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A NEW ANALYTIC SYMPLECTIC ELASTICITY APPROACH FOR BEAMS
RESTING ON PASTERNAK ELASTIC FOUNDATIONS

C. F. LÜ, C. W. LIM AND W. A. YAO

Analytic solutions describing the stresses and displacements of beams on a Pasternak elastic foundation
are presented using a symplectic method based on classical two-dimensional elasticity theory. Hamil-
ton’s principle with a Legendre transformation is employed to derive the Hamiltonian dual equation, and
separation of variables reduces the dual equation to an eigenequation that differs from the conventional
eigenvalue problems involved in vibration and buckling analysis. Using adjoint symplectic orthonormal-
ity, a group of eigensolutions of zero eigenvalue, corresponding to the Saint-Venant problem, are derived.
This approach differs from the traditional semi-inverse analysis, which requires stress or deformation
trial functions in the Lagrangian system. The final solutions, which account for the effects of an elastic
foundation and applied lateral loads, are approximated by an eigenfunction expansion. Comparisons
with existing numerical solutions are conducted to validate the efficiency of this new approach.

1. Introduction

Isotropic beams and plates on elastic foundations are widely used to model civil engineering structures,
including building footings designed in the form of plates or planar framed structures, bases of artificial
navigable waterways, the pavement of highways and runways, and rails, to name a few. Much of the
existing literature on structure-foundation systems is based on classical thin beam/plate theory [Leissa
1973; Franciosi and Masi 1993; De Rosa and Maurizi 1998], which relies on the assumption that a
foundation’s reaction forces act on the midplane of the modeled beam/plate. This assumption, however,
may be unrealistic for thicker structures in which shear deformations may be significant. In addition,
the effects of the foundation on deformation and stress fields in the vicinity of the two lateral surfaces
become important for larger beam and plate aspect ratios.

A variety of first-order shear deformation theories [Timoshenko 1921; Shirima and Giger 1992; Wang
et al. 1998; Lee et al. 2003] and refined higher-order theories [Reddy 1984; Frostig et al. 1992; Matsunaga
2000], which account for shear deformations and/or rotary inertia, have been proposed to improve the
accuracy of thick beam/plate models. However, they suffer from the shortcoming that transverse normal
stress is neglected [Lim 1999].

A number of studies have attempted to present two-dimensional elasticity solutions for isotropic and
anisotropic beams. Whitney [1985] performed a stress analysis on orthotropic beams subjected to con-
centrated loads within the framework of the classical theory of elasticity. Stresses that developed during
interlaminar beam tests were examined in detail, and observations showed considerable deviation from
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classical beam theory over large portions of the beam. Sullivan and Vanoene [1986] derived an elasticity
solution for centrally loaded orthotropic beams by virtue of a stress function and the Fourier series. The
symmetric properties of the stress field in the beams were investigated and compared to those predicted by
beam theory. Regions in which the beam theory predictions coincided with the theory of elasticity were
identified. Sankar [2001] reported an exact elasticity solution for a simply supported functionally graded
beam with the aid of the Fourier series. Although no assumptions concerning the stress and deformation
fields were adopted in these papers, and, hence, the solution formulations were applicable to beams of
arbitrary thickness, such exact solutions are only available for fully simply supported beams. Ding et al.
[2005] proposed analytic elasticity solutions for the stress and displacement fields of an isotropic fixed-
fixed beam produced by uniform loading. They constructed biharmonic stress functions using the Airy
stress function method, and investigated the differences between the two types of fixed ends described
in [Timoshenko and Goodier 1970]. Their analysis employed the semi-inverse method, which is the ap-
proach of choice for dealing with a higher-order partial differential equation with a single variable. Such
single-variable solution procedures rely on the Lagrangian method, for which many effective methods of
mathematical physics, such as separation of variables and expansion of eigenfunctions, are not applicable.

We have not been able to find in the literature analytic solutions for generally supported beams resting
on elastic foundations using classical two-dimensional theory of elasticity. In this paper, a rational
derivation based on that theory is presented to determine the mechanical behavior of such beams. The
solution involves the symplectic group, which was introduced by Weyl [1939] and has found applications
in many areas of physics, including quantum mechanics, relativity, gravitation, astrophysics, classical
mechanics, Hamiltonian mechanics, and elasticity. Details regarding the development and applications
of the symplectic approach can be found in [Lim et al. 2007].

