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STABILITY AND MEMORY EFFECTS IN A HOMOGENIZED MODEL
GOVERNING THE ELECTRICAL CONDUCTION IN BIOLOGICAL TISSUES

MICOL AMAR, DANIELE ANDREUCCI, PAOLO BISEGNA AND ROBERTO GIANNI

We present a macroscopic model of electrical conduction in biological tissues. This model is derived via
a homogenization limit by a microscopic formulation based on Maxwell’s equations, taking into account
the periodic geometry of the microstructure. We also study the asymptotic behavior of the model for
large times. Our results imply that periodic boundary data lead to an asymptotically periodic solution.
The model is relevant to applications like electric impedance tomography.

1. Introduction

In this paper we deal with a model of electrical conduction in composite media and, specifically, conduc-
tion in biological tissues. The classical governing equation is

� div.�rut C �ru/D 0 ; (1-1)

which is derived from the Maxwell equations in the quasistationary approximation (see for example,
[Novožilov and Yappa 1978]). Here, u is the electrical potential and �, � are the permittivity and the
conductivity of the material, respectively. The geometry of the composite media we have in mind is
a periodic array of the unit cell depicted in Figure 1. More precisely, we look at a phase E

�
1

which
models the cell cytosol, coated by a shell � � which models the cell membrane, included in a phase
E
�
2

which models the extracellular fluid [Foster and Schwan 1989]. In particular, the permittivity � in
E
�
1

and E
�
2

is lower, and the conductivity � is higher, than in � �. The diameter of the cell is of the
order of tens of micrometers, while the width of the membrane is of the order of ten nanometers. This
suggests that the thin shell � � could be preferably modeled as a two dimensional interface � , in order
to get a simpler model and, possibly, a better understanding of the effect of the geometric features of the
microscopic structure. This simpler model can be obtained from Equation (1-1) via a concentration-of-
capacity procedure [Amar et al. 2006], leading to Problem (2-1)–(2-6), below. In particular, Equation
(2-3) takes into account the conductive/capacitive behavior of the concentrated membrane. As shown in
(2-3), the electric potential jumps across the interface � , and its jump satisfies a dynamical condition
(roughly speaking, in the form of a hyperbolic differential equation on the interface itself).

Our model is designed to investigate the response of biological tissues to the injection of electrical
currents in the radio frequency range, that is, the Maxwell–Wagner interfacial polarization effect [Foster
and Schwan 1989; Bisegna et al. 2001], at higher frequencies than those considered in [Amar et al.
2003; 2004b; 2005; 2006; 2008]. This effect is relevant to clinical applications like electric impedance
tomography and body composition [De Lorenzo et al. 1997; Bronzino 1999].
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Figure 1. The periodic cell Y . Left: before concentration; � � is the dark gray region,
and E� D E

�
1
[ E

�
2

is the union of the light gray and white regions. Right: after
concentration; � � shrinks to � as �! 0.

Problem (2-1)–(2-6) contains a small parameter ", coinciding with the period of the microstructure.
The typical structure of the periodic array we have in mind is given in Figure 2. Some applications
deal with measurements of the electric potential at the macroscopic (body) scale: this suggests that
it would be advantageous to investigate the homogenization limit of Problem (2-1)–(2-6) when we let
"! 0. Extensive surveys on this topic are, for example, in [Bensoussan et al. 1978; Sánchez-Palencia

Figure 2. Left: an example of admissible periodic unit cell Y D E1 [E2 [ � in R2.
Here E1 is the light gray region and � is its boundary. The remaining part of Y (the
white region) is E2. Right: the corresponding domain ˝ D˝"

1
[˝"

2
[� ". Here ˝"

1
is

the light gray region and � " is its boundary. The remaining part of ˝ (the white region)
is ˝"

2
.
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1980; Lions 1981; Attouch 1984; Bakhvalov and Panasenko 1989; Oleinik et al. 1992; Sánchez-Hubert
and Sánchez-Palencia 1992; Jikov et al. 1994; Braides and Defranceschi 1998; Cioranescu and Donato
1999]. It turns out that the partial differential equation obtained in the limit is nonstandard; see (3-39)
below. Indeed, it is an equation exhibiting memory effects, that is, it contains explicitly the history of
the unknown and hence is markedly different from the Laplace equation presently used as a standard in
the bioelectrical impedance literature [Bronzino 1999].

