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The paper aims at assessing how, for a porous material whose pore size distribution is experimentally
known, the variation in pore deformation with pore size might affect predictions of drying shrinkage.
Unsaturated poroelasticity is first revisited in a general macroscopic thermodynamic framework irrespec-
tive of any morphology of the porous space. Saturation is shown to be a state function of capillary
pressure governing the change in the solid-fluid interface energy; it can be experimentally obtained from
a knowledge of pore size distribution only. Unsaturated poroelastic properties are then determined under
three homogenization schemes: the standard Mori–Tanaka scheme, the self-consistent scheme, and the
differential homogenization scheme extended to unsaturated conditions. Except for the Mori–Tanaka
scheme, the function weighting the fluid pore pressure in the poroelastic constitutive equations is found
to depart from the pore volume fraction the liquid occupies. As a result the pores do not deform uniformly.
This departure roughly accounts for the difference in deformation between pores of different sizes and
subjected to the same pressure, and it is found to significantly affect predictions of drying shrinkage, in
particular for cement paste.

Drying shrinkage of water-infiltrated materials is relevant to many kinds of materials and disciplines:
cement-based materials in civil engineering [Baroghel-Bouny et al. 1999], woods in the building industry
[Santos 2000], plants in botany [Kozlowski and Pallardy 2002], soils in soil science [Chertkov 2002],
gels in physical chemistry [Smith et al. 1995], vegetables in foods engineering [Ratti 1994], tissues in
biomechanics [Gusnard and Kirschner 1977], etc. The mechanism of drying shrinkage is well known.
When a porous material is subjected to an outer relative humidity lower than its initial inner relative
humidity, the vapour thermodynamic imbalance forces the porous material to exchange water vapour
with the outer atmosphere, so that the outer relative humidity progressively takes hold within the material.
In turn liquid water simultaneously evaporates in order to maintain the vapour-liquid equilibrium. This
causes the decrease of the degree of liquid saturation. The shrinkage of the porous material finally results
from the lowering in liquid pressure induced by the desaturation process at the gas-liquid water interface.
While the kinetics of drying is governed by transport phenomena [Mainguy et al. 2001], asymptotic
drying shrinkage is governed by the outer relative humidity only, since, asymptotically, the value of the
air pressure tends toward the atmospheric pressure.

The macroscopic modeling of drying shrinkage has been addressed by many authors; see [Bazant
and Wittmann 1982; Coussy et al. 1998], for example. In the last decade the development of micro-
poromechanics [Dormieux et al. 2006a] has provided new tools to assess the influence of microstructure
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upon drying shrinkage [Chateau and Dormieux 2002], and in particular the influence of pore shape and
geometry changes [Chateau et al. 2003].

In most approaches to the mechanical behaviour of unsaturated porous materials, such as geomaterials
[Lewis and Schrefler 1998; Hutter et al. 1999], and to the subsequent prediction of their drying shrinkage,
the pore volume fraction occupied by a fluid is generally taken as the weighting factor for the fluid
pore pressure in the constitutive equations. This approach results from the assumption that all pores
(irrespective of their size) undergo the same deformation when subjected to the same pressure. Owing
to their disparity in size and shape, this assumption is questionable.

The main goal of this paper is to draw attention to how the difference in deformation undergone by
pores can quantitatively be taken into account in predicting drying shrinkage for a material whose pore
size distribution is experimentally known. In Section 1 the poroelasticity of unsaturated porous solids is
considered within a general macroscopic thermodynamic framework, irrespective of the morphology of
the porous space. Saturation is shown to be a state function of the capillary pressure governing the change
in the solid-fluid interface energy and can be determined from a knowledge of the pore size distribution
only. In Section 2, following the methods developed in [Dormieux et al. 2006a], we determine the unsat-
urated poroelastic properties with the help of three homogenization schemes: the standard Mori–Tanaka
scheme, the self-consistent scheme and the differential homogenization scheme extended to unsaturated
conditions. Except for the Mori–Tanaka scheme, the function weigthing the fluid pore pressure in the
poroelastic constitutive equations departs from the pore volume fraction that the liquid occupies. Using
these homogenization schemes and adopting the experimental pore size distribution appropriate for a typ-
ical cement paste, our analysis reveals (Section 3) that this departure may significantly affect predictions
of drying shrinkage and ultimately of failure for a water-infiltrated material subjected to drying.

