+β68ζ +β69ξη+β70ηζ +β71ξζ +β72ξηζ +β73ξ
2η+β74ξ

2ζ,

Sξζ = β75+β76ξ +β77η+β78ζ +β79ξη+β80ηζ +β81ξζ +β82ξηζ +β83ξη
2
+β84η

2ζ. (32)

The zero-energy modes that were earlier suppressed by the terms ξηζ 2, ξ 2ηζ , and ξη2ζ in the Sξη, Sηζ ,
and Sξζ interpolations are now suppressed due to the inclusion of the terms η2ζ 2, ξ 2ζ 2, and ξ 2η2 in the
Sξξ , Sηη, and Sζ ζ interpolations, and hence these terms are excluded from the shear interpolation.

Similarly to the axisymmetric case, one could develop a 75β element, which has the same normal
stress interpolation as above and which results in a full-rank stiffness matrix, as follows:

Sξξ = β1+β2ξ +β3η+β4ζ +β5ξη+β6ηζ +β7ξζ +β8ξηζ +β9ξη
2
+β10ξζ

2

+β11ξηζ
2
+β12ξη

2ζ +β13ξη
2ζ 2
+β14η

2
+β15ζ

2
+β16η

2ζ +β17ηζ
2
+β18η

2ζ 2,

Sηη = β19+β20ξ +β21η+β22ζ +β23ξη+β24ηζ +β25ξζ +β26ξηζ +β27ξ
2η+β28ηζ

2

+β29ξ
2ηζ +β30ξηζ

2
+β31ξ

2ηζ 2
+β32ξ

2
+β33ζ

2
+β34ξ

2ζ +β35ξζ
2
+β36ξ

2ζ 2,

Sζ ζ = β37+β38ξ +β39η+β40ζ +β41ξη+β42ηζ +β43ξζ +β44ξηζ +β45ξ
2ζ +β46η

2ζ

+β47ξ
2ηζ +β48ξη

2ζ +β49ξ
2η2ζ +β50ξ

2
+β51η

2
+β52ξ

2η+β53ξη
2
+β54ξ

2η2,

Sξη = β55+β56ξ +β57η+β58ζ +β59ξζ +β60ηζ +β73ηζ
2
+β74ξζ

2,

Sηζ = β61+β62ξ +β63η+β64ζ +β65ξη+β66ξζ +β74ξ
2ζ +β75ξ

2η,
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Sξζ = β67+β68ξ +β69η+β70ζ +β71ξη+β72ηζ +β73η
2ζ +β75ξη

2.

However, again, the exclusion of lower-order terms from the shear interpolation results in bad perfor-
mance even on statics problems, and hence the 84β interpolation given by (32) is recommended for both
statics and transient problems in view of its increased robustness in transient problems.

Note that the (numerical) instability problem discussed above does not arise in the case of lower-
order elements since there the normal stress interpolation is already consistent with the one obtained by
differentiating the displacement field.

4. Numerical examples

In this section, we present a wide variety of example problems, ranging from almost rigid to highly
flexible beam or shell-type structures, to show the high accuracy and convergence rate of the proposed
formulation. We shall denote the energy-momentum conserving displacement-based 27-node and the
hybrid 8 and 27-node elements by I27, H8, and H27, respectively. Comparisons are carried out with
different strategies presented in the literature by using coarser or equivalent meshes in the space domain,
and by using larger or equivalent time steps in the time domain.

As in [Jog and Kelkar 2006], in order to ensure a fair comparison of the results between the I27, H8,
and H27 elements, meshes with the same number of global degrees of freedom are used. For instance,
results obtained using 8N H8 elements are compared against the results obtained using N H27 (or
I27) elements, with identical nodal coordinate data and boundary conditions used in both meshes. For
shell-type problems, one H27/I27 element and two H8 elements are used along the thickness direction.
Uniform meshes and time steps are used in all the examples. Full integration is used to evaluate all the
integrals arising in the formulation of the elements, and the WSMP sparse matrix solver [Gupta 2000;
2002] is used to solve the system of equations. A Saint-Venant–Kirchhoff material model is used in all
the examples unless otherwise stated.

