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XU WANG

We consider a solitary circular elastic inclusion bonded to an infinite elastic matrix through a linear
viscous interface. Here the viscous interface with vanishing thickness can simulate the Nabarro–Herring
or Coble creep of a thin interphase layer between the fiber and the matrix. The interface drag parameter
is varied along the interface to reflect the real thickening and thinning of the interphase layer. In partic-
ular, we consider a special form of the interface function that yields closed-form solutions in terms of
elementary functions under four loading conditions: the matrix is subjected to remote uniform antiplane
shearing; a screw dislocation is located in the matrix; a screw dislocation is located inside the inclusion;
and uniform eigenstrains are imposed on the inclusion.

Our results show that a nonuniform interface parameter will induce an intrinsically nonuniform stress
field inside the inclusion when the matrix is subjected to remote uniform shearing or when uniform
eigenstrains are imposed on the inclusion, and will also result in a noncentral image force acting on the
screw dislocation. In addition, the nonuniformity of the interface will increase the characteristic time
of the composite. More interestingly our results show that there coexist at the same time a transient
stable and another transient unstable equilibrium positions for a screw dislocation in the matrix when
the viscous interface is extremely nonuniform and when the inclusion is stiffer than the matrix. Also
discussed is the overall time-dependent shear modulus of the fibrous composite by using the Mori–
Tanaka mean-field method.

Notation

w Out-of-plane displacement
σzx , σzy Stress components in the Cartesian coordinate system
σzr , σzθ Stress components in the polar coordinate system
γzx , γzy Engineering shear strains
µ Shear modulus
R Radius of the circular inclusion
β(θ) Nonuniform interface drag parameter
t Time
z Complex variable
c Volume fraction of the fiber
b Burgers vector
Fr , Fθ Image force components on the dislocation in polar coordinates

Superscript (1) and (2) denote, respectively, the physical quantities in the inclusion and matrix.

Keywords: fibrous composites, creep, interface, nonuniform interface drag parameter.
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1. Introduction

In fibrous composites an interphase layer is often introduced between the inclusion (fiber) and the matrix
to improve the attachment between the inclusion and the matrix, and to reduce the material mismatch
induced stress concentration at the interface (see [Ru 1999] and the references cited therein). Under
some conditions (for example at high temperatures), the creep behavior of the interphase layer should be
considered [Kim and McMeeking 1995; Fan and Wang 2003]. It is further assumed that the interphase
layer is creeping in the linear region controlled by Nabarro–Herring or Coble creep which is diffusion-
controlled [Frost and Ashby 1982; Kim and McMeeking 1995]. The creep behavior of the interphase
layer can be described by τ = ηγ̇ , where τ is the shear stress, η is the viscosity and γ̇ is the shear
strain rate. In this research it is assumed that the thickness h of the interphase layer is much smaller
that the radius R of the fiber, that is, h � R. As a result, γ̇ = δ̇/h, where δ̇ is the sliding velocity
(the differentiation of the relative sliding with respect to the time t). Consequently the slip boundary
condition on the interface can be written as τ = βδ̇, with β = η/h ≥ 0 being the interface drag parameter,
which is identical to the constitutive law for a viscous interface. If we take into consideration the fact
that the thickening and thinning of the interphase layer is quite possible during creep flow [Kim and
McMeeking 1995], then β = β(θ), with θ being the polar angle, is nonuniform along the interface. The
aim of this research is to investigate the influence of the nonuniformity of β = β(θ) on the response of
the fibrous composite with a viscous (or time-dependent sliding) interface. In general it is only possible
to derive series form solutions when β(θ) takes an arbitrary form. Here we focus on the special form
1/β(θ)= a0+ a1eiθ

+ ā1e−iθ , with a0 ≥ 2|a1|, for which closed-form solutions in terms of elementary
functions still exist.