1. Unsaturated poroelasticity

Capillary pressure curve. Consider an element of a porous solid of overall volume V , with initial
porosity φ0, so that its porous volume is φ0V . For the time being, we assume that the porous solid
is undeformable, so that its porosity remains constant. The porous solid, initially fully saturated by a
wetting liquid denoted by subscript L, is progressively invaded by a nonwetting gas denoted by subscript
G. At a given time the fractions of the porous volume φ0V occupied by the liquid and by the gas are SL

and SG. We write

φL = φ0SL, φG = φ0SG, SL+ SG = 1, (1-1)

where φJ is the partial porosity related to phase J (= L or G).
Assuming no hysteresis, the first and second laws of thermodynamics combine to give the isothermal

incremental free energy balance

µL dn L+µG dn G− dA = 0 (1-2)

[Coussy 2004], where µJ and n J are respectively the chemical potential and the number of moles per
unit of volume V relative to phase J, and A is the Helmholtz free energy of the whole matter contained
in the volume V . The standard isothermal Gibbs–Duhem equality applied to phase J reads

φJ dpJ− n J dµJ = 0,
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where pJ is the pressure related to phase J. Let F denote the Helmholtz free energy of the system once
the bulk phases L and G are removed. Owing to the additive character of energy we can write

F = A− (µLn L+µGn G−φL pL−φG pG) . (1-3)

The three last equations combine to give

pL dφL+ pG dφG− dF = 0. (1-4)

Since in (1-3) the bulk liquid and gas phases have been removed and the porous solid is assumed to be
undeformable, the free energy F reduces to the surface energy of the interfaces between the phases and
the solid matrix. Denoting by U the surface energy of these interfaces per unit volume, we write

F = φ0U. (1-5)

Substituting (1-1) and (1-5) in (1-4) we get

pG− pL =−
dU
dSL

, (1-6)

which shows that the liquid saturation SL is a state function of the capillary pressure pG− pL. We write

SL =$ (pG− pL) , (1-7)

where $ describes the so-called capillary curve. The macroscopic capillary curve can receive a simple
microscopic interpretation at the pore scale. At that scale the mechanical equilibrium of the current
gas-liquid interface is governed by the Laplace law according to

pG− pL =
2γGL

r
, (1-8)

where γLG is the energy per unit of surface of the gas-liquid interface and r is the mean curvature radius.
As illustrated in Figure 1 for a cement paste, standard porosimetry provides the cumulated porous volume
fraction S (r) of pores having a pore entry radius smaller than r . For a given value of the capillary pressure
pG− pL, pores having an entry radius smaller than the one given by (1-8) will still remain filled with
liquid, while pores with larger entry radius will be invaded by the gas. As a consequence we write

SL = S(r). (1-9)

Combining (1-8) and (1-9) we get

SL = S
( 2γGL

pG− pL

)
, (1-10)

which provides an explicit determination of the capillary curve.

Unsaturated state equations of poroelasticity. Now consider a deformable porous solid and denote by
σi j and εi j the stress and strain components. The free energy balance (1-4) is extended to

σi j dεi j + pL dφL+ pG dφG− dF = 0, (1-11)
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Figure 1. Cumulative pore volume fraction 1− S(r) of pores having a pore entry radius
greater than r for a typical cement paste (extracted from [Huang and Feldman 1985]).

where σi j dεi j accounts for the strain work. Since the porous space now deforms, instead of (1-1) we
write

φL = φ0SL+ϕL, φG = φ0SG+ϕG, SL+ SG = 1, (1-12)

where ϕJ accounts for the change in the partial porosity φJ due to deformation only. In contrast to the
standard Eulerian configuration referring to the current deformed configuration, as recently introduced
in [Coussy 2007], the saturation SJ can be regarded as a Lagrangian saturation related to phase J, since
it refers to the undeformable configuration. More precisely, starting from full liquid saturation, φ0SLV
is the volume in the undeformable configuration whose solid walls will still be wetted in the current
deformed configuration [Coussy 2007]. This is sketched in Figure 2 for two distinct current deformed
configurations, the undeformed reference configuration pertaining to liquid saturated conditions at zero
pressure pL.