Our model can be compared to some papers where homogenization theory is applied to linear station-
ary elliptic problems involving imperfect interfaces arising in fields like elasticity [Lene and Leguillon
1981] or heat conduction [Lipton 1998]. See also [Donato et al. 2007; Sánchez-Palencia 1980], where
hyperbolic problems with interfaces are considered in the framework of elastodynamics and electrody-
namics.

In view of the applications, it is also of interest to study the time evolution of the homogenized
potential (see Section 2). In particular, it is of interest to show that time-harmonic boundary data elicits
a time-harmonic solution for large times. In this regard, following the same reasoning as that presented
in [Amar et al. 2008], it is enough to prove that the solution u0 of (3-39) exponentially decays to zero
as time increases, provided that a zero Dirichlet boundary condition is assigned (see Theorem 2.1 and
Corollary 2.2).

From a mathematical point of view, the asymptotic behavior of evolutive equations with memory is
a classical problem [Fichera 1979; Slemrod 1981; Fabrizio and Morro 1988; Lazzari and Vuk 1992],
currently drawing much interest in the literature [Lazzari and Nibbi 2002; Giorgi et al. 2001; 2005;
Medjden and Tatar 2005; Appleby et al. 2006]. We note that the exponential decay of the memory
kernel, in general, does not imply the existence of bounded solutions, as shown by a counterexample
presented in Section 5 (see also, [Fichera 1979; Fabrizio and Morro 1988]).

We finally note that our methods could be easily applied to study the homogenization problem and
the time-asymptotic behavior of Kelvin–Voigt viscoelastic composites with coated inclusions.

2. Position of the problem and main results

We look at the homogenization limit ("! 0) of the following problem for u".x; t/:

� div.�ru"t C �ru"/D 0 in .˝"1 [˝
"
2/� .0;C1/; (2-1)

Œ.�ru"t C �ru"/ � ��D 0 on � " � .0;C1/; (2-2)

.˛="/@Œu"�=@t C .ˇ="/Œu"�D ..�ru"t C �ru"/ � �/
.2/ on � " � .0;C1/; (2-3)

u".x; t/D 0 on @˝ � .0;C1/; (2-4)

ru".x; 0/DG".x/ in ˝"1 [˝
"
2; (2-5)

Œu"�.x; 0/D S".x/ on � ". (2-6)

The operators div and r act with respect to the space variable x; ˝ D˝"
1
[˝"

2
[� ", where ˝"

1
and

˝"
2

are two disjoint open subsets of ˝, and � " D @˝"
1
\˝ D @˝"

2
\˝; � is the normal unit vector

pointing into ˝"
2
; the typical geometry we have in mind is depicted in Figure 2. We refer to Section 2

for a precise definition of the structure of ˝"
1
, ˝"

2
, � ".
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Moreover, we assume that

˛ > 0 I ˇ � 0 I � D �1 > 0 ; � D �1 > 0 in ˝"1;

� D �2 > 0 ; � D �2 > 0 in ˝"2;
(2-7)

where �1, �2, �1, �2, ˛, and ˇ are constants. From a physical point of view, � " represents the cell mem-
branes having capacitance ˛=" and conductance ˇ=" per unit area, whereas ˝"

1
(respectively, ˝"

2
) is the

intracellular (respectively, extracellular) space, having permittivity �1 (respectively, �2) and conductivity
�1 (respectively, �2).

Since u" is not, in general, continuous across � ", we have set

u.2/" WD trace of u"j˝"
2

on � " ; u.1/" WD trace of u"j˝"
1

on � " ; and Œu"� WD u.2/" �u.1/" :

A similar convention is employed for the current flux density across the membrane .�ru"t C �ru"/ � �.
We assume that the restrictions of G" to ˝"

1
and ˝"

2
are gradients of scalar fields, and that G" strongly

converges in L2. Moreover, we assume that S" 2H 1.˝/, and that S"=" strongly converges in L2. These
assumptions are introduced in order to rule out the appearance of an initial layer (see [Amar et al. 2009]).
Further assumptions on G" and S" are introduced in the next paragraph.