In the Hamiltonian framework, separation of variables and eigenfunction expansions can be applied to
derive exact analytic solutions for some basic elasticity problems, although solutions are still unavailable
and have long been a bottleneck for the development of the theory of elasticity. In [Lim et al. 2008]
we proposed a new symplectic approach to analyze the bending behavior of corner-supported thin plates
subjected to uniform transverse pressures, for which an exact explicit solution for deflection is derived
here for the first time. The zero bending moment and shear forces at the free edges are exactly satisfied,
and the twisting moment conditions at the support corners are exactly predicted. These quantities have
long eluded both analytic and numerical analysis, including application of the finite element method.

For beams in a plane state without body forces, a Legendre transformation may be applied to derive
the conservative Hamiltonian variational principle, from which a Hamiltonian dual equation, i.e., the
symplectic dual system, is formulated. With homogeneous side boundary conditions, the method of sep-
aration of variables is employed to obtain the eigenequation for the transverse cross section. The present
work emphasizes eigensolutions of zero eigenvalue, because they correspond to the basic solutions of
Saint-Venant problems [Yao et al. 2009].

The effect of an elastic foundation on the mechanical behavior of a beam arises from the interaction
between the foundation and the beam surface, which are unlike those modeled in classical beam theory.
Hence, an elastic foundation is treated with side boundary conditions, similar to those of an applied
load, and the contributions of these boundary conditions to the solutions for beams are approximated by
a linear expansion of all eigensolutions of zero eigenvalue. A comparison of numerical examples with
other methods is presented to illustrate the accuracy of the present symplectic approach.
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2. Hamilton’s variational principle and symplectic formulation

Consider an isotropic beam of length l, depth 2h, and unit width. The Cartesian coordinate system is
defined such that −h ≤ z ≤ h and 0 ≤ x ≤ l (l � 2h), as shown in Figure 1. Suppose that all loads
(including the boundary conditions) are applied in the x Oz plane and remain constant along the width.
These conditions define a plane stress problem involving a beam.

Here, the top surface of the beam is subjected to the following applied loads:

σz = F̄z1(x), τxz = F̄x1(x), at z =−h, (1)

and the bottom surface is attached to an elastic foundation (see Figure 1). We assume that the foundation
experiences only vertical displacements without horizontal movement, and that only the compatibility
of normal displacements at the foundation-beam interface is considered. Hence, the beam is subjected
to normal reaction forces by the foundation, which is modeled as a two-parameter foundation. The
displacement–reaction force relation [Pasternak 1954] is

σz = F̄z2(x)= kp
∂2w

∂x2 − kww, τxz = F̄x2(x)= 0, at z = h, (2)

where kw is the normal stiffness (modulus of the Winkler foundation) and kp the shear stiffness of the
foundation.

For an isotropic beam in a plane stress state as described above, the constitutive equations are


σx

σz

τxz

= E
1− ν2

 1 ν 0
ν 1 0
0 0 1

2(1−ν)




∂u
∂x
∂w
∂z

∂w
∂x
+
∂u
∂z

 , (3)

where σx and σz are the normal stresses, τxz is the shear stress, u and w are the displacement components,
respectively, in the x- and z-directions, E and ν are the Young’s modulus and Poisson’s ratio, respectively.
In the absence of body forces, the governing differential equations of the beam in equilibrium are

∂σx

∂x
+
∂τxz

∂z
= 0,

∂τxz

∂x
+
∂σz

∂z
= 0. (4)
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Figure 1. Left: geometry, coordinate system and loading condition of a beam resting
on elastic foundations. Right: Pasternak foundation and beam foundation.
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In the following Hamiltonian formulation, the time variable is designated as the x coordinate, and a dot
indicates partial differentiation with respect to x . Following the routine transformation of the Lagrangian
system into the Hamiltonian system, via the Legendre transformation, we arrive at the Hamiltonian
variational principle,

δ

(∫ l

0

∫ h

−h

[
pT q̇−H(q, p)

]
dxdz+

∫ l

0
(F̄T

1 q)z=−h dx +
1
2

∫ l

0
(kww2

+ kpẇ
2)z=h dx

)
= 0, (5)

where H(q, p) is the Hamiltonian energy density, as given in [Yao et al. 2009], q=[u w]T and p=[σ τ ]T

