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THE EFFECTS OF WARPING CONSTRAINTS ON THE BUCKLING
OF THIN-WALLED STRUCTURES

MARCELLO PIGNATARO, NICOLA RIZZI, GIUSEPPE RUTA AND VALERIO VARANO

We present two applications of a direct one-dimensional beam model suitable for describing the buckling
of thin-walled structures. The first application considers the buckling of a compressed beam with an
intermediate stiffener under various warping constraints. The second describes the buckling of a two-bar
frame, known as a Roorda frame, loaded by a dead force at the joint. Various warping constraints at the
bar ends are considered and the relevant buckling modes and loads are numerically evaluated. Numerical
results are presented for both cases; some of these appear to be new.

1. Introduction: a direct one-dimensional model for thin-walled beams

A very interesting problem in the elastic stability of structural elements is the flexural-torsional buckling
of thin-walled beams. A short description of the origins of the problem with references to related existing
literature may be found in [Ruta et al. 2006; 2008].

In [Ruta et al. 2006] the direct model introduced in [Tatone and Rizzi 1991; Rizzi and Tatone 1996] was
refined in order to describe the flexural-torsional buckling of beams with nonsymmetric cross-sections.
Strain measures are described with respect to both the centroidal and the shear center axes of the beam
(as a first step, it is immaterial which of the shear centers presented in the literature is chosen). The power
expended by inner actions is decomposed so as to distinguish between forces and moments at the centroid
or the shear center. Nonlinear hyperelastic constitutive relations and standard inner constraints [Rizzi
and Tatone 1996; Pignataro and Ruta 2003; Pignataro et al. 2006] imply reactive terms in addition to the
active parts of some contact actions, accounting for the geometry of nonsymmetric cross-sections. The
obtained field equations for the bifurcation in terms of the displacement components are more general
than those in [Rizzi and Tatone 1996; Pignataro and Ruta 2003; Pignataro et al. 2006].

In [Ruta et al. 2006] some simple examples of flexural-torsional buckling and postbuckling phenomena
have been investigated, showing the coincidence of the results with those in the literature, for instance in
[Timoshenko and Gere 1961; Grimaldi and Pignataro 1979]. Further applications of the refined model
are found in [Ruta et al. 2008] where, for a simply supported compressed beam, the effect of warping
constraints at the beam ends has been examined and the relevant critical loads have been presented.

A natural development of the studies performed in [Ruta et al. 2006; 2008] appears to be the analysis
of the buckling of more complex structures by means of the refined model. In this paper, the authors
present two cases of interest in applications. The first is a compressed beam reinforced by an intermediate
stiffener acting as a warping constraint. The second is a simple frame loaded by a dead force, known
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as a Roorda frame in the literature. We first summarize the key notes of the refined model (details are
found in [Ruta et al. 2006; 2008]); then, we present the field equations for the considered problems and
some numerical results.

The beam reference shape consists of a series of plane cross-sections orthogonally attached to the
straight centroidal axis, or to the parallel shear center axis. We fix orthogonal cartesian coordinates with
x1 parallel to the beam axes and a consistent orthonormal right-handed vector basis (i1, i2, i3). Suitable
strain measures are

E = R>R′ = χ1 i2 ∧ i3+χ2 i3 ∧ i1+χ3 i1 ∧ i2,

eo = R> p′o− q ′o = ε1 i1+ ε2 i2+ ε3 i3,

ec = R> p′c− q ′c = eo+ Ec= ε1c i1+ ε2c i2+ ε3c i3

= (ε1+χ2c3−χ3c2)i1+ (ε2−χ1c3)i2+ (ε3+χ1c2)i3, α, η = α′,

(1-1)

where o is the centroid, c is the shear center, and c= c2 i2+ c3 i3 = c− o; po(x1, t) and pc(x1, t) are the
vector-valued present placements of the axes, given by qo(x1) and qc(x1) in the reference shape; R(x1, t)
is the proper orthogonal tensor-valued cross-sectional rotation from the reference to the present shape;
and α(x1, t) is the scalar-valued coarse descriptor of warping. The skew tensor E provides the curvature
of the beam axes, and the vectors eo and ec measure the differences between the tangent to the axes in
the present and reference shape. We have defined χ1 as the torsion curvature (twist); χ2 and χ3 as the
bending curvatures; the wedge product ∧ between vectors provides skew tensors; ε1 is the elongation of
the centroidal axis; and ε2 and ε3 are the shearing strains between this axis and the cross-sections. We
decompose the displacement of the centroidal axis and the rotation:

u = po− qo = u1 i1+ u2 i2+ u3 i3, R = R3 R2 R1, (1-2)

where R1 is a rotation of amplitude ϕ1 around i1; R2 is a rotation of amplitude ϕ2 around R1 i2; R3 is a
rotation of amplitude ϕ3 around R2 R1 i3.