Geometry. Following [Amar et al. 2004b], we introduce a periodic open subset E of RN , so that ECzD

E for all z 2ZN . For all "> 0 we define˝"
1
D˝\"E, ˝"

2
D˝ n"E, � "D˝\@."E/. We assume that

˝, E have a regular boundary, say of class C1 for the sake of simplicity. We also employ the notation
Y D .0; 1/N , E1 D E \ Y , E2 D Y nE, � D @E \ Y . We stipulate that E1 is a connected smooth
subset of Y such that dist.E1; @Y / > 0. Some generalizations may be possible, but we do not dwell on
this point here. Finally, we assume that dist.� "; @˝/ > 
" for some constant 
 > 0 independent of ",
by dropping the inclusions contained in the cells ".Y C z/, z 2ZN which intersect @˝ (see Figure 2).
For later usage, we introduce the set

ZN
" WD fz 2ZN

W ".Y C z/�˝g : (2-8)

Energy estimate. Multiply (2-1) by u" and integrate by parts. Using (2-2)–(2-6), we arrive, for all t > 0,
to the energy estimate

ˆ
˝

�

2
jru".x; t/j

2 dxC

ˆ t

0

ˆ
˝

� jru".x; �/j
2 dx d� C

˛

2"

ˆ
� "

Œu".x; t/�
2 d�

C
ˇ

"

ˆ t

0

ˆ
� "

Œu".x; �/�
2 d� d� D

ˆ
˝

�

2
jG".x/j

2 dxC
˛

2"

ˆ
� "

S2
" .x/ d� : (2-9)

We assume that ˆ
˝

�

2
jG".x/j

2 dxC
˛

2"

ˆ
� "

S2
" .x/ d� < 
 ; (2-10)

for a constant 
 independent of ". In fact (2-9), coupled with the Poincaré’s inequality (Lemma 4.1), is
a main tool in the rigorous proof of convergence of u" to its limit. In particular, up to a subsequence, u"
converges weakly in L2.˝ � .0;T // as "! 0 to a limit u0, for every T > 0. The equation satisfied by
u0 will be formally derived via a homogenization procedure in Section 3.
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Exponential decay.

Theorem 2.1. Let ˝"
1
; ˝"

2
; � " be as before. Assume that (2-7) holds, and that the initial data G" are

gradients of scalar fields and together with S" satisfy (2-10). Let u" be the solution of (2-1)–(2-6). Then

ku". � ; t/kL2.˝/ � C."C e��t / a.e. in .0;C1/; (2-11)

where C and � are positive constants independent of ". Moreover, if ˇ > 0, or else if S" has null mean
average over each connected component of � ", it follows that

ku". � ; t/kL2.˝/ � C e��t a.e. in .0;C1/: (2-12)

This result easily yields the following exponential time-decay estimate for the limit u0 under homoge-
neous Dirichlet boundary data:

Corollary 2.2. Under the assumptions of Theorem 2.1, if u"! u0 weakly in L2.˝ � .0;T // for every
T > 0, then

ku0. � ; t/kL2.˝/ � C e��t a.e. in .0;C1/: (2-13)

3. Formal homogenization

To establish the notation, we summarize here some well known asymptotic expansions needed in the
two-scale method (see, for example, [Bensoussan et al. 1978], [Sánchez-Palencia 1980]). Introduce the
microscopic variables y 2 Y , y D x=", assuming

u" D u".x;y; t/D u0.x;y; t/C "u1.x;y; t/C "
2u2.x;y; t/C : : : : (3-1)

Note that u0, u1, u2 are periodic in y, and u1, u2 are assumed to have zero integral average over Y .
Recalling that

divD
1

"
divy C divx ; r D

1

"
ry Crx ; (3-2)

we compute, for example,

ru" D
1

"
ryu0C

�
rxu0Cryu1

�
C "

