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A SINGULAR INTEGRAL EQUATION METHOD
FOR EXAMINING ASYMPTOTIC SOLUTIONS OF A KINKED CRACK

WITH INFINITESIMAL KINK LENGTH

Y. Z. CHEN, X. Y. LIN AND Z. X. WANG

This paper investigates the singular integral equation method for examining the stress intensity factor and
the T-stress in the asymptotic solution of a kinked crack with an infinitesimal kink length. A numerical
technique for the branch crack problem is introduced, which depends upon distribution of dislocation
along the crack face. The technique reduces the branch crack problem to the solution of a singular
integral equation. The kinked cracked problem can be considered as a particular case of the branch
crack, and this problem can be solved by using the suggested technique. It is found from the computed
results that the available asymptotic solution can give qualitatively correct results for stress intensity
factors and the T-stress. In addition, the available asymptotic solution can only give sufficiently accurate
results in a narrow range of the length of the kinked portion and the inclined kink angle.

1. Introduction

Williams [1957] investigated the stress distribution near a crack tip. In the notation of [Rice 1974],
the nonsingular term in the Williams expansion is denoted as the T-stress and can be regarded as the
stress acting parallel to the crack flanks. The T-stress evaluation may have engineering application in
the following fields: determining the plastic zone near the crack tip in the case of small scale yielding
[Larsson and Carlsson 1973; Betegón and Hancock 1991] and determining directional stability for the
crack growth path [Rice 1974; Melin 2002].

The T-stress evaluation has attracted much attention from many investigators. Using the dislocation
distribution method, Broberg [2005] solved several T-stress problems. Stress intensity factors and T-stress
solutions for components containing cracks were computed by application of the boundary collocation
method (BCM) with the fracture mechanics weight function for the stress intensity factor (SIF) and a
Green’s function for the T-stress [Fett 2001]. The obtained solutions were limited to a line crack in a
circular plate.

Using the hybrid crack element (HCE), Karihaloo and Xiao [2001] evaluated the higher order terms
in the stress distribution of a three-point bend beam. The coefficients of the first five terms of the crack
tip asymptotic field are computed using a HCE. Those coefficients include the T-stress component. Xiao
and Karihaloo [2002] studied the problem for an edge crack in a finite plate with a wedge force on the
crack face. The problem was reduced to the problem of a traction free edge crack with loading on the
outer boundary. The usage of the Williams expansion and the BCM gave the final solution. Yang and
Ravi-Chandar [1999] developed a stress difference method to evaluate the T-stress in the crack problem.

Keywords: kinked crack, stress intensity factors, T-stress, asymptotic solution, singular integral equation.
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It was proved that the limit of the difference of two normal stress components ahead of the crack tip
would give the T-stress.

Evaluation of the SIFs and the T-stress in the slightly kinked crack was subject to much attention from
many investigators [Lo 1978; Cotterell and Rice 1980; Melin 1986; Fett et al. 2006; Li and Xu 2007].
The Melin transform is used for the solution of a kinked crack [Melin 1994]. A solution was presented
for the SIFs at the tip of a slightly curved or kinked crack. The solution is accurate to first order in the
deviation of the crack face from a straight line [Cotterell and Rice 1980]. The influence of the T-stress
on the stability of crack growth was investigated. The straight path is shown to be stable under mode I
loading for T < 0 [Cotterell and Rice 1980].

Fett et al. [2006] studied the T-stress for a kinked crack and suggested a Green’s function to solve
the problem. The formulation was based on an edge crack in a rectangular plate. By using asymptotic
analysis and the Westergaard stress function method, Li and Xu [2007] proposed approximate analytical
formulas for the T-stress and the SIFs for a crack with an infinitesimal kink.

The mentioned studies depend on some assumptions. For example, normally we must investigate the
SIFs and the T-stress at the kinked crack tip of the kinked crack. However, in asymptotic analysis the
researcher generally obtains the SIFs and the T-stress from a semiinfinite crack with loading on some
interval on the crack. All mentioned assumptions couldn’t be proved theoretically. However, many
researchers recognized that those formulations are true when the kinked crack length d → 0 and the
kinked angle θ keeps up a rather small value, for example θ ≤ 15◦.

In reality, only small crack kink angles were observed for isotropic materials. Large crack kink angles
are almost impossible because of the crack branch possibility. Some researchers believe that the max-
imum crack branch angle is around 60 degrees so it is meaningful to study crack kink angles less than
30 degrees. In this paper, the assumed kink angle is up to 60 degrees. Clearly, the obtained computed
results cover the case of a small kink angle.

Two singular point finite elements were developed for the analysis of kinked cracks [Dutta et al. 1991].
The suggested method could reflect the weaker stress singularity at the corner portion of a kinked crack.

In this paper, a numerical examination for the asymptotic solution of a kinked crack with an infinites-
imal kink length is carried out. It is assumed that the main crack has a length b, and the kinked portion
has a length d with an inclined angle θ . If d/b takes a very small value, for example if d/b = 0.001, and
the usual singular integral equation method is used, the kinked portion will not share even one integration
point after discretization of the integral equation. Since all the collocation points are placed on the main
crack portion, the nature of the kinked portion cannot be reflected. Therefore, the technique suggested
by Chen [2004] is no longer useful in the case of an infinitesimal kink length.

In this study, the kinked crack problem is considered as a particular case of the branch crack problem.
The branch crack problem can be modeled by a continuous distribution of dislocations along the branches.
In addition, a singular integral equation is obtained from this modeling. The number for integration
divisions can be assumed for an individual branch even if the branch length is extremely short. Therefore,
the kinked problem with an infinitesimal kinked length can be solved numerically. Finally, for the three
loading case, σ∞x = p, σ∞y = p, or σ∞xy =−p, the computed results are compared with those obtained from
the asymptotic solution. Therefore, the asymptotic solution for the kinked problems with an infinitesimal
kinked length is fully examined.
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2. Asymptotic solution for a kinked crack with an infinitesimal kink length

Some basic equations for the singular stress field at the crack tip are introduced below. The stress
distribution near a crack tip was investigated early by Williams [1957]. In polar coordinates (r, θ), the
stress components σi j can be expressed by (see Figure 1a)[

σx σxy

σxy σy

]
=

K1
√

2πr

[
f11(θ) f12(θ)

f12(θ) f22(θ)

]
+

K2
√

2πr

[
g11(θ) g12(θ)

g12(θ) g22(θ)

]
+

[
T 0
0 0

]
, (1)

where the first two terms in the expansion form are singular at the crack tip, K1 and K2 denote the mode I
and II SIFs respectively, and the functions fi j (θ) and gi j (θ) represent the angular distributions of stresses
near the crack tip. In addition, the third term is finite and bounded. In the notation of [Rice 1974], the
third term is denoted as the T-stress.

In Equation (1), the term O(r1/2) has been neglected for clarity. In addition, the angular distribution
can be expressed as [Williams 1957]
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. (2)

An asymptotic solution for a kinked crack with an infinitesimal kink length was suggested previously.
The SIFs and the T-stress evaluation after crack kinking in two-dimensional elastic solids were studied
[Cotterell and Rice 1980; Fett et al. 2006; Li and Xu 2007]. Contributions from the T-stress before crack
kinking to the T-stress and SIFs of the kinked crack are clearly described. It is assumed that the main
crack under remote loading, the SIFs, and the T-stress at the crack tip B are denoted by K m

1 , K m
2 , and

T m , respectively (see Figure 1b). After kinking, the SIFs and the T-stress at the kinked tip C are denoted
by K k

1 , K k
2 , and T k (see Figure 1c), respectively. After some manipulation, Li and Xu [2007] obtained

the following results:

K k
1 = c11(θ)K m

1 + c12(θ)K m
2 + 2T m

√
2d
π

sin2 θ. (3)

K k
2 = c21(θ)K m

1 + c22(θ)K m
2 − 2T m

√
2d
π

sin θ cos θ. (4)

T k
=

√
1

2πd
(
N1(θ)K m

1 + N2(θ)K m
2
)
+ n(θ)T m, (5)

where d denotes the length of kinked crack, θ the kinked angle (see Figure 1c), and

c11(θ)=
(1+ cos θ) cos(θ/2)

2
, c22(θ)=

(3 cos θ − 1) cos(θ/2)
2

, (6)

c12(θ)=−
3(1+ cos θ) sin(θ/2)

2
, c21(θ)=

(1+ cos θ) sin(θ/2)
2

, (7)

N1(θ)= sin θ sin
(
θ
2

)
, N2(θ)= (1+ 3 cos θ) sin

(
θ
2

)
, n(θ)= cos 2θ. (8)



1660 Y. Z. CHEN, X. Y. LIN AND Z. X. WANG

                         y                                             y                                               y            

                                                                                                   
kk

2

k

1 TKK     at tip C       

                                        r         
mm

2

m

1 TKK   at tip B                                  d       C          

                                     θ                                                                                         θ         

                       o,B               x                      o,B                  x                         o,B             x 

                                                                                                                                    
(a) (b) (c)

Figure 1. (a) A semiinfinite crack; (b) a main crack with loading K m
1 , K m

2 , and T m ; and
(c) a kinked crack emanating from the main crack.

Note that the four functions c11(θ), c12(θ), c21(θ), and c22(θ) have also been suggested previously
[Cotterell and Rice 1980]. It is expected that the suggested formulas are valid for the case of d→ 0, or
if the length of the kinked portion is sufficient small.

Clearly, the asymptotic solution can only give an approximate solution for the kinked crack problem.
This can be seen from the following analysis. It is assumed that the kinked crack with a small kink length
d and an inclined angle θ is surrounded by a stress field defined by a mode I SIF, or K m

1 6= 0, K m
2 = 0, and

T m
= 0 (see Figure 2a). The original problem shown by Figure 2a can be considered as a superposition

of the two problems shown by Figures 2b and 2c. In the problem shown by Figure 2b, the main crack
has a loading K m

1 6= 0, K m
2 = 0, and T m

= 0. However, in the problem shown by Figure 2c, the kinked
crack has a loading on the kinked portion, or along the interval BC.

Clearly, from Equations (1) and (2), the stress singular distributions along the line BC in (r, θ) coor-
dinates can be easily evaluated (see Figure 2b):

σr =
K m

1
√

2πr
c11(θ), σrθ =

K m
1

√
2πr

c21(θ), (9)

where c11(θ) and c21(θ) are defined in (6) and (7).
After making the substitution r = d − s, the loading on the kinked portion in Figure 2c will be

σr∗ =−σr =−
K m

1
√

2π(d − s)
c11(θ), σrθ∗ =−σrθ =−

K m
1

√
2π(d − s)

c21(θ). (10)

An approximation was introduced as follows [Cotterell and Rice 1980; Li and Xu 2007]. The kinked
crack shown by Figure 2c was approximated by a semiinfinite crack shown by Figure 2d with the loading
applied on the interval (0< s < d). Therefore, the SIFs at the kinked tip C can be evaluated by

K k
1 =−

√
2
π

∫ d

0

σr∗ ds
√

s
= K m

1 c11(θ), K k
2 =−

√
2
π

∫ d

0

σrθ∗ ds
√

s
= K m

1 c21(θ). (11)

This result coincides with that obtained from Equations (3), (4), (6), and (7) in the case of K m
1 6= 0,

K m
2 = 0, and T m

= 0 [Cotterell and Rice 1980; Li and Xu 2007].
A similar approximation was suggested to consider the influence functions

2

√
2d
π

sin2 θ, −2

√
2d
π

sin θ cos θ,

and n(θ) in (3)–(5), which represent the influence for K k
1 , K k

2 , and T k caused by T m .
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Figure 2. Superposition method in the kinked problem: (a) a kinked crack surrounded
by the stress field defined by loading K m

1 , (b) a main crack with loading K m
1 , (c) a kinked

crack with loading on the kinked portion BC, and (d) a semiinfinite crack with loading
on the interval BC.

As mentioned above, the boundary value problem shown by Figure 2c was approximated by the
problem shown by Figure 2d. Clearly, the most difficult point is to evaluate the deviation caused by this
approximation. In addition, this difficult problem cannot be solved theoretically. A particular advantage
of the asymptotic solution for kinked crack problem is it provides some equations for the SIFs and the
T-stress in an explicit form. However, since many assumptions were used in the derivation, the accuracy
of the asymptotic solution is generally not easy to judge. Naturally, it is necessary to propose a numerical
examination for the asymptotic solution, particularly, for the case of an infinitesimal kink length.

3. Formulation for the solution of the branch crack problem

In the following, a numerical method for solving the branch crack problem is suggested. The problem
is shown in Figure 3a, for example, a crack problem with three branches. It is assumed that the applied
tractions are identical in magnitude and opposite in direction on the both sides of the crack face. The
problem can be modeled by a dislocation distribution along the prospective site of the branches (see
Figure 3b). In this case, even though some branches have smaller lengths, we can assume a suitable
number of integration divisions for those branches. For example, in Figure 3, for two shorter branches,
the branches BD and BC, we can assume M1 = 3 and M2 = 5 (the numbers of integration divisions),
and we can take M3 = 15 for longer branch. The kinked crack (with two branches) is a particular case
of the branch crack problem. Therefore, the numerical solution based on the branch crack problem can
be used for the kinked crack problem.

For evaluating the SIFs and the T-stress in the branch crack problem, a detailed formulation is in-
troduced below. The complex variable function method plays an important role in plane elasticity. The
fundamentals of this method are introduced. In the method, the stresses (σx , σy, σxy), the resultant forces
(X, Y ), and the displacements (u, v) are expressed in terms of complex potentials φ(z) and ψ(z) such
that [Muskhelishvili 1953]

σx + σy = 4 Reφ′(z),
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σy − σx + 2iσxy = 2[z̄φ′′(z)+ψ ′(z)], (12)

f =−Y + i X = φ(z)+ zφ′(z)+ψ(z), 2G(u+ iv)= κφ(z)− zφ′(z)−ψ(z), (13)

where a bar over a function denotes the conjugate of the function, G is the shear modulus of elasticity,
κ = (3−ν)/(1+ν) in the plane stress problem, κ = 3−4ν in the plane strain problem, ν is the Poisson’s
ratio, and i =

√
−1 denotes the unit imaginary value.

Except for the physical quantities mentioned above, from Equation (13) two derivatives in specified
direction are introduced as follows: [Savruk 1981]

J1(z)=
d
dz
{−Y + i X} =8(z)+8(z)+ dz̄

dz
(
z8′(z)+9(z)

)
= σN + iσN T , (14)

J2(z)= 2G d
dz
{u+ iv} = κ8(z)−8(z)− dz̄

dz
(
z8′(z)+9(z)

)
= (κ + 1)8(z)− J1. (15)

It is easy to verify that J1= σN+iσN T denotes the normal and shear tractions along the segment z, z+ dz.
Secondly, the J1 and J2 values depend not only on the position of a point z, but also on the direction of
the segment dz̄/dz (see Figure 4o).

For evaluating the T-stress at the branch tips with remote loading, it is suitable to use the superposition
method. The original problem is shown in Figure 4o. The remote tractions are denoted as σ∞x , σ∞y , and
σ∞xy . The original field can be considered as a superposition of a uniform field and a perturbation field,
which are shown by Figures 4a and 4b, respectively. Here and after, the subscript (u) is used for the
uniform field, and the subscript (p) for the perturbation field (see Figures 4a and 4b).

Clearly, the T-stress at the j-th branch tip A j can be expressed as

T j = T j (u)+ T j (p), (16)

where T j (u) and T j (p) denote the T-stress at tip A j from the uniform field and the perturbation field,
respectively. It is seen that

T j (u) = σT (u)(tA j ), (17)

where σT (u)(tA j ) denote the σT component at the branch tip A j in the uniform field (see Figure 4a).
Clearly, since the tractions on the crack face in the perturbation field are opposite to those tractions

on the perspective site of crack in the uniform field, the boundary tractions applied on the j-th branch in

                 Tractions on                                                     Distributed                        

              y  crack face                                                 y     dislocation                        

                                                                                                                                   

                                              C                                                                   C              

                                  B                2α                                               B                2α     

    o,A                                                 x             o,A                                                 x 

                      b                       1α                                         b                       1α           

                                            D                                                                  D    
(a) (b)

Figure 3. (a) A branch crack with loading on the crack face, and (b) a branch crack
modeled by distributed dislocation.
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(b)

Figure 4. Superposition method for the branch crack problem: (o) a branch crack in
an infinite plate, with o the original field; (a) a perfect plate with remote loading, with
subscript (u) denoting the uniform stress field; and (b) a branch crack with loading on
the crack face, with subscript (p) denoting the perturbation stress field.

the perturbation field will be

σN (p)(toj )+ iσN T (p)(toj )=−
(
σN (u)(toj )+ iσN T (u)(toj )

)
(toj ∈ L j ; j = 1, 2, . . . , N ). (18)

In order to evaluate the T-stress in the branch crack problem, it is necessary to derive the relevant
integral equation beforehand. In the perturbation field, the remote tractions are zero, and the applied
tractions on branches are as follows (see Figure 4b):

σN (toj )+ iσN T (toj )= σN (p)(toj )+ iσN T (p)(toj )

=−
(
σN (u)(toj )+ iσN T (u)(toj )

)
(toj ∈ L j ; j = 1, 2, . . . , N ),

(19)

where σN (toj ) and σN T (toj ) denote the normal and shear tractions along the j-th branch or L j , and
σN (p)(toj ) and σN T (p)(toj ) denote the given normal and shear tractions along the j-th branch (see Figure
4b).

It was proved that the complex potentials for this field could be expressed as [Chen and Hasebe 1995]

φ′(z)= H
2π z
+

1
2π

N∑
k=1

∫
Lk

g′k(t)dt
t − z

, φ′′(z)=−
H

2π z2 +
1

2π

N∑
k=1

∫
Lk

g′k(t)dt
(t − z)2

, (20)
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ψ ′(z)= H̄
2π z
+

1
2π

N∑
k=1

∫
Lk

g′k(t)dt̄
t − z

−
1

2π

N∑
k=1

∫
Lk

t̄ g′k(t)dt
(t − z)2

, (21)

where g′k(t) denotes the dislocation distribution along the k-th branch. Here, H (H = H1 + i H2) is a
concentrated dislocation placed at the origin. The reason for assuming the complex potentials shown by
Equations (20) and (21) will be expressed later.

Physically, the function g′k(t) represents the dislocation distribution along the k-th crack. Thus, integra-
tion to this function will give the crack opening displacement function, or the displacement discontinuity
across the crack.

By substituting (20) and (21) into (14), letting the point z approach a point to j ∈ L j on the j -th branch
(see Figure 4b), and using the Plemelj formula for the Cauchy-type integral [Muskhelishvili 1953], one
will find the following singular integral equation [Chen and Hasebe 1995]:

1
π

N∑
k=1

∫
Lk

g′k(t)dt
t − toj

+M(toj )+
H
π toj
= σN (p)(toj )+ iσN T (p)(toj ) (toj ∈ L j ; j = 1, 2, . . . , N ), (22)

where

M(toj )=
1

2π

N∑
k=1

′

∫
Lk

K1(t, toj )g′k(t)dt + 1
2π

N∑
k=1

′

∫
Lk

K2(t, toj )g′k(t)dt̄, (23)

K1(t, to)=
d

dto

{
ln

t − to
t̄ − t̄o

}
=−

1
t−to

+
1

t̄ − t̄o
dt̄o
dto
, (24)

K2(t, to)=−
d

dto

{
t − to
t̄ − t̄o

}
=

1
t̄ − t̄o

−
t − to
(t̄ − t̄o)2

dt̄o
dto
. (25)

In (23),
∑N

k=1
′ means that the term corresponding to k = j should be excluded in the summation. This

result can be easily seen from the following fact. In (24) and (25), if t , to, and dto are defined on the j -th
branch, then K1(t, to)= 0 and K2(t, to)= 0.

In addition, the dislocation distribution g′k(t) should satisfy the following single-valued condition of
displacements [Chen and Hasebe 1995]:

N∑
k=1

∫
Lk

g′k(t)dt − H = 0. (26)

Once the solution for the function g′j (t) is obtained from (22) and (26), the SIFs at the branch tip A j can
be evaluated by [Savruk 1981; Chen and Hasebe 1995]

(K1− i K2) j =−
√

2π Lim
t→tA j

√
|t − tA j |g

′

j (t). (27)

On the other hand, from the invariant property for the sum of two normal stresses and (12), at any
point we have

σT (p) = 4 Reφ′(z)− σN (p). (28)
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In addition, let the point z approach a point toj on the upper side of j-th branch and use the Plemelj
formula (see Figure 4b), from (20) and we have

φ′+(toj )=
H

2π toj
+

ig′j (toj )

2
+

1
2π

N∑
k=1

∫
Lk

g′k(t)dt
t − toj

(toj ∈ L j ; j = 1, 2, . . . , N ). (29)

Under the same condition, or z→ toj , from (28) and (29), it follows

σT (p)(toj )= 2 Re
(
ig′j (toj )

)
+ 2 Re

(
H
π toj
+

1
π

N∑
k=1

∫
Lk

g′k(t)dt
t − toj

)
− σN (p)(toj ). (30)

Substituting (22) into (30) yields

σT (p)(toj )= 2 Re
(
ig′j (toj )

)
+ σN (p)(toj )− 2 Re

(
M(toj )

)
. (31)

The T-stress at the branch tip A j in the perturbation field can be defined by (see Figure 4b)

T j (p) = Regular part of {σT (p)(to j )}
∣∣toj→tAj . (32)

It was proved that the term 2 Re(ig′j (toj )) is singular when toj → tAj and makes no contribution to the
regular part. Therefore, from (31) and (32), the T-stress at the j -th branch tip in the perturbation field can
be evaluated by T j (p) = σN (p)(tA j )− 2 Re(M(tA j )). Here, M(tAj ) means a value of the integral M(toj )

defined by (23) when the point toj is at the branch crack tip point tA j .
Considering σN (p)(to j )=−σN (u)(to j ) and using (16) and (17), the T-stress at the branch tip A j in the

original field is finally obtained as follows:

T j = σT (u)(tA j )− σN (u)(tA j )− 2 Re
(
M(tA j )

)
. (33)

In the numerical solution, the dislocation functions g′j (t) ( j = 1, 2, . . . , N ) are generally expressed in
the form

g′j (t)=
√

t
a j−t

G j (t) (0≤ t < a j ). (34)

Equation (34) can model the one-half singularity at the crack tip simply because g′j (t)= O(a j − t)−1/2

as t→ a j . In addition, from (34) we have g′j (t)= O(t1/2) as t→ 0. This property may not coincide with
the nature of the dislocation distribution at the concave corner. However, it is expected that the influence
caused by the assumption g′j (t)= O(t1/2) as t→ 0 is minor.

Since the modeling of −1/2 singularity at the crack tip is the main point in the analysis; it is a generally
accepted assumption that the weaker singularity at the kinked corner has no significant influence on the
solution of the SIFs and T-stress. Although, this assertion is not easy to prove theoretically. In the
literature, many researchers use this assumption in the branch or kinked crack problems [Theocaris
1977; Savruk 1981; Chen and Hasebe 1995].
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In addition, the following quadrature rules are useful in the numerical solution [Boiko and Karpenko
1981]:

1
π

∫ a

0

f (t)
t − x j

√
t

a−t
dt =

M∑
m=1

wm f (tm)
tm − x j

, (35)

1
π

∫ a

0
g(t)

√
t

a−t
dt =

M∑
m=1

wm g(tm), (36)

where

wm =
a
M

sin2
(mπ

2M

)
(m = 1, 2, . . . ,M − 1), wM =

a
2M

, (37)

tm = a sin2
(mπ

2M

)
(m = 1, 2, . . . ,M), x j = a sin2

(
( j − 0.5)π

2M

)
( j = 1, 2, . . . ,M). (38)

Here and after, the value M in the quadrature rules (35) and (36) is called the number of integration
divisions.

In fact, after the quadrature rule shown by (35) is used for the integral (22), the number of unknowns
after discretization of the integral equation is equal to the number of algebraic equations. However, there
is one more equation coming from the single-valuedness condition of the displacements. Under this
situation, it is suitable to introduce one more unknown, which is shown by the term with H (H = H1+i H2)
in (20) and (21). It is seen that after introducing H , the balance of the numbers of unknowns and equations
in the relevant algebraic equation is possible [Chen and Hasebe 1995].

Finally, for evaluating the SIFs, one needs to take the following steps: obtain the solution for the
dislocation distributions g′k(t) (k = 1, 2, . . . , N ) from the singular integral equations composed of (22)
and (26) and obtain the SIFs at branch tips from (27).

In addition, for evaluating T-stress, one needs to take the following steps: obtain the value of M(tA j )

(M(tA j )= M(toj )|toj=tA j
) from (23), evaluate the two stress components σT (u)(tA j ) and σN (u)(tA j ) in the

uniform field, and use (33).
From the above analysis, we see that the whole computation depends on the choice of the numbers

of integration divisions for the branches. Once the numbers of integration divisions for the branches are
assumed, the solution is obtained.

4. Numerical examination

In the present case, a kinked crack with kink length d is emanated from the main crack with crack length
2a (see Figure 5). In this case, the two coefficients in (3) need to be revised as follows:

c11(θ)=
(1+ cos θ) cos(θ/2)

2

√
a+0.5d cos θ

a
, c22(θ)=

(3 cos θ−1) cos(θ/2)
2

√
a+0.5d cos θ

a
. (39)

The reason for the modification shown by Equation (39) is as follows. In the case of σ∞x = σ
∞
y = p,

we have K m
1 = p

√
πa, K m

2 = 0, and T m
= 0. In addition, if θ = 0, from (3) and (39), we have

K k
1 = p

√
π(a+ 0.5d). In fact, if the half crack length is a + 0.5d, the SIF must take the value

K k
1 = p

√
π(a+ 0.5d). Clearly, this result is self-consistent.
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              y                                               

                                                               

                                    d     C       θ        

                                                               

    o, A                              B                x  

                     b=2a                                  

                                                               

Figure 5. A kinked crack emanating from the main crack.

After substituting θ = 0 in (6) and (7), we have c12(θ) = 0 and c21(θ) = 0. Therefore, the two
coefficients c12(θ), and c12(θ) will not be affected.

In reality, only small crack kink angles were observed for isotropic materials, for example, a kinked
angle of less than 30 degrees. For reference, the computed results up to 60 degrees are presented for the
following three numerical examples.

The discretization for (22) and (26) is performed in the following manner. For a kinked crack with
d/b= 0.001 (see Figure 5), we can assume the integration number M1= 5 (for d/b= 0.001) for the kinked
portion, and M2 = 135 for the main crack in (35) and (36). After discretization for (22), we can obtain
2× (M1+M2) algebraic equations from (22), which are formulated on M1+M2 observing points. Here,
the factor of two is coming from the real and imaginary parts of equations. Similarly, after discretization
for (26), we can obtain two algebraic equations. Therefore, there are a total of 2× (M1 + M2 + 1)
equations obtained. In the meantime, there are a total of 2M1 unknowns from the kinked portion, or
from the g′1(t) function at many discrete points. Similarly, there are a total of 2M2 unknowns from the
main crack portion, or from the g′2(t) function at many discrete points. In addition, in (22) and (26),
we have assumed two unknowns H1 and H2 (from H = H1 + i H2). Therefore, the are also a total of
2× (M1+M2+ 1) unknowns.

4.1. Numerical example 1. In the first example, the following conditions are assumed:

σ∞x = p; θ = 0◦, 10◦, . . . , 60◦; d/b = 0.001, 0.01, 0.1, 0.25.

In computation, M1 = 5 for d/b = 0.001, M1 = 15 for d/b = 0.01, M1 = 35 for d/b = 0.1, M1 = 55
for d/b = 0.25 (the number of integration divisions in (35) and (36) is used for the kinked portion), and
M2 = 135 for the main crack portion. The computed results for the SIFs and the T-stress at the kinked
crack tip C in Figure 5 are expressed as

K k
1 = F1

(d
b
, θ
)

p
√
π(a+ 0.5d cos θ), (40)

K k
2 = F2

(d
b
, θ
)

p
√
π(a+ 0.5d cos θ), (41)

T k
= FT

(d
b
, θ
)

p. (42)

The computed results for the SIFs and the T-stress are plotted in Figures 6–8, respectively.
In addition, for the main crack before kinking we have

K m
1 = 0, K m

2 = 0, T m
= p. (43)
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Figure 6. Nondimensional mode I SIF F1(d/b, θ), from the numerical solution and
from the asymptotic solution for a kinked crack under remote loading σ∞x = p (see
Figure 5 and Equation (40)).

Further, by using (3)–(5), (7), (8), and (39), the relevant SIFs and the T-stress in the asymptotic solution
can also be expressed by the same equations (40)–(42). Those results are also shown in Figures 6–8.

From the plotted results, the following properties have been found. Since K m
1 = 0 and K m

2 = 0 for the
case of the main crack, the values of K k

1 and K k
2 are generally small. Secondly, the coincidence for the

SIFs from the numerical and asymptotic solutions has been found.
For the values of K k

1 in the three cases d/b = 0.001, 0.01, and 0.1, the coincidence is good between
the numerical and asymptotic solutions. However, in the case of d/b = 0.25, some deviations between
the two solutions have been found. For the values of K k

2 in the two cases d/b = 0.001 and 0.01, the
coincidence is good between the numerical and asymptotic solutions. However, in the cases d/b = 0.1
and 0.25, some deviations between the two solutions have been found, particularly for θ ≥ 50◦. For the
values of T k in the four cases d/b = 0.001, 0.01, 0.1, and 0.25, the computed results from the numerical
solutions merge into one curve, and the results deviate slightly from those from the asymptotic solution.

4.2. Numerical example 2. In the second example, the remote loading is σ∞y = p and the other compu-
tation conditions are same as in the first example. The computed results for the SIFs and the T-stress at
the kinked crack tip C in Figure 5 are expressed by the same equations (40)–(42). The computed results
for the SIFs and the T-stress are plotted in Figures 9–11, respectively.

In addition, for the main crack before kinking we have

K m
1 = p

√
πa, K m

2 = 0, T m
=−p. (44)

Further, by using (3)–(5), (7), (8), and (39), the relevant SIFs and the T-stress in the asymptotic solution
can also be expressed by the same equations (40)–(42). Those results are also shown in Figures 9–11.

For the values of K k
1 in the two cases d/b = 0.001, and 0.01, the coincidence is good between the

numerical and asymptotic solutions. However, in the cases of d/b = 0.1 and 0.25, some deviations
between the two solutions have been found. For the values of K k

2 in the four cases d/b = 0.001, 0.01,
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Figure 7. Nondimensional mode II SIF F2(d/b, θ), from the numerical solution and
from the asymptotic solution for a kinked crack under remote loading σ∞x = p (see
Figure 5 and Equation (41)).
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Figure 8. Nondimensional T-stress FT (d/b, θ), from the numerical solution and from
the asymptotic solution for a kinked crack under remote loading σ∞x = p (see Figure 5
and Equation (42)).

0.1, and 0.25, the coincidence is good between the numerical and asymptotic solutions. For the values of
T k in the two cases d/b= 0.001 and 0.01, the coincidence is good between the numerical and asymptotic
solutions. However, in the cases of d/b = 0.1 and 0.25, some deviations between the two solutions have
been found.

4.3. Numerical example 3. In the third example, the remote loading is σ∞xy =−p and the other compu-
tation conditions are same as in the first example. The computed results for the SIFs and the T-stress at
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the kinked crack tip C in Figure 5 are expressed by the same equations (40)–(42). The computed results
for the SIFs and the T-stress are plotted in Figures 12–14, respectively.

In addition, for the main crack before kinking we have

K m
1 = 0, K m

2 =−p
√
πa, T m

= 0. (45)

Further, by using Equations (3)–(5), (7), (8), and (39), the relevant SIFs and the T-stress in the asymptotic
solution can also be expressed by the same Equations (40)–(42). Those results are also shown in Figures
12–14.
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Figure 9. Nondimensional mode I SIF F1(d/b, θ), from the numerical solution and
from the asymptotic solution for a kinked crack under remote loading σ∞y = p (see
Figure 5 and Equation (40)).
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Figure 10. Nondimensional mode II SIF F2(d/b, θ), from the numerical solution and
from the asymptotic solution for a kinked crack under remote loading σ∞y = p (see
Figure 5 and Equation (41)).
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Figure 11. Nondimensional T-stress FT (d/b, θ), from the numerical solution and from
the asymptotic solution for a kinked crack under remote loading σ∞y = p (see Figure 5
and Equation (42)).
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Figure 12. Nondimensional mode I SIF F1(d/b, θ), from the numerical solution and
from the asymptotic solution for a kinked crack under remote loading σ∞xy = −p (see
Figure 5 and Equation (40)).

For the values of K k
1 in the four cases d/b = 0.001, 0.01, 0.1, and 0.25, the coincidence is good

between the numerical and asymptotic solutions. For the values of K k
2 in the four cases d/b = 0.001,

0.01, 0.1, and 0.25, some deviations between the two solutions have been found. Particularly, the values
of K k

2 in the asymptotic solution do not depend on the ratio d/b, and it is not reasonable. For the values
of T k in the two cases d/b = 0.001 and 0.01, some deviations between the two solutions have been
found. However, in the cases of d/b = 0.1 and 0.25, the coincidence is good between the numerical and
asymptotic solutions.
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Figure 13. Nondimensional mode II SIF F2(d/b, θ), from the numerical solution and
from the asymptotic solution for a kinked crack under remote loading σ∞xy = −p (see
Figure 5 and Equation (41)).
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Figure 14. Nondimensional T-stress FT (d/b, θ), from the numerical solution and from
the asymptotic solution for a kinked crack under remote loading σ∞xy =−p (see Figure
5 and Equation (42)).

5. Conclusion

In this paper, an efficient numerical solution for a kinked crack with a finite kink has been developed.
The aim of the present study is to examine the accuracy in the solutions for the stress intensity factors
(SIFs) and T-stress from the asymptotic solution. A particular advantage of the asymptotic solution is
that it provides an explicit form for the solutions. However, the asymptotic solution itself cannot examine
the accuracy achieved in the solution. The suggested numerical solution will give a full examination of
the results obtained in the asymptotic solution.
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In this paper, the computed results for the SIFs and T-stress for the studied problem are given. From
the computed results in the numerical solution and the results in the asymptotic solution, the following
conclusion can be reached. For a configuration of the kinked crack within the ranges: d/b = 0.001,
0.01, 0.1 and 0.25 and 0◦ ≤ θ ≤ 60◦ (see Figure 5); and for the remote loadings: σ∞x = p, σ∞y = p,
or σ∞xy =−p, the asymptotic solution can provide a qualitatively correct solution. This situation can be
seen from Figures 6–14.