The power Pe expended by external actions is a linear functional of the velocities with respect to
the shear center, while the power P i expended by the interactions among different parts of the beam
is a linear functional of the velocities with respect to the shear center and of their first derivatives with
respect to x1 (grade one theory, see, for example, [DiCarlo 1996]). Standard arguments on the balance of
power and a pull-back procedure [Ruta et al. 2006; 2008] yield the local balance of force and torque in
the reference shape with respect to c, the auxiliary equations for bishear and bimoment and the internal
power:

s′+ Es+ a = 0, S′+ ES− SE+ (q ′c+ ec)∧ s+ A= 0,

τ = β +µ′, P i
=

∫ l

0
(s · ėc+ S · Ė+ τω+µω′).

(1-3)

The vectors a and s are the bulk and contact forces; the skew tensors A and S are the bulk and contact
couples; the scalar β is the bulk action spending power on warping; the scalars µ and τ are the bimoment
and bishear [Vlasov 1961], respectively, all in the reference shape. We pose:

s = Q1 i1+ Q2 i2+ Q3 i3, S= S1 i2 ∧ i3+ S2 i3 ∧ i1+ S3 i1 ∧ i2. (1-4)
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By introducing equations (1-1) and (1-4) into (1-3)4, the internal power reads∫ l

0

[
Q1ε̇1+ Q2ε̇2c+ Q3ε̇3c+ S1χ̇1+ (S2+ c3 Q1)χ̇2+ (S3− c2 Q1)χ̇3+ τω+µω

′
]
, (1-5)

that is, the normal force Q1 spends power on the centroidal straining, while the shearing forces Q2 and
Q3 are applied at the shear center; S1 is the twisting couple, while M2 = S2+ c3 Q1 and M3 = S3− c2 Q1

are the bending torques, evaluated with respect to the centroid.
If ξ is a constant, we postulate the inner constraints [Vlasov 1961; Reissner 1983; Simo and Vu-Quoc

1991; Tatone and Rizzi 1991; Rizzi and Tatone 1996]

α = ξχ1, ξ ∈ R, η = ξχ ′1, eo = ε1q ′o = ε1e1, ε2 = ε3 = 0. (1-6)

The cross-sections and shear axis do not remain normal (ε2c 6= 0, ε3c 6= 0; see (1-1)).
If the beam is homogeneous and elastic, the material response depends on e, E, α, and η and inner

constraints make the contact actions consist of an active and a reactive part [Truesdell and Noll 1965]. The
former (subscript a) is determined by a constitutive relation; the latter (subscript r) spends no power on
the velocities compatible with the constraints [Truesdell and Noll 1965]. In our refined model, the normal
force, the bending torques, and the bimoment are entirely active, while the shearing forces and the bishear
have a reactive part [Ruta et al. 2006; 2008]; the reactive twisting torque S1r contains the bishear, in accord
with the literature [Vlasov 1961]. As is customary, we suppose that the shearing force and the bishear
depend only on the shearing strain, which makes them purely constraint reactions. Thus, some actions are
entirely active, others reactive, and only the twisting torque has both components [Ruta et al. 2006; 2008].

We adopt nonlinear hyperelastic constitutive relations in order to apply Koiter’s theory [1945] and a
static perturbation technique [Budiansky 1974]:

Q1a = Q1 = aε1+
1
2 dχ2

1 , S1a = (k+ dε1+ f2χ2+ f3χ3+ gη)χ1,

M2a = M2 = b2χ2+
1
2 f2χ

2
1 , M3a = M3 = b3χ3+

1
2 f3χ

2
1 , µa = µ= hη+ 1

2 gχ2
1 .