�
ryu2Crxu1

�
C : : : : (3-3)

We also stipulate

G" DG".x;y/DG0.x;y/C "G1.x;y/C "
2G2.x;y/C : : : ; (3-4)

S" D S".x;y/D S0.x;y/C "S1.x;y/C "
2S2.x;y/C : : : ; (3-5)

where the restrictions of G0.x; �/, G1.x; �/, : : : to E1 and E2 are the gradients of scalar fields. According
to Equation (2-10), recalling that j� "jN�1 � 1=", we assume S0 � 0 in (3-5). Moreover, according to
the assumption on the strong convergence of G" and S"=", the functions G0.x;y/ and S1.x;y/ do not
depend on y, that is G0.x;y/DG0.x/ and S1.x;y/D S1.x/.

For the sake of brevity, we introduce the operator

D WD �
@

@t
C � : (3-6)
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Applying (3-2)–(3-3) to Problem (2-1)–(2-6), one readily sees, by matching corresponding powers of
", that u0 solves,

�D�yu0 D 0 in .E1[E2/� .0;C1/; (3-7)

ŒDryu0 � ��D 0 on � � .0;C1/; (3-8)

˛
@Œu0�

@t
CˇŒu0�D .Dryu0 � �/

.2/ on � � .0;C1/; (3-9)

ryu0jtD0 D 0 on E1[E2; (3-10)

Œu0�jtD0 D 0 on � . (3-11)

Reasoning as in Section 2, we obtain an energy estimate for (3-7)–(3-11), which implies that Œu0�D 0

for all times, and

u0 D u0.x; t/ :

Next, we find for u1 that

�D�yu1 D 0 in .E1[E2/� .0;C1/; (3-12)

ŒD.ryu1Crxu0/ � ��D 0 on � � .0;C1/; (3-13)

˛
@Œu1�

@t
CˇŒu1�D .D.ryu1Crxu0/ � �/

.2/ on � � .0;C1/; (3-14)

ryu1jtD0Crxu0jtD0 DG0 on E1[E2; (3-15)

Œu1�jtD0 D S1 on � . (3-16)

Since both u0 and G0 do not depend on y, Equation (3-15) implies ryu1jtD0 D 0 on E1[E2.
In order to represent u1 in a suitable way, let g 2L2.E1[E2/ and s 2L2.� / be assigned such that

the restrictions of g to E1 and E2 are gradients of scalar fields, and consider the problem

�D�yv D 0 ; in .E1[E2/� .0;C1/; (3-17)

ŒDryv � ��D 0 ; on � � .0;C1/; (3-18)

˛
@Œv�

@t
CˇŒv�D .Dryv � �/

.2/ on � � .0;C1/. (3-19)

ryvjtD0 D g on E1[E2; (3-20)

Œv�jtD0 D s on � . (3-21)

where v is a periodic function in Y , such that
´

Y v.y; t/ dy D 0. Define the transform T by

T.g; s/.y; t/D v.y; t/ ; y 2 Y ; t > 0 :

Then, introduce the cell functions �0 W Y ! RN and �1 W Y � .0;C1/! RN , whose components �0
h

and �1
h
. � ; t/, hD 1, . . . , N , are required to be periodic functions with vanishing integral averages over
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Y for t � 0. The function �0
h

of the components of �0 satisfies

���y�
0
h D 0 in E1[E2; (3-22)

Œ�.ry�
0
h� eh/ � ��D 0 on � ; (3-23)

˛Œ�0
h�D .�.ry�

0
h� eh/ � �/

.2/ on � . (3-24)

The initial value �1
h
. � ; 0/ of the components of �1 satisfies

���y�
1
h. � ; 0/� ��y�

0
h D 0 ; in E1[E2; (3-25)

Œ.�ry�
1
h. � ; 0/C �.ry�

0
h� eh// � ��D 0 on � ; (3-26)