However, under some conditions, the asymptotic solution cannot provide quantitatively accurate re-
sults. For the SIFs, it is expected that the asymptotic solution can provide a reasonable results only for the
following ranges: for a configuration of the kinked crack within the range: d/b < 0.01 and 0◦ ≤ θ ≤ 20◦

(see Figure 5); and for the remote loadings: σ∞x = p, σ∞y = p, or σ∞xy =−p. For the computed values
of the T-stresses, the situation is not the same as in the case of the SIFs. For example, in the conditions
d/b < 0.01, θ ≥ 30◦, and σ∞xy =−p, the asymptotic solutions for the T-stress shown in Figure 14 cannot
provide accurate results.
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NUMERICAL HOMOGENIZATION TECHNIQUES FOR THE EVALUATION OF
MECHANICAL BEHAVIOR OF A COMPOSITE WITH SMA INCLUSIONS

VALERIO ALECCI, SILVIA BRICCOLI BATI AND GIOVANNA RANOCCHIAI

Numerical procedures are developed for the homogenization and evaluation of the stress field in a com-
posite as a consequence of the presence of embedded SMA (shape-memory alloy) wires. In particular,
the elastic field developed at the end of the SMA wire self-strain process is studied, knowledge of which
is necessary to evaluate the feasibility of such a hybrid composite.

First, the numerical procedures are applied to the study of both a representative volume element (RVE)
included in a theoretically infinite periodic medium and a RVE located near the medium free boundary,
in order to evaluate the tangential stress field generated at the end of the fiber; then they are applied to
the study of a plate able to bend after the effect of self-strain of the SMA wire.

Observations are reported about the obtained results and about the similarities and the differences
between the two problems.

1. Introduction

In the early 1990s, as the exciting potential of hybrid composites [Ahmad et al. 1990] came to be under-
stood, researchers investigated a range of problems, from the mechanical aspects of such materials [Boyd
and Lagoudas 1994; Barrett and Gross 1996; Aboudi 1997] to their construction, characterization, and
production [Wei et al. 1997]. More recently, significant attention has been given to polymeric matrix
adaptive composites [Bidaux et al. 1994], cement matrix composites [Zheng et al. 2001], metal matrix
(aluminum), and carbon or glass fiber-reinforced matrix composites [Wei et al. 1997]. Particularly, in
[Baltá et al. 2002; Xu et al. 2002; Zheng et al. 2002; Murasawa et al. 2004; Tsoi et al. 2004], some
specimens of composite material with integrated SMA (shape-memory alloy) wires are presented.

An interesting analysis of the interfacial quality in activated shape-memory alloy composites (CSMA)
appeared in [Zheng et al. 2003]. Qualitative aspects were experimentally evaluated by differential scan-
ning calorimeter, and quantitative results were obtained assuming that the behavior of the two phases,
fiber and matrix, was linearly elastic. The radial and circumferential stress was calculated from the
thermoelasticity solution provided by Hecker et al. [1970] to evaluate the residual stresses in composite
cylinders originated during the cooling of the composite from fabrication temperatures.

Recently, works by Marfia and Sacco [2005] and Marfia [2005] were published, concerning mi-
cromechanical modeling of SMA-wire-reinforced materials. The authors proposed two homogenization
procedures based on the following assumptions: the martensite volume fraction depends on the wire
temperature and only on the normal stress acting in the fiber direction, and the inelastic strain occurs along
the fiber direction. A finite element model in the two-dimensional setting for SMA hybrid composite
plates was proposed by Daghia et al. [2006]. Finally, [Marfia and Sacco 2007] presents a nonlinear

Keywords: numerical homogenization, composite materials, shape-memory alloys.
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laminate finite element able to reproduce both superelasticity and a memory effect for a laminated plate
containing one or more ply made of SMA reinforced composite. These authors apply numerical ho-
mogenization procedures in order to develop the overall mechanical response of a CSMA, as a step of
evolutive multiscale analysis.

The use of homogenization techniques seems quite apt to analyze the problem of the stress field
induced by the self-strain of a portion of material, as the basic formulas of homogenization techniques
were derived simulating the homogeneous deformation of an ellipsoidal region surrounded by elastic
material [Eshelby 1957]. The development of numerical homogenization techniques for periodic media
in the 80’s [Duvaut 1984; Suquet 1985] produced the analytical solution for homogenization problems
in which the shape of the periodic cell is by far dissimilar to ellipsoid, elliptic cylinders, or ribbons. In
particular, several applications were developed in order to deduce at first in-plane elastic characteristics of
masonry panels, characterized by two-directional periodicity under a plane stress assumption, generalized
plane strain, and three-directional modeling [Anthoine 1995; 1997]; recently, out-of-plane characteristics
of masonry walls were deduced via numerical homogenization [Cecchi et al. 2005; Milani et al. 2006].

In this paper the development of a numerical procedure for the homogenization and the evaluation of
the stress field in a composite as a consequence of the shape-memory effect of embedded SMA wires
are described. In particular, the elastic field developed at the end of the self-strain process of the SMA
wire is studied, neglecting the intermediate stages. The stress state that is produced in the composite at
the final stage is the most severe of the whole load history and knowledge of it is necessary to evaluate
the feasibility of such a hybrid composite.

At first, the numerical homogenization procedure is applied to the study of an infinite medium, then
to the study of a plate able to bend after the effect of self-strain of the SMA wire.

The paper is organized as follows: Section 2 is devoted to the homogenization procedure and to the
evaluation of the elastic field produced by the activation of the SMA wires, for a three-dimensional solid;
attention was focused on the boundary condition and on the possible load conditions; the derivation of
the null condition for the average stress is reported in the Appendix; the results obtained for a case study
are reported. Section 3 is devoted to the homogenization procedure and to the evaluation of the elastic
field produced by the activation of the SMA wires embedded in a plate; the results for a case study are
reported. Finally, conclusions are reported in Section 4.

2. Elastic field in a three-dimensional solid

2.1. Homogenization. The composite material subjected to analysis is a matrix-fiber composite made
of resin and aligned SMA wires (150µm in diameter) assumed to be in a regular array according with
Figure 1. The span between the wires is 0.6 mm, and as a consequence, the volume fraction of the
inclusion is about 5%. The two phases are assumed to be isotropic with the following elastic constants:
E = 70000 MPa and ν = 0.33 (fiber), and E = 20000 MPa and ν = 0.4 (matrix). The values indicated
for the SMA fiber represent the effective properties of a typical Ni-Ti alloy, while the Young’s modulus
and Poisson’s ratio of the matrix might agree with those of a composite matrix made of epoxy resin with
glass additives inside.

Homogenization techniques aim at describing the behavior of a heterogeneous material by means of
the laws of a homogeneous material that is equivalent in some sense. The problem is not trivial when the
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( ) ( ) ( )=

Figure 1. Left: schematic representation of the composite with embedded SMA fibers
and localization of the unit cell. The plane shown is perpendicular to the fiber length.
Right: region subjected to numerical analysis (continuous line).

parameters to be determined are not additive (extensive) quantities, as in the case of elasticity. Elastic
coefficients in fact, like other intensive quantities, cannot be directly averaged in the volume of the body,
as they take part in the functional laws among additive quantities.

We wish to produce a macroscopically homogeneous stress field in a heterogeneous body; that is,
every representative volume element (RVE) is subjected to the same stress state.

The homogenized elastic tensor at a point x being T (x)= K (x)D(x), the local constitutive relation
the between the stress and strain tensors can be defined as

〈T 〉 = K hom
〈D〉, (2-1)

where
〈T 〉 = 1

V

∫
V

T dV , 〈D〉 = 1
V

∫
V

DdV . (2-2)

To calculate the components of K hom, we must produce an elementary strain state, one of the form

D1 =

1 0 0
0 0 0
0 0 0

 , D2 =

0 0 0
0 1 0
0 0 0

 , . . . , D6 =

0 0 0
0 0 1
0 1 0

 . (2-3)

To do this, Hashin’s lemmas are commonly used when dealing with nonperiodic heterogeneous materials,
which guarantee that 〈T 〉 = T if T n = 〈T 〉n on ∂V and T is divergence free, and 〈D〉 = D if u = Dx
on ∂V .

When dealing with periodic heterogeneous materials the periodic cell represents the RVE; if the cell
is sufficiently far from the boundary, stress and strain are periodic fields and periodicity conditions may
be assumed on the border of the periodic cell, that is t = T n antiperiodic and u = 〈D〉x+ up, where up

is periodic, that is assumes the same value on the boundary of the cell.
The last equality can be written

D(u)= 〈D〉+ D(up) (2-4)

or

u1=d11x1+d12x2+d13x3+uper
1 , u2=d21x1+d22x2+d23x3+uper

2 , u3=d31x1+d32x2+d33x3+uper
3 .

The field equations of elasticity, neglecting the body forces, are

div
(
K (x)D(u)

)
= 0 (2-5)
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and substituting the expression of displacement from (2-4):

div
(
K (x)D(up)

)
+ div

(
K (x)〈D〉

)
= 0. (2-6)

K (x) is the local value of the elastic tensor and is constant within each phase and discontinuous on
the border between the materials. For this reason the second term of (2-6) takes the form of a body force
spread over the interface ∂S between the phases:

f = (K2− K1)〈D〉nδ∂S, (2-7)

where n is the unit vector normal to ∂S from phase 2 to phase 1 [Suquet 1985].
If we solve with FEM analysis the problem of (2-6) assigning f from (2-7) as produced by an el-

ementary homogeneous strain tensor, the homogenized elasticity tensor can be calculated from (2-1),
where 〈D〉 is the imposed elementary strain, D(up) is the result of the numerical analysis and, due to
the linearity of the model, superposition of the elastic state applies:

〈T 〉 = 1
V

∫
V

K
(
D(up)+〈D〉

)
dV . (2-8)

The elements of the homogenized elasticity tensor are calculated separately producing the different
elementary strain tensors in the numerical model, by means of (2-7).

A solution of (2-6) by means of FEM analysis can be achieved with the proper boundary conditions
on the cell chosen as the representative volume element of the homogenization problem; this choice is
crucial. It is well known that several representative volume elements can be chosen to describe a periodic
geometry, associated with the appropriate frame of reference and with appropriate integers representing
the periods of the geometry [Anthoine 1995]. Usually the smallest one is thought to be the most useful,
as the number of unknowns to be determined in the FEM calculation is fewer. On the contrary, as it
will be shown, the use of a symmetric RVE may be preferable to a smaller one, because of the ease in
imposing boundary conditions [Suquet 1985].

Assume for the periodic solid of Figure 1 a representative volume element characterized by two sym-
metry planes and an orthogonal frame of reference. Actually, the plane orthogonal to the fiber can be
thought of as a symmetry plane as well. The volume subjected to numerical analysis (see Figure 2) is

 
0.1 mm  0.3 mm  

x1 

x2 
  

x3 

0.3 mm  

Figure 2. Element subjected to numerical analysis in the case of RVE far from the boundary.
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one-quarter of the representative volume element. In this case, it is evident that the periodicity planes
represent, also, symmetry planes with respect to the composite pattern.

The body forces applied to the interface between the two materials and deduced from (2-6) and from
the elementary strain states, are in turn symmetric and skew symmetric. In particular, when unit strain
tensors D1, D2, and D3 are applied, the stress vector field in the interface is symmetric, and, due to the
symmetry, the constraints prevent the boundary of the RVE from performing displacements normal to
the boundary itself. This means that, on the boundary, up has no components out of the boundary planes.
The final deformed RVE will display undistorted planes, which are not deformed with respect to the
displacement component orthogonal to the plane itself. Figure 3 shows strain fluctuation, homogeneous
strain, and total strain for the RVE chosen for the analysis of the composite under investigation,

When unit strain tensors D4, D5, and D6 are applied, the stress vector field in the interface is skew
symmetric, and, due to the symmetry, the constraints prevent the boundary of the RVE from performing
displacements parallel to the boundary itself. This means that, on the boundary, up has no components
on the boundary planes. The final deformed RVE will display planes not deformed with respect to the
displacement components parallel to the planes.

According to several authors, the elementary strain can be otherwise imposed directly on the RVE
with the so called displacement method [Lukkassen et al. 1995]. In this case the boundary conditions
must be compatible with the periodicity but must impose, in turn, the desired boundary displacement;
for example the homogeneous strain D1 can be directly imposed substituting the boundary condition
on the displacement u1 = D1x1 in place of the homogeneous boundary condition u1 = 0. The other
boundary conditions are not as easy to visualize as in the previous case and an accurate analysis of the
displacement field and of the algebraic representation of the periodicity conditions is necessary.

As a comparison, the homogenization procedure was performed with the closed-form method de-
scribed by Zhao and Weng [1990], which makes use of the elastic solution derived by Eshelby [1957]
in the case of an infinitely extended matrix containing an ellipsoidal inhomogeneity. Here, the theory
of Mori and Tanaka [1973] was not applied to extend Eshelby’s solution in order to account for the
reciprocal influence of inclusions, since the latter is not significant when the volume fraction is lower
than 10%. Eshelby’s solution was employed to determine stress and strain localization tensors in the
inclusion and the average localization tensors in the matrix.

Figure 3. Fluctuation of strain, homogeneous strain, and total strain.
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Model k11 = k22 k33 Ex = Ey Ez G yz = Gzx Gxy

Closed-form 44298.6 45558.4 21264.1 22461.0 7717.5 7682.5
Numerical RVE far from body boundary 44320.8 45559.1 21302.7 22461.2 7021.2 6923.4

Numerical RVE near body boundary 44612.3 − − − − 6927.2

Table 1. Main components of stiffness tensor, Young’s modulus, and shear modulus for
RVE determined by means of the closed-form procedure and numerical homogenization
(in units of MPa).

According to the classical homogenization procedure [Suquet 1985], the homogenized stiffness tensor
K hom is obtained by the average of the stiffness tensors of the phases weighed with the strain localization
tensors Bi (x): K hom

= c1K1〈B1(x)〉+ c2K2〈B2(x)〉, where c1 and c2 are the concentration factors, K1

and K2 the stiffness tensors, and B1(x) and B2(x) the localization tensors of the two phases.
Table 1 reports the homogenized elastic constants of the composite material determined with the

numerical homogenization procedure described, along with those computed by means of the closed-form
homogenization procedure.

2.2. Self-strain induced by SMA activation. In order to evaluate the strain state induced by the activa-
tion of the SMA wires, it is sufficient to apply on the boundary of the wire within the composite, the
surface stress that would have produced the self-strain in the wire out of the composite; this approach
follows the one proposed by Eshelby [1957]. In particular, the strain state produced by the activation of
the SMA is purely deviatoric and can be represented by a strain tensor of the type

D′ = r

− 1
2 0 0
0 − 1

2 0
0 0 1

 , (2-9)

where r represents the axial self-strain capability of the wire. The stress vector field to be applied on the
surface of the wire in the composite takes the form

f = (K2)D′nδ∂S, (2-10)

where n is the outward unit normal vector. Owing to the geometric symmetry of the cylinder representing
the SMA wire, the stress field is symmetric with respect to the planes that define the RVE. For this reason
the boundary of the RVE in the final stage will be undistorted, as it is in the case of the homogenization
of the strain tensors D1, D2, and D3. It is necessary to produce a constraint system on the RVE that
forces this kind of deformation; this can be achieved by imposing on the boundary of the RVE the
same constraint as in the homogenization procedure, that is, preventing the boundary of the RVE from
performing displacements normal to the boundary. When this is done, only the fluctuating part of the
strain is computed, while the homogeneous part has to be determined subsequently.

The stress state corresponding to the fluctuating part of displacement can be computed from the elastic
state obtained via the numerical analysis of the RVE, simply subtracting from the elements constituting
the SMA inclusion the stress corresponding to the self-strain, so that equilibrium is reintroduced on the
boundary of the SMA wire:
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Model 〈εx 〉 = 〈εy〉 〈εz〉

Numerical RVE far from body boundary 0.003455 −0.007591
Numerical RVE near body boundary 0.001610 −

Table 2. Average strain of the composite material produced by a self-strain r = 5%.

T =−(K2)D′ in V2. (2-11)

In order to determine the homogeneous part of the strain field to be superimposed on the fluctuating
part determined by the numerical analysis, the condition that the volume average of stress has to be zero
in a body subjected to self-strain induced by internal causes is usually introduced:

〈T 〉 =
6∑

j=1

α j 〈T (D j )〉+

∫
RVE

T num dV = 0. (2-12)

This is formally a set of six equations in six unknowns, but the average stresses corresponding to
D4, D5, and D6 vanish because of the symmetry conditions, so the forth, fifth, and sixth equations are
identities. The proof of this argument is given in the Appendix.

Table 2 reports the values of the average strain produced in the composite by the activation of the
SMA wires, and also, on the last line, the results of the analysis of an RVE supposed to be near to the
border of the body. The periodicity conditions are modified, as the x3 axis is no longer a direction of
periodicity. The analysis has been performed on a RVE long enough to represent, in correspondence
with the mean plane, the behavior of the RVE analyzed before and supposed as far from the boundary.
Figure 4 reports the tangential stress on transversal cross sections of the RVE in correspondence with a
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Figure 4. Normal and tangential stress (MPa) in the elements of inclusion correspond-
ing with interface, as a function of the distance from the symmetry plane (mm).
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progressively larger distance from the boundary of the body. These results can be employed to evaluate
the tangential stresses that are generated at the end of the fiber and to check the feasibility of such a
composite once the adhesion capability of the two phases is known.

3. Elastic field in a plate

In this paper attention is focused on the bending of a plate produced by the self-strain of an embedded
SMA wire. The plate is supposed free from constraints and made of a resin characterized by low elastic
modulus and high break deformation, which also supports the relatively large strain capability of the SMA
wire. The polyester resin Distitron® 166 UV was selected for the analysis and tested in compression
according to [ISO 604 1993]. The experimental campaign carried out on three different polymer materials
is described in [Alecci and Ranocchiai 2007].

The eccentricity of the wire with respect to the middle plane of the plate produces the bending of the
plate, and is the cause of the coupling of the normal strain and moments, as well as the curvature and
normal stress resultants.

3.1. Homogenization. The geometry of the medium is shown in Figure 5. The RVE and the coordinate
system are shown in Figure 6. The SMA wire was 500µm in diameter and, as a consequence, the volume
fraction of the inclusion is about 2%. The two phases are assumed to be isotropic with the following
elastic constants: E = 70000 MPa and ν = 0.33 (fiber), and E = 900 MPa and ν = 0.4 (matrix). The
periodicity condition is valid along the x1 and x3 axes. The linear segments orthogonal to the middle
plane are assumed to remain linear after the deformation and rotation is assumed small.

The strain periodic displacement field that respects the periodicity conditions and guarantees the kind
of deformation assumed previously is that proposed by Anthoine [1995]:

u1 = d11x1+ d13x3+ x2(χ11x1+χ13x3)+ uper
1 ,

u2 =−
1
2χ11x2

1 −
1
2χ33x2

3 −χ13x1x3+ uper
2 , (3-1)

u3 = d31x1+ d33x3+ x2(χ31x1+χ33x3)+ uper
3 .

Note that the coefficients representing the average strain components (d11, d13, . . .) have only indices
1 and 3, as the homogenization procedure according to the periodicity directions is significant; also the
coefficients χ11, χ13, . . . have only indices 1 and 3, as they represent the average curvature components

( )

22

( )

x1 

x3 

x2 

(a) (b)

Figure 5. Left: schematic representation of the composite plate with embedded SMA
fibers and localization of the unit cell. The plane shown is perpendicular to the fiber
length. Right: region subjected to numerical analysis (continuous line).
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0.2 mm  1.25 mm  

x1 

x3 

x2 

3.5 mm  

Figure 6. Plate element subjected to numerical analysis.

of the plate having extension in the x1x3 plane. Also the periodic displacement components uper
1 , uper

2 ,
and uper

3 depend on the three variables x1, x2, and x3, but they are periodic only in the axes x1 and x3.
It is convenient to perform the numerical homogenization in the framework of the displacement

method, that is imposing one at a time the homogeneous strain components and average curvature
components by means of the corresponding displacements on the boundary, as shown in (3-1) and with
the proper boundary conditions. The values of normal stress components and of moment components
resulting from the processing of the numerical analysis permits us to deduce the components of the
constitutive matrix of the plate:

N11

N33

N13

M11

M33

M13


=



A11 A13 A14 B11 B13 B14

A13 A33 A34 B13 B33 B34

A14 A34 A44 B14 B34 B44

B11 B13 B14 D11 D13 D14

B13 B33 B34 D13 D33 D34

B14 B34 B44 D14 D34 D44





d11

d33

2d13

χ11

χ33

2χ13


. (3-2)

The stiffness matrix reported here is often represented partitioned into submatrices A, B, and D. Its
symmetry and the symmetry of the submatrixes are a consequence of the symmetry of the elasticity
tensor.

When imposing symmetric strain components, like d11, d33, χ11, and χ33, the displacement compo-
nents uper

1 and uper
3 are zero respectively on the planes orthogonal to the n1 and n3 unit vectors belonging

to the boundary of the RVE, representing symmetry planes; this means that the nodes on the boundary
cannot move out of the planes. On the contrary, the displacement out of the plane uper

2 must be kept free
from constraints also on the external boundary of RVE, normal to n2. The upper and lower surfaces of
the plate have to be left free from constraints. This allows a symmetric deformation of the RVE.
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When imposing skew symmetric strain components, like d13 and χ13, the displacement component
uper

1 is zero on the boundary plane orthogonal to the n3 unit vector and uper
3 is zero on the boundary plane

orthogonal to the n1 unit vector. This allows a skew symmetric deformation of the RVE.
For this reason, coefficients A14, A34, B14, B34, D14, and D34 are zero, as can be deduced observing

that, from a macroscopic point of view, the plate is orthotropic and that axes 1 and 3 are orthotropy axes.
The results obtained by the homogenization procedure are reported in Table 3.

3.2. Self-strain induced by SMA activation. According to the method applied in Section 2.2, a surface
stress vector field has to be applied on the boundary of the wire within the matrix of the RVE, which
would have produced the self-strain if the wire was out of the matrix. The vector field is described in
(2-10).

The stress system is again symmetric with respect to planes x1 = 0 and x3 = 0, so that the boundary
constraints must be chosen as to prevent antisymmetric displacements. In this case, u1 must be zeroed
on the boundary planes of periodicity normal to the n1 unit vector, and u3 must be zeroed on planes of
periodicity normal to the n3 unit vector. Vertical displacements u2 are allowed by the requirement for
symmetry.

As in the previous case, the analysis reproduces the fluctuating part of strain, while the stress state can
be computed by subtracting the stress corresponding with the self-strain from the elements constituting
the SMA inclusion, according to (2-11), so that the equilibrium is reintroduced on the boundary of the
SMA wire.

In order to determine the homogeneous part of the strain field to be superimposed on the fluctuating
part determined by the numerical analysis, the condition that the volume average of the stress has to
be zero in a body subjected to self-strain induced by internal causes is introduced. This time the plate
normal stress and moments have to be zeroed by adding the plate strain components able to produce the
opposite values of internal force; these can be computed by knowing the plate stiffness of (3-2) reported
in Table 3.

Average strain and curvature produced by a self-strain of r = 3% are reported in Table 4. The stress
distribution on the plane x3 = 0 is reported in Figure 7.

A11 (N/mm) A13 (N/mm) A33 (N/mm) A44 (N/mm)
3891.75 1549.29 9159.54 2335.13

B11 (N) B13 (N) B33 (N) B44 (N)
70.85 24.65 2704.77 42.56

D11 (N mm) D13 (N mm) D33 (N mm) D44 (N mm)
3866.28 1544.43 5264.49 2326

Table 3. Components of the constitutive matrix of the plate.

〈d11〉 〈d33〉 〈χ11〉 〈χ33〉

0.006231 −0.016608 0.003022 −0.007949

Table 4. Average strain and curvature produced by a self-strain of r = 3%.
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Figure 7. Normal stress (MPa) σx (left) and σz (right) in the plate element subjected to
numerical analysis.

We note that the curvature tensor is negative definite at every point of the mean surface of the RVE,
which is then a hyperbolic surface.

4. Conclusions

Numerical procedures have been described for the homogenization and the evaluation of the stress field
in a composite as consequence of the shape-memory effect of embedded SMA wires. Such procedures
proved suitable for the study of self-strain induced by SMA activation. In particular, it was shown that
the individuation of the boundary conditions is strictly dependent on the choice of the RVE, and that it is
simpler if the boundary constraints are individuated when the boundary of the RVE is also a symmetry
plane for the composite.

As was expected, the stress state determined in the RVE, at the end of the SMA wire activation process,
far from boundary is quite similar to the stress state in the symmetry plane of the RVE located near to the
boundary. Nevertheless, this last case analysis is useful in order to evaluate the tangential stresses that
are generated at the end of the fiber, the first step for the design of a real composite, once the adhesion
properties of the constituents are experimentally investigated.

The analysis of a composite plate can produce the homogenized stiffness matrix of the plate, and the
average main curvatures and strain of the composite plate, under the small rotation assumption.
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Appendix: Derivation of the null average stress condition

The assumption of null average stress relies on the theory of dislocation. Volterra, in 1907, first used
the term “distorsione”, which Love [1927] translated as “dislocation”; nowadays the word dislocation is
mainly used to indicate the defects of crystal lattices and the theory of dislocation explains the plasticity
and work hardening of crystals.

When a body is not subjected to external forces, that is load and constraint forces, an eigenstrain
produces an internal stress field. The body is free from constraints or it is constrained such as to be an
isostatic system. This is the case of pretensioned, prestressed, reinforced concrete beams. The condition
that average stress is null in the pretensioned, prestressed beam sections is usually employed and is a
special case of (2-12), following simple equilibrium considerations. Equation (2-12) acquires particular
interest when dealing with homogenization problems, because average stress is one of the basic quantities
used in homogenization theory. Equation (2-12) can be easily proven by means of Signorini’s theorem
[Gurtin 1981].

In the case of no body forces acting on a finite region � and supposing that T is smooth, Signorini’s
theorem states that:

V (�)〈T 〉 =
∫
∂�

(T n⊗ r)d A, (A.1)

where V (�) is the volume of the body, T the stress tensor, n the unit vector normal to the boundary ∂�,
and r the position vector. If a portion �1 of a body is subjected to an eigenstrain (see Figure 8), a surface
stress state develops, opposite and equal on the two opposite sides of the boundary between �1 and �2,
being �2 its complementary part. We can write Signorini’s formula for the two regions:

V (�1)〈T1〉 =

∫
∂�1

(T1n1⊗ r)d A, V (�2)〈T2〉 =

∫
∂�2

(T2n2⊗ r)d A.

Since n1 =−n2, ∂�1 = ∂�2, and T1n1 =−T2n2 (from the equilibrium condition), we have

V (�1)〈T1〉 =

∫
∂�1

(T1n1⊗ r)d A =
∫
∂�2

−(T2n2⊗ r)d A =−V (�2)〈T2〉,

that is

V (�1)〈T1〉+ V (�2)〈T2〉 = 0, (A.2)

which is equivalent to (2-12).

Ω1 

Ω2 

Figure 8. A region subjected to eigenstrain produces interfacial stress vector.
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MOMENT LYAPUNOV EXPONENTS AND STOCHASTIC STABILITY
FOR TWO COUPLED OSCILLATORS

PREDRAG KOZIĆ, GORAN JANEVSKI AND RATKO PAVLOVIĆ

The Lyapunov exponent and moment Lyapunov exponent of two degree-of-freedom linear systems sub-
jected to white noise parametric excitation are investigated. Through a perturbation method we obtain the
explicit asymptotic expressions for these exponents in the presence of low intensity noise. The Lyapunov
exponent and moment Lyapunov exponents are important characteristics for determining the almost-
sure and moment stability of a stochastic dynamical system. As an example, we study the almost-sure
and moment stability of the flexural-torsion stability of a thin elastic beam subjected to a stochastically
fluctuating follower force. The validity of the approximate results for moment Lyapunov exponents is
checked by a numerical Monte Carlo simulation for these stochastic systems.

1. Introduction

In recent years there has been considerable interest in the study of the dynamic stability of nongyroscopic
conservative elastic systems whose parameters fluctuate in a stochastic manner. To have a complete
picture of the dynamic stability of a dynamic system, it is important to study both the almost-sure and the
moment stability and to determine both the maximal Lyapunov exponent and the p-th moment Lyapunov
exponent. The maximal Lyapunov exponent, defined by

λq = lim
t→∞

1
t

log‖q(t; q0)‖, (1)

where q(t; q0) is the solution process of a linear dynamical system. The almost-sure stability depends
upon the sign of the maximal Lyapunov exponent, which is the exponential growth rate of the solution of
the randomly perturbed dynamical system. A negative sign of the maximal Lyapunov exponent implies
almost-sure stability, whereas a nonnegative value indicates instability. The exponential growth rate
E[‖q(t; q0, q̇0)‖

p
] is provided by the moment Lyapunov exponent, defined as

3q(p)= lim
t→∞

1
t

log E
[
‖q(t; q0)‖

p], (2)

where E[ ] denotes an expectation. If 3q(p) < 0, then, by definition E[‖q(t; q0, q̇0)‖
p
] → 0 as t→∞.

This is referred to as p-th moment stability. Although moment Lyapunov exponents are important in
the study of the dynamic stability of stochastic systems, the actual evaluation of moment Lyapunov
exponents is very difficult.

Arnold et al. [1997] constructed an approximation for the moment Lyapunov exponents of 2D linear
systems driven by real or white noise. A perturbation approach was used to obtain explicit expressions for

Keywords: elastic beam, eigenvalue, perturbation, stochastic stability, mechanics of solids and structures.
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these exponents in the presence of low intensity noise. Khasminskii and Moshchuk [1998] obtained an
asymptotic expansion of the moment Lyapunov exponents of a 2D system under white noise parametric
excitation in terms of the small fluctuation parameter ε, from which the stability index was obtained.
Kozić et al. [2008] investigated the Lyapunov exponent and moment Lyapunov exponent of Hill’s equa-
tion with frequency and damping coefficient fluctuated by white noise. A perturbation approach was
used to obtain explicit expressions for these exponents in the presence of low intensity noise. Xie [2001]
obtained weak noise expansions of the moment Lyapunov exponents of a 2D system under real noise
excitation, an Ornstein–Uhlenbeck process. Xie [2002] determined small noise expansions of the moment
Lyapunov exponents of a 2D viscoelastic system under bounded noise excitation. Sri Namachchivaya
et al. [1994] used a perturbation approach to calculate the asymptotic growth rate of stochastically coupled
4D systems. The noise was assumed to be white and of low intensity in order to calculate the explicit
asymptotic formulas for the maximum Lyapunov exponent. Sri Namachchivaya and Vedula [2000]
obtained a general asymptotic approximation for the moment Lyapunov exponents and the Lyapunov
exponent for 4D systems with one critical mode and another asymptotically stable mode driven by a small
intensity process. Sri Namachchivaya and Van Roessel [2004] used a perturbation approach to obtain
an approximation for the moment Lyapunov exponents of two coupled oscillators with commensurable
frequencies driven by low intensity real noise with dissipation. The generator for the eigenvalue problem
associated with the moment Lyapunov exponents was derived without any restrictions on the size of the
p-th moment.

The aim of this paper is to determine a weak noise expansion for the moment Lyapunov exponents for
stochastically coupled two-degree-of-freedom systems. The noise is assumed to be white noise of low
intensity such that one can obtain an asymptotic growth rate. Here we apply the perturbation theoretic ap-
proach of [Khasminskii and Moshchuk 1998] to obtain weak noise expansions of the moment Lyapunov
exponents and Lyapunov exponent. These results are applied to study the flexural-torsional stability of a
narrow simply supported beam under a fluctuating stochastic follower force. The approximate analytical
results of the moment Lyapunov exponents are compared with the numerical values obtained by Monte
Carlo simulation for these exponents of two-degree-of freedom stochastic systems.