(with σ = σx and τ = τxz) are a pair of dual vectors, and F̄T
1 = [F̄x1 F̄z1]. Based on (5), the Hamiltonian

dual equation is derived as
v̇ = Hv, (6)

where v = [u w σ τ ]T is called the state vector, and H is the Hamiltonian operator matrix [Yao et al.
2009]. From (3), the induced variable σz is obtained as

σz = E
∂w

∂z
+ νσ. (7)

For the present Hamiltonian dual equation (6), the method of variable separation is applicable, i.e., the
solution to (6) is assumed to be of the form

v(x, z)= ξ(x)ψ(z). (8)

Substitution of (8) into (6) yields
ξ(x)= eµx , (9)

where µ is the eigenvalue in the x-direction, and the eigenvalue equation

Hψ(z)= µψ(z), (10)

where ψ(z) is the eigenvector, which fulfills the homogeneous boundary conditions

E
∂w

∂z
+ νσ = 0, τ = 0, at z =±h. (11)

3. Basic solutions to the Saint-Venant problem

Basic solutions. According to the Saint-Venant principle, forces in equilibrium pose local influences,
i.e., local effects decay dramatically with the distance. The solution to the Saint-Venant problem is
inherent in the eigensolutions with nonzero eigenvalues. Meanwhile, (8) implies that the zero eigenvalue
solutions are not sensitive to the equilibrium system of forces, because no exponential functions are
present. Hence, for the slender beam (l� 2h), the effects of the equilibrium system of forces at the two
ends are negligible, that is, the eigensolutions of nonzero eigenvalues can be excluded. As a result, only
eigensolutions for the repeated zero-valued eigenvalue µ= 0 will be used to construct the basic solution
to the beam in the Saint-Venant problem [Yao et al. 2009], i.e.,

v = a1ψ
(0)
f + a2ψ

(1)
f + a3ψ

(0)
s + a4ψ

(1)
s + a5ψ

(2)
s + a6ψ

(3)
s , (12)
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where ψ (n)f and ψ (n)s are, respectively, the Jordan form eigensolutions of the first and second chains, for
which explicit expressions have been derived in [Yao et al. 2009]. Equation (12) can be expanded to

u = a1− a4z+ a6

(
−

6+5ν
10

h2z+ 2+ν
6

z3
)
, σ = a2 E − a5 Ez,

w =−a2νz+ a3− a5

(4+5ν
10

z2
−
ν
2

z2
)
, τ = 1

2a6 E(z2
− h2),

(13)

where the ai are x-dependent parameters to be determined using the constraints at x = 0, l. The basic
solution in (13) is applicable to the Hamiltonian dual equation (6) with the homogeneous side boundary
conditions given in (11). When the beam is subjected to external loading and elastic foundations, ai

should be determined from the Hamiltonian variational principle in (5).

Determination of the ai . Because each basic eigensolution in (12) is related to a special deformation,
the ai should be related to particular physical quantities. Here, a1, a3, a4 correspond to axial deformation,
transverse deformation, and rotation angle, respectively, and a2, a5, a6 correspond to axial force, bend-
ing moment, and shear force, respectively. Note that a1 and a2 are related to symmetric deformations,
whereas a3–a6 are related to antisymmetric deformations.

In the present analysis, only the bending behavior of the beam on an elastic foundation is considered.
The symmetric deformations described by a1 and a2 are therefore excluded. Substituting the antisym-
metric portion of (13) into (5) leads to

ȧ3 = a4+
4+5ν
10E

F̄x1, ȧ4 = a5− 0.4h2ȧ6, ȧ5 = a6+
1

E I
F̄x1,

ȧ6 =−
1

E I

(
kw(a3− 0.4h2a5) − kp(ä3− 0.4h2ä5)+ F̄z1

)
,

(14)

where I = 2
3 h3 is the second moment of the area. The set of coupled differential equations above can be

reduced to a fourth-order differential equation with respect to a3, i.e.,

Ēa(4)3 − k̄pa(2)3 + kwa3 = f (x), (15)

where f (x)=
(
(E I + 0.4kph2)g−0.4h3

)...
F̄ x1+(h− 0.4gkwh2) ˙̄Fx1+0.4h2 ¨̄Fz1− F̄z1, Ē = E I+0.8kph2,

k̄p = kp + 0.8kwh2, and g = (2+ ν)/(2E). The eigenvalues of (15) are

±r1 =

√√√√ k̄p +

√
k̄2

p − 4Ēkw

2Ē
, ±r2 =

√√√√ k̄p −

√
k̄2

p − 4Ēkw

2Ē
. (16)