(1-7)

The coefficients a, b j ( j = 2, 3), k, and h are the rigidities in extension, bending, torsion, and warping,
respectively; d, f j ( j = 2, 3), and g take into account the couplings between extension and torsion,
bending and torsion, and warping and torsion, respectively [Truesdell and Noll 1965; Møllmann 1986].
If, as is standard, the bulk action β vanishes, we obtain [Ruta et al. 2006; 2008]

τ = hξχ ′′1 + gχ1χ
′

1, S1 = (k+ dε1+ f2χ2+ f3χ3)χ1− hξ 2χ ′′1 + c3 Q2− c2 Q3. (1-8)

Comparing [Vlasov 1961, equation (V.1.10)3] with ours we obtain

a = E A, b j = E I j ( j = 2, 3), k = G Ic,

d = E Id , f j = E I f j ( j = 2, 3), hξ 2
= E Iω;

(1-9)

E and G are the moduli in extension and shear; A is the cross-sectional area; I j ( j = 2, 3) are the
centroidal principal moments of inertia; Ic is the torsion factor; Id is the polar inertia with respect to c; Iω
is the warping inertia (second moment of the sectorial coordinate with respect to the area); I f2 =

∫
A x3r2;

and I f3 =
∫

A x2r2, with x j ( j = 2, 3) the coordinates of a point with respect to the centroid and r its
distance from the shear center.
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2. Buckling of a compressed beam with a warping stiffener

For a beam compressed by a dead centroidal load of magnitude λ, one solution of the elastic static
problem, called the fundamental path and denoted by the superscript f, is:

uf
=−

λ
a

x1 i1, Rf
= I, αf

= 0,

ef
=−

λ
a

i1, Ef
= 0, ηf

= 0,

sf
=−λi1, Sf

= 0, τ f
= 0, µf

= 0.

(2-1)

A different solution, called the bifurcated path and denoted by the superscript b, is

ub
= u− λ

a
x1 i1, Rb

= R+ I, αb
= α,

eb
= e− λ

a
i1, Eb

= E, ηb
= η,

sb
= s− λi1, Sb

= S, τ b
= τ, µb

= µ.

(2-2)

The differences of quantities evaluated along the bifurcated and the fundamental paths are expressed
without superscripts, that is, ( · ) := ( · )b− ( · )f. Strain measures, balance, and auxiliary equations, as
well as constitutive relations, are written in terms of differences. The latter are supposed to regularly
depend on a parameter σ :

( · )= ( · )(σ ), σ ∈ [0, 1], ( · )
∣∣
σ=0 = 0. (2-3)

A formal σ -power series expansion of the quantities of interest in a neighborhood of σ = 0 provides the
first-order equations of interest for the buckling,

ū′′1 = 0, b3ū′′′′2 + λ
a−λ

a
(ū′′2 − c3ϕ̄

′′

1 )= 0, b2ū′′′′3 + λ
a−λ

a
(ū′′3 + c2ϕ̄

′′

1 )= 0,

hξ 2ϕ̄′′′′1 +
dλ−ak

a
ϕ̄′′1 + λ

a
a−λ

(c2ū′′3 − c3ū′′2)= 0,
(2-4)

with the overbar standing for increments of first order in σ .
We have considered the case of a beam with an intermediate stiffener, preventing warping in a section

x1 = m, m ∈ (0, l). A number of values of m and of the boundary conditions have been considered.
Each problem has been solved numerically using the COMSOL Multiphysics FEM code, available at the
Dipartimento di Strutture of the Università Roma Tre. For this purpose, (2-4) has been written in weak
form on the two regular subdomains x1 ∈ (0,m) and x1 ∈ (m, l). Then, giving the appropriate boundary
conditions, the eigenvalue problems providing the critical values λc of the load multiplier and the mode
shapes ū2c, ū3c, and ϕ̄1c, have been solved using the COMSOL PDE application.