2. Theoretical formulation

Consider the linear oscillatory systems described by equations of motion of the form

q̈i +ω
2
i qi + 2εζiωi q̇i + ε

1/2
2∑

j=1

ki j q jξ(t)= 0, i, j = 1, 2, (3)

where qi is a generalized coordinate, ωi is the i-th natural frequency, and εζi represents the i-th small
viscous damping coefficient. It is assumed that the natural frequency is not commensurable. The sto-
chastic term, ε1/2ξ(t), is a white-noise process with low intensity. The almost-sure and moment stability
of the equilibrium state q = q̇ = 0 of (3) is to be investigated. Using the transformation

q1 = x1, q̇1 = ω1x2, q2 = x3, q̇2 = ω2x4,

we can represent (3) in first-order form by the Stratonovich differential equations (4) on the next page —
which is also the form of the Itô equations:



MOMENT LYAPUNOV EXPONENTS AND STOCHASTIC STABILITY FOR TWO COUPLED OSCILLATORS 1691

d
dt


x1

x2

x3

x4

=


0 ω1 0 0
−ω1 −2εζ1ω1 0 0

0 0 0 ω2

0 0 −ω2 −2εζ2ω2




x1

x2

x3

x4

+
√
ε


0 0 0 0

−k11/ω1 0 −k12/ω1 0
0 0 0 0

−k21/ω2 0 −k22/ω2 0




x1

x2

x3

x4

◦ ξ(t),
(4)

where ξ(t) is the white noise process with zero mean and autocorrelation function

Rξξ (t1, t2)= E[ξ(t1)ξ(t2)] = σ 2 min(t2, t1). (5)

Here σ is the intensity of the random process ξ(t) and δ is the Dirac delta function.
We next apply the transformation

x1 = a cosφ1 cos θ, x2 =−a sinφ1 cos θ, x3 = a cosφ2 sin θ, x4 =−a sinφ2 sin θ, (6)

where φ1 and φ2 the angles of the first and second oscillators, and θ the coupling or energy exchange
between the two oscillators. Introducing also

P = a p
= (x2

1 + x2
2 + x2

3 + x2
4)

p/2, −∞< p <∞,

the p-th power of the norm of the response, we obtain a set of Itô equations for P the and phase variables
φ1, φ2, θ (where we omit from the notation the dependence of the mi and σi1 on φ1, φ2, θ):

dφ1 = m1 dt + σ11 dW (t), dθ = m3 dt + σ31 dW (t),

dφ2 = m2 dt + σ21 dW (t), dP = Pm4 dt + Pσ41 dW (t).
(7)

Here

σ11 =
σ

ω1

√
ε
2
(k11 cosφ1+ k12 cosφ2 tan θ) cosφ1, σ21 =

σ

ω2

√
ε
2
(k21 cosφ1 cot θ + k22 cosφ2) cosφ2,

σ31 =
σ

4

√
ε
2

[(k22
ω2

sin 2φ2−
k11
ω1

sin 2φ1

)
sin 2θ + 4k21

ω2
sin φ2 cos φ1 cos2 θ − 4k12

ω1
sin φ1 cos φ2 sin2 θ

]
,

σ41 =
pσ
2

√
ε
2

[(k12
ω1

sin φ1 cos φ2+
k21
ω2

sin φ2 cos φ1

)
sin 2θ + k11

ω1
sin 2φ1 cos2 θ +

k22
ω2

sin 2φ2 sin2 θ

]
,

m1 = ω1− ε
(
ζ1ω1+

σ 2

4ω2
1
(k11 cosφ1+ k12 cosφ2 tan θ)2

)
sin 2φ1,

m2 = ω2− ε
(
ζ1ω2+

σ 2

4ω2
2
(k21 cosφ1 cot θ + k22 cosφ2)

2
)

sin 2φ2,

m3 =
ε
2
(
ζ1ω1(1− cos 2φ1)− ζ2ω2(1− cos 2φ2)

)
sin 2θ

+
εσ 2

4

[
−cos2 φ1 tan θ + sin2 φ1 sin 2θ

ω2
1

(k11 cosφ1 cos θ + k12 cosφ2 sin θ)2

−
2sinφ1 sinφ2 cos2θ

ω1ω2
(k11 cosφ1 cosθ + k12 cosφ2 sinθ)(k21 cosφ1 cosθ + k22 cosφ2 sinθ)

+
cos2 φ2 cot θ − sin2 φ2 sin 2θ

ω2
2

(k21 cosφ1 cos θ + k22 cosφ2 sin θ)2
]
,
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m4 =−εp
(
ζ1ω1(1− cos 2φ1) cos2 θ + ζ2ω2(1− cos 2φ2) sin2 θ

)
+
εpσ 2

4

[
1+ (p−2) sin2 φ1 cos2 θ

ω2
1

(k11 cosφ1 cos θ + k12 cosφ2 sin θ)2

+
(p−2)sinφ1sinφ2sin 2θ

ω1ω2
(k11 cosφ1 cosθ+k12 cosφ2 sin θ)(k21 cosφ1 cosθ+k22 cosφ2 sin θ)

+
1+ (p− 2) sin2 φ2 sin2 θ

ω2
2

(k21 cosφ1 cos θ + k22 cosφ2 sin θ)2
]
,

Following [Wedig 1988], we perform the stochastic linear transformation

S = T (φ1, φ2, θ)P, P = T−1(φ1, φ2, θ)S. (8)

We introduce the new norm process S by means of the scalar function T (φ1, φ2, θ) which is defined on
the stationary phase processes φ1, φ2, and θ in the range 0≤ φ1 ≤ 2π , 0≤ φ2 ≤ 2π , 0≤ θ ≤ π/2, as

d S = P
[1

2 Tφ1φ1σ
2
11+ Tφ1φ2σ11σ21+ Tφ1θσ11σ31+

1
2 Tφ2φ2σ

2
21+ Tφ2θσ21σ31

+
1
2 Tθθσ 2

31+ (m1+ σ11σ41)Tφ1 + (m2+ σ21σ41)Tφ2 + (m3+ σ31σ41)Tθ +m4T
]

dt

+ P(Tφ1σ11+ Tφ2σ21+ Tθσ31+ Tσ41) dW (t). (9)

If the transformation function T (φ1, φ2, θ) is bounded and nonsingular, both processes P and S possess
the same stability behavior. Therefore, T (φ1, φ2, θ) is chosen so that the drift term, of the Itô differential
(9), does not depend on the phase processes φ1, φ2, and θ , so that

d S =3(p)S dt + ST−1(Tφ1σ11+ Tφ2σ21+ Tθσ31+ Tσ41) dW (t). (10)

By comparing (9) and (10), we see that such a T (φ1, φ2, θ) is given by the following equation:

1
2 Tφ1φ1σ

2
11+ Tφ1φ2σ11σ21+ Tφ1θσ11σ31+

1
2 Tφ2φ2σ

2
21+ Tφ2θσ21σ31+

1
2 Tθθσ 2

31

+ (m1+ σ11σ41)Tφ1 + (m2+ σ21σ41)Tφ2 + (m3+ σ31σ41)Tθ +m4T =3(p)T . (11)

To avoid lengthy calculations, the analysis presented in this section considers the special case where
k11 = k22 = 0, so that

[L1+ εL2] T (φ1, φ2, θ)=3(p)T (φ1, φ2, θ). (12)

Here L1 and L2 are the following first- and second-order differential operators (again we suppress the
dependence of the coefficients on φ1, φ2, θ):

L1 = ω1
∂

∂φ1
+ω2

∂

∂φ2
,

L2 = a1
∂2

∂φ2
1
+ a2

∂2

∂φ1∂φ2
+ a3

∂2

∂φ1∂θ
+ a4

∂2

∂φ2
2
+ a5

∂2

∂φ2∂θ
+ a6

∂2

∂θ2 + b1
∂

∂φ1
+ b2

∂

∂φ2
+ b3

∂

∂θ
+ c,
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where

a1 =
k2

12σ
2

4ω2
1

cos2 φ1 cos2 φ2 tan2 θ, a2 =
k12k21σ

2

2ω1ω2
cos2 φ1 cos2 φ2,

a3 =
σ 2

4

(
−

k2
12

ω2
1

sin 2φ1 cos2 φ2 sin2 θ +
k12k21

ω1ω2
sin 2φ2 cos2 φ1 cos2 θ

)
tan θ,

a4 =
k2

21σ
2

4ω2
2

cos2 φ1 cos2 φ2 cot2 θ, a6 =
σ 2

4

(
−

k12

ω1
sinφ1 cosφ2 sin2 θ +

k21

ω2
sinφ2 cosφ1 cos2 θ

)2

,

a5 =
σ 2

4

(
−

k12k21

ω1ω2
sin 2φ1 cos2 φ2 sin2 θ +

k2
21

ω2
2

sin 2φ2 cos2 φ1 cos2 θ

)
cot θ,

b1 =−

(
ζ1ω1+

k2
12σ

2

4ω2
1
(tan2 θ − p sin2 θ) cos2 φ2

)
sin 2φ1+

k12k21σ
2

4ω1ω2
p cos2 φ1 sin2 θ sin 2φ2,

b2 =−

(
ζ2ω2+

k2
21σ

2

4ω2
2
(cot2 θ− p cos2 θ) cos2 φ1

)
sin 2φ2+

k12k21σ
2

4ω1ω2
p cos2 φ2 cos2 θ sin 2φ1,

b3 = (ζ1ω1 sin2 φ1− ζ2ω2 sin2 φ2) sin 2θ+
σ 2

4

(
k2

12

ω2
1

(
−cos2 φ1 tan θ− (p−1) sin2 φ1 sin 2θ

)
cos2 φ2 sin2 θ

+
k2

21

ω2
2

(
cos2 φ2 cot θ+ (p−1) sin2 φ2 sin 2θ

)
cos2 φ1 cos2 θ+

k12k21

4ω1ω2
(p−1) sin 2φ1 sin 2φ2 cos 2θ sin 2θ

)
,

c =−2p(ζ1ω1 sin2 φ1 cos2 θ + ζ2ω2 sin2 φ2 sin2 θ)+
pσ 2

4

(
k2

12

ω2
1

(
1+ (p−2) sin2 φ1 cos2 θ

)
cos2 φ2 sin2 θ

+
k2

21

ω2
2

(
1+ (p−2) sin2 φ2 sin2 θ

)
cos2 φ1 cos2 θ + (p− 2)

k12k21

2ω1ω2
sin 2φ1 sin 2φ2 sin2 θ cos2 θ

)
.

Either (11) or (12) defines a second-order eigenvalue problem for the determination of the unknown
transformation function T (φ1, φ2, θ) and the associated eigenvalue 3(p) or Lyapunov exponent of the
p-th mean. From (10) the eigenvalue 3(p) is seen to be the p-th moment Lyapunov exponent of the
system (4). This approach was first applied by Wedig [1988] to derive the eigenvalue problem for the
moment Lyapunov exponent of a 2D linear Itô stochastic system. In the following section, the method
of regular perturbation is applied to the eigenvalue problem (11) to obtain a weak noise expansion of the
moment Lyapunov exponent for the system (4).

3. Weak noise expansion of the moment Lyapunov exponent

Applying the method of regular perturbation, both the moment Lyapunov exponent 3(p) and the eigen-
function T (φ1, φ2, θ) are expanded in power series of ε as

3(p)=30(p)+ ε31(p)+ ε232(p)+ . . .+ εn3n(p)+ . . . ,

T (φ1, φ2, θ)= T0(φ1, φ2, θ)+ εT1(φ1, φ2, θ)+ ε
2T2(φ1, φ2, θ)+ . . .+ ε

nTn(φ1, φ2, θ)+ . . . .
(13)
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Substituting the perturbation series (13) into the eigenvalue problem (12) and equating terms with equal
powers of ε leads to the following equations:

ε0
: L1T0(φ1, φ2, θ)=30(p)T0(φ1, φ2, θ),

ε1
: L1T1(φ1, φ2, θ)+ L2T0(φ1, φ2, θ)=30(p)T1(φ1, φ2, θ)+31(p)T0(φ1, φ2, θ),

ε2
: L1T2(φ1, φ2, θ)+ L2T1(φ1, φ2, θ)=30(p)T2(φ1, φ2, θ)

+31(p)T1(φ1, φ2, θ)+32(p)T0(φ1, φ2, θ),

ε3
: L1T3(φ1, φ2, θ)+ L2T2(φ1, φ2, θ)=30(p)T3(φ1, φ2, θ)+31(p)T2(φ1, φ2, θ)

+32(p)T1(φ1, φ2, θ)+33(p)T0(φ1, φ2, θ),
...

εn
: L1Tn(φ1, φ2, θ)+ L2Tn−1(φ1, φ2, θ)=30(p)Tn(φ1, φ2, θ)+31(p)Tn−1(φ1, φ2, θ)

+ . . .+3n(p)T0(φ1, φ2, θ),

(14)

where each function Ti (φ1, φ2, θ), i = 0, 1, 2, . . . , must be positive and periodic in the range 0≤ φ1≤ 2π ,
0≤ φ2 ≤ 2π , 0≤ θ ≤ π/2.

3.1. Zeroth-order perturbation. The zeroth-order perturbation equation is L1T0 =30(p)T0 or

ω1
∂T0(φ1, φ2, θ)

dφ1
+ω2

∂T0(φ1, φ2, θ)

dφ2
=30(p)T0(φ1, φ2, θ). (15)

From the properties of the moment Lyapunov exponent, it is known that

3(0)=30(0)+ ε31(0)+ ε232(0)+ · · ·+ εn3n(0)= 0, (16)

which results in 3n(0)= 0 for n = 0, 1, 2, 3, . . . . Since the eigenvalue problem (15) does not contain
p, the eigenvalue 30(p) is independent of p. Hence, 30(0) = 0 leads to 30(p) = 0. Then (15) has a
periodic solution if and only if

30(p)= 0, T0(φ1, φ2, θ)= 1. (17)

3.2. First-order perturbation. The first-order perturbation equation is

L1T1(φ1, φ2, θ)+ L2T0(φ1, φ2, θ)=30(p)T1(φ1, φ2, θ)+31(p)T0(φ1, φ2, θ). (18)

This has a periodic solution if and only if∫ 2π

0

∫ 2π

0

∫ π/2

0
[L2 · 1−31(p)] dφ1dφ2dθ = 0, (19)

so we have

31(p)=
1

2π3

∫ 2π

0

∫ 2π

0

∫ π/2

0
c(φ1, φ2, θ) dφ1 dφ2 dθ

= p
[

3σ 2

64

(
k2

12

ω2
1
+

k2
21

ω2
2

)
−

1
2
(ζ1ω1+ ζ2ω2)

]
+ p2 σ

2

128

(
k2

12

ω2
1
+

k2
21

ω2
2

)
. (20)
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Now the first-order perturbation equation reduces to

ω1
∂T1(φ1, φ2, θ)

dφ1
+ω2

∂T1(φ1, φ2, θ)

dφ2
+ c(φ1, φ2, θ)=31(p). (21)

Since it is assumed that the frequencies ω1 and ω2 are not commensurable, the general periodic solution
(21) cannot be obtained explicitly for the eigenfunction T1(φ1, φ2, θ). Therefore it is possible to obtain
the moment Lyapunov exponent only in the first-order perturbation.

3.3. Moment Lyapunov exponent, Lyapunov exponent, and stability conditions. We next obtain the
weak noise expansion of the moment Lyapunov exponent in the first-order perturbation for the system (4):

3(p)= ε31(p)+ O(ε2)

= εp
[

3σ 2

64

(
k2

12

ω2
1
+

k2
21

ω2
2

)
−

1
2
(ζ1ω1+ζ2ω2)

]
+ εp2 σ

2

128

(
k2

12

ω2
1
+

k2
21

ω2
2

)
+ O(ε2).

(22)

The Lyapunov exponent for system (4) can be obtained from (22) by using a property of the moment
Lyapunov exponent

λ=
d3(p)

dp

∣∣∣∣
p=0
= ελ1+ O(ε2)= ε

[
3σ 2

64

(
k2

12

ω2
1
+

k2
21

ω2
2

)
−

1
2
(ζ1ω1+ ζ2ω2)

]
+ O(ε2). (23)

Using the result above for the moment Lyapunov exponent, with the definition of the moment stability
3q(t) < 0, we determine analytically the p-th moment stability boundary in the first-order perturbation
for various values of p = 1, 2, 4, respectively, as

ζ1ω1+ζ2ω2 >
7σ 2

64

(
k2

12

ω2
1
+

k2
21

ω2
2

)
, ζ1ω1+ζ2ω2 >

σ 2

8

(
k2

12

ω2
1
+

k2
21

ω2
2

)
, ζ1ω1+ζ2ω2 >

5σ 2

32

(
k2

12

ω2
1
+

k2
21

ω2
2

)
.

It is known that the system is asymptotically stable only if the Lyapunov exponent λq(t) is negative. Then,
(32) is employed to determine the almost-sure stability boundary of the system (4)

ζ1ω1+ ζ2ω2 >
3σ 2

32

(
k2

12

ω2
1
+

k2
21

ω2
2

)
. (24)

4. Application to a beam under stochastic load

The results obtained in the previous section in the context of real engineering applications show how these
results can be applied to physical problems. To this end, we consider the flexural torsional instability of
a thin rectangular beam of length L subjected to a stochastically fluctuating follower force (Figure 1).
It is assumed that the simply supported beam is bent by a stochastically varying central load P(t). The
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Figure 1. Thin rectangular beam subjected to stochastic excitation.

motion of the beam is governed by the partial differential equations [Bolotin 1964]

m
∂2w

∂t2 + dw
∂w

∂t
+ E Ix

∂4w

∂z4 = 0, (25)

m
∂2u
∂t2 + du

∂u
∂t
+ E Iy

∂4u
∂z4 +

∂2(M(z, t)φ)
∂z2 + P(t)δ

(L
2
− z

)
φ = 0, (26)

mρ2 ∂
2φ

∂t2 + dφ
∂φ

∂t
−G J

∂4φ

∂z4 +M(z, t)
∂2u
∂z2 = 0, (27)

where u(z, t) and w(z, t) denote the x and y components of the deflection of the beam center line and φ
is the angle of twist of the cross-section. The quantities E Ix , E Iy , and G J are the flexural and torsional
rigidities of the cross-section and dw, du , and dφ are the viscous damping coefficients. In addition, m
denotes the mass per unit length, and ρ is the polar radius of gyration of the cross-section. The function
M(z, t) can be expressed in terms of the applied stochastic load as

M(z, t)=

{
1
2 P(t) · z, 0≤ z ≤ 1

2 L ,
1
2 P(t) · (L − z), 1

2 L ≤ z ≤ L .
(28)

It is obvious that (25) is uncoupled from the other two equations and describes the ordinary random
vibration of the beam in the plane of its largest rigidity with the inhomogeneous boundary conditions
given by

E Ix
∂2w

∂z2 (0, t)=−M(0, t)= E Ix
∂2w

∂z2 (L , t)=−M(L , t). (29)

The other two equations form a pair of coupled partial differential equations with stochastic coefficients
subjected to homogeneous boundary conditions given by

u(0, t)= u(L , t)=
∂2u
∂z2 (0, t)=

∂2u
∂z2 (L , t), φ(0, t)= φ(L , t)= 0. (30)

Consider the shape function sin(π z/L), which satisfies the boundary conditions for the first mode vibra-
tion. The displacement u(z, t) and twist φ(z, t) can be described by

u(z, t)= ρq1(t) sin
(
π z
L

)
, φ(z, t)= q2(t) sin

(
π z
L

)
. (31)
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Substituting these into the partial differential equations (26) and (27) yields

q̈1+ω
2
1q1+ 2εζ1ω1q̇1+

√
εk12q2ξ(t)= 0,

q̈2+ω
2
2q2+ 2εζ2ω2q̇2+

√
εk21q1ξ(t)= 0,

(32)

where

ω2
1 =

π4

mL4 E Iy, ω2
2 =

π2

mρ2L2 G J, 2εζ1ω1 =
du
m
, 2εζ2ω2 =

dφ
ρ2m

,

k12 =
1

2mLρ

(
7− π

2

4

)
, k12 =−

1
2mLρ

(
1+ π

2

4

)
, ξ(t)=

P(t)
Pcr

, Pcr =
4|ω2

1−ω
2
2|mLρ√

(28−π2)(4+π2)
.

Here, ξ(t) is assumed to be a stationary stochastic process.

5. Numerical determination of the p-th moment Lyapunov exponent and conclusions

The numerical determination of the p-th moment Lyapunov exponents is important in assessing the valid-
ity and the ranges of applicability of the approximate analytical results. For systems of large dimensions,
it is very difficult, if is not impossible, to obtain analytical results. In many engineering applications, the
amplitude of noise excitation is not small and approximate analytical methods, such as the method of
perturbation or the method of stochastic averaging, cannot be applied. Therefore, numerical approaches
have to be employed to evaluate the moment Lyapunov exponents. The numerical approach is based on
expanding the exact solution of the system of Itô stochastic differential equations, (33), in powers of the
time increment h and the small parameter ε, as proposed in [Milstein and Tret’yakov 1997]. The state
vector of the system (4) is to be rewritten as a system of Itô stochastic differential equations with low
noise in the form

dx1 = ω1x2 dt = [ã1(t, X)+ εb̃1(t, X)] dt +
√
εσ11(t, X) dw(t),

dx2 =−ω1(x1+ 2εζ1x2) dt −
√
εσ
(k11
ω1

x1+
k12
ω1

x3

)
dw(t)

= [ã2(t, X)+ εb̃2(t, X)] dt +
√
εσ21(t, X) dw(t),

dx3 = ω2x4 dt = [ã3(t, X)+ εb̃3(t, X)] dt +
√
εσ31(t, X) dw(t),

dx4 =−ω2(x3+ 2εζ2x4) dt −
√
εσ
(k21
ω2

x1+
k22
ω2

x3

)
dw(t)

= [ã4(t, X)+ εb̃4(t, X)] dt +
√
εσ41(t, X) dw(t).

(33)

For numerical solutions of the stochastic differential (33) the weak Runge–Kutta method with error
R = O(h4

+ ε4h) may be applied to evaluate numerically the p-th moment E[‖X‖p
]. A total of N

samples of the solutions of (33) are generated. The weak Runge–Kutta scheme of the s-th realization of
(33) at the (k+ 1)-th iteration with t (k+1)

− t (k) = h, where h is the time step of integration, is given by
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[Milstein and Tret’yakov 1997]:

X (k+1)
j = X (k)

j +
ε1/2h1/2

6

[
σ j1
(
t (k), X (k))(ξ (k)+ 6η(k)

)
+ 4σ j1

(
t (k+1/2), X (k)

+
K2
2

)
· ξ (k)

+ σ j1
(
t (k+1), X (k)

+ K1
)
·
(
ξ (k)− 6η(k)

)]
+

h
2

[
ã j

(
t (k), X (k)

+ ε1/2h1/2σ j1
(
t (k), X (k))η(k))− ã j

(
t (k), X (k)

− ε1/2h1/2σ j1
(
t (k), X (k))η(k))]

+
1
6
(K1+ 2K2+ 2K3+ K4)+

ε
4
(l1+ 3l2), j = 1, 2, 3, 4, (34)

where

σ 1 =
(
σ11(t, X), σ21(t, X), σ31(t, X), σ41(t, X)

)
,

X = (x1, x2, x3, x4),

a =
(
ã1(t, X), ã2(t, X), ã3(t, X), ã4(t, X)

)
,

b=
(
b̃1(t, X), b̃2(t, X), b̃3(t, X), b̃4(t, X)

)
,

K1 = (K11, K12, K13, K14)= h · ã
(
t (k), X (k)),

K2 = (K21, K22, K23, K24)= h · ã
(

t (k+1/2), X (k)
+

K1
2

)
,

K3 = (K31, K32, K33, K34)= h · ã
(

t (k+1/2), X (k)
+ ε1/2h1/2σ 1

(
t (k), X (k))ξ (k)+ K2

2
+ ε

l1
4
+ ε

3
4

l2

)
,

K4 = (K41, K42, K43, K44)= h · ã
(

t (k+1), X (k)
+ ε1/2h1/2σ 1

(
t (k+1), X (k)

+ K1
)
ξ (k)+ K3+ εl1

)
,

l1 = (l11, l12, l13, l14)= h · b̃
(
t (k), X (k)),

l2 = (l21, l22, l23, l24)= h · b̃
(

t (k+2/3), X (k)
+

2
9

K1+
4
9

K2

)
,

and ξ and η are random variables simulated using the two-point distribution

P(ξ =−1)= P(ξ = 1)= 1
2
, P

(
η =−

1
√

12

)
= P

(
η =

1
√

12

)
=

1
2
.

Having obtained N samples of the solutions of the stochastic differential equations (33) the p-th moment
can be determined as follows:

E
[∥∥X (k+1)∥∥p ]

=
1
N

N∑
s=1

∥∥X (k+1)
s

∥∥p
,

∥∥X (k+1)
s

∥∥=√(X (k+1)
s

)T (X (k+1)
s

)
. (35)

By the Monte Carlo technique we numerically calculate the p-th moment Lyapunov exponent for all
the values of p of interest, defined as

3(p)= 1
T

ln E
[
‖X(T )‖

p]. (36)

The function 3(p) in the limit of large time (T →∞) tends to the moment Lyapunov exponent 3(p).
In this paper, a singular perturbation method is applied to obtain first-order low noise expansions of
the moment Lyapunov exponent of a coupled white noise driven, two-degree-of-freedom system. The



MOMENT LYAPUNOV EXPONENTS AND STOCHASTIC STABILITY FOR TWO COUPLED OSCILLATORS 1699

Figure 2. Stability regions for almost-sure (a-s) and p-th moment stability for k12 = 5,
k21 =−3.82.

Lyapunov exponent is determined by using the relationship between the moment Lyapunov exponent
and the Lyapunov exponent. The slope of the moment Lyapunov exponent curve at p = 0 is the Lya-
punov exponent. When the Lyapunov exponent is negative, the system (3) is almost-sure stable with
probability 1; otherwise it is unstable. The results obtained above can be directly applied to analyze the
flexural-torsional stability of a thin rectangular elastic beam of length L subjected to a stochastic follower
force. For the purpose of illustration, in the numerical study we consider set system parameters k12 = 5,
k21 = −3.82, ω1 = 1, ω2 = 2, and σ = 1. Figure 2 shows the almost-sure and p-th moment stability
boundaries with respect to the damping coefficients ζ1 and ζ2. Note that the moment stability boundaries
are more conservative than the almost-sure boundary. These boundaries become increasingly conserva-
tive as p increases. Numerical determination of the p-th moment Lyapunov exponent is important in
assessing the validity and the range of applicability of the approximate analytical results obtained for
stochastic systems. The Monte Carlo simulation methods are usually more versatile, especially when the
noise excitations cannot be described in a form that can be treated easily using analytical tools. From the
central limit theorem, it is well known that the estimated p-th moment Lyapunov exponent is a random
number, with the mean being the true value of the p-th moment Lyapunov exponent and the standard
deviation n p/

√
N , where n p is the sample standard deviation determined from the N samples. The

standard deviation of the estimated p-th moment Lyapunov exponent can be reduced by increasing the
number of samples, N = 2000, 4000, 8000. The total time of simulation is 5 and h = 0.0005 is the time
step of integration. Numerical results of the p-th moment Lyapunov exponent 3(p) from the Monte
Carlo simulation, along with Equation (22) (the solid line), are plotted in Figure 3 for ω1 = 1.0, ω2 = 2.0,
σ = 1, ζ1 = 4.5, ζ2 = 0.2 and ε = 0.025, 0.05, 0.1. It is observed that the discrepancies between the
approximate analytical results (the solid line) and the numerical results (the dotted line) increase for large
values of ε.
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Figure 3. Variation of the moment Lyapunov exponent 3(p) with p for k12 = 5, k21 =

−3.82 and different value ε.
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EVALUATION OF FILM-SUBSTRATE ADHESION VIA IMPACT USING COATED
BULLETS

CHEN-WU WU, ZHI-LIN WU, KUN ZHANG AND GUANG-NAN CHEN

A method was devised to evaluate the adhesion between a film and a substrate. A front-end coated bullet
is accelerated by a gas gun and hits the substrate of the specimen under test. The impact generates a
compressive stress pulse that propagates toward the film. After transmission through the interface, part
of the pulse is reflected on the free surface of the film, and tensile stress arises at the film-substrate
interface, possibly inducing debonding of the film.

This dynamic process was demonstrated analytically and simulated numerically by the finite element
method. The results validate the initial concept and lay the foundation for further optimization of this
method.

1. Introduction

Films and coatings with resistance to wear, corrosion, thermal degradation, and other important func-
tions have been adopted in a great many fields [Freund and Suresh 2003]. However, their prospective
applications are restricted because of premature debonding. Numerous ways have been tried to evaluate
the adhesion between the film and the substrate [Hsueh 2002]. The key step in these experiments is to
exert a simple loading directly at the interface and separate the film from the substrate. This is hard to
accomplish, especially when the film is strongly bonded. Although some methods, such as scratching
and indenting, have been adopted in some situations, the severe deformation around the interface makes
it difficult to quantify the adhesion.

The method of laser spallation was developed to overcome this problem [Vossen 1978; Gupta et al.
1990; Gupta and Yuan 1993]. By irradiating the substrate with a laser beam, a compressive stress pulse
of short duration is generated. Tensile stress arises after the compressive stress pulse is reflected on the
free surface of the film being tested. This tensile stress can peel the film from the substrate if the pulse
is strong enough.

It is recognized that the method of laser spallation can exert pulse loadings of short duration directly
on the interface and obtain a high strain rate to restrain the effect of plasticity of the materials. At the
same time, this dynamic method may reveal some dynamic behaviors of the film-substrate interface that
are not attainable by quasistatic methods. However, the laser spallation inevitably involves complicated
phenomena such as rapid melting and ablation of the materials, which brings about great difficulties in
analysis and modeling.

Keywords: adhesion, film, substrate, coated bullet, impact.
This research is funded by the National Natural Science Foundation of China under grant no. 50531060.

1703



1704 CHEN-WU WU, ZHI-LIN WU, KUN ZHANG AND GUANG-NAN CHEN

film

specimen

coated bullet

coat

bullet body

substrate

V0
⇐H

Figure 1. Sketch of the coated bullet and the specimen.

In this study, a method of impact with coated bullets was devised in order to evaluate the interface
adhesion between film and substrate. Finite element simulation was then carried out to compute the
profiles of the interface stresses as well as the surface stresses of the specimen under impact.

2. Theoretical formulation of the impact method

As shown in Figure 1, a cylindrical bullet with a coated front-end is accelerated by a gas gun and hits
the substrate of the test specimen, with initial velocity V0. Under the impact, a compressive stress pulse
is generated and propagate toward the film. Tensile stress then arises after the compressive stress pulse
is reflected on the free surface of the film.

For convenience, the coating material for the front-end of the bullet body is chosen to have the same
acoustic impedance as the substrate of the specimen. The acoustic impedance of the bullet body is
denoted by ρ1c1, the acoustic impedance of both the bullet coating and the test substrate is denoted by
ρ2c2, and the acoustic impedance of the test film is denoted by ρ3c3.

To produce an appropriate stress pulse, ρ1c1 should be much less than ρ2c2, so as to significantly
reduce the transmission of the initial compressive stress pulse into the bullet body. In the following, r
indicates the radius of the bullet, l is its length, tc the thickness of the coating on the bullet body, rs the
radius of the specimen, ts the thickness of the substrate, and t f that of the film. If the equation tcc3 = t f c2

is satisfied, the spatial width of the stress pulse running through the tested film is 2t f . This ensures that
the tensile stress arises mainly around the interface in the test.

The propagation and evolution of the stress wave are sketched in Figure 2. At t = t1, the coated end of
the bullet collides with the substrate and compressive stress waves arise within both the bullet coat and
the substrate. At t = t2, the compressive stress wave propagating into the bullet impinges on the interface
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of the bullet coat and the bullet body. This wave is partly transmitted into the bullet body and partly
reflected, as depicted under t = t3. Thus, a compressive stress pulse with a tail develops and propagates
toward the specimen, as depicted under t = t4, t5, t6.

If l is large enough, the compressive stress pulse σ imported into the specimen can be roughly predicted
by one-dimensional stress wave theory. The shape of this pulse is seen in Figure 2, right, before the
influences of the far rear of the bullet body can be sensed. This prediction is rather accurate, especially
in the initial stage after impact; see [Wang 2005, pp. 29–47] for details.

The intensity of the tail of the compressive stress pulse (the plateau in Figure 2, right) is given by
2ρ1c1σ0/(ρ1c1+ ρ2c2). This is the stress transmitted into the bullet body. This tail can be decreased to
a very small value if ρ1c1 is much less than ρ2c2. When the input compressive stress pulse impinges on
the interface between the film and the substrate in the test (t = t7), it is, again, partly reflected and partly
transmitted into the specimen film [Wang 2005, pp. 29–47]. The reflected and transmitted pulses have
intensities, respectively,

σr1 =
ρ3c3− ρ2c2

ρ2c2+ ρ3c3
σ and σt =

2ρ3c3

ρ2c2+ ρ3c3
σ .

t = t1

t = t2

t = t3

t = t4

t = t5

t = t6

t = t7

t = t8

t = t9

t = t1

tc ts tf

bullet substrate

coat
↓

film
↓

→ ←−−−− −−−−→ ←

σ

t

σ0

2ρ1c1σ0

ρ1c1+ρ2c2

1t=2tc
c2

← →

Figure 2. Evolution of the stress wave under impact.



1706 CHEN-WU WU, ZHI-LIN WU, KUN ZHANG AND GUANG-NAN CHEN

A tensile stress pulse σr2 =−σt arises after the transmission pulse σt is reflected from the free surface
of the film (t = t8, t9 in Figure 2, left). By taking the algebraic sum of this tensile stress with that
of the local tail of the input compressive stress pulse, a resultant tensile stress is obtained around the
interface (t = t10 in Figure 2). If the resulting tensile stress exceeds the bonding strength of the interface,
debonding occurs. By measuring the initial velocity of the bullet, for which classical methods of high
accuracy can be applied, the interface stress history can be very accurately predicted with the finite ele-
ment method. Combined with the fracture features of the interface through the experimental observation,
the relationship between the interface stress history and the adhesion between the film and the substrate
can be established.

3. Numerical analysis of the stress

To describe the stress profiles more accurately, an axisymmetric finite element model was set up as
shown in Figure 3, and the impact was simulated with the finite element code LS-DYNA. The materials
are assumed to be ideally elastic and the parameters chosen are listed in Table 1. Item 1 represents the
material of the bullet body, item 2 represents the coating on the bullet and the substrate of the specimen
in the test, and item 3 represents the film of the specimen. The geometric parameters are l = 5 mm,
r = 2.5 mm, ts = 1 mm, and rs = 10 mm. A thickness of tc = t f = 0.1 mm was adopted considering that
the acoustic impedance of the coating on the bullet was very near to that of the tested film. The initial
velocity of the bullet was V0 = 250 m/s.

We consider the stress component σyy (normal stress) acting on the surface of the substrate and the
stress component σyy acting on the interface between the film and the substrate. Figure 4 shows the
mean value of σyy over the circular region of radius r around the symmetry axis. It can be seen that the

Figure 3. Finite element model of the coated bullet and specimen.
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ρ (kg/m3) E (GPa) ν

1 = bullet body 1050 3.38 0.35
2 = bullet coating, specimen substrate 7850 209 0.30
3 = film 7190 242 0.15

Table 1. Mechanical parameters of the material. ρ = density, E = elastic modulus, ν =
Poisson’s ratio.

input compressive stress pulse (black line in Figure 4) oscillates around the theoretical trend line drawn in
Figure 2, right (here represented by the red dots). At the interface, there is a compressive stress pulse and
subsequently a tensile stress pulse, both with duration of approximately t f /c3. The maximum interface
normal stress appears at the instant t ≈ 0.268µs. The stress component σyy within the specimen for this
instant is shown in Figure 5, in which a thin strip area, close to r in length and adjacent to the interface,
is shaded according to the tensile stress.

σyy

[GPa]

0.05 0.1 0.15 0.2 0.25 0.3 0.35

−1.5

−1

−0.5

0

0.5

t [µs]

Figure 4. Average normal stress at the surface of the substrate (black line) and at the
interface (gray line) as a function of time. The red dots indicate the trend line (pulse
shape in Figure 2, right).

Figure 5. Stress component σyy at t ≈ 0.268µs.
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Figure 6. Interfacial normal stress at t ≈ 0.268µs.

The interface normal stresses are further mapped at a path of length 1.5r along the interface as shown
in Figure 6, of which the origin is located at the symmetrical axis. This figure suggests that the tensile
stress is mainly confined to the circular region of radius r and roughly uniform within that region. It is
this tensile stress that can induce the debonding of the film from the substrate.