We find that r2 = 0 when kw = 0, and r1 = r2 = 0 when kw = kp = 0. Hence, the general solution, a3,
depends on whether kw and kp vanish:

Case 1: kw 6= 0 a3 = c1er1x
+ c2e−r1x

+ c3er2x
+ c4e−r2x

+ ã3;

Case 2: kw = 0, kp 6= 0 a3 = c1er1x
+ c2e−r1x

+ c3+ c4x + ã3;

Case 3: kw = 0, kp = 0 a3 = c1+ c2x + c3x2
+ c4x3

+ ã3.

(17)

Here, the ci are constants of integration and ã3 is the particular solution to (15) for the inhomogeneous
term f (x) for the applied loads.
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Knowing the values for a3, all remaining parameters a4–a6 can be determined, based on (14):

a4 = ȧ3−
4+ 5ν
10E

F̄x1, (18)

a5 =
1

Ẽ

(
Ē ä3− 0.4kwh2a3+ g1

˙̄Fx1− 0.4h2 F̄z1
)
, (19)

a6 =
1

Ẽ

(
Ē

...
a 3− 0.4kwh2ȧ3+ g1

¨̄Fx1− 0.4h2 ˙̄Fz1
)
−

h
E I

F̄x1, (20)

where Ẽ = E I + 0.4h2(kp − 0.4kwh2) and g1 = 0.4h3
− g(E I + 0.4kph2).

In practice, the constants in Equations (17) should be determined according to the support conditions at
the two ends. Considering the energy related to the end constraints in accordance with the Hamiltonian
variational principle in (5), the following three typical constraint conditions at x = 0 and x = l, for
clamped (C), simple supports (S), and free (F) supports, are derived, where λ= 0.4(1+ ν)h2:

F : a5 = a6 = 0 (21)

S : a3 = a5 = 0 (22)

C : a3− λa5 = 0, a4+ λa6 = 0 (23)

According to the previously described interpretations of the ai , the expression in (21) can be interpreted
physically as a case of zero axial force, zero bending moment, and zero shear force, while the expression
in (22) can be interpreted as zero axial force, zero transverse displacement, and zero bending moment.
Similarly, in (23), the first condition represents an axial displacement of zero for the clamped end, but
the remaining two expressions indicate a zero equivalent transverse displacement and zero equivalent
rotation angle, respectively [Yao et al. 2009].

4. Bending of beams due to uniform pressure

To illustrate applications of the present symplectic approach, a beam subjected to a uniform pressure on
the top surface is considered. The applied loading conditions in (1) are expressed as

F̄x1 = 0, F̄z1 =−q0, at z =−h, (24)

where p0 is a constant independent of x . Substituting these conditions into (15) yields

(E I + 0.8kph2)a(4)3 − (kp + 0.8kwh2)a(2)3 + kwa3 = q0, (25)

for which a particular solution should be sought according to the foundation parameters. Combining
(17)–(21) with (25) leads to the general solutions for a3–a6:

Case 1: kw 6= 0


a3 = c1er1x

+ c2e−r1x
+ c3er2x

+ c4e−r2x
+ q0/kw,

a4 = c1r1er1x
− c2r1e−r1x

+ c3r2er2x
− c4r2e−r2x ,

a5 =
1
Ẽ

(
c1 M1er1x

+ c2 M1e−r1x
+ c3 M2er2x

+ c4 M2e−r2x
)
,

a6 =
1
Ẽ

(
c1 M1r1ex

− c2 M1r1e−r1x
+ c3 M2r2er2x

− c4 M2r2e−r2x
)
;

(26)
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Case 2: kw = 0, kp 6= 0


a3 = c1er1x

+ c2e−r1x
+ c3+ c4x − q0x2/2kp,

a4 = c1r1er1x
− c2r1e−r1x

+ c4− q0x/kp,

a5 =
1
Ẽ

M1(c1er1x
+ c2e−r1x)+ q0

Ẽ
(0.4h2

− Ē/kp),

a6 =
1
Ẽ

M1r1(c1er1x
− c2e−r1x);

