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DESIGN OF CRACK-RESISTANT TWO-DIMENSIONAL PERIODIC CELLULAR
MATERIALS

FABIAN LIPPERMAN, MICHAEL RYVKIN AND MOSHE B. FUCHS

The resistance to macrocrack propagation in two-dimensional periodic cellular materials subjected to
uniaxial remote stresses is improved by redistributing the material of the solid phase. The materials are
represented by beam lattices with regular triangular or hexagonal patterns. The purpose of the design
is to minimize the maximum tensile stress for all possible crack locations allowed by the material mi-
crostructure. Two design cases are considered. In the cell design case material is redistributed between
the otherwise uniform elements of the repetitive cell. In the element design case the shape of identical
elements is optimized. The analysis of such infinite trellis with an arbitrary macroscopic crack is enabled
by an efficient exact structural analysis approach. It is shown that the fracture toughness of the triangular
layout can be significantly increased by redistribution of the material between the elements with uniform
cross sections while for the case of hexagonal lattice the effect is achieved mainly by using identical
elements with variable thickness distribution.

1. Introduction

The present paper is concerned with the improvement of the resistance of periodic cellular materials
to the propagation of mature cracks by redesigning the repetitive cell. The two-dimensional cellular
materials, or honeycombs, considered here are modeled as lattices with rigidly connected beam elements
exhibiting both axial and flexural stiffness. Borrowing from the continuous case the resistance to crack
propagation of a cellular material is given by the fracture toughness KC . In contrast to a continuous
material where the fracture toughness is determined experimentally, in cellular materials, where the tip
of a macroscopic crack can be always associated with a void, thus precluding singularities in the stress
field, the fracture toughness can, in principle, be determined numerically in terms of the rupture stress of
the parent brittle material. The aim of the present paper is to improve the fracture toughness of cellular
material by redesigning the repetitive cell using a formal mathematical programming approach.

A numerical structural optimization process is basically a conjunction of an analysis module embedded
within an optimization algorithm. The availability of an efficient and robust analysis tool is thus a central
concern since the optimizer will usually navigate through a plethora of candidate designs, each requiring
a separate analysis, before reaching the best configuration. We need therefore an adequate capability
for a detailed analysis of a cellular material in a given stress field in the presence of a crack. The basic
problem in the presence of a crack is that the periodicity of the structure is lost, which causes difficulties
for the analysis. Some authors have obtained the fracture toughness of cellular material numerically, most
of them in some restrictive cases. The published methods of determining the fracture toughness either
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involve some sort of representation of the honeycomb as an equivalent continuum (homogenization) —
an indirect approach — as in [Maiti et al. 1984; Gibson and Ashby 1997; Chen et al. 1998], or tackle
the problem directly with a finite element method by reducing the infinite honeycomb to a finite-size
model [Huang and Gibson 1991; Schmidt and Fleck 2001; Choi and Sankar 2005; Fleck and Qiu 2007;
Quintana Alonso and Fleck 2007].

In all these examples, and to the best of our knowledge, also among other publications which deal
with the fracture toughness estimation of cellular materials no numerical work was published on the
fracture toughness of honeycombs with asymmetric or irregular topologies. Recently, a general approach
which uses exact structural analysis for a crack in an infinite lattice was presented in [Lipperman et al.
2007a] to determine the fracture toughness of honeycombs with prismatic-like elements. The method
can accommodate any topology of the unit repetitive cell, with or without symmetry, and any type of
remote loading.

The above references deal with the determination of the fracture toughness of cellular material. The
present paper intends to redesign the unit cell in order to improve the fracture toughness, that is, to
improve the resistance of all mature cracks which may exist in the cellular material, to propagate when
subjected to a uniaxial stress field in a given direction. Since cracks are assumed ab initio, all possi-
ble crack types and orientations compatible with the internal arrangement of the microstructure of the
particular material are made allowance for in each case. To this respect, this is probably a first attempt
for a systematic design of crack-resistant honeycombs (we use the term crack-resistant to indicate the
resistance of mature cracks to propagate).

Two design formulations are presented starting with the cell design case where material is moved
between the otherwise uniform elements of the unit cell. In the element design formulation all the
elements of the unit cell are identical and the shape of a typical prismatic element of variable cross-
section is optimized. Note, elements with variable thickness were considered in [Warren and Kraynik
1987], where the linear elastic response of an undamaged hexagonal honeycomb was studied for three
different element shapes, and in [Warren and Kraynik 1988] for a tetrahedral unit cell, but the shape of
the elements were not optimized. The present paper deals with two basic topologies: regular triangular
and regular hexagonal lattices. As indicated the honeycombs considered here will be redesigned to resist
crack propagation of any possible mature crack under a given unidirectional remote tensile loading.

For the analysis, the method in [Lipperman et al. 2007a] is used. The analysis is direct, in the sense
that it remains in the discrete realm without first associating the honeycomb with a continuous material
using homogenization. A conjunction of the structural variation method of Majid et al. [1978], the repre-
sentative cell method of Nuller and Ryvkin [1980] and stress localization [Michel et al. 1999; Lipperman
et al. 2008a] allows for an exact analysis of fractured honeycombs with repeating unit cells of any shape
and subjected to any type of remote loading. With this versatile analysis module at hand the honeycombs
are optimized for maximum resistance to crack propagation.

In Section 2 the design problem is formulated. Section 3 gives a succinct description of the analysis
process. In Sections 4 and 5 we present the redesign of the honeycombs for best crack-resistance. The
paper closes with a summary of the main results and some conclusions (Section 6).



DESIGN OF CRACK-RESISTANT TWO-DIMENSIONAL PERIODIC CELLULAR MATERIALS 443

2. The design formulations

The purpose of the design is to produce honeycombs which have improved resistance to crack propagation
under remote stresses. This property is characterized by the honeycomb fracture toughness. Huang and
Gibson [1991], who evaluated the stress field in the vicinity of a Mode I crack of length 2a in a square-
celled honeycomb, calculated this quantity by means of the formula

KC = σr
√
πa, (1)

where σr is the remote tensile loading corresponding to the onset of fracture, that is, when the most
stressed element in the crack-tip vicinity fails. We will follow this approach completed by the assumption
that noninteracting cracks of same length, of all possible types and orientations, dictated by the material
microstructure, are present simultaneously. Consequently, the magnitude of σr in (1) is defined by the
stress field in the vicinity of the most dangerous crack. Clearly, the crack length used in the simulations
must be large enough such as to produce self-similar K -fields close to the crack tips. The issue of possible
crack types was investigated by Lipperman et al. [2007b], who found numerically that they are parallel
to the microstructure symmetry planes. It should be noted that the optimization of the fracture properties
was carried out for a specific loading direction.

The redesign is performed on honeycombs with two popular patterns: equilateral triangles and regular
hexagons (Figure 1). The unit cells of the planar repetitive structures have walls of length L , rectan-
gular cross sections of thickness t and a unity inward depth. For the analysis model, the cell walls
are represented by rigidly connected Euler–Bernoulli beam elements, including their axial rigidity. A
displacement-based analysis is used with 3 degrees of freedom defined at each node. The bulk material is
assumed isotropic, homogeneous, linear-elastic and brittle with a rupture modulus σ f s . The honeycombs
are subjected to a uniaxial remote stress σr as shown in Figure 1.

We will take into account all the possible straight paths which can be formed by the sequential fracture
of elements along the lattice axes of symmetry. As shown in Figure 2, top, the triangular pattern has a
single crack type, denoted by T1, whereas the hexagonal grid exhibits 3 crack types: H1, H2 and H3
(see Figure 2, bottom). It will be seen that the macroscopic cracks in Figure 2 can for both patterns be
rotated three times by an angle of π/3 radians, yielding three possible propagation orientations in each
case. Consequently, the triangular layout has in total 3 possible cracks whereas the hexagonal lattice has
9 possible cracks.

  

στ στ

στστ

Figure 1. Honeycombs with equilateral triangles (left) and regular hexagons (right),
subjected to a uniaxial remote loading.
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H1 H2 

H3 

H1 

H2 

H3 

T1 

Figure 2. The possible macrocrack paths types of the triangular and hexagonal, honeycombs.

We consider two design cases. In the cell design case the beam-elements of the unit cell are uniform
and the design variables are the thicknesses of the elements (Figure 3, left). During the optimization
process material is moved between the elements until the optimal layout is reached. Moving material
between elements creates nonsymmetric unit cells and as stated earlier, there are no published results
for the analysis of such materials, with or without cracks. In the element design case the unit cells
are composed of an identical typical element of variable thickness (Figure 3, right). The optimization
searches for the optimal shape of the typical element and the design variables are parameters which
govern the contour of the element.

A crack propagates by the failure of an element in the crack tip vicinity. It is assumed that an element
will fail when the tensile stress, anywhere along the element, reaches the rupture modulus or when the
axial load in a compressed element reaches the Euler buckling load. Note that the maximal tensile stress
in a uniform element (cell design case, shown on the left in Figure 3) will occur at one of the ends of

L L

η η

ξ ξ

t
tp(ξ)

ηc(ξ)

Figure 3. Beam elements with uniform and variable cross-sections.
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the element. On the other hand, with variable cross-sections (element design case, shown on the right
in Figure 3), the maximum stress can also occur at intermediate locations. As indicated, we can have
several possible crack types and crack orientations. Consequently, we are in the presence of a minimax
problem in the sense that we want to minimize the maximum stress anywhere along elements in the front
of any possible crack and thus improving the resistance of the structure to the propagation of existing
cracks. Minimizing the maximum stress in the elements is commensurate with maximizing the allowable
remote stress, that is, maximizing KC .

3. Analysis considerations

A central ingredient in a structural optimization scheme is the analysis module which provides the internal
forces in the structure for any given candidate design. In the present case we need to analyze a fractured
cellular material under remote uniaxial tension. The crack is formed by a series of fractured elements
in contiguous cells along a linear path. It must be sufficiently long, so that the K -field in its vicinity
emerges, allowing one to determine the fracture toughness. Since the fractured elements do not contribute
to the stiffness of the assembly they can be removed from the analysis model which results in an infinite
structure which is no longer periodic subjected to uniaxial tension at infinity. The central idea in analyzing
the cracked honeycomb is to consider the failed elements as a finite set of components whose stiffness was
modified (in our case, reduced to zero) in an otherwise repetitive infinite structure. We will refer to the
undamaged honeycomb as the nominal structure, the cracked honeycomb as the modified structure and
the stresses at infinity will be the nominal loads. The analysis will be based on the structural variations
method of Majid et al. [1978], which is an efficient reanalysis method when only part of the stiffnesses of
a structure are modified. In particular, for the broken elements considered here, the modification is to set
the stiffnesses to zero. This method determines the internal forces in the modified structure on the basis
of analyses performed on the nominal structure under the nominal loads and under self-equilibrating
loads. The latter are unit and opposite forces applied in turn to the extremities of the elements that will
eventually be removed to form the crack (Figure 4). This method suits the present needs perfectly since
we need to analyze only intact infinite repetitive structures.

For the analysis of the nominal structure under the nominal loads, that is, the uniaxial stress field, we
follow the methodology for stress localization for honeycombs in a macroscopic stress field [Michel et al.
1999]. Stress localization gives the detailed stresses in the repetitive cell of a cellular material subjected

a) b) c) 
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����

����

����
����

L/2
 

L/2
 

1

1

1

1
1

1

axial mode bending mode shear mode

Figure 4. The unit loads applied at the nodes of an arbitrary rigid-jointed element of the
hexagons honeycomb.
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to a periodic stress filed, without the need for prior homogenization. We will be using a slightly modified
version of stress localization developed in [Lipperman et al. 2008a].

The unit loads solutions are obtained by the representative cell method [Nuller and Ryvkin 1980;
Ryvkin and Nuller 1997], which enables to solve infinite and repetitive structures subjected to arbitrary
loads, as opposed to periodic loads (see, for instance, [Ryvkin et al. 1999; Fuchs and Ryvkin 2002; Fuchs
et al. 2004]). A discrete Fourier transform replaces the problem formulated for an infinite structure by
an equivalent problem defined over the repetitive cell, albeit in transformed variables. After solving
the analysis equations in the transformed space, inverse transforms can produce the requested analysis
information in any cell of the infinite structure. It is instructive to emphasize that both stress localization
and the representative cell method perform the analysis on a single repetitive module.

4. Optimal design of the unit cell

In the cell design example we maximize the fracture toughness KC of the cellular material by redistribut-
ing the material between the uniform elements of the unit cell while maintaining a constant material
density. This is akin to minimizing the maximum skin stress in elements in the vicinity of the crack
tips for all possible crack types and orientations. The mathematical programming formulation of this
min-max optimization problem is

min
t

max
{
σ (t) such that ρ(t)= ρr

}
, (2)

where t is the design vector composed of the unit cell elements thicknesses, σ (t) is the vector containing
the set of largest stresses in elements that are to be considered for all possible cracks, ρ(t) is the relative
density of the cellular material defined as the ratio of the density of the honeycomb over the density of the
bulk material and ρr is a given relative density, taken here as ρr = 0.15. The cracks length 2a is chosen
sufficiently long to ensure continuum fracture mechanics behavior characterized by the proportionality
of the near tip stress field to the square root of the crack length.

Failure of an element is assumed to occur when the normal stress anywhere along the element reaches
the critical tension stress or the critical compression stress. The critical tension stress σ T

cr is simply the
bulk material rupture modulus σ f s

σ T
cr ≡ σ f s (3)

and the critical compression stress is adopted as the Euler buckling stress for the uniform hinge supported
element

σ B
cr ≡

E
12
π2(t/L)2, (4)

where E is the Young’s modulus of the solid material and t is the thickness of the element. Hinge
supports are assumed for conservative reasons. In order to set the tensional and buckling modes on a
common footing we have assumed E/σ f s = 103, which is a common ratio for ceramics and many metal
materials [Bolton 1998]. Consequently

σ T
cr

σ B
cr
=

12
103π2(t/L)2

. (5)



DESIGN OF CRACK-RESISTANT TWO-DIMENSIONAL PERIODIC CELLULAR MATERIALS 447

The value σ j of the stress vector σ is defined by the most critical axial stress failure mode

σ j =max(σ T
j ; σ

B
j ), (6)

where σ T
j and σ B

j are the skin stresses related to the tensional and buckling failure modes for element j ,
respectively given by

σ T
j =

N j

t j
+max

(
6 |M1 j |

t2
j
;

6 |M2 j |

t2
j

)
and σ B

j =
−N j

t j

(
σ T

cr

σ B
cr

)
j
. (7)

N j is the internal axial force in element j , and M1 j , M2 j are the internal bending moments at its extrem-
ities.

We consider two cell layouts, the triangular pattern and the hexagonal one. With each pattern we first
take the basic repeating cell as the redesign unit. Next we consider a larger redesign unit consisting of four
basic cells thus quadrupling the number of design variables and consequently enriching the optimization
space. All computations were performed on a Matlab platform and for the actual minimization we have
used the fminimax subroutine of Matlab which implements a sequential quadratic programming method.

4.1. Triangles: one basic unit. As a first design scenario we consider the triangular honeycomb for
which the smallest repeating pattern possesses three elements, as shown in Figure 5(a). They will typi-
cally be referred to as 1-elements, 2-elements and 3-elements. The constraint on the relative density of
the material is

ρ(t)≡
2
√

3L

3∑
i=1

ti = 0.15. (8)

As mentioned, the triangle has only one crack type, T1, with 3 possible orientations yielding the macro-
scopic cracks T10, T1π/3, T12π/3, where the orientation angles θp are given in the subscript. In parts (b)
and (c) of Figure 5 one can see a depiction of cracks T10 and T1π/3.

(a)

(b) (c)

T10

T1π/3

3 2

1

θp

Figure 5. (a) The unit cell of the triangles honeycomb with (b) θp = 0 and (c) θp = π/3
paths orientations.
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Each of the three cracks can end in front of two different unit cell elements. For instance, crack T10 in
Figure 5(b) ends in front of a 2-element but it could also stop in front of a 3-element. For the triangular
case (one basic unit) we need to ensure that none of the 3× 2 = 6 possible cracks propagates while
maximizing the fracture toughness. This triangular pattern with three design variables is a relatively
simple case. We will see in the sequel that in more intricate designs with more elements in the repeating
unit we may have several possible cracks in the material. It is therefore worthwhile to try to reduce the
number of candidate cracks prior to solving (2). We need to determine not only which cracks should be
considered for the optimization but also in front of which element they end.

The structure was analyzed in the initial configuration (identical elements) for every possible crack,
and cracks with relatively low near-tip stresses were discarded. In the case of triangular cells this left
only crack T10. Since we omit cracks on the basis of the initial design the optimal solution was again
checked against all the cracks to ensure that in the final layout no crack propagates.

An arguably intrinsic feature of designing for crack-resistance is that including two cracks of a same
type and orientation but with different end-elements may impede the process from reaching the optimal
solution. To illustrate the concept consider again the T10 of the triangular pattern. It propagates by
sequential breaking of 2- and 3-elements — with the labeling as in Figure 5(a) — along the crack line
illustrated in Figure 5(b). Including both cracks in the optimization will yield a symmetric design with
equal thicknesses for elements 2 and 3 (and half the thickness for element 1). Consequently, a T10 crack,
whether facing a 2-element or a 3-element will not propagate. However, this may not be the best solution.
In contrast to classical structural design where no failure is tolerated, with crack propagation we do not
really care if a crack facing a 2-element breaks that element as long as it stops in front of the subsequent 3-
element (or vice-versa.) We could thus weaken the 2-elements and reinforcing the 3-elements by moving
material from 2 to 3. By setting the trap at 3 (or at 2) we should produce better resistant materials albeit
with nonsymmetric repetitive cells. This can be achieved by including only one T10 crack, facing either
a 2- or a 3-element, in the optimization formulation.

For the triangular case with 3 design variables we need to include only one crack. With unit cells of
complex geometries and more design variables, the selection of cracks and corresponding traps is not
always obvious and in such cases (2) must be solved separately for several alternatives.

In this example we selected 2 as the trap element and the optimization in (2) gave elements of thick-
nesses

topt
1 = 0.026L , topt

2 = 0.053L , topt
3 = 0.051L (9)

with a normalized fracture toughness

K T3
C /(σ f s

√
L)= 0.091, (10)

where the superscript indicates that we deal with a triangular layout with 3 design variables. The im-
provement of this design with respect to a design with equal thicknesses [Lipperman et al. 2007a] is

K T3
C

K T
C
= 1.20. (11)

Thus, the thicknesses distribution obtained in (9), increases the KC of the triangular honeycomb, loaded
in the direction given in parts (b) and (c) of Figure 5, by 20%.
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(1) 

(2) 

(3) (4) (5) (6) 

1 4 

7 10 

11 12 

3 2 6 5 

9 8 

Figure 6. Left: The enlarged unit cell of the triangles honeycomb. Right: the six T1
propagation possibilities.

4.2. Triangles: four basic units. Improved results can be expected if we increase the size of the re-
peating cell and therefore the number of design variables. In this example we consider a repeating cell
composed of 4 basic units. We have thus 12 design variables and 6 different T1 possibilities (Figure 6).
However, as noted in Section 4.1, it suffices to consider the two horizontal paths. The relative density
constraint is now

ρ(t)≡
1

2
√

3L

12∑
i=1

ti = 0.15. (12)

The selection of the trap elements is a little more intricate. Here one needs to make allowance for
cracks to propagate in both directions. After due considerations the traps were set at elements 2, 6, 11
and 12 and from symmetry the number of independent design variables could be reduced to 4. The
optimal layout given in Figure 7 has thicknesses

topt
2 = topt

6 = topt
11 = topt

12 = 0.086L , topt
1 = topt

4 = 0.025L ,

topt
3 = topt

5 = topt
8 = topt

9 = 0.017L , topt
7 = topt

10 = 0.029L
(13)

with an optimal fracture toughness K T12
C /(σ f s

√
L)= 0.110 which gives an improvement with respect to

the original design of
K T12

C

K T
C
= 1.45. (14)

Figure 7. An option for an optimal triangles honeycomb where the maximal length and
the minimal thickness of its elements have been previously set.
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0 1 1.46 2
0    

0.091

0.110 

0.129

 Le/L 

 

Le/L

Kc

σ f s
√

Le

Figure 8. The dependence of the optimal fracture toughness obtained with 3 design
variables on the scale length of the elements.

At this juncture it is instructive to address an issue related to the relative scale of the grid. In Figure 8
we show the dependence of the optimal fracture toughness on the element length Le where the relative
density was kept unchanged by maintaining a constant value of t/Le. We assume that the basic value
K T3

C /(σ f s
√

L) = 0.091 of (10) was obtained for a unit element length, that is, when Le/L = 1. The
fracture toughness is a square root function of the element length and doubling the latter (Le = 2L)
should produce K T3

C /(σ f s
√

L) = 0.091
√

2 = 0.129, as indicated on the figure. This result could have
been obtained by the optimization in the absence of Euler buckling constraints by removing elements
5, 6, 7, 8, 10 and 12. This is a classical case of a disjoint design space. The double-sized triangle lies
in the shadow of the buckling constraints, however, once it is reached, the design is acceptable because
the buckling constraints on the now vanished elements are no longer valid. The optimal design of the
present problem should in fact be the trivial solution in the form of a triangle with double lengths and
thicknesses.