With regard to the undeformable porous solid, the free energy F of the deformable system obtained by
removing the bulk phases L and G now splits into the surface energy φ0U associated with the interfaces,
and the elastic energy 9S stored in the deformable solid matrix. Accordingly expression (1-5) transforms
into

F = φ0U +9S. (1-13)

Substitution of (1-12) and (1-13) into (1-11) yields

σi j dεi j + pL dϕL+ pG dϕG− d9S−φ0
(
(pG− pL) dSL+ dU

)
= 0. (1-14)
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Figure 2. Unlike the case of disconnected porous networks, for a porous solid formed
of connected pores embedded in a solid matrix the Lagrangian saturation SJ does not
remain constant, since either fluid, the gas G or the liquid L, can invade the porous solid
or recede from it.

When the porous solid is deformable, in contrast to the previous section, even when SL is held constant,
U can change because it is affected by the deformation of the solid-fluid interface. The change in U is
then due to the work produced by the pressure difference exerted on the solid-fluid interface and made
possible by the solid-fluid surface energy γSG or γSL. However, because of the low values of γSG and γSL

compared to the elastic energy, as the liquid saturation changes during the process of invasion by the gas,
the change in U is mainly due to the creation of new interfaces between the phases. According to the
analysis of the previous section, U can then still be considered as a function of the liquid saturation SL

only. Conversely, if we assume infinitesimal elastic deformations of the porous solid, the elastic energy
9S will be slightly affected by the variation dSL of the liquid saturation. As a result, (1-14) allows us to
conclude that (1-5) will still hold to a good approximation, while the free energy balance related to the
deformable porous solid obtained by removing the interfaces is

σi j dεi j + pL dϕL+ pG dϕG− d9S = 0, (1-15)

from which we derive

σi j =
∂9S

∂εi j
, pL =

∂9S

∂ϕL
, pG =

∂9S

∂ϕG
. (1-16)
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Letting WS = σi jεi j + ϕL pL + ϕG pG − 9S be the Legendre transform of 9S with regard to ϕJ we
alternatively get

εi j =
∂WS

∂σi j
, ϕL =

∂WS

∂pL
, ϕG =

∂WS

∂pG
. (1-17)

In the context of both infinitesimal deformation, and restricting to linear isotropic poroelasticity, the
expression of the elastic energy of the solid matrix, WS =9S, is

WS =
1

2K
(σ + bL pL+ bG pG)

2
+

1
2NLL

p2
L+

1
NLG

pL pG+
1

2NGG
p2

G+
1

4G
si j s jk, (1-18)

where σ = σkk/3 and si j represent the mean stress and the components of the deviatoric stress tensor.
Letting ε = εkk be the volumetric strain and substituting (1-18) in (1-17) we finally get

σ = K ε− bL pL− bG pG, si j = 2Gei j , (1-19)

ϕL = bLε+ pL/NLL+ pG/NLG, (1-20)

ϕG = bGε+ pL/NLG+ pG/NGG. (1-21)

K and G are therefore identified as the bulk modulus and the shear modulus of the dry porous solid with
no internal pore pressures.

When pL = pG we must retrieve the saturated case so that we have [Coussy 2004]

bL+ bG = b = 1− K
kS

and 1
NLL
+

2
NLG
+

1
NGG
=

1
N
=

b−φ0
kS

, (1-22)

where b and N are the poroelastic properties of the porous solid with uniform pore pressure, while kS

is the bulk modulus of the solid matrix assumed to be homogeneous. Using mesoscopic-macroscopic
considerations [Coussy 1991; 2007] or more refined upscaling methods [Dormieux et al. 2006a], it can
further be shown that

1
N JJ
+

1
NLG
=

bJ−φ0SJ

kS
. (1-23)

Provided that kS is known, these relations are independent of the porous solid considered. In contrast,
separate expressions for the poroelastic properties K ,G, bJ and N JK as functions of the porosity φ0 and
saturation SJ require specific information on the porous solid considered.