(27)

Case 2: kw = 0, kp = 0


a3 = c1+ c2x + c3x2

+ c4x3
+

q0
24E I x4.

a4 = c2+ 2c3x + 3c4x2
+

q0
6E I x3,

a5 = 2c3+ 6c4x + q0
2E I x2

+
6q0

5E A ,

a6 = 6c4+
q0
E I x;

(28)

where M1 = Ēr2
1 − 0.4kwh2 and M2 = Ēr2

2 − 0.4kwh2.
In this paper, three combinations of the typical end constraints in (21)–(23) are considered: clamped-

clamped (CC), simply supported at both ends (SS), and clamped-free (CF). Incorporating these con-
straints into the three cases describing elastic foundations gives rise to an algebraic matrix equation
governing the integral constants ci :

Dc= p, (29)

where c= [c1 c2 c3 c4]
T . The explicit expressions of the coefficient matrix D and vector p for each beam

in Cases 1 and 2 are given in the Appendix. Case 3 is exactly the case without an elastic foundation,
for which the coefficients are simple and can be expressed explicitly. Hence the parameters a3–a6 are
directly presented in the Appendix. From (29), the ci are obtained as

ci =

4∑
k=1

dki

D
pi , (30)

where dki = (−1)k+i
| D̄ki | (i = 1, 2, 3, 4) is the algebraic complement of the element Dki , D̄ki is obtained

by eliminating the kth row and i th column of D, and pi is the element of p.

5. Numerical comparisons and discussions

To validate the rationality, accuracy, and effectiveness of this symplectic elasticity approach, comparisons
are presented for slender beams l� 2h on an elastic foundation. For generality and brevity, the following
nondimensional parameters and variables are introduced:

(U,W )=
(u, w)E I

q0l4 , X =
σx

q0
, Kw =

kwl4

E I
, K p =

kpl2

E I
.

In all examples, the Poisson’s ratio is taken as ν = 0.3.

Bending of beams without elastic foundation. As a first attempt, the bending behavior of beams without
elastic foundations (Kw = K p = 0) is considered, and the solutions are compared with results from
other methods. Figure 2 shows the longitudinal distributions of nondimensional transverse displacements
W (x, 0) at the neutral line and the axial normal stress X (x, h) at the lower surface of CC beams with
different aspect ratios. The figures show that the present results (solid lines) agree well with the results
obtained using the semianalytic method (dashed lines) in [Chen et al. 2004] based on two-dimensional
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2h/ l = 1/10
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Figure 2. Deflection curves W (x, 0) and longitudinal axial normal stresses X (x, h) for
CC beams without elastic foundations (Kw = K p = 0).

elasticity theory without invoking assumptions regarding the deformations and stresses. We emphasize
a comparison of these results with those of Ding et al. [2005], who used the Airy stress function based
on two-dimensional elasticity theory. They considered two kinds of constraint conditions for clamped
ends, as described in [Timoshenko and Goodier 1970]:

∂w

∂x
= 0 and

∂u
∂z
= 0.

Figure 2 illustrates the results corresponding to these two end conditions, with dotted lines for the first
condition and dash-dot lines for the second. For the case 2h/ l = 1/10, the present result is significantly
larger than the analytic solution for the first type of clamped end, but is somewhat smaller than the analytic
solution for the second type. This indicates that the present constraints of zero equivalent transverse
displacement and rotation angle for a clamped end in (25) are looser than the first type of clamped end
in [Timoshenko and Goodier 1970] but a little stiffer that the second type. For more slender beams, the
differences between the three types of end constraints for clamped ends are small, and, hence, the results
are almost identical, as can be seen in Figure 2, bottom.
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SS beam
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Figure 3. Deflection curves W (x, 0) and longitudinal axial normal stresses X (x, h) for
SS and CF slender beams (2h/ l = 1/10) without elastic foundations (Kw = K p = 0).

Figure 3 shows the longitudinal distributions of the transverse displacement W (x, 0) at the neutral
line and axial normal stress X (x, h) at the lower surface of the SS and CF beams (2h/ l = 10). The
Saint-Venant solutions of [Timoshenko and Goodier 1970] and the semianalytic elasticity solutions of
[Chen et al. 2004] are also shown for comparison. As can be seen, the accuracy of the present method
is again validated for slender beams.