We can however make a case for the design in Figure 7. Clearly, increasing Le will improve the
fracture toughness but it also increases the size of the holes or apertures in the material. The holes in the
triangles with Le = 2L have doubled and if we want to limit the size of the holes to the scale Le = L
(think of a net capturing fish) the design in Figure 7 is to be preferred. In fact, as shown on the graph,
the design in Figure 7 of scale Le = L is equivalent to an optimal solution with 3 design variables of
scale Le = 1.46L .

4.3. Hexagons: one basic unit. The basic hexagonal pattern has three design variables, with a relative
density constraint

ρ(t)≡
2

3
√

3L

3∑
i=1

ti = 0.15. (15)

As noted from Figure 2, right, there are a total of 9 propagation paths: H10,π/3,2π/3, H20,π/3,2π/3,
H3π/6,π/2,5π/6. A preliminary investigation of the initial design (equal thicknesses) has shown that the
problem could be simplified. Because of symmetry, as noted for instance in Figure 9 for the H10 crack,
we have t2 = t3 and the set of cracks can be reduced to H10, H20 and H3π/6 in view of the fact that the
constraints produced by the remaining cracks can be shown to be nonactive.

The optimum result is

topt
1 = 0.119L and topt

2 = topt
3 = 0.135L (16)
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Figure 9. The H10 macrocrack with its two most loaded elements (in bold).

for K H3
C /(σ f s

√
L) = 0.016, an improvement of only 6% over the fracture toughness with equal cross-

sections (0.015), given in [Lipperman et al. 2007a]. The resistance to macrocrack propagation in this
case is only moderately improved.

The location of the most loaded elements (Figure 9) may be counterintuitive however an earlier work
on crack nucleation and propagation has shown that this type of crack under same loads at some early
stage of the crack formation changed direction from the path perpendicular to the loading to a direction
inclined by 60 ◦ [Lipperman et al. 2007b]. The most loaded elements at the crack-tip are probably the
harbingers of the kink in the crack path.

4.4. Hexagons: four basic units. We now consider an augmented design domain, composed of four
basic unit cells with 12 design variables, as shown in Figure 10. The relative density constraint here is

ρ(t)≡
1

6
√

3L

12∑
i=1

ti = 0.15. (17)

The number of design variables could be reduced from 12 to 5 and from the 18 possible propagation
paths only 5 were retained.

The thickness distribution for the optimal solution is

topt
7 = 0.15L , topt

10 = 0.01L , topt
2 = topt

6 = topt
11 = topt

12 = 0.09L ,

topt
1 = topt

4 = 0.15L , topt
3 = topt

5 = topt
8 = topt

9 = 0.18L .
(18)

A typical unit cell and an overview of the hexagonal pattern are depicted in Figure 11. In the optimal
layout we notice ellipse-like quasiholes in the form of cells with embedded slender elements oriented
along the remote stress direction. The optimal fracture toughness is here K H12

C /(σ f s
√

L)= 0.018 which
represents an increase of 18% over the initial design.

1 4 

7 10 

11 12 

3 2 6 5 

9 8 

Figure 10. The enlarged hexagon unit cell with 12 elements.
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Figure 11. The optimal hexagonal honeycomb (left) with enlarged unit cell (right).

Unlike with the enlarged repetitive cell of the triangular honeycomb, the optimal hexagonal layout of
scale L cannot be replicated on the present grid with elements of twice the length and thickness. The
optimal design in Figure 11 is thus the only possible layout.

4.5. Summary of results. The main results for the optimal design of the cellular material with relative
density ρr = 0.15 are summarized in Table 1 for both layouts. The fundamental difference between the
two patterns is already apparent in the initial design. The triangular patterns are markedly more resistant
to crack propagation then the hexagonal ones. This is to be attributed to the axial mode being dominant
in triangular lattices whereas hexagons deform primarily in bending [Deshpande et al. 2001]. In addition,
the optimization is relatively more effective for triangles, where, for instance, a 45% improvement was
obtained for repetitive cells with 12 design variables as compared to 18% in the hexagonal case. The
counterexamples in the next section will show that using elements of varying thickness will prove much
more effective for bending dominated patterns than for materials where the axial mode is predominant.

Triangles Hexagons

Initial (equal thicknesses) 0.076 0.015
Optimized (3 design variables) 0.091 (20%) 0.016 (6%)
Optimized (12 design variables) 0.110 (45%) 0.018 (18%)

Table 1. Optimal fracture toughness KC/(σ f s
√

L) for triangular and hexagonal patterns
with ρr = 0.15 for two sizes of the repetitive module. The initial values correspond to
equal thickness elements. σ f s is the rupture stress of the bulk material and L is the
beams length. Improvements with respect to the initial design are given in parentheses.

5. Optimal design of the element

In this section we improve the material’s resistance to macroscopic crack propagation by using same
beams but of variable thickness for the elements of the honeycomb. We assume the thickness of the
elements tp(ξ) along ξ = 0÷ L/2 (see Section 2) to be

tp(ξ)= 2ηc(ξ)= 2
p∑

j=0
c jξ

j , (19)
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where p is the order of the polynomial and c j are the parameters which define the shape of the elements
and constitute the variables in this design problem. In addition we impose, for sound engineering design,
a zero slope at the center of the symmetric element and positiveness of the thickness:

dtp(ξ)

dξ
= 0 for ξ = L/2, tp(ξ)≥ ε for 0≤ ξ ≤ L/2, (20)

with ε = 10−5L . The mathematical programming formulation, solved with the same analysis and design
subroutines as in Section 4, is here

min
c

max
{
σ (c) such that ρ(c)= ρr

}
, (21)

where the design vector c holds the coefficients c j ( j = 0, 1, . . . , p) of the polynomial. In line with (2),
σ (c) is the vector containing the set of stresses that are to be considered for all possible cracks. The
relative density constraint is now

ρ(c)≡
nce Ae

Auc
= ρr , (22)

where nce (= 3 herein) is the number of elements of the unit cell, Auc is the area of the unit cell and Ae

is the area of the projection of the elements given by

Ae = 4
∫ L/2

0
(c0+ c1ξ + · · ·+ cpξ

p)dξ = 4
p∑

j=0

c j (L/2) j+1

j + 1
. (23)

For calculating the stiffness matrix of the beam element we have approximated the thickness by a piece-
wise linear function.

The material with the triangular pattern has a unit cell of area Auc =
√

3L/2 and making allowance
for the symmetry of the problem we considered only macroscopic cracks T10 and T1π/3 (Figure 5).
The optimal solution topt

p (ξ) obtained with a second- and a third-order polynomial contour functions are
presented in Table 2. The linear case is not addressed since it can not yield a zero slope at the middle of
the element. Taking for baseline the material composed of elements with constant uniform cross-sections
the improvement of the fracture toughness for honeycombs with optimized contours is given under the
heading K Topt

C in Table 2. It will be seen that the improvements are not dramatic. Better results were
obtained for the triangle when transferring material between the elements of the unit cell design.

We now turn our attention to the hexagonal pattern (Auc = 3
√

3L/2) where it was noticed that it
suffices to include macroscopic cracks H10, H20 and H3π/6, only. The results given in Table 3 clearly
indicate a marked improvement in K Hopt

C . In Figure 12 we have drawn the contours of the elements for
different orders of the polynomial. It should be emphasized that the optimum was obtained for equal
values of the skin stress at the root of an element and at mid-field. The latter could be calculated with

p Contour function topt
p (ξ)[10−2L] K Topt

C [%]

2 4.6− 1.4(ξ/L)+ 1.4(ξ/L)2 4.2
3 4.6− 0.6(ξ/L)− 2.0(ξ/L)2+ 3.4(ξ/L)3 4.8

Table 2. The optimal contour functions and fracture toughness increase of the triangles honeycomb.
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p Contour function topt
p (ξ)[L] K Hopt

C [%]

2 0.20− 0.39(ξ/L)+ 0.39(ξ/L)2 77.7
3 0.17− 0.05(ξ/L)− 0.82(ξ/L)2+ 1.16(ξ/L)3 96.8
4 0.18− 0.15(ξ/L)+ 0.13(ξ/L)2− 1.63(ξ/L)3+ 2.50(ξ/L)4 103.7

Table 3. The optimal contour functions and fracture toughness increase of the hexagons honeycomb.

p = 3 
p = 4 

p = 2 
p = 0 

Figure 12. The optimal contours of the elements with ρr = 0.15.

relative confidence however at the root we have a concentration of material and consequently the model
is locally less representative. As a consequence the stresses calculated at the ends may carry an error
and should be utilized with care. The general trend is however clear and substantial improvements are
to be gained by using variable thickness elements. In Figure 13 we give the shape of the hexagons
obtained with optimal elements for densities ρr = 0.15, 0.25. The shape for the 0.25 density was added
to show a tendency to form circular holes as the relative density of the cellular material increases. This

ρr = 0.15 ρr = 0.25

Figure 13. The topologies of the hexagons with the optimal elements obtained with the
fourth-order contours, for ρr = 0.15 and ρr = 0.25.
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corroborates a result obtained in a separate work on the K I C fracture toughness of perforated plates
where a parametric study on the optimal shape of holes has shown that for holes stacked in a hexagonal
pattern, circular holes produced optimal designs [Lipperman et al. 2008b].

It is interesting to notice that variable thickness elements have a rather marginal effect on the fracture
of the triangular pattern but are of paramount importance in hexagonal honeycombs. This feature is to
be related to the flexion versus stretch dominance of the two families of cellular materials which were
studied in this work.

6. Conclusions

This paper has presented a methodology for designing two-dimensional cellular materials with improved
resistance to crack propagation under macroscopic uniaxial tensile stresses. The material is modeled as
repetitive patterns of bending resistant elements and crack propagation by the sequential breaking of the,
assumed, brittle beam elements. With such grids the material can have cracks in a limited number of
directions and we have defined the fracture toughness concept which is akin to the fracture toughness
generalized by assuming the presence of all possible noninteracting cracks. The purpose is to maximize
the fracture toughness by redistributing the material in the repetitive cell in an optimal fashion. Both
the analysis and design are confined to the repetitive unit. For the analysis of the material with a crack
we have used the representative cell method in conjunction with stress localization. These methods
produce the results for the cracked medium by analyzing infinite pristine structures. The analysis is thus
exact within the realm of Bernoulli–Euler beams. Two types of honeycombs were studied. A stretch
dominated material with triangular patterns and a material with hexagonal unit cells which exhibits
substantial flexion. It was shown that the material with triangles has only one type of crack which can
appear in three directions. The hexagonal pattern presents three types of cracks each in three possible
directions. In addition a given crack can end in front of different elements and each alternative should
in principle be considered. Precluding an exhaustive optimization procedure where all the possibilities
are tested it was suggested that the designer choose a trap element which is designed to arrest the crack
and sacrifice other elements along the crack path. It was also shown that a prior study of the cracks can
reduce the number of possibilities to a more tractable set. Since engineering judgment is involved the
final design is always checked against all possible cracks. The actual computations were performed on
a Matlab platform and for the optimization we have used a sequential quadratic optimization algorithm.

Two types of redesigns were considered. In the cell design case material was moved between the,
otherwise uniform, elements. In the second design all elements were identical but had variable cross-
sections. The parameters controlling the contour of the elements were here the design variables. The
computations for the cell design were repeated for small repeating units (three design variables) and for
larger ones (twelve design variables). As a rule results indicate that the stretch dominated triangular
pattern is much more crack-resistant than the corresponding flexion dominated hexagonal layout. It is
also much more sensitive to moving material between uniform elements than to the use of elements with
variable thickness. An opposite conclusion can be drawn for the hexagonal honeycomb. A practical
conclusion which could be drawn from the present work is that in order to increase the resistance to
crack propagation of two dimensional cellular material one should redistribute the material between the
elements of the repetitive model when the primary deformation mode of the structural elements is axial
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deformation. In the case of models where bending is dominant the use of elements with variable thickness
is the way to go. With the methodology presented herein one can quantify the expected improvements
in a coherent manner. It is noteworthy that the computations, although confined to the repetitive unit,
produce exact results for the infinite model.

The feasibility of manufacturing such optimal cellular materials may, at present, be questionable. It
is however difficult to foresee what the future holds in store. MEMS technology, amongst others, could
perhaps implement such optimal layouts.
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INFLUENCE OF THE NONLINEAR AERODYNAMIC FORCE COMPONENTS ON
A VIBRATING BEAM, SIMPLY SUPPORTED OR CLAMPED AT BOTH ENDS,

EXPOSED TO A HIGH SUPERSONIC AIRFLOW ALONG ITS AXIAL
DIRECTION

SILVANO TIZZI

In this work we analyze the case of a vibrating beam, simply supported or clamped at both ends, under
the effect of a high supersonic airflow along its axial direction. A complete aerodynamic model of
the piston theory, which also takes into account the nonlinear components of the distributed aerody-
namic transversal force, is used. The postcritical flutter behavior and its influence on the vibration state
solutions of a fluttering beam without aerodynamic damping have been studied. This paper focuses
particularly on the effects of these nonlinear aerodynamic forces on three frequencies, which are useful
in characterizing the postcritical flutter solution set of the undamped beam in the whole frequency range:
the minimum frequency, the frequency where the change of the modal shape with lower amplitude occurs,
and the frequency corresponding to the solution with minimum amplitude of the vibration mode. Special
attention has been given to the influence on the solution of the vibrating undamped beam with minimum
modal amplitude, whose frequency is the most important among the three mentioned above; in fact, in
the neighborhood of this particular solution, there exists the flutter state of the vibrating damped beam
in limit cycle conditions.

Three different schemes, two of them semianalytical (based on the classical and well known Rayleigh–
Ritz and Galerkin methods) and one of them numerical (based on the finite element method), have been
herein exploited, as in the author’s previous papers, where beam flutter models with linear aerodynamic
analysis were used. The good agreement between the results obtained by the three methods corroborates
their effectiveness.

More sophisticated models have been herein set up, considering that a more accurate analysis is
necessary than in previous cases, where the aerodynamic numerical model was limited to within the
framework of the quasisteady linearized piston theory, both for the coupling component between odd
and even order vibrating modes, and for the aerodynamic damping component.

The results obtained enable us to assess quantitatively the influence of these nonlinear aerodynamic
forces on the postcritical beam flutter behavior, and particularly on the undamped beam solution with
minimum amplitude of the vibration mode.

1. Introduction

For many years steady and unsteady aerodynamic theory for aeroelastic panels flutter computations has
received a lot of interest, often in connection with high supersonic speeds. It is useful to recall the main
authors who developed studies for flutter analysis of panels exposed to a high supersonic flow.

Keywords: vibrating beam, nonlinear, aerodynamic force, supersonic airflow, flutter.
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Lighthill [1953] first proposed a piston theory, which was proved to be an efficient and powerful tool
for panel flutter analysis. It can be used to calculate the pressure on an airfoil in steady or unsteady motion
with remarkable accuracy, even under nonisentropic conditions, whenever the flight Mach Number M∞
has such an order of magnitude that M2

∞
� 1. This piston theory is quite attractive for flutter studies due

to its simplicity in comparison with other supersonic theories.
This theory has been discussed by Ashley and Zartarian [1956], who made suggestions for future

research based on this new efficient aerodynamic tool, with particular regard to areas where computational
labor can be reduced without losing the necessary accuracy.

Morgan et al. [1958] analyzed some of the theories for two dimensional oscillatory wing structures,
which could be applied for flutter computations with high Mach Number. The results obtained by the
various aerodynamic theories have been compared for their flutter prediction in various Mach Number
ranges. Also some possible refinements of the piston theory have been proposed for high Mach Numbers.

The heritage of the studies of these authors enables us to know the complete expression of the aero-
dynamic transverse distributed force acting on a beam, which makes it possible to determine its flutter
dynamic response after appropriate approximations.

The objective of this paper is to investigate the effects of the nonlinear components of the aerodynamic
transverse force on the permanent postcritical solutions of a fluttering beam without air damping. Since
the fluttering beam solution in limit cycle conditions, derived by the aerodynamic model with damping,
is very near to the undamped vibrating beam state with minimum amplitude, these effects could also
influence the damped beam aeroelastic vibration.

Three different schemes have been exploited for the flutter computational work, as in the case of the
beam flutter analysis with linearized and idealized piston theory [Tizzi 1994; 2003]. First a numerical
procedure [Tizzi 1994; 1996; 2003] which arises from the Rayleigh–Ritz method [Kantorovich and
Krylov 1964, pp. 258–303; Mikhlin 1964, pp. 74–125 and 448–490; Reddy 1986, pp. 258–285] has
been used, together with the finite element method (FEM) [Weaver and Johnston 1984, pp. 1–102; Reddy
et al. 1988, pp. 41–89; Qin et al. 1993]. By knowing the structural and inertial forces potential functional
and the aerodynamic generalized force, it has been possible to apply the Lagrange equations [Pars 1968,
pp. 28–89] and derive the generalized governing equation in time, for which appropriate time-integration
algorithms exist.

Then the Galerkin method [Kantorovich and Krylov 1964; Mikhlin 1964; Tizzi 1994; 2003] was
employed in the case of a simply supported beam, as in Dowell’s model [1966; 1967], to validate the
results of Ritz and FEM procedures.

The effectiveness of the three methods is apparent from the good accordance of the results obtained
by the three different simulation approaches.

An analysis of the results achieved has been necessary to point out the influence of the nonlinear
aerodynamic force components on particular frequency parameters characterizing the undamped beam
solution set in the whole frequency range. It is fundamental to evaluate the effects of these nonlinear
forces on the solution with minimum amplitude of the modal shape, considering that the flutter solution
in limit cycle conditions of the damped vibrating beam lies in its neighborhood.

Studies on the influence of the nonlinear aerodynamic terms on the postcritical limit cycle of fluttering
panels have also been developed by other authors [McIntosh 1973; Smith and Morino 1976]. However,
investigations into the effects of these nonlinear aerodynamic components, in the presence of nonlinear
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structural forces, on the postcritical flutter solutions of a beam in an airflow without damping, have been
herein performed. Moreover, a fluttering beam with both simply supported and clamped ends has been
considered; this is useful because the boundary conditions of panels actually employed in aerospace
structures often lie between the two supposed ones in the analyzed cases.

Index of notation

As beam cross-section area

am nondimensional modal shape amplitude
(maximum transverse displacement along
the beam, divided by length of beam)

a∞ speed of sound

bw beam width

ai j , ci j , bi jkl , di jkl coefficients determined by
integrals in Ritz and FEM models

ci p ia generic coefficient of the nondimensional
flexural deflection series expansion in the
generic ie-th element of FEM model

E Young’s modulus

Fa resultant of the aerodynamic forces acting
on both sides of the beam per unit length

F (a)
i generalized aerodynamic force acting on the

i-th degree of freedom
fi (ξ) generic trial describing function of the

nondimensional flexural deflection through
the beam length

h beam thickness

I flexural moment of inertia

Jsccc, Jsscc particular integrals utilized in the
Galerkin method

ki j stiffness matrix elements

k∗i j linear structural and aerodynamic forces
resultant matrix elements

L beam length

M∞ Mach number

mi j mass matrix elements

N whole number of the degrees of freedom

NE whole number of the elements in FEM
model

p∞ unperturbed air pressure

Pa force per unit axial length acting on a side of
the beam profile

Q(ie)
i p

generic degree of freedom in the ie-th
element of FEM model

q dynamic pressure

t beam state evolution time

To reference time

U∞ airflow speed

u, w beam points axial and flexural
displacements, respectively

W nondimensional flexural displacement

Wi generic coefficients of the nondimensional
flexural displacement series expansion

Wie nondimensional flexural displacement on a
generic (ie+ 1)-th section Sie of FEM model

x beam axial coordinate

Greek symbols

α nondimensional beam axial parameter

β, γm nondimensional Mach numbers parameters

γ ratio between the specific heat at constant
pressure and volume, respectively

γ ′, γ ′′ nondimensional aerodynamic damping
coefficients

λ nondimensional mass distribution parameter

θie rotation parameter in the generic (ie+ 1)-th
section Sie of FEM model

µ mass per unit length

ξ nondimensional axial coordinate of the
beam

ξie nondimensional axial coordinate of the
(ie+ 1)-th section Sie of the FEM model
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ξn normalized axial coordinate of a beam
element in the FEM model

ρ∞ unperturbed air density

σ dimensional dynamic pressure parameter

σd dimensionless dynamic pressure parameter

τ nondimensional time

ϕi j integral of the product between the first
derivatives of the generic describing
functions fi (ξ) and f j (ξ)

χ normal speed down- or up-wash

ω angular frequency

ωd dimensionless angular frequency

Special symbols

H2(S) square summable functions space

S definition domain of the describing
functions

B, D utilized matrices in the generalized form
equation

F structural and linear aerodynamic forces
matrix

L extended Lagrangian functional

M mass matrix

T kinetic energy

U strain energy

W , Z column vectors of the unknown variables
and their time first derivatives

W (3) column vector with elements the triple
products between unknown variables

W (3d) column vector with elements the triple
products between two unknown variables
and a time first derivative of a third variable

Subscripts and superscripts

d subscript indicating dimensionless
parameters

i, j, k, l subscripts indicating functions and unknown
variables coefficients of the flexural
displacement series expansion

ie subscript indicating the (ie+ 1)-th section
Sie of the FEM model

(ie) superscript indicating the ie-th element of
FEM model

i p, jp, kp, lp subscripts characterizing the unknown
variables and the coefficients of the flexural
displacement series expansion in the ie-th
element of FEM model

nd subscript indicating nondimensional
variables

∞ subscript indicating the unperturbed airflow

2. Mathematical formulation

A vibrating beam exposed to a high supersonic flow along the x axis, previously analyzed with the linear
aerodynamic model [Tizzi 1994; 2003], is considered and drawn in Figure 1.