As mentioned above, the matching of the acoustic impedance of the materials for the bullet body
and the bullet coating significantly influences the input compressive pulse. Moreover, the bullet might
penetrate the specimen once its kinetic energy exceeds some magnitude [Wang 2005, pp. 29–47]; this
is to be avoided in the test. Therefore, in order to produce the expected interface stress and separate the
film from the substrate without the bullet penetrating into specimen, an analysis and numerical simulation
should be conducted to decide the appropriate range of the initial velocity for specific material pairs.

4. Conclusions

In this study, a method of impact with a front-end coated bullet was devised to evaluate the adhesion
between a film and a substrate. The evolution of the stress wave during the impact was investigated
theoretically. The stresses were calculated numerically. The results showed that a compressive stress
pulse with a tail develops on the surface of the substrate. After the compressive stress pulse is reflected
on the free surface of the film, tensile stress arises around the interface in the test. This model can be
used directly for further optimization of the impact method.
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THE EFFECTS OF WARPING CONSTRAINTS ON THE BUCKLING
OF THIN-WALLED STRUCTURES

MARCELLO PIGNATARO, NICOLA RIZZI, GIUSEPPE RUTA AND VALERIO VARANO

We present two applications of a direct one-dimensional beam model suitable for describing the buckling
of thin-walled structures. The first application considers the buckling of a compressed beam with an
intermediate stiffener under various warping constraints. The second describes the buckling of a two-bar
frame, known as a Roorda frame, loaded by a dead force at the joint. Various warping constraints at the
bar ends are considered and the relevant buckling modes and loads are numerically evaluated. Numerical
results are presented for both cases; some of these appear to be new.

1. Introduction: a direct one-dimensional model for thin-walled beams

A very interesting problem in the elastic stability of structural elements is the flexural-torsional buckling
of thin-walled beams. A short description of the origins of the problem with references to related existing
literature may be found in [Ruta et al. 2006; 2008].

In [Ruta et al. 2006] the direct model introduced in [Tatone and Rizzi 1991; Rizzi and Tatone 1996] was
refined in order to describe the flexural-torsional buckling of beams with nonsymmetric cross-sections.
Strain measures are described with respect to both the centroidal and the shear center axes of the beam
(as a first step, it is immaterial which of the shear centers presented in the literature is chosen). The power
expended by inner actions is decomposed so as to distinguish between forces and moments at the centroid
or the shear center. Nonlinear hyperelastic constitutive relations and standard inner constraints [Rizzi
and Tatone 1996; Pignataro and Ruta 2003; Pignataro et al. 2006] imply reactive terms in addition to the
active parts of some contact actions, accounting for the geometry of nonsymmetric cross-sections. The
obtained field equations for the bifurcation in terms of the displacement components are more general
than those in [Rizzi and Tatone 1996; Pignataro and Ruta 2003; Pignataro et al. 2006].

In [Ruta et al. 2006] some simple examples of flexural-torsional buckling and postbuckling phenomena
have been investigated, showing the coincidence of the results with those in the literature, for instance in
[Timoshenko and Gere 1961; Grimaldi and Pignataro 1979]. Further applications of the refined model
are found in [Ruta et al. 2008] where, for a simply supported compressed beam, the effect of warping
constraints at the beam ends has been examined and the relevant critical loads have been presented.

A natural development of the studies performed in [Ruta et al. 2006; 2008] appears to be the analysis
of the buckling of more complex structures by means of the refined model. In this paper, the authors
present two cases of interest in applications. The first is a compressed beam reinforced by an intermediate
stiffener acting as a warping constraint. The second is a simple frame loaded by a dead force, known

Keywords: thin-walled structures, flexural-torsional buckling, warping constraints.
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as a Roorda frame in the literature. We first summarize the key notes of the refined model (details are
found in [Ruta et al. 2006; 2008]); then, we present the field equations for the considered problems and
some numerical results.

The beam reference shape consists of a series of plane cross-sections orthogonally attached to the
straight centroidal axis, or to the parallel shear center axis. We fix orthogonal cartesian coordinates with
x1 parallel to the beam axes and a consistent orthonormal right-handed vector basis (i1, i2, i3). Suitable
strain measures are

E = R>R′ = χ1 i2 ∧ i3+χ2 i3 ∧ i1+χ3 i1 ∧ i2,

eo = R> p′o− q ′o = ε1 i1+ ε2 i2+ ε3 i3,

ec = R> p′c− q ′c = eo+ Ec= ε1c i1+ ε2c i2+ ε3c i3

= (ε1+χ2c3−χ3c2)i1+ (ε2−χ1c3)i2+ (ε3+χ1c2)i3, α, η = α′,

(1-1)

where o is the centroid, c is the shear center, and c= c2 i2+ c3 i3 = c− o; po(x1, t) and pc(x1, t) are the
vector-valued present placements of the axes, given by qo(x1) and qc(x1) in the reference shape; R(x1, t)
is the proper orthogonal tensor-valued cross-sectional rotation from the reference to the present shape;
and α(x1, t) is the scalar-valued coarse descriptor of warping. The skew tensor E provides the curvature
of the beam axes, and the vectors eo and ec measure the differences between the tangent to the axes in
the present and reference shape. We have defined χ1 as the torsion curvature (twist); χ2 and χ3 as the
bending curvatures; the wedge product ∧ between vectors provides skew tensors; ε1 is the elongation of
the centroidal axis; and ε2 and ε3 are the shearing strains between this axis and the cross-sections. We
decompose the displacement of the centroidal axis and the rotation:

u = po− qo = u1 i1+ u2 i2+ u3 i3, R = R3 R2 R1, (1-2)

where R1 is a rotation of amplitude ϕ1 around i1; R2 is a rotation of amplitude ϕ2 around R1 i2; R3 is a
rotation of amplitude ϕ3 around R2 R1 i3.

The power Pe expended by external actions is a linear functional of the velocities with respect to
the shear center, while the power P i expended by the interactions among different parts of the beam
is a linear functional of the velocities with respect to the shear center and of their first derivatives with
respect to x1 (grade one theory, see, for example, [DiCarlo 1996]). Standard arguments on the balance of
power and a pull-back procedure [Ruta et al. 2006; 2008] yield the local balance of force and torque in
the reference shape with respect to c, the auxiliary equations for bishear and bimoment and the internal
power:

s′+ Es+ a = 0, S′+ ES− SE+ (q ′c+ ec)∧ s+ A= 0,

τ = β +µ′, P i
=

∫ l

0
(s · ėc+ S · Ė+ τω+µω′).

(1-3)

The vectors a and s are the bulk and contact forces; the skew tensors A and S are the bulk and contact
couples; the scalar β is the bulk action spending power on warping; the scalars µ and τ are the bimoment
and bishear [Vlasov 1961], respectively, all in the reference shape. We pose:

s = Q1 i1+ Q2 i2+ Q3 i3, S= S1 i2 ∧ i3+ S2 i3 ∧ i1+ S3 i1 ∧ i2. (1-4)
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By introducing equations (1-1) and (1-4) into (1-3)4, the internal power reads∫ l

0

[
Q1ε̇1+ Q2ε̇2c+ Q3ε̇3c+ S1χ̇1+ (S2+ c3 Q1)χ̇2+ (S3− c2 Q1)χ̇3+ τω+µω

′
]
, (1-5)

that is, the normal force Q1 spends power on the centroidal straining, while the shearing forces Q2 and
Q3 are applied at the shear center; S1 is the twisting couple, while M2 = S2+ c3 Q1 and M3 = S3− c2 Q1

are the bending torques, evaluated with respect to the centroid.
If ξ is a constant, we postulate the inner constraints [Vlasov 1961; Reissner 1983; Simo and Vu-Quoc

1991; Tatone and Rizzi 1991; Rizzi and Tatone 1996]

α = ξχ1, ξ ∈ R, η = ξχ ′1, eo = ε1q ′o = ε1e1, ε2 = ε3 = 0. (1-6)

The cross-sections and shear axis do not remain normal (ε2c 6= 0, ε3c 6= 0; see (1-1)).
If the beam is homogeneous and elastic, the material response depends on e, E, α, and η and inner

constraints make the contact actions consist of an active and a reactive part [Truesdell and Noll 1965]. The
former (subscript a) is determined by a constitutive relation; the latter (subscript r) spends no power on
the velocities compatible with the constraints [Truesdell and Noll 1965]. In our refined model, the normal
force, the bending torques, and the bimoment are entirely active, while the shearing forces and the bishear
have a reactive part [Ruta et al. 2006; 2008]; the reactive twisting torque S1r contains the bishear, in accord
with the literature [Vlasov 1961]. As is customary, we suppose that the shearing force and the bishear
depend only on the shearing strain, which makes them purely constraint reactions. Thus, some actions are
entirely active, others reactive, and only the twisting torque has both components [Ruta et al. 2006; 2008].

We adopt nonlinear hyperelastic constitutive relations in order to apply Koiter’s theory [1945] and a
static perturbation technique [Budiansky 1974]:

Q1a = Q1 = aε1+
1
2 dχ2

1 , S1a = (k+ dε1+ f2χ2+ f3χ3+ gη)χ1,

M2a = M2 = b2χ2+
1
2 f2χ

2
1 , M3a = M3 = b3χ3+

1
2 f3χ

2
1 , µa = µ= hη+ 1

2 gχ2
1 .

(1-7)

The coefficients a, b j ( j = 2, 3), k, and h are the rigidities in extension, bending, torsion, and warping,
respectively; d, f j ( j = 2, 3), and g take into account the couplings between extension and torsion,
bending and torsion, and warping and torsion, respectively [Truesdell and Noll 1965; Møllmann 1986].
If, as is standard, the bulk action β vanishes, we obtain [Ruta et al. 2006; 2008]

τ = hξχ ′′1 + gχ1χ
′

1, S1 = (k+ dε1+ f2χ2+ f3χ3)χ1− hξ 2χ ′′1 + c3 Q2− c2 Q3. (1-8)

Comparing [Vlasov 1961, equation (V.1.10)3] with ours we obtain

a = E A, b j = E I j ( j = 2, 3), k = G Ic,

d = E Id , f j = E I f j ( j = 2, 3), hξ 2
= E Iω;

(1-9)

E and G are the moduli in extension and shear; A is the cross-sectional area; I j ( j = 2, 3) are the
centroidal principal moments of inertia; Ic is the torsion factor; Id is the polar inertia with respect to c; Iω
is the warping inertia (second moment of the sectorial coordinate with respect to the area); I f2 =

∫
A x3r2;

and I f3 =
∫

A x2r2, with x j ( j = 2, 3) the coordinates of a point with respect to the centroid and r its
distance from the shear center.
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2. Buckling of a compressed beam with a warping stiffener

For a beam compressed by a dead centroidal load of magnitude λ, one solution of the elastic static
problem, called the fundamental path and denoted by the superscript f, is:

uf
=−

λ
a

x1 i1, Rf
= I, αf

= 0,

ef
=−

λ
a

i1, Ef
= 0, ηf

= 0,

sf
=−λi1, Sf

= 0, τ f
= 0, µf

= 0.

(2-1)

A different solution, called the bifurcated path and denoted by the superscript b, is

ub
= u− λ

a
x1 i1, Rb

= R+ I, αb
= α,

eb
= e− λ

a
i1, Eb

= E, ηb
= η,

sb
= s− λi1, Sb

= S, τ b
= τ, µb

= µ.

(2-2)

The differences of quantities evaluated along the bifurcated and the fundamental paths are expressed
without superscripts, that is, ( · ) := ( · )b− ( · )f. Strain measures, balance, and auxiliary equations, as
well as constitutive relations, are written in terms of differences. The latter are supposed to regularly
depend on a parameter σ :

( · )= ( · )(σ ), σ ∈ [0, 1], ( · )
∣∣
σ=0 = 0. (2-3)

A formal σ -power series expansion of the quantities of interest in a neighborhood of σ = 0 provides the
first-order equations of interest for the buckling,

ū′′1 = 0, b3ū′′′′2 + λ
a−λ

a
(ū′′2 − c3ϕ̄

′′

1 )= 0, b2ū′′′′3 + λ
a−λ

a
(ū′′3 + c2ϕ̄

′′

1 )= 0,

hξ 2ϕ̄′′′′1 +
dλ−ak

a
ϕ̄′′1 + λ

a
a−λ

(c2ū′′3 − c3ū′′2)= 0,
(2-4)

with the overbar standing for increments of first order in σ .
We have considered the case of a beam with an intermediate stiffener, preventing warping in a section

x1 = m, m ∈ (0, l). A number of values of m and of the boundary conditions have been considered.
Each problem has been solved numerically using the COMSOL Multiphysics FEM code, available at the
Dipartimento di Strutture of the Università Roma Tre. For this purpose, (2-4) has been written in weak
form on the two regular subdomains x1 ∈ (0,m) and x1 ∈ (m, l). Then, giving the appropriate boundary
conditions, the eigenvalue problems providing the critical values λc of the load multiplier and the mode
shapes ū2c, ū3c, and ϕ̄1c, have been solved using the COMSOL PDE application.

Consider a beam channel with length l = 2000 mm, outer dimensions 100 mm (web), 60 mm (flanges),
and uniform thickness of 3 mm [Ruta et al. 2008]. Let the x3-axis of the chosen cartesian system coincide
with the symmetry axis of the cross-section. The geometric and inertial quantities have been derived by
means of standard calculations and well-known tables, such as those in [Timoshenko and Gere 1961].
Let the material of the beam be elastic and isotropic and characterized by E = 206 GPa, G = 79 GPa.
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The constitutive coefficients (1-9) are

a = 642 mm2 E, b3 = 1054726 mm4 E, hξ 2
= 446086956 mm6 E, k = 1875 mm4G,

d = 2370581 mm4 E, b2 = 236653 mm4 E, c3 =−41 mm, c2 = 0 mm.
(2-5)

We assume that the beam is simply supported, with torsional rotation prevented at both ends. The
corresponding boundary conditions in terms of first-order quantities are

ϕ̄1 = ū2 = ū3 = ū′′2 = ū′′3 = 0, in x1 = 0, x1 = l. (2-6)

Continuity conditions must be imposed in the section x1 = m, where the stiffener is present. We will
consider the following three cases:

(1) warping is free in both x1 = 0 and x1 = l;

(2) warping is prevented in x1 = 0 and free in x1 = l;

(3) warping is prevented in both x1 = 0 and x1 = l.

For each case, we study how the buckling is affected when the warping is prevented by the stiffener. Then,
in addition to the continuity conditions, the warping constraint at x1 = m must be taken into account.
In the following, we present the critical loads and the corresponding buckling modes. For the sake of
simplicity, overbars and subscript c are omitted.

Figure 1 shows the flexural-torsional critical mode associated with boundary condition (1) and with
the stiffener located at m = 400 mm. The first plot in the figure shows the flexural component of the
buckling mode, while the second graph illustrates the torsional component. It is apparent, as it was to
be expected, that the flexural mode is exactly the same as in Euler buckling (a half sine wave), while the
torsional component has a stationary point by correspondence with the stiffener (where α = ϕ′1 = 0).

u2 λ= 197600 N ϕ1

Figure 1. Beam warping-free at the ends, with stiffener at m = 400 mm.

u2 λ= 92699 N ϕ1

Figure 2. Beam warping-free at the ends, without stiffener.



1716 MARCELLO PIGNATARO, NICOLA RIZZI, GIUSEPPE RUTA AND VALERIO VARANO

This mode is compared with that for the beam without the stiffener, shown in Figure 2, where the
corresponding critical load is also indicated. The difference, as was to be expected, is in the torsional
component which in absence of the stiffener remains a half sine wave. Moreover, the critical load is
significantly lower than the previous one.

In Figure 3 the flexural-torsional critical mode associated with case (2) and with the stiffener located
at m = 1600 mm is shown. The first plot shows the flexural component of the buckling mode, while the
second graph illustrates the torsional component. It is apparent, as expected, that the flexural component
corresponds to Euler buckling (a half sine wave) while the torsional component has a stationary point
by correspondence with the stiffener (where α = ϕ′1 = 0). Notice also that the restrained warping at
one end (for instance, x1 = 0 in this case) is represented by a horizontal tangent in the graph for the
torsional component, ϕ1, of the buckling mode. The critical load is significantly higher than that shown
in Figure 1, confirming that the system is globally stiffer.

The two components of this buckled shape are compared with the corresponding ones for the beam
without a stiffener shown in Figure 4. Here it emerges that the two components of the mixed buckling
mode are still a half-sine wave for the flexural part and a curve with initial zero slope, due to the restrained
warping at the origin, for the torsional part. The critical load is significantly lower than the previous one.

In Figure 5 the flexural-torsional critical mode associated with case (3) and with the stiffener located
at m = 400 mm is shown. The first plot shows the flexural component of the buckling mode, and the
second graph illustrates the torsional component. Once again, as was to be expected, the flexural mode
corresponds to Euler buckling (a half sine wave) since it remains unaltered by the constraints on the
torsional rotation and on the warping. The torsional component has a stationary point by correspondence
with the stiffener (where α = ϕ′1 = 0) and the restrained warping at both ends is represented by horizontal
tangents in the graph for the torsional component ϕ1 of the buckling mode. The critical load attains the
maximum value among those seen so far.

u2 λ= 277796 N ϕ1

Figure 3. Beam with warping restrained at one end and stiffener at m = 1600 mm.

u2 λ= 145737 N ϕ1

Figure 4. Beam with warping restrained at one end, without stiffener.
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u2 λ= 322416 N ϕ1

Figure 5. Beam with warping restrained at both ends and stiffener at m = 400 mm.

u2 λ= 228256 N ϕ1

Figure 6. Beam with warping restrained at both ends, without stiffener.

The components of the mixed buckling are compared with the corresponding ones for the beam without
a stiffener, shown in Figure 6, where it turns out that the mixed buckling in the absence of the stiffener
is composed of two modes symmetric with respect to the midspan. The transverse displacement is a half
sine wave, while the horizontal tangents at the ends of the torsional rotation point out the presence of the
warping constraints.

Figure 7 shows the values of the critical load versus the position of the stiffener. The horizontal line
shows the value of the Euler critical load, which is not affected by the warping restrictions at the beam
ends and at the stiffener, when flexural buckling occurs around the axis of smaller inertia (x2 for the cross-
section considered). The other curves show the values of the critical load for flexural-torsional buckling.

We note that when a stiffener is located at m = 1
2 and the boundary conditions are those of case

(1), the Euler buckling load around the axis of smaller inertia is higher than the flexural-torsional one.
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Figure 7. Numerical results.
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This happens also when both ends are free to warp and no stiffener is present, as shown in [Ruta et al.
2008]. In fact, due to the symmetry of the torsional rotation (see Figure 2) the warping vanishes at
midspan. By inserting a stiffener in a different section the flexural-torsional critical load in general
varies nonmonotonically.

With reference to Figure 7, when both ends are free to warp, as in case (1), for m ∈ [0, 700) or
m ∈ (1300, 2000] the flexural-torsional critical load is higher than the Euler one while for m ∈ (700, 1300)
the opposite happens (all lengths are here expressed in millimeters). The maximum value of the critical
load is attained at m = 400 or m = 1600, since the dependence of the flexural-torsional critical load on
the location of the stiffener is in this case symmetric with respect to the midspan. On the other hand, as
it was already pointed out, the symmetry of both the components of the mixed buckling mode fails, see
Figure 1.

When warping is prevented at both ends, case (3), the flexural-torsional critical load is higher than
the Euler buckling load in the plane of smaller inertia, irrespective of the stiffener location. This is of
importance in applications, since in practice design against buckling could be restricted to Euler buckling
in the plane of smaller inertia simply by preventing warping at the ends and inserting an intermediate
stiffener at will. The maximum effect of the increase of the critical load, however, is attained when the
stiffener is located at m = 600 or m = 1400. Indeed, here also the dependence of the flexural-torsional
critical load on the location of the stiffener is symmetric with respect to the midspan.

If warping is restrained at one end, described by case (2), the curve representing the effect of the
intermediate stiffener coincides at m = 0 with the curve representing case (1). By increasing m, the
flexural-torsional critical load increases in a nonmonotonic way, and the curve tends to the one represent-
ing case (3). In particular, the two curves coincide at m = 2000. In this case, as well as in the previous
one, the entire curve lies above the straight horizontal line representing the Euler buckling load in the
plane of smaller inertia. This is again of some importance in applications.

It must be stressed that the curves in the preceding figures change dramatically if the beam length is
changed, fixing all the other parameters. In particular, as shown in [Ruta et al. 2008], the flexural-torsional
critical load for case (1) coincides with the Euler one in the plane of smaller inertia when l = 2731 mm.
It may be shown that when l > 2731 mm the curves describing the dependence of the flexural-torsional
critical load on the stiffener location always lie above the straight horizontal line representing the Euler
buckling load in the plane of smaller inertia, irrespective of the stiffener location.

3. Bifurcations in a two-bar frame

We now consider a two-bar frame, called a Roorda frame in the literature on stability of structures [Bažant
and Cedolin 1991] and exhibiting interesting interactions between flexural and torsional modes occurring
out of the frame plane. Results for the buckling of a frame made of I-beams are in [Pignataro et al. 2006]:
two buckling modes are possible, one in-plane flexural (Euler-like) and another flexural-torsional, where
one of the bars undergoes torsion while the other bends out of the plane. These results are of limited
applicability, since the beam model in [Pignataro et al. 2006] cannot describe thin-walled elements with
generic cross-sections as pointed out in Section 1.

It is thus interesting to study the buckling of a Roorda frame composed of thin-walled beams with
nonsymmetric cross-sections, which are widely used in many structures (a standard example being the
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L1

L2

I
II

Figure 8. Two-bar frame.

so-called rack structures). In the literature there are numerical results obtained via refined finite element
codes and experimental studies on the subject. Some of these, regarding a frame shaped spatial beam, are
in [Kim and Kim 2000; Kim et al. 2001; Gu and Chan 2005; Teh 2005]. Still, to the authors’ knowledge,
an analytical study derived from a geometrically exact model is not available and the results obtained
here could be of importance in applications.

Despite the fact that the model in [Ruta et al. 2006; 2008] considers generic cross-sections, we limit
our study to a frame with beams exhibiting one axis of symmetry. This does not limit the generality
of the results for two reasons: on one hand, the coupling between flexural and torsional buckling, so
important in these structures, is clearly put into evidence; on the other hand, beams with one axis of
symmetry such as channels are of widespread use.

Consider the frame in Figure 8: the bars AB (the beam) and BC (the column) are hinged to the ground
in A and C and clamped at the common joint B. The frame is loaded at B by a dead load of magnitude λ
in order to apply standard techniques [Koiter 1945; Budiansky 1974]. A global basis and local abscissas
are indicated in the figure; the subscripts I and II distinguish quantities referring to the beam and the
column, respectively. We take into account the possibility of various warping constraints at the beam
ends A, B, and C.

The fundamental equilibrium path is

uf
I = 0, Rf

I = I, αf
I = 0,

ef
I = 0, Ef

I = 0, ηf
I = 0,

sf
I = 0, Sf

I = 0, τ f
I = 0, µf

I = 0,

uf
II =−

λ
a

x1 i1, Rf
II = I, αf

II = 0,

ef
II =−

λ
a

i1, Ef
II = 0, ηf

II = 0,

sf
II =−λi1, Sf

II = 0, τ f
II = 0, µf

II = 0.

(3-1)
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The bifurcated path is written in terms of the differences

ub
I = u, Rb

I = R+ I, αb
I = α,

eb
I = e, Eb

I = E, ηb
I = η,

sb
I = s, Sb

I = S, τ b
I = τ, µb

I = µ,

ub
II = u− λ

a
x1 i1, Rb

II = R+ I, αb
II = α,

eb
II = e− λ

a
i1, Eb

II = E, ηb
II = η,

sb
II = s− λi1, Sb

II = S, τ b
II = τ, µb

II = µ.

(3-2)

Operating as in Section 2, some steps provide the first-order equations for the buckling in terms of the
displacement components

ū′′1 = 0, b3ū′′′′2 = 0, b2ū′′′′3 = 0, hξ 2ϕ̄′′′′1 − kϕ̄′′1 = 0 on AB,

ū′′1 = 0, b3ū′′′′2 + λ
a−λ

a
(ū′′2 − c3ϕ̄

′′

1 )= 0, b2ū′′′′3 + λ
a−λ

a
(ū′′3 + c2ϕ̄

′′

1 )= 0,

hξ 2ϕ̄′′′′1 +
dλ−ak

a
ϕ̄′′1 + λ

a
a−λ

(c2ū′′3 − c3ū′′2)= 0

 on BC.
(3-3)

Equations (3-3) plus boundary conditions constitute an eigenvalue problem providing the critical
values λc and the mode shapes ū2c, ū3c, and ϕ̄1c. For simplicity of notation, the overbars indicating
first-order quantities have been dropped in the following, as has subscript c. The effect of different
warping constraints at the ends of the beams composing the frame on the critical loads has been studied
numerically by means of the COMSOL code.

3A. Geometrical and material data. Two benchmark cases have been considered, characterized by two
different cross sections exhibiting two and one axes of symmetry, respectively: a wide flange HEA240
and a channel (U-shape) with outer dimensions 100 mm (web) and 60 mm (flanges) and a uniform thick-
ness of 3 mm. By assuming the local coordinate systems as in Figure 9, the geometric and inertial
quantities of the cross-section are obtained by standard calculations and well-known tables [Timoshenko
and Gere 1961; Pignataro et al. 1991]:

• U100:

a = 642 mm2 E, b3 = 1054726 mm4 E, hξ 2
= 446086956 mm6 E, k = 1875 mm4G,

d = 2370581 mm4 E, b2 = 236653 mm4 E, c3 =−41 mm, c2 = 0 mm;

• HEA240:

a = 7.68× 103 mm2 E, b2 = 2.769× 107 mm4 E, hξ 2
= 3.65× 1011 mm6 E,

k = 3.1× 105 mm4G, d = 1.05× 108 mm4 E, b3 = 7.763× 107 mm4 E, c3 = c2 = 0 mm.

We assume the Young’s modulus is E = 206 GPa and the shear modulus G = 79 GPa as in Section 2.
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Figure 9. Three-dimensional view.

3B. Boundary conditions. In [Pignataro et al. 2006] a two-bar frame such as that in Figure 8 was an-
alyzed. At the ends A and C the rotations ϕ2 and ϕ3 were assumed to be free while it was supposed
ϕ1 = 0. In addition, the joint B was allowed to move out of the plane of the frame: this resulted in a
very low critical load. This case, however, is hardly of any technical interest due to the fact that in 3D
frames actual hinges are cylindrical and the out-of-plane movement of nodes like B is controlled by the
presence of braces.

In this section, therefore, we consider the case in which node B is prevented from moving along the
unit vector k and the hinges in A and C allow the sole rotation along k. This results in the following
boundary conditions:

u = 0, ϕ1 = 0, ϕ2 = 0, M3 = 0, in A and C;

uI = uII, RI = RII, SI = SII, uI · k = 0, (I − k⊗ k)(sI− sII)= 0, in B.

In order to investigate the influence of warping on buckling, some additional boundary conditions on
the warping are assumed, as follows:

case node A node B node C

a free free free
b free prevented free
c prevented free prevented
d prevented prevented prevented

Here “prevented” stands for warping prevented and “free” stands for no constraint on warping which
implies vanishing bimoment at the indicated beam ends. Details of the boundary conditions at node B
are shown in Figure 10.

This results in four cases:

Case a: µ= 0 in A, B and C; Case b: µ= 0 in A and C, and α = 0 in B;

Case c: µ= 0 in B, and α = 0 in A and C; Case d: α = 0 in A, B and C.
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Figure 10. Detail of frame joint B, warping free (left) and warping restrained (right).

3C. Numerical examples. In this section we consider a set of frames in which the length of the beam
(say L1) is fixed to 2000 mm, while the length of the column (say L2) has been varied in the range
3000 mm–8000 mm.

Results have been obtained for each of the boundary cases a–d.

3C.1. Modes. Figures 11 and 12 refer to the frame with HEA240 beams and show the buckling modes
and the corresponding critical value of the load multiplier. It is apparent that the considered frame may
buckle in three different ways:

Mode 1 is purely flexural (Euler-like) in the plane of the frame and involves both beam and column
(see Figure 11, mode u2);

Mode 2 is purely torsional and involves the sole column (see Figure 11, mode ϕ1) which buckles in
the shape of a half-sine wave while the beam remains straight;

a b

Figure 11. HEA240: In-plane flexural mode and torsional mode.

a b

Figure 12. HEA240: Out-of-plane flexural mode.
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a b

Figure 13. U100 flexural-torsional mode.

a b

Figure 14. U100 flexural mode out of plane.

Mode 3 is such that the column bends out of the plane of the frame while the beam twists, acting only
as a flexural constraint in B (see Figure 12). On the other hand, the torsional rotation is different from
zero only in the beam where it has the linear behavior characteristic of the Saint-Venant uniform
torsion.

This result, apart from the different constraint on the out-of-plane displacement of the joint B, corresponds
to that in [Pignataro et al. 2006]: when the centroid coincides with the shear center of the cross-sections
no coupling exists between the buckling modes which are either flexural or torsional and may be different
for the two bars simply for geometrical reasons (in section B a torsional rotation of the beam is a bending
rotation of the column).

When the frame bars have cross-sections with one symmetry axis only the frame may buckle in two
ways only as shown in Figures 13 and 14:

Mode 4 is such that the beam is subjected only to flexure in the plane of the frame, while the column
undergoes flexure and torsion (see Figure 13). Note that the torsional mode has zero initial slope
due to the warping constraint in C;

the other mode (see Figure 14) corresponds to the buckling mode 3 before except for the initial zero
slope of the torsional mode due to the warping constraint.

3C.2. Critical loads. Figures 15 and 16 show the values of the critical load (expressed in N ) versus the
length L2 of the column for each of the warping constraints in cases a–d for the HEA240 and U100
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Figure 15. Critical loads versus column length for HEA240 bars.
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Figure 16. Critical loads versus column length for U100 bars.

cross-sections, respectively. The critical loads corresponding to modes 1 and 3 above are drawn in light
blue and dark blue, respectively. The critical loads corresponding to modes 2 and 4 are drawn in red.

It is apparent that the flexural critical loads are not influenced by the constraints on warping as was to
be expected. It also appears that the torsional mode has a significant effect on the critical load when the
column is short.

In addition, Figure 15 shows that for the boundary conditions of case a λ2 < λ3 when L2< 6000 mm,
that is, the purely torsional critical load is attained before the one corresponding to the buckling mode 3.
Moreover, λ3 <λ1 for all L2; this means that the critical load of the out-of-plane buckling mode is always
lower than the one associated with the purely in-plane flexural, Euler-like, buckling mode. This sounds
adequate, because in mode 3 the column bends around the lower inertia axis, while in the purely flexural
mode 1 both the beam and the column bend around the axis of higher inertia which is twice the inertia
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around the other axis. All the results show that when warping constraints are introduced at the ends of
the bars, the flexural-torsional critical loads show a remarkable increase due to a globally stiffer system.

The analysis carried out after the introduction of the additional warping constraints labeled as cases
b and c gives more or less the same results and one finds that λ3 < λ2 < λ1. Finally, for the warping
constraints of case d the critical load corresponding to the purely torsional mode attains the highest values
and λ3 < λ2 < λ1; only when L2> 5200 mm, that is, for very slender columns, the effect of the warping
constraint is less significant and the out-of-plane mode 3 prevails on the purely torsional mode 2.

The dependence of the critical loads on the length L2 of the column when the frame is composed of
U100 bars is shown in Figure 16. It is first to be remarked that in this case only two buckling modes
(modes 3 and 4) are possible, thus only two buckling loads henceforth denoted by λ3 and λ4 shall be
calculated for the warping constraint cases a–d. From Figure 16 we deduce that we face the following
different situations:

• L2 < 4000 mm⇒ λ4 < λ3 for cases a, b, and c. This is reasonable, since mode 4 is dominated
by the very modest torsional stiffness of the channel. Moreover, the additional constraints for the
warping do not seem to add enough stiffness to the system;

• 4000 mm<L2< 4800 mm⇒ λ4<λ3 for case a and λ3<λ4 for cases b and c. That is, if the column
becomes appreciably slender the mixed flexural-torsional mode for the column is attained at a lower
critical load than the corresponding out-of-plane flexural mode when the warping constraints are
not present. Even a modest set of additional warping constraints makes the opposite hold. This is
reasonable since for slender bars the Euler flexural buckling load sensibly decreases, while even
a modest increase in the torsional stiffness can make the mixed flexural-torsional buckling load
increase over the purely flexural one;

• L2> 4800 mm⇒ λ3 < λ4 for cases a, b, and c. This sounds again adequate since for very slender
columns the Euler buckling load is so low that it is attained before any possible flexural-torsional
buckling load even when modest additional warping constraints are introduced;

• In case d, that is when the stiffest system with respect to torsion and warping is considered, λ4 > λ3

∀L2. That is, when the frame has the highest possible stiffness against torsion, the Euler-like buck-
ling load is the lowest critical load and hence the most important in applications, irrespective of the
length of the column.

It has to be remarked that these results may be of importance in applications since design against
Euler buckling is a well-known subject in engineers’ education while design against flexural-torsional
buckling of thin-walled structures is still a debated topic.

4. Final remarks

The direct one-dimensional beam model suitable for the description of the flexural-torsional buckling
introduced in [Ruta et al. 2006] has been used to study two cases of interest in applications, namely
a compressed beam with an intermediate stiffener and the Roorda frame. The direct formulation has
made it possible to use standard static perturbation techniques of well-known reliability and to limit the
use of numerical codes to the parametric solutions of the field equations for the buckling. Some very
interesting results have been found which may have some importance in applications: the introduction
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of an intermediate stiffener globally increases the stiffness of the beam against warping and torsion and
makes the Euler buckling mode the most meaningful one. In the Roorda frame, the warping constraints
and the length of the column play a very important role and the first critical load may sometimes not be
the one corresponding to the Euler-like buckling mode. This fact of course is of interest in applications
because of the well-known low torsion rigidity of thin-walled open sections. These results, to the authors’
knowledge, are new and subject to further improvement. As a matter of fact, it appears that a further
step in this study is the analysis of more complex 3D frames.
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NONLINEAR BUCKLING FORMULATIONS AND IMPERFECTION MODELS
FOR SHEAR DEFORMABLE PLATES BY THE BOUNDARY ELEMENT METHOD

JUDHA PURBOLAKSONO AND M. H. (FERRI) ALIABADI

This paper presents a nonlinear buckling analysis of shear deformable plates. Two models of imper-
fections are introduced: small uniform transverse loads and distributed transverse loads, according to
the number of half-waves indicated by the eigenvectors from linear elastic buckling analysis. A simple
numerical algorithm is presented to analyze the problems. Numerical examples with different geometries,
loading and boundary conditions are presented to demonstrate the accuracy of the formulation.