2. Basic formulae

We consider a domain in R2, infinite in extent, containing a solitary circular elastic inclusion of radius
R with elastic properties different from those of the surrounding matrix (Figure 1). The linearly elastic
materials occupying the inclusion and the matrix are assumed to be homogeneous and isotropic with
associated shear moduli µ1 and µ2. In this research we ignore the inertia effect for both the inclusion
and the matrix, and the two-phase composite is under antiplane shear deformations. Consequently the

circular inclusion
(µ1)

nonuniform
viscous interface

matrix
(µ2)

R

Figure 1. A circular elastic inclusion bonded to an infinite elastic matrix through a
nonuniform viscous interface.
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out-of-plane displacement w, the stress components σzx , σzy in the Cartesian coordinate system, and the
stress components σzr , σzθ in the polar coordinate system can be expressed in terms of a single analytic
function f (z, t) as

w = Im f (z, t), (1)

σzy + iσzx = µ f ′(z, t), (2)

σzθ + iσzr = µ
z
|z|

f ′(z, t), (3)

where t is the real time variable, whilst z = x + iy = reiθ is the complex variable, and f ′(z, t) =
∂ f (z, t)/∂z. The appearance of the real time variable t in the analytic function f is due to the influence
of the viscous interface between the inclusion and the surrounding matrix.

3. General solutions

In this section we will derive general solutions for the loading case in which the matrix is subjected to
an arbitrary type singularity (for example, remote uniform loading or a screw dislocation in the matrix).
It follows from the Introduction that the boundary conditions on the interface can be expressed as

σ (1)zr = σ
(2)
zr = β(θ)(ẇ

(2)
− ẇ(1)), r = R and t > 0, (4)

where the interface drag parameter β(θ) (≥ 0) is a periodic function of the polar angle θ . In this research
it is further assumed that β(θ) takes the following special form:

1
β(θ)

= a0+ a1eiθ
+ ā1e−iθ , (5)

where a0 ≥ 2|a1| to ensure a nonnegative value of β(θ).
The boundary conditions in (4) can also be equivalently expressed in terms of f1(z, t) defined in the

circular inclusion and f2(z, t) defined in the matrix as

µ1 f +1 (z, t)+µ1 f̄ −1
( R2

z
, t
)
= µ2 f −2 (z, t)+µ2 f̄ +2

( R2

z
, t
)
,

ḟ −2 (z, t)− ˙̄f +2
( R2

z
, t
)
− ḟ +1 (z, t)+ ˙̄f −1

( R2

z
, t
)
=

µ1
β(θ)R

(
z f
′
+

1 (z, t)− R2

z
f̄
′
−

1

( R2

z
, t
))

(|z| = R).

(6)

It follows from (6)1 that

f2(z, t)= µ1
µ2

f̄1

( R2

z
, t
)
+ f0(z)− f̄0

( R2

z

)
, f̄2

( R2

z
, t
)
=
µ1
µ2

f1(z, t)+ f̄0

( R2

z

)
− f0(z), (7)

where f0(z), which is time-independent, is the complex potential for a singularity in an infinite homoge-
neous material with shear modulus µ2. For example, when the matrix is subjected to uniform loading at
infinity, f0(z) is given by

f0(z)=
σ∞zy + iσ∞zx

µ2
z. (8)
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When the matrix is only subjected to a screw dislocation with Burgers vector b at z = z0 = x0+ iy0,
then f0(z) is

f0(z)=
b

2π
ln(z− z0). (9)

Substituting (7) into (6)2 and eliminating f −2 (z) and f̄ +2 (R
2/z), we finally arrive at

ḟ +1 (z, t)+ µ1µ2
Rη(θ)(µ1+µ2)

z f
′
+

1 (z, t)= ˙̄f −1
( R2

z
, t
)
+

µ1µ2
Rβ(θ)(µ1+µ2)

R2

z
f̄
′
−

1

( R2

z
, t
)
(|z| = R). (10)