4.1. Flexible bar pendulum under gravity effect. This example was considered in [Yakoub and Shabana
2001]. A bar of length l = 1 m and uniform square cross-section (whose dimension is stated in each of
the subcases), pinned at one end, oscillates under the effect of gravity, as shown in Figure 1. The bar is
released at time t = 0 with initial velocity zero from a position θ = 90◦. The gravitational acceleration
g, the density of the bar ρ0, and the Poisson’s ratio are taken to be 9.81 m/s2, 7200 kg/m3, and 0.3,
respectively. We consider three cases, wherein for the first case, we start with an almost rigid pendulum,

θ
l

g   

x

Figure 1. Geometry of the pendulum.
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Figure 2. Comparison of the numerically obtained tip displacement of the pendulum
with the analytical solution under Case I.

and successively increase its flexibility in the next two cases. Consistent with the theory, the total energy
(kinetic, strain, and potential) is obtained to be a constant in all the three cases.

Case I. The Young’s modulus E and the cross-section dimension are taken to be 2× 109 N/m2 and
0.02 m, respectively. We use meshes of one H27 and I27 element, and an equivalent mesh for the H8
element. The simulation is carried out over the time interval [0, 2] seconds with t1 = 0.05 s. Since the
flexural rigidity E I is quite high, the motion is almost rigid, and hence we compare our solution with
the analytical solution for a rigid bar pendulum given by

θ(t)= 2 sin−1
[

1
√

2
sn
(√

3g
2l

t, 1
√

2

)]
,

where sn(· , ·) denotes the elliptic sine function. As can be seen from Figure 2, there is an almost perfect
match between the numerically and analytically obtained solutions. Yakoub and Shabana [2001, Figure
6] also obtain an almost identical solution with 4 elements (the time step is not stated).

A comparison of the iterations taken by the H27 and I27 elements is shown in Figure 3. It is evident
that the number of iterations taken by the hybrid element is quite lower.

Case II. The Young’s modulus E is decreased to a value 2×107 N/m2, while the cross-section dimensions
is kept the same. Four H27/I27 elements are used to discretize this flexible pendulum. A time step
t1 = 0.01 s is used. The x position of the tip of the pendulum obtained using H27/I27 elements is
shown in Figure 4. Eight I27 elements are required to get the same solution as obtained using four H27
elements. The coarse-mesh results of the H27 element match exactly with the ANSYS results presented
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Figure 3. Comparison of the number of iterations taken by the H27 and I27 elements
under Case I.
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Figure 4. Tip displacement obtained using the H27 and I27 elements under Case II.

in [Yakoub and Shabana 2001, Figure 7]. Figure 5 shows the time history of the transverse deflection of
the midpoint of the pendulum from the line joining the two ends of the pendulum, and again shows the
substantial difference between the results obtained by the H27 (which match almost perfectly with the
ANSYS results shown in [Yakoub and Shabana 2001, Figure 8]) and I27 elements.

Case III. The Young’s modulus is maintained at the same value as in Case II, but the cross-section
dimension is reduced to 0.01 m. Eight H27/I27 elements are used to discretize the pendulum and the
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Figure 5. Deflection of the midpoint of the pendulum obtained using the H27 and I27
elements under Case II.
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Figure 6. Deflection of the midpoint of the pendulum obtained using the H27 and I27
elements under Case III.

time step used is t1 = 0.01 s. Once again there is a very good agreement between the H27 results shown
in Figure 6 and the ANSYS results presented in [Yakoub and Shabana 2001, Figure 11].

4.2. Double pendulum under gravity effect. This example, which has been proposed in [Cuadrado et al.
2001], shows the performance of the algorithm in the case of rigid body motion with multiple links. The
double pendulum chosen for study has two identical links of length 1.5 m, and uniform rectangular cross-
section of width 0.018973 m and height 0.0632455 m. The acceleration due to gravity g, the Young’s
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Figure 7. Time evolution of the vertical coordinate of the free end of the double pendulum.

modulus E , the Poisson’s ratio, and the density are taken to be 9.81 m/s2, 7 × 1010 N/m2, 0.0, and
2000 kg/m3, respectively. The double pendulum starts from rest in the horizontal position and falls under
the action of gravity. The motion is studied in the interval [0, 5] seconds with t1 = 0.02 s (which is
twenty times that used in [Cuadrado et al. 2001]). Two H27/I27 elements (one element per link) are used
to carry out the simulation. The time evolution of the vertical coordinate of the free end of the double
pendulum is shown in Figure 7, which is found to agree very well with the corresponding result presented
in [Cuadrado et al. 2001, Figure 7]. The snapshots of the motion at one second intervals are shown in
Figure 8. As in the single link pendulum of the previous example, the total energy (kinetic, strain, and
potential) is conserved. Although the results obtained using the I27 element are almost identical to those
obtained using the H27 element, the total number of iterations is much larger (4 to 5 iterations per time
step for the H27 element versus 6 to 7 iterations per time step for the I27 element).