Consider a beam channel with length l = 2000 mm, outer dimensions 100 mm (web), 60 mm (flanges),
and uniform thickness of 3 mm [Ruta et al. 2008]. Let the x3-axis of the chosen cartesian system coincide
with the symmetry axis of the cross-section. The geometric and inertial quantities have been derived by
means of standard calculations and well-known tables, such as those in [Timoshenko and Gere 1961].
Let the material of the beam be elastic and isotropic and characterized by E = 206 GPa, G = 79 GPa.
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The constitutive coefficients (1-9) are

a = 642 mm2 E, b3 = 1054726 mm4 E, hξ 2
= 446086956 mm6 E, k = 1875 mm4G,

d = 2370581 mm4 E, b2 = 236653 mm4 E, c3 =−41 mm, c2 = 0 mm.
(2-5)

We assume that the beam is simply supported, with torsional rotation prevented at both ends. The
corresponding boundary conditions in terms of first-order quantities are

ϕ̄1 = ū2 = ū3 = ū′′2 = ū′′3 = 0, in x1 = 0, x1 = l. (2-6)

Continuity conditions must be imposed in the section x1 = m, where the stiffener is present. We will
consider the following three cases:

(1) warping is free in both x1 = 0 and x1 = l;

(2) warping is prevented in x1 = 0 and free in x1 = l;

(3) warping is prevented in both x1 = 0 and x1 = l.

For each case, we study how the buckling is affected when the warping is prevented by the stiffener. Then,
in addition to the continuity conditions, the warping constraint at x1 = m must be taken into account.
In the following, we present the critical loads and the corresponding buckling modes. For the sake of
simplicity, overbars and subscript c are omitted.

Figure 1 shows the flexural-torsional critical mode associated with boundary condition (1) and with
the stiffener located at m = 400 mm. The first plot in the figure shows the flexural component of the
buckling mode, while the second graph illustrates the torsional component. It is apparent, as it was to
be expected, that the flexural mode is exactly the same as in Euler buckling (a half sine wave), while the
torsional component has a stationary point by correspondence with the stiffener (where α = ϕ′1 = 0).

u2 λ= 197600 N ϕ1

Figure 1. Beam warping-free at the ends, with stiffener at m = 400 mm.

u2 λ= 92699 N ϕ1

Figure 2. Beam warping-free at the ends, without stiffener.
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This mode is compared with that for the beam without the stiffener, shown in Figure 2, where the
corresponding critical load is also indicated. The difference, as was to be expected, is in the torsional
component which in absence of the stiffener remains a half sine wave. Moreover, the critical load is
significantly lower than the previous one.

In Figure 3 the flexural-torsional critical mode associated with case (2) and with the stiffener located
at m = 1600 mm is shown. The first plot shows the flexural component of the buckling mode, while the
second graph illustrates the torsional component. It is apparent, as expected, that the flexural component
corresponds to Euler buckling (a half sine wave) while the torsional component has a stationary point
by correspondence with the stiffener (where α = ϕ′1 = 0). Notice also that the restrained warping at
one end (for instance, x1 = 0 in this case) is represented by a horizontal tangent in the graph for the
torsional component, ϕ1, of the buckling mode. The critical load is significantly higher than that shown
in Figure 1, confirming that the system is globally stiffer.

The two components of this buckled shape are compared with the corresponding ones for the beam
without a stiffener shown in Figure 4. Here it emerges that the two components of the mixed buckling
mode are still a half-sine wave for the flexural part and a curve with initial zero slope, due to the restrained
warping at the origin, for the torsional part. The critical load is significantly lower than the previous one.

In Figure 5 the flexural-torsional critical mode associated with case (3) and with the stiffener located
at m = 400 mm is shown. The first plot shows the flexural component of the buckling mode, and the
second graph illustrates the torsional component. Once again, as was to be expected, the flexural mode
corresponds to Euler buckling (a half sine wave) since it remains unaltered by the constraints on the
torsional rotation and on the warping. The torsional component has a stationary point by correspondence
with the stiffener (where α = ϕ′1 = 0) and the restrained warping at both ends is represented by horizontal
tangents in the graph for the torsional component ϕ1 of the buckling mode. The critical load attains the
maximum value among those seen so far.

u2 λ= 277796 N ϕ1

Figure 3. Beam with warping restrained at one end and stiffener at m = 1600 mm.

u2 λ= 145737 N ϕ1

Figure 4. Beam with warping restrained at one end, without stiffener.
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u2 λ= 322416 N ϕ1

Figure 5. Beam with warping restrained at both ends and stiffener at m = 400 mm.

u2 λ= 228256 N ϕ1

Figure 6. Beam with warping restrained at both ends, without stiffener.