In view of the expression (5) for β(θ), it follows that the left-hand side of (10) is analytic within
the circle |z| = R, while the right-hand side of (10) is analytic outside the circle, including the point
at infinity. By applying Liouville’s theorem, we arrive at the following partial differential equation for
f1(z, t):

ḟ1(z, t)+
µ1µ2

Rβ(θ)(µ1+µ2)
z f ′1(z, t)= 0, (|z|< R). (11)

The above equation is still difficult to solve in its present form in view of the fact that β(θ) is varied
along the circular interface. In order to solve the above equation, we introduce the following conformal
mapping function

z = m(ζ )=
ζ − ρ

(ρ̄/R2)ζ − 1
, (12)

where
ρ =−

2ā1

a0+

√
a2

0 − 4|a1|2
R (|ρ|< R). (13)

Now (11) can be simplified in the ζ -domain as

ḟ1(ζ, t)+ λζ f ′1(ζ, t)= 0 (|ζ |< R), (14)

where

λ=

√
a2

0 − 4|a1|2µ1µ2

R(µ1+µ2)
. (15)

In writing (14), for convenience f1(z, t)= f1(m(ζ ), t)= f1(ζ, t) has been adopted. It is observed that
not only a0 but also a1, which characterizes the nonuniformity of the interface, enters the expression of
λ, which is the inverse of the characteristic time t0. The nonuniformity of the interface will increase the
characteristic time. The general solution to (14) can be easily obtained as f1(ζ, t)= f1(exp(−λt)ζ, 0).
Finally, the general solution in the original z-plane can be given as

f1(z, t)= f1

(
z(R2 exp(−λt)− ρρ̄)+ ρR2(1− exp(−λt))

zρ̄(exp(−λt)− 1)+ R2− ρρ̄ exp(−λt)
, 0
)

(|z|< R), (16)

which indicates that once the initial value f1(z, 0) is known, it is enough to replace the complex variable
z by

z(R2 exp(−λt)− ρρ̄)+ ρR2
− ρR2 exp(−λt)

zρ̄(exp(−λt)− 1)+ R2− ρρ̄ exp(−λt)
to arrive at f1(z, t).
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At the initial time t = 0 the interface is a perfect one due to the fact that at t = 0 the displacement
across the interface has no time to experience any jump [Fan and Wang 2003]. As a result we can obtain
the initial value f1(z, 0) as

f1(z, 0)=
2µ2

µ1+µ2
f0(z). (17)

Then f1(z, t) in (16) can be more specifically expressed as

f1(z, t)=
2µ2

µ1+µ2
f0

(
z(R2 exp(−λt)− ρρ̄)+ ρR2(1− exp(−λt))

zρ̄(exp(−λt)− 1)+ R2− ρρ̄ exp(−λt)

)
(|z|< R). (18)

Substituting this into (7)1, we arrive at the expression of f2(z, t) as

f2(z, t)=
2µ1

µ1+µ2
f0

(
z̄ρR2(1− exp(−λt))+ R2(R2 exp(−λt)− ρρ̄)

z̄(R2− ρρ̄ exp(−λt))+ ρ̄R2(exp(−λt)− 1)

)
+ f0(z)− f̄0

( R2

z

)
(|z|> R). (19)

4. Specific results for an arbitrary singularity in the matrix

We now address some specific loadings to demonstrate the general solutions obtained.