Figure 1. Beam, simply supported or clamped at both ends, exposed to a high super-
sonic flow.
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The focus of the analysis developed here is limited to the nonlinear aerodynamic force components of
piston theory, given that the terms of all structural and linear aerodynamic force components have been
sufficiently illustrated. The exact expression of the pressure acting on a beam element (one-dimensional
flow) is [Lighthill 1953; Ashley and Zartarian 1956; Morgan et al. 1958]:

p
p∞
=

(
1+

γ − 1
2

χ

a∞

)2γ /(γ−1)

, (1)

where γ = cp/cv is the ratio between the specific heats at constant pressure and volume (cp and cv); χ
is the normal down- or up-wash, that is, the component of the fluid velocity in the z-direction, normal to
the beam profile; a∞ =

√
γ p∞/ρ∞ is the speed of sound; and p∞ and ρ∞ are the pressure and density of

the unperturbed airflow. This pressure can be expressed in terms of series expansion function elements
versus χ , as follows:

p
p∞
= 1+ γ

χ

a∞
+

1
4
γ (γ + 1)

( χ
a∞

)2
+

1
12
γ (γ + 1)

( χ
a∞

)3
+ · · · . (2)

The dimensional dynamic pressure parameter σ is also introduced:

σ =
2q
β

bw, (3)

where β =
√

M2
∞
− 1, M∞ =U∞/a∞ is the Mach number, q = 1

2ρ∞U 2
∞

is the dynamic pressure, U∞
is the airflow speed, and bw is the beam width. As in [Tizzi 2003], the aerodynamic expressions of an
infinite plate along the third, not considered y axis are applied, together with the structural constitutive
relations of a beam; this hypothesis can be accepted if the beam width bw is much greater than L .

Since √
M2
∞
− 1∼= M∞, (4)

if the Mach number is high enough, it is also true that

σ =
2q
β

bw ∼= γ p∞M∞bw, (5)

in view of the previously introduced expressions of q,M∞ and a∞.
Thus the force per unit axial length acting on each side of the beam profile can be evaluated from (2),

and, by virtue of (5) and the expression for M∞, it can be written as

Pa =1pbw = σ
[
χ

U∞
+
γ + 1

4
M∞

( χ

U∞

)2
+
γ + 1

12
M2
∞

( χ

U∞

)3
+ · · ·

]
, (6)

where 1p = p− p∞ is the pressure variation with respect to the unperturbed static conditions p = p∞.
The analysis has been developed only for symmetric cases, that is, both sides of the beam profile are

exposed to the same airflow, and consequently only the odd powers give a contribution. In fact, taking
into account that the normal speed component χ has opposite values on the upper and lower side, their
effects sum-up for the odd powers and vanish for the even ones. Thus the resultant of the aerodynamic
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forces acting on both sides per unit length can be written as

Fa = 2σ
[
χ

U∞
+
γ + 1

12
M2
∞

( χ

U∞

)3
+ · · ·

]
. (7)

The normal speed component due to the profile dynamics can be expressed as

χ =U∞
∂w

∂x
+
∂w

∂t
, (8)

where w is the beam point’s flexural displacement.
Substituting (8) into (7) gives the new expression of the resultant aerodynamic distributed force:

Fa = 2σ
[
∂w

∂x
+ γm

(∂w
∂x

)3
+ · · ·

]
+ 2σ

{
1

U∞

∂w

∂t
+ γm

[
3
(∂w
∂x

)2 1
U∞

∂w

∂t
+ · · ·

]
+ · · ·

}
, (9)

where

γm =
γ + 1

12
M2
∞

(10)

and the subsequent terms in the series expansion can be neglected. This is formed by two components:
Fa1, containing only spatial derivatives, which is the coupling element between odd and even vibrating
modes, and which exists also without damping; and Fa2, containing also time derivatives, which give
rise to the aerodynamic dissipative force and damping. This second component is not considered for the
undamped vibrating beam solution.

The linear component of the distributed aerodynamic force in (9) equals that obtained in [Bisplinghoff
and Ashley 1975, pp. 416–437; Tizzi 2003], except for the presence of the ratio (M2

∞
− 2)/(M2

∞
− 1)

before the time derivative ∂w/∂t , which is approximately equal to unity for high Mach numbers.
It is necessary to recall the vibration-governing equation of the fluttering beam [Tizzi 2003]:

E I
∂4w

∂x4 +µ
∂2w

∂t2 − E As
1
2

(∂w
∂x

)2 ∂2w

∂x2 + Fa = 0, (11)

where As = bwh is the cross-sectional area, h is the beam thickness, E is the Young’s modulus, µ is the
distributed mass per unit length, and I = Ebwh3/12 is the flexural moment of inertia.

Furthermore, (∂w/∂x)2 has been previously defined as the mean square value of the flexural displace-
ment first axial derivative over the whole beam length; the third term of (11), containing this mean square
value, corresponds to the nonlinear component of the transverse structural force, due to the beam axial
stretching.

The axial inertia effects are being neglected, as in the previous analysis with a linearized aerodynamic
model, considering that the axial vibration frequencies are higher than the corresponding ones of the
flutter vibration, and so the axial vibration frequency range is different from the flutter frequency range.

Substitution of (9) into (11), with the approximation assumptions, leads to the following governing
equation:

E I
∂4w

∂x4 +µ
∂2w

∂t2 − E As
1
2

(∂w
∂x

)2 ∂2w

∂x2 + 2σ
[
∂w

∂x
+ γm

(∂w
∂x

)3
]

+ 2σ
{

1
U∞

∂w

∂t
+ γm

[
3
(∂w
∂x

)2 1
U∞

∂w

∂t

]}
= 0, (12)
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which can be reformulated in dimensionless form as

∂4W
∂ξ 4 + λ

∂2W
∂τ 2 + σd

[
∂W
∂ξ
+ γm

(∂W
∂ξ

)3
]
−
α

2

(∂W
∂ξ

)2 ∂2W
∂ξ 2 +

[
γ ′+ γ ′′

(∂W
∂ξ

)2
]
∂W
∂τ
= 0, (13)

where the flexural displacement and the axial coordinate have been reformulated in nondimensional form,
and other dimensionless parameters have been introduced:

W (ξ, τ )=
w(x, t)

L
, ξ =

x
L
, λ=

µL4

E I T 2
o
, τ =

t
To
, (14)

σd =
2σ L3

E I
, α =

As L2

I
, γ ′ =

2σ
U∞

L4

E I To
, γ ′′ = 3γ ′γm, (15)

and To is a reference time.
The third and fifth terms in (13) refer to the nondimensional equivalent form of the distributed aero-

dynamic force expression in (9):

(Fa)nd = σd

[
∂W
∂ξ
+ γm

(∂W
∂ξ

)3
]
+

[
γ ′+ γ ′′

(∂W
∂ξ

)2
]
∂W
∂τ

. (16)

Einstein’s summation convention for repeated indices will be adopted in all the following expressions.
A series expansion for W (ξ, τ ) in terms of function elements can be chosen:

W (ξ, τ )=Wi (τ ) fi (ξ), i = 1, 2, . . . , N , (17)

where each coefficient Wi (τ ) is a Lagrangian degree of freedom, and fi (ξ) are polynomials describing
functions, belonging to the space of the square summable functions H2(S), defined in the domain S
(which in this case is the whole beam length). These satisfy only the geometric boundary conditions, as
in the Ritz and FEM methods. The meaning of the coefficients Wi (τ ) and the describing functions fi (ξ)

are illustrated in the electronic supplement to this paper.
Equation (13) can be transformed into its generalized equivalent form by the variational principle [Pars

1968], if the Lagrangian functional is introduced:

L= T−U, (18)

where T is the kinetic energy and U is the strain energy. Thus the generic generalized i-th governing
equation can be written in the classical Lagrangian form:

d(∂L/∂Ẇi )

dτ
−
∂L

∂Wi
+ F (a)i = 0, i = 1, 2, . . . , N , (19)

where F (a)i is the generalized aerodynamic force acting on the i-th degree of freedom. It is possible to
set a correspondence between each term of this generalized equation with each one of (13).

The potential strain energy expression has been already determined [Tizzi 2003]:

U=
1
2

ki j Wi Wj +
α

8
ϕi jϕkl Wk Wl Wi Wj , i, j, k, l = 1, 2, . . . , N , (20)
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where

ϕi j =

∫ 1

0

∂ fi (ξ)

∂ξ

∂ f j (ξ)

∂ξ
dξ. (21)

The stiffness matrix elements ki j have been previously evaluated [Tizzi 1994]; obviously ki j Ẅ j is
the generalized linear structural force acting on the i-th degree of freedom, which corresponds to the
first term in (13). The elements of the second term at the second member of (20), corresponding to the
nonlinear contribution to the structural strain energy, are also known.

The expression for the generalized aerodynamic force F (a)i acting on the i-th degree of freedom,
corresponding to the third and fifth terms in (13), can be obtained by the use of the series expansion (17)
in (16), and projecting the whole equation (16) onto the generic function element fi (ξ). Thus

F (a)i = ai j Wj + γmbi jkl Wk Wl Wj + γ
′ci j Ẇj + γ

′′di jkl Wk Wl Ẇj ,

j, k, l = 1, 2, . . . , N , i = 1, 2, . . . , N , (22)

where the coefficients ai j and ci j are well known from the previous analysis [Tizzi 2003]:

ai j = σd

∫ 1

0
fi (ξ)

∂ f j (ξ)

∂ξ
dξ, ci j =

∫ 1

0
fi (ξ) f j (ξ)dξ, (23)

and the newly introduced ones are defined as

bi jkl = σd

∫ 1

0
fi (ξ)

∂ f j (ξ)

∂ξ

∂ fk(ξ)

∂ξ

∂ fl(ξ)

∂ξ
dξ, di jkl = σd

∫ 1

0
fi (ξ) f j (ξ)

∂ fk(ξ)

∂ξ

∂ fl(ξ)

∂ξ
dξ. (24)

The knowledge of the describing functions of the series in (17) allows us to determine the coefficients
bi jkl and di jkl ; see the electronic supplement.

The mass matrix elements mi j in the kinetic energy expression,

T= 1
2 mi j Ẇi Ẇ j , Ẇi = ∂Wi/∂τ, i, j = 1, 2, . . . , N , (25)

have also been previously evaluated [Tizzi 1994]. It is true that

mi j = λci j , (26)

where the nondimensional coefficient λ has been defined in (14). It is well known that −mi j Ẅ j is the
generalized inertial force acting on the i-th degree of freedom, corresponding to the second term of (13).

If the expressions of the strain and kinetic energy in (20) and (25), along with the expression of the
generalized aerodynamic force in (22), are substituted into (19), in view of the Lagrangian functional
expression in (18), it is possible to achieve the equivalent generalized form of (13), corresponding to the
generic i-th degree of freedom, as follows:[
k∗i j +

α

2
ϕi j (ϕkl Wk Wl)

]
Wj + γmbi jkl Wk Wl Wj +mi j Ẅ j + γ

′ci j Ẇ j + γ
′′di jkl Wk Wl Ẇ j = 0,

j, k, l = 1, 2, . . . , N , i = 1, 2, . . . , N . (27)

The matrix elements k∗i j , referring to both structural and aerodynamic linear forces, can be written as

k∗i j = ki j + ai j . (28)
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Thus k∗i j Wj is the generalized linear structural-aerodynamic force acting on the same i-th degree of
freedom, which corresponds to the first term and the first part of the third term of (13).

Furthermore, the term (ϕkl Wk Wl) between brackets in (27) is the mean square value (∂W/∂ξ)2 of the
first derivative ∂W/∂ξ over the whole beam length, which has been already introduced in (11). This
is the reason for which it has been written separately in round brackets. As mentioned above, it takes
into account the beam axial stretching, which gives rise to the nonlinear component of the structural
transverse force, as in the fourth term of (13).

The term containing the coefficient γm in (27) is equivalent to the second part of the third term of (13),
and the terms containing γ ′ and γ ′′ are equivalent to the ones with the same coefficients in (13).

The system of the generalized governing equations (27), in view of (26), can also be written in matrix
form:

Z = Ẇ , Ż =−M−1 FW − γm M−1 BW (3)
−
γ ′

λ
Z− γ ′′M−1 DW (3d), (29)

where: W and Z are the column vectors of the coefficients Wj and their first derivatives Ẇ j versus time
τ , respectively; F is the matrix whose elements are:

fi j = k∗i j +
α

2
(ϕkl Wk Wl)ϕi j ; (30)

M is the mass matrix; B is a matrix with dimensions N × N 3, whose elements are bi jt3 = bi jkl ( jt3 is the
contraction of the three indices jkl and obviously jt3 = 1, 2, . . . , N 3); W (3) is the column vector with
dimensions N 3, whose elements are the triple products p j t3 =Wk Wl Wj between the coefficients of the
series expansion in (17); D is a matrix whose elements are di jt3 = di jkl and with the same dimensions
of B; and W (3d) is a column vector with the same dimensions of W (3), whose elements are the triple
products q j t3 =Wk Wl Ẇ j .

Equations (27) and (29) are the same as in the previous analysis with linearized aerodynamic forces,
except for the presence of the terms with bi jkl and di jkl in (27), and the corresponding matrices B and
D in (29), referring to the nonlinear contribution of the piston theory to the aerodynamic forces. The
system (29) can be integrated in time by appropriate algorithms.

In the case of a simply supported beam it is easy to apply also the Galerkin method, as in Dowell’s
model [Dowell 1966; 1967]. The advantages of the Galerkin procedure arise from the diagonal form
of the mass matrix M, due to the orthogonality between different describing function elements; see the
electronic supplement for details.

3. Applications and results

The analysis of the results is limited to the regular solutions with repetitive dynamic characteristics,
obtained by giving particular starting conditions (τ = 0) to the vibrating system. There are also many
more spurious solutions, which are quite irregular and without any particular meaning.

The first case considered is the simply supported beam. The ratio between the length L and the
thickness h is assumed to be 100.
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Figure 2. Solid curves: modal shape amplitude am versus dimensionless frequency ωd

for two undamped beam systems (Table 1 lists the values). Dashed curves: evolution
of the damped beam vibration state towards the limit cycle in each of the two systems
(Table 2). All values take into account the nonlinear aerodynamic force components.

All the characteristic behavior features of the nondimensional modal shape amplitude am as a function
of the dimensionless frequency

ωd = ω

√
µL4

E I
(31)

(where ω is the angular frequency) are known from previous analyses [Tizzi 2003]. These features are
illustrated by the solid curve in Figure 2, left, in the case of a simply supported undamped beam for
σd = 500. (See also the top half of Table 1.) In fact this graph is similar to the one obtained without the
nonlinear aerodynamic force components.

Three frequency values are particularly important and useful in characterizing this curve: the min-
imum frequency ωmin; the frequency ωI , which separates the frequency range where lower amplitude
modal shapes have only one half-wave from the range where these shapes have two half-waves; and the
frequency ωII , where the modal shape amplitude reaches its minimum.

The dashed lines in Figure 2 show the dynamic evolution of the fluttering beam towards the limit cycle
conditions (still taking into account aerodynamic damping), for two different starting conditions. Clearly
the dynamic solution of the fluttering beam in limit cycle conditions, also in the presence of nonlinear
aerodynamic forces, lies in the neighborhood of the undamped beam solution with minimum amplitude.
For this reason this particular solution is of paramount importance, and ωII plays a privileged role, along
with its corresponding modal shape amplitude value.

To see the influence of the nonlinear aerodynamic components of the piston theory of a high supersonic
idealized flow. it is necessary to show the functional dependence of these frequencies on the dynamic
pressure, with and without nonlinear aerodynamic forces. Particular attention must be given to these
nonlinear forces’ effects on ωII and the corresponding modal amplitude behavior versus σd .
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Simply supported, undamped beam, σd = 500

ωd am ωd am ωd am ωd am

73.06 0.04144 42.00 0.02592 34.24 0.01348 42.35 0.00741
66.43 0.03858 38.22 0.02188 34.40 0.01216 47.84 0.00800
56.40 0.03427 35.43 0.01772 35.02 0.01063 55.97 0.00978
48.23 0.03052 34.41 0.01501 38.13 0.00812 66.74 0.0124

73.06 0.0140

Doubly clamped, undamped beam, σd = 800

ωd am ωd am ωd am ωd am

87.53 0.0347 66.12 0.0170 65.08 0.0106 82.31 0.0110
75.01 0.0252 65.17 0.0154 66.12 0.0099 87.53 0.0118
72.17 0.0231 64.47 0.0125 68.34 0.0094
69.25 0.0206 64.60 0.0115 79.31 0.0106

Table 1. Modal amplitude am versus dimensionless frequency ωd , taking into account
nonlinear aerodynamic force components.

Simply supported beam
τ ωd am τ ωd am

Upper dashed curve Lower dashed curve
0. 51.5 0.0334 0. 37.18 0.00071
0.16 41.88 0.0279 0.16 38.08 0.0016
0.30 36.74 0.0234 0.24 39.27 0.0030
0.47 34.15 0.0190 1.33 40.27 0.0061
0.56 34.17 0.0156 1.81 41.28 0.0070
1.18 39.27 0.0081
2.37 41.24 0.0070

Doubly clamped beam
τ ωd am τ ωd am

Left dashed curve Right dashed curve
0. 45.20 0.0240 0. 86.20 0.00002
0.43 53.10 0.0232 0.47 81.10 0.0051
0.85 61.23 0.0191 2.63 75.12 0.0102
1.47 66.03 0.0143 5.33 71.19 0.0121
2.53 67.52 0.0102 9.81 67.52 0.0102

Table 2. Modal amplitude versus dimensionless frequency ωd at various times, taking
into account aerodynamic damping and nonlinear aerodynamic force components.

In some of the following figures the frequency values, derived both by the idealized and linearized
beam model and by the nonlinear approach, are drawn together. This is useful for having an overall
picture of all the possible beam flutter solutions in pre- and postcritical conditions, obtained by the two
different approaching models. It is important to emphasize the convergence of the nonlinear model
solutions towards those of the linear approach, as the dynamic pressure, and consequently the flutter
modal amplitude, diminishes. The solutions coincide when this amplitude vanishes, considering that the
influence of the nonlinear components of the acting forces can be neglected as the vibrating modes tend
to disappear.



470 SILVANO TIZZI

0 10 20 30 40 50
0

200

400

600

 ____ 
    σ

d
−ω

d
       idealized model 

− o − o −  σ
d
−ω

d
=ω

min
 linear Piston Theory 

− + − + −  σ
d
−ω

d
=ω

min
 non−linear Piston Theory

  ω
d
  

  σ
d  

0 10 20 30 40 50
0

200

400

600

 ____ 
    σ

d
−ω

d
       idealized model 

− o − o −  σ
d
−ω

d
=ω

I
 linear Piston Theory 

− + − + −  σ
d
−ω

d
=ω

I
 non−linear Piston Theory

  ω
d
  

  σ
d  

0 10 20 30 40 50
0

200

400

600

 ____ 
    σ

d
−ω

d
       idealized model 

− o − o −  σ
d
−ω

d
=ω

II
 linear Piston Theory 

− + − + −  σ
d
−ω

d
=ω

II
 non−linear Piston Theory

  ω
d
  

  σ
d  

300 400 500 600
0

0.2

0.4

0.6

0.8

1

− o − o −  (a
m

)
min

 of linear Piston Theory 

− + − + −  (a
m

)
min

 of non−linear Piston Theory

  σ
d
  

  (
a m

) m
in

 ×
 1

02  

Figure 3. Frequencies ωmin (top left), ωI (top right) and ωII (bottom left) versus σd for
the simply supported, undamped beam, with and without nonlinear aerodynamic force
components (dashed lines). The horseshoe-shaped solid curve shows the dependence of
σd on ωd for the linearized model (see text). Also shown is the minimum amplitude
(am)min as a function of σd for the same beam system (bottom right).

Figure 3, top left, shows the behavior of the minimum frequency ωmin of the undamped solutions versus
the dynamic pressure dimensionless parameter σd ; the two types of dashed lines indicate the presence
or absence of nonlinear aerodynamic forces in the calculation. The solid line describes the classical and
well known dependence of σd on ωd for the linearized beam flutter simulation model, where only the
linear components of both structural and aerodynamic forces are considered.