1. Introduction

Plate buckling behavior has been investigated analytically and experimentally since the first experimental
observation, almost 150 years ago; see [Walker 1984] for a review. Analytical solutions of linear buckling
of plates based on classical plate theory can be found in [Brush and Almroth 1975; Timoshenko and Gere
1961]. Numerical methods have also been used [Bao et al. 1997; Liu 2001; Manolis et al. 1986; Purbo-
laksono and Aliabadi 2005b]. Liu [1987] and Syngellakis [1998] applied the boundary element method
(BEM) to the stability analysis of thin plates. In [Purbolaksono and Aliabadi 2005a] we developed a
boundary element method for analyzing linear buckling problems of shear deformable plates.

The boundary element method has also been applied to the analysis of nonlinear plate problems. Early
works on geometrically nonlinear shear deformable plates by boundary element method include [Lei et al.
1990; He and Qin 1993], while Marczak and de Barcellos [1998] reported on a nonlinear stability analysis
in shear deformable plates by the BEM. Other works contributing to BEM analysis of nonlinear buckling
of thin plates have been made [Kamiya et al. 1984; Qin and Huang 1990; Tanaka et al. 1999].

Here we perform a nonlinear buckling analysis of shear deformable Mindlin plates. Two models of
imperfections are introduced, one involving small uniform transverse loads and one involving distributed
transverse loads corresponding to the number of half-waves indicated by the eigenvectors obtained from
linear elastic buckling analysis. A simple numerical algorithm is presented to analyze the problems.
Numerical examples with different geometries, loading and boundary conditions are used to demonstrate
the accuracy of the formulations.

2. Governing equations

Figure 1 shows a geometrically nonlinear Mindlin plate. With the notation there, and with Greek indices
varying from 1 to 2 and Roman indices from 1 to 3, the plate’s governing equations can be written as

Mαβ,β + Qα = 0, Qα,α + (Nαβw3,β),α + q = 0 Nαβ,β = 0, (1)

Keywords: boundary element method, shear deformable plates, nonlinear buckling, imperfections.
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Figure 1. Stress resultant equilibrium in geometrically nonlinear plate element.

where uα and w3 are displacements in the xα (in-plane) and x3 (out-of-plane) directions; wα are rotations
in the xα directions; δ is the Kronecker delta function; Qα = C(wα +w3,α) and

Mαβ =
1−ν

2
D
(
wα,β +wβ,α +

2ν
1−ν

wγ,γ δαβ

)
+

ν
(1−ν2)λ2 qδαβ

are the stress resultants in plate bending problems, while Nαβ = N lin
αβ + N nonlin

αβ , with

N lin
αβ =

1−ν
2

B
(

uα,β + uβ,α +
2ν

1−ν
uγ,γ δαβ

)
, N nonlin

αβ =
1−ν

2
B
(
w3,βw3,α +

2ν
1−ν

w3,γw3,γ δαβ

)
,

are the stress resultants for two-dimensional plane stress elasticity. The parameters are B = Eh/(1− ν2),
the membrane stiffness; D = Eh3/(12(1− ν2)), the bending stiffness of the plate; q , the transverse load;
C = D(1− ν)λ2/2, the shear stiffness; E , the modulus of elasticity; λ=

√
10/h, the shear factor; h, the

thickness of the plate; ν, the Poisson’s ratio.
Extensive discussion on bending solutions of shear deformable plate theories can be found in [Wang

et al. 2001].

3. Boundary integral equations

The boundary integral equation for the nonlinear buckling analysis of a plate bending can be written as

Ci jwi (x ′)+
∫
0

P∗i j (x
′, x)w j (x)d0 =

∫
0

W ∗i j (x
′, x)plin

j (x)d0+
∫
�

W ∗i j (x
′, X)q(X)d�(X)

+

∫
�

W ∗i3(x
′, X)(Nαβw3,χ ),α(X)d�(X). (2)

The kernel solutions Pi j and Wi j can be found in [Aliabadi 2002]. The boundary integral equation for
two-dimensional plane stress is expressed as

Cθα(x ′)uα(x ′)+
∫
0

T ∗θα(x
′, x)u(x)d0=

∫
0

U∗θα(x
′, x)t lin(x)d0+

∫
�

U∗θα(x
′, X)N nonlin

αγ,γ (X)d�(X). (3)
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Using the divergence theorem, the domain integral on the right-hand side of (3) can be expressed as

Cθα(x ′)uα(x ′)+
∫
0

T ∗θα(x
′, x)u(x)d0 =

∫
0

U∗θα(x
′, x)t lin(x)d0+ nγ (x)

∫
0

U∗θα(x
′, x)N nonlin

αγ (x)d0

−

∫
�

U∗θα,γ (x
′, X)N nonlin

αγ (X)d�(X). (4)

In a similar way, (4) can be simplified and written as

Cθα(x ′)uα(x ′)+
∫
0

T ∗θα(x
′, x)u(x)d0 =

∫
0

U∗θα(x
′, x)t (x)d0− nγ (x)

∫
0

U∗θα(x
′, x)N nonlin

αγ (x)d0

+

∫
�

U∗θα(x
′, X)N nonlin

αγ,γ (X)d�(X), (5)

where tα = t lin
α + tnonlin

α and tnonlin
α = N nonlin

αγ nγ . The fundamental solutions Uθα and Tθα are can be found
in [Aliabadi 2002].

To calculate the nonlinear terms, two additional integral equations of the deflection w3 and the in-plane
stress resultants N lin

αβ at domain points are required:

wi (X ′)+
∫
0

P∗i j (X
′, x)w j (x)d0 =

∫
0

W ∗i j (X
′, x)plin

j (x)d0+
∫
�

W ∗i j (X
′, X)q(X)d�(X)

+

∫
�

W ∗i3(X
′, X)(Nαβw3,χ ),α(X)d�(X), (6)

N lin
αβ(X

′)=

∫
0

U∗1αβ(X
′, x)t1(x)d0−

∫
0

T ∗1αβ(X
′, x)u1(x)d0

− nγ (x)
∫
0

U∗1αβ(X
′, x)N nonlin

αγ (x)d0+
∫
�

U∗1αβ(X
′, X)N nonlin

αγ,γ (X)d�(X), (7)

where the fundamental solutions U∗1αβ and T ∗1αβ can be found in [Aliabadi 2002].
The domain integrals appearing in (2), (5), (6), and (7) are evaluated by using the dual reciprocity tech-

nique as described in [Wen et al. 2000]. The particular solutions for plate bending and two-dimensional
plane stress can also be found in the same reference.

4. Evaluation of derivative terms

The derivatives of deflection w3,γ on the boundary and in the domain can be approximated using a radial
basis function f (r)=

√
c2+ r2, where r =

√
(x1− xm

1 )
2
+ (x2− xm

2 )
2:

w3(x1+ x2)=

M+N∑
m=1

f (r)m9m, (8)

where N and M are respectively the number of selected points x1 and x2 on the boundary and in the
domain. The 9m are coefficients which are determined by values at the selected points as follows:

9 = F−1
{w3}. (9)
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The derivatives of the deflection values may be expressed by

w3,γ (x1+ x2)= f (r),γ F−1
{w3}. (10)

The nonlinear terms N nonlin
αγ,γ which appear in (5) and (7) can be evaluated in a similar way as well. Using

this approach, there is no need to evaluate the derivatives of the transverse displacement w3,γ through the
integral equations. The integral equations usually have complicated mathematical terms and may have
singularities of higher order.

A relaxation procedure is used to improve the numerical results. As the nonlinear terms are calculated
in each step (k) of increments, the deflection w3 can be modified as

wk+1
3 =

wk+1
3 +wk

3

2
. (11)

Note that the relaxation procedure shown in (11) works well for moderately low load levels. If higher
load levels are applied, the use of (11) is not recommended.

5. Imperfection models

The initial imperfections of the transverse loads are introduced to trigger buckling modes. Figure 2 shows
the two imperfection models used:

(i) uniform distribution of the transverse loads q0 in the domain �;

(ii) distributed transverse loads q0 in the domain �, corresponding to a number of half-waves indicated
by the eigenvectors from the linear elastic buckling analysis [Purbolaksono and Aliabadi 2005a].

The first model only allows few nonlinear buckling problems to be accurately analyzed such as the
geometries of square and circular models. The second model is generally recommended, since the im-
perfections can be modeled based on the eigenvectors that are related to the buckling modes. Hence, the
second model may represent the initial imperfections that should be distributed in the domain.

A A

B

B

Applied compression load Applied compression load

according to number of half-waves

Figure 2. Initial imperfection models.
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The following equations are used to define the magnitudes of the load increment 1σ and transverse
loads q0 throughout this work. The magnitudes are empirically maintained to be small enough. The
relation between the load increment 1σ and modulus of elasticity may be proposed as

1σ

E
≈ X, (12)

where X is in the range of 10−7 to 5× 10−7. Next, the relation between the load increment 1σ and
transverse loads q0 is proposed as

q0 =
1σh

5b
, (13)

where b is the width or diameter of plates.
The transverse loads q0 are used to introduce the initial imperfection loads in the plates according to

the models shown in Figure 2.

6. Numerical algorithms

A simple numerical algorithm, requiring no iterations, is used to analyze nonlinear buckling problems.
It can be summarized as follows:

Step 1: After introducing initial imperfection by uniform distribution q0 or distributed transverse loads
q0 = q1

0 (see Figure 2) and a load increment 1σ , let the first step k = 1 and the final step kfinal

and initial values of N lin
αβ = 0 and w,α = 0.

Step 2: Compute the coefficient matrices related to fundamental solutions. They can be stored in the
core and used in each increment without any change.

Step 3: If k 6= 1 then qk+1
0 = qk

0 +q1
0 . Solve the linear system equation of the boundary integral equations

to obtain boundary values. Then calculate the in-plane stress resultants N lin
αβ and derivative of

deflection w,α in the domain.

Step 4: Apply the relaxation procedure given in (11). Then calculate the nonlinear terms (N nonlin
αγ,γ )

(k) and
[(Nαβw3,β),α]

(k) using approximation function as described in (6)–(8). The nonlinear terms will
be used for the evaluation in the next step k+ 1.

Step 5: Calculate the nonlinear membrane traction tnonlin
α on the boundary.

Step 6: Print results.

Step 7: If k = kfinal, terminate; otherwise let step k = k+ 1 and go to Step 3.

By introducing cumulative transverse loads qk
0 at each step k, the equilibrium of (4) could be main-

tained. The transverse loads q0 as the imperfection loads however might provide potential biasing of the
results if they are arbitrarily defined.

7. Numerical examples

Several numerical examples with different geometries, loadings, and boundary conditions are presented to
demonstrate the ability of the proposed method. Equations (12) and (13) are used to define the magnitudes
of the load increment 1σ and transverse loads q0.
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Figure 3. Nonlinear buckling model.

The nonlinear buckling model is shown in Figure 3. In the following examples, the normalized critical
compression stress Knl is defined by

Knl =
b2h
π2 D

σ, (14)

where σ is compression stress.

7.1. Convergence study of simply supported square plate subjected to uniaxial compression loads. In
this example, a square plate subjected to compression loads at its ends as shown in Figure 3 is analyzed.
Five different distributions of domain points are used for the dual reciprocity calculation. The initial
imperfection is introduced by uniform transverse load q0 = 0.005 units and in the case of 1σ = 4 units.
A convergence study of the simply supported square plate is performed and the normalized compression
stresses Knl and the normalized deflection Z (=w3/h) are plotted in Figure 4. The results given in [Levy
1942] are also plotted in Figure 4. It can be seen that the convergence of the results can be achieved with
49 domain points. The normalized compression stress is in agreement with the critical value Knl ≈ 4
of the analytical result [Timoshenko and Gere 1961]. The BEM results are also in good agreement with
Levy’s solution [Levy 1942].

0 0.2 0.4 0.6 0.8 1
Z3

3.5

4

4.5

5

5.5

Knl

Figure 4. Normalized compression stresses Knl and deflection Z for different numbers
of domain points: from top to bottom at rightmost point, 5× 5, 6× 6, 7× 7, and 8× 8
(dashed curve). The black dots are values from [Levy 1942]. The thin horizontal line
marks the critical value [Timoshenko and Gere 1961].
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0 0.2 0.4 0.6 0.8
Z2

2.5

3

3.5

4

4.5

5
Knl

1σ = 4

0 0.2 0.4 0.6 0.8
Z2

2.5

3

3.5

4

4.5

5
Knl

q0 = 0.005

Figure 5. Normalized compression stresses Knl and deflection Z for various transverse
loads (top diagram; curves from top to bottom, q0 = 0.0025, 0.005, 0.01) and for various
increments of the compression load (bottom diagram: curves from from top to bottom,
1σ = 16, 8, 4). Black dots and horizontal line as in Figure 4.

7.2. Simply supported square plate subjected to uniaxial compression loads with different initial imper-
fections and increments of load. In this example, a simply supported square plate subjected to uniaxial
compression load is analyzed with different imperfections and increments of the load. BEM meshing with
20 quadratic boundary elements and 49 domain points are used. The normalized compression stresses
Knl and deflection Z for different initial imperfections and in the case of 1σ = 4 unit of compression
loads are plotted in Figure 5, top.

The normalized compression stresses Knl and deflection Z for different increment of compression
loads and in the case of q0 = 0.005 units of uniform transverse loads are plotted in Figure 5, bottom.
It can be seen that the bigger value of initial imperfection provides a lower critical buckling load. The
same graph also shows that the bigger value of compression load increment provides a bigger critical
buckling load.

7.3. Circular and square plates subjected to a uniform normal compression loads. We performed the
nonlinear buckling analysis of circular and square plates subjected to uniform normal compression loads
(Figure 6). Two boundary conditions, simply supported and clamped, are applied. The BEM meshes
used had 16 quadratic boundary elements and 33 domain points for the circular plate, and 20 quadratic
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Figure 6. Circular and square plates subjected to uniform normal compression loads.

boundary elements and 25 domain points for the square plate. The compression load increments were
chosen as 1σ = 4 units and the initial imperfection as q0 = 0.005 units. Figure 7 shows the normalized
compression stresses Knl and the normalized deflection Z together the with critical value of each model
for linear elastic buckling analysis [Timoshenko and Gere 1961]. The results are seen to be agreement
with the critical values.

7.4. Analysis of two imperfection models on simply supported rectangular plates. In this example,
two imperfection models, namely uniform distribution and distributed transverse loads, are evaluated. A
simply supported rectangular plate as shown in Figure 3 is used to investigate the proposed imperfection
models. The origin is at the center of the plate. In the case of uniform distribution, the increments of
compression loads as 1σ = 4 units and initial imperfection as q0 = 0.005 units are applied.

0 0.5 1 1.5 2
Z1

2

3

4

5

6

Knl

Figure 7. Normalized stresses Knl of circular and square plates subjected to uniform
normal compression loads. Curves from top to bottom correspond to clamped circle,
clamped square, simply supported square, and simply supported circle configuration.
The horizontal lines show the critical values in the same order.
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Figure 8. Half-wave modes for rectangular plates with different aspect ratio a/b due to
uniform imperfections.

The normalized deflections Z for the points along x-axis due to uniform imperfections are plotted in
Figure 8. It can be seen that the plates will buckle in odd number of half-waves for different aspect ratios
a/b.

For the distributed transverse load model, imperfections are introduced according to the buckling
modes defined by the eigenvectors from linear elastic buckling analysis for the corresponding geometry.
For the rectangular plate, the distribution of imperfections is shown in Figure 9.

The estimated normalized compression stresses Knl for different aspect ratio of the plates are plotted
in Figure 10. It can be seen that the uniform imperfection of transverse loads provides inaccurate results
with the increasing of aspect ratios. Moreover, for aspect ratios a/b between 1.4 and 2.5, the buckling
deformations of the plate do not form two half-wave modes as expected. The results obtained with the
distributed loads according to the buckling modes are in good agreements with the published results.

7.5. Nonlinear buckling analysis of rectangular plates with different boundary conditions. We next
turn to a nonlinear buckling analysis of rectangular plates as shown in Figure 3 subjected to a uniform

Figure 9. Simplified imperfections for rectangular plates.



1738 JUDHA PURBOLAKSONO AND M. H. (FERRI) ALIABADI

Figure 10. The normalized compression stresses Knl for different aspect ratio of the
simply supported rectangular plates.

normal compression loads. Three boundary conditions are applied: all sides clamped (cccc), two opposite
loaded side clamped and two others simply supported (cscs), and three sides simply supported and one
unloaded side free (sssf). The deformations for rectangular plates with the these boundary conditions are
shown in Figure 11.

The normalized compression stresses Knl and the normalized deflection Z together with the critical
value of each the three models above are plotted in Figure 12.

Figure 11. Nonlinear buckling deformations for rectangular plates with different bound-
ary conditions. See text immediately above for abbreviations.
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Knl

a/b = 0.75

a/b = 1.0

a/b = 2.0

0 0.2 0.4 0.6 0.8 1
Z2

3

4

5

6

7

Knl

a/b = 1.0

a/b = 2.0

a/b = 3.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Z0

0.25

0.5

0.75

1

1.25

1.5

Knl

a/b = 1.0

a/b = 1.75

a/b = 2.0

Figure 12. Normalized compression stresses Knl of rectangular plates, for different val-
ues of a/b (given next to the curves to which they apply). Top left: all sides clamped.
Top right: two opposite loaded sides clamped and two others simply supported. Bottom:
three sides simply supported and one unloaded side free. The critical values (horizontal
lines) are taken from [Purbolaksono and Aliabadi 2005a].

8. Conclusions

The BEM results obtained by using imperfections of the distributed transverse loads corresponding to the
expected buckling modes were in good agreement with the published results and the theoretical critical
buckling strengths. The proposed equations for defining the magnitudes of the load increment 1σ and
transverse loads q0 reasonably also demonstrated the accuracy of the results for the analyses.

Acknowledgments

The authors thank Queen Mary and Westfield Research Council, University of London, United Kingdom
for financial support during the completion of this work.



1740 JUDHA PURBOLAKSONO AND M. H. (FERRI) ALIABADI

References

[Aliabadi 2002] M. H. Aliabadi, The boundary element method, applications in solids and structures, vol. 2, Wiley, Chichester,
2002.

[Bao et al. 1997] G. Bao, W. Jiang, and J. C. Roberts, “Analytic and finite element solutions for bending and buckling of
orthotropic rectangular plates”, Int. J. Solids Struct. 34:14 (1997), 1797–1822.

[Brush and Almroth 1975] D. O. Brush and B. Almroth, Buckling of bars, plates, and shells, McGraw-Hill, New York, 1975.
[He and Qin 1993] X. Q. He and Q. H. Qin, “Nonlinear analysis of Reissner’s plate by the variational approaches and boundary

element methods”, Appl. Math. Model. 17:3 (1993), 149–155.
[Kamiya et al. 1984] N. Kamiya, Y. Sawaki, and Y. Nakamura, “Postbuckling analysis by the boundary element method”, Eng.
Anal. 1:3 (1984), 40–44.

[Lei et al. 1990] X. Y. Lei, M. K. Huang, and X. X. Wang, “Geometrically nonlinear analysis of a Reissner type plate by the
boundary element method”, Comput. Struct. 37:6 (1990), 911–916.

[Levy 1942] S. Levy, Bending of rectangular plates with large deflections, National Advisory Committee for Aeronautics,
1942, Available at http://naca.central.cranfield.ac.uk/reports/1942/naca-report-737.pdf. TN-737.

[Liu 1987] Y. Liu, “Elastic stability analysis of thin plate by the boundary element method - new formulation”, Eng. Anal. 4:3
(1987), 160–164.

[Liu 2001] F. L. Liu, “Differential quadrature element method for buckling analysis of rectangular Mindlin plates having
discontinuities”, Int. J. Solids Struct. 38:14 (2001), 2305–2321.

[Manolis et al. 1986] G. D. Manolis, D. E. Besko, and M. F. Pineros, “Beam and plate stability by boundary elements”, Comput.
Struct. 22:6 (1986), 917–923.

[Marczak and de Barcellos 1998] R. J. Marczak and C. S. de Barcellos, “A boundary element formulation for linear and
nonlinear bending of plates”, in Proc. Fourth World Congress of Computational Mechanics, IACM, 1998.

[Purbolaksono and Aliabadi 2005a] J. Purbolaksono and M. H. Aliabadi, “Buckling analysis of shear deformable plates by
boundary element method”, Int. J. Numer. Methods Eng. 62:4 (2005), 537–563.

[Purbolaksono and Aliabadi 2005b] J. Purbolaksono and M. H. Aliabadi, “Dual boundary element method for instability anal-
ysis of cracked plates”, Comput. Model. Eng. Sci. 8:1 (2005), 73–90.

[Qin and Huang 1990] Q. Qin and Y. Huang, “BEM of postbuckling analysis of thin plates”, Appl. Math. Model. 14:10 (1990),
544–548.

[Syngellakis 1998] S. Syngellakis, Stability plate bending analysis with boundary elements, edited by M. H. Aliabadi, Compu-
tational Mechanics Publications, Southampton and Boston, 1998.

[Tanaka et al. 1999] M. Tanaka, T. Matsumoto, and Z. Zheng, “Application of the boundary-domain element method to the
pre/post-buckling problem of von Karman plates”, Eng. Anal. Bound. Elem. 23:5-6 (1999), 399–404.

[Timoshenko and Gere 1961] S. P. Timoshenko and J. M. Gere, Theory of elastic stability, 2nd ed., McGraw-Hill, New York,
1961.

[Walker 1984] A. C. Walker, “A brief review of plate buckling research”, in Behaviour of thin-walled structures, edited by J.
Rhodes and J. Spence, Elsevier, London, 1984.

[Wang et al. 2001] C. M. Wang, G. T. Lim, J. N. Reddy, and K. H. Lee, “Relationships between bending solutions of Reissner
and Mindlin plate theories”, Eng. Struct. 23:7 (2001), 838–849.

[Wen et al. 2000] P. H. Wen, M. H. Aliabadi, and A. Young, “Application of dual reciprocity method to plates and shells”, Eng.
Anal. Bound. Elem. 24:7-8 (2000), 583–590.

Received 12 Dec 2008. Revised 23 Jun 2009. Accepted 4 Jul 2009.

JUDHA PURBOLAKSONO: judha@uniten.edu.my
Department of Mechanical Engineering, Universiti Tenaga Nasional, Km 7 Jalan Kajang–Puchong, Kajang 43009, Selangor,
Malaysia

M. H. (FERRI) ALIABADI: m.h.aliabadi@imperial.ac.uk
Department of Aeronautics, Faculty of Engineering, Imperial College London, Prince Consort Road, London SW7 2BY,
United Kingdom



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 4, No. 10, 2009

A NEW ANALYTIC SYMPLECTIC ELASTICITY APPROACH FOR BEAMS
RESTING ON PASTERNAK ELASTIC FOUNDATIONS

C. F. LÜ, C. W. LIM AND W. A. YAO

Analytic solutions describing the stresses and displacements of beams on a Pasternak elastic foundation
are presented using a symplectic method based on classical two-dimensional elasticity theory. Hamil-
ton’s principle with a Legendre transformation is employed to derive the Hamiltonian dual equation, and
separation of variables reduces the dual equation to an eigenequation that differs from the conventional
eigenvalue problems involved in vibration and buckling analysis. Using adjoint symplectic orthonormal-
ity, a group of eigensolutions of zero eigenvalue, corresponding to the Saint-Venant problem, are derived.
This approach differs from the traditional semi-inverse analysis, which requires stress or deformation
trial functions in the Lagrangian system. The final solutions, which account for the effects of an elastic
foundation and applied lateral loads, are approximated by an eigenfunction expansion. Comparisons
with existing numerical solutions are conducted to validate the efficiency of this new approach.

1. Introduction

Isotropic beams and plates on elastic foundations are widely used to model civil engineering structures,
including building footings designed in the form of plates or planar framed structures, bases of artificial
navigable waterways, the pavement of highways and runways, and rails, to name a few. Much of the
existing literature on structure-foundation systems is based on classical thin beam/plate theory [Leissa
1973; Franciosi and Masi 1993; De Rosa and Maurizi 1998], which relies on the assumption that a
foundation’s reaction forces act on the midplane of the modeled beam/plate. This assumption, however,
may be unrealistic for thicker structures in which shear deformations may be significant. In addition,
the effects of the foundation on deformation and stress fields in the vicinity of the two lateral surfaces
become important for larger beam and plate aspect ratios.

A variety of first-order shear deformation theories [Timoshenko 1921; Shirima and Giger 1992; Wang
et al. 1998; Lee et al. 2003] and refined higher-order theories [Reddy 1984; Frostig et al. 1992; Matsunaga
2000], which account for shear deformations and/or rotary inertia, have been proposed to improve the
accuracy of thick beam/plate models. However, they suffer from the shortcoming that transverse normal
stress is neglected [Lim 1999].

A number of studies have attempted to present two-dimensional elasticity solutions for isotropic and
anisotropic beams. Whitney [1985] performed a stress analysis on orthotropic beams subjected to con-
centrated loads within the framework of the classical theory of elasticity. Stresses that developed during
interlaminar beam tests were examined in detail, and observations showed considerable deviation from

Keywords: Saint-Venant problem, elastic foundation, symplectic, Hamilton principle, Legendre transformation.
This work was supported by Research Scholarship Enhancement Scheme of City University of Hong Kong, and Project
No. 7002291 (BC).
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classical beam theory over large portions of the beam. Sullivan and Vanoene [1986] derived an elasticity
solution for centrally loaded orthotropic beams by virtue of a stress function and the Fourier series. The
symmetric properties of the stress field in the beams were investigated and compared to those predicted by
beam theory. Regions in which the beam theory predictions coincided with the theory of elasticity were
identified. Sankar [2001] reported an exact elasticity solution for a simply supported functionally graded
beam with the aid of the Fourier series. Although no assumptions concerning the stress and deformation
fields were adopted in these papers, and, hence, the solution formulations were applicable to beams of
arbitrary thickness, such exact solutions are only available for fully simply supported beams. Ding et al.
[2005] proposed analytic elasticity solutions for the stress and displacement fields of an isotropic fixed-
fixed beam produced by uniform loading. They constructed biharmonic stress functions using the Airy
stress function method, and investigated the differences between the two types of fixed ends described
in [Timoshenko and Goodier 1970]. Their analysis employed the semi-inverse method, which is the ap-
proach of choice for dealing with a higher-order partial differential equation with a single variable. Such
single-variable solution procedures rely on the Lagrangian method, for which many effective methods of
mathematical physics, such as separation of variables and expansion of eigenfunctions, are not applicable.

We have not been able to find in the literature analytic solutions for generally supported beams resting
on elastic foundations using classical two-dimensional theory of elasticity. In this paper, a rational
derivation based on that theory is presented to determine the mechanical behavior of such beams. The
solution involves the symplectic group, which was introduced by Weyl [1939] and has found applications
in many areas of physics, including quantum mechanics, relativity, gravitation, astrophysics, classical
mechanics, Hamiltonian mechanics, and elasticity. Details regarding the development and applications
of the symplectic approach can be found in [Lim et al. 2007].

In the Hamiltonian framework, separation of variables and eigenfunction expansions can be applied to
derive exact analytic solutions for some basic elasticity problems, although solutions are still unavailable
and have long been a bottleneck for the development of the theory of elasticity. In [Lim et al. 2008]
we proposed a new symplectic approach to analyze the bending behavior of corner-supported thin plates
subjected to uniform transverse pressures, for which an exact explicit solution for deflection is derived
here for the first time. The zero bending moment and shear forces at the free edges are exactly satisfied,
and the twisting moment conditions at the support corners are exactly predicted. These quantities have
long eluded both analytic and numerical analysis, including application of the finite element method.

For beams in a plane state without body forces, a Legendre transformation may be applied to derive
the conservative Hamiltonian variational principle, from which a Hamiltonian dual equation, i.e., the
symplectic dual system, is formulated. With homogeneous side boundary conditions, the method of sep-
aration of variables is employed to obtain the eigenequation for the transverse cross section. The present
work emphasizes eigensolutions of zero eigenvalue, because they correspond to the basic solutions of
Saint-Venant problems [Yao et al. 2009].

The effect of an elastic foundation on the mechanical behavior of a beam arises from the interaction
between the foundation and the beam surface, which are unlike those modeled in classical beam theory.
Hence, an elastic foundation is treated with side boundary conditions, similar to those of an applied
load, and the contributions of these boundary conditions to the solutions for beams are approximated by
a linear expansion of all eigensolutions of zero eigenvalue. A comparison of numerical examples with
other methods is presented to illustrate the accuracy of the present symplectic approach.
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2. Hamilton’s variational principle and symplectic formulation

Consider an isotropic beam of length l, depth 2h, and unit width. The Cartesian coordinate system is
defined such that −h ≤ z ≤ h and 0 ≤ x ≤ l (l � 2h), as shown in Figure 1. Suppose that all loads
(including the boundary conditions) are applied in the x Oz plane and remain constant along the width.
These conditions define a plane stress problem involving a beam.

Here, the top surface of the beam is subjected to the following applied loads:

σz = F̄z1(x), τxz = F̄x1(x), at z =−h, (1)

and the bottom surface is attached to an elastic foundation (see Figure 1). We assume that the foundation
experiences only vertical displacements without horizontal movement, and that only the compatibility
of normal displacements at the foundation-beam interface is considered. Hence, the beam is subjected
to normal reaction forces by the foundation, which is modeled as a two-parameter foundation. The
displacement–reaction force relation [Pasternak 1954] is

σz = F̄z2(x)= kp
∂2w

∂x2 − kww, τxz = F̄x2(x)= 0, at z = h, (2)

where kw is the normal stiffness (modulus of the Winkler foundation) and kp the shear stiffness of the
foundation.

For an isotropic beam in a plane stress state as described above, the constitutive equations are


σx

σz

τxz

= E
1− ν2

 1 ν 0
ν 1 0
0 0 1

2(1−ν)




∂u
∂x
∂w
∂z

∂w
∂x
+
∂u
∂z

 , (3)

where σx and σz are the normal stresses, τxz is the shear stress, u and w are the displacement components,
respectively, in the x- and z-directions, E and ν are the Young’s modulus and Poisson’s ratio, respectively.
In the absence of body forces, the governing differential equations of the beam in equilibrium are

∂σx

∂x
+
∂τxz

∂z
= 0,

∂τxz

∂x
+
∂σz

∂z
= 0. (4)
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Figure 1. Left: geometry, coordinate system and loading condition of a beam resting
on elastic foundations. Right: Pasternak foundation and beam foundation.
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In the following Hamiltonian formulation, the time variable is designated as the x coordinate, and a dot
indicates partial differentiation with respect to x . Following the routine transformation of the Lagrangian
system into the Hamiltonian system, via the Legendre transformation, we arrive at the Hamiltonian
variational principle,

δ

(∫ l

0

∫ h

−h

[
pT q̇−H(q, p)

]
dxdz+

∫ l

0
(F̄T

1 q)z=−h dx +
1
2

∫ l

0
(kww2

+ kpẇ
2)z=h dx

)
= 0, (5)

where H(q, p) is the Hamiltonian energy density, as given in [Yao et al. 2009], q=[u w]T and p=[σ τ ]T

(with σ = σx and τ = τxz) are a pair of dual vectors, and F̄T
1 = [F̄x1 F̄z1]. Based on (5), the Hamiltonian

dual equation is derived as
v̇ = Hv, (6)

where v = [u w σ τ ]T is called the state vector, and H is the Hamiltonian operator matrix [Yao et al.
2009]. From (3), the induced variable σz is obtained as

σz = E
∂w

∂z
+ νσ. (7)

For the present Hamiltonian dual equation (6), the method of variable separation is applicable, i.e., the
solution to (6) is assumed to be of the form

v(x, z)= ξ(x)ψ(z). (8)

Substitution of (8) into (6) yields
ξ(x)= eµx , (9)

where µ is the eigenvalue in the x-direction, and the eigenvalue equation

Hψ(z)= µψ(z), (10)

where ψ(z) is the eigenvector, which fulfills the homogeneous boundary conditions

E
∂w

∂z
+ νσ = 0, τ = 0, at z =±h. (11)

3. Basic solutions to the Saint-Venant problem

Basic solutions. According to the Saint-Venant principle, forces in equilibrium pose local influences,
i.e., local effects decay dramatically with the distance. The solution to the Saint-Venant problem is
inherent in the eigensolutions with nonzero eigenvalues. Meanwhile, (8) implies that the zero eigenvalue
solutions are not sensitive to the equilibrium system of forces, because no exponential functions are
present. Hence, for the slender beam (l� 2h), the effects of the equilibrium system of forces at the two
ends are negligible, that is, the eigensolutions of nonzero eigenvalues can be excluded. As a result, only
eigensolutions for the repeated zero-valued eigenvalue µ= 0 will be used to construct the basic solution
to the beam in the Saint-Venant problem [Yao et al. 2009], i.e.,

v = a1ψ
(0)
f + a2ψ

(1)
f + a3ψ

(0)
s + a4ψ

(1)
s + a5ψ

(2)
s + a6ψ

(3)
s , (12)
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where ψ (n)f and ψ (n)s are, respectively, the Jordan form eigensolutions of the first and second chains, for
which explicit expressions have been derived in [Yao et al. 2009]. Equation (12) can be expanded to

u = a1− a4z+ a6

(
−

6+5ν
10

h2z+ 2+ν
6

z3
)
, σ = a2 E − a5 Ez,

w =−a2νz+ a3− a5

(4+5ν
10

z2
−
ν
2

z2
)
, τ = 1

2a6 E(z2
− h2),

(13)

where the ai are x-dependent parameters to be determined using the constraints at x = 0, l. The basic
solution in (13) is applicable to the Hamiltonian dual equation (6) with the homogeneous side boundary
conditions given in (11). When the beam is subjected to external loading and elastic foundations, ai

should be determined from the Hamiltonian variational principle in (5).

Determination of the ai . Because each basic eigensolution in (12) is related to a special deformation,
the ai should be related to particular physical quantities. Here, a1, a3, a4 correspond to axial deformation,
transverse deformation, and rotation angle, respectively, and a2, a5, a6 correspond to axial force, bend-
ing moment, and shear force, respectively. Note that a1 and a2 are related to symmetric deformations,
whereas a3–a6 are related to antisymmetric deformations.