4.1. Remote uniform loading. When the matrix is subjected to uniform loading, it follows from (8) for
the specific expression of f0(z) and the general solutions (18) and (19) that

f1(z, t)=
2(σ∞zy + iσ∞zx )

µ1+µ2

z(R2 exp(−λt)− ρρ̄)+ ρR2(1− exp(−λt))
zρ̄(exp(−λt)− 1)+ R2− ρρ̄ exp(−λt)

(|z|< R), (20)

f2(z, t)=
2µ1(σ

∞
zy − iσ∞zx )

µ2(µ1+µ2)

zρ̄R2(1− exp(−λt))+ R2(R2 exp(−λt)− ρρ̄)
z(R2− ρρ̄ exp(−λt))+ ρR2(exp(−λt)− 1)

−
σ∞zy − iσ∞zx

µ2

R2

z
+
σ∞zy + iσ∞zx

µ2
z (|z|> R). (21)

Thus the time-dependent stresses in the two-phase composite can be easily obtained as

σ (1)zy + iσ (1)zx =
2µ1(σ

∞
zy + iσ∞zx )

µ1+µ2

(R2
− ρρ̄)2 exp(−λt)

(zρ̄(exp(−λt)− 1)+ R2− ρρ̄ exp(−λt))2
(|z|< R), (22)

σ (2)zy + iσ (2)zx = (σ
∞

zy − iσ∞zx )

(
R2

z2 −
2µ1

(µ1+µ2)

R2(R2
− ρρ̄)2 exp(−λt)

(z(R2− ρρ̄ exp(−λt))+ ρR2(exp(−λt)− 1))2

)
+ σ∞zy + iσ∞zx (|z|> R). (23)

Clearly the internal stress field is intrinsically nonuniform when t > 0 due to the nonuniformity of
the sliding interface (ρ 6= 0). To highlight this, we show in Figure 2 the nonuniform distributions of the
internal stress components

σ̃zy =
µ1+µ2

2µ1

σ
(1)
zy

σ∞zy
and σ̃zx =

µ1+µ2

2µ1

σ
(1)
zx

σ∞zy
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Figure 2. Nonuniform distribution of the internal stress components σ̃zy and σ̃zx along
the circular interface z = Reiθ at times t̃ = λt = 0, 0.2, 0.5, 1, 2, 5, with ρ = 0.5R, when
the matrix is only subjected to σ∞zy .

along the circular interface z = Reiθ at six different times t̃ = λt = 0, 0.2, 0.5, 1, 2, 5 with ρ = 0.5R
when the matrix is only subjected to σ∞zy . It is clearly observed that the internal stresses are nonuniformly
distributed along the interface when t > 0 and that nonzero σ (1)zx will also be induced by σ∞zy when t > 0
(notice that σ∞zy will not induce the stress component σ (1)zx when the interface is uniform). In addition
the internal stress level of σ̃zy will monotonically decrease as the time evolves, whilst that of σ̃zx attains
a maximum value at a certain moment. When t→∞ the internal stresses approach zero since the fact
that the viscous interface will finally become a free-sliding one which does not sustain any shear force.

The time-dependent average stresses σ (1)zy and σ (1)zx within the circular inclusion, which are equivalent
to the stresses at the center of the circular inclusion [Ru and Schiavone 1997], can be obtained as

σ =
σ
(1)
zy + iσ (1)zx

σ∞zy + iσ∞zx
=

2µ1

µ1+µ2

(R2
− ρρ̄)2 exp(−λt)

(R2− ρρ̄ exp(−λt))2
, (24)

which is a monotonically decreasing function of the time t .
The displacement jump across the circular interface can be obtained as

1w = w(2)−w(1)

=
2R|Reiθ

− ρ|2(1− exp(−λt))
µ2

Im
σ∞zy + iσ∞zx

e−iθ (R2− ρρ̄ exp(−λt))− Rρ̄(1− exp(−λt))
. (25)

The obtained results for an isolated inclusion can be further employed to predict the effective properties
of a two-phase composite consisting of equal-sized circular isotropic cylinders (with shear modulus µ1)

of radius R randomly dispersed in a homogeneous isotropic matrix of shear modulus µ2. Here we adopt
the Mori–Tanaka mean field method [Mori and Tanaka 1973; He and Lim 2001] to derive the effective
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properties of the composite. Somewhat to our surprise, we find that the overall behavior of the fibrous
composite under longitudinal shearing is still isotropic even though the interface drag parameter β(θ)
is varied along the interface. In addition the overall constitutive law for the fibrous composite can be
represented by

〈σzy〉 = µc〈γzy〉, 〈σzx 〉 = µc〈γzx 〉, (26)

where 〈∗〉 stands for the average value, µc stands for the time-dependent effective shear modulus. Here
γzy = ∂w/∂y and γzx = ∂w/∂x are the engineering shear strains in view of the fact that the in-plane
displacements are zero.