The dependence of the frequencies ωI and ωII on σd is sketched in the next two parts of Figure 3, with
the same conventions. Finally, the bottom right part of the figure is a graph of the minimum amplitude
(am)min versus σd , with and without nonlinear aerodynamic forces. The bottom two graphs in Figure 3
are particularly important for the reasons mentioned above. See also the top half of Table 3.
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Simply supported, undamped beam

σd ωmin ωI ωII (am)min× 102

L NL L NL L NL L NL

214 18.46 18.46
225 19.15 19.18
250 20.65 20.76
275 22.04 22.28
294.6 24.76 24.76
300 23.34 23.75 25.06 25.08
325 26.39 26.51
343.356 32.43 32.43 0. 0.
350 25.73 26.62 27.66 27.93 32.95 33.02 0.13 0.14
375 28.87 29.36 34.40 34.48 0.28 0.31
400 27.90 29.44 30.04 30.79 35.79 36.19 0.37 0.42
425 36.99 37.75 0.45 0.52
450 29.89 32.02 32.26 33.71 38.41 39.22 0.51 0.60
475 39.70 40.81 0.56 0.67
500 31.75 34.24 34.35 36.64 40.86 42.35 0.61 0.74
550 33.49 36.44 36.25 39.04 43.18 45.34 0.69 0.86
600 35.12 38.67 38.16 41.11 45.20 47.89 0.76 0.96

Doubly clamped, undamped beam

σd ωmin ωI ωII (am)min× 102

L NL L NL L NL L NL

449 35.53 35.53 35.53 35.53
500 38.16 19.18 38.17 38.60
550 40.54 41.80 40.60 42.00
600 42.76 45.15 42.89 45.83
636.569 52.36 52.36 0. 0.
650 44.85 49.44 45.06 50.25
655 53.36 54.01 0.20 0.30
675 54.48 56.13 0.28 0.45
700 46.83 53.69 47.14 54.69 55.69 58.76 0.36 0.59
725 56.96 61.27 0.42 0.70
750 48.71 58.91 49.13 59.91 58.19 63.70 0.48 0.80
775 59.41 65.88 0.53 0.87
800 50.50 64.47 51.05 66.50 60.57 68.34 0.57 0.94

Table 3. Values of ωmin, ωI , ωII and (am)min versus the dimensionless dynamic pressure
σd , without (L) and with (NL) nonlinear components of the aerodynamic forces for the
undamped beam.
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Figure 4. Frequencies ωmin (top left), ωI (top right) and ωII (bottom left) versus σd for
the doubly clamped, undamped beam, with and without nonlinear aerodynamic force
components (dashed lines). The horseshoe-shaped solid curve shows the dependence of
σd on ωd for the linearized model (see text). Also shown is the minimum amplitude
(am)min as a function of σd for the same beam system (bottom right).

We next display the results obtained in the case of a beam clamped at both ends. The ratio between the
length L and the thickness h is taken to be 110. Figure 2, right, shows the modal amplitude am behavior
of the fluttering undamped solution versus ωd for σd = 800 (also described in the bottom half of Table 1),
together with the vibrating damped beam state evolution towards the limit cycle point, which lies in the
neighborhood of the representative point of the undamped solution with minimum amplitude. The two
dashed lines correspond to two different starting values of the fluttering beam with damping. Figure 4,
organized in the same way as Figure 3, shows the dependence of ωmin, ωI , ωII and (am)min on σd for
the undamped beam clamped at both ends, again with and without taking into account the nonlinear
components of the aerodynamic forces. See also the bottom half of Table 3.
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4. Conclusions

On the basis of the results achieved, some concluding remarks can be made.

(1) In both cases considered, the minimum frequency value ωmin is higher compared to the corresponding
one derived by the linearized piston theory, which means that the frequency range of the undamped
solutions decreases with respect to the case of the linearized aerodynamic model, although this reduction
is very limited.

(2) Limited decrease of the resistance to the flutter phenomenon is introduced by the nonlinear aero-
dynamic force contributions, considering that the minimum value of the undamped vibration modal
amplitude (am)min, which is very close to the limit cycle amplitude value, increases; but this relative
growth is not considerable.

(3) Undoubtedly these nonlinear aerodynamic forces influence the whole postcritical flutter behavior of a
beam under the effects of a high supersonic flow at both sides, but, unless the dynamic pressure grows very
much over its critical value of the linear model, these effects are limited. Hence the linear aerodynamic
analysis of the piston theory is sufficient to describe, within acceptable limits, this postcritical behavior.

(4) The results obtained don’t predict a threat to the stability, because in the cases considered, the airflow
speed doesn’t exceed overmuch the limit critical value of the linearized model (limited Mach number),
as in [McIntosh 1973; Smith and Morino 1976]. For very high values of M∞ the destabilizing effect of
aerodynamic nonlinearities is predominant and the limit cycle becomes unstable. However the presence
of particular initial conditions (such as those induced by a gust) can lead to instability and chaos even
before the dynamic pressure reaches its critical value [Dessi et al. 2002]. The presence of shock waves
in transonic flight could also instigate instability in the flutter phenomenon.

(5) The dynamic analysis of the fluttering beam has been limited to the case of symmetrically distributed
aerodynamic forces, which is worse, in terms of fluttering beam stability, than the case of a high su-
personic flow acting only on one side of the vibrating beam. Therefore all considerations regarding the
fluttering stability are very likely valid for asymmetric cases as well.

(6) This study of postcritical behavior has been limited to a one-dimensional panel, as in the linearized
piston theory case, but similar conclusions are likely valid for two-dimensional panels.

(7) This dynamic analysis can also be extended to cases not considered here.
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FINITE ELEMENT FORMULATIONS VIA THE THEOREM OF EXPENDED
POWER IN THE LAGRANGIAN, HAMILTONIAN AND TOTAL ENERGY

FRAMEWORKS

JASON HAR AND KUMAR K. TAMMA

Traditionally, variational principles and variational methods have been employed in describing finite
element formulations for elastodynamics applications. Here we present alternative avenues emanating
from the theorem of expended power, using the differential calculus directly.

We focus on scalar representations under three distinct frameworks: Lagrangian mechanics, Hamil-
tonian mechanics, and a new framework involving a built-in measurable quantity, called the total energy
in the configuration space. All three frameworks are derivable from each other, since they represent the
same physics as Newton’s second law; however, the total energy framework which we advocate inherits
features that are comparable and competitive to the usual Newtonian based finite element formulations,
with several added advantages ideally suited for conducting numerical discretization.

The present approach to numerical space-time discretization in continuum elastodynamics provides
physical insight via the theorem of expended power and the differential calculus involving the distinct
scalar functions: the Lagrangian L(q, q̇) : TQ→ R, the Hamiltonian H( p, q) : T ∗Q→ R, and the total
energy E(q, q̇) : TQ→ R. We show that in itself the theorem of expended power naturally embodies
the weak form in space, and after integrating over a given time interval yields the weighted residual
form in time. Hence, directly emanating from the theorem of expended power, this approach yields three
differential operators: a discrete Lagrangian differential operator, a Hamiltonian differential operator,
and a total energy differential operator.

The semidiscrete ordinary differential equations in time derived with our approach can be readily
shown to preserve the same physical attributes as the corresponding continuous systems. This contrasts
with traditional approaches, where such proofs are nontrivial or are not readily tractable.

The modeling of complicated structural dynamical systems such as a rotating bar and the Timoshenko
beam are shown for illustration.

1. Introduction

Variational concepts have long played a significant role in the development of numerical discretization
techniques. First, variational principles in physics and mechanics have been used to derive the governing
differential equations from which numerical discretizations are routinely conducted. The principles —
including Hamilton’s principle in dynamics, in the electromagnetic and gravitational fields, and even in
quantum mechanics; the principle of stationary potential energy and the Hu–Washizu’s variational prin-
ciple in continuum statics; Fermat’s principle of least time leading to Snell’s law in optics; Maupertuis’

Keywords: Lagrangian, Hamiltonian, total energy, finite elements, theorem of expended power, N -body problem, continuous
bodies, elastodynamics.
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principle of least action, Jacobi and Lagrange’s principle of least action in dynamics again; and Gurtin’s
variational principles [1964a; 1964b] for initial value problems such as wave and transient heat transfer
in lieu of Hamilton’s principle — have been considered in engineering and science as an indispensable
branch of mathematics to derive the differential equations, namely, the Euler–Lagrange equations. At
the same time, variational methods such as the Rayleigh–Ritz method, the principle of virtual work, the
Galerkin weighted residual method, the Kantorovitch method, and the Trefftz method have played a
critical role in finding approximate solutions to the governing equations.

Thus, whether via the variation principle or the variational method, the notion of variation is ubiqui-
tous. But the question arises: Can the differential formulation be used as an alternative to the variation
formulation? This is the focus of this paper.

As mentioned, the calculus of variations, founded by Euler and Lagrange, has been used extensively
to derive governing differential equations, especially for mechanical systems. It has been the focus of
philosophical controversies and some misinterpretations due to the perception that it seems to bring
a purpose to the flow of natural events. Both approaches are concerned with infinitesimal changes
in physical quantities. However, in a sense the differential calculus uses the real quantity, while the
variational calculus employs the imaginary quantity. The notion of variation is imaginary, but the notion
of differential is real!

The biggest advantage of the variation over the differential seems to arise from problems described
as rheonomic systems. Recall that holonomic systems where Lagrange’s equations of motion and Hamil-
ton’s principle are true were classified by Boltzmann into scleronomic and rheonomic systems [Lanczos
1970]. In rheonomic systems, the direction of the differential differs from that of the variation, due to
the presence of the partial derivative of any physical quantity with respect to time depending on time
explicitly. The introduction of the variation enables one to eliminate the time partial derivative term.
However, it is an imaginary and a mathematical abstract quantity.

Most engineering and science applications do not fall into the class of rheonomic systems [Castro
2000]. In scleronomic systems, the direction of the differential is identical to that of the variation.
Therefore, for such applications, the variational approach is not indispensable in deriving governing
equations or in finding approximate solutions. Fortunately, this is the case of most engineering and
science problems.

In particular, the solid mechanics, elastodynamics and continuum mechanics problems to which the
finite element formulations are usually applied are generally scleronomic. Variational formulations are
not indispensable to such applications, and differential formulations also play an important role, as we
now describe.

Contributions of the present approach. Traditional practices for finite element discretization tend to
employ the Newtonian framework. They mostly start from the Cauchy equations of motion and invoke
the variational calculus, leading to the weak form or, equivalently, the principle of virtual work. In
contrast, we have previously provided alternate developments via Hamilton’s law of varying action as a
starting point which is also based on the concept of variations [Har and Tamma 2009]. Unlike all these
past developments, in this paper we employ the differential calculus and frameworks involving scalar
representations, namely, the Lagrangian L(q, q̇) : TQ→ R, the Hamiltonian H( p, q) : T ∗Q→ R, and
the total energy E(q, q̇) : TQ→ R.
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To our knowledge, this use of the differential calculus in describing finite element discretizations is
novel. It provides alternate viewpoints and helps deepen physical insight.

For approximation procedures like the finite element formulation, the basic issue with the conventional
approaches for continuum dynamics is that there is no notion of a scalar function, say energy, that is
readily built-in or directly available. The procedure mostly relies upon numerical discretization of the
governing equations with dependent variables in terms of vector quantities such as displacement, velocity,
acceleration, etc. This gives rise to two issues:

(a) To deal with a physical quantity such as total energy in a finite element computation, or to interpret
the results from a Newtonian viewpoint, one often resorts to introducing the well known scalar
functions typical of the Lagrangian or the Hamiltonian, even though one is not working in the
Lagrangian or Hamiltonian framework.

(b) To establish that the semidiscretized equations (which are of focus here) inherit the same physics as
the continuous governing equations in space and time can be difficult in traditional frameworks, since
no obvious scalar function is available for capitalizing on Noether’s theorem and the like. In our
framework involving scalar representations, by contrast, one can readily establish the symmetries
for the continuous as well as the discrete scalar representations for the total energy, Lagrangian,
and the Hamiltonian. (Proofs of the symmetries of E are given in [Har and Tamma 2009], while
those for L(q, q̇) and H( p, q) appear in the standard literature.) In other words, we propose a new
space-discrete finite element formulation that circumvents the weak-form Cauchy equations and the
principle of virtual work. Although it must yield the same semidiscretized equations on physical
grounds, the new formulation leads more easily to proofs that the discrete system preserves the
physical attributes of the continuum system, via the scalar representations that are invariant. In
summary, if the continuum system obeys the conservation laws, establishing the symmetries for the
semidiscretized system also ensures the same physical attributes as in the continuum system.

The role of symmetries. Noether’s theorem relates the invariance properties of the Lagrangian to the
conservation laws of physics [Noether 1918; Byers 1996; 1999]. Thus, the spatial translational invariance
of the Lagrangian in configuration space gives rise to conservation of linear momentum, its rotational
invariance to conservation of angular momentum, and the autonomous Lagrangian has invariance in time.
The Hamiltonian in phase space shares the same invariance properties, by the Hamiltonian version of
Noether’s theorem; see [Simo et al. 1992], for example. It turns out that the autonomous total energy
(which is not the Hamiltonian, nor it is in the same configuration space as that of the Hamiltonian) also
possesses the three invariances. Hence it can be viewed as a total energy version of Noether’s theorem
[Har and Tamma 2009].

Conservation laws can be extended to the balance laws of mechanical systems, such as the linear
momentum balance law, the angular momentum balance law, and the energy balance law in continuum
mechanics [Marsden and Hughes 1983; Holzapfel 2000; Malvern 1969]. Newton’s law for N -body
dynamical systems or Cauchy’s equations of motion for continuous-body dynamical systems can be
obtained from the linear momentum balance law. We believe that, as the fundamental equation for
N -body dynamical systems, d’Alembert’s principle [Goldstein et al. 2002; Hand and Finch 1998] or
the d’Alembert–Lagrange principle [Arnold 1989] or the generalized d’Alembert principle [Meirovitch
2003] or the Lagrangian form of d’Alembert’s principle [Greenwood 1977] or the first form of the
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fundamental equation [Pars 1965] result from the conceptual amalgamation of the linear momentum
balance law and the principle of virtual work. Note that Lagrange’s equations of motion can be derived
from d’Alembert’s principle; further, Hamilton’s equations of motion can be deduced from Lagrange’s
equations of motion and the Legendre transformation. Thus the linear momentum balance law is at the
origin of all these equations governing motion.

At the same time, it is known that Hamilton’s principle has a logical inconsistency for handling tran-
sient initial value problems [Gurtin 1964a; 1964b; Tonti 1973; 1984; Bailey 1975; Simkins 1981; Carini
and Genna 1998]. Hamilton’s law of varying action, which is not a variational principle, circumvents this
deficiency and is more appropriate to use. However, both approaches use the notion of variation, and with
respect to scalar representations of the governing equations of motion, they are, so to speak, secondary
developments; Lagrange’s equations of motion in configuration space are the first equations encountered
in the logical derivation under these approaches. It is from them that one obtains Hamilton’s equations
in phase space, by applying the Legendre transformation. Unlike the above, the theorem of expended
power first yields naturally the so-called total energy representation of the equations of motion in the
logical derivation in configuration space. Thereafter, employing a particular transformation that is not a
Legendre transformation, one can then define the standard Lagrange equations of motion in configuration
space. Through a Legendre transformation one is then led to Hamilton’s equation in phase space.

As an alternative to the Lagrangian and the Hamiltonian frameworks, we proposed in [Har and Tamma
2009] a framework based on the directly measurable built-in scalar quantity called the total energy
E(q, q̇) : TQ→ R. The total energy has the same translation, rotation, and time invariance properties.
The total energy we use here is the kinetic energy plus the potential energy for N -body systems and the
kinetic energy plus the total potential energy for continuous-body systems.

Figure 1 summarizes the main quantities and equations in the total energy framework, as well as the
traditional Lagrangian and Hamiltonian frameworks, for an N -body system. The figure also indicates the
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Figure 1. Comparison of the autonomous Lagrangian, Hamiltonian, and Total Energy
frameworks for the N -body problem.
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equivalence between the three. As discussed, all three scalar functions (in configuration or phase space as
appropriate) possess spatial invariance under translations and rotations, and also translational time invari-
ance in the autonomous case. This holds equally for finite- and infinite-dimensional dynamical systems.

Via Hamilton’s principle, the total energy framework can be viewed as a third perspective (the first and
second being the Lagrangian and the Hamiltonian), providing meaningful insight. The total energy has
a direct physical interpretation and practical utility, in contrast to the somewhat abstract scalar quantity
that is the Lagrangian L(q, q̇) : TQ→ R in configuration space. The second-order ordinary differential
system arising from the total energy framework after space discretization offers the same features that
apply to the Newtonian description for continuum mechanics, including considerations for designing time
stepping algorithms. By contrast, the Hamiltonian H( p, q) : T ∗Q→ R (which, as we recall, does not
in general represent energy directly) is not as popular for numerical discretization in the computational
mechanics community, because the resulting first-order system requires altogether a different form of
time discretization.

Remark. A different alternative to traditional finite element practices, called the cell method and amount-
ing to a direct discrete formulation of field laws, can be found in the literature [Tonti 2001a; 2001b].
Without resorting to differential governing equations, the discretization procedure is carried out directly
from physical laws using physical variables such as configuration, source, and energy variables. For most
simplex elements, the stiffness matrices obtained by the formulation coincide with the one obtained by
traditional finite element practices. Likewise, our proposed formulation also yields the same stiffness
matrices (as well as the mass and damping matrices, and load vectors) reached by traditional practices.

Outline of paper. In Section 2 we discuss the theorem of expended power — the starting point of our
formulation — in the context of discrete N -body systems; the treatment is extended in Section 3 to
continua. Section 4 is devoted to the consequences to the second law of thermodynamics. In Section 5 we
use the theorem of expended power to provide scalar description formalisms of Lagrangian, Hamiltonian,
and total energy representations equivalent to the Cauchy equations of motion. The application of the
proposed formulation to nonholonomic or nonconservative systems is the subject of Section 6. We turn
in Section 7 to the space-discrete finite element formulation, both in the traditional approaches and in
the new total energy approaches. Section 8 contains numerical examples and illustrations. An Appendix
discusses in detail the space discretization via density formalisms and the finite element formulation.

2. N-body dynamical systems: theorem of expended power

For an illustration of the basic concepts, we focus first on a dynamical system of N particles moving in
three-dimensional Euclidean space. Newton’s equations of motion state that the rate of the total linear
momentum of the constrained system is the total resultant acting on the system:

Mẍ = Fcon+ Fnc+C, ẍ = (ẍ1, . . . , ẍi , . . . , ẍN ) : I→ R3N , t ∈ I= [t1, t2], (1)

where ẍ represents a set of ẍi acceleration vectors of the particles, M the total diagonal mass matrix,
Fcon ∈ R3 the total conservative force, Fnc(t) : I→ R3N , t ∈ I= [t1, t2] the total nonconservative force,
and C ∈ R3 the total constraint force. When the inertia term on the left-hand side of (1) is moved to the
right, we have d’Alembert’s principle, saying that the system is dynamically in equilibrium:

Fcon+ Fnc(t)+C −Mẍ(t)= 0. (2)
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We assume that the constraints are scleronomic (whether holonomic or not), confining the motion to a
smooth surface. Then the constraint force is orthogonal to the velocity, which means it does not contribute
to the virtual work. (Nonconservative forces are sometimes the result of nonholonomic constraints.)