..�ry�
1
h. � ; 0/C �.ry�

0
h� eh// � �/

.2/
D ˛Œ�1

h. � ; 0/�CˇŒ�
0
h� on � . (3-27)

Finally, �1
h

is defined for t > 0 by

�1
h D T

�
ry�

1
h. � ; 0/; Œ�

1
h. � ; 0/�

�
: (3-28)

Straightforward calculations show that u1 may be written in the form

u1.x;y; t/D��0.y/ � rxu0.x; t/�

ˆ t

0

�1.y; t � �/ � rxu0.x; �/ d�

CT
�
ry.�

0
�G0.x//;S1.x/C Œ�

0� �G0.x/
�
.y; t/ ; (3-29)

so that

Du1.x;y; t/D���0.y/ � rxu0t .x; t/� .��1.y; 0/C ��0.y// � rxu0.x; t/

�

ˆ t

0

.D�1/.y; t � �/ � rxu0.x; �/ d�

CDT
�
ry.�

0
�G0.x//;S1.x/C Œ�

0� �G0.x/
�
.y; t/ : (3-30)

Next we find for u2 that

�D

�
�yu2C 2

@2u1

@xj@yj
C�xu0

�
D 0 ; in .E1[E2/� .0;C1/; (3-31)

ŒD.ryu2Crxu1/ � ��D 0 on � � .0;C1/; (3-32)

.D.ryu2Crxu1/ � �/
.2/
D ˛

@Œu2�

@t
CˇŒu2� on � � .0;C1/. (3-33)

ryu2jtD0Crxu1jtD0 DG1 on E1[E2; (3-34)

Œu2�jtD0 D S2 on � . (3-35)

Let us find the solvability conditions for this problem. Integrating by parts the partial differential equa-
tions (3-31) solved by u2, both in E1 and in E2, adding the two contributions, and using (3-32), we get
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�ˆ
E1

C

ˆ
E2

�
D

�
�xu0.x; t/C 2

@2u1

@xj@yj

�
dy D�

ˆ
�

ŒDrxu1 � �� d� : (3-36)

Thus, we obtain�
�0

@

@t
C �0

�
�xu0 D 2

ˆ
�

ŒDrxu1 � �� d� �
ˆ
�

ŒDrxu1 � �� d� D
ˆ
�

ŒDrxu1 � �� d� ; (3-37)

where

�0 D �1jE1jC �2jE2j I �0 D �1jE1jC �2jE2j : (3-38)

Then, we substitute the representation (3-29) into Equation (3-37) and, after simple algebra, obtain the
homogenized equation for u0 in ˝ � .0;C1/ as

� div
�

Krxu0t CArxu0C

ˆ t

0

B.t � �/rxu0. � ; �/ d� �F

�
D 0 ; (3-39)

where the matrices K, A, B.t/, and the vector F.x; t/ are defined as follows:

K D �0I C

ˆ
�

�˝ Œ��0.y/� d� ; (3-40)

AD �0I C

ˆ
�

�˝ Œ��1.y; 0/C ��0.y/� d� ; (3-41)

B.t/D

ˆ
�

�˝ Œ.D�1/.y; t/� d� ; (3-42)

F.x; t/D

ˆ
�

ŒDT
�
ry.�

0
�G0.x//;S1.x/C Œ�

0� �G0.x/
�
.y; t/�� d� : (3-43)

Equation (3-39) is complemented with the initial condition

rxu0jtD0 DG0 ; on ˝. (3-44)

Finally, integrating Equation (3-39) over time, changing the order in the double integral that results,
and using (3-44), we obtain also the following formulation

� div
�

Krxu0C

ˆ t

0

�
AC

ˆ t�s

0

B.�/ d�
�
rxu0. � ; s/ ds�KG0�

ˆ t

0

F. � ; �/ d�
�
D 0 ; (3-45)

which shows that the homogenized equation has exactly the form of an equation with memory of the
type derived in [Amar et al. 2003; 2004b] and studied in [Amar et al. 2004a].