In order to describe the overall behavior of the composite, we focus on a representative volume element
(RVE). In addition we assume that the RVE is subjected to the antiplane shearing σ∞zy . The volume-
averaged values within the RVE can be proved to be [He and Lim 2001]

〈σzy〉 = c〈σzy〉 f + (1− c)〈σzy〉m,

〈γzy〉 = c〈γzy〉 f + (1− c)〈γzy〉m +
c
πR2

∫
l
1wn̂2dl,

(27)

where c is the volume fraction of the fiber, 〈 〉 f and 〈 〉m refer to the averages over volumes of the
fiber and matrix respectively, the line integral is taken along the perimeter l of a typical fiber, 1w is
the displacement jump across the interface, and n̂2 is the y-component of the unit normal vector on the
interface in the outward direction with respect to the fiber. In addition 〈σzy〉 = σ

∞
zy . Here the Mori–Tanaka

mean-field approximation is adopted to evaluate 〈σzy〉 f . Under this approximation 〈σzy〉 f is equal to the
average value of σzy in an isolated fiber embedded in an infinitely extended matrix that is subjected to
the shear stress 〈σzy〉m at infinity. Then it follows from (24) and (27)1 that

〈σzy〉m =
σ∞zy

1−
(

c− c
2µ1

µ1+µ2

(R2
− ρρ̄)2 exp(−λt)

(R2− ρρ̄ exp(−λt))2

) . (28)

The average shear strain in the fiber and in the matrix can be found as

〈γzy〉 f =
〈σzy〉 f

µ1
, 〈γzy〉m =

〈σzy〉m

µ2
, (29)

and the surface integral in (27)2 can be finally carried out as follows

1
πR2

∫
l
1wn2dl = 2〈σzy〉m

(1− exp(−λt))
µ2

R4
− |ρ|4 exp(−λt)

(R2− |ρ|2 exp(−λt))2
. (30)

Equation (25) and the residue theorem have been utilized to derive (30). By using (28), (29) and (30),
Equation (27)2 can be finally expressed as

〈γzy〉 =

1+ c
(

1−
2µ1

µ1+µ2

(R2
− |ρ|2)2 exp(−λt)

(R2− |ρ|2 exp(−λt))2

)
1− c

(
1−

2µ1

µ1+µ2

(R2
− |ρ|2)2 exp(−λt)

(R2− |ρ|2 exp(−λt))2

) σ∞zy

µ2
, (31)
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Comparison of (26) with (31) will immediately lead to the time-dependent effective modulus as

µc = µ2

1− c
(

1−
2µ1

µ1+µ2

(R2
− |ρ|2)2 exp(−λt)

(R2− |ρ|2 exp(−λt))2

)
1+ c

(
1−

2µ1

µ1+µ2

(R2
− |ρ|2)2 exp(−λt)

(R2− |ρ|2 exp(−λt))2

) , (32)

which will reduce to the value obtained by [He and Lim 2001] when ρ = 0 for a homogeneous interface.