In the present analysis, only the bending behavior of the beam on an elastic foundation is considered.
The symmetric deformations described by a1 and a2 are therefore excluded. Substituting the antisym-
metric portion of (13) into (5) leads to

ȧ3 = a4+
4+5ν
10E

F̄x1, ȧ4 = a5− 0.4h2ȧ6, ȧ5 = a6+
1

E I
F̄x1,

ȧ6 =−
1

E I

(
kw(a3− 0.4h2a5) − kp(ä3− 0.4h2ä5)+ F̄z1

)
,

(14)

where I = 2
3 h3 is the second moment of the area. The set of coupled differential equations above can be

reduced to a fourth-order differential equation with respect to a3, i.e.,

Ēa(4)3 − k̄pa(2)3 + kwa3 = f (x), (15)

where f (x)=
(
(E I + 0.4kph2)g−0.4h3

)...
F̄ x1+(h− 0.4gkwh2) ˙̄Fx1+0.4h2 ¨̄Fz1− F̄z1, Ē = E I+0.8kph2,

k̄p = kp + 0.8kwh2, and g = (2+ ν)/(2E). The eigenvalues of (15) are

±r1 =

√√√√ k̄p +

√
k̄2

p − 4Ēkw

2Ē
, ±r2 =

√√√√ k̄p −

√
k̄2

p − 4Ēkw

2Ē
. (16)

We find that r2 = 0 when kw = 0, and r1 = r2 = 0 when kw = kp = 0. Hence, the general solution, a3,
depends on whether kw and kp vanish:

Case 1: kw 6= 0 a3 = c1er1x
+ c2e−r1x

+ c3er2x
+ c4e−r2x

+ ã3;

Case 2: kw = 0, kp 6= 0 a3 = c1er1x
+ c2e−r1x

+ c3+ c4x + ã3;

Case 3: kw = 0, kp = 0 a3 = c1+ c2x + c3x2
+ c4x3

+ ã3.

(17)

Here, the ci are constants of integration and ã3 is the particular solution to (15) for the inhomogeneous
term f (x) for the applied loads.
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Knowing the values for a3, all remaining parameters a4–a6 can be determined, based on (14):

a4 = ȧ3−
4+ 5ν
10E

F̄x1, (18)

a5 =
1

Ẽ

(
Ē ä3− 0.4kwh2a3+ g1

˙̄Fx1− 0.4h2 F̄z1
)
, (19)

a6 =
1

Ẽ

(
Ē

...
a 3− 0.4kwh2ȧ3+ g1

¨̄Fx1− 0.4h2 ˙̄Fz1
)
−

h
E I

F̄x1, (20)

where Ẽ = E I + 0.4h2(kp − 0.4kwh2) and g1 = 0.4h3
− g(E I + 0.4kph2).

In practice, the constants in Equations (17) should be determined according to the support conditions at
the two ends. Considering the energy related to the end constraints in accordance with the Hamiltonian
variational principle in (5), the following three typical constraint conditions at x = 0 and x = l, for
clamped (C), simple supports (S), and free (F) supports, are derived, where λ= 0.4(1+ ν)h2:

F : a5 = a6 = 0 (21)

S : a3 = a5 = 0 (22)

C : a3− λa5 = 0, a4+ λa6 = 0 (23)

According to the previously described interpretations of the ai , the expression in (21) can be interpreted
physically as a case of zero axial force, zero bending moment, and zero shear force, while the expression
in (22) can be interpreted as zero axial force, zero transverse displacement, and zero bending moment.
Similarly, in (23), the first condition represents an axial displacement of zero for the clamped end, but
the remaining two expressions indicate a zero equivalent transverse displacement and zero equivalent
rotation angle, respectively [Yao et al. 2009].

4. Bending of beams due to uniform pressure

To illustrate applications of the present symplectic approach, a beam subjected to a uniform pressure on
the top surface is considered. The applied loading conditions in (1) are expressed as

F̄x1 = 0, F̄z1 =−q0, at z =−h, (24)

where p0 is a constant independent of x . Substituting these conditions into (15) yields

(E I + 0.8kph2)a(4)3 − (kp + 0.8kwh2)a(2)3 + kwa3 = q0, (25)

for which a particular solution should be sought according to the foundation parameters. Combining
(17)–(21) with (25) leads to the general solutions for a3–a6:

Case 1: kw 6= 0


a3 = c1er1x

+ c2e−r1x
+ c3er2x

+ c4e−r2x
+ q0/kw,

a4 = c1r1er1x
− c2r1e−r1x

+ c3r2er2x
− c4r2e−r2x ,

a5 =
1
Ẽ

(
c1 M1er1x

+ c2 M1e−r1x
+ c3 M2er2x

+ c4 M2e−r2x
)
,

a6 =
1
Ẽ

(
c1 M1r1ex

− c2 M1r1e−r1x
+ c3 M2r2er2x

− c4 M2r2e−r2x
)
;

(26)
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Case 2: kw = 0, kp 6= 0


a3 = c1er1x

+ c2e−r1x
+ c3+ c4x − q0x2/2kp,

a4 = c1r1er1x
− c2r1e−r1x

+ c4− q0x/kp,

a5 =
1
Ẽ

M1(c1er1x
+ c2e−r1x)+ q0

Ẽ
(0.4h2

− Ē/kp),

a6 =
1
Ẽ

M1r1(c1er1x
− c2e−r1x);

(27)

Case 2: kw = 0, kp = 0


a3 = c1+ c2x + c3x2

+ c4x3
+

q0
24E I x4.

a4 = c2+ 2c3x + 3c4x2
+

q0
6E I x3,

a5 = 2c3+ 6c4x + q0
2E I x2

+
6q0

5E A ,

a6 = 6c4+
q0
E I x;

(28)

where M1 = Ēr2
1 − 0.4kwh2 and M2 = Ēr2

2 − 0.4kwh2.
In this paper, three combinations of the typical end constraints in (21)–(23) are considered: clamped-

clamped (CC), simply supported at both ends (SS), and clamped-free (CF). Incorporating these con-
straints into the three cases describing elastic foundations gives rise to an algebraic matrix equation
governing the integral constants ci :

Dc= p, (29)

where c= [c1 c2 c3 c4]
T . The explicit expressions of the coefficient matrix D and vector p for each beam

in Cases 1 and 2 are given in the Appendix. Case 3 is exactly the case without an elastic foundation,
for which the coefficients are simple and can be expressed explicitly. Hence the parameters a3–a6 are
directly presented in the Appendix. From (29), the ci are obtained as

ci =

4∑
k=1

dki

D
pi , (30)

where dki = (−1)k+i
| D̄ki | (i = 1, 2, 3, 4) is the algebraic complement of the element Dki , D̄ki is obtained

by eliminating the kth row and i th column of D, and pi is the element of p.

5. Numerical comparisons and discussions

To validate the rationality, accuracy, and effectiveness of this symplectic elasticity approach, comparisons
are presented for slender beams l� 2h on an elastic foundation. For generality and brevity, the following
nondimensional parameters and variables are introduced:

(U,W )=
(u, w)E I

q0l4 , X =
σx

q0
, Kw =

kwl4

E I
, K p =

kpl2

E I
.

In all examples, the Poisson’s ratio is taken as ν = 0.3.

Bending of beams without elastic foundation. As a first attempt, the bending behavior of beams without
elastic foundations (Kw = K p = 0) is considered, and the solutions are compared with results from
other methods. Figure 2 shows the longitudinal distributions of nondimensional transverse displacements
W (x, 0) at the neutral line and the axial normal stress X (x, h) at the lower surface of CC beams with
different aspect ratios. The figures show that the present results (solid lines) agree well with the results
obtained using the semianalytic method (dashed lines) in [Chen et al. 2004] based on two-dimensional
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2h/ l = 1/10
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Figure 2. Deflection curves W (x, 0) and longitudinal axial normal stresses X (x, h) for
CC beams without elastic foundations (Kw = K p = 0).

elasticity theory without invoking assumptions regarding the deformations and stresses. We emphasize
a comparison of these results with those of Ding et al. [2005], who used the Airy stress function based
on two-dimensional elasticity theory. They considered two kinds of constraint conditions for clamped
ends, as described in [Timoshenko and Goodier 1970]:

∂w

∂x
= 0 and

∂u
∂z
= 0.

Figure 2 illustrates the results corresponding to these two end conditions, with dotted lines for the first
condition and dash-dot lines for the second. For the case 2h/ l = 1/10, the present result is significantly
larger than the analytic solution for the first type of clamped end, but is somewhat smaller than the analytic
solution for the second type. This indicates that the present constraints of zero equivalent transverse
displacement and rotation angle for a clamped end in (25) are looser than the first type of clamped end
in [Timoshenko and Goodier 1970] but a little stiffer that the second type. For more slender beams, the
differences between the three types of end constraints for clamped ends are small, and, hence, the results
are almost identical, as can be seen in Figure 2, bottom.
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Figure 3. Deflection curves W (x, 0) and longitudinal axial normal stresses X (x, h) for
SS and CF slender beams (2h/ l = 1/10) without elastic foundations (Kw = K p = 0).

Figure 3 shows the longitudinal distributions of the transverse displacement W (x, 0) at the neutral
line and axial normal stress X (x, h) at the lower surface of the SS and CF beams (2h/ l = 10). The
Saint-Venant solutions of [Timoshenko and Goodier 1970] and the semianalytic elasticity solutions of
[Chen et al. 2004] are also shown for comparison. As can be seen, the accuracy of the present method
is again validated for slender beams.

Bending of beams on elastic foundations. We now assess the correctness of the symplectic formulation
for beams resting on elastic foundations by comparison with the numerical results from the literature.
Table 1 presents the nondimensional midspan deflection W (0.5l, 0) for uniformly loaded SS and CC
beams on an elastic foundation with different values of Kw and K p. The semianalytic and exact solutions
of [Chen et al. 2004], based on two-dimensional elasticity theory, are also listed for comparison. The
results presented here, for all beams in consideration, compare well to the semianalytic results. A careful
comparison shows that, for a moderately thick SS beam (2h/ l = 1/5), the present results agree better
with the exact solutions than with the semianalytic solutions.

Figure 4 plots the deflection W (x, 0) at the midplane and the axial normal stresses X (x, h) at the
bottom surface of a cantilever (CF) beam on an elastic foundation with different values of Kw (K p = 10).
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simply supported clamped-clamped
Kw K p present semiana. exact present semiana.

0 1.31528 1.315277 1.315271 0.27500 0.27493
0 10 0.64831 0.648347 0.648299 0.21902 0.21893

25 0.36736 0.367416 0.367353 0.16820 0.16811

0 1.19135 1.191402 1.191335 0.26925 0.26921

2h
/

l=
1/

15

10 10 0.61650 0.616562 0.616485 0.21533 0.21526
25 0.35685 0.356923 0.356843 0.16600 0.16593

0 0.64344 0.643767 0.643428 0.22653 0.22662
100 10 0.42717 0.427409 0.427156 0.18697 0.18701

25 0.28361 0.283799 0.283603 0.14851 0.14853

0 1.42083 1.420261 1.420243 0.39170 0.38814
0 10 0.67565 0.678202 0.674505 0.29722 0.29426

25 0.37711 0.381703 0.376671 0.21910 0.21760

0 1.27829 1.282598 1.277311 0.38014 0.37817

2h
/

l=
1/

5

10 10 0.64134 0.646391 0.640247 0.29045 0.28874
25 0.36608 0.372064 0.365680 0.21536 0.21478

0 0.66969 0.696100 0.668478 0.29999 0.30908
100 10 0.43944 0.459267 0.438808 0.24086 0.24823

25 0.28957 0.305161 0.289436 0.18662 0.19299

Table 1. Midspan deflection W (0.5l, 0) of uniformly loaded SS and CC beams.
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Figure 4. Longitudinal distributions of the deflection W (x, 0) and axial normal stress
X (x, h) of a cantilever (CF) beam on an elastic foundation (2h/ l = 1/15).

For numerical comparison, the semianalytic method in [Chen et al. 2004], based on two-dimensional
elasticity theory, is applied here to calculate the semianalytic solutions, as denoted by the upward triangle
markers in Figure 4. Excellent agreement is once again observed, further demonstrating the rationality
and accuracy of the present symplectic method.
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6. Conclusions

The symplectic elasticity approach, which has been widely used in theoretical physics, is applied in this
paper to derive analytic elasticity solutions for beams resting on Pasternak foundations. The Legendre
transformation is adopted to transform the Lagrangian system, based on the minimum potential energy
principle, to the Hamiltonian symplectic dual system. An eigenvalue problem with respect to the trans-
verse cross section is, then, solved using the method of separation of variables. Saint-Venant solutions
to the problem are obtained by considering the eigensolutions of zero eigenvalue. The effects of applied
loading conditions and elastic foundations are treated as the boundary conditions. Together with the end
constraints, the problem is formulated using the Hamiltonian variational principle.

Analytic Saint-Venant solutions for beams with different end constraints and on Pasternak foundations
are presented. A comparison of the present results with those available in the literature are conducted,
and, hence, the applicability and efficiency of the present symplectic approach for slender beams on
elastic foundations are validated. It should be emphasized that the symplectic approach can be applied
to study arbitrarily thick beams if nonzero eigenvalues are considered in the solution expansion, which
will be a subject to be explored in the future.

Appendix: Expressions of the matrix D and vectors p and c

(Recall that Dc= p. See page 1747 for discussion. Except for the case kw = kp = 0, we give D and p,
from which c can be derived.)

Case 1: kw 6= 0

CC beams:

D =


Ẽ−λM1 Ẽ−λM1 Ẽ−λM2 Ẽ−λM2

(Ẽ+λM1)r1 −(Ẽ+λM1)r1 (Ẽ+λM2)r2 −(Ẽ+λM2)r2

(Ẽ−λM1)er1l (Ẽ−λM1)e−r1l (Ẽ−λM2)er2l (Ẽ−λM2)e−r2l

(Ẽ+λM1)r1er1l
−(Ẽ+λM1)r1e−r1l (Ẽ+λM2)r2er2l

−(Ẽ+λM2)r2e−r2l

 , p=−
Ẽq0

kw


1
0
1
0

 .

SS beams:

D =


1 1 1 1

M1 M1 M2 M2

er1l e−r1l er2l e−r2l

M1er1l M1e−r1l M2er2l M2e−r2l

 , p=−
q0

kw


1
0
1
0

 .

CF beams:

D =


Ẽ − λM1 Ẽ − λM1 Ẽ − λM2 Ẽ − λM2

(Ẽ + λM1)r1 −(Ẽ + λM1)r1 (Ẽ + λM2)r2 −(Ẽ + λM2)r2

M1er1l M1e−r1l M2er2l M2e−r2l

M1r1er1l
−M1r1e−r1l M2r2er2l

−M2r2e−r2l

 , p=−
Ẽq0

kw


1
0
0
0

 .
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Case 2: kw = 0, kp 6= 0

CC beams:

D =


Ẽ − λM1 Ẽ − λM1 Ẽ 0

(Ẽ + λM1)r1 −(Ẽ + λM1)r1 0 Ẽ
(Ẽ − λM1)er1l (Ẽ − λM1)e−r1l Ẽ Ẽl
(Ẽ + λM1)r1er1l

−(Ẽ + λM1)r1e−r1l 0 Ẽ

 , p=
q0

kp


−λÊ

0
1
2 Ẽl2
− λÊ

Ẽl

 ,
where Ê = Ē − 0.4kph2.

SS beams:

D =


1 1 1 0

M1 M1 0 0
er1l e−r1l 1 l

M1er1l M1e−r1l 0 0

 , p=
q0

kp


0
Ê

l2/2
Ê

 .
CF beams:

D =


Ẽ − λM1 Ẽ − λM1 Ẽ 0

(Ẽ + λM1)r1 −(Ẽ + λM1)r1 0 Ẽ
M1er1l M1e−r1l 0 0

M1r1er1l
−M1r1e−r1l 0 0

 , p=
q0

kp


−λÊ

0
Ê
0

 .

Case 3: kw = 0 and kp = 0

CC beams:

a3 =
q0

24E I
(x − l)2x2

−
(1+ ν)q0

10E A
(6x2
− 6lx − l2)−

6ν(1+ ν)λq0

5E A
,

a4 =
3(1+ ν)q0

5E A
(l − 2x)+

q0

12E I
(2x − l)(x − l)x,

a5 =−
6ν(1+ ν)q0

5E A
+

q0

12E I
(6x2
− 6lx + l2),

a6 =
q0

2E I
(2x − l),

SS beams:

a3 =
3q0

5E A
(l − x)x +

q0

24E I
[(l + x)l − x2

](l − x)x,

a4 =
3q0

5E A
(l − 2x)+

q0

24E I
(l3
− 6lx2

+ 4x3),

a5 =
q0

2E I
(x − l)x,

a6 =
q0

2E I
(2x − l).
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CF beams:

a3 =
3q0

5E A
[(1+ ν)(l + 2x)l − x2

] +
q0

24E I
(x2
− 4lx + 6l2)x2,

a4 =
6q0

5E A
[(1+ ν)l − x] +

q0

6E I
(x2
− 3lx + 3l2)x,

a5 =
q0

2E I
(x − l)2,

a6 =
q0

E I
(x − l).
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NUMERICAL SIMULATION OF RAM EXTRUSION IN
SHORT-FIBER-REINFORCED FRESH CEMENTITIOUS COMPOSITES

XIANGMING ZHOU AND ZONGJIN LI

A series of ram extrusion tests was carried out on a short-fiber-reinforced, semisolid, fresh cementitious
composite. An elastoviscoplastic constitutive model is proposed for the extrudable fresh cementitious
composite. It features the associative flow rule, a nonlinear strain rate-hardening law, and the von Mises
yield criterion. The model is then implemented in ANSYS/LS-DYNA explicit finite element code.

Various ram extrusion processes of the fresh cementitious composite were simulated. It has been
found that the extrusion load versus imposed displacement predictions agree well with the experimental
results. The fresh paste flow, through the die entry and the die-land, is then interpreted in light of the
evolution of the deformation and distribution of state variables, mainly based on numerical results and
the ram extrusion mechanism.

The effects of extrusion ratio and extrusion velocity on extrusion load are also investigated, based
on the mechanical properties of the fresh cementitious composite. The study indicates that the numer-
ical procedure established, together with the constitutive model proposed, is applicable for describing
ram extrusion of short-fiber-reinforced fresh cementitious composites, which might provide a numerical
rheometric tool from which ram extrusion of elastoviscoplastic paste-like materials can be examined and
quantified.

1. Introduction

Extrusion is a material processing technology for manufacturing semisolid paste-like products used in the
mechanical, chemical, ceramic, food, and pharmaceutical industries. In the last two decades, it has been
applied in the concrete industry as an economical, efficient, and environmentally friendly manufacturing
method for short-fiber-reinforced cement-based construction materials and products [Shao et al. 1995;
Shao and Shah 1997; Aldea et al. 1998; Li and Mu 1998; Li et al. 1999; 2001; 2004; Peled and Shah
2003]. Compared with the traditional concrete casting method, extrusion techniques can significantly
improve the mechanical properties of the final products through the high shear and high compression
processing environment within an extruder [Shao et al. 1995; Peled and Shah 2003].

There are two main extrusion methods: the continuous screw-driven method (screw extrusion) and
the intermittent piston-driven method (ram extrusion). The screw-driven method allows continuous pro-
duction. However, it is not generally suitable for small batch runs because of difficulties in cleaning
the extruder [Aydin et al. 2000]. It may not even be possible for some materials, such as metal alloys,
due to limitations in rheology. On the other hand, ram extrusion is favored for short runs and accurate

Keywords: elastoviscoplastic, constitutive model, rheology, strain rate, fiber-reinforced, fresh cementitious composite, ram
extrusion, overstress, rate-dependent, flow stress, LS-DYNA.
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Figure 1. Schematic diagram of Benbow–Bridgwater ram extrusion mechanism.

dimensional control [Aydin et al. 2000]. In this method, a piston drives the highly viscous, semisolid
fresh paste to flow through a die entry and then a die-land, thereby reducing the cross-sectional area of
the paste and shaping it as desired.

Axisymmetric ram extrusion with a circular die entry, as shown in Figure 1, is a simple but effective
method for tailoring mix proportions for an extrudable fiber-reinforced cementitious composite [Srini-
vasan et al. 1999; Zhou and Li 2005a]. The most widely used model for analyzing this type of ram
extrusion data is based on a relationship known as the Benbow–Bridgwater equation [1993]:

P = Pent+ Pland = 2 ln
(D0

D

)
(σ ′0+αV j

p )+
4L
D
(τ ′0+βV q

p ), (1-1)

where, as shown in Figure 1, P is the overall pressure drop; the first term on the right in (1-1) is the
die entry pressure drop, Pent, representing that a plastic flow dominates at the die entry; the second term,
Pland, is the die-land pressure drop, representing a slip flow in the die-land; D0 is the barrel diameter;
D is the die-land diameter; L is the die-land length; Vp is the mean paste flow velocity in the die-land;
σ ′0 is the initial die entry yield stress when the paste velocity approaches zero; α is the die entry yield
stress velocity factor; j is an exponent that accounts for the nonlinear velocity dependence of the plastic
flow in the die entry; τ ′0 is the initial die-land wall shear stress as the paste velocity approaches zero;
β is the die-land shear stress velocity factor, which accounts for the increase of the die-land wall shear
stress with increasing paste flow velocity; and q is an exponent that accounts for the nonlinear velocity
dependence of the shear flow in the die-land. Note that σ ′0, α, j , τ ′0, β, and q are not necessarily material
parameters of the paste itself.

Though the Benbow–Bridgwater equation provides reasonably satisfactory ram extrusion predictions
— mainly the relationship between the overall extrusion pressure drop and the mean paste flow velocity —
for many paste-like materials, such as ceramics and clays [Benbow et al. 1991; Benbow and Bridgwater
1993; Blackburn and Böhm 1994; Chou et al. 2003], it is basically a phenomenological model rather than
a constitutive model for the ram extrusion process. It can only give an overall description of paste flow
in a ram extruder with simple symmetrical geometry, based on the assumption of simple rigid plastic or
rigid-viscoplastic material behavior for the paste. The ram extrusion process of paste-like materials with
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elastoviscoplastic constitutive behavior, in a nonaxisymmetric geometry, is difficult to directly describe
with the Benbow–Bridgwater model. In this case, only numerical methods can give a full description of
the ram extrusion process of materials exhibiting complicated elastoviscoplastic behavior.

In this study, a ram extrusion process using a short-fiber-reinforced, semisolid, fresh cementitious com-
posite, with a circular die entry and die-land, is investigated through experimental as well as numerical
analysis. The extrusion load versus the imposed ram displacement data, the evolution of the deformation,
and the distribution of state variables within the paste flow are obtained through numerical simulation
based on the ANSYS/LS-DYNA explicit finite element code, combined with an elastoviscoplastic con-
stitutive model for the highly concentrated, short-fiber-reinforced fresh cementitious composite. Explicit
analysis has been regarded as a more efficient solution than implicit analysis for large-deformation prob-
lems, such as material forming processes like extrusion [Antúnez 2000]. The numerical procedure and the
constitutive model are mainly verified quantitatively by comparing numerical and experimental results
with the extrusion load versus imposed ram displacement data. Then, the evolution of the deformation
and state variables within the composite during the ram extrusion process is interpreted based on the
numerical results and the ram extrusion mechanism. The effects of the extrusion ratio, the ratio between
the area of the barrel and that of the die-land, and the extrusion velocity, the ram driving velocity, on the
extrusion load are investigated based on the experimental and numerical results. The aim of this research
is to test the applicability of the numerical procedure, combined with the elastoviscoplastic constitutive
model, for describing the ram extrusion process of a short-fiber-reinforced, semisolid, fresh cementitious
composite. The verified numerical procedure might also be used for modeling the forming processes of
other paste-like materials, exhibiting elastoviscoplastic behavior, as well as for design and optimization
of materials processing equipment.

2. Experimental

The experimental program within the scope of this study is essentially divided into two parts. The first
part involves rheological measurements to establish an appropriate constitutive model for the extrudable
fresh cementitious composite, through orifice and capillary extrusion [Zhou 2004; Zhou and Li 2005b]
and upsetting tests [Zhou and Li 2006]. The second part involves ram extrusion tests of the fresh cemen-
titious composite under various extrusion conditions, that is, extrusion ratios and/or extrusion velocities,
that may appear in practice, from which the applied extrusion load with respect to the imposed ram
displacement data are obtained. Both parts of the experimental program are carried out on the short-fiber-
reinforced fresh cementitious composite with mix formulation shown in Table 1. The basic constitutive
compositions include ordinary Portland cement and slag with a weight ratio of 1:1 as the cementitious

Cement Slag SS1 SS2 PVA Methocel ADVA W/B
0.5 0.5 0.2 0.125 2% 1% 0.375% 0.27

Table 1. Mix formulation for the short-fiber-reinforced fresh cementitious composite
used for extrusion (see text at the top of the next page for abbreviations). SS1, SS2,
Methocel, and ADVA are presented in the weight ratio of the binder. PVA fiber is
presented in the volume ratio of the paste.
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binder; 6 mm long polyvinyl alcohol (PVA) fiber with an average diameter of 14µm; two types of silica
sands (denoted SS1 and SS2, with a nominal diameter of 300–600µm and 90–150µm, respectively)
from David Ball Comp. Ltd with a weight ratio of 8:5 as aggregates; Methocel powder, produced by
Dow Chemical Comp. Ltd, as a rheology enhancer; and ADVA solution, made by W. R. Grace (HK) Ltd,
as a superplasticizer. The water-to-binder weight ratio is 0.27 while the silica sands-to-binder weight ratio
is 0.325. The dosage of ADVA solid powder is 0.375% of the weight of the binder and it is incorporated
into the composite in the form of an aqueous solution with a concentration of 30% by weight as supplied
by the manufacturer. The total volume of PVA fibers incorporated is 2% of that of the readily mixed
composite.

The mix formulation shown in Table 1 is a typical recipe for an extrudable shore fiber-reinforced
cementitious composite [Srinivasan et al. 1999; Zhou and Li 2005a; 2005b]. To prepare the fresh cemen-
titious composite for extrusion, cementitious binders (cement and slag), fibers, and Methocel powder are
first mixed for 3 minutes in a dry state at a low speed by a Hobart planetary mixer. Then water, with
ADVA superplasticizer solution, is added into the mixture and mixed for another 3 minutes. Once the dry
powders are moistened, a higher speed is adjusted to for 3 minutes high shear mixing till a dough-like
paste is produced. This dough-like paste is then used for various experiments, including orifice extrusion,
capillary extrusion, ram extrusion, and upsetting tests as referred to in this study.

Note that short-fiber-reinforced fresh cementitious composites for extrusion purposes are largely dif-
ferent from traditional cement paste, mortar, suspension, slurry, fresh self-compacting concrete, and other
fresh concretes which normally have larger water-to-binder ratios and better fluidity. Fresh cementitious
composites for extrusion purposes are dough-like, have almost no fluidity, and exhibit high cohesion and
pseudoplastic behavior under normal conditions [Srinivasan et al. 1999; Zhou and Li 2005a; Li and Li
2007]. Though a number of extrusion practices have been successfully performed, little research has been
carried out on the rheological behavior of extrudable fresh cementitious composites and the extrusion
process itself.

Material tests and rheological measurements. The experimental setup and procedures for orifice and
capillary extrusion have been presented in [Zhou 2004; Zhou and Li 2005b] while those for upsetting
tests have been reported in detail in [Zhou and Li 2006]. Based on these studies, the steady-state postyield
constitutive behavior of an extrudable short-fiber-reinforced fresh cementitious composite has been for-
mulated from which the shear flow stress, τ , is plotted as a function of the plastic shear strain rate, γ̇vp.
The postyield shear flow behavior of the extrudable fresh cementitious composite has been found to be
satisfactorily described by the Herschel–Bulkley model [Zhou and Li 2005b] in the form

τ = τ0+ ksc(γ̇
vp)m, (2-1)

where τ0 is the static shear yield stress, and ksc and m are the shear plastic flow consistency and the shear
flow index, respectively. The values of the material parameters in (2-1) have been obtained through
orifice and capillary extrusion tests as τ0 = 2.15 kPa, ksc = 4.17 kPa·sm , and m = 0.38 [Zhou 2004;
Zhou and Li 2005b]. Prior to yielding, the fresh cementitious composite exhibits elastic behavior with a
constant Young’s modulus of E = 8 kPa, which is obtained from its true stress versus true strain curve
through upsetting tests presented in [Zhou and Li 2006].
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Ram extrusion. The experimental setup and procedure for ram extrusion are similar to those described
in [Zhou and Li 2005a], but different extrusion conditions are investigated in this research. The results
of these tests are utilized to evaluate the applicability of the numerical procedure presented in this paper,
combined with the elastoviscoplastic constitutive model, for describing the ram extrusion process for
fresh cementitious composite.

The experimental setup for ram extrusion is shown in Figure 2, where a homemade ram extruder,
with smooth-surface stainless steel barrel and die, is mounted in a servohydraulic materials test system
machine. Before extrusion, a certain amount of readily prepared, highly concentrated, dough-like fresh
cementitious composite is fed into the barrel, with an inner diameter of 80 mm, of the extruder up to its
brim. After this, the ram extrusion test starts, and the paste inside the barrel is driven by the ram with a
constant velocity till it flows out of the die exit in a steady state.

Three sets of dies, with diameters of 8 mm, 12 mm, and 15 mm, are used in the experiment, resulting
in extrusion ratios of 100, 44.4, and 28.4, respectively. The die-land lengths are truncated to obtain
die-land length-to-diameter ratios, L/D, of 0.83 and 4.79 for each set of dies. A series of tests with
various extrusion velocities are conducted, representing a broad range of apparent strain rates imposed
on the fresh composite. During extrusion, the data acquisition system records ram displacement, time,
and extrusion load. Each test is repeated three times and the average values are taken as representative
results.

A typical experimental output on the variation of extrusion load with imposed ram displacement is
shown in Figure 3 on the next page. In the initial stage when the ram pushes the fresh cementitious
composite against the die-land, the composite undergoes upsetting, which leads to a rapid increase in

Die

Supporting frame

Lower frame plate

Connected to MTS actuator

Upper frame plate

Ram

Barrel

Connected to 
MTS load cell

Lower frame plate

or

Upper frame plate

Figure 2. Experimental setup of the ram extrusion test: schematic diagram and labora-
tory apparatus.
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Figure 3. A typical ram extrusion load versus imposed displacement curve from the experiment.

extrusion load until it attains a peak value (point P in Figure 3), where the paste breaks through the
die exit. After this breakthrough, the extrusion load decreases, which is due to the reduction of the
contact area, and thus friction, between the composite and the barrel. The experimental data, after the
breakthrough, clearly demonstrates the attainment of a steady state extrusion (stable plateau value of the
extrusion load).

3. Numerical simulation

Constitutive model and associated material parameters. A time-continuous model normally forms the
basis for the constitutive equations in numerical simulations of elastoviscoplastic material behavior [Lof
and van den Boogaard 2001]. In the time-continuous model, the relation between stress and strain, in
both the elastic and the plastic domains, is usually defined in a rate formulation. Based on infinitesimal
deformation theory, it is reasonable to assume that the rate of deformation can be additively decomposed
into an elastic (reversible) part and an inelastic (irreversible) part, so that the total strain rate, ε̇, can be
expressed as ε̇ = ε̇el

+ ε̇vp, where ε̇el and ε̇vp represent the elastic and viscoplastic strain rates, respec-
tively. By assuming isotropic material behavior, the elastic part is treated as linear and is expressed in
Cartesian index notation as

ε̇el
i j =

1+ν
E

Ṡi j +
1−2ν

3E
σ̇kkδi j , (3-1)

where E is the Young’s modulus, ν is the Poisson’s ratio, σ̇ is the rate of change of stress, and Ṡ is the
rate of change of deviatoric stress. A constant Poisson’s ratio, ν = 0.465, which is somewhat arbitrary,
is incorporated in the constitutive model to represent nearly incompressible material behavior, which
has been found to be a reasonable assumption for this highly viscous paste-like material for extrusion
purposes [Zhou 2004; Zhou and Li 2006].

It has been found that the constitutive behavior of highly concentrated short-fiber-reinforced fresh
cementitious paste for extrusion purposes is dominated by rheological (strain rate-dependent) effects once
it deforms inelastically [Srinivasan et al. 1999; Zhou and Li 2005a; 2006; Li and Li 2007]. For simplicity,
it is further assumed that the isotropic strain rate-hardening law is sufficient to describe the evolution
of the flow stress of the extrudable fresh cementitious composite during plastic deformation. The strain
rate-hardening law is formulated in terms of the equivalent viscoplastic strain rate, ¯̇εvp. Assuming an
associative J2 plastic flow where J2 is the second invariant of the deviatoric stress tensor, the von Mises



SIMULATION OF RAM EXTRUSION IN FIBER-REINFORCED FRESH CEMENTITIOUS COMPOSITES 1761

yield criterion is used to define the equivalent flow stress, σ̄ . Extending the notion of associative plasticity
to viscoplasticity, the viscoplastic strain rate is assumed to be in the direction of the deviatoric stress, S,
and is defined as

ε̇vp
=

3
2
¯̇ε

vp S
σ̄
, (3-2)

where the equivalent viscoplastic strain rate, ¯̇εvp, is defined as

¯̇ε
vp
=

√
2
3 ε̇

vp : ε̇vp, (3-3)

and the equivalent flow stress, σ̄ , is calculated according to the von Mises yield criterion as

σ̄ =
√

3J2 =

√
3
2 S : S. (3-4)

On the other hand, rate-dependent plasticity is often introduced by so-called overstress models, such
as the Perzyna model [Perzyna 1966; 1971; Wang et al. 1997; Lof and van den Boogaard 2001; Ponthot
2002] or the Duvaut–Lions model [Simo and Hughes 1998]. Contrary to the case of rate independent
plasticity, in these models the equivalent flow stress, σ̄ , is no longer constrained to remain less than or
equal to the static yield stress, σ0, but could be greater than it. The part of the stress that is outside the
static yield surface, which is called the overstress, determines the viscoplastic strain rate [Ponthot 2002].
Clearly, an inelastic process can take place if, and only if, the overstress, d = 〈σ̄ − σ0〉, is not less than
zero, that is if d ≥ 0, where 〈x〉 denotes the MacAuley brackets defined by 〈x〉 = 1/2(x + |x |). The
classical viscoplastic models of Perzyna type [1966; 1971] may be formulated as

¯̇εvp
= Dvp

(
σ̄−σ0
σ0

)1/r
, (3-5)

where Dvp and r are the viscoplastic material parameters. This mathematical relationship describes the
evolution of the equivalent viscoplastic strain rate, ¯̇εvp, as a function of the overstress, σ̄ − σ0, in the
plastic domain. The material parameters in (3-5), namely Dvp and r , can be obtained for the extrudable
fresh cementitious composite through the following procedure.