4. Time-exponential asymptotic decay: proof of Theorem 2.1

The case ˇ > 0 is quite simple. We introduce the space

H 1
" .˝/ WD fv 2L2.˝/ W vj˝"

i
2H 1.˝"i /; i D 1; 2I v D 0 on @˝g : (4-1)
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It turns out that, for all v 2H 1
" .˝/,

ˆ
˝

� jrvj2 dxC
ˇ

"

ˆ
� "

Œv�2 d� � �
�ˆ

˝

�

2
jrvj2 dxC

˛

2"

ˆ
� "

Œv�2 d�
�
; (4-2)

for �Dminf2�1=�1; 2�2=�2; 2ˇ=˛g. Taking v D u". � ; t/ in the previous estimate and using equations
(2-9), (2-10), and the differential version of Gronwall’s Lemma, we obtain

ˆ
˝

�

2
jru". � ; t/j

2 dxC
˛

2"

ˆ
� "

Œu". � ; t/�
2 d� � 
 e��t ; a.e. in .0;C1/; (4-3)

and (2-12) follows from Poincaré’s inequality (Lemma 4.1).
Now we consider the case ˇ D 0. We introduce the space zH 1=2.� "/ �H 1=2.� "/ of the functions

which have a null average over each connected component of � ", that is, on ".� Cz/, for each z belonging
to the set ZN

" defined in (2-8). We decompose the initial datum S".x/ in (2-6) as S".x/DS".x/C zS".x/,
where

S".x/D

 
".�Cz/

S" d� DW C"z on each ".� C z/; z 2ZN
" I

zS".x/ 2 zH
1=2.� "/ ;

(4-4)

and the initial datum G".x/ in (2-5) as G".x/DG".x/C zG".x/, where G".x/D 0 and zG".x/DG".x/.
Accordingly, the solution u" to Problem (2-1)–(2-6) is decomposed as u"C Qu". Clearly,

u".x; t/D

(
0 for .x; t/ 2˝"

2
� .0;C1/ ;

�C"z for .x; t/ 2 .".E1C z//� .0;C1/; z 2ZN
" :

(4-5)

Using the previous equation, we compute

ˆ
˝

ju"j
2 dx D

X
z2ZN

"

ˆ
".E1Cz/

ju"j
2 dx D "N

jE1j

X
z2ZN

"

ˇ̌̌̌  
".�Cz/

S" d�
ˇ̌̌̌2
: (4-6)

On the other hand, by Hölder’s inequality, we estimate

X
z2ZN

"

ˇ̌̌̌ 
".�Cz/

S" d�
ˇ̌̌̌2
�




"N�1

ˆ
� "

S2
" d� : (4-7)

Hence, as a consequence of (2-10), it follows that

ku". � ; t/kL2.˝/ � C " ; (4-8)

where C is a constant independent of ".
In order to obtain an estimate for Qu", we introduce the space

zH 1
" .˝/ WD fv 2H 1

" .˝/ W Œv� 2
zH 1=2.� "/g ; (4-9)
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and, using Lemma 4.2 and Remark 4.3 below, we compute, for every v 2 zH 1
" .˝/,ˆ

˝

� jrvj2 dx �
X

z2ZN
"

ˆ
".YCz/

� jrvj2 dx �
˛z�

"

X
z2ZN

"

ˆ
".�Cz/

Œv�2 d� D
˛z�

"

ˆ
� "

Œv�2 d� ; (4-10)

where z� is defined in (4-15) and is independent of ". Hence,ˆ
˝

� jrvj2 dx � �

�ˆ
˝

�

2
jrvj2 dxC

˛

2"

ˆ
� "

Œv�2 d�
�
; (4-11)

for �D .maxf�1=.2�1/; �2=.2�2/gC 1=.2z�//�1.
On the other hand, reasoning as in Section 2 and using (4-4) and (2-10), we get that Qu" satisfies the

energy estimate
ˆ
˝

�

2
jr Qu".x; t/j

2 dxC

ˆ t

0

ˆ
˝

� jr Qu".x; �/j
2 dx d� C

˛

2"

ˆ
� "

Œ Qu".x; t/�
2 d� < 
 : (4-12)

Hence, by using (4-11) written for Qu". � ; t/ and the differential version of Gronwall’s Lemma, we obtain
ˆ
˝

�

2
jr Qu". � ; t/j

2 dxC
˛

2"

ˆ
� "

Œ Qu". � ; t/�
2 d� � 
 e��t ; a.e. in .0;C1/; (4-13)

and (2-11) follows from Poincaré’s inequality (Lemma 4.1) and (4-8).

