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NONLINEAR BUCKLING FORMULATIONS AND IMPERFECTION MODELS
FOR SHEAR DEFORMABLE PLATES BY THE BOUNDARY ELEMENT METHOD

JUDHA PURBOLAKSONO AND M. H. (FERRI) ALIABADI

This paper presents a nonlinear buckling analysis of shear deformable plates. Two models of imper-
fections are introduced: small uniform transverse loads and distributed transverse loads, according to
the number of half-waves indicated by the eigenvectors from linear elastic buckling analysis. A simple
numerical algorithm is presented to analyze the problems. Numerical examples with different geometries,
loading and boundary conditions are presented to demonstrate the accuracy of the formulation.

1. Introduction

Plate buckling behavior has been investigated analytically and experimentally since the first experimental
observation, almost 150 years ago; see [Walker 1984] for a review. Analytical solutions of linear buckling
of plates based on classical plate theory can be found in [Brush and Almroth 1975; Timoshenko and Gere
1961]. Numerical methods have also been used [Bao et al. 1997; Liu 2001; Manolis et al. 1986; Purbo-
laksono and Aliabadi 2005b]. Liu [1987] and Syngellakis [1998] applied the boundary element method
(BEM) to the stability analysis of thin plates. In [Purbolaksono and Aliabadi 2005a] we developed a
boundary element method for analyzing linear buckling problems of shear deformable plates.

The boundary element method has also been applied to the analysis of nonlinear plate problems. Early
works on geometrically nonlinear shear deformable plates by boundary element method include [Lei et al.
1990; He and Qin 1993], while Marczak and de Barcellos [1998] reported on a nonlinear stability analysis
in shear deformable plates by the BEM. Other works contributing to BEM analysis of nonlinear buckling
of thin plates have been made [Kamiya et al. 1984; Qin and Huang 1990; Tanaka et al. 1999].

Here we perform a nonlinear buckling analysis of shear deformable Mindlin plates. Two models of
imperfections are introduced, one involving small uniform transverse loads and one involving distributed
transverse loads corresponding to the number of half-waves indicated by the eigenvectors obtained from
linear elastic buckling analysis. A simple numerical algorithm is presented to analyze the problems.
Numerical examples with different geometries, loading and boundary conditions are used to demonstrate
the accuracy of the formulations.

2. Governing equations

Figure 1 shows a geometrically nonlinear Mindlin plate. With the notation there, and with Greek indices
varying from 1 to 2 and Roman indices from 1 to 3, the plate’s governing equations can be written as

Mαβ,β + Qα = 0, Qα,α + (Nαβw3,β),α + q = 0 Nαβ,β = 0, (1)
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Figure 1. Stress resultant equilibrium in geometrically nonlinear plate element.

where uα and w3 are displacements in the xα (in-plane) and x3 (out-of-plane) directions; wα are rotations
in the xα directions; δ is the Kronecker delta function; Qα = C(wα +w3,α) and

Mαβ =
1−ν

2
D
(
wα,β +wβ,α +

2ν
1−ν

wγ,γ δαβ

)
+

ν
(1−ν2)λ2 qδαβ

are the stress resultants in plate bending problems, while Nαβ = N lin
αβ + N nonlin

αβ , with

N lin
αβ =

1−ν
2

B
(

uα,β + uβ,α +
2ν

1−ν
uγ,γ δαβ

)
, N nonlin

αβ =
1−ν

2
B
(
w3,βw3,α +

2ν
1−ν

w3,γw3,γ δαβ

)
,

are the stress resultants for two-dimensional plane stress elasticity. The parameters are B = Eh/(1− ν2),
the membrane stiffness; D = Eh3/(12(1− ν2)), the bending stiffness of the plate; q , the transverse load;
C = D(1− ν)λ2/2, the shear stiffness; E , the modulus of elasticity; λ=

√
10/h, the shear factor; h, the

thickness of the plate; ν, the Poisson’s ratio.
Extensive discussion on bending solutions of shear deformable plate theories can be found in [Wang

et al. 2001].