2. Estimates of the unsaturated poroelastic properties

Pore isodeformation. The first relation in (1-22) shows that bL and bG are not independent and allows us
to introduce a Bishop-like parameter χ (see [Bishop and Blight 1963]) depending on the liquid saturation
SLand such that

bL = bχ(SL), bG = b
(
1−χ(SL)

)
. (2-1)

The explicit determination of function χ(SL) requires additional information. One assumption, some-
times made implicitly [Coussy 2004] or explored explicitly [Chateau and Dormieux 2002; Dormieux
et al. 2006a; Coussy 2007], is the isodeformation of the porous volumes respectively occupied by the
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liquid and the gas in the absence of any pore pressure. This assumption amounts to writing

ϕL

φ0SL
=

ϕG

φ0SG
when pL = pG = 0. (2-2)

Substitution of (2-2) in (1-20) and (1-21) provides

bL

SL
=

bG

SG
. (2-3)

Substituting (2-3) in (1-22)1 we finally get the simple identifications

bJ = bSJ, χ = SL. (2-4)

From (1-23) and (2-4) it can easily be shown that the porous volumes occupied by the liquid and the gas
would still deform equally if they are subjected to the same pressure.

Mori–Tanaka and self-consistent schemes. When the pore isodeformation assumption is relevant, we
are left with the determination of the bulk modulus K and the shear modulus G as functions of the
porosity φ0. This can be achieved using upscaling procedures, the details of which we cannot go into
here; we will only recall well known results in view of their further application to the analysis of drying
shrinkage. (For a comprehensive and fruitful application of micromechanics to porous materials, see
[Dormieux et al. 2006a].)

Since the overall volumetric strain ε is the averaged volumetric strain, we can write, letting εS be the
volumetric strain of the solid matrix,

ε = (1−φ0)εS+ϕL+ϕG. (2-5)

The variation of volume ϕJV of a spherical void of initial volume φ0SJV , which is embedded within an
elastic matrix with k and g as bulk and shear moduli and which is subjected to the pore pressure pJ, can
be expressed in the form

ϕJ

φ0SJ
=

(
1+

3k
4g

)
ε0+

3
4g

pJ, (2-6)

where ε0 is the volumetric strain prescribed at infinity. If the spherical void is replaced by a spherical
solid inclusion with kS as bulk modulus, the volumetric strain εS of the latter is given by

εS =
3k+ 4g
3kS+ 4g

ε0. (2-7)

Substitution of (2-6) for J = L and G and (2-7) into (2-5) yields ε0 in the form

ε0 =
3kS+ 4g

3φ0kS+ 4g
×

4g
3k+ 4g

(
ε−

3φ0

4g
(SL pL+ SG pG)

)
. (2-8)
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In turn, substituting (2-8) in (2-6) we recover the constitutive equations (1-20) and (1-21) of unsaturated
poroelasticity and the associated relations (1-22)–(1-23), but now with the benefit of the new relations

bJ = bSJ, K = (1−φ0)
4kSg

3φ0kS+ 4g
, (2-9)

1
N JJ
= S2

J

(
1
N
−

3φ0

4g

)
+

3φ0SJ

4g
,

1
NLG
= SLSG

(
1
N
−

3φ0

4g

)
.

These relations agree with those given in [Dormieux et al. 2006a].
The homogenization schemes differ by the choice of the embedding medium with elastic properties

k and g. The Mori–Tanaka scheme consists in choosing the solid matrix as the embedding medium,
that is, k = kS and g = gS so that ε0 = εS. The self-consistent scheme consists in choosing as the
embedding medium the porous solid whose poroelastic properties we seek, that is, k = K and g = G.
The determination of the relations providing the missing relation involving the shear modulus G is much
less straightforward, since it corresponds to prescribing at infinity the deviatoric strain instead of the
volumetric strain [Dormieux et al. 2006a]. We limit ourselves to recalling the final result:

G = (1−φ0)
(9k+ 8g) gS

9k
(
1+ 2

3φ0gS/g
)
+ 8g

(
1+ 3

2φ0gS/g
) . (2-10)

In view of the explicit determination of K and G, further calculations lead us to rewrite (2-9) and (2-10),
with k = K and g = G, in the more convenient form

K
kS
= 1−φ0 (1+ 3K/4G) ,

G
gS
= 1− 5φ0

1+ 4G/3K
3+ 8G/3K

. (2-11)