4.2. A screw dislocation in the matrix. When the matrix is only subjected to a screw dislocation with
Burgers vector b at z= z0, it follows from (9) for the specific expression of f0(z) and the general solutions
(18) and (19) that

f1(z, t)=
µ2b

π(µ1+µ2)
ln
(

z(R2 exp(−λt)− ρρ̄)+ ρR2(1− exp(−λt))
zρ̄(exp(−λt)− 1)+ R2− ρρ̄ exp(−λt)

− z0

)
(|z|< R), (33)

f2(z, t)=
µ1b

π(µ1+µ2)
ln
(

zρ̄R2(1− exp(−λt))+ R2(R2 exp(−λt)− ρρ̄)
z(R2− ρρ̄ exp(−λt))+ ρR2(exp(−λt)− 1)

− z̄0

)
+

b
2π

ln
z(z− z0)

z̄0z− R2 (|z|> R). (34)

Equation (33) implies that the solution in the inclusion can be considered as the superposition of the
following two moving dislocations in a homogeneous infinite elastic plane with the shear modulus µ1:

(i) a dislocation 2µ2
µ1+µ2

b located at the moving singular point

z =
z0(R2

− ρρ̄ exp(−λt))− ρR2(1− exp(−λt))
(R2 exp(−λt)− ρρ̄)− z0ρ̄(exp(−λt)− 1)

,

which originates from z = z0 and moves toward z = R2/ρ̄;

(ii) a dislocation − 2µ2
µ1+µ2

b located at the moving singular point

z =
R2
− ρρ̄ exp(−λt)

ρ̄(1− exp(−λt))
,

which originates from z =∞ and moves toward z = R2/ρ̄.

The two moving image dislocations (or more precisely a moving dislocation dipole), both of which are
located outside the inclusion, will finally converge to the same point z = R2/ρ̄, as seen in Figure 3. The
sum of the two moving dislocations is always zero.

Equation (34) implies that the solution in the matrix can be considered as the superposition of the
following three static dislocations and two moving dislocations in a homogeneous infinite elastic plane
with the shear modulus µ2:

(i) a dislocation b located at the original static singular point z = z0;

(ii) a dislocation −b located at the static singular point z = R2/z̄0;

(iii) a dislocation b located at the static singular point z = 0;
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ρ
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R2/ρ
_

R2/z

z0

0

_

Figure 3. Loci of the moving image dislocations when the original dislocation is located
in the matrix. The image dislocations outside the circle r = R are those for the inclusion;
those within the circle r = R are for the matrix.

(iv) a dislocation 2µ1
µ1+µ2

b located at the moving singular point

z =
z̄0ρR2(exp(−λt)− 1)− R2(R2 exp(−λt)− ρρ̄)
ρ̄R2(1− exp(−λt))− z̄0(R2− ρρ̄ exp(−λt))

,

which originates from z = R2/z̄0 and moves toward z = ρ;

(v) a dislocation − 2µ1
µ1+µ2

b located at the moving singular point

z =
ρR2(1− exp(−λt))
R2− ρρ̄ exp(−λt)

,

which originates from z = 0 and moves toward z = ρ.

Except for the original dislocation at z = z0, all the other four image dislocations are located within
the inclusion. The two moving dislocations (or more precisely a moving dislocation dipole) will finally
converge to the same point z = ρ, as also illustrated in Figure 3. The sum of these five dislocations is b.

In the polar coordinate system, the time-dependent image force acting on the screw dislocation is (see
[Lazar 2007])

Fr − i Fθ

=
µ1µ2b2

π(µ1+µ2)

R2(R2
− |ρ|2)2 exp(−λt)

|z0|2(R2− |ρ|2 exp(−λt))− 2 Re(z0ρ̄)R2(1− exp(−λt))− R2(R2 exp(−λt)− |ρ|2)

×
1

|z0|((R2− |ρ|2 exp(−λt))+ z−1
0 ρR2(exp(−λt)− 1))

−
µ2b2

2π
R2

|z0|(|z0|2− R2)
, (35)

where Fr and Fθ are respectively the radial and tangential components of the image force. When ρ = 0
for a homogeneous viscous interface, this reduces to that derived in [Wang et al. 2008]. On the other hand,
when t = 0, the expression above reduces to Dundurs’ classical solution [1967] for a perfect interface.
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Figure 4. Distribution of the image force F̃ on a screw dislocation located on the posi-
tive x-axis in the matrix when µ1 = 3µ2, ρ = 0.98R and λt = 0.2.