Multiplying both sides of (2) by the velocity ẋ(t) : I→ R3N, t ∈ I= [t1, t2] we have(
Fcon+ Fnc(t)−Mẍ(t)

)
· ẋ(t)= 0, (3)

which can be recast as
ẋ(t) ·Mẍ = Fcon · ẋ(t)+ Fnc(t) · ẋ(t). (4)

By invoking the kinetic energy K(ẋ) : R3
→ R, the potential energy U(x) : R3

→ R, and the power
input Pinput for the N -body system, Equation (4) can be expressed in terms of the total energy E(ẋ, x)
as

dE(ẋ, x)
dt

= Pinput, E(ẋ, x)= K(ẋ)+U(x), Pinput = Fnc(t) · ẋ(t), (5)

where the kinetic energy and the potential energy are defined as

K(ẋ)= 1
2 ẋ(t) ·Mẋ(t), Fcon =−

∂U

∂x
=−∇U(x). (6)

Equation (5) corresponds to the principle of balance of energy for the N -body mechanical system.
Suppose the system is subject to k independent algebraic constraints. The constraints reduce the

number of degrees of freedom to ndof = 3N − k, and can be written in terms of the positions of N
particles as

fi (x1, . . . , xN )= 0, i = 1, . . . , k. (7)

Invoking generalized coordinates q = (q1, . . . , qndof) belonging to a local configuration space Q ⊂ Rndof ,
the velocity in the Cartesian coordinate system can be expressed as

ẋ(q(x))=
∂x
∂q
· q̇, q(x)= (q1(x), . . . , qndof(x)). (8)

Then, (4) can be rewritten in terms of generalized velocities, as

(Mẍ− Fcon) ·
∂x
∂q
· q̇ = Pinput. (9)

This equation can be regarded as an analogue of the first form of the fundamental equation or d’Alembert’s
principle. We have

Mẍ ·
∂x
∂q
=

d
dt

(
Mẋ ·

∂x
∂q

)
−Mẋ ·

∂ ẋ
∂q
=

d
dt

(
Mẋ ·

∂ ẋ
∂ q̇

)
−Mẋ ·

∂ ẋ
∂q
. (10)

In view of (6), we have the generalized force given as

Q = Fcon ·
∂x
∂q
=−∇U(q). (11)

In terms of the kinetic energy K(q, q̇) and potential energy U(q), Equation (9) can be rewritten as(
d
dt
∂K(q, q̇)
∂ q̇

−
∂K(q, q̇)
∂q

+
∂U(q)
∂q

)
· q̇ = Pinput. (12)
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If the system is scleronomic, the kinetic energy must be quadratic in the generalized velocities [Green-
wood 1977] and have no explicit time dependence. As a consequence, in terms of the autonomous total
energy, (12) gives (

d
dt
∂E(q, q̇)
∂ q̇

+
∂E(q, q̇)
∂q

− 2
∂K(q, q̇)
∂q

)
· q̇ = Pinput, (13)

and in terms of the autonomous Lagrangian L(q, q̇) : TQ→ R, (12) also leads to(
d
dt
∂L(q, q̇)
∂ q̇

−
∂L(q, q̇)
∂q

)
· q̇ = Pinput. (14)

Suppose that there is no external power input. Since the generalized velocities are arbitrary, the governing
equations of motion can be obtained as

d
dt
∂E(q, q̇)
∂ q̇

+
∂E(q, q̇)
∂q

− 2
∂K(q, q̇)
∂q

= 0 or
d
dt
∂L(q, q̇)
∂ q̇

−
∂L(q, q̇)
∂q

= 0. (15)

In the special case that the kinetic energy does not depend on the generalized coordinates, we have

d
dt
∂E(q, q̇)
∂ q̇

+
∂E(q, q̇)
∂q

= 0. (16)

Integrating both sides of (12) over the given time interval I= [t1, t2], we have∫ t2

t1

{
d
dt

(
∂K

∂ q̇
· q̇−K+U

)}
dt =

∫ t2

t1
Pinput dt . (17)

For conservative systems, we have no external power input. Then, (17) implies that(
∂K(q, q̇)
∂ q̇

· q̇−K(q, q̇)+U(q)
)∣∣∣∣

t=t1

=

(
∂K(q, q̇)
∂ q̇

· q̇−K(q, q̇)+U(q)
)∣∣∣∣

t=t2

= E(q, q̇). (18)

In terms of the Lagrangian, this equation can be rewritten as(
∂L(q, q̇)
∂ q̇

· q̇−L(q, q̇)
)∣∣∣∣

t=t1

=

(
∂L(q, q̇)
∂ q̇

· q̇−L(q, q̇)
)∣∣∣∣

t=t2

= E(q, q̇). (19)

The term in big parentheses, called Jacobi’s integral [Pars 1965, p. 82; Greenwood 1977], is identical to
the autonomous total energy, which remains constant. Within the Hamiltonian framework, the preceding
equation can be rewritten as(

p · q̇−L(q, q̇)
)∣∣

t=t1
=
(

p · q̇−L(q, q̇)
)∣∣

t=t2
=H(q, p). (20)

We thus arrive at the governing equations of motion in each of the three formalisms:

dE(q, q̇)
dt

=

(
d
dt
∂E(q, q̇)
∂ q̇

+
∂E(q, q̇)
∂q

− 2
∂K(q, q̇)
∂q

)
· q̇ = 0,

d
dt

[
∂L(q, q̇)
∂ q̇

· q̇−L(q, q̇)
]
=

(
d
dt
∂L(q, q̇)
∂ q̇

−
∂L(q, q̇)
∂q

)
· q̇ = 0,

dH( p, q)
dt

=

(
ṗ+

∂H( p, q)
∂q

)
· q̇−

(
q̇−

∂H( p, q)
∂ p

)
· ṗ= 0.

(21)
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Integrating over time we reach the Galerkin time weighted-residual form for N -body dynamical systems
under each formalism. For example, for the total energy formalism,∫ t2

t1

{
d
dt

(
∂E(q, q̇)
∂ q̇

+
∂E(q, q̇)
∂q

− 2
∂K(q, q̇)
∂q

)
· q̇
}

dt = 0. (22)

3. Continuous-body dynamical systems: theorem of expended power

The focus next is on elastodynamics, where a continuous body is parametrized by a simply connected and
bounded open set B, called the reference configuration, assumed to have a piecewise smooth boundary
∂B. The smooth motion of the body may be described by a mapping ϕ(X, t) : B× I→ R3 such that
for each t ∈ I the restriction to B×{t} is one-to-one and smooth; its image S for a given t is called the
current configuration. The set of all such maps is called the configuration space:

C=
{
ϕ(X, t) :B× I→ R3 ∣∣ ϕ is of class C2m (m ≥ 1) in X and t, |∇ϕ|> 0, and ϕ|0∂Bϕ

= ϕ
}
, (23)

where ϕ denotes the prescribed quantity on the prescribed-displacement boundary. Hence, continuous-
body dynamical systems are holonomic. The configuration space is a smooth infinite-dimensional mani-
fold. In the nonpolar case, when distributed body or surface couples are not prescribed, the power input
Pinput (the rate at which the external surface tractions and body forces are doing actual work) is defined
as

Pinput =

∫
B
ρ0 B(X, t) · ϕ̇(X, t) dV +

∫
∂Bσ

T (X, t) · ϕ̇(X, t) d A, (24)

where ρ0(X) :B→ R denotes the referential density, T (X, t) :B× I→ R3 the prescribed traction on
the boundary ∂B, B(X, t) : B× I→ R3 the body force, and d A, dV the Lebesgue measures on the
prescribed–traction boundary ∂Bσ and in the body B. Notice that the body forces are not prescribed,
and the external forces are not dead loads.

Next, invoking Cauchy’s law T (X, t)= P(X, t) · N̂ (X, t) and Gauss’s theorem, we rewrite (24) as

Pinput =

∫
B
ρ0 B(X, t) · ϕ̇(X, t) dV +

∫
B
∇ · (P · ϕ̇) dV , (25)

where P(X, t) denotes the first Piola–Kirchhoff stress tensor (see [Marsden and Hughes 1983], for
example) in the reference configuration. Recall the product rule

∇ · (P · ϕ̇)= (∇ · P) · ϕ̇+ P ·· (∇ϕ̇)= (∇ · P) · ϕ̇+ P ·· Ḟ, (26)

where Ḟ denotes the total time derivative of the deformation gradient tensor, F. Using (26), the power
input can be expressed as

Pinput =

∫
B

{
∇ · P + ρ0 B(X, t)

}
· ϕ̇(X, t)dV +

∫
B

P ·· Ḟ dV . (27)

By virtue of Cauchy’s equations of motion, the power input can be expressed as

Pinput =

∫
B
ρ0ϕ̈ · ϕ̇(X, t) dV +

∫
B

P ·· Ḟ dV . (28)
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The first term on the right is the rate of the system’s kinetic energy; the second is known as the stress
power. As a consequence of (24) and (28), we have the theorem of expended power [Gurtin 1972, p. 110]:

dK

dt
+

∫
B

P ·· Ḟ dV =
∫

B
ρ0 B(X, t) · ϕ̇(X, t) dV +

∫
∂Bσ

T (X, t) · ϕ̇(X, t) d A. (29)

This holds whether the system is mechanical or thermomechanical. In addition, by use of Cauchy’s law,
the theorem of expended power can be readily rewritten as the modified Bubnov–Galerkin weighted
residual form [Mikhlin 1964]∫

B
(∇ · P + ρ0 B− ρ0ϕ̈) · ϕ̇ dV +

∫
∂Bσ

(T − P · N̂) · ϕ̇ d A = 0, (30)

where N̂ denotes the unit vector outward normal to the surface of the body. Thus, we observe that the
theorem of expended power leads to the modified Bubnov–Galerkin weighted residual form, where the
weighting function is the generalized velocity. Note that the traction boundary conditions (Cauchy’s law)
were applied to (24) and Cauchy’s equations were imposed upon (27).

The first law of thermodynamics states that

dK

dt
+

dU
dt
=∫

B
ρ0 B(X, t) · ϕ̇(X, t) dV+

∫
∂Bσ

T (X, t) · ϕ̇(X, t) d A+
∫

B
ρ0 R(X, t) dV−

∫
B
∇·Q(X, t) dV, (31)

where U is the internal energy of the thermomechanical system, Q(X, t) : B× I→ R3 the heat flux
vector, and R(X, t) :B× I→ R the specific distributed internal heat supply. By Cauchy’s law, (31) leads
to ∫

B
(ρ0ϕ̈−∇ · P − ρ0 B) · ϕ̇ dV +

∫
B

(
ρ0
∂Ū
∂t
− P ·· Ḟ− ρ0 R+∇ · Q

)
dV = 0, (32)

which contains two governing equations: Cauchy’s equations of motion and Kirchhoff’s energy equations.
Here Ū denotes the specific internal energy density in the reference configuration. Thus, for thermome-
chanical systems, the two governing equations are coupled; but for mechanical systems Kirchhoff’s
equation of energy implies that the rate of the internal energy is identical to the stress power, namely,

ρ0
∂Ū
∂t
= P ·· Ḟ. (33)

Since the second integral in (32) vanishes owing to Kirchhoff’s equation of energy, we obtain the Bubnov–
Galerkin weighted residual form. Thus, we have the relation between the stress power and the specific
internal energy density in mechanical systems as shown in (33).

4. Continuous-body dynamical systems and the second law of thermodynamics

According to the second law of thermodynamics, the rate of the total entropy of the thermomechanical
system is equal to or greater than the entropy input rate:

d
dt

∫
B
ρ0(X)S(X, t) dV ≥

∫
B
ρ0(X)

R(X, t)
2(X, t)

dV −
∫
∂B

N̂ · Q(X, t)
2(X, t)

d A, (34)
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where S(X, t) is the specific entropy and 2(X, t) is the absolute temperature. This relation is often
called the Clausius–Duhem inequality. In an adiabatic process without heat sources, the total entropy
should be nonnegative:

d
dt

∫
B
ρ0(X)S(X, t) dV ≥ 0. (35)

An application of Gauss’s theorem yields the local form of the principle of entropy inequality:

ρ0(X)
∂S(X, t)
∂t

− ρ0(X)
R(X, t)
2(X, t)

+∇
Q(X, t)
2(X, t)

≥ 0. (36)

The sum of terms on the left-hand side is the rate of entropy production. Use of Kirchhoff’s equation of
energy yields

P ·· Ḟ− ρ0
∂Ū
∂t
+ ρ0(X)2(X, t)

∂S(X, t)
∂t

−
Q(X, t) · ∇2(X, t)

2(X, t)
≥ 0. (37)

Since the entropy production by heat flux should be positive [Coleman and Noll 1963], we have

−
Q(X, t) · ∇2(X, t)

2(X, t)
≥ 0. (38)

Hence (37) can be rewritten as

Dint = P ·· Ḟ− ρ0
∂Ū
∂t
+ ρ0(X)2(X, t)

∂S(X, t)
∂t

≥ 0; (39)

here Dint, the internal dissipation, vanishes if and only if the process is reversible. In view of (39), for
mechanical systems only, the internal dissipation can be rewritten as∫

B
Dint dV = Pinput−

d E
dt
, (40)

where E = K+U is the sum of the kinetic energy and the internal energy. In the literature, E is called
the total energy, but we reserve this term for a more comprehensive quantify; see (50).

In a thermomechanical system, the Helmholtz free energy 9 satisfies

∂9

∂2
=−S. (41)

Via the Legendre transformation, this equation leads to the relation between the specific internal energy
function and the Helmholtz free energy:

Ū (8, S)=9(8,2)+2S, (42)

where 8 denotes an internal state variable. Substituting (42) into (39) leads to

Dint = P ·· Ḟ− ρ0
∂9

∂t
− ρ0S(X, t)

∂2(X, t)
∂t

≥ 0. (43)

In the case of no entropy production or in an isothermal process, this reduces to

Dint = P ·· Ḟ− ρ0
∂9

∂t
≥ 0. (44)
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In a thermodynamic process, a material whose mechanical behavior shows no internal dissipation, is
called perfect [Truesdell and Noll 2004, p. 303]. Then, we have the equality

Dint = P ·· Ḟ− ρ0
∂9

∂t
= 0. (45)

The first Piola–Kirchhoff stress tensor is the thermodynamics force work-conjugate to the deformation
gradient tensor:

P = ρ0
∂9(F)
∂F

. (46)

In a reversible process this equation also holds, so for mechanical systems we have

P ·· Ḟ = ρ0
∂9

∂t
= ρ0

∂U
∂t
=
∂W
∂t
, (47)

where W stands for the elastic potential energy. Regardless of whether the system is thermomechanical
or mechanical, (29) can be written as

dK

dt
+

∫
B
ρ0
∂9

∂t
dV =

∫
B
ρ0 B(X, t) · ϕ̇(X, t) dV +

∫
∂Bσ

T (X, t) · ϕ̇(X, t) d A. (48)

Thus the sum of the rate of the kinetic energy and the rate of the internal energy equals the power input.

5. The theorem of expended power and scalar description formalisms equivalent to the Cauchy
equations of motion: continuous-body dynamical systems

Still under the assumption of scleronomic systems, the power input is

Pinput =

∫
B
ρ0 B(X) · ϕ̇(X, t) dV +

∫
∂Bσ

T (X) · ϕ̇(X, t) d A =−
d5ext

dt
. (49)

In such a system the external loads, including surface tractions and body forces, are dead loads. Therefore,
the system is conservative in the sense that the total energy, which we defined as the sum of the kinetic
energy K(ϕ̇) : TϕC→ R and the total potential energy U(ϕ) : C→ R, is conserved. The body forces and
tractions above are prescribed; as a result, external potential energies do exist. In view of (48) and (49),
the theorem of expended power for perfect continuum materials has the following expression in terms
of a naturally defined total energy:

dE(ϕ, ϕ̇)

dt
= 0, E(ϕ, ϕ̇)= K(ϕ̇)+U(ϕ), U=5int+5ext. (50)

Here U denotes the total potential energy and the internal and external potential energy are defined as

5int =

∫
B
ρ09(F) dV, 5ext =−

∫
B
ρ0 B(X) ·ϕ(X, t) dV −

∫
∂Bσ

T (X) ·ϕ(X, t) d A, (51)

where 9(F) is the Helmholtz free energy per unit mass in homogeneous materials. The autonomous
total energy is defined on the tangent bundle to the configuration space, TC :=

{
(ϕ, ϕ̇) | ϕ ∈C, ϕ̇ ∈ TϕC

}
,

and can be written as

E(ϕ, ϕ̇)=

∫
B

E(ϕ, ϕ̇, F) dV −
∫
∂Bσ

T (X) ·ϕ(X, t) d A, (52)
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Figure 2. The theorem of expended power yields the strong and weak forms for elasto-
dynamics; and their equivalence is shown within the Lagrangian, Hamiltonian, and Total
Energy frameworks. (See also the Appendix.)

where the total energy density function E(ϕ, ϕ̇, F) is defined as

E(ϕ, ϕ̇, F)= 1
2ρ0ϕ̇ · ϕ̇+ ρ09(F)− ρ0 B(X) ·ϕ. (53)

Next, we derive the strong form representation from (50). We first give the scalar description formalism
for deriving the total energy equation of motion from the theorem of expended power. By the chain rule,
the rate of the total energy density function is

dE(ϕ, ϕ̇, F)
dt

=
∂E

∂ϕ
· ϕ̇+

∂E

∂ϕ̇
· ϕ̈+

∂E

∂F
·· Ḟ. (54)

The last term on the right can be represented as

∂E

∂F
·· Ḟ =

∂E

∂F
·· ∇ϕ̇ =∇ ·

(
ϕ̇ ·

∂E

∂F

)
−

(
∇ ·

∂E

∂F

)
· ϕ̇. (55)

Besides, we have
∂E

∂ϕ̇
· ϕ̈ =

d
dt

(
∂E

∂ϕ̇
· ϕ̇

)
−

d
dt

(
∂E

∂ϕ̇

)
· ϕ̇ =

d
dt

(
∂E

∂ϕ̇

)
· ϕ̇ (56)
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because the total energy density function is quadratic in ϕ̇. Substituting (55) and (56) into (54), we find

dE(ϕ, ϕ̇, F)
dt

=

(
∂E(ϕ, ϕ̇, F)

∂ϕ
−

(
∇ ·

∂E

∂F

)
+

d
dt
∂E

∂ϕ̇

)
· ϕ̇+∇ ·

(
ϕ̇ ·

∂E

∂F

)
. (57)

By Gauss’s theorem, the last term on the right yields∫
B
∇ ·

(
ϕ̇ ·

∂E

∂F

)
dV =

∫
∂Bσ

ϕ̇ ·
∂E

∂F
· N̂ d A. (58)

In view of (57) and (58), we obtain from (50)∫
B

(
∂E(ϕ, ϕ̇, F)

∂ϕ
−

(
∇ ·

∂E

∂F

)
+

d
dt
∂E

∂ϕ̇

)
· ϕ̇(X, t) dV −

∫
∂Bσ

(
T (X)−

∂E

∂F
· N̂
)
· ϕ̇(X, t) d A = 0.

(59)

This equation takes the modified Bubnov–Galerkin weighted residual form [Mikhlin 1964] involving
the strong form, namely, the governing equations and the natural boundary conditions are both included.
Since the generalized velocities are arbitrary within the two open sets, we have the governing equations
of motion in terms of the total energy density function as

d
dt

(
∂E

∂ϕ̇

)
=

(
∇ ·

∂E

∂F

)
−
∂E(ϕ, ϕ̇, F)

∂ϕ
in X ∈B, (60)

subject to the traction boundary condition

T (X)−
∂E

∂F
· N̂ = 0 on X ∈ ∂Bσ . (61)

Within the Lagrangian framework, the theorem of expended power for perfect continuum materials re-
duces to

d
{
2K(ϕ̇)−L(ϕ, ϕ̇)

}
dt

= 0, L(ϕ, ϕ̇)= K(ϕ̇)−U(ϕ), (62)

the term in braces being again Jacobi’s integral. On the tangent bundle TC=
{
(ϕ, ϕ̇) | ϕ ∈ C, ϕ̇ ∈ TϕC

}
,

the autonomous Lagrangian L(ϕ, ϕ̇) : TC→ R is defined as the kinetic energy minus the total potential
energy, and so can be written

L(ϕ, ϕ̇)=

∫
B

L(ϕ, ϕ̇, F) dV +
∫
∂Bσ

T (X) ·ϕ(X, t) d A, (63)

where the Lagrangian density function L(ϕ, ϕ̇, F) is defined as

L(ϕ, ϕ̇, F)= 1
2ρ0ϕ̇ · ϕ̇− ρ09(F)+ ρ0 B(X) ·ϕ. (64)

Likewise, in terms of the Lagrangian density function, (62) can be rewritten as∫
B

(
d
dt
∂L

∂ϕ̇
+∇ ·

∂L

∂F
−
∂L(ϕ, ϕ̇, F)

∂ϕ

)
· ϕ̇ dV −

∫
∂Bσ

(
T (X)+

∂L(ϕ, ϕ̇, F)
∂F

· N̂
)
· ϕ̇(X, t) d A = 0.

(65)
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Since the generalized velocities are arbitrary in the body and on the traction boundary surface, we have
the governing equations in terms of the Lagrangian density function as

d
dt
∂L

∂ϕ̇
+

(
∇ ·

∂L

∂F

)
−
∂L(ϕ, ϕ̇, F)

∂ϕ
= 0 in X ∈B, (66)

subject to the traction boundary condition

T (X)+
∂L(ϕ, ϕ̇, F)

∂F
· N̂ = 0 on X ∈ ∂Bσ . (67)

Equation (66) represents the Lagrangian density equations of motion, and is identical to Cauchy’s equa-
tion of motion.