Letting

A =
4G
3K
= 2

1− 2ν
1+ ν

, aS =
4gS

3kS
= 2

1− 2νS

1+ νS
, (2-12)

where ν and νS stand for the Poisson coefficients, relations (2-11) combine to give

2(1−φ0)

(
A−

φ0

1−φ0

)2

+
(
3−φ0− (2− 5φ0)aS

)(
A−

φ0

1−φ0

)
− 3

1− 2φ0

1−φ0
aS = 0. (2-13)

Retaining the solution of (2-13) that matches the solution φ0/ (1−φ0) for kS→∞, namely aS = 0, we
finally find

A−
φ0

1−φ0
=
(2− 5φ0)aS− 3+φ0+

√(
3−φ0− (2− 5φ0)aS

)2
+24aS(1− 2φ0)

4(1−φ0)
, (2-14)

which in turn can be substituted in the relation K
gS
=

4G
3AgS

and in (2-11)2.

Beyond pore isodeformation. The first relation in (2-9), which is identical to (2-4), holds irrespective
of the choice of the embedding medium. This is because the standard upscaling schemes considered
here are all based on the solution to the problem of a single inclusion embedded in an infinite medium.
Therefore neither absolute length scales (since the embedding medium is infinite) nor relative ones (since
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only one inclusion is considered at a time) can be introduced. Thus no scale effect associated with the
pore size distribution can arise from these models.

With a view toward accounting for this scale effect, we start by considering only two sizes of pores,
denoted respectively by subscript G (the larger pores occupied by the nonwetting gas) and subscript L
(smaller pores occupied by the wetting liquid), in conformity with the analysis we carried out in the first
section.

We assume scale separation between the smaller and larger pores, which is clearly a convenient over-
simplification, since the smallest pores occupied by the gas have a size comparable with the largest pores
occupied by the liquid. Within this assumption, the larger pores are embedded in a porous matrix. At
this scale we have

bG = 1−
K
κG

and
1

NGG
=

bG−φ0SG

κG
, (2-15)

where κG is the bulk modulus of the porous solid matrix consisting of the original solid matrix and of
the smaller pores forming the porous volume at pressure pL. The porosity φG

0 of this porous solid matrix
is the ratio of the porous volume at pressure pL to the overall volume from which we remove the porous
volume at pressure pG. Accordingly we write

φG
0 =

φ0SL

1−φ0SG
. (2-16)

From the general relation (1-23) the other poroelastic properties are then derived in sequence:

bL = b− bG =
K
κG
−

K
kS
,

1
NLG
=

bG−φ0SG

kS
−

bG−φ0SG

κG
,

1
NLL
=

bL−φ0SL

kS
−

1
NLG

. (2-17)

The assessment of the poroelastic properties requires the determination of κG. One might think of carry-
ing out this determination using the Mori–Tanaka scheme of the previous section, the expression for κG

being derived from (2-9)2 in the form

κG =
(
1−φG

0
) 4kSgS

3φG
0 kS+ 4gS

. (2-18)

However, when combining (2-16)–(2-18) it can easily be checked that relations (2-9) are preserved. This
is an unexpected result, for it can be shown that the two populations of pores do not sustain the same
volumetric strain when subjected to the same pressure. However, the macroscopic shrinkage turns out to
be equal to what it would be had the pore isodeformation assumption been valid (bJ = bSJ).

Turning our attention to the self-consistent scheme, we have

K = (1−φ0)
4kSG

3φ0kS+ 4G
, κG =

(
1−φG

0
) 4kSγG

3φG
0 kS+ 4γG

γG =
(
1−φG

0
) (9κG + 8γG) gS

9κG
(
1+ 2

3φ
G
0 gS/γG

)
+ 8γG

(
1+ 3

2φ
G
0 gS/γG

) , (2-19)

where γG is the shear modulus associated with κG. Explicit expressions for κG and γG can be obtained
with the help of the same procedure that led to (2-14) in the previous section. Substituting (2-19) in
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(2-15)1 and (2-17)1, while also using (2-16), we obtain

bG = b+φ0SL
1−G/γG

φ0+ 4G/3kS
and bL = bSL−φ0SL

1−G/γG

φ0+ 4G/3kS
. (2-20)

Since b = 1− K/kS, the expression (2-19) for K can be combined with (2-20) to give the following
expression for the quantity χ of (2-1):

χ = SL

(
G/γG+ 4G/3kS

1+ 4G/3kS

)
. (2-21)

As a consequence, relation (2-4) no longer holds, so the pores do not undergo the same deformation. The
remaining poroelastic properties N JK are obtained by substituting (2-18)–(2-20) into (2-17).