It is observed that in general the image force is not a central force due to the existence of the nonzero
tangential component Fθ . This noncentral image force is solely caused by the nonuniformity of the
viscous interface (that is, ρ 6= 0). Only when Arg(z0)= Arg(ρ) or Arg(z0)= Arg(ρ)−π will the image
force be a central one with Fθ = 0.

It has been found that there exists a transient unstable equilibrium position (Fr = Fθ = 0) for a
screw dislocation interacting with a homogeneous viscous interface when the inclusion is stiffer than
the matrix [Wang et al. 2008]. Our present results show that when the nonuniformity of the interface
is extremely serious (|ρ| → R) and when the inclusion is stiffer than the matrix, a transient stable
equilibrium position and another transient unstable equilibrium position may exist at the same time. To
highlight this unique feature, we show in Figure 4 the distribution of the image force F̃ = (2πR/µ2b2)Fr ,
on a screw dislocation located on the positive x-axis in the matrix when µ1 = 3µ2, ρ = 0.98R and
λt = 0.2. It is observed from (35) that Fθ = 0 when ρ and z0 are both real. It can be seen in Figure 4
that x0 = 1.0022R, which is extremely close to the interface, is a transient unstable equilibrium position,
whilst x0 = 1.0598R, which is further away from the interface, is a transient stable equilibrium position.

5. Other loading conditions

The general solutions derived in Section 3 are only valid for an arbitrary type singularity located in the
matrix. In fact the method in Section 3 can be extended to other loading conditions. In the following we
will address two other type loading conditions: (i) a screw dislocation inside the inclusion; (ii) uniform
eigenstrains imposed on the inclusion.
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5.1. A screw dislocation inside the inclusion. The analysis of a screw dislocation inside the inclusion
is similar to, but a little bit more difficult than, the above analysis of a screw dislocation in the matrix.
Here the specific intermediate procedure will be suppressed. When the screw dislocation is located at
z = z0 in the inclusion, the two analytic functions can be finally obtained as

f1(z, t)=
µ2b

π(µ1+µ2)
ln
(

zρ̄R2(1− exp(λt))+ R2(R2 exp(λt)− ρρ̄)
z(R2− ρρ̄ exp(λt))+ ρR2(exp(λt)− 1)

− z̄0

)
−

µ2b
π(µ1+µ2)

ln
zρ̄R2(1− exp(λt))+ R2(R2 exp(λt)− ρρ̄)

z(R2− ρρ̄ exp(λt))+ ρR2(exp(λt)− 1)
+

b
2π

ln
z− z0

z̄0z− R2 (|z|< R), (36)

f2(z, t)=
µ1b

π(µ1+µ2)
ln
(

z(R2 exp(λt)− ρρ̄)+ ρR2(1− exp(λt))
zρ̄(exp(λt)− 1)+ R2− ρρ̄ exp(λt)

− z0

)
−

µ1b
π(µ1+µ2)

ln
z(R2 exp(λt)− ρρ̄)+ ρR2(1− exp(λt))

zρ̄(exp(λt)− 1)+ R2− ρρ̄ exp(λt)
+

b
2π

ln z (|z|> R). (37)

Equation (36) implies that the solution in the inclusion can be considered as the superposition of the
following two static dislocations and two moving dislocations in a homogeneous infinite elastic plane
with the shear modulus µ1:

(i) a dislocation b located at the original static singular point z = z0;
(ii) a dislocation −b located at the static singular point z = R2/z̄0;

(iii) a dislocation 2µ2
µ1+µ2

b located at the moving singular point

z =
z̄0ρR2(exp(λt)− 1)− R2(R2 exp(λt)− ρρ̄)
ρ̄R2(1− exp(λt))− z̄0(R2− ρρ̄ exp(λt))

,

which originates from z = R2/z̄0 and moves toward z = (R2/ρ̄);

(iv) a dislocation − 2µ2
µ1+µ2

b located at the moving singular point

z =
R2(R2 exp(λt)− ρρ̄)
ρ̄R2(exp(λt)− 1)

,

which originates from z =∞ and moves toward z = R2/ρ̄.