Lemma 4.1 (Poincaré’s inequality [Hummel 2000; Amar et al. 2004b]). Let v belong to the space
H 1
" .˝/ introduced in Equation (4-1). Then,

ˆ
˝

v2 dx � C

�ˆ
˝

jrvj2 dxC "�1

ˆ
� "

Œv�2 d�
�
: (4-14)

Here C depends only on ˝ and E.

Lemma 4.2 [Amar et al. 2008]. Set zH 1.Y / WD fv 2L2.Y / W vjEi
2H 1.Ei/; i D 1; 2; Œv� 2 zH 1=2.� /g,

where zH 1=2.� / is comprised of the functions of H 1=2.� / with null integral average. Then,

Q� WD min
v2 zH 1.Y /; Œv� 6�0

ˆ
Y

� jrvj2 dy

˛

ˆ
�

Œv�2 d�
> 0 : (4-15)

Remark 4.3 [Amar et al. 2008]. The change of variables y D x=" applied to Equation (4-15) yields

min
v2 zH 1."Y /
Œv�6�0

ˆ
"Y

� jrvj2 dx

˛

"

ˆ
"�

Œv�2 d�
D Q� > 0 ; (4-16)

where zH 1."Y / WD fv 2L2."Y / W vj"Ei
2H 1."Ei/; i D 1; 2; Œv�2 zH 1=2."� /g, zH 1=2."� / is comprised

of the functions of H 1=2."� / with null integral average, and Q� is the positive constant introduced in
Lemma 4.2.
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5. A counterexample

As pointed out in the Introduction, the structure of (3-39) is not enough to imply that the solution expo-
nentially decays to zero, nor does it imply the solution’s boundedness, even if an exponentially decaying
memory kernel and source are considered. Indeed, let �D .�1; 1/, �> 0; a> 0, b 2 R, and f .x/; h.x/
be smooth functions. Consider the problem8̂̂̂<̂

ˆ̂:
�

�
u0xt C au0xC b

ˆ t

0

e��.t��/u0x.x; �/ d� Cf .x/e��t

�
x

D 0 ;

u0.˙1; 0/D 0 ;

u0x.x; 0/D h.x/ :

(5-1)

Multiplying the previous equation by e�t , we obtain

u0xxt e�t
C au0xxe�t

C b

ˆ t

0

e��u0xx.x; �/ d� D f 0.x/ : (5-2)

Setting v.x; t/D u0xxe�t and differentiating with respect to t , Equation (5-2) can be rewritten as

vt t C .a��/vt C bv D 0 ;

which must be complemented with the initial conditions(
v.x; 0/D h0.x/ ;

vt .x; 0/D f
0.x/C .�� a/h0.x/ :

This last equation has an explicit solution (if .�� a/2� 4b > 0) of the form,

v.x; t/D C1.x/ exp
�
�� aC

p
.�� a/2� 4b

2
t

�
CC2.x/ exp

�
�� a�

p
.�� a/2� 4b

2
t

�
;

where C1.x/ and C2.x/ are easily determined by using the initial conditions, thus implying that

u0xx.x; t/D C1.x/ exp
�
��� aC

p
.�� a/2� 4b

2
t

�
CC2.x/ exp

�
��� a�

p
.�� a/2� 4b

2
t

�
:

Hence, u0 can be obtained by integrating twice with respect to x and using the previous mentioned
boundary conditions.

Note that in general, if b is negative and �b > �a, the first exponential tends to infinity as t !C1.
With the exception of particular choices of the initial data, C1 is different from zero, and hence solutions
to Problem (5-1) do not, in general, decay exponentially in time.
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