First, the shear-form Herschel–Bulkley equation, (2-1), is transformed into its pertinent uniaxial for-
mulation following the theoretical procedure proposed in [Stouffer and Dame 1996] as

σ̄ = σ0+ k( ¯̇εvp)n, (3-6)

where the material parameters σ0, k, and n are the uniaxial yield stress, the uniaxial plastic flow consis-
tency, and the uniaxial plastic flow index, respectively. On the other hand, for a material that obeys the
von Mises yield criterion, the uniaxial form of the Herschel–Bulkley equation may be obtained from the
graph of shear stress against shear strain rate by plotting τ = σ/

√
3 as a function of . . . γvp

=
√

3ε̇vp

from its shear-form equation [Adams et al. 1997; Aydin et al. 2000]. Substituting these relationships into
(2-1) yields

σ =
√

3τ0+ (
√

3)1+mksc(ε̇
vp)m . (3-7)

It has been found that the uniaxial bulk flow index, n, in (3-6) is approximately equal to the shear flow
index, m, in (2-1), that is, n = m, for the extrudable short-fiber-reinforced fresh cementitious composite
investigated in this study [Zhou 2004]. In the case of uniaxial bulk flow, σ̄ = σ and ¯̇εvp

= ε̇vp. Therefore,
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by comparing (3-6) and (3-7), the material parameters in (3-6) can be obtained as σ0 =
√

3τ0 and k =
√

3
1+m

ksc for the extrudable fresh cementitious composite. Rewriting (3-5) in the form of (3-6) gives

σ̄ = σ0+
σ0

Dr
vp
( ¯̇εvp)r . (3-8)

Thus, the interrelationships between the parameters in (3-6) and (3-8) are obtained as r = m and Dvp =

(σ0/k)1/m . Therefore, the associated material parameters in (3-8) are derived as σ̄0 = 3.72 kPa, Dvp =

0.101 s−1, and r = 0.38, by referring to the material test results for orifice extrusion and capillary extrusion
presented in [Zhou 2004; Zhou and Li 2005b].

As seen above, our elastoviscoplastic constitutive model features the strain rate-dependent von Mises
yield criterion, an associative flow rule, and an nonlinear strain rate-hardening law. The rate-form con-
stitutive model has been integrated into an incremental formulation and implemented into a numerical
procedure based on the ANSYS/LS-DYNA explicit finite element code [Zhou 2004]. In this paper, vari-
ous ram extrusion processes are simulated by this numerical procedure, combined with the constitutive
model for the short-fiber-reinforced fresh cementitious composite for extrusion purposes.

Geometries and the finite element model. In numerical analysis, the ram and the extruder, which is com-
posed of the barrel and the die-land, are modeled as rigid objects. Due to axisymmetry, the deformation
of the paste in the radial direction at the center of the extruder is zero. Thus, only a single azimuthal slice
of the ram extruder and the cementitious composite inside of the center line is modeled in the numerical
analysis with a two-dimensional (2D) finite element model composed of a set of four-node isoparametric
2D solid elements, which makes remeshing easier.

Figure 4 shows a typical initial mesh, generated by the ANSYS/LS-DYNA finite element code, for the
ram extrusion experimental setup investigated in this study (Figure 2). No contact element is available
in explicit analysis based on the LS-DYNA finite element code; contact is achieved using a penalty

Figure 4. Initial finite element mesh for simulating the ram extrusion process with a die
diameter of 15 mm.
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approach in the LS-DYNA code, in which the fresh cementitious paste is defined as the slave surface
while the walls of the extruder and the ram are assigned as the master surfaces. A Coulomb friction
criterion, with a constant friction coefficient of µ= 0.195 obtained through upsetting tests [Zhou and Li
2006], is adopted to model boundary interaction whenever the paste contacts the walls of the extruder. A
reduced kinematic value is used as the dynamic friction coefficient to simulate reduced boundary friction
during dynamic loading. The fresh paste within the ram extruder is modeled by an arbitrary Lagrangian–
Eulerian (ALE) mesh as it travels through the die entry into the die-land, while the ram, the barrel, and
the die-land are modeled by a much coarser Lagrangian mesh to reduce computation time. The ALE
mesh is very effective for simulating large deformation and large strain problems, and allows smoothing
of a distorted mesh without requiring a complete remeshing. Thus, it can largely avoid mesh distortion.

A typical initial mesh for the highly concentrated fresh cementitious paste body in the barrel contains
1200–2000 elements, the smallest element size being about 10% of the radius of the die-land. In numeri-
cal simulation, an incremental analysis is performed, in which the imposed ram displacement during each
analytical step, before remeshing, is between 0.01 and 0.02% of the initial height of the fresh cementitious
paste body in the barrel. A very small time step is adopted in numerical analysis to ensure stability in
the fine mesh near the die entry, resulting in much longer computation time than for the simulation of
the upsetting process presented in [Zhou and Li 2007]. The computation time is longer for cases with
larger extrusion ratios than for those with smaller extrusion ratios. In general, remeshing is required to
achieve a successful complete numerical simulation, resulting in the element number increasing during
analysis.

A series of ram extrusion processes of the fresh cementitious composite, under various extrusion
velocities, die-land lengths, and diameters, were simulated with the numerical procedure described above,
combined with an elastoviscoplastic constitutive model proposed for the fresh cementitious composite
tailored for extrusion purposes. The extrusion load can be obtained at any time during numerical analysis
by integrating the longitudinal stress component, σy(r), over the area of the ram. For an axisymmetric
problem, the extrusion load, Fext, is given by

Fext =

∫ D0/2

0
2πrσy(r)dr, (3-9)

where σy(r) is the longitudinal stress of the elements contacting the ram. The extrusion load predicted at
each deformation stage is then plotted against the imposed ram displacement to produce an extrusion load
versus imposed displacement curve, to which the predicted extrusion load versus imposed displacement
curve is referred in this paper. It is then compared with its experimental counterpart to test the applica-
bility of the numerical procedure, combined with the constitutive model, to simulate the ram extrusion
process of the fresh cementitious composite.

Comparison of numerical and experimental results. For every extrusion process, the numerical predic-
tion is conducted from the start of extrusion until a steady state is reached. The relationship between
the extrusion load and the imposed ram displacement offers a channel for comparing the numerical and
experimental results quantitatively. The numerical procedure, as well as the elastoviscoplastic constitu-
tive model for the fresh cementitious composite, presented in this study, is thus mainly verified by this
comparison. Figure 5, top left, shows the predicted and experimental extrusion load versus imposed
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Figure 5. Curves of experimental (solid) and predicted (dashed) extrusion load versus
imposed displacement, for L/D = 0.83, V = 0.1 mm/s, and various values of D.
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Figure 6. Curves of experimental (solid) and predicted (dashed) extrusion load versus
imposed displacement, for D = 15 mm, V = 0.1 mm/s, and two values of L/D.

displacement curves for the ram extrusion process through a 15 mm diameter die, with a die-land length-
to-diameter ratio of 0.83, at an extrusion velocity of 0.1 mm/s. It can be seen that the agreement between
the numerical and experimental results is good during the upsetting stage and is within 5% difference
under higher loads at steady-state extrusion. The predicted and experimental peak extrusion loads are
1485 N and 1562 N, respectively. Reviewing the uncertainty in the dynamic boundary interaction, the
agreement between the predicted and experimental extrusion loads should be considered satisfactory.
Besides, the numerical prediction also indicates a decrease in extrusion load after the breakthrough,
which is similar to that observed experimentally (as shown in Figure 3).

More results of the predicted and experimental extrusion load versus imposed ram displacement curves
are shown in the rest of Figure 5 and in Figure 6 for other parameter values. The results from numerical
simulation are generally seen to be in good accordance with the pertinent experimental results and the
difference between the predicted and measured steady-state extrusion loads is relatively low, which fur-
ther verifies that the numerical procedure and the constitutive model presented in this paper can be used
with confidence for the prescribed ram extrusion conditions.

Interpretation of the paste flow in ram extrusion. Based on the verified numerical procedure, the evo-
lution of the deformation and distribution of the state variables, such as extrusion pressure, within the
paste flow are also predicted throughout the extrusion process. The paste flow in ram extrusion is thus
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interpreted based on these numerical results, which also helps in validating the numerical procedure and
the constitutive model for the fresh cementitious composite qualitatively and in understanding the ram
extrusion mechanism for the short-fiber-reinforced fresh cementitious composite.

Evolution of deformation. At the start of the ram extrusion process, when the ram pushes the fresh
cementitious composite in the barrel, the composite paste commences upsetting. As the process continues,
the paste flows towards the die-land, where the velocity is the highest within the extruder. A breakthrough
extrusion load (indicated by the peak point P in the extrusion load versus imposed displacement curve
shown in Figure 3) is necessary for the paste to be extruded out of the die exit. Past this peak, the steady-
state extrusion process starts, although the extrusion load decreases due to the drop in friction between
the paste and the walls of the barrel. As seen in Figures 5 and 6, the extrusion load reaches its peak value
when the paste fills the die-land and starts to emerge, and then it decreases.

The deformation Uy of the composite along the extrusion direction is shown in Figure 7, for a ram
extrusion process with a 30 mm diameter die under a ram velocity of 0.1 mm/s, at ram imposed dis-
placements of 1 mm and 4.2 mm. It can be seen that the deformation of the composite in the die-land is
significantly higher than that in the barrel, because of the high extrusion ratio. In the corner between the
die-land and the barrel, which is referred as the static zone (Figure 7), the deformation of the composite
is close to zero. The outline of the static zone, however, is not so obvious. When the composite travels
in the die-land, a nonuniform displacement field occurs. It can be seen that the composite near the walls
of the barrel and the die-land flows more slowly than the paste in the inner region, due to the boundary
friction existing between the composite paste and the walls of the extruder.

Figure 7. Deformation Uy (average) of the fresh paste flow along the extrusion direction,
at an imposed ram displacement of 1 mm (left) and 4.2 mm (right). Color bands range
in equal increments from the minimum value, represented by blue and achieved at the
bottom left of each diagram, to the maximum, represented by red at the bottom right.
The intervals are [−1.290,−0.001] for the left diagram and [−5.292, 0.017] for the
right diagram (in mm).
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Figure 8. Extrusion pressure Sy (average) within the paste flow along the extrusion di-
rection, at an imposed ram displacement of 1 mm (left) and 4.2 mm (right). Color bands
range in equal increments from the minimum value, represented by blue and achieved
at the top right (and nearly so at the concave corner) of each diagram, to the maximum,
represented by red at the bottom left. The intervals are [−915, 5] for the left diagram
and [−3670, 43] for the right diagram (in kPa).

Distribution of state variables within the paste flow. The distribution of the extrusion pressure Sy along
the extrusion direction is shown in Figure 8 at imposed ram displacements of 1 mm and 4.2 mm for a
ram extrusion process with a 30 mm diameter die under a ram velocity of 0.1 mm/s. In general, negative
stress is found from these figures, which is representative of an essential compression-dominant state.
However, tensile stress exists in the front surface of the paste flow, owing to the surface friction at the
die-land wall, which restricts the paste flow. As a result, the front surface of the paste flow is mainly
subjected to tension (see Figure 8). Tensile stress in the front surface of the paste flow is mainly due
to two factors: first, the material in the inner region flows faster than that near the die-land wall; and
second, the friction between the composite paste and the die-land wall restricts the paste flow. It could
also be ascribed to gravity as well.

Effects of extrusion ratio and extrusion velocity. The effect of the extrusion ratio on the extrusion load
is demonstrated in Figure 9 for extrusion processes with a 12 mm diameter die and a 15 mm diameter
die at a ram velocity of 0.2 mm/s. An increase in the extrusion ratio, that is, a decrease in die diameter,
corresponds to an increase in the apparent strain rate. Since the fresh cementitious composite is a strain
rate-hardening material, its flow stress increases with the strain rate. Thus more work is required to ex-
trude the composite out of the die-land with a smaller diameter than that with a larger diameter, resulting
in an increase in extrusion load. It can also be seen from Figure 9 that the extrusion load increases more
rapidly till reaching the steady-state value for the extrusion process with a higher extrusion ratio.

The effect of the extrusion velocity on the extrusion load can be seen in Figure 10, where the numerical
and experimental results are shown for the extrusion processes at velocities of 0.1 mm/s and 0.2 mm/s
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Figure 9. Curves of experimental (solid) and predicted (dashed) extrusion load versus
imposed displacement (L/D = 0.83 and V = 0.2 mm/s).

with a die diameter of 12 mm and a die-land length-to-diameter ratio of 0.83. Again, since the fresh
cementitious composite is a strain rate-hardening material, its flow stress increases as its strain rate
increases. An increase of extrusion velocity results in an increase of apparent strain rate, and thus
equivalent flow stress and, consequently, extrusion load as can be seen from Figure 10 in which the
extrusion load for the process under the extrusion velocity 0.2 mm/s is much higher than under the
extrusion velocity 0.1 mm/s. Again, the extrusion load in the former extrusion process increases more
rapidly to a steady-state value than for the latter.
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Figure 10. Curves of experimental (solid) and predicted (dashed) extrusion load versus
imposed displacement (L/D = 0.83 and L = 12 mm).

4. Conclusions

A numerical procedure based on the explicit ANSYS/LS-DYNA finite element code, combined with an
elastoviscoplastic constitutive model for the extrudable fresh cementitious composite, has been estab-
lished to simulate a series of ram extrusion processes. The predictions of extrusion load versus imposed
displacement are compared with experimental results. The evolution of deformation and the distribution
of state variables within the composite paste flow in the ram extrusion process are then interpreted based
on numerical results and the ram extrusion mechanism. The effects of the extrusion ratio and extrusion
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velocity on extrusion load are discussed. Based on experimental and numerical investigations, the main
conclusions that can be drawn are the following:

• The extrusion load versus imposed displacement predictions agree well with the experimental re-
sults for various extrusion processes, suggesting that the numerical procedure established and the
constitutive model proposed for the fresh cementitious composite can be used with confidence for
the prescribed ram extrusion processes. The extrusion load increases more rapidly to a steady-state
value in cases of greater extrusion ratio and/or higher ram velocity. In these processes, the steady-
state extrusion loads are also greater.

• The evolution of deformation, as well as the distribution of state variables within the paste flow, pre-
dicted by numerical analyses, gives a promising interpretation of the fresh cementitious composite
paste flow in various ram extrusion processes. Due to surface friction existing between the paste
flow and the walls of the extruder, the paste in the central region moves faster than that along the
walls of the extruder, resulting in the composite at the front surface being mainly under tension,
while the composite in other regions is mainly subjected to compression.

• The numerical procedure presented in this paper shows the potential for improving the understanding
of the flow behavior of paste-like materials in extrusion, which might be applied to forming processes
for other concentrated paste-like semisolid elastoviscoplastic materials.
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BENDING OF LAMINATED PLATES WITH MIXED BOUNDARY CONDITIONS
BASED ON HIGHER-ORDER SHEAR DEFORMATION THEORY

MOJGAN YAGHOUBSHAHI AND HOSSEIN RAJAIE

The bending of laminated plates is considered using higher-order transverse shear deformation theory.
The principle of virtual work is used to derive a new set of seven governing equations and corresponding
boundary conditions. These equations, combined with eighteen relationships between the resultant stress
and displacement components, compose a system of first-order partial differential equations that is solved
by the generalized differential quadrature method. Numerical results for laminated plates with a variety
of mixed boundary conditions are calculated using the proposed method, and good agreement is found
with the corresponding solutions obtained using ANSYS.

1. Introduction

Fiber-reinforced laminated composite materials are widely used in a variety of engineering fields, such
as aerospace, civil, marine, mechanical, nuclear, and petrochemical engineering. Such materials are
popular for industrial applications due to high strength-to-weight ratios, long fatigue life, good stealth
characteristics, and enhanced corrosion resistance. A number of theories describing laminated composite
plates exist in the literature.

Classical plate theory is based on the Kirchhoff kinematic hypothesis that straight lines normal to
the undeformed midsurface remain straight and normal to the middle surface after deformation and
undergo no thickness stretching. Neglecting transverse shear effects, this theory produces unacceptable
approximations in the analysis of even thin laminated plates and shells. Surveys of various classic shell
theories can be found in [Naghdi 1956; Bert and Francis 1974; Bert and Chen 1978].

The development of plate theories with transverse shear effects has improved the accuracy of results
considerably. The refined theories are of different orders, based on discretization of the transverse shear
effects and the number of terms included in the assumed displacement field. Reissner [1945] was the
first to develop a plate theory that included transverse shear deformation for static analysis. Mindlin
[1951] then expanded Reissner’s theory for dynamic analysis. Both approaches rely on first-order shear
deformation theory (FSDT). Reissner’s theory is stress-based, whereas Mindlin’s is displacement-based.
These theories do not satisfy the condition of zero transverse shear stress at the top and bottom surfaces
of the plate, and consider a uniform transverse shear stress distribution across the thickness of the plate.
Therefore they require the use of a shear correction factor to increase the precision of the results.

Later a set of theories, generally known as higher-order shear deformation theories (HSDT), has been
developed by a number of researchers. Basset [1890] appears to have been the first researcher to suggest
that displacement fields can be expanded in a power series of the thickness coordinate. The higher-order

Keywords: laminated plates, higher-order transverse shear deformation theory, mixed boundary conditions, generalized
differential quadrature method.
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theory presented by Reddy and Liu [1985] is based on a displacement field in which the displacements
in the surface of the shell are expanded as a quadratic function of the thickness coordinate. Actually, the
higher-order theories require additional computation with respect to the first-order theories.

Employing such theories results in systems of highly coupled partial differential equations. Several
methods exist for obtaining solutions for such systems. Among those numerical studies, the differential
quadrature (DQ) method, introduced by Bellman et al. [1972], is an efficient method for obtaining accu-
rate numerical results using a few grid points. DQ approximates the spatial derivative of a function with
respect to a given coordinate at a discrete point as the weighted linear sum of all functional values in
the domain of that coordinate direction. Two methods were proposed by those authors for obtaining the
weighting coefficients of the first-order derivative: the first method solves a system of algebraic equations
to determine the weighting coefficients, and the second utilizes a simple algebraic formulation, provided
that the coordinates of grid points are chosen to be the roots of the shifted Legendre polynomial. The
first method is simpler to apply, but the second is more efficient. For the first method, in which the
coordinates of grid points are arbitrarily chosen, Quan and Chang [1989] used Lagrange interpolation
polynomials as test functions to develop explicit formulations for determining the weighting coefficients
for the first- and second-order derivative discretization.

A generalized differential quadrature (GDQ) method was introduced in [Shu and Richards 1990; Shu
1991]. It generalized all current methods via analysis of a higher-order polynomial approximation and
analysis of a linear vector space. In GDQ, the weighting coefficients of the first derivatives are deter-
mined by a simple algebraic formulation, and there is no restriction on the coordinates of the grid points.
The weighting coefficients of the second and higher-order derivatives are determined by a recurrence
relationship.

Bert et al. [1988] were the first to apply the DQ method to structural mechanics problems. Subse-
quently, a number of researchers utilized this method to solve a variety of structural problems relevant to
thin plate theory [Striz et al. 1988; Bert et al. 1989; Sherbourne and Pandey 1991]. A bending analysis
of thin/thick laminated plates with various boundary conditions based on first-order shear deformation
theory was described in [Aghdam et al. 2006]. The DQ method was used in [Li and Cheng 2005;
Tornabene and Viola 2008] to solve for the vibration of plates and shells. In [Malekzadeh and Setoodeh
2007], large deformation of laminated plates on a nonlinear elastic foundation was analyzed by the DQ
method.

The present study deals with the bending analysis of thin/thick laminated plates with various boundary
conditions based on the higher-order shear deformation theory, in which the displacement field presented
by Reddy and Liu [1985] is considered. Introducing two new unknown functions wi (i = 1, 2) for
computational purposes, a new set of seven governing equations and corresponding boundary conditions
for each edge are derived. Applying the wi allows the governing equations and boundary conditions to be
easily obtained from the virtual work formulation. These equations, together with eighteen relationships
between the resultant stress and displacement components, form a system of 25 first-order partial differen-
tial equations. Solving a set of 25 equations simultaneously enables one to apply boundary conditions in
the HSDT more accurately and conveniently. In the HSDT of Reddy and Liu, the governing equations are
second-order partial differential equations, and the boundary conditions are first-order partial differential
relationships. By applying this technique, the governing equations convert first-order and boundary
conditions into linear algebraic relationships. Application of linear algebraic relationships as boundary
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conditions is much easier, and the number of grid points required for convergence in the GDQ method
is reduced.

In this paper, plates with free edge and mixed boundary conditions are considered. The results are
compared with those obtained ANSYS version 5.4. Numerical results are presented to understand the
complex deformation behavior of symmetric and antisymmetric cross ply plates.

2. Formulation

A rectangular plate with different boundaries in the α1 and α2 directions is considered. The principle of
virtual work for the equilibrium of a body with surface S and volume V requires satisfaction of∫

V

3∑
i=1

3∑
j=1

σi j δεi j dV −
∫

S
δWext ds = 0, (1)

where σi j denotes the stress components, δεi j the variation of virtual strain components caused by virtual
displacements, and δWext the variation in virtual work performed by the external forces. Employing a
higher-order shear deformation theory, the displacement components, in terms of functions specifying
the deformation of the middle surface of the plate, may be approximated as [Reddy and Liu 1985]

Ui (α1, α2, ζ )= ui (α1, α2)+ ζϕi (α1, α2)+ ζ
2ψi (α1, α2)+ ζ

3θi (α1, α2), i = 1, 2

W (α1, α2, ζ )= w(α1, α2),
(2)

where, ζ , ranging from −h/2 to h/2, is the variable in the thickness direction.

Convention. Henceforth, unless otherwise stated, we use the subscript n to refer to the normal direction
(i.e., n = 3) and i, j are distinct indices ranging over the in-plane directions (i.e., i = 1, 2 and j = 3− i).

One may assume, without loss of generality, that shear stress is absent from the top and bottom surfaces
of the plate. Therefore,

τin

(
α1, α2,±

h
2

)
= 0. (3)

Hooke’s law for a laminated plate composed of orthotropic layers implies that (3) is equivalent to

γin

(
α1, α2,±

h
2

)
= 0. (4)

The strain-displacement relationships in the principal coordinates of a plate are

εi i =
∂Ui

∂αi
, εnn =

∂W
∂ζ

, γi j =
∂U j

∂αi
+
∂Ui

∂α j
, γin =

∂W
∂αi
+
∂Ui

∂ζ
. (5)

Substitution of (2) into (5) yields

γin =
∂w

∂αi
+ϕi + 2ζψi + 3ζ 2θi . (6)

Application of (4) to (6) gives the four equations{
∂w/∂αi +ϕi + hψi +

3
4 h2θi = 0

∂w/∂αi +ϕi − hψi +
3
4 h2θi = 0

i = 1, 2. (7)
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Solving the system of algebraic equations (7) yields

ψi = 0, θi =−
4

3h2

(
∂w
∂αi
+ϕi

)
. (8)

Substituting (8) into (2) gives the displacement components in the thickness direction in terms of dis-
placements of the middle surface of the plate:

Ui (α1, α2, ζ )= ui + ζϕi − ζ
3 4

3h2

(
∂w
∂αi
+ϕi

)
, W (α1, α2, ζ )= w(α1, α2). (9)

The strain-displacement equations (7), in view of (9), give

εi i = ε
0
i + ζκ

0
i + ζ

3κ2
i , γin = λ

0
i + ζ

2η1
i ,

εnn =
∂w
∂ζ
, γi j = γ

0
i + ζµ

0
i + ζ

3µ2
i + γ

0
j + ζµ

0
j + ζ

3µ2
j ,

(10)

where we have set

ε0
i =

∂ui
∂αi

, κ0
i =

∂ϕi
∂αi

, κ2
i =−

4
3h2

∂
∂αi

(wi +ϕi ), λ0
i =

∂w
∂αi
+ϕi ,

γ 0
i =

∂u j

∂αi
, µ0

i =
∂ϕ j

∂αi
, µ2

i =−
4

3h2
∂
∂αi

(w j +ϕ j ), η1
i =−

4
h2 (wi +ϕi ).

(11)

Here we have introduced two new unknown functions, wi =
∂w
∂αi

. The stress resultants are defined as[
Ni Ni j Nin Mi Mi j Min Pi Pi j Pin Si Si j

]T

=

∫ h/2

−h/2

[
σi i τi j τin ζσi i ζ τi j ζ τin ζ 2σi i ζ

2τi j ζ
2τin ζ 3σi i ζ

3τi j
]T

dζ, (12)

where T is the transpose of a vector. The applied load per unit area of the middle surface of a plate is
taken as q = q1e1+ q2e2− qnen , where e1, e2, and en are unit vectors in the directions of the principal
axes (α1, α2) and thickness direction (n), respectively. Let σ̄i i , τ̄i j , and τ̄in be the components of applied
traction on the edges αi = constant. The virtual work done by external loads on the plate is

δwext =

∫
α1

∫
α2

(q1δu1+ q2δu2− qnδw) dα1 dα2+

∮
α j

∫ h/2

−h/2
(σ̄i iδUi + τ̄i jδU j + τ̄inδW ) dζ dα j , (13)

where the second integral should be taken across the boundary of the plate. Substituting (9) into (13)
and (10) into (1), employing (12), setting σn = 0, and carrying out the required manipulations, leads to
the overall variational equation in the box on the next page.

From the first four lines of the boxed equation we derive seven governing differential equations:

∂Ni

∂αi
+
∂Ni j

∂α j
+ qi = 0,

∂Mi

∂αi
+
∂Mi j

∂α j
− Nin = 0,

∂Nin

∂αi
+
∂N jn

∂α j
− qn = 0,

∂Si

∂αi
+
∂Si j

∂α j
− 3Pin = 0.

(14)

The remaining terms in the boxed equation lead to the boundary conditions for a plate. The boundary
data on each edge αi = constant are prescribed by selecting one member of each of the following seven



BENDING OF LAMINATED PLATES WITH MIXED BOUNDARY CONDITIONS BASED ON HSDT 1775

∫
α1

∫
α2

[(
∂N1

∂α1
+
∂N12

∂α2
+ q1

)
δu1+

(
∂N2

∂α2
+
∂N12

∂α1
+ q2

)
δu2+

(
∂N1n

∂α1
+
∂N2n

∂α2
− qn

)
δw

+

(
∂M1

∂α1
−

4
3h2

∂S1

∂α1
+
∂M12

∂α2
−

4
3h2

∂S12

∂α2
− N1n +

4
h2

P1n

)
δϕ1

+

(
∂M2

∂α2
−

4
3h2

∂S2

∂α2
+
∂M12

∂α1
−

4
3h2

∂S12

∂α1
− N2n +

4
h2

P2n

)
δϕ2

+

(
−

4
3h2

∂S1

∂α1
−

4
3h2

∂S12

∂α2
+

4
h2

P1n

)
δw1+

(
−

4
3h2

∂S2

∂α2
−

4
3h2

∂S12

∂α1
+

4
h2

P2n

)
δw2

]
dα1 dα2

+

∮
α2

[
[N̄1− N1]δu1+

[(
M̄1−

4
3h2

S̄1

)
−

(
M1−

4
3h2

S1

)]
δϕ1−

4
3h2
[S̄1− S1]δw1+ [N̄12− N12]δu2

+

[(
M̄12−

4
3h2

S̄12

)
−

(
M12−

4
3h2

S12

)]
δϕ2+

[(
N̄1n +

4
3h2

∂ S̄12

∂α2

)
−

(
N1n +

4
3h2

∂S12

∂α2

)]
δw

]
dα2

+

∮
α1

[
[N̄2− N2]δu2+

[(
M̄2−

4
3h2

S̄2

)
−

(
M2−

4
3h2

S2

)]
δϕ2−

4
3h2
[S̄2− S2]δw2+ [N̄12− N12]δu2

+

[(
M̄12−

4
3h2

S̄12

)
−

(
M12−

4
3h2

S12

)]
δϕ1+

[(
N̄2n −

4
3h2

∂ S̄12

∂α1

)
−

(
N2n −

4
3h2

∂S12

∂α1

)]
δw

]
dα1

= 0.

pairs of variables as a known quantity:

(Ni , ui ),
(

Mi −
4

3h2 Si , ϕi

)
, (Si , wi ), (Ni j , u j ),

(
Mi j −

4
3h2 Si j , ϕ j

)
, (Si j , w j ), (Nin, w),

The stress–strain relationship for a single orthotropic lamina on a plate is
σ11

σ22

τ2n

τ1n

τ12

=


Q̄11 Q̄12 0 0 Q̄16

Q̄12 Q̄22 0 0 Q̄26

0 0 Q̄44 Q̄45 0
0 0 Q̄45 Q̄55 0

Q̄16 Q̄26 0 0 Q̄66



ε11

ε22

γ2n

γ1n

γ12

 . (15)

The matrix components of material properties in (15) may be written in terms of the stiffness coeffi-
cients in the direction of the principal axis of material orthotropy as

Q̄11 = Q11m4
+2(Q12+2Q66)m2n2

+Q22n4, Q̄12 = (Q11+Q22−4Q66)m2n2
+Q12(m4

+n4),

Q̄22 = Q11n4
+2(Q12+2Q66)m2n2

+Q22m4, Q̄45 = (Q55−Q44)mn,

Q̄16 = (Q11−Q12−2Q66)m3n+(Q12−Q22+2Q66)mn3,

Q̄26 = (Q11−Q12−2Q66)mn3
+(Q12−Q22+2Q66)m3n,

Q̄44 = Q44m2
+Q55n2, Q̄55 = Q44n2

+Q55m2, Q̄66 = (Q11+Q22−2Q12)m2n2
+Q66(m2

−n2)2.