Bending of beams on elastic foundations. We now assess the correctness of the symplectic formulation
for beams resting on elastic foundations by comparison with the numerical results from the literature.
Table 1 presents the nondimensional midspan deflection W (0.5l, 0) for uniformly loaded SS and CC
beams on an elastic foundation with different values of Kw and K p. The semianalytic and exact solutions
of [Chen et al. 2004], based on two-dimensional elasticity theory, are also listed for comparison. The
results presented here, for all beams in consideration, compare well to the semianalytic results. A careful
comparison shows that, for a moderately thick SS beam (2h/ l = 1/5), the present results agree better
with the exact solutions than with the semianalytic solutions.

Figure 4 plots the deflection W (x, 0) at the midplane and the axial normal stresses X (x, h) at the
bottom surface of a cantilever (CF) beam on an elastic foundation with different values of Kw (K p = 10).
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simply supported clamped-clamped
Kw K p present semiana. exact present semiana.

0 1.31528 1.315277 1.315271 0.27500 0.27493
0 10 0.64831 0.648347 0.648299 0.21902 0.21893

25 0.36736 0.367416 0.367353 0.16820 0.16811

0 1.19135 1.191402 1.191335 0.26925 0.26921

2h
/

l=
1/

15

10 10 0.61650 0.616562 0.616485 0.21533 0.21526
25 0.35685 0.356923 0.356843 0.16600 0.16593

0 0.64344 0.643767 0.643428 0.22653 0.22662
100 10 0.42717 0.427409 0.427156 0.18697 0.18701

25 0.28361 0.283799 0.283603 0.14851 0.14853

0 1.42083 1.420261 1.420243 0.39170 0.38814
0 10 0.67565 0.678202 0.674505 0.29722 0.29426

25 0.37711 0.381703 0.376671 0.21910 0.21760

0 1.27829 1.282598 1.277311 0.38014 0.37817

2h
/

l=
1/

5

10 10 0.64134 0.646391 0.640247 0.29045 0.28874
25 0.36608 0.372064 0.365680 0.21536 0.21478

0 0.66969 0.696100 0.668478 0.29999 0.30908
100 10 0.43944 0.459267 0.438808 0.24086 0.24823

25 0.28957 0.305161 0.289436 0.18662 0.19299

Table 1. Midspan deflection W (0.5l, 0) of uniformly loaded SS and CC beams.

 
0 0.2 0.4 0.6 0.8 1

-5 

0 

5 

10

15

20

25
0 0.2 0.4 0.6 0.8 1

-20

-15

-10

-5

0

5

Kw=0, Kp=10 
Kw=10, Kp=10 
Kw=100, Kp=10 
Chen et al. (2004) 

x/l x/l

10
0W

 

0.
01

X
 

Kw=0, Kp=10 
Kw=10, Kp=10 
Kw=100, Kp=10 
Chen et al. (2004) 

Figure 4. Longitudinal distributions of the deflection W (x, 0) and axial normal stress
X (x, h) of a cantilever (CF) beam on an elastic foundation (2h/ l = 1/15).

For numerical comparison, the semianalytic method in [Chen et al. 2004], based on two-dimensional
elasticity theory, is applied here to calculate the semianalytic solutions, as denoted by the upward triangle
markers in Figure 4. Excellent agreement is once again observed, further demonstrating the rationality
and accuracy of the present symplectic method.
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6. Conclusions

The symplectic elasticity approach, which has been widely used in theoretical physics, is applied in this
paper to derive analytic elasticity solutions for beams resting on Pasternak foundations. The Legendre
transformation is adopted to transform the Lagrangian system, based on the minimum potential energy
principle, to the Hamiltonian symplectic dual system. An eigenvalue problem with respect to the trans-
verse cross section is, then, solved using the method of separation of variables. Saint-Venant solutions
to the problem are obtained by considering the eigensolutions of zero eigenvalue. The effects of applied
loading conditions and elastic foundations are treated as the boundary conditions. Together with the end
constraints, the problem is formulated using the Hamiltonian variational principle.

Analytic Saint-Venant solutions for beams with different end constraints and on Pasternak foundations
are presented. A comparison of the present results with those available in the literature are conducted,
and, hence, the applicability and efficiency of the present symplectic approach for slender beams on
elastic foundations are validated. It should be emphasized that the symplectic approach can be applied
to study arbitrarily thick beams if nonzero eigenvalues are considered in the solution expansion, which
will be a subject to be explored in the future.