In addition, within the Hamiltonian framework involving the canonical momentum as a new dependent
variable φ ∈ T∗ϕC belonging to the cotangent space, we have

φ =
∂L(ϕ, ϕ̇, F)

∂ϕ̇
= ρ0ϕ̇(X, t). (68)

In view of this, we may define the Hamiltonian density function via the Legendre transformation

H(ϕ,φ, F)= φ · ϕ̇−L(ϕ, ϕ̇, F), (69)

where the Hamiltonian density function in view of (64) is given by

H(ϕ,φ, F)=
1

2ρ0
φ ·φ+ ρ09(F)− ρ0 B(X) ·ϕ. (70)

On the cotangent bundle (phase space) T∗C=
{
(ϕ,φ) | ϕ ∈ C and φ ∈ T∗ϕC

}
, an infinite-dimensional

space, the autonomous Hamiltonian H(ϕ,φ) : T∗C→ R can be defined as

H(ϕ,φ)=

∫
B

H(ϕ,φ, F) dV −
∫
∂Bσ

T (X) ·ϕ(X, t) d A, (71)

where the external forces are dead loads. Then, the theorem of expended power for perfect continuum
materials yields

dH(ϕ,φ)

dt
= 0, H(ϕ,φ)= K(φ)+U(ϕ). (72)

For conservative systems, the Hamiltonian is the kinetic energy plus the total potential energy, just like
the total energy that we previously described. However, the preceding equation is true if and only if the
continuous-body dynamical system is scleronomic (otherwise, the Hamiltonian is not the total energy).
In terms of the Hamiltonian density function, (72) can be rewritten as

dH

dt
=

∫
B

((
φ̇+

∂H

∂ϕ
−∇ ·

∂H

∂F

)
·

dϕ
dt
+

(
∂H

∂φ
− ϕ̇

)
·

dφ
dt

)
dV −

∫
∂Bσ

(
T (X)−

∂H

∂F
· N̂
)
· ϕ̇(X, t) d A

= 0. (73)
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In the Hamiltonian framework, generalized coordinates and generalized momentum are arbitrary. We
readily observe that the rate of the autonomous Hamiltonian contains the strong form, namely, the
Hamiltonian version of Cauchy’s equations of motion and the traction boundary conditions:

φ̇ =−
∂H

∂ϕ
+

(
∇ ·

∂H

∂F

)
, ϕ̇ =

∂H

∂φ
in X ∈B (74)

subject to the traction boundary condition

T (X)−
∂H

∂F
· N̂ = 0 on X ∈ ∂Bσ . (75)

Equation (74) represents the Hamiltonian density equations of motion; they are differential equations of
the first order in time.

6. Application of the proposed formulation to nonholonomic/nonconservative systems

The rate of the total energy, Jacobi integral, and Hamiltonian presented in (50), (62) and (72), respectively,
reflects geometric nonlinearity. However, when the material undergoes contact or impact deformation,
the system is no longer holonomic due to nonlinear contact boundary conditions. Furthermore, if the
external tractions are not dead loads and the body forces are prescribed, an external potential energy for
the tractions cannot be defined and the system is no longer conservative. (The external potential energy
for the body forces can still be defined).

For nonconservative systems (using elastoplastic contact/impact problems as an illustration), with
time-independent body forces, the theorem of expended power for perfect materials leads to

dE(ϕ, ϕ̇)

dt
=

∫
∂Bσ

T (X, t) · ϕ̇ d A, E= K(ϕ̇)+U(ϕ), U=5int+5ext (76)

with

5int =

∫
B
ρ0
∂9

∂t
dV, 5ext =−

∫
B
ρ0 B(X) ·ϕ(X, t) dV ;

that is, the autonomous total energy E(ϕ, ϕ̇) : TC→ R is given by

E(ϕ, ϕ̇)=

∫
B

E(ϕ, ϕ̇, F) dV, E(ϕ, ϕ̇, F)= 1
2ρ0ϕ̇ · ϕ̇+ ρ09(F)− ρ0 B(X) ·ϕ. (77)

External potential energies do not exist in the case of nonconservative forces; accordingly, the total energy
in (76) is not conserved. Note that the total energy in (77) differs from the one in (52) in that the traction
depends on time.

In the Lagrangian framework, the theorem of expended power for perfect materials becomes

d
dt

[∫
B

(
∂L

∂ϕ̇
· ϕ̇−L

)
dV
]
=

∫
∂Bσ

T (X, t) · ϕ̇ d A, L(ϕ, ϕ̇)=K(ϕ̇)−U(ϕ), U=5int+5ext (78)

with

5int =

∫
B
ρ0
∂9

∂t
dV, 5ext =−

∫
B
ρ0 B(X) ·ϕ dV,
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that is, the autonomous Lagrangian L(ϕ, ϕ̇) : TC→ R is given by

L(ϕ, ϕ̇)=

∫
B

L(ϕ, ϕ̇, F) dV, L(ϕ, ϕ̇, F)= 1
2ρ0ϕ̇ · ϕ̇− ρ09(F)+ ρ0 B(X) ·ϕ. (79)

Jacobi’s integral of the system in (78) is not conserved. Note that the Lagrangian in (79) is different from
the one in (63).

Finally, in the Hamiltonian framework, the theorem of expended power for perfect materials becomes

dH(ϕ,φ)

dt
=

∫
∂Bσ

T (X, t) · ϕ̇ d A, H(ϕ,φ)= K(φ)+U(ϕ), U=5int+5ext, (80)

with
5int =

∫
B
ρ0
∂9

∂t
dV, 5ext =−

∫
B
ρ0 B(X) ·ϕ(X, t) dV ;

that is, the autonomous Hamiltonian H(ϕ,φ) : T∗C→ R is given by

H(ϕ,φ)=

∫
B

H(ϕ,φ, F) dV, H(ϕ,φ, F)=
1

2ρ0
φ ·φ+ ρ09(F)− ρ0 B(X) ·ϕ. (81)

For continuum dynamical systems with nonholonomic scleronomic constraints, the rate of the total
energy, Jacobi’s integral, and Hamiltonian is given by∫

∂Bσ

T (X, t) · ϕ̇ d A+
∫
∂Bσc

λ ·
d g
dt

d A, (82)

rather than 0 as in (50), (62) and (72). Here λ is the Lagrange multiplier, g is the impenetrability
condition, and ∂Bσc is the contact boundary surface.

We briefly discuss next the elastoplastic contact/impact finite element formulation in the context of the
total energy framework with the theorem of expended power. An illustrative example will demonstrate
the applicability of the proposed formulation to a wide range of continuum-dynamic problems.

Suppose that we consider two bodies BA,BB that are in contact: that is, the reference configuration
is the open set B = BA

∪BB , with ∂B = ∂BA
∪ ∂BB . The external loads are assumed to be dead

loads. Each body has its own contact boundary surface respectively, namely, ∂σc B = ∂σc BA
∪ ∂σc BB .

As a salient feature of contact/impact problems, an impenetrability condition is imposed on the contact
boundary surface, characterizing the contact boundary conditions as unknown and not prescribed. The
impenetrability condition on the contact surface ∂σc BA can be written as(

ϕ(X A
c , t)−ϕ(X B

c , t)
)
· N̂ A

c (X
A
c , t)= 0, (83)

where ϕ(X A
c , t)= X A

c +U(X A
c , t), U(X A

c , t) being the displacement of the contact point on the body
BA, and N̂ A

c (X A
c , t) is the unit outward vector normal to the contact surface of BA.

In order to have an unconstrained variational formulation, we briefly consider the Lagrange multiplier
method and the penalty method. For further details, see [Laursen 2002; Wriggers 2006].

In view of (83), the Lagrange multiplier method [Papadopoulos et al. 1995] leads to the following
value for the rate of the total energy, Jacobi’s integral, and Hamiltonian:∫

∂Bσ

T (X, t) · ϕ̇ d A+
∫
∂Bc

λ · N̂ B
c (X

A
c , t) ·

(
ϕ̇(X A

c , t)− ϕ̇(X B
c , t)

)
d A, (84)
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where λ is the Lagrange multiplier corresponding to the contact force vector.
In the penalty method, fairly popular in commercial hydro codes [Hallquist 1998; ABAQUS 2002],

the impenetrability condition on the contact surface can be rewritten in terms of the stress tensor as(
P A

c (X
A
c , t)− P B

c (X
B
c , t)

)
· N̂ A

c (X
A
c , t)= T A

c (X
A
c , t)+ T B

c (X
B
c , t)= 0, (85)

where P A
c (X A

c , t), P B
c (X B

c , t) are the first Piola–Kirchhoff stress tensors and T A
c (X A

c , t), T B
c (X B

c , t) are
the contact tractions, which can be calculated by use of some appropriate penalty parameter [Hallquist
et al. 1985]. Then, Equation (84) for contact-impact problems with nonholonomic constraints gives the
following value for the rate of the total energy, Jacobi’s integral, and Hamiltonian:∫

∂Bσ

T (X, t) · ϕ̇ d A+
∫
∂Bc

(P A
c − P B

c ) · N̂
A
c · ϕ̇ d A, (86)

where P A
=−L/∂F = E/∂F =H/∂F on ∂σc BA and P B

=−L/∂F = E/∂F =H/∂F on ∂σc BB , and
N̂ A

c =−N̂ B
c .

If frictional contact on the contact surface is considered, the frictional contact force should be included
in the external force on the right hand side. The contact forces can be obtained by several methods; for
example we can consider the master-slave sideline algorithm [Hallquist et al. 1985] in the penalty method
or the Lagrange multiplier in the Lagrange multiplier method [Papadopoulos et al. 1995].

Next, we often encounter material nonlinearity in contact/impact problems or in finite deformation
problems [Simo and Hughes 1998]. For convenience, we consider hyperelastic-plastic material behavior
[Belytschko et al. 2000; Simo and Hughes 1998], because we have used the total Lagrangian description
[Hibbitt et al. 1970] in this work. From a phenomenological viewpoint, the multiplicative decomposition
of the deformation gradient tensor [Lee and Liu 1967; Lee 1969; Simo and Hughes 1998; Nemat-Nasser
1982; Asaro and Lubarda 2006] has been used in the context of not only phenomenological polycrys-
talline plasticity, but also single crystal metal plasticity as follows:

F(X, t)= Fe(X, t) · F p(X, t). (87)

This motivates one to introduce the intermediate configuration B between the reference configuration
B and the current configuration S. In (87) the plastic part of the total deformation gradient tensor
F p(X, t) characterizes the plastic flow in the body, while the elastic part F p(X, t) is the portion caused
by stretching and rotation of the crystal lattice. The first Piola–Kirchhoff stress tensor in the intermediate
configuration is

P̄ =−
∂L

∂Fe =
∂E

∂Fe =
∂H

∂Fe = ρ0
∂9̄(Fe)

∂Fe = Fe S̄, (88)

where S̄ stands for the second Piola–Kirchhoff stress tensor in the intermediate configuration. Then, the
relation of the stress tensors between configurations can be obtained by the push-forward or pull-back
operations. For instance, the second Piola–Kirchhoff stress tensor in the reference configuration is

S= F p−1 S̄ · F p−T
= F−1 P . (89)

In general, the radial return mapping scheme, as a stress update algorithm [Simo and Hughes 1998], can
be employed to find the stress on the yield surface at every time step. Therefore, the internal force can
be calculated by use of the updated stress.
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7. Space-discrete finite element formulation in the three formalisms

We now present a novel numerical discretization approach that is significantly different from traditional
practices for transient/dynamic applications. We must start by saying that from a practical point of view,
it is impossible to choose the admissible trial functions satisfying both the natural boundary conditions
(traction boundary conditions) and the essential boundary conditions. The weighted residual forms with-
out natural boundary conditions are difficult to apply in practice, because the trial functions must satisfy
both the essential and natural boundary conditions. The trial functions must fulfill this requirement
because in the use of the weighted residual form the errors should be minimized in the satisfaction of the
differential equations (governing equations) and boundary conditions. If the weighted residual form is
given by the governing equations only, there is no mechanism by which errors in the satisfaction of the
boundary conditions would be minimized. However, as shown in (59), (65) and (73), the rate of the total
energy, Jacobi integral, and Hamiltonian presented in (50), (62) and (72) contains the weighted residual
forms in terms of the governing equation and natural boundary conditions. Hence, as in the Ritz solution,
which operates on the functional corresponding to the problem, the natural boundary conditions are
contained implicitly in the functional; the rate equation contains implicitly both the governing equations
and natural boundary conditions. In that sense, therefore, there is a mechanism by which the errors in the
satisfaction of the governing equations and natural boundary conditions are minimized, when substituting
the trial functions into the rate of the total energy, Jacobi integral, or Hamiltonian to discretize the space
[Bathe 1982, p. 108; Cook et al. 2002, p. 136; Zienkiewicz et al. 2005, p. 61; Reddy 2006, p. 74]. As
a consequence, the errors in the satisfaction of (59), (65) and (73) could be minimized by making use
of the admissible trial functions satisfying the essential boundary conditions. Firstly, focusing on the
total energy framework and the Lagrangian framework, the admissible trial functions ϕ̃ are required to
be piecewise continuous, but they should be continuous along the interelement boundaries. They may be
represented by a linear combination of coordinate functions Nh

i (X) and generalized coordinates ϕ̃h
i (t):

ϕ̃(X, t)≡ ϕ̃h(X, t)=
nnode∑
i=1

Nh
i (X)ϕ̃

h
i (t)= Nq,

q(t)=
{
ϕ̃h

1 (t) . . . ϕ̃
h
nnode

(t)
}T
∈ Q ⊂ Rndof=3nnode, M =

∫
B
ρ0 NT N dV .

(90)

Note that the trial functions depend on space and time.
In the Hamiltonian framework, the admissible trial functions ϕ̃ and φ̃ are required to be piecewise

continuous, but they must be continuous along the interelement boundaries. They may be represented
by a combination of interpolation functions and nodal variables:

ϕ̃(X, t)= ϕ̃h(X, t)=
nnode∑
i=1

Nh
i (X)ϕ̃

h
i (t)=Nq, φ̃(X, t)= φ̃h(X, t)=

nnode∑
i=1

Nh
i (X)φ̃

h
i (t)=ρ0 Nq̇,

q(t)=
{
ϕ̃h

1 (t) . . . ϕ̃
h
nnode

(t)
}T
∈Q⊂R3nnode, p(t)=Mq̇(t)∈T∗q Q⊂R3nnode, M=

∫
B
ρ0 NT N dV .

(91)

In continuum dynamics, a body can be approximated by a finite number of subdomains, say finite
elements. Therefore, the whole domain is assumed to consist of an assemblage of finite elements. Di-
rectly starting the discretization process via the rate given in (50), (62) and (72), we may choose the same
admissible trial functions in (90) and (91) as the assumed displacement field functions, without involving
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test or weighting functions when the discrete total energy or Lagrangian differential operator, which is
discussed below, is employed to obtain the semidiscrete second order in time differential equations.

In addition, we may choose the same admissible trial functions in (91) as the assumed displacement
and canonical momentum field functions, without involving test or weighting functions when the discrete
Hamiltonian differential operator, which is also discussed below, is employed to obtain the semidiscrete
first order in time differential equations. For simplicity, we introduce a phase space with generalized
coordinates and canonical momenta, denoted by T ∗Q =

⋃
q∈Q T∗q Q, that is,

T ∗Q :=

{
(q, p)

∣∣∣∣ q(t)=
{
ϕ̃h

1 (t) . . . ϕ̃
h
nnode

(t)
}T
∈ Q ⊂ Rndof=3nnode,

p(t)= Mq̇(t) ∈ T∗q Q ⊂ Rndof=3nnode, M =
∫

B ρ0 NT N dV

}
. (92)

Upon substituting (90) into (50), the rate of the total energy can be discretized in space as follows

dEh(ϕ̃h, ˙̃ϕh)

dt
=

d
dt

{∫
B
ρ0 ˙̃ϕ

h
· ˙̃ϕh dV −Lh(ϕ̃h, ˙̃ϕh)

}
= 0, (93)

where the autonomous space-discrete total energy for finite-dimensional systems is given by

Eh(ϕ̃h, ˙̃ϕh)=

∫
B

E
h
(ϕ̃h, ˙̃ϕh, F̃h) dV −

∫
∂Bσ

T (X) · ϕ̃h(X, t) d A = Eh(q, q̇), (94)
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Figure 3. Space-discrete finite element formulation in the Lagrangian, Hamiltonian,
and Total Energy frameworks, and their equivalence.
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while the autonomous space-discrete Lagrangian for finite-dimensional systems is simply constructed as

Lh(ϕ̃h, ˙̃ϕh)=

∫
B

L
h
(ϕ̃h, ˙̃ϕh, F̃h) dV +

∫
∂Bσ

T (X) · ˙̃ϕh(X, t) d A = Lh(q, q̇). (95)

In terms of generalized coordinates within the total energy framework, (93) can be rewritten as

dEh(q, q̇)
dt

=

{
∂Eh(q, q̇)

∂q
+

d
dt

(
∂Eh(q, q̇)

∂ q̇

)}
· q̇ = 0, (96)

where the space-discrete total energy in the direct notation is given by

Eh(q, q̇)= 1
2 q̇ ·Mq̇+5h

int− q · Fext, 5h
int =

∫
B
ρ09(Fh) dV M =

∫
B
ρ0 NT N dV ,

∂Eh(q, q̇)
∂q

= Fint− Fext Fint =

∫
B

B̄T P dV, Fext =

∫
B
ρ0 N T B dV +

∫
∂Bσ

NT T d A,
(97)

where B̄ denotes the strain matrix and N the interpolation matrix.
Within the Lagrangian framework, in lieu of (96), we have

d
dt

{
∂Lh(q, q̇)

∂ q̇
· q̇−Lh(q, q̇)

}
=

{
∂Lh(q, q̇)

∂q
−

d
dt

(
∂Lh(q, q̇)

∂ q̇

)}
· q̇(t)= 0, (98)

where the space-discrete autonomous Lagrangian is constructed as follows

Lh(q, q̇)= 1
2 q̇ ·Mq̇−5h

int+ q · Fext, 5h
int =

∫
B
ρ09(Fh) dV, M =

∫
B
ρ0 NT N dV ,

∂Lh(q, q̇)
∂q

= Fext− Fint, Fint =

∫
B

B̄T P dV, Fext =

∫
B
ρ0 NT B dV +

∫
∂Bσ

NT T d A.
(99)

The admissible trial functions we used previously to discretize the rate of the total energy or Jacobi’s
integral are of class Cm−1(B), like the trial functions applied to the principle of virtual work in (A.3).
Because Equations (96) and (98) are equivalent to the discretization of the principle of virtual work in
(A.3), discretizing the rate of the total energy or Jacobi’s integral via admissible trial functions leads to
the minimization of the errors arising from imposing the admissible trial functions into the weak form.

We next consider the Hamiltonian framework. Upon substituting (91) into (72), the rate of the Hamil-
tonian can be discretized in space as follows

dHh(ϕ̃h, ϕ̃h)

dt
= 0, (100)

where the space-discrete autonomous Hamiltonian for finite-dimensional systems can be simply con-
structed utilizing the Hamiltonian density function:

Hh(ϕ̃h, ϕ̃h)=

∫
B

H
h
(ϕ̃h, ϕ̃h, Fh) dV −

∫
∂Bσ

T (X) · ϕ̃h(X, t) d A =Hh(q, p). (101)
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In terms of the generalized coordinates and canonical momenta, (100) can be rewritten as

dHh(q, p)
dt

=

(
ṗ+

∂Hh

∂q

)
· q̇−

(
q̇−

∂Hh

∂ p

)
· ṗ= 0, (102)

where the space-discrete autonomous Hamiltonian consists of the space-discrete autonomous kinetic and
potential energies:

Hh(q, p)= Kh( p)+Uh(q), Kh( p)= 1
2 p ·M−1 p, Uh(q)=5h

int− q · Fext,

5h
int =

∫
B
ρ09(Fh)dV,

∂Hh

∂q
= Fint− Fext, M =

∫
B
ρ0 NT N dV ,

Fint =

∫
B

B̄T P dV, Fext =

∫
B
ρ0 NT B dV +

∫
∂Bσ

NT T d A.

(103)

Here P is the first Piola–Kirchhoff stress tensor, B the strain matrix, and N the interpolation matrix.
Note that the admissible trial functions we used previously to discretize the rate of the Hamiltonian are
of class Cm−1(B) as the trial functions applied to the principle of virtual work in Equation (A.5) of
the Appendix. We stress again that the discretization of the rate of the Hamiltonian as given in (100)
corresponds to the discretization of the principle of virtual work in (A.6). Therefore, discretizing the rate
of the Hamiltonian by the admissible trial functions automatically leads to the minimization of the errors
arising from the approximating functions in association. The expression in (97), (99) and (103) holds
regardless of whether material/geometric nonlinearity of the body exists or not.