The components of the mixed buckling are compared with the corresponding ones for the beam without
a stiffener, shown in Figure 6, where it turns out that the mixed buckling in the absence of the stiffener
is composed of two modes symmetric with respect to the midspan. The transverse displacement is a half
sine wave, while the horizontal tangents at the ends of the torsional rotation point out the presence of the
warping constraints.

Figure 7 shows the values of the critical load versus the position of the stiffener. The horizontal line
shows the value of the Euler critical load, which is not affected by the warping restrictions at the beam
ends and at the stiffener, when flexural buckling occurs around the axis of smaller inertia (x2 for the cross-
section considered). The other curves show the values of the critical load for flexural-torsional buckling.

We note that when a stiffener is located at m = 1
2 and the boundary conditions are those of case

(1), the Euler buckling load around the axis of smaller inertia is higher than the flexural-torsional one.
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Figure 7. Numerical results.
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This happens also when both ends are free to warp and no stiffener is present, as shown in [Ruta et al.
2008]. In fact, due to the symmetry of the torsional rotation (see Figure 2) the warping vanishes at
midspan. By inserting a stiffener in a different section the flexural-torsional critical load in general
varies nonmonotonically.

With reference to Figure 7, when both ends are free to warp, as in case (1), for m ∈ [0, 700) or
m ∈ (1300, 2000] the flexural-torsional critical load is higher than the Euler one while for m ∈ (700, 1300)
the opposite happens (all lengths are here expressed in millimeters). The maximum value of the critical
load is attained at m = 400 or m = 1600, since the dependence of the flexural-torsional critical load on
the location of the stiffener is in this case symmetric with respect to the midspan. On the other hand, as
it was already pointed out, the symmetry of both the components of the mixed buckling mode fails, see
Figure 1.

When warping is prevented at both ends, case (3), the flexural-torsional critical load is higher than
the Euler buckling load in the plane of smaller inertia, irrespective of the stiffener location. This is of
importance in applications, since in practice design against buckling could be restricted to Euler buckling
in the plane of smaller inertia simply by preventing warping at the ends and inserting an intermediate
stiffener at will. The maximum effect of the increase of the critical load, however, is attained when the
stiffener is located at m = 600 or m = 1400. Indeed, here also the dependence of the flexural-torsional
critical load on the location of the stiffener is symmetric with respect to the midspan.

If warping is restrained at one end, described by case (2), the curve representing the effect of the
intermediate stiffener coincides at m = 0 with the curve representing case (1). By increasing m, the
flexural-torsional critical load increases in a nonmonotonic way, and the curve tends to the one represent-
ing case (3). In particular, the two curves coincide at m = 2000. In this case, as well as in the previous
one, the entire curve lies above the straight horizontal line representing the Euler buckling load in the
plane of smaller inertia. This is again of some importance in applications.

It must be stressed that the curves in the preceding figures change dramatically if the beam length is
changed, fixing all the other parameters. In particular, as shown in [Ruta et al. 2008], the flexural-torsional
critical load for case (1) coincides with the Euler one in the plane of smaller inertia when l = 2731 mm.
It may be shown that when l > 2731 mm the curves describing the dependence of the flexural-torsional
critical load on the stiffener location always lie above the straight horizontal line representing the Euler
buckling load in the plane of smaller inertia, irrespective of the stiffener location.

3. Bifurcations in a two-bar frame

We now consider a two-bar frame, called a Roorda frame in the literature on stability of structures [Bažant
and Cedolin 1991] and exhibiting interesting interactions between flexural and torsional modes occurring
out of the frame plane. Results for the buckling of a frame made of I-beams are in [Pignataro et al. 2006]:
two buckling modes are possible, one in-plane flexural (Euler-like) and another flexural-torsional, where
one of the bars undergoes torsion while the other bends out of the plane. These results are of limited
applicability, since the beam model in [Pignataro et al. 2006] cannot describe thin-walled elements with
generic cross-sections as pointed out in Section 1.

It is thus interesting to study the buckling of a Roorda frame composed of thin-walled beams with
nonsymmetric cross-sections, which are widely used in many structures (a standard example being the
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L1

L2

I
II

Figure 8. Two-bar frame.

so-called rack structures). In the literature there are numerical results obtained via refined finite element
codes and experimental studies on the subject. Some of these, regarding a frame shaped spatial beam, are
in [Kim and Kim 2000; Kim et al. 2001; Gu and Chan 2005; Teh 2005]. Still, to the authors’ knowledge,
an analytical study derived from a geometrically exact model is not available and the results obtained
here could be of importance in applications.