4.3. Dynamics of a tumbling cylinder. The dynamics of a short elastic cylinder, initially at rest, and
subjected to an impulsive load have been studied by several researchers [Simo and Tarnow 1994; Brank
et al. 1998; Balah and Al-Ghamedy 2005]. The geometry, finite element mesh for the H27 element,
material parameters, and loading conditions are shown in Figure 9. The loads mentioned in Figure 9
are distributed across the height in a consistent manner. The simulation is carried out over the time
interval [0, 25] seconds with a time step t1 = 0.02 s. The cylinder is discretized using a mesh of 2× 16
H27/I27 elements, and an equivalent mesh for H8 elements. The sequence of deformed shapes at 2
second intervals is depicted in Figure 10. Figures 11, 12, and 13 show the time history of the linear
and angular momentum vector components, and the total (kinetic and strain) energy; the results of the
H27 element are in very good agreement with the results presented in [Brank et al. 1998; Balah and
Al-Ghamedy 2005]. In accordance with the design of the algorithm, these quantities are conserved after
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Figure 8. Snapshots of the motion of the double pendulum at one second intervals.
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Figure 9. Short cylinder subjected to an impulsive load: geometry, material parameters,
and loading conditions.

the removal of the external loads. Although the same linear momentum values are obtained using the H8
and I27/H27 elements, the angular momentum and energy values predicted by the H8 and I27 elements
are different than those predicted by the H27 element, which indicates that they are susceptible to locking.
One additional level of spatial refinement of the H8 element mesh yielded the same values of momentum
and energy as the H27 element mesh. The algorithm also gave almost the same solution for t1 = 0.03 s.
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Figure 10. Sequence of deformed shapes of the tumbling cylinder at 2 second intervals.
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Figure 11. Tumbling cylinder: time history of linear momentum.

0 5 10 15 20 25
−200

−150

−100

−50

0

50

100

150

200

Time (s)

A
n

g
u

la
r 

M
o

m
e

n
tu

m

 

 

Jy

Jx

Jz

                  H8

                H27

                 I27

Figure 12. Tumbling cylinder: time history of angular momentum.
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Figure 13. Tumbling cylinder: time history of total energy.

4.4. Snap-through of a cylindrical shell under concentrated vertex load. This dynamic-buckling prob-
lem has been studied by several researchers [Kuhl and Ramm 1996; 1999; Balah and Al-Ghamedy 2005].
The geometry, boundary conditions, material properties, and loading are shown in Figure 14. Two edges
are simply supported as shown, and the load R(t) is applied at the center of the panel. The panel first
undergoes snap-through, and then shows high-frequency dominated behavior in the postbuckling phase.
Due to symmetry, only one fourth of the domain is discretized using 4× 4× 1 H27/I27 elements, and
8× 8× 2 H8 elements, and we use a time step of t1 = 0.001 s as in [Balah and Al-Ghamedy 2005]. The
solutions obtained using the H27/I27 and H8 elements are shown in Figure 15; the H8 element results are
in very good agreement with the third-order shear deformation theory-based element results presented in
[Balah and Al-Ghamedy 2005, Figure 8]. Once again we see that the I27 and H8 elements are susceptible
to locking. Refining the H8 element mesh to 16× 16× 2 yields the same solution as the H27 element
solution. We note that unlike Kuhl and Ramm [1999], we obtain the solution for t1 = 0.001 s without
adding any numerical dissipation or using reduced integration, and the number of iterations was also
much less (around 6 iterations per time step). The snapshots of the snap-through process are shown in
Figure 16.

4.5. Bar impact problem. This example has been considered in [Bauchau and Joo 1999]. A bar of
length 4 m, square cross-section of dimension 1, Young’s modulus E = 1 N/m2, Poisson’s ratio ν = 0,
and density ρ0 = 1 kg/m3, travelling at a constant longitudinal velocity v0 = 10−3 m/s impacts a rigid wall
at time t = 0. This impact results in a compressive stress wave which propagates with constant velocity
from the left end of the bar to the right end. At time t = 0, all the nodes except those on the impacting
face are given an initial velocity 10−3 m/s, and at subsequent times, the nodes on the impacting face
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Figure 14. Dynamic buckling of a panel: geometry, material parameters and loading conditions.
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Figure 15. Snap-through of a panel: time history of the vertical displacement under the
load for t1 = 0.001.

are constrained. A time step of t1 = 0.01 s is used. Meshes of 400 and 800 H27/I27 elements (along
the length) and 1600 H8 elements are used to discretize the structure. Figure 17 shows the axial stress
distribution for x ∈ [2, 3] meters (for greater clarity) at t = 2.56 s, at which time the compressive stress
wave is located at x = 2.56 m. Identical results as with the H27 element are obtained with the I27
element. In contrast with the results shown in [Bauchau and Joo 1999, Figure 14], where increasing the
spatial refinement resulted in an increase in the error, with our formulation, the errors remain the same
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Figure 16. Panel problem: snapshots of the snap-through process.