3. Boundary integral equations

The boundary integral equation for the nonlinear buckling analysis of a plate bending can be written as

Ci jwi (x ′)+
∫
0

P∗i j (x
′, x)w j (x)d0 =

∫
0

W ∗i j (x
′, x)plin

j (x)d0+
∫
�

W ∗i j (x
′, X)q(X)d�(X)

+

∫
�

W ∗i3(x
′, X)(Nαβw3,χ ),α(X)d�(X). (2)

The kernel solutions Pi j and Wi j can be found in [Aliabadi 2002]. The boundary integral equation for
two-dimensional plane stress is expressed as

Cθα(x ′)uα(x ′)+
∫
0

T ∗θα(x
′, x)u(x)d0=

∫
0

U∗θα(x
′, x)t lin(x)d0+

∫
�

U∗θα(x
′, X)N nonlin

αγ,γ (X)d�(X). (3)
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Using the divergence theorem, the domain integral on the right-hand side of (3) can be expressed as

Cθα(x ′)uα(x ′)+
∫
0

T ∗θα(x
′, x)u(x)d0 =

∫
0

U∗θα(x
′, x)t lin(x)d0+ nγ (x)

∫
0

U∗θα(x
′, x)N nonlin

αγ (x)d0

−

∫
�

U∗θα,γ (x
′, X)N nonlin

αγ (X)d�(X). (4)

In a similar way, (4) can be simplified and written as

Cθα(x ′)uα(x ′)+
∫
0

T ∗θα(x
′, x)u(x)d0 =

∫
0

U∗θα(x
′, x)t (x)d0− nγ (x)

∫
0

U∗θα(x
′, x)N nonlin

αγ (x)d0

+

∫
�

U∗θα(x
′, X)N nonlin

αγ,γ (X)d�(X), (5)

where tα = t lin
α + tnonlin

α and tnonlin
α = N nonlin

αγ nγ . The fundamental solutions Uθα and Tθα are can be found
in [Aliabadi 2002].

To calculate the nonlinear terms, two additional integral equations of the deflection w3 and the in-plane
stress resultants N lin

αβ at domain points are required:

wi (X ′)+
∫
0

P∗i j (X
′, x)w j (x)d0 =

∫
0

W ∗i j (X
′, x)plin

j (x)d0+
∫
�

W ∗i j (X
′, X)q(X)d�(X)

+

∫
�

W ∗i3(X
′, X)(Nαβw3,χ ),α(X)d�(X), (6)

N lin
αβ(X

′)=

∫
0

U∗1αβ(X
′, x)t1(x)d0−

∫
0

T ∗1αβ(X
′, x)u1(x)d0

− nγ (x)
∫
0

U∗1αβ(X
′, x)N nonlin

αγ (x)d0+
∫
�

U∗1αβ(X
′, X)N nonlin

αγ,γ (X)d�(X), (7)

where the fundamental solutions U∗1αβ and T ∗1αβ can be found in [Aliabadi 2002].
The domain integrals appearing in (2), (5), (6), and (7) are evaluated by using the dual reciprocity tech-

nique as described in [Wen et al. 2000]. The particular solutions for plate bending and two-dimensional
plane stress can also be found in the same reference.

4. Evaluation of derivative terms

The derivatives of deflection w3,γ on the boundary and in the domain can be approximated using a radial
basis function f (r)=

√
c2+ r2, where r =

√
(x1− xm

1 )
2
+ (x2− xm

2 )
2:

w3(x1+ x2)=

M+N∑
m=1

f (r)m9m, (8)

where N and M are respectively the number of selected points x1 and x2 on the boundary and in the
domain. The 9m are coefficients which are determined by values at the selected points as follows:

9 = F−1
{w3}. (9)



1732 JUDHA PURBOLAKSONO AND M. H. (FERRI) ALIABADI

The derivatives of the deflection values may be expressed by

w3,γ (x1+ x2)= f (r),γ F−1
{w3}. (10)

The nonlinear terms N nonlin
αγ,γ which appear in (5) and (7) can be evaluated in a similar way as well. Using

this approach, there is no need to evaluate the derivatives of the transverse displacement w3,γ through the
integral equations. The integral equations usually have complicated mathematical terms and may have
singularities of higher order.

A relaxation procedure is used to improve the numerical results. As the nonlinear terms are calculated
in each step (k) of increments, the deflection w3 can be modified as

wk+1
3 =

wk+1
3 +wk

3

2
. (11)

Note that the relaxation procedure shown in (11) works well for moderately low load levels. If higher
load levels are applied, the use of (11) is not recommended.

5. Imperfection models

The initial imperfections of the transverse loads are introduced to trigger buckling modes. Figure 2 shows
the two imperfection models used:

(i) uniform distribution of the transverse loads q0 in the domain �;

(ii) distributed transverse loads q0 in the domain �, corresponding to a number of half-waves indicated
by the eigenvectors from the linear elastic buckling analysis [Purbolaksono and Aliabadi 2005a].

The first model only allows few nonlinear buckling problems to be accurately analyzed such as the
geometries of square and circular models. The second model is generally recommended, since the im-
perfections can be modeled based on the eigenvectors that are related to the buckling modes. Hence, the
second model may represent the initial imperfections that should be distributed in the domain.