Despite the fact that the model in [Ruta et al. 2006; 2008] considers generic cross-sections, we limit
our study to a frame with beams exhibiting one axis of symmetry. This does not limit the generality
of the results for two reasons: on one hand, the coupling between flexural and torsional buckling, so
important in these structures, is clearly put into evidence; on the other hand, beams with one axis of
symmetry such as channels are of widespread use.

Consider the frame in Figure 8: the bars AB (the beam) and BC (the column) are hinged to the ground
in A and C and clamped at the common joint B. The frame is loaded at B by a dead load of magnitude λ
in order to apply standard techniques [Koiter 1945; Budiansky 1974]. A global basis and local abscissas
are indicated in the figure; the subscripts I and II distinguish quantities referring to the beam and the
column, respectively. We take into account the possibility of various warping constraints at the beam
ends A, B, and C.

The fundamental equilibrium path is

uf
I = 0, Rf

I = I, αf
I = 0,

ef
I = 0, Ef

I = 0, ηf
I = 0,

sf
I = 0, Sf

I = 0, τ f
I = 0, µf

I = 0,

uf
II =−

λ
a

x1 i1, Rf
II = I, αf

II = 0,

ef
II =−

λ
a

i1, Ef
II = 0, ηf

II = 0,

sf
II =−λi1, Sf

II = 0, τ f
II = 0, µf

II = 0.

(3-1)
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The bifurcated path is written in terms of the differences

ub
I = u, Rb

I = R+ I, αb
I = α,

eb
I = e, Eb

I = E, ηb
I = η,

sb
I = s, Sb

I = S, τ b
I = τ, µb

I = µ,

ub
II = u− λ

a
x1 i1, Rb

II = R+ I, αb
II = α,

eb
II = e− λ

a
i1, Eb

II = E, ηb
II = η,

sb
II = s− λi1, Sb

II = S, τ b
II = τ, µb

II = µ.

(3-2)

Operating as in Section 2, some steps provide the first-order equations for the buckling in terms of the
displacement components

ū′′1 = 0, b3ū′′′′2 = 0, b2ū′′′′3 = 0, hξ 2ϕ̄′′′′1 − kϕ̄′′1 = 0 on AB,

ū′′1 = 0, b3ū′′′′2 + λ
a−λ

a
(ū′′2 − c3ϕ̄

′′

1 )= 0, b2ū′′′′3 + λ
a−λ

a
(ū′′3 + c2ϕ̄

′′

1 )= 0,

hξ 2ϕ̄′′′′1 +
dλ−ak

a
ϕ̄′′1 + λ

a
a−λ

(c2ū′′3 − c3ū′′2)= 0

 on BC.
(3-3)

Equations (3-3) plus boundary conditions constitute an eigenvalue problem providing the critical
values λc and the mode shapes ū2c, ū3c, and ϕ̄1c. For simplicity of notation, the overbars indicating
first-order quantities have been dropped in the following, as has subscript c. The effect of different
warping constraints at the ends of the beams composing the frame on the critical loads has been studied
numerically by means of the COMSOL code.

3A. Geometrical and material data. Two benchmark cases have been considered, characterized by two
different cross sections exhibiting two and one axes of symmetry, respectively: a wide flange HEA240
and a channel (U-shape) with outer dimensions 100 mm (web) and 60 mm (flanges) and a uniform thick-
ness of 3 mm. By assuming the local coordinate systems as in Figure 9, the geometric and inertial
quantities of the cross-section are obtained by standard calculations and well-known tables [Timoshenko
and Gere 1961; Pignataro et al. 1991]:

• U100:

a = 642 mm2 E, b3 = 1054726 mm4 E, hξ 2
= 446086956 mm6 E, k = 1875 mm4G,

d = 2370581 mm4 E, b2 = 236653 mm4 E, c3 =−41 mm, c2 = 0 mm;

• HEA240:

a = 7.68× 103 mm2 E, b2 = 2.769× 107 mm4 E, hξ 2
= 3.65× 1011 mm6 E,

k = 3.1× 105 mm4G, d = 1.05× 108 mm4 E, b3 = 7.763× 107 mm4 E, c3 = c2 = 0 mm.