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
−14

−12

−10

−8

−6

−4

−2

0

2
x 10

−4

x (m)

A
x
ia

l 
S

tr
e

s
s
 (

N
/m

2
)

 

 

400 H27

800 H27

1600 H8

Analytical

Figure 17. Bar impact problem: axial stress at time t = 2.56 s obtained with the energy-
conserving scheme.

with spatial mesh refinement (keeping t1 fixed), thus bypassing the need for high-frequency dissipation
(although, of course, introducing dissipation does smooth out the solution as discussed below). Reducing
the t1 resulted in reduced amplitude and increased frequency in the oscillations. Figure 18 shows the
temporal variation of the axial stress at x = 1 m obtained using the energy-conserving scheme.

The results obtained with the energy-dissipative scheme with α set to 0.001 are shown in Figure 19.
The oscillations are damped out, and the solution is quite close to the exact solution. The decay in energy
as a function of time is shown in Figure 20.
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Figure 18. Bar impact problem: temporal variation of the axial stress at x = 1 m ob-
tained with the 800 element H27 mesh and the energy-conserving scheme.
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Figure 19. Bar impact problem: axial stress at time t = 2.56 s obtained with the energy-
dissipative scheme.

The instabilities that arise in the solution with an inappropriate choice of the stress interpolation (see
Section 3.3) occur around t = 1.6 s in the region near the impacting surface.
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4.6. Motion of toss rule in space. This example shows the performance of the proposed algorithm when
the motion is three-dimensional, and the forces are such that they cause bending, shear, and torsional
deformations, and translational and rotational motion of the body [Kuhl and Ramm 1996; 1999]. The
geometry, loads, and material properties are shown in Figure 21. The same time step as in [Kuhl and
Ramm 1996; 1999], t1 = 50× 10−6, is used, and a mesh of 6× 1 H27 elements is used. Simulations
are also carried out using a refined mesh of 15× 2 H27/I27 elements. The snapshots of the results until
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Figure 21. Toss rule problem: geometry, loads and material properties.
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Figure 22. Motion of the toss rule obtained using a 6× 1 H27 mesh (top), a 15× 2 H27
mesh (middle) and a 15× 2 I27 mesh (bottom).

t = 0.04 s at intervals of 0.004 s are shown in Figure 22, and there is almost perfect agreement with the
results presented in [Kuhl and Ramm 1999] until t = 0.032 s, and slight deviations thereafter. A possible
explanation for the deviations might be that Kuhl and Rahm use numerical dissipation to compensate for
the energy increase that they encounter due to the use of reduced integration (to prevent shear locking
of their shell element). In contrast, no shear locking is observed even with the coarse H27 mesh, and
the linear momentum, angular momentum, and energy are perfectly conserved after the removal of the
loads, as seen in Figure 23. Note that although the energy plot obtained using the I27 element is almost
identical to that obtained using the H27 element, the motions are very different (compare the last two
parts of Figure 22). This is because the total energy is obtained by integrating over the entire domain, so
that different displacement and velocity fields can yield almost identical total energy values.



AN ENERGY-MOMENTUM CONSERVING ALGORITHM FOR NONLINEAR TRANSIENT ANALYSIS 181

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

1

2

3

4

5

Li
ne

ar
 m

om
en

tu
m

 (
N

−
s)

 

 

L
x

L
y
 = L

z

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

A
ng

ul
ar

 m
om

en
tu

m
 (

N
m

−
s)

−J
y

J
z

−J
x

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

50

100

150

200

250

300

Time (s)

E
ne

rg
y 

(J
)

Figure 23. Toss rule problem: time history of the linear momentum (top), angular mo-
mentum (middle) and energy (bottom: H8, H27 and I27 elements).



182 C. S. JOG AND PHANI MOTAMARRI

8
0 1 t

q(t)

q(t)

q(t)

q(t)

175

0.5

2 33
2

2

A

Figure 24. L-block problem: geometry and loading conditions.