(16)

In the equations above, m and n are defined as m = cosχ and n = sinχ , where χ accounts for the
angle between the principal axis of material orthotropy and the α1-axis. In fact, the principal coordinates
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of a plate differ from the material principal axes. The material principal axes make an angle χ with the
principal coordinates of the plate. In terms of engineering constants, the material properties in (16) are
derived as

Q11 =
E11

1
, Q12 =

E11ν21

1
, Q22 =

E22

1
, Q44 = G23, Q55 = G13, Q66 = G12, (17)

where 1= 1− ν12ν21. However, if the equations in (10) are substituted into (15), the resultant equations
are substituted into (12), and the integration in the thickness direction is carried out, we arrive at the
following equations for the stress resultants:

N1

N12

N2

=
C1

11 C1
16 C1

12 C1
16

C1
16 C1

66 C1
26 C1

66

C1
12 C1

16 C1
22 C1

26



ε0

1
γ 0

1
ε0

2
γ 0

2

+
C2

11 C2
16 C2

12 C2
16

C2
16 C2

66 C2
26 C2

66

C2
12 C2

16 C2
22 C2

26



κ0

1
µ0

1
κ0

2
µ0

2

+
C4

11 C4
16 C4

12 C4
16

C4
16 C4

66 C4
26 C4

66

C4
12 C4

16 C4
22 C4

26



κ2

1
µ2

1
κ2

2
µ2

2

 ,


M1

M12

M2

=
C2

11 C2
16 C2

12 C2
16

C2
16 C2

66 C2
26 C2

66

C2
12 C2

16 C2
22 C2

26



ε0

1
γ 0

1
ε0

2
γ 0

2

+
C3

11 C3
16 C3

12 C3
16

C3
16 C3

66 C3
26 C3

66

C3
12 C3

16 C3
22 C3

26



κ0

1
µ0

1
κ0

2
µ0

2

+
C5

11 C5
16 C5

12 C5
16

C5
16 C5

66 C5
26 C5

66

C5
12 C5

16 C5
22 C5

26



κ2

1
µ2

1
κ2

2
µ2

2

 ,


P1

P12

P2

=
C3

11 C3
16 C3

12 C3
16

C3
16 C3

66 C3
26 C3

66

C3
12 C3

16 C3
22 C3

26



ε0

1
γ 0

1
ε0

2
γ 0

2

+
C4

11 C4
16 C4

12 C4
16

C4
16 C4

66 C4
26 C4

66

C4
12 C4

16 C4
22 C4

26



κ0

1
µ0

1
κ0

2
µ0

2

+
C6

11 C6
16 C6

12 C6
16

C6
16 C6

66 C6
26 C6

66

C6
12 C6

16 C6
22 C6

26



κ2

1
µ2

1
κ2

2
µ2

2

 ,


S1

S12

S2

=
C4

11 C4
16 C4

12 C4
16

C4
16 C4

66 C4
26 C4

66

C4
12 C4

16 C4
22 C4

26



ε0

1
γ 0

1
ε0

2
γ 0

2

+
C5

11 C5
16 C5

12 C5
16

C5
16 C5

66 C5
26 C5

66

C5
12 C5

16 C5
22 C5

26



κ0

1
µ0

1
κ0

2
µ0

2

+
C7

11 C7
16 C7

12 C7
16

C7
16 C7

66 C7
26 C7

66

C7
12 C7

16 C7
22 C7

26



κ2

1
µ2

1
κ2

2
µ2

2

 ,
{

N1n

N2n

}
=

[
C1

55 C1
54

C1
45 C1

44

]{
λ0

1

λ0
2

}
+

[
C3

55 C3
54

C3
45 C3

44

]{
η1

1

η1
2

}
,

{
M1n

M2n

}
=

[
C2

55 C2
54

C2
45 C2

44

]{
λ0

1

λ0
2

}
+

[
C4

55 C4
54

C4
45 C4

44

]{
η1

1

η1
2

}
,

{
P1n

P2n

}
=

[
C3

55 C3
54

C3
45 C3

44

]{
λ0

1

λ0
2

}
+

[
C5

55 C5
54

C5
45 C5

44

]{
η1

1

η1
2

}
,

where

C p
i j =

1
p

N∑
k=1

(Q̄i j )k(h
p
k−h p

k−1), p ∈ {1, 2, . . . , 7}, (18)
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and hk − hk−1 is the thickness of the k-th layer. Substitution of (11) into the equations on page 1776
yields the stress resultants in terms of the displacement components. These equations, combined with
(14), form a system of 25 first-order partial differential equations for displacements and stress resultants:

[K ]
{
u1, u2, w, ϕ1, ϕ2, w1, w2, N1, N12, N2,M1,M12,M2,

P1, P12, P2, S1, S12, S2, N1n, N2n,M1n,M2n, P1n, P2n
}T
= {−q1,−q2, qn, 0, . . . , 0}T . (19)

The coefficients of the matrix K are given in the box below (19). A numerical solution for (19) can be
achieved by means of the GDQ method. The method is detailed, for example, in [Shu 1991; Bert et al.
1988], and its application to first-order differential equations is summarized here. In the GDQ method,

Nonzero entries of K referenced by row and column

Rows 1 to 7:

1,8 :
∂

∂α1
1,9 :

∂

∂α2
2,9 :

∂

∂α1
2,10 :

∂

∂α2
3,20 :

∂

∂α1
3,21 :

∂

∂α2

4,11 :
∂

∂α1
4,12 :

∂

∂α2
4,20 : −1 5,13 :

∂

∂α2
5,12 :

∂

∂α1
5,21 : −1

6,17 :
∂

∂α1
6,18 :

∂

∂α2
6,24 : −3 7,19 :

∂

∂α2
7,18 :

∂

∂α1
7,25 : −3

Rows 8 to 19:

k,k : −1

k,1 : A′1
∂

∂α1
+C ′1

∂

∂α2
k,4 :

(
A′2−

4
3h2

A′4
)
∂

∂α1
+

(
C ′2−

4
3h2

C ′4
)
∂

∂α2
k,6 : − 4

3h2
A′4

∂

∂α1
−

4
3h2

C ′4
∂

∂α2

k,2 : B ′1
∂

∂α2
+C ′1

∂

∂α1
k,5 :

(
B ′2−

4
3h2

B ′4
)
∂

∂α2
+

(
C ′2−

4
3h2

C ′4
)
∂

∂α1
k,7 : − 4

3h2
B ′4

∂

∂α1
−

4
3h2

C ′4
∂

∂α2

where

for k ∈ {8, 11, 14, 17}, n = 1
3 (k− 8), A′l = Cn+l

11 , B ′l = Cn+l
12 , C ′l = Cn+l

16 ;

for k ∈ {9, 12, 15, 18}, n = 1
3 (k− 9), A′l = Cn+l

16 , B ′l = Cn+l
26 , C ′l = Cn+l

66 ;

for k ∈ {10, 13, 16, 19}, n = 1
3 (k− 10), A′l = Cn+l

12 , B ′l = Cn+l
22 , C ′l = Cn+l

16 ,

Rows 20 to 25:

k,k : = −1 k,4 : = A′1−
4
h2

A′3 k,6 : = − 4
h2

A′3

k,3 : = A′1
∂

∂α1
+ B ′1

∂

∂α2
k,5 : = B ′1−

4
h2

B ′3 k,7 : = − 4
3h2

A′3

where

for k ∈ {20, 22, 24}, n = 1
2 (k− 20), A′l = Cn+l

55 , B ′l = Cn+l
45 ,

for k ∈ {21, 23, 25}, n = 1
2 (k− 21), A′l = Cn+l

45 , B ′l = Cn+l
44 .
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the derivative of a function at any discrete point in a given direction is approximated by the weighted
linear sum of the function values at all sampling points in that direction,

d F(xk)

dx
=

N∑
l=1

Ckl F(xl), k ∈ {1, 2, . . . , N }, (20)

where N denotes the number of sampling points selected in the x-direction and Ckl are the weighting
coefficients of the first derivative with respect to the variable x . Taking the Lagrange interpolation
polynomials as test functions, the coefficients in (20) result in

Ckl =
M(xk)

(xk − xl)M(xl)
, k, l = 1, 2, . . . , N , k 6= l,

Ckk =−

N∑
l=1
l 6=k

Ckl, k = 1, 2, . . . , N ,
(21)

where M(xk)=
N∏

l=1
l 6=k

(xk − xl). The sampling points are chosen in the form of a cosine distribution as

xk =
a
2

[
1− cos

( k−1
N−1

π
)]
, k = 1, 2, . . . , N , (22)

where a is the length in x-direction. Differentiating (19) with respect to α1 and α2 and using (20) together
with the boundary conditions (see page 1775) leads to an overdetermined system of algebraic equations
for displacements and stress resultants at the sampling points. These equations are then solved using
least-squares minimization methods.

3. Numerical results

To verify the methodology developed in this study, the bending of symmetric ([0/90/0] and [90/0/90])
and antisymmetric [0/90] cross ply square plates, subjected to uniformly distributed transverse loads,
were considered. A material with the following properties was used in these numerical calculations:

E1

E2
= 25,

G12

E2
=

G13

E2
= 0.5,

G23

E2
= 0.2, ν12 = 0.25,

in which E1 and E2 are the in-plane Young’s modulus in the α1 and α2 coordinate directions. G12 is the
in-plane shear modulus, G13 and G23 are the transverse shear modulus in the α1− n and α2− n planes,
respectively, whereas ν12 is the major Poisson’s ratio in the α1-α2 plane. The quantities w∗ and M∗1 are

w∗ =−
103 E2h3

qna4 w, M∗1 =
103 Mi

qna2 .

Here, ‘a’ is the length of the edges of the square, and qn denotes the uniformly distributed transverse
load. In this study, three models with various boundary conditions were considered. The first model,
called (S-S-S-S), is a plate with an SS2-type simply supported boundary condition on all edges. The
second model, called (S-S-S-SF), is a plate with SS2-type simply supported boundary condition on three
edges, and the fourth edge, corresponding to the edge α1 = a, is a mixed boundary condition of free and
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!
Figure 1. The models used in the present study with their various boundary conditions.

SS2-type simply supported boundary conditions, as shown in Figure 1. (S-S-S-F) is the last model and
has three edges subjected to the SS2 boundary condition, and the edge corresponding to the edge α1 = a
is free.

The SS2-type simply supported boundary conditions and free edge defined on the edge αi = constant
are as follows:

SS2 type: ui = 0, Mi = 0, Si = 0, Ni j = 0, ϕ j = 0, w j = 0, w = 0.

Free edge: Ni = 0, Mi = 0, Si = 0, Ni j = 0, Mi j = 0, Si j = 0, Nin = 0.

In all models, the displacements and moments are computed at the center of the plate. Because the
bending of a plate with mixed boundary conditions has not been extensively investigated, we compared
the models to simulations performed with the ANSYS version 5.4 finite element software. The finite
element mesh is composed of 400 SHELL99 elements with identical dimensions.

Table 1 compares the normalized central deflections of antisymmetric [0/90] and symmetric [0/90/0]
and [90/0/90] cross ply square plates, characterized by four different a/h ratios, for the three models,
computed using our approach versus ANSYS. In each direction, fifteen grid points are used for model
(S-S-S-S), 17 for model (S-S-S-SF), and 19 for model (S-S-S-F). Table 2 shows the analogous compares
for central moments.

The maximum w∗ discrepancy between the two sets of results is observed for the (S-S-S-SF) model
with a [0/90/0] lamination and a/h= 10. In comparing the results with FE, we mention that the boundary
conditions used in the present approach are not identical to those in ANSYS. Therefore, we expect some
discrepancies between the results. Nonetheless, discrepancies should not be more than 11%.

The discrepancies of the normalized central moments, M∗1 , between the two sets of results can be
attributed to the fact that ANSYS calculates moments on grid points by extrapolating the moment calcu-
lated over the Gaussian points. Therefore, this method produces some approximations in the calculation
of moments on grid points.

In the [90/0/90] lamination, the normalized central deflections of (S-S-S-SF) are larger than those of
(S-S-S-F). A finite element analysis with 1600 elements (a/h = 10) was performed. The value of w∗,
in the center of both (S-S-S-SF) and (S-S-S-F) models, is 11.73.

The first three rows of Figure 2 display the convergence (with n1 = n2 = n) of normalized transverse
displacements w∗ and normalized moments M∗1 for the (S-S-S-S), (S-S-S-SF), and (S-S-S-F) models
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a/h = 100, (S-S-S-S)

a/h = 100, (S-S-S-SF)

a/h = 100, (S-S-S-F)

a/h = 10, (S-S-S-SF)

Figure 2. Convergence of the normalized central deflection w∗ (left) and the normalized
central moment M∗1 (right) of a symmetric cross ply [0/90/0] for the three models.
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(S-S-S-S) (S-S-S-SF) (S-S-S-F)
a/h [0/90] [0/90/0] [0/90] [0/90/0] [90/0/90] [0/90] [0/90/0] [90/0/90]

10
present

ANSYS
11.73
11.63

10.98
11.70

11.65
12.72

11.60
13.10

11.41
11.72

17.88
17.73

52.79
53.44

10.97
11.73

20
present

ANSYS
9.82
9.72

7.79
7.96

10.40
10.58

8.65
9.34

7.80
7.96

15.12
14.98

49.54
49.64

7.67
7.85

50
present

ANSYS
9.23
9.18

6.84
6.86

9.76
9.96

7.87
8.06

6.84
6.86

14.27
14.20

48.54
48.51

6.72
6.74

100
present

ANSYS
9.14
9.11

6.71
6.73

9.68
9.87

7.72
7.83

6.70
6.73

14.10
14.09

48.40
48.55

6.58
6.61

Table 1. Normalized central deflections of square plates with different a/h ratios, cross
ply patterns and models, calculated under the present approach and with ANSYS.

(S-S-S-S) (S-S-S-SF) (S-S-S-F)
a/h [0/90] [0/90/0] [0/90] [0/90/0] [90/0/90] [0/90] [0/90/0] [90/0/90]

10
present

ANSYS
69.42
69.96

122.88
120.97

63.19
68.47

116.55
125.10

14.94
13.94

23.14
22.81

53.90
53.32

7.26
7.65

20
present

ANSYS
70.30
70.67

128.06
128.20

70.07
69.08

136.87
141.03

9.82
9.80

22.73
22.66

57.01
56.89

5.50
5.61

50
present

ANSYS
70.64
70.92

129.57
129.93

73.75
69.19

140.15
141.90

8.58
8.56

22.57
22.63

58.21
58.42

4.92
4.94

100
present

ANSYS
70.70
70.97

129.78
130.17

72.57
69.18

140.85
142.02

8.47
8.39

22.59
22.63

58.61
58.82

4.84
4.84

Table 2. Normalized central moments of square plates with different a/h ratios, cross
ply patterns and models, calculated under the present approach and with ANSYS.

describing symmetric cross ply [0/90/0] square plates with a/h = 100. Rapid convergence was observed
for the (S-S-S-S) model, and convergence of the (S-S-S-SF) model was the slowest. The convergence of
each model was similar for different a/h ratios, with the exception of model (S-S-S-SF), with a/h = 10,
shown at the bottom in Figure 2. It is interesting to note that, as observed in this latter figure, the curve
of convergence initially ascends, then descends at n = 15. The number 15 is reported as the convergence
number for this case. Actually, convergence for the deflections and moments, for thicker plates, was ac-
complished with a smaller number of grid points. This characteristic was observed by Lanhe et al. [2005]
in the vibration analysis of composite plates, by applying a least square GDQ method based on FSDT.

Figure 3, top left, compares the variation in central deflections w∗ for three different laminations,
including antisymmetric [0/90] and symmetric [0/90/0], [90/0/90], with respect to the a/h ratio, for
the (S-S-S-S) model. It is seen in the figure that the normalized central deflections of two symmetric
cross ply laminates are equal because the boundary conditions imposed on all edges are similar. However,
the normalized central deflections, of the antisymmetric cross ply plate are considerably larger that their
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(S-S-S-S) (S-S-S-SF)

(S-S-S-F)

Figure 3. Variation in central deflection w∗ with respect to the a/h ratio for [0/90],
[0/90/0], and [90/0/90] laminations, in the three models.

symmetric counterparts. As the a/h ratio decreases from thin to moderately thick, the difference between
symmetric and antisymmetric lamination decreases, and this decrease is much larger for moderately thick
aspect ratios (10< a/h < 20). This behavior is known as the ”beam–column/tie bar” effect caused by
the bending-stretching coupling present in the antisymmetric laminate.

Figure 3, top right, presents a comparison of the variation in central deflections w∗ for three different
laminations, including antisymmetric [0/90] and symmetric [0/90/0], as well as [90/0/90], with respect
to the a/h ratio, for the (S-S-S-SF) model. As can be observed from the rule, the normalized central
deflections of the two symmetric cross ply laminates are different, because the boundary conditions on
the two edges α1 = 0 and α1 = a are different. Therefore, in the [0/90/0] lamination, the orientation of
most fibers of the laminate material is along to α1 coordinate. This increases the deflection caused by
the free part of the edge α1 = a. The difference between the behavior of the laminations [0/90/0] and
[90/0/90] for the (S-S-S-SF) model is shown in the first two panels of Figure 4.

Figure 3, bottom, shows the comparison of the of the variation in the central deflections w∗ for three
different laminations, including antisymmetric [0/90] and symmetric [0/90/0], [90/0/90], with respect
to the a/h ratio, for the (S-S-S-F) model. The figure highlights the differences between the laminations.
In the [0/90/0] lamination, as was described for (S-S-S-SF), the direction of most fibers of the laminate
material is along to α1 axis. This contributes to an increase in the deflection of the plate. The difference
between the behavior of laminations [0/90/0] and [90/0/90] is shown in Figure 4, right.
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! !
[0/90/0] [90/0/90] [0/90/0] [90/0/90]

(S-S-S-SF) (S-S-S-F)

Figure 4. Displacement contours of a plate with laminations [0/90/0] and [90/0/90]
for two of the models.

Figure 5 compares the central deflection of the (S-S-S-S) and (S-S-S-SF) models, for [0/90], [0/90/0],
and [90/0/90] laminations. The maximum difference between (S-S-S-S) and (S-S-S-SF) is observed in
the [0/90/0] lamination, and the minimum difference is observed in the [90/0/90] lamination. This
effect can be understood from the explanation given for Figure 4, left.

[0/90] [0/90/0]

[90/0/90]

Figure 5. Variation in central deflection w∗ with respect to the a/h ratio for [0/90],
[0/90/0], and [90/0/90] laminations, in the (S-S-S-S) and (S-S-S-SF) models.
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[0/90] [0/90/0]

[90/0/90]

Figure 6. Variation in central deflection w∗ with respect to the a/h ratio for [0/90],
[0/90/0], and [90/0/90] laminations, in the (S-S-S-F) and (S-S-S-SF) models.

Figure 6 illustrates the comparison of central deflections, w∗, of the (S-S-S-SF) and (S-S-S-F) models
for [0/90], [0/90/0], and [90/0/90] laminations. The maximum difference between (S-S-S-S) and (S-S-
S-SF) is observed in the [0/90/0] lamination, and the minimum difference is in the [90/0/90] lamination.
Although the boundary condition, SF, is much stronger than the boundary condition, F, in the [90/0/90]
lamination, most of the normalized central deflections in the model (S-S-S-SF) are larger than those of (S-
S-S-F). In the case of an isotropic material, it is always expected that the normalized central deflections
of (S-S-S-F) are larger than those of (S-S-S-SF). However, when using composite materials, the behavior
of the structure is more complex. We come to the conclusion that, in addition to the boundary conditions,
the direction of the lamination contributes to the behavior of the structure.

4. Conclusion

A new formulation, based on higher-order shear deformation theory, is presented to solve the problem
of laminated plates with mixed boundary conditions. Using the principle of virtual work, the govern-
ing equations, together with the required boundary conditions for higher-order shear deformation, are
formulated. The equations are solved numerically by means of the generalized differential quadrature
method. Three models differing in their boundary conditions on one edge are considered. The results are
compared against solutions obtained using ANSYS, and reasonable agreement is observed. Numerical
results presented here for cross ply plates demonstrate a reasonably fast convergence for the (S-S-S-S)
model and slow convergence for the (S-S-S-SF) model.

When an isotropic material is used, it is usually expected that, because the constraint on SF is much
stronger than the constraint on F, the normalized central deflections of (S-S-S-F) are larger than those
of (S-S-S-SF). According to the tables, for the lamination [90/0/90], normalized central deflections of
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(S-S-S-SF) are larger than those of (S-S-S-F). This result illustrates that when a composite material is
used, the behavior of the structure is more complex, and we can come to the conclusion that, in addition
to the boundary conditions, the direction of the lamination contributes to the behavior of the structures.

The direction of fibers in the [0/90/0] and [90/0/90] laminations has a significant effect, especially for
models (S-S-S-SF) and (S-S-S-F). When the direction of most of the fibers is perpendicular to the free
edge, the central deflections of the plates are larger than when it’s parallel. The effect of the transverse
shear deformation is described by the conceptual bending-stretching coupling effect, a characteristic of
antisymmetric laminates. This characteristic is obvious in the model (S-S-S-S).
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AXIAL COMPRESSION STABILITY OF A CRISSCROSS SECTION COLUMN
COMPOSED OF CONCRETE-FILLED SQUARE STEEL TUBES

CHEN ZHI-HUA, RONG BIN AND APOSTOLOS FAFITIS

A crisscross section column composed of concrete-filled square steel tubes was tested in axial loading
up to failure. The column was analyzed by the finite element method and the ultimate load as well as the
failure mode were in agreement with the experimental findings. An analytical method was also proposed
which when applied to the tested column gave an estimate of the ultimate load about 4% different from
the experimental. The analytical method also predicted the mode of failure correctly.

1. Introduction

Special-shaped columns have found applications in many structures, especially residential buildings.
Compared with regular columns, special-shaped columns have the distinguishing characteristic of flexible
sections such as L-shaped, T -shaped, and crisscross sections. The use of special-shaped columns in
residential buildings can give more indoor space than regular rectangular or square columns.

The behavior of special-shaped reinforced concrete columns has been the subject of investigation and
many experimental and analytical studies have been published. Ramamurthy and Hafeez Khan [1983]
have proposed a method to determine the theoretical ultimate loads of L-shaped concrete columns based
on the concept of an equivalent square or rectangular column. Hsu [1985; 1989] has presented theo-
retical and experimental results for L-shaped and T -shaped reinforced concrete sections. Mallikarjuna
and Mahadevappa [1992; 1994] have carried out numerical investigations on the strength of L-shaped
and T -shaped short reinforced concrete columns that have been subjected to combined axial loading
and bending in order to provide design aids for structural engineers. Tsao and Hsu [1993; 1994] have
presented an experimental and analytical investigation of the strength and deformation behavior of bi-
axially loaded slender and tied columns with L-shaped cross sections. Dundar et al. [2008; Dundar
and Sahin 1993] have studied reinforced concrete L-shaped sections under biaxial bending and axial
loads. Demagh et al. [2005] have carried out numerical investigations for the analysis and the design
of L-shaped short reinforced concrete columns subjected to combined axial loads and bending based on
the fiber method. Tokgoz and Dundar [2008] have studied the behavior of concrete-encased composite
columns with L-shaped sections under short-term axial loads and biaxial bending by means of both
experiment and theoretical analysis. For determination of the behavior of eccentrically loaded short and
slender composite columns, a theoretical procedure considering the nonlinear behavior of the materials
has been proposed.

Keywords: crisscross section composite column, concrete-filled square steel tubes, stability, axial compression experiment,
finite element analysis, analytical method.
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Figure 1. Schematic of a XCFST column.

In recent years, concrete-filled square steel tubular (CFST) columns have been widely used in the
construction of buildings due to their excellent static and earthquake-resistant properties, such as high
strength, high ductility, and large energy dissipation capacity. A large number of studies have been
carried out on CFST columns. Several surveys on CFST structures have also been published [Han 2002;
Tsai et al. 2003; Sakino et al. 2004; Fujimoto et al. 2004; Han et al. 2008]. By contrast, special-shaped
columns consisting of CFST columns have not been studied. The focus of this investigation is a new
type of crisscross section column composed of concrete-filled square steel tubes (XCFST) made up of
five CFST columns with steel bracing connections as shown in Figure 1. Since each monocolumn is a
CFST column, the whole XCFST column also has better static, earthquake, and fire resistance behavior.

Compared to regular columns, as shown in Figure 2, each monocolumn of an XCFST column has a
smaller section. Therefore, in residential buildings, they can be embedded in walls so as to avoid convex
corners indoors and to enlarge the usable interior area.

Regular  
column

Wall

Wall

Wall

Wall

XCFST
column

Wall

Wall

Wall

Wall

Figure 2. Applications of a regular column and an XCFST column.
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The objectives of this study are to determine the maximum load-bearing capacity of an XCFST column
subjected to axial compression and to investigate the failure pattern up to the ultimate load. We adopted
a three-pronged approach: experiment, analytical study, and finite element simulation. Specifically, we
report the experimental test results of an XCFST column under axial compression, use finite element
modeling to analyze the process, and develop a method for calculating the maximum load-bearing ca-
pacity of an XCFST column under axial compression. All three approaches were applied to the same
model, which we describe in the next section.

2. Experimental work

The specimen. The specimen in the experimental study was an XCFST column that was two meters
long with square steel tubes of 100 mm× 100 mm× 5.75 mm. The horizontal bracings were 100 mm×
40 mm× 10 mm, and the diagonal bracings were 142 mm× 28 mm× 10 mm at 45◦.

The manufacturing process of the specimen was as follows. The tubes were all manufactured from
steel plates, with the plates being tack welded into a square shape. After this, the square steel tubes
and bracings were cut and welded together. A 10 mm thick steel plate was welded on the bottom of the
specimen. Concrete was cast and consolidated in the square steel tubes tightly. After curing, a layer of
cement mortar was used as a cap so that the concrete surface was flush with the steel tube at the top.
Finally another 10 mm thick steel plate was welded at the top of the specimen. The specimen is shown
in Figure 3, left.

Material properties. To determine the steel properties of the square tubes and the bracings, tension
coupons were cut and tested in tension. For the square tubes, the average yield strength was 229 MPa,
the ultimate strength 429 MPa, and the modulus of elasticity 1.89×105 MPa. For the bracings, the average
yield strength was 274 MPa, the ultimate strength 415 MPa, and the modulus of elasticity 4.11×105 MPa.

XCFST specimen

Ball-hinge

Dial

Dial

Dial

Dial

Ball-hinge

Actuator

Figure 3. Left: The XCFST specimen. Middle and right: Test setup for the specimen.
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To determine the concrete material properties, three 150× 150× 150 mm cubes were cast and cured
in conditions similar to that of the experiment. The mix proportions of concrete were cement 353 kg/m3,
water 175 kg/m3, sand 696 kg/m3, and coarse aggregate 1088 kg/m3. The average crushing strength of
these concrete cubes after 28 days was 49.7 MPa and the modulus of elasticity was 4.33× 104 MPa.

Test procedure. The XCFST specimen was tested with pinned conditions at both ends using a 5000 kN
capacity axial actuator. The testing setup for the XCFST specimen is shown in Figure 3, middle and
right.

The specimen was loaded until it reached the failure point. A load interval of about one tenth of the
estimated carrying load capacity was used. Each load interval was maintained for about 2–3 minutes.
The progress of deformation, the mode of failure, and the maximum load taken by the specimen were
recorded continuously.

During the test, the load level was controlled by the actuator. The lateral dials monitored the deflection
of the monocolumns. The vertical dials recorded the displacement of the XCFST column. The location
of the instrumentation is shown in Figure 4, left. The labels 1, 4, 7, and 10 indicate the lateral dials
attached at 1.5 m from the ground plate; 2, 5, 8, and 11 indicate the lateral dials at 1.0 m, which is the
middle height of each monocolumn; 3, 6, 9, and 12 indicate the lateral dials at 0.5 m; and 13 and 14
indicate the vertical dials in the top plate of the XCFST column.

Test results. The test was stopped when the XCFST column reached the ultimate bearing capacity. The
deformation of failure was very small. Figure 4, right, shows the failure mode of the XCFST column,
and as shown there were small deformations of each monocolumn.

Load versus axial shortening. The load versus shortening curve provides information on the ultimate
carrying capacity of the XCFST column specimen.

X1X0

X4 14

1, 2, 3

X3

13

X2
7, 8, 9

10, 11, 12

Figure 4. Left: positions of dial indicators. Right: Deformation of the XCFST specimen.
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Figure 5. Axial load versus shortening curve of the XCFST specimen.

Figure 5 shows the relation of the axial force and axial shortening of the XCFST specimen. Note that
up to about 6100 kN, the behavior was almost linear. Beyond this load, the XCFST column entered the
bulking stage. Finally at a load of 6390 kN, the shortening was 15.2 mm and the test was stopped.

Deflection of monocolumn. Figure 6 shows the deformation history of each monocolumn. The number
in parenthesis identifies the dials (for example, 1, 2, and 3). The load level designation from 600 kN to
6390 kN is shown in the box next to the profile of the column.

According to Figure 6, at the failure load of 6390 kN, the deflection of monocolumn X3 was the largest
of the four monocolumns. The failure process was initiated by the buckling of monocolumn X3.

Discussions of experimental behavior of specimen. From the load-deformation curve, it is apparent that
for a load less than about 6100 kN the XCFST column remains in the elastic range. This is true for the
monocolumns X2, X3, and X4. For a load above 6100 kN the column enters gradually into the buckling
stage and the load-deformation curve deviates from linearity. At a load of 6390 kN, the XCFST column
has reached its ultimate capacity. Finally it appears that the failure process is initiated by the buckling
of monocolumn X3.

3. Finite element analysis

General. The commercial finite element software ANSYS has been used to simulate the axial compres-
sion experiment of the XCFST specimen as described before. There are three main components that
need to be modeled in order to simulate the behavior of the XCFST column. These are the steel tubes
and bracings, the infilled concrete, and the interface between the concrete and the steel tube. In addition,
the choice of the element type, the mesh size, the initial geometric deformation, the boundary conditions,
and the load application are also important in simulating the special-shaped column.
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Figure 6. Deflection of single concrete-filled square steel tubes.

Modeling of the steel tubes and bracings. In this simulation, the element SHELL 181 was used to model
the steel tubes and bracings. SHELL 181 is a 4-node doubly curved shell element which has six degrees of
freedom per node. This element’s capacity for transverse shear deformation provides adequate accuracy
in simulating the buckling behavior of the steel tubes.

The constitutive law of steel tubes and bracings [GB50017 2003] was assumed elastoplastic with
yielding strain equal to fy/Es . The strain hardening was ignored and the Poisson’s ratio was equal to
0.3. The idealized stress-strain curve used in the numerical analysis is shown in Figure 7, left.

Modeling of the concrete. The three-dimensional 8-node element SOLID 65 was adopted to model the
infilled concrete. Each node of the element has three degrees of freedom. This element is capable of
cracking, crushing, and plastic deformation and can achieve accurate results in simulating the behavior
of concrete in axial loads.

The ratio of the thickness of the tube plates to the overall size of the tube cross section was not
adequate to provide confinement. Therefore, the uniaxial stress-strain curve was adopted [Ellobody and
Young 2006]. The constitutive law of concrete has two branches. The ascending branch was assumed to
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Figure 7. Left: constitutive law of steel tubes and bracings. Right: constitutive law of concrete.

be parabolic up to a strain equal to 0.003 and the descending branch was linear, as shown on the graph
on the right in Figure 7.

Modeling of the concrete-steel tube interface. The contact action between the steel tube and the concrete
was modeled by the contact elements TARGE 170 and CONTA 173. These surface-to-surface contact
elements consist of two matching contact faces of the steel tube and concrete elements. The friction
between the two faces is maintained as long as the surfaces remain in contact. The coefficient of friction
between the two faces was taken as 0.25 in the analysis. These contact elements allow the surfaces to
separate under the influence of tensile force. However, the contact elements are not allowed to penetrate
each other.

Mesh size and initial geometrical deformation. Different mesh sizes have been tried to choose a rea-
sonable mesh that can provide both accurate results and reasonable computational time. It was found
that a mesh size of approximately 1:1:2 (length:width:depth) for solid elements and 1:1 (length:width)
for shell elements can achieve accurate results. The coincident nodes between steel tubes and bracings
were merged after all elements were meshed in order to ensure that the deformations of the steel tubes
and bracings in such places were identical.

In practice, there are initial geometrical deformations in the XCFST specimen. Therefore the influence
of initial geometrical deformation was considered in this simulation. For this purpose, a 1‰ initial
deformation resembling the first-order buckling mode was introduced to the finite element modeling.

Boundary conditions and load application. Pinned boundary conditions were assumed. The top and
bottom surfaces of the XCFST column were restrained in all translational degrees of freedom except for
the displacement of the top plate in the direction of the applied load.

The load was applied as a static uniform load using the displacement control at each node of the loaded
top surface, and the displacements were applied in incremental steps, which were identical to the steps
of the experimental investigation.

The finite element model is shown in Figure 8.

Procedure verification. In order to validate the finite element analysis, recent axial compression experi-
mental results on 42 concrete-filled square steel tubes conducted by Li et al. [1998] were compared with
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Figure 8. Finite element model.

the results of the finite element model in this study. The mean difference between the experiment data
and the simulated results, shown in Figure 9, was less than 5%.

Comparison of results. The force-deformation curve obtained by finite element analysis is shown in
Figure 10. The ultimate capacity is 5929 kN. The failure mode is shown in Figure 11. It was found
that the deformation of the monocolumns was in the flexure mode whereas the deformation mode of the
XCFST column was very small.

Note that the experimentally obtained failure load (6390 kN) compares well with the value predicted
by finite element analysis (5929 kN), with a difference of 7.2%. Also the experimentally observed de-
formation models of the monocolumns and the XCFST column were the same as the ones predicted by
finite element analysis.
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Figure 9. Comparison between testing data and calculated data by ANSYS.
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Figure 11. Failure mode of finite element model.

4. Analytical evaluation of the axial capacity

General. According to the Design Code for Steel Structures [GB50017 2003], the ultimate bearing ca-
pacity Nu , the sum of the capacities of the steel and the concrete, and the design capacity N are given
by

Nu = λ · fy · As + fc · Ac, N ≤ Nu, (1)

where λ is the stability factor, fy is the yield stress of the steel, fc is the axial strength of the concrete,
Ac is the cross sectional area of the concrete, and As is the cross sectional area of the steel tube.

The slenderness ratio (λo). In an XCFST, the shear stiffness of the bracings among the monocolumns is
weak so that buckling may happen under axial compression and the calculation of the slenderness ratio
of the XCFST is the key component in the superposition theory.



1796 CHEN ZHI-HUA, RONG BIN AND APOSTOLOS FAFITIS

The formula for λo is derived based on the following assumptions: All three monocolumns have the
same size and material properties for steel and concrete. The horizontal and diagonal bracings have the
same size. The spatial truss model is employed for the analysis.

The slenderness ratio of a truss with pinned supporting condition is given by the theory of elastic
stability [Leonard and George 2005]:

λo =

√
λ2

1+π
2γ1

∑n
i=1 (Es Asi + Ec Aci ), (2)

where λo is the slenderness ratio of the XCFST column, λ1 is the slenderness ratio of the unbraced
columns for the x-x or y-y axis as shown in Figure 12, γ1 is the angle of unit shear as explained later
(see (4)), n is the number of monocolumns, Es is the steel modulus of elasticity, As is the cross sectional
area of the steel tubes, Ec is the concrete modulus of elasticity, and Ac is the cross sectional area of the
concrete.

The derivation of the slenderness ratio for buckling is based on Figure 13. One half of the structure is
shown in Figure 13c because of symmetry.

From Figure 13b and c, it can be seen that the axial force of the diagonal bracing Nd is Nd =
1

2 sin θ
,

where θ is the angle between the steel tube and the diagonal bracing.
The axial deformation of the diagonal bracing 1d is:

1d =
Ndld

Es A1
=

a
2Es A1 sin θ cos θ

, (3)

where ld is the length of the diagonal bracing, a is the length of vertical projection for the diagonal
bracing, and A1 is the cross sectional area of the diagonal bracing.

Therefore, the angle of the unit shear is:

γ1 ≈
1
a
=

1d

a sin θ
=

1

2Es A1 sin2 θ cos θ
, (4)

where 1 is the length of horizontal projection of axial deformation for the diagonal bracing 1d .

Figure 12. XCFST section inertia axis.
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Substituting γ1 from (4) into (2), the equivalent slenderness ratio becomes:

λo =

√
λ2

1+
5π2(Es As + Ec Ac)

2Es A1 sin2 θ cos θ
. (5)

Application of the analytical method. The method explained in the previous paragraph will be applied
to compute the ultimate axial capacity of the tested XCFST column.

With reference to the previous two subsections, the values of the structural parameters involved in
Equations (1)–(5) are the following:

n= 5, As = 2167.75 mm2, Ac= 7832.25 mm2, A1= 280 mm2, I = 189526605 mm4,

θ = 45◦, fy = 429 N/mm2, fc= 39.6 N/mm2, Ec= 43300 N/mm2, Es = 189000 N/mm2.

The length of the column is 2 m. The size of the horizontal bracing is 100×40×10 mm, and the diagonal
bracing 142× 28× 10 mm.

The slenderness ratios for the x-x and y-y axes respectively are

i =
√

I
5As
= 132 mm, λ1 =

l
i
=

2000
132
= 15.

With these values, the slenderness ratio in bending buckling is given by (5):

λo =

√
λ2

1+
5π2(Es As + Ec Ac)

2Es A1 sin2 θ cos θ
= 35.

Based on the slenderness ratio λo = 35, the stability factor λ in (1) given as 0.918 in [GB50017 2003].
Therefore the ultimate capacity is

Nu = 5λ fy As + 5 fc Ac = 5820 kN.

V=1 

� 

V=1/2 û 

ûd 

a
 

� 

(a) (b) (c)

Figure 13. Calculation model of buckling.
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5. Conclusions

The ultimate capacity of a crisscross section column composed of concrete-filled square steel tubes
(XCFST) was determined experimentally by finite element analysis and by the analytical method ex-
plained in this paper. It was found that the results are in agreement.

More specifically, the ultimate capacity of the XCFST specimen was found experimentally to be equal
to 6390 kN. By finite element analysis, the ultimate capacity was evaluated to be equal to 5959 kN, a
difference of 7.2%. The value of the ultimate capacity predicted by the analytical method was 5820 kN,
an 8.9% difference from the experimentally obtained value.

Based on the evidence presented in this paper, the analytical method predicts the ultimate capacity
with adequate accuracy. The axial compression stability of an XCFST was studied, and the results of the
analytical method and finite element analysis all show that the failure process of the XCFST specimen
was initiated by the buckling of the monocolumn.
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