In contrast to traditional practices (see the Appendix via the three formalisms but with “density forms
of representation”, instead of standard Newton-based Cauchy equations of motion, as a starting point),
for space discretization we simply adopt the following procedure. In view of (96), we introduce the
discrete total energy differential operator

ED =
d
dt

∂

∂ q̇
+
∂

∂q
(104)

by which the space-discrete finite element equations of motion can be readily obtained after constructing
the space-discrete total energy which only entails the use of trial functions. Upon substituting the space-
discrete total energy into the discrete total energy differential operator, we obtain

ED(E
h)= 0⇒

d
dt
∂Eh

∂ q̇
+
∂Eh

∂q
= 0, (105)

where the dependent state variable is the space-discrete total energy. Likewise, in view of (98), we first
introduce the discrete Lagrangian differential operator

LD =
d
dt

∂

∂ q̇
−
∂

∂q
; (106)

upon substituting this operator into the discrete Lagrangian differential operator, we obtain

LD(L
h)= 0⇒

d
dt
∂Lh

∂ q̇
−
∂Lh

∂q
= 0, (107)
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where the dependent state variable is the space-discrete Lagrangian. The discrete total energy and La-
grangian differential operators above imply that errors associated with governing equations and natural
boundary conditions are implicitly minimized when the admissible trial functions satisfying the essential
boundary conditions are chosen. Thus, we readily have the space discrete finite element equations of
motion governing the mechanical dynamic behavior of the continuous-body within the total energy and
Lagrangian frameworks:

Mq̈+ Fint− Fext = 0. (108)

In view of (102), we introduce the discrete Hamiltonian differential operators

HD1 = ṗ+
∂

∂q
, HD2 = q̇−

∂

∂ p
(109)

and use them to obtain the space-discrete finite element equations of motion can be after constructing
the space-discrete Hamiltonian, which again only entails the use of trial functions. Upon substituting the
space-discrete Hamiltonian into the discrete Hamiltonian differential operator, we have

HD1(H
h)= 0⇒ ṗ+

∂Hh

∂q
= 0, HD2(H

h)= 0⇒ q̇−
∂Hh

∂ p
= 0, (110)

where the dependent state variable is the space-discrete autonomous Hamiltonian. This discussion shows
that errors associated with governing equations and natural boundary conditions are implicitly mini-
mized when the admissible trial functions satisfying the essential boundary conditions are chosen. The
space-discrete finite element equations of motion governing the mechanical dynamic behavior of the
continuous-body within the Hamiltonian framework are then

ṗ+ Fint− Fext = 0, q̇−M−1 p= 0. (111)

In contrast, for elastostatics, the corresponding discrete differential operators are simply ES = ∂/∂q,
LS =−∂/∂q, HS = ∂/∂q, and the finite element static equilibrium equations become

ES(E
h)= 0⇒

∂Eh

∂q
= 0, LS(L

h)= 0⇒−
∂Lh

∂q
= 0, HS(H

h)= 0⇒
∂Hh

∂q
= 0. (112)

These equations describe the now familiar representation with the generalized coordinates corresponding
to the Ritz coefficients. The same remark about optimization made after (110) applies.

Integrating both sides of (96), (98) and (102) over t ∈ I= [t1, t2], we have

Eh(q, q̇)|t=t1 −Eh(q, q̇)|t=t2 =

∫ t2

t1
(Fext− Fint−Mq̈) · q̇ dt = 0, (113)(

∂Lh(q, q̇)
∂ q̇

· q̇−Lh(q, q̇)
)∣∣∣∣

t=t1

−

(
∂Lh(q, q̇)

∂ q̇
· q̇−Lh(q, q̇)

)∣∣∣∣
t=t2

=

∫ t2

t1
(Fext−Fint−Mq̈) · q̇ dt = 0,

Hh(q, p)|t=t2 −Hh(q, p)|t=t1 =

∫ t2

t1

(
( ṗ+ Fint− Fext) · q̇− (q̇−M−1 p) · ṗ

)
dt = 0.

The first two of these equations have the Bubnov–Galerkin weighted residual form in time, while the last
has the hybrid weighted residual form in time. Instead of the virtual displacement, the equations in (113)
take the generalized velocity as the weighting function. Hence, (113) can be used as a critical equation
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to discretize the time domain. The first two equations in (113) may be regarded as an unconstrained
generalized velocity formulation with a single dependent field variable in the time domain; thus we have
the single-field generalized velocity problem within the total energy or Lagrangian framework. The last
equation in (113) may be regarded as an unconstrained formulation with two dependent field variables
in the time domain; thus we have the hybrid two-field problem within the Hamiltonian framework. In
general, the time weighted-residual method [Tamma et al. 2000; Masuri et al. 2009a; 2009b] or the
time finite element procedure [Simkins 1981; Aharoni and Bar-Yoseph 1992] can be applied to (113) for
developing time stepping schemes.

In the presence of nonconservative forces such as contact forces on the contact boundary surfaces of
nonholonomic systems, we have

dEh(ϕ̃h, ˙̃ϕh)

dt
or

d
dt

{∫
B
ρ0 ˙̃ϕ

h
· ˙̃ϕhdV −Lh(ϕ̃h, ˙̃ϕh)

}
or

dHh(ϕ̃h, φ̃h)

dt

=

∫
∂Bσ

T (X, t) · ˙̃ϕh(X, t) d A+
∫
∂Bc

(P A
c − P B

c ) · N̂
A
c ·
˙̃ϕh d A. (114)

Hence, Equations (96), (98) and (102) can be rewritten as

dEh(q, q̇)
dt

=
d
dt

(∂Eh

∂ q̇

)
+
∂Eh

∂q
= (Fext+ Fcontact) · q̇,

d
dt

(
∂Lh(q, q̇)

∂ q̇
· q̇−Lh(q, q̇)

)
=

(
∂Lh(q, q̇)

∂q
−

d
dt
∂Lh(q, q̇)

∂ q̇

)
· q̇ = (Fext+ Fcontact) · q̇, (115)

dHh(q, p)
dt

=

(
ṗ+

∂Hh

∂q

)
· q̇−

(
q̇−

∂Hh

∂p

)
· ṗ= (Fext+ Fcontact) · q̇,

where Fcontact denotes the contact force vector. Integrating for both sides of each equation over t ∈ I=

[t1, t2] leads to

Eh(q, q̇)|t=t2 −Eh(q, q̇)|t=t1 =

∫ t2

t1

(
(Mq̈+ Fint) · q̇

)
dt =

∫ t2

t1
(Fext+ Fcontact) · q̇ dt,(

∂Lh(q, q̇)
∂ q̇

· q̇−Lh(q, q̇)
)∣∣∣∣

t=t2

−

(
∂Lh(q, q̇)

∂ q̇
· q̇−Lh(q, q̇)

)∣∣∣∣
t=t1

=

∫ t2

t1

(
(Mq̈+ Fint) · q̇

)
dt =

∫ t2

t1
(Fext+ Fcontact) · q̇ dt, (116)

Hh(q, p)|t=t2 −Hh(q, p)|t=t1 =

∫ t2

t1

(
( ṗ+Fint) · q̇− (q̇−M−1 p) · ṗ

)
dt =

∫ t2

t1
(Fext+ Fcontact) · q̇ dt .

The first two of these equations above can be recast as∫ t2

t1

(
(Mq̈+ Fint− Fext− Fcontact) · q̇

)
dt = 0, (117)

which has the Bubnov–Galerkin weighted residual form in time. The weighting function is still the
generalized velocity. Hence, (117) can be used as a critical equation to discretize the time domain.
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Similarly, the last equation in (116) yields∫ t2

t1

(
( ṗ+ Fint− Fext− Fcontact) · q̇− (q̇−M−1 p) · ṗ

)
dt = 0, (118)

which has the hybrid weighted residual form in time. The weighting functions are the rates of the
canonical coordinates. Hence, (118) can be also used as a critical equation to discretize the time domain
[Aharoni and Bar-Yoseph 1992].

8. Numerical examples and illustrations

We consider two examples, the rotating bar and the Timoshenko beam, to illustrate the concepts discussed.
We assume the systems are conservative and the materials undergo perfectly elastic deformations without
producing entropy.

8.1. Rotating bar. Consider the dynamical behavior of a rotating bar described by the function J (x),
the polar moment of area about the center of the cross-section. As the dependent variable, we take the
angle θ(x, t) of rotation about the axial axis. The kinetic energy is purely rotational:

K(θ̇)=
1
2

∫
l
ρ J (x)θ̇2 dx . (119)

Let G be the shear modulus. The torque MT (x, t) causing the bar to rotate can be written as

MT (x, t)= G J (x)θ ′(x, t), θ ′(x, t)=
∂θ(x, t)
∂x

. (120)

The total potential energy of the bar subject to the distributed torque m̄(x, t) is given by

U(θ)=
1
2

∫
l

MT (x, t)θ ′(x, t) dx −
∫

l
m̄T (x)θ(x, t) dx

=
1
2

∫
l
G J (x)

(
θ ′(x, t)

)2 dx −
∫

l
m̄T (x)θ(x, t) dx .

(121)

In view of (119) and (121), the Lagrangian is

L(θ, θ̇)=

∫
l
L(θ, θ̇ , θ ′) dx +

∫
l
m̄T (x)θ(x, t) dx, (122)

where the Lagrangian density function is defined as

L(θ, θ̇ , θ ′)= 1
2ρ J (x)θ̇2

−
1
2 G J (x)

(
θ ′(x, t)

)2
. (123)

The total energy is

E(θ, θ̇)=

∫
l
E(θ, θ̇ , θ ′) dx −

∫
l
m̄T (x)θ(x, t) dx, (124)

where the total energy density function is defined as

E(θ, θ̇ , θ ′)= 1
2ρ J (x)θ̇2

+
1
2 G J (x)

(
θ ′(x, t)

)2
. (125)
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The total time derivative of the total energy is therefore

dE(θ, θ̇ , θ ′)

dt
=

∫
l

dE(θ, θ̇ , θ ′)

dt
dx −

∫
l
m̄T (x)θ(x, t) dx = 0, (126)

or equivalently,

dE(θ, θ̇ , θ ′)

dt
=

∫
l

(
∂E

∂θ
+

d
dt
∂E

∂θ̇
−
∂

∂x
∂E

∂θ ′
− m̄T (x)

)
θ̇ dx +

∂E

∂θ ′
θ̇

∣∣∣∣l
0
= 0. (127)

Therefore, the governing equation is

d
dt
∂E

∂ ẏ
=
∂

∂x
∂E

∂θ ′
−
∂E

∂θ
+ m̄T (x), (128)

subject to the boundary condition (
∂E

∂θ ′
θ̇

)∣∣∣∣l
0
= 0. (129)

Turning now to the Lagrangian framework, the rate of Jacobi’s integral is∫
l

(
d
dt

(∂L

∂θ̇

)
θ̇ −

∂L

∂θ ′
θ̇ ′
)

dx −
∫

l
m̄T (x)θ̇ dx = 0, (130)

or equivalently ∫
l

(
d
dt
∂L

∂θ̇
+
∂

∂x
∂L

∂θ ′
− m̄T (x)

)
θ̇ dx −

∂L

∂θ ′
θ̇

∣∣∣∣l
0
= 0. (131)

Therefore, the governing equation is

d
dt
∂L

∂θ̇
+
∂

∂x
∂L

∂θ ′
− m̄T (x)= 0 (132)

subject to the boundary condition (
∂L

∂θ ′
θ̇

)∣∣∣∣l
0
= 0. (133)

Substituting the total energy or Lagrangian density function into the corresponding governing equa-
tions, we obtain the equation of motion

ρ J (x)θ̈ =
∂

∂x

(
G J (x)

∂θ(x, t)
∂x

)
+ m̄T (x), (134)

subject to the boundary condition

G J (x)
∂θ(x, t)
∂x

θ̇ (x, t)
∣∣∣∣l
0
= 0. (135)

Within the Hamiltonian framework, the generalized momentum can be written

φ =
∂ L̄
∂θ̇
= ρ J (x)θ̇ . (136)

We find the Hamiltonian density function by Legendre transformation:

H(θ, φ, θ ′)= φθ̇ −L(θ, θ̇ , θ ′). (137)
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The continuous Hamiltonian is therefore

H(θ, φ)=

∫
l
H(θ, φ, θ ′) dx −

∫
l
m̄T (x)θ(x, t) dx . (138)

and its total time derivative is

dH(θ, φ)

dt
=

∫
l

dH(θ, φ, θ ′)

dt
dx −

∫
l
m̄T (x)θ(x, t)dx . (139)

The total time derivative of the autonomous Hamiltonian can be rewritten as

dH(θ, φ)

dt
=

∫
l

{(
∂

∂x
∂H

∂θ ′
−
∂H

∂θ
−

dφ
dt
+ m̄T (x)

)
θ̇ +

(
θ̇ −

∂H

∂φ

)
φ̇

}
dx +

(
∂H

∂θ ′
θ̇

)∣∣∣∣l
0
= 0. (140)

Thus, the governing equations are

dφ
dt
=
∂

∂x
∂H

∂θ ′
−
∂H

∂θ
+ m̄T (x), and θ̇ −

∂ H̄
∂φ
= 0, (141)

subject to the boundary condition (
∂H

∂θ ′
θ̇

)∣∣∣∣l
0
= 0. (142)

Substituting the Hamiltonian density function (137) into (141), we obtain the equations of motion, a set
of first-order differential equations:

φ̇ =
∂

∂x

(
G J (x)

∂θ(x, t)
∂x

)
+ m̄T (x), θ̇ =

φ

ρ J (x)
, (143)

subject to the boundary condition

G J (x)
∂θ(x, t)
∂x

θ̇ (x, t)
∣∣∣∣l
0
= 0. (144)

Next, we discuss the development of semidiscrete differential equations of motion in the three for-
malisms. The trial functions are approximated as

θh(x, t)= N(x) · q(t), θ̇h(x, t)= N(x) · q̇(t),
∂θh(x, t)
∂x

= B(x) · q(t),

φh(x, t)= ρ J (x)N(x) · q̇(t), M = 1
2

∫
l
ρ J (x)NT(x)N(x)dx, (145)

q(t)=
(
θh

1 (t), θ
h
2 (t), . . . , θ

h
nnode

(t)
)
, q̇(t)=

(
θ̇h

1 (t), θ̇
h
2 (t), . . . , θ̇

h
nnode

(t)
)
, p= Mq̇(t).

Then, we have the space-discrete kinetic and potential energies given by

Kh(q̇)= 1
2 q̇(t) ·Mq̇(t) or Kh( p)= 1

2 p(t) ·M−1 p(t), Uh(q)= 1
2 q(t) · K (x)q(t)− q(t) · Fext, (146)

where the stiffness matrix and the external force are

K (x)=
∫

l
G J (x)BT(x)B(x) dx and Fext =

∫
l

NT(x)m̄T (x) dx . (147)
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Hence, the space-discrete autonomous Lagrangian, Hamiltonian and total energy are given by

Lh(q, q̇)= Kh(q̇)−Uh(q)= 1
2 q̇(t) ·Mq̇(t)− 1

2 q(t) · K (x)q(t)+ q(t) · Fext, (148)

Eh(q, q̇)= Kh(q̇)+Uh(q)= 1
2 q̇(t) ·Mq̇(t)+ 1

2 q(t) · K (x)q(t)− q(t) · Fext, (149)

Hh(q, p)= Kh( p)+Uh(q)= 1
2 p(t) ·M−1 p(t)+ 1

2 q(t) · K (x)q(t)− q(t) · Fext. (150)

Substituting Lh(q, q̇) and Eh(q, q̇) into the corresponding discrete differential operators given by (106)
and (104) we get the semidiscrete equations of motion:

LD(L
h)≡ ED(E

h)= 0⇒ Mq̈+ K q− Fext = 0. (151)

Similarly, substituting Hh(q, p) into the discrete Hamiltonian differential operators defined by (109)
yields the semidiscrete equations of motion

HD1(H
h)= 0⇒ ṗ+ K q− Fext = 0, HD2(H

h)= 0⇒ q̇−M−1 p= 0. (152)

8.2. Timoshenko beam. As an illustration typical of a more complicated numerical example in the class
of structural dynamical systems, we consider the dynamical behavior of the Timoshenko beam with A(x),
the cross-sectional area and I (x), the area moment per unit length about the neutral axis of the cross-
section. It is governed by two differential equations, because of the presence of two dependent variables
such as the transverse deflection y(x, t) and the angle of rotation ϕ(x, t) due to bending moment acting
on the beam subject to transverse distributed load ω̄(x). The reason for us to illustrate the Timoshenko
beam problem is that the mechanics of the beam reflects the effect of rotary inertia of the beam mass
as well as the translational kinetic motion effect. Thus, the proposed space-discrete formulation readily
facilitates a simple and straightforward derivation of the space-discrete finite element equations of motion
over the traditional principle of virtual work.

In matrix and vector notation, the continuous total energy of the Timoshenko beam can be written

E(u, u̇)=
∫

l
E(u, u̇, u′) dx −

∫
l
ω̄(x)a · u dx, u′T =

(
∂y(x, t)
∂x

,
∂ϕ(x, t)
∂x

)
, aT

= (1, 0), (153)

where the total energy density function can be defined as

E(u, u̇, u′)= 1
2 u̇ · ρ u̇+ 1

2κ · Dbκ +
1
2γ · Gsγ , κ =

[∂ϕ
∂x

]
, Db = [E I (x)],

γ =

[
∂y(x, t)
∂x

−ϕ(x, t)
]
, Gs = [κG A(x)].

(154)

In the context of the Lagrangian framework, the continuous Lagrangian of the Timoshenko beam is

L(u, u̇)=
∫

l
L(u, u̇, u′) dx +

∫
l
ω̄(x)a · u dx, (155)

where the Lagrangian density function can be defined as

L(u, u̇, u′)= 1
2 u̇ · ρ u̇− 1

2κ · Dbκ −
1
2γ · Gsγ . (156)
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Then, the rate of the total energy gives

dE(u, u̇)
dt

=

∫
l

dE(u, u̇, u′)
dt

dx −
∫

l
ω̄(x)a · u̇ dx = 0. (157)

Within the Lagrangian framework, the rate of Jacobi’s integral can be expressed

d
dt
(2K(u̇)−L(u, u̇))=

∫
l

d
dt

{
∂L(u, u̇, u′)

∂ u̇
· u̇−L(u, u̇, u′)

}
dx −

∫
l
ω̄(x)a · u̇ dx = 0. (158)

Consequently, (157) and (158) result in respectively∫
l

{(
∂E

∂u
+

d
dt
∂E

∂ u̇
−
∂

∂x
∂E

∂u′
− ω̄(x)a

)
· u̇
}

dx +
(
∂E

∂u′
· u̇
)∣∣∣∣l

0
= 0,

∫
l

{(
∂L

∂u
−

d
dt
∂L

∂ u̇
−
∂

∂x
∂L

∂u′
+ ω̄(x)a

)
· u̇
}

dx +
(
∂L

∂u′
· u̇
)∣∣∣∣l

0
= 0,

(159)

where both governing equations and natural boundary conditions are included. The governing equations
in terms of the Lagrangian and total energy density functions are

∂L

∂u
−

d
dt
∂L

∂ u̇
−
∂

∂x
∂L

∂u′
+ ω̄(x)a = 0 and

∂E

∂u
+

d
dt
∂E

∂ u̇
−
∂

∂x
∂E

∂u′
− ω̄(x)a = 0, (160)

subject to the natural boundary conditions

∂L

∂u′
· u̇
∣∣∣∣l
0
= 0 and

(
∂E

∂u′
· u̇
)∣∣∣∣l

0
= 0. (161)

In the Hamiltonian framework, the components of the canonical momenta φT(x, t)=
(
φ1(x, t),φ2(x, t)

)
are

φ =
∂L(u, u̇, u′)

∂ u̇
. (162)

The Legendre transformation gives

H(u,φ, u′)= φ(x, t) · u̇(x, t)−L(u, u̇, u′)= 1
2φ · ρ

−1φ+ 1
2κ · Dbκ +

1
2γ ·Gsγ . (163)

Hence, the rate of the continuous Hamiltonian, which is autonomous, yields

dH(u,φ)
dt

= 0, (164)

where the continuous Hamiltonian of the Timoshenko beam can be obtained as

H(u(x, t),φ(x, t))=
∫

l
H(u(x, t),φ(x, t), u′(x, t)) dx −

∫
l
ω̄(x)a · u dx . (165)

Hence, (164) leads to

dH(u,φ)
dt

=

∫
l

{(
u̇−

∂H

∂φ

)
· φ̇+

(
∂

∂x
∂H

∂u′
−
∂H

∂u
−

dφ
dt
+ ω̄(x)a

)
· u̇
}

dx −
∂H

∂u′
· u̇
∣∣∣∣l
0
= 0, (166)



FINITE ELEMENT FORMULATIONS VIA THE THEOREM OF EXPENDED POWER 503

where both governing equations and natural boundary conditions are included. The governing equations
in terms of the Hamiltonian density function can be given by

∂

∂x
∂H

∂u′
−
∂H

∂u
−

dφ
dt
+ ω̄(x)a = 0, u̇−

∂H

∂φ
= 0 (167)

subject to the natural boundary conditions

∂H

∂u′
· u̇
∣∣∣∣l
0
= 0. (168)

Consequently, we have shown the derivation of the two governing equations of motion with the traction
boundary condition via the theorem of expended power. In contrast to following traditional practices,
instead of substituting the admissible functions into the Bubnov–Galerkin weighted residual forms in
(159) and (166), alternatively we construct first the space-discrete Lagrangian, Hamiltonian and total
energy. The admissible trial functions are given by

yh(x, t)= Hy(x)q(t), ϕh(x, t)= Hϕ(x)q(t),

Hy(x)=
[
Ny(x) 0

]
, Hϕ(x)=

[
0 Nϕ(x)

]
,

u = H(x)q(t), u̇ = H(x)q̇(t), HT(x)=
[
HT

y (x) HT
ϕ(x)

]
,

q(t)=
(
yh

1 (t), yh
2 (t), . . . , yh

nnode
(t),ϕh

1 (t),ϕ
h
2 (t), . . . ,ϕ

h
nnode

(t)
)
,

q̇(t)=
(
ẏh

1 (t), ẏh
2 (t), . . . , ẏh

nnode
(t), ϕ̇h

1 (t), ϕ̇
h
2 (t), . . . , ϕ̇

h
nnode

(t)
)
.