Except for the original dislocation at z = z0, all other image dislocations are located outside the inclusion.
The two moving dislocations (or more precisely a moving dislocation dipole) will finally converge to the
same point z = R2/ρ̄, as seen in Figure 5. The sum of these four dislocations is zero.

Equation (37) implies that the solution in the matrix can be considered as the superposition of the
following one static dislocation and two moving dislocations in a homogeneous infinite elastic plane
with shear modulus µ2:

(i) a dislocation b located at the static singular point z = 0;

(ii) a dislocation 2µ1
µ1+µ2

b located at the moving singular point

z =
z0(R2

− ρρ̄ exp(λt))− ρR2(1− exp(λt))
(R2 exp(λt)− ρρ̄)− z0ρ̄(exp(λt)− 1)

,

which originates from z = z0 and moves toward z = ρ;
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Figure 5. Loci of the moving image dislocations when the original dislocation is located
inside the inclusion. The image dislocations outside the circle r = R are those for the
inclusion; those within the circle r = R are for the matrix.

(iii) a dislocation − 2µ1
µ1+µ2

b located at the moving singular point

z =
ρR2(exp(λt)− 1)
R2 exp(λt)− ρρ̄

,

which originates from z = 0 and moves toward z = ρ.

All four image dislocations are located within the inclusion. The two moving dislocations (or more
precisely a moving dislocation dipole) will finally converge to the same point z = ρ, as also illustrated
in Figure 5. The sum of these three dislocations is b.

5.2. Uniform eigenstrains imposed on the inclusion. When only uniform eigenstrains ε∗zx and ε∗zy are
imposed on the circular inclusion, the two analytic functions can be finally derived as

f1(z, t)=−
2µ2(ε

∗
zy + iε∗zx)

µ1+µ2

z(R2 exp(−λt)− ρρ̄)+ ρR2(1− exp(−λt))
zρ̄(exp(−λt)− 1)+ R2− ρρ̄ exp(−λt)

(|z|< R), (38)

f2(z, t)=−
2µ1(ε

∗
zy − iε∗zx)

µ1+µ2

zρ̄R2(1− exp(−λt))+ R2(R2 exp(−λt)− ρρ̄)
z(R2− ρρ̄ exp(−λt))+ R2ρ(exp(−λt)− 1)

(|z|> R). (39)

It is observed that the internal stress field is also nonuniform when uniform eigenstrains are imposed
on the inclusion with a nonuniform viscous interface.

6. Conclusions

We obtained closed-form solutions in terms of elementary functions for a circular elastic inclusion bonded
to an infinite elastic matrix through a circumferentially inhomogeneous viscous interface. Here the
interface drag parameter takes the special form 1/β(θ)= a0+ a1eiθ

+ ā1e−iθ , which can grasp the main
feature of the nonuniformity of the interface.
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We first obtained the general solutions for an arbitrary type singularity located in the matrix. Then
the general solutions were applied to two specific loading cases: when the matrix is subjected to remote
uniform shearing, and when a screw dislocation is located in the matrix. The effective shear modulus
was obtained using the Mori–Tanaka method. We also interpreted the obtained dislocation solution in
terms of image moving and static dislocations.

We then discussed other two loading conditions: a screw dislocation inside the inclusion, and uniform
eigenstrains imposed on the inclusion.

The dislocation solutions obtained in this research can be easily applied to study a curved or a straight
crack interacting with the inclusion [Cheeseman and Santare 2000; 2001].
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