4.7. L-block problem. This problem, paralleling one in [Betsch and Steinmann 2001], demonstrates the
performance of the algorithm when the material model is nonlinear. An L-block under plane strain
conditions is subjected to the loads shown in Figure 24. A compressible neoHookean material model
with the strain-energy density function and the corresponding stress-strain relation given by

Ŵ = λ
8
(ln det C)2+ µ

2
(tr C − 3− ln det C), S= λ

2
(ln det C)C−1

+µ(I −C−1).

is used with λ = 2000 and µ = 1000. The density is ρ0 = 1. A uniform mesh of 144 H27 elements
is used to discretize the structure. Since the material is extremely flexible, a time step of t1 = 10−4 is
used to capture the transients. The time histories of the x component of the linear momentum, the z
component of the angular momentum, and the total (kinetic and strain) energy are shown in Figure 25.
These values are seen to be constant after the removal of the loading. As seen in the bottom part of the
figure, the energy value after the removal of the loads is 3340, while the corresponding value obtained
using a coarser mesh of 36 uniform elements is 3328, showing that our mesh density is sufficient to
capture the transient behavior. The (ux , u y) displacements of the midpoint of the top edge (point A in
Figure 24) as a function of time are shown in Figure 26.

The example presented in [Betsch and Steinmann 2001] had the same geometry, but the parameters
were λ = 1000, µ = 500, and ρ0 = 0.5. The solution given there is an unconverged solution, with a
final energy value of roughly 3500, while we get a value of around 7700 with the 144-element mesh.
However, a very fine time step is required to obtain this solution, and hence we have used the higher
values of the material parameters given above.

5. Conclusions

A new energy-momentum conserving hybrid-stress formulation for conducting the transient analysis
of nonlinear elastic structures has been presented. Since hybrid elements are less susceptible to lock-
ing compared to displacement-based elements, they can be used to conduct the transient analysis of
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Figure 26. L-block problem: (ux , u y) displacements of point A.

beams/plates/shells, as well as “chunky” 3D structures, in an economical way. Good coarse-mesh ac-
curacy is obtained even on demanding problems such as the panel buckling and toss rule problems,
and since there appears to be no degradation in accuracy with mesh refinement (for a given time step),
as opposed to some other strategies presented in the literature, an algorithmic modification that would
dissipate higher frequencies introduced due to mesh refinement does not appear to be necessary. An
exact tangent stiffness matrix has been formulated and used, resulting in a quadratic rate of convergence
in the vicinity of the solution, and thereby resulting in a reduced number of iterations per time step
compared with other strategies. Finally, since the stress parameters are condensed out at an element
level, and the user works only with displacement degrees of freedom, the same input data structure used
for standard displacement-based isoparametric hexahedral elements can also be used for these elements.
Extensions of the current work to large-deformation plasticity and to contact problems would obviously
be of interest.

References

[Armero and Romero 2001a] F. Armero and I. Romero, “On the formulation of high-frequency dissipative time-stepping al-
gorithms for nonlinear dynamics, I: Low-order methods for two model problems and nonlinear elastodynamics”, Comput.
Methods Appl. Mech. Eng. 190:20-21 (2001), 2603–2649.

[Armero and Romero 2001b] F. Armero and I. Romero, “On the formulation of high-frequency dissipative time-stepping
algorithms for nonlinear dynamics, II: Second-order methods”, Comput. Methods Appl. Mech. Eng. 190:51-52 (2001), 6783–
6824.

[Balah and Al-Ghamedy 2005] M. Balah and H. N. Al-Ghamedy, “Energy-momentum conserving algorithm for nonlinear
dynamics of laminated shells based on a third-order shear deformation theory”, J. Eng. Mech. (ASCE) 131:1 (2005), 12–22.

[Bauchau and Joo 1999] O. A. Bauchau and T. Joo, “Computational schemes for non-linear elasto-dynamics”, Int. J. Numer.
Methods Eng. 45:6 (1999), 693–719.

[Bauchau et al. 2003] O. A. Bauchau, C. L. Bottasso, and L. Trainelli, “Robust integration schemes for flexible multibody
systems”, Comput. Methods Appl. Mech. Eng. 192:3-4 (2003), 395–420.



AN ENERGY-MOMENTUM CONSERVING ALGORITHM FOR NONLINEAR TRANSIENT ANALYSIS 185

[Betsch and Steinmann 2001] P. Betsch and P. Steinmann, “Conservation properties of a time FE method, II: Time-stepping
schemes for non-linear elastodynamics”, Int. J. Numer. Methods Eng. 50:8 (2001), 1931–1955.

[Brank et al. 1998] B. Brank, L. Briseghella, N. Tonello, and F. B. Damjanić, “On non-linear dynamics of shells: implemen-
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