The third homogenization scheme we consider is the differential scheme. Whereas the use of this
scheme is well known to provide assessments of the elastic properties K and G of a porous solid, to the
authors’ knowledge it has never been used for the assessment of unsaturated poroelastic properties, and
thereby for the prediction of the drying shrinkage of a porous solid. As sketched in Figure 2, the original
idea of the differential scheme consists in progressively introducing the porosity by infinitesimal volume
fractions according to an iterative procedure. At a given stage of the iterative procedure the porosity
φ0S has already been introduced. The next step consists in removing a new volume fraction d f0 out of
the porous solid and replacing it by the same volume of pores. Since the fraction φ0S of d f0 already
consisted of pores, the incremental porosity φ0dS finally created is given by

d f0 =
φ0 dS

1−φ0S
. (2-22)

The removal of the fraction d f0 has transformed the current bulk and shear moduli κ and γ in the new
moduli κ+dκ and γ+dγ , which can be computed as those of a porous solid of porosity d f0 whose solid
matrix has κ and γ as bulk and shear moduli. Accordingly, in the left-hand side of (2-9)2 and in (2-10),
we replace K and G by κ + dκ and γ+ dγ , while on the right-hand side we replace kS, gS and φ0 by κ ,
γ and d f0. Retaining only the terms of main order with regard to the infinitesimals dκ , dγ and dS, we
finally get

dκ
κ
=−

φ0 dS
1−φ0S

(
1+ 1

a

)
,

dγ
γ
=−

5φ0dS
1−φ0S

×
1+ a

3+ 2a
, (2-23)

where

a =
4γ
3κ
. (2-24)

Integrating (2-23) and (2-24) over κ from kS to κG, over a from aS =
4gS
3kS

to aG =
4gG
3kG

, and over S
from 0 to SL = 1− SG, we obtain

κG

kS
=
|1− aG|

5/3

|1− aS|
5/3

aS

aG
;
|1− aG |

5

1+ aG
=
|1− aS|

5

1+ aS
(1−φ0SL)

6 , (2-25)

while the expression for the shear modulus γG is known through the relation γG = 3κGaG/4. The overall
properties are then determined by simultaneously letting κG = K and aG = 4G/3K in (2-25)1 and
letting aG = 4G/3K and SL = 1 in (2-25)2. For a given value of SL = 1− SG the unsaturated poroelastic
properties bJ and N JK are then derived by combining relations (2-25), (2-15) and (2-17).
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Figure 3. Bishop parameter χ= bL/b versus liquid saturation SL under three homogeni-
zation schemes. For the two-step self-consistent and differential schemes, χ departs from
SL, showing that pores of different sizes do not deform equally under these schemes.

Although no simple expression can be obtained when χ is defined by (2-1), as was the case for the
previous two-scale self-consistent scheme, one can show that small and large pores do not undergo the
same deformation when subjected to the same pressure; yet, in contrast with Mori–Tanaka’s approach,
(2-4) no longer holds. Figure 3 plots χ= bL/b against SL for the Mori–Tanaka scheme (χ= bL/b= SL),
for the two-scale self-consistent scheme and for the differential scheme. For the two-scale self-consistent
and differential schemes the ratio χ= bL/b exhibits a significant lower value than the liquid saturation SL,
which is the expression of bL/b associated with pore isodeformation. In Figure 4 we plot the poroelastic
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Figure 4. Poroelastic coupling property N JK normalized by solid matrix shear modulus
gS versus liquid saturation for Mori–Tanaka and two-scale differential schemes.
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coupling properties gS/N JK against SL for the Mori–Tanaka scheme and the differential scheme. In the
differential scheme, the coupling properties gS/N JK are not symmetric with regard to the line SL =

1
2 .