We assume the Young’s modulus is E = 206 GPa and the shear modulus G = 79 GPa as in Section 2.
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Figure 9. Three-dimensional view.

3B. Boundary conditions. In [Pignataro et al. 2006] a two-bar frame such as that in Figure 8 was an-
alyzed. At the ends A and C the rotations ϕ2 and ϕ3 were assumed to be free while it was supposed
ϕ1 = 0. In addition, the joint B was allowed to move out of the plane of the frame: this resulted in a
very low critical load. This case, however, is hardly of any technical interest due to the fact that in 3D
frames actual hinges are cylindrical and the out-of-plane movement of nodes like B is controlled by the
presence of braces.

In this section, therefore, we consider the case in which node B is prevented from moving along the
unit vector k and the hinges in A and C allow the sole rotation along k. This results in the following
boundary conditions:

u = 0, ϕ1 = 0, ϕ2 = 0, M3 = 0, in A and C;

uI = uII, RI = RII, SI = SII, uI · k = 0, (I − k⊗ k)(sI− sII)= 0, in B.

In order to investigate the influence of warping on buckling, some additional boundary conditions on
the warping are assumed, as follows:

case node A node B node C

a free free free
b free prevented free
c prevented free prevented
d prevented prevented prevented

Here “prevented” stands for warping prevented and “free” stands for no constraint on warping which
implies vanishing bimoment at the indicated beam ends. Details of the boundary conditions at node B
are shown in Figure 10.

This results in four cases:

Case a: µ= 0 in A, B and C; Case b: µ= 0 in A and C, and α = 0 in B;

Case c: µ= 0 in B, and α = 0 in A and C; Case d: α = 0 in A, B and C.
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Figure 10. Detail of frame joint B, warping free (left) and warping restrained (right).

3C. Numerical examples. In this section we consider a set of frames in which the length of the beam
(say L1) is fixed to 2000 mm, while the length of the column (say L2) has been varied in the range
3000 mm–8000 mm.

Results have been obtained for each of the boundary cases a–d.

3C.1. Modes. Figures 11 and 12 refer to the frame with HEA240 beams and show the buckling modes
and the corresponding critical value of the load multiplier. It is apparent that the considered frame may
buckle in three different ways:

Mode 1 is purely flexural (Euler-like) in the plane of the frame and involves both beam and column
(see Figure 11, mode u2);

Mode 2 is purely torsional and involves the sole column (see Figure 11, mode ϕ1) which buckles in
the shape of a half-sine wave while the beam remains straight;

a b

Figure 11. HEA240: In-plane flexural mode and torsional mode.

a b

Figure 12. HEA240: Out-of-plane flexural mode.
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a b

Figure 13. U100 flexural-torsional mode.

a b

Figure 14. U100 flexural mode out of plane.

Mode 3 is such that the column bends out of the plane of the frame while the beam twists, acting only
as a flexural constraint in B (see Figure 12). On the other hand, the torsional rotation is different from
zero only in the beam where it has the linear behavior characteristic of the Saint-Venant uniform
torsion.

This result, apart from the different constraint on the out-of-plane displacement of the joint B, corresponds
to that in [Pignataro et al. 2006]: when the centroid coincides with the shear center of the cross-sections
no coupling exists between the buckling modes which are either flexural or torsional and may be different
for the two bars simply for geometrical reasons (in section B a torsional rotation of the beam is a bending
rotation of the column).

When the frame bars have cross-sections with one symmetry axis only the frame may buckle in two
ways only as shown in Figures 13 and 14:

Mode 4 is such that the beam is subjected only to flexure in the plane of the frame, while the column
undergoes flexure and torsion (see Figure 13). Note that the torsional mode has zero initial slope
due to the warping constraint in C;

the other mode (see Figure 14) corresponds to the buckling mode 3 before except for the initial zero
slope of the torsional mode due to the warping constraint.

3C.2. Critical loads. Figures 15 and 16 show the values of the critical load (expressed in N ) versus the
length L2 of the column for each of the warping constraints in cases a–d for the HEA240 and U100
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Figure 15. Critical loads versus column length for HEA240 bars.
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Figure 16. Critical loads versus column length for U100 bars.

cross-sections, respectively. The critical loads corresponding to modes 1 and 3 above are drawn in light
blue and dark blue, respectively. The critical loads corresponding to modes 2 and 4 are drawn in red.