Appendix: Expressions of the matrix D and vectors p and c

(Recall that Dc= p. See page 1747 for discussion. Except for the case kw = kp = 0, we give D and p,
from which c can be derived.)

Case 1: kw 6= 0

CC beams:

D =


Ẽ−λM1 Ẽ−λM1 Ẽ−λM2 Ẽ−λM2

(Ẽ+λM1)r1 −(Ẽ+λM1)r1 (Ẽ+λM2)r2 −(Ẽ+λM2)r2

(Ẽ−λM1)er1l (Ẽ−λM1)e−r1l (Ẽ−λM2)er2l (Ẽ−λM2)e−r2l

(Ẽ+λM1)r1er1l
−(Ẽ+λM1)r1e−r1l (Ẽ+λM2)r2er2l

−(Ẽ+λM2)r2e−r2l

 , p=−
Ẽq0

kw


1
0
1
0

 .

SS beams:

D =


1 1 1 1

M1 M1 M2 M2

er1l e−r1l er2l e−r2l

M1er1l M1e−r1l M2er2l M2e−r2l

 , p=−
q0

kw


1
0
1
0

 .

CF beams:

D =


Ẽ − λM1 Ẽ − λM1 Ẽ − λM2 Ẽ − λM2

(Ẽ + λM1)r1 −(Ẽ + λM1)r1 (Ẽ + λM2)r2 −(Ẽ + λM2)r2

M1er1l M1e−r1l M2er2l M2e−r2l

M1r1er1l
−M1r1e−r1l M2r2er2l

−M2r2e−r2l

 , p=−
Ẽq0

kw


1
0
0
0

 .
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Case 2: kw = 0, kp 6= 0

CC beams:

D =


Ẽ − λM1 Ẽ − λM1 Ẽ 0

(Ẽ + λM1)r1 −(Ẽ + λM1)r1 0 Ẽ
(Ẽ − λM1)er1l (Ẽ − λM1)e−r1l Ẽ Ẽl
(Ẽ + λM1)r1er1l

−(Ẽ + λM1)r1e−r1l 0 Ẽ

 , p=
q0

kp


−λÊ

0
1
2 Ẽl2
− λÊ

Ẽl

 ,
where Ê = Ē − 0.4kph2.

SS beams:

D =


1 1 1 0

M1 M1 0 0
er1l e−r1l 1 l

M1er1l M1e−r1l 0 0

 , p=
q0

kp


0
Ê

l2/2
Ê

 .
CF beams:

D =


Ẽ − λM1 Ẽ − λM1 Ẽ 0

(Ẽ + λM1)r1 −(Ẽ + λM1)r1 0 Ẽ
M1er1l M1e−r1l 0 0

M1r1er1l
−M1r1e−r1l 0 0

 , p=
q0

kp


−λÊ

0
Ê
0

 .

Case 3: kw = 0 and kp = 0

CC beams:

a3 =
q0

24E I
(x − l)2x2

−
(1+ ν)q0

10E A
(6x2
− 6lx − l2)−

6ν(1+ ν)λq0

5E A
,

a4 =
3(1+ ν)q0

5E A
(l − 2x)+

q0

12E I
(2x − l)(x − l)x,

a5 =−
6ν(1+ ν)q0

5E A
+

q0

12E I
(6x2
− 6lx + l2),

a6 =
q0

2E I
(2x − l),

SS beams:

a3 =
3q0

5E A
(l − x)x +

q0

24E I
[(l + x)l − x2

](l − x)x,

a4 =
3q0

5E A
(l − 2x)+

q0

24E I
(l3
− 6lx2

+ 4x3),

a5 =
q0

2E I
(x − l)x,

a6 =
q0

2E I
(2x − l).
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CF beams:

a3 =
3q0

5E A
[(1+ ν)(l + 2x)l − x2

] +
q0

24E I
(x2
− 4lx + 6l2)x2,

a4 =
6q0

5E A
[(1+ ν)l − x] +

q0

6E I
(x2
− 3lx + 3l2)x,

a5 =
q0

2E I
(x − l)2,

a6 =
q0

E I
(x − l).
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