The properties gS/NLL and gS/NGL reach their maximum value for larger values than SL =
1
2 , and the

opposite holds for gS/NGG.

3. Drying shrinkage

The drying history of a water-infiltrated porous material is driven by Kelvin’s law

pL− patm =
RT
υL

ln h R, (3-1)

where R is the constant of ideal gases, T the temperature and υL the water molar volume; h R is the
relative humidity, that is, the ratio pV/pVS of the vapour pressure pV and the saturating vapour pressure
pVS that would prevail over liquid water at atmospheric pressure. At equilibrium the air pressure within
the porous material is atmospheric. With patm = pG Kelvin’s law and (1-10) combine to give

SL = S
(
−

2υLγGL/RT
ln h R

)
. (3-2)

This captures the fact that the pore entry radius, and consequently the liquid saturation, have to adjust to
the current relative humidity in order for the confined liquid water to remain in thermodynamic equilib-
rium with the current vapour pressure imposed by the current relative humidity. This is accompanied by
a depressurization of liquid water, which in turn provokes drying shrinkage.

Consider then a stress-free drying process so that σ = 0, starting from a reference initial state where
the porous material is saturated (SL = 1), the pore pressure is atmospheric (pL = patm) and the relative
humidity is 100%. With regard to a zero pore pressure state, the deformation ε0 related to the drying
initial state is provided by substituting the initial conditions in (1-19) with bL = b and bG = 0 so that

ε0 =
bpatm

K
. (3-3)

When the relative humidity is lowered below 100% and the gas pressure is maintained at atmospheric
pressure patm a drying shrinkage εdrying= ε−ε0 is observed and an associated extra elastic energy Wdrying

is stored whose respective intensity are obtained by substituting σ = 0, (2-1), (3-1) and (3-3) in (1-19)
and (1-18). We get

εdrying =−
bχ
K
(pG− pL)=

bχ
K

RT
υL

ln h R; Wdrying =

(
b2χ2

2K
+

1
2NLL

)(
RT
υL

ln h R

)2

. (3-4)

Under a specific homogenization scheme, the poroelastic properties b, K , χ and NLL are then known
as functions of the porosity φ0, the current liquid saturation SL and the matrix elastic properties kS and
gS. In addition the current liquid saturation SL is known through (3-2) as a function of the current relative
humidity h R and the pore size distribution. Adopting for the latter the data reported in Figure 1, we have
plotted εdrying and Wdrying against SL in Figure 5, top, for the various homogenization schemes explored
in this paper. Drying shrinkage exhibits a maximum in absolute value, achieved when the decrease in
liquid pressure induced by the decrease in relative humidity is exactly compensated by a decrease in the



PREDICTION OF DRYING SHRINKAGE 275

­60

­50

­40

­30

­20

­10

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

0.5

0.7

0.9

11

differential
one­scale self­consistent
two­scale self­consistent
Mori­Tanaka

differential
one­scale self­consistent
two­scale self­consistent
Mori­Tanaka

SL

h R

O d
ru

in
g

c L RT

g S
c Lc L RT

g S
X

10
3

νs = 0.3
φ0 = 0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

0.4

0.6

0.8

1

0.5

0.7

0.9

11

differential
one­scale self­consistent
two­scale self­consistent
Mori­Tanaka

differential
one­scale self­consistent
two­scale self­consistent
Mori­Tanaka

SL

h R

c L RT
g s

W
dr

ui
ng

(  
   

  )
2

X
10

3
c L RT

g s
W

dr
ui

ng
(  

   
  )

2
c L RT

g s
W

dr
ui

ng
(  

   
  )

2
X

10
3

νs = 0.3
φ0 = 0.3

Figure 5. Normalized drying shrinkage (top) and elastic energy stored in the solid
matrix during drying (bottom) versus liquid saturation, under various homogenization
schemes. The cumulative volume fraction is assumed to depend on the pore entry radius
as in Figure 1.
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still wetted porous volume. In view of (3-4), this maximal drying shrinkage occurs when

pG− pL

χ
=−

d
dχ
(pG− pL) . (3-5)

As shown in Figure 6, this condition allows the graphical determination of the capillary pressure associ-
ated with maximal drying shrinkage.
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Figure 6. Graphical determination of the capillary pressure associated with maximal
drying shrinkage under the differential homogenization scheme. The cumulative volume
fraction is assumed to depend on the pore entry radius as in Figure 1.