It is apparent that the flexural critical loads are not influenced by the constraints on warping as was to
be expected. It also appears that the torsional mode has a significant effect on the critical load when the
column is short.

In addition, Figure 15 shows that for the boundary conditions of case a λ2 < λ3 when L2< 6000 mm,
that is, the purely torsional critical load is attained before the one corresponding to the buckling mode 3.
Moreover, λ3 <λ1 for all L2; this means that the critical load of the out-of-plane buckling mode is always
lower than the one associated with the purely in-plane flexural, Euler-like, buckling mode. This sounds
adequate, because in mode 3 the column bends around the lower inertia axis, while in the purely flexural
mode 1 both the beam and the column bend around the axis of higher inertia which is twice the inertia
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around the other axis. All the results show that when warping constraints are introduced at the ends of
the bars, the flexural-torsional critical loads show a remarkable increase due to a globally stiffer system.

The analysis carried out after the introduction of the additional warping constraints labeled as cases
b and c gives more or less the same results and one finds that λ3 < λ2 < λ1. Finally, for the warping
constraints of case d the critical load corresponding to the purely torsional mode attains the highest values
and λ3 < λ2 < λ1; only when L2> 5200 mm, that is, for very slender columns, the effect of the warping
constraint is less significant and the out-of-plane mode 3 prevails on the purely torsional mode 2.

The dependence of the critical loads on the length L2 of the column when the frame is composed of
U100 bars is shown in Figure 16. It is first to be remarked that in this case only two buckling modes
(modes 3 and 4) are possible, thus only two buckling loads henceforth denoted by λ3 and λ4 shall be
calculated for the warping constraint cases a–d. From Figure 16 we deduce that we face the following
different situations:

• L2 < 4000 mm⇒ λ4 < λ3 for cases a, b, and c. This is reasonable, since mode 4 is dominated
by the very modest torsional stiffness of the channel. Moreover, the additional constraints for the
warping do not seem to add enough stiffness to the system;

• 4000 mm<L2< 4800 mm⇒ λ4<λ3 for case a and λ3<λ4 for cases b and c. That is, if the column
becomes appreciably slender the mixed flexural-torsional mode for the column is attained at a lower
critical load than the corresponding out-of-plane flexural mode when the warping constraints are
not present. Even a modest set of additional warping constraints makes the opposite hold. This is
reasonable since for slender bars the Euler flexural buckling load sensibly decreases, while even
a modest increase in the torsional stiffness can make the mixed flexural-torsional buckling load
increase over the purely flexural one;

• L2> 4800 mm⇒ λ3 < λ4 for cases a, b, and c. This sounds again adequate since for very slender
columns the Euler buckling load is so low that it is attained before any possible flexural-torsional
buckling load even when modest additional warping constraints are introduced;

• In case d, that is when the stiffest system with respect to torsion and warping is considered, λ4 > λ3

∀L2. That is, when the frame has the highest possible stiffness against torsion, the Euler-like buck-
ling load is the lowest critical load and hence the most important in applications, irrespective of the
length of the column.

It has to be remarked that these results may be of importance in applications since design against
Euler buckling is a well-known subject in engineers’ education while design against flexural-torsional
buckling of thin-walled structures is still a debated topic.

4. Final remarks

The direct one-dimensional beam model suitable for the description of the flexural-torsional buckling
introduced in [Ruta et al. 2006] has been used to study two cases of interest in applications, namely
a compressed beam with an intermediate stiffener and the Roorda frame. The direct formulation has
made it possible to use standard static perturbation techniques of well-known reliability and to limit the
use of numerical codes to the parametric solutions of the field equations for the buckling. Some very
interesting results have been found which may have some importance in applications: the introduction
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of an intermediate stiffener globally increases the stiffness of the beam against warping and torsion and
makes the Euler buckling mode the most meaningful one. In the Roorda frame, the warping constraints
and the length of the column play a very important role and the first critical load may sometimes not be
the one corresponding to the Euler-like buckling mode. This fact of course is of interest in applications
because of the well-known low torsion rigidity of thin-walled open sections. These results, to the authors’
knowledge, are new and subject to further improvement. As a matter of fact, it appears that a further
step in this study is the analysis of more complex 3D frames.
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