A A

B

B

Applied compression load Applied compression load

according to number of half-waves

Figure 2. Initial imperfection models.
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The following equations are used to define the magnitudes of the load increment 1σ and transverse
loads q0 throughout this work. The magnitudes are empirically maintained to be small enough. The
relation between the load increment 1σ and modulus of elasticity may be proposed as

1σ

E
≈ X, (12)

where X is in the range of 10−7 to 5× 10−7. Next, the relation between the load increment 1σ and
transverse loads q0 is proposed as

q0 =
1σh

5b
, (13)

where b is the width or diameter of plates.
The transverse loads q0 are used to introduce the initial imperfection loads in the plates according to

the models shown in Figure 2.

6. Numerical algorithms

A simple numerical algorithm, requiring no iterations, is used to analyze nonlinear buckling problems.
It can be summarized as follows:

Step 1: After introducing initial imperfection by uniform distribution q0 or distributed transverse loads
q0 = q1

0 (see Figure 2) and a load increment 1σ , let the first step k = 1 and the final step kfinal

and initial values of N lin
αβ = 0 and w,α = 0.

Step 2: Compute the coefficient matrices related to fundamental solutions. They can be stored in the
core and used in each increment without any change.

Step 3: If k 6= 1 then qk+1
0 = qk

0 +q1
0 . Solve the linear system equation of the boundary integral equations

to obtain boundary values. Then calculate the in-plane stress resultants N lin
αβ and derivative of

deflection w,α in the domain.

Step 4: Apply the relaxation procedure given in (11). Then calculate the nonlinear terms (N nonlin
αγ,γ )

(k) and
[(Nαβw3,β),α]

(k) using approximation function as described in (6)–(8). The nonlinear terms will
be used for the evaluation in the next step k+ 1.

Step 5: Calculate the nonlinear membrane traction tnonlin
α on the boundary.

Step 6: Print results.

Step 7: If k = kfinal, terminate; otherwise let step k = k+ 1 and go to Step 3.

By introducing cumulative transverse loads qk
0 at each step k, the equilibrium of (4) could be main-

tained. The transverse loads q0 as the imperfection loads however might provide potential biasing of the
results if they are arbitrarily defined.

7. Numerical examples

Several numerical examples with different geometries, loadings, and boundary conditions are presented to
demonstrate the ability of the proposed method. Equations (12) and (13) are used to define the magnitudes
of the load increment 1σ and transverse loads q0.
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Figure 3. Nonlinear buckling model.

The nonlinear buckling model is shown in Figure 3. In the following examples, the normalized critical
compression stress Knl is defined by

Knl =
b2h
π2 D

σ, (14)

where σ is compression stress.

7.1. Convergence study of simply supported square plate subjected to uniaxial compression loads. In
this example, a square plate subjected to compression loads at its ends as shown in Figure 3 is analyzed.
Five different distributions of domain points are used for the dual reciprocity calculation. The initial
imperfection is introduced by uniform transverse load q0 = 0.005 units and in the case of 1σ = 4 units.
A convergence study of the simply supported square plate is performed and the normalized compression
stresses Knl and the normalized deflection Z (=w3/h) are plotted in Figure 4. The results given in [Levy
1942] are also plotted in Figure 4. It can be seen that the convergence of the results can be achieved with
49 domain points. The normalized compression stress is in agreement with the critical value Knl ≈ 4
of the analytical result [Timoshenko and Gere 1961]. The BEM results are also in good agreement with
Levy’s solution [Levy 1942].

0 0.2 0.4 0.6 0.8 1
Z3

3.5

4

4.5

5

5.5

Knl

Figure 4. Normalized compression stresses Knl and deflection Z for different numbers
of domain points: from top to bottom at rightmost point, 5× 5, 6× 6, 7× 7, and 8× 8
(dashed curve). The black dots are values from [Levy 1942]. The thin horizontal line
marks the critical value [Timoshenko and Gere 1961].
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1σ = 4

0 0.2 0.4 0.6 0.8
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q0 = 0.005

Figure 5. Normalized compression stresses Knl and deflection Z for various transverse
loads (top diagram; curves from top to bottom, q0 = 0.0025, 0.005, 0.01) and for various
increments of the compression load (bottom diagram: curves from from top to bottom,
1σ = 16, 8, 4). Black dots and horizontal line as in Figure 4.

7.2. Simply supported square plate subjected to uniaxial compression loads with different initial imper-
fections and increments of load. In this example, a simply supported square plate subjected to uniaxial
compression load is analyzed with different imperfections and increments of the load. BEM meshing with
20 quadratic boundary elements and 49 domain points are used. The normalized compression stresses
Knl and deflection Z for different initial imperfections and in the case of 1σ = 4 unit of compression
loads are plotted in Figure 5, top.