As seen in the top half of Figure 5 the drying shrinkage predicted with the two-scale self-consistent
scheme is less significant than the one predicted with the one-scale self-consistent scheme. Actually the
bulk modulus K is the same for the two schemes while bL is smaller for the two-scale self-consistent
scheme (see Figure 7). In the bottom half of Figure 5 we see that the homogenization scheme affects
significantly the elastic energy stored in the solid matrix during the drying process. As a result the
difference of deformation of pores having a different size can significantly affects the strength of a
porous material subjected to drying if its fracture is brittle and governed by a threshold in the stored
elastic energy.

4. Discussion

The preceding results show that different homogenization schemes can dramatically affect the numerical
values of macroscopic shrinkage and the elastic energy stored in the material. The strength of a porous
material subjected to drying (if its fracture is brittle, and governed by a threshold in stored elastic energy)
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Figure 7. Sketch of the differential homogenization scheme for determining unsaturated
poroelastic properties.

could therefore be significantly affected as well. This should not come as a surprise, since the choice
of a homogenization scheme is already paramount to the values of the effective moduli of a composite
medium. Whether neglecting pore size distribution leads to an over- or underestimation of macroscopic
shrinkage is not clear, as can be seen in Figure 5; in fact, the numerical values found in the present study
should not be taken for granted.

Indeed, it should be emphasized that the pore-size distribution has only been taken into account very
crudely in this paper, and the assumption has been made that scale separation prevails between gas-
and liquid-filled pores, at each stage of the drying process (i.e., for all values of liquid saturation). This
strong assumption cannot be true of a continuous pore size distribution, since, as already stated, the largest
liquid-filled pores are of size comparable with the smallest gas-filled pores. Even if the experimental data
used in this paper (Figure 1) only imply continuity of the pore entry radii distribution (not the pore-size
distribution), it is in fact well-known that the pore-size distribution is indeed continuous in cementitious
materials, which effectively rules out our assumption.

Finally, it might be rightly argued that some of the homogenization schemes presented here were
used outside their well-documented range of applicability. Although both the Mori–Tanaka and the
differential schemes were designed for composites with bound inclusions as considered here, the self-
consistent estimate is usually associated with polycrystals [Kröner 1977]; the application of this scheme
to cementitious materials should therefore be considered with care. Regarding the differential scheme,
as has been argued elsewhere [Norris 1985], the pore-size distribution implicitly taken into account is
that of a large number of well separated families of spherical pores, which is not in contradiction with
the assumption made previously, but for the fact that the basic differential scheme used here requires
each family of pores to represent the same volume fraction.

The situation clearly calls for a clarification of the subtle effects of the pore-size distribution on the
macroscopic properties of a porous medium. Although some attempts have been made towards this end
[Bilger et al. 2007], this is still, to the authors’ knowledge, an open question.
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5. Concluding remarks

Unsaturated poroelasticity and homogenization schemes have been combined to reveal the effects of
nonuniform pore deformation upon the mechanical behaviour of a porous material subjected to drying.
This analysis can easily be extended to other confined phase transitions such as freezing [Coussy 2005;
Coussy and Monteiro 2007] or drying-induced crystallization of sea salts [Coussy 2006].

However, the present analysis is based upon the assumption that scale separation prevails between
the liquid- and gas-invaded pores. This assumption is in contradiction with the fact that the size of the
largest pores occupied by the liquid is comparable with the size of the smallest pores occupied by the
gas. This study should therefore only be considered as a first attempt at taking the pore-size distribution
into account for the estimation of macroscopic shrinkage. The reliability of this estimate would greatly
benefit from an upscaling method explicitly integrating pore-size distribution.

In addition, the internal stresses generated by the drying process might induce progressive cracking of
the solid matrix. This in turn could significantly alter the conclusions drawn from a reversible, poroelastic,
analysis. Further research is thereby needed to assess the effects of the size of the pores upon the ultimate
strength of porous materials subjected to confined phase transitions, microporomechanics [Dormieux et al.
2006b] being the appropriate tool for this issue.
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