The normalized compression stresses Knl and deflection Z for different increment of compression
loads and in the case of q0 = 0.005 units of uniform transverse loads are plotted in Figure 5, bottom.
It can be seen that the bigger value of initial imperfection provides a lower critical buckling load. The
same graph also shows that the bigger value of compression load increment provides a bigger critical
buckling load.

7.3. Circular and square plates subjected to a uniform normal compression loads. We performed the
nonlinear buckling analysis of circular and square plates subjected to uniform normal compression loads
(Figure 6). Two boundary conditions, simply supported and clamped, are applied. The BEM meshes
used had 16 quadratic boundary elements and 33 domain points for the circular plate, and 20 quadratic



1736 JUDHA PURBOLAKSONO AND M. H. (FERRI) ALIABADI

Figure 6. Circular and square plates subjected to uniform normal compression loads.

boundary elements and 25 domain points for the square plate. The compression load increments were
chosen as 1σ = 4 units and the initial imperfection as q0 = 0.005 units. Figure 7 shows the normalized
compression stresses Knl and the normalized deflection Z together the with critical value of each model
for linear elastic buckling analysis [Timoshenko and Gere 1961]. The results are seen to be agreement
with the critical values.

7.4. Analysis of two imperfection models on simply supported rectangular plates. In this example,
two imperfection models, namely uniform distribution and distributed transverse loads, are evaluated. A
simply supported rectangular plate as shown in Figure 3 is used to investigate the proposed imperfection
models. The origin is at the center of the plate. In the case of uniform distribution, the increments of
compression loads as 1σ = 4 units and initial imperfection as q0 = 0.005 units are applied.

0 0.5 1 1.5 2
Z1

2

3

4

5

6

Knl

Figure 7. Normalized stresses Knl of circular and square plates subjected to uniform
normal compression loads. Curves from top to bottom correspond to clamped circle,
clamped square, simply supported square, and simply supported circle configuration.
The horizontal lines show the critical values in the same order.
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Figure 8. Half-wave modes for rectangular plates with different aspect ratio a/b due to
uniform imperfections.

The normalized deflections Z for the points along x-axis due to uniform imperfections are plotted in
Figure 8. It can be seen that the plates will buckle in odd number of half-waves for different aspect ratios
a/b.

For the distributed transverse load model, imperfections are introduced according to the buckling
modes defined by the eigenvectors from linear elastic buckling analysis for the corresponding geometry.
For the rectangular plate, the distribution of imperfections is shown in Figure 9.

The estimated normalized compression stresses Knl for different aspect ratio of the plates are plotted
in Figure 10. It can be seen that the uniform imperfection of transverse loads provides inaccurate results
with the increasing of aspect ratios. Moreover, for aspect ratios a/b between 1.4 and 2.5, the buckling
deformations of the plate do not form two half-wave modes as expected. The results obtained with the
distributed loads according to the buckling modes are in good agreements with the published results.

7.5. Nonlinear buckling analysis of rectangular plates with different boundary conditions. We next
turn to a nonlinear buckling analysis of rectangular plates as shown in Figure 3 subjected to a uniform

Figure 9. Simplified imperfections for rectangular plates.
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Figure 10. The normalized compression stresses Knl for different aspect ratio of the
simply supported rectangular plates.

normal compression loads. Three boundary conditions are applied: all sides clamped (cccc), two opposite
loaded side clamped and two others simply supported (cscs), and three sides simply supported and one
unloaded side free (sssf). The deformations for rectangular plates with the these boundary conditions are
shown in Figure 11.

The normalized compression stresses Knl and the normalized deflection Z together with the critical
value of each the three models above are plotted in Figure 12.

Figure 11. Nonlinear buckling deformations for rectangular plates with different bound-
ary conditions. See text immediately above for abbreviations.
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Figure 12. Normalized compression stresses Knl of rectangular plates, for different val-
ues of a/b (given next to the curves to which they apply). Top left: all sides clamped.
Top right: two opposite loaded sides clamped and two others simply supported. Bottom:
three sides simply supported and one unloaded side free. The critical values (horizontal
lines) are taken from [Purbolaksono and Aliabadi 2005a].

8. Conclusions

The BEM results obtained by using imperfections of the distributed transverse loads corresponding to the
expected buckling modes were in good agreement with the published results and the theoretical critical
buckling strengths. The proposed equations for defining the magnitudes of the load increment 1σ and
transverse loads q0 reasonably also demonstrated the accuracy of the results for the analyses.
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