(169)

The space-discrete Lagrangian, Hamiltonian and total energy may be written as

Lh(q, q̇)= 1
2 q̇(t) ·Mq̇(t)− 1

2 q(t) · K q(t)+ q(t) · Fext,

Eh(q, q̇)= 1
2 q̇(t) ·Mq̇(t)+ 1

2 q(t) · K q(t)− q(t) · Fext,

Hh(q, p)= 1
2 p(t) ·M−1 p(t)+ 1

2 q(t) · K q(t)− q(t) · Fext,

M = 1
2

∫
l

H(x)TρH(x) dx, p(t)= Mq̇(t),

Kb =

∫
l

BT
b (x)Db Bb(x)dx, Ks =

∫
l

BT
s (x)Gs Bs(x)dx, K = Kb+ Ks,

Bb =

[
∂Hϕ(x)
∂x

]
, Bs =

[
∂Hy(x)
∂x

− Hϕ(x)
]
, Fext =

∫
l
ω̄(x)HT

y (x) dx,

(170)

where E denotes Young’s modulus, κ the shear correction factor, and G the shear modulus. Substituting
the space-discrete Lagrangian total energy, and Hamiltonian into the corresponding discrete differential
operators (104), (106), (109) leads to the space-discrete finite element equations of motion within the
corresponding frameworks:

LD(L
h)≡ ED(E

h)= 0⇒ Mq̈+ K q− Fext = 0.

HD1(H
h)= 0⇒ ṗ+ K q− Fext = 0, HD2(H

h)= 0⇒ q̇−M−1 p= 0.
(171)
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9. Conclusions

In most renowned textbooks, and historically, the finite element method for elastodynamics applications
has been explained in the sense of the principle of virtual work involving the concept of variations from
various viewpoints. Traditional variational practices and Newton based formulations stemming from the
Cauchy equations of motion cannot readily establish the various symmetries for the semidiscrete system.
In contrast, alternate developments via differential calculus were described involving the theorem of
expended power and scalar representations which provide an improved physical interpretation, and for
also ensuring that the semidiscretized system also inherits the same physics as in the continuous system
by capitalizing on theorems’ such as Noether. In this work, we introduced and showed that the theorem
of expended power involving three distinct frameworks, namely, the Total Energy, the Lagrangian, and
the Hamiltonian density functions is a consistent and viable alternative for deriving the governing equa-
tions with boundary conditions for both N -body and continuous-body scleronomic dynamical systems.
In addition, in contrast to traditional practices, which, after obtaining the model governing equations,
seek to employ the weak form or principle of virtual work with trial and test functions to enacting
the discretization process, we proposed a space-discrete Total Energy, Lagrangian, and Hamiltonian
finite element formulation involving only trial functions to directly discretize the theorem of extended
power, without resorting to traditional practices resulting in the space discrete finite element equations
of motion for continuum-dynamical systems. Extensions to account for non-holonomic constraints were
also described. The equivalence of the three frameworks in terms of the strong and weak forms were
established in relation to describing Newton’s second law and the underlying equation of motion, and
illustrative examples of the rotating bar and Timoshenko beam were demonstrated to describe the basic
ideas.

Appendix: Space discretization via density formalisms and finite element formulation

Alternatively, we herein describe the evolution of traditional practices using as a starting point, the the-
orem of expended power within the total energy density formalism and framework, followed by the
Lagrangian and Hamiltonian frameworks via the corresponding density formalisms. In view of (54) and
(56), the rate of the total energy easily yields the weak form in the sense of the space

dE(ϕ, ϕ̇)

dt
=

∫
B

d
dt

(∂E

∂ϕ̇

)
· ϕ̇ dV +

∫
B

∂E

∂F
·· Ḟ dV +

∫
B

∂E

∂ϕ
· ϕ̇ dV −

∫
∂Bσ

T (X) · ϕ̇ d A = 0. (A.1)

We know that this equation can be obtained when the virtual displacement in the principle of virtual
work is replaced by the generalized velocity. This is the so-called the single field problem; the dependent
variable is the displacement, and one can follow traditional practices of discretization in space and time.
Likewise, the rate of Jacobi’s integral gives the weak form in terms of the Lagrangian density function∫

B

d
dt

(∂L

∂ϕ̇

)
· ϕ̇(X, t) dV −

∫
B

∂L

∂F
·· Ḟ dV −

∫
B

∂L

∂ϕ
· ϕ̇(X, t) dV −

∫
∂Bσ

T (X) · ϕ̇(X, t) d A= 0. (A.2)

Note that the essential boundary conditions become nodal position vectors on nodal points. This is the
conventional process for the Galerkin finite element method [Hughes 1987; Reddy 2006]. Consequently,
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substituting appropriate trial and test functions into (A.1) and (A.2), yields the semidiscrete second order
in time differential equations of motion as

nelem∑
i=1

(∫
Bi

ρ ¨̃ϕh
· ˙̃ϕh dV +

∫
Bi

P̃h
··
˙̃Fh dV −

∫
Bi

ρ0 B(X) · ˙̃ϕh dV −
∫
∂Biσ

T (X) · ˙̃ϕh d A
)
= 0, (A.3)

where Bi stands for the i-th element domain. Notice that (A.3) gives a set of simultaneous N ordinary
time differential equations to be discretized subsequently in time. Therefore, the weak form is the most
important equation to which one must apply both the admissible trial functions ϕ̃(X, t) and the admissible
test functions ˙̃ϕ(X, t) to discretize the domain of interest. From (A.3), we obtain the semidiscrete second
order differential equations, that is, the finite element equations of motion resulting as follows for the
total energy and Lagrangian frameworks:

Mq̈+ Fint− Fext = 0. (A.4)

In addition, within the Hamiltonian framework, the rate of the Hamiltonian yields the weak form in the
sense of the space:∫

B
φ̇ · ϕ̇ dV +

∫
B

∂H

∂F
·· Ḟ dV +

∫
B

∂H

∂ϕ
· ϕ̇ dV −

∫
∂Bσ

T (X) · ϕ̇ d A = 0,

∫
B

(
ϕ̇−

∂H

∂φ

)
· φ̇ dV = 0.

(A.5)

Finally, substituting appropriate trial and test functions into (A.5), we obtain the semidiscrete first order
differential equations of motion:

nelem∑
i=1

( ∫
Bi

˙̃
φh
· ˙̃ϕh dV +

∫
Bi

(∂H

∂ F̃

)h
··
˙̃Fh dV +

∫
Bi

(∂H

∂ϕ

)h
· ˙̃ϕh dV −

∫
∂Biσ

T (X) · ˙̃ϕh d A
)

t = 0,

nelem∑
i=1

(∫
Bi

˙̃ϕh
·
˙̃
φh dV −

∫
Bi

(∂H

∂ϕ̃

)h
·
˙̃
φh dV

)
= 0

(A.6)

which yields

ṗ+ Fint− Fext = 0, q̇−M−1 p= 0. (A.7)

For nonholonomic or nonconservative systems involving contact, (A.1) and (A.2) should be modified:∫
B

d
dt

(∂E

∂ϕ̇

)
·ϕ̇ dV+

∫
B

∂E

∂F
·· Ḟ dV+

∫
B

∂E

∂ϕ
·ϕ̇ dV−

∫
∂Bσ

T (X, t)·ϕ̇ d A =
∫
∂Bc

(P A
c −P B

c )· N̂
A
c ·ϕ̇ d A,

∫
B

d
dt

(∂L

∂ϕ̇

)
·ϕ̇ dV−

∫
B

∂L

∂F
·· Ḟ dV−

∫
B

∂L

∂ϕ
·ϕ̇ dV−

∫
∂Bσ

T (X, t)·ϕ̇ d A =
∫
∂Bc

(P A
c −P B

c )· N̂
A
c ·ϕ̇ d A.
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The discretization of these equations gives

nelem∑
i=1

( ∫
Bi

ρ ¨̃ϕh
· ˙̃ϕh dV +

∫
Bi

P̃h
··
˙̃Fh dV −

∫
Bi

ρ0 B(X) · ˙̃ϕh dV −
∫
∂Biσ

T (X, t) · ˙̃ϕh d A
)

=

nelem∑
i=1

(∫
∂Bic

(P A
c − P B

c ) · N̂
A
c ·
˙̃ϕh d A

)
(A.8)

which finally reduces to
Mq̈+ Fint− Fext = Fcontact. (A.9)

Further, within the Hamiltonian framework, (A.5) should be modified to read∫
B
φ̇ · ϕ̇dV +

∫
B

∂H

∂F
·· Ḟ dV +

∫
B

∂H

∂ϕ
· ϕ̇ dV −

∫
∂Bσ

T (X, t) · ϕ̇ d A =
∫
∂Bc

(P A
c − P B

c ) · N̂
A
c · ϕ̇ d A,∫

B

(
ϕ̇−

∂H

∂φ

)
· φ̇ dV = 0.

Discretization yields

nelem∑
i=1

( ∫
Bi

φ̇h
· ϕ̇h dV +

∫
Bi

(∂H

∂ F̃

)h
··
˙̃Fh dV +

∫
Bi

(∂H

∂ϕ

)h
·ϕ̇h dV −

∫
∂Biσ

T (X, t) · ϕ̇h d A
)

=

nelem∑
i=1

(∫
∂Bic

(P A
c − P B

c ) · N̂
A
c ·
˙̃ϕh d A

)
(A.10)

and
nelem∑
i=1

(∫
Bi

ϕ̇h
· φ̇h dV −

∫
Bi

(∂H

∂φ

)h
· φ̇hdV

)
= 0, (A.11)

which reduce to
ṗ+ Fint− Fext = Fcontact, q̇−M−1 p= 0. (A.12)

Equations (A.8), (A.10) and (A.11) represent the semidiscrete finite element equations of motion for
nonholonomic or nonconservative systems with contact.
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STATIC BENDING ANALYSIS OF LAMINATED CYLINDRICAL PANELS
WITH VARIOUS BOUNDARY CONDITIONS

USING THE DIFFERENTIAL CUBATURE METHOD

S. MAHMOUD MOUSAVI AND MOHAMAD M. AGHDAM

This paper deals with the application of the differential cubature method (DCM) to the bending analysis
of laminated cylindrical panels. Symmetric and unsymmetric laminate, with various combinations of
clamped, simply supported and free boundary conditions, are considered, with either uniform or sinu-
soidal transversely distributed loads. Using first-order shear deformation theory, fifteen first-order partial
differential equations are obtained, containing as many unknowns in terms of displacements, rotations,
moments, and forces. Comparison of the results obtained by DCM shows very good agreement with
those of other numerical and analytical methods, with decreased computational effort. Further, in this
method, a free boundary condition and unsymmetric laminates do not violate the accuracy of the results.

A list of symbols can be found starting on page 519.

1. Introduction

Considerable research has been conducted to investigate the response of thin/thick laminated cylindrical
panels, as one of the fundamental parts of engineering structures. Since only particular elasticity problems
can be studied using analytical methods, numerical techniques have been developed to obtain solutions for
different structural components subjected to various types of loading and boundary conditions. Among
the methods employed we mention the finite difference [Smith 2000], finite element [Qatu and Algothani
1994; Reddy 2004], boundary element [Jianqiao 1988], dynamic relaxation [Ramesh and Krishnamoorthy
1995], and extended Kantorovich methods [Yuan et al. 1998; Alijani et al. 2008], meshless methods
[Alavi et al. 2006], and the differential quadrature (DQ) [Artioli et al. 2005], generalized differential
quadrature (GDQ) [Aghdam et al. 2006], and differential cubature methods (DCM) [Civan 1994; Liew
and Liu 1997; 1998; Teo and Liew 2002; Wu and Liu 2005].

In the literature of the static bending analysis of shells and plates, the free boundary condition has been
a major problem and usually the methods lose their accuracy when there is even one free edge. Although
this is more of a problem with analytical methods than numerical ones, only a few numerical methods —
such as GDQ [Aghdam et al. 2006], FEM [Bhaskar and Varadan 1991], and state space [Khdeir et al.
1989] — can be assumed safe for dealing with static problems involving shells and plates with free edges.
Naturally, then, the development of new methods usable for unsymmetric shells with some free edges is
a desirable goal.

The DCM was presented in [Civan 1994] as an efficient procedure to obtain solutions for partial dif-
ferential equations with a relatively small number of grid points and less computational effort. However,
reported applications of the DCM in the open literature are restricted to analyses of plates, including

Keywords: cylindrical panel, unsymmetric laminates, differential cubature method, bending analysis.
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bending [Liew and Liu 1997; 1998; Teo and Liew 2002] and vibration [Wu and Liu 2005]. Nothing was
found in the open literature for other structural elements, such as shells and panels.

Here we perform a bending analysis of laminated cylindrical panels with various loading boundary
conditions using the DCM. The complete form of the governing partial differential equations of the
problem based on first-order shear deformation theory is considered. All panel variables including
displacements, rotations, moment, and force resultants are presented in the governing equations. The
presence of all variables provides an easy way to satisfy different boundary conditions.

The solution to the governing equations provides direct predictions of all variables with the same
order of accuracy. Both governing equations and solution domain are discretized using DCM. As with
most other numerical techniques, this yields a system of linear algebraic equations. Comparison of the
predictions for stress resultants and displacement components shows very good agreement with results
of other analytical and numerical techniques. The lamination sequence of the examples are symmetric,
unsymmetric, cross-ply and angle-ply. There is no restriction to using this method for panels with free
edges.

2. Governing equations

As a test case for the capabilities of the DCM and the accuracy of its results, we consider a moderately
thick laminated cylindrical shell panel with length a, thickness h, and mid-surface radius R (Figure 1).
Using the principle of minimum potential energy and the assumptions of first-order shear deformation
theory (FSDT), one obtains the fifteen first-order PDEs listed in Table 1, which constitute the general form
of the governing partial differential equations of the problem; see [Toorani and Lakis 2000] for details.
(These governing equations have been used and verified in some recent surveys such as [Aghdam et al.
2006; Toorani and Lakis 2001].)

 

 

 

 

 

      

 

 

 

 

 

 

 

h 

R
 

z
 

x 

a 

1 

2 

3 

4 

α

Figure 1. Shell geometry and coordinate system.
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Table 1. Governing equations for the system in Figure 1.

Here Qi , Ni j , and Mi j represent shear and normal forces and moments, ux , uθ , w are the components
of the displacement in cylindric coordinates, and βx , βθ are rotations of the tangents to the reference
surface along the x and θ axis. We also denote by θ the counterclockwise orientation angle between the
fiber direction and the panel coordinate system, and we set m = cos θ , n= sin θ . Other panel constants are

Ai j =
N∑

k=1
(Q̄i j )k(hk − hk−1), Bi j =

1
2

N∑
k=1

(Q̄i j )k(h2
k − h2

k−1), Di j =
1
3

N∑
k=1

(Q̄i j )k(h3
k − h3

k−1),

Gi j = Ai j + a1 Bi j + a2 Di j , Hi j = Bi j + a1 Di j + a2 Ei j , Ji j = Di j + a1 Ei j + a2 Fi j ,

G ′i j = Ai j + b1 Bi j + b2 Di j , H ′i j = Bi j + b1 Di j + b2 Ei j , J ′i j = Di j + b1 Ei j + b2 Fi j ,

(1)

where for cylindrical panels a1 = b1 = 1/R, a2 = 0, and b2 = 1/R2. Although some of their values
are very small for the problems considered below, these coefficients are all preserved, to achieve better
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accuracy and do justice to the capability of the differential cubature method. The Q̄i j are defined as

Q̄11 = Q11m4
+ 2(Q12+ 2Q66)m2n2

+ Q22n4,

Q̄12 = (Q11+ Q22− 4Q66)m2n2
+ Q12(m4

+ n4),

Q̄22 = Q11n4
+ 2(Q12+ 2Q66)m2n2

+ Q22m4,

Q̄45 = (Q55− Q44)mn,

Q̄16 = (Q11− Q12− 2Q66)m3n+ (Q12− Q22+ 2Q66)mn3,

Q̄26 = (Q11− Q12− 2Q66)mn3
+ (Q12− Q22+ 2Q66)m3n,

Q̄44 = Q44m2
+ Q55n2,

Q̄55 = Q44n2
+ Q55m2,

Q̄66 = (Q11+ Q22− 2Q12− 2Q66)m2n2
+ Q66(m4

+ n4),

(2)

while the Qi j denote the elastic stiffness in the material coordinates (local axes) and are defined by

Q11 = E1/1, Q12 = E1ν21/1, Q22 = E2/1, Q44 = G23,

Q55 = G13, Q66 = G12, 1= 1− ν12ν21,
(3)

where Ei , Gi j and νi j are, respectively, the Young’s moduli of elasticity in the principal directions, the
shear moduli of each lamina, and Poisson’s ratios characterizing the transverse contraction (expansion)
under tension (compression) in the directions of the coordinate axes.

The boundary conditions for the panel can be any combination of

Free (F):

{
Nxx = Nxθ = Qx = Mxx = Mxθ = 0 for x constant,

Nθx = Nθθ = Qθ = Mθx = Mθθ = 0 for θ constant;
(4)

Simply supported (S):

{
Nxx = uθ = w = Mxx = βθ = 0 for x constant,

ux = Nθθ = w = βx = Mθθ = 0 for θ constant;
(5)

Clamped (C): ux = uθ = w = βx = βθ = 0 for x constant and for θ constant. (6)

Since there are ten derivatives in the fifteen equations, five boundary conditions is available and also
enough in each edge.

3. Application of the DCM

The first step to apply the DCM is to form a nondimensional version of the governing equations in Table 1.
To do so, we let q0 be the uniform load or the amplitude of a sinusoidally distributed load, and introduce
the dimensionless parameters

w∗ = w× E1h3/q0a4, ui
∗
= ui × E1h3/q0a4, βi

∗
= βi × E1h3/q0a3,

Mi j
∗
= Mi j/q0a2, Ni j

∗
= Ni j/q0a, Qi

∗
= Qi/q0a,

(7)
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where i, j = 1, 2. It is obvious that in the isotropic panel, E1 in (7) should be replaced by E . Then, for
instance, the first equation in Table 1 becomes
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The next step is to choose a grid for the panel domain. A particular procedure should be used for node
generation and their numbering in the DCM; details are given in [Civan 1994; Liew and Liu 1997; 1998;
Teo and Liew 2002; Wu and Liu 2005]. For example, Figure 2 shows the entire panel with 61 nodes and
their numbers. This method for grid generation and node numbering minimizes computational efforts.
For other kinds of structures such as rectangular panel, the same numbering pattern for square panel is
used in a scaled format.

It is then necessary to discretize the dimensionless governing equations. In the DCM, any linear
operation such as a continuous function or various orders of partial derivatives of a multivariable function
can be expressed as a weighted linear sum of discrete functions chosen within the overall domain of the
problem [Civan 1994]. For instance, in a two-dimensional problem, the cubature approximation at the
i-th discrete node is given by

<{ f (x, y)}i ∼=
n∑

j=1

ci j f (x j , y j ) i = 1, 2, . . . , n, (9)

where < denotes a linear differential operator which can be any order of partial derivatives or combina-
tions of these partial derivatives, i is the index of arbitrarily sequenced grid points for the two-dimensional
solution domain, n is the total number of discrete points within the domain, and the ci j are the n× n

Figure 2. Grid generation and node numbering based on the DCM.



514 S. MAHMOUD MOUSAVI AND MOHAMAD M. AGHDAM

cubature weighting coefficients, to be determined. In order to find these coefficients, one uses a set of
monomials in the form

F(x, y)= xm−n yn
; m = 0, 1, 2, . . . , k− 1; n = 0, 1, 2, . . . ,m. (10)

The number of these monomials should be equal to the total number n of grid points. The appropriate
value of k in Equation (10) can be determined to satisfy this condition. For instance, for the case with 41
nodes, all of the monomials up to k = 8 should be used. However, for k = 8 there are only k(k+1)/2= 36
monomials. Therefore, five more monomials from the value of k = 9 should be added to complete 41
monomials. The selection of these five monomials among those from k = 9 does not influence the results.
Once the monomials in (10) are constructed, one can reach n equations by substituting these monomials
into (9). Introducing the n equations obtained to all grid points leads to n× n equations, which are then
used to calculate the n× n unknowns ci j in (9).

This process should be done for all of the operators in the governing equations and boundary conditions
if necessary. Having determined all the coefficients for the operators in the governing equations, one can
substitute them according to (9) into the equations of Table 1 to reach a set of linear equations.

The last step is to apply boundary conditions to the main equations. As with other numerical methods,
various techniques can be used for this purpose. In this study, the discretized forms of the boundary
conditions are added to the main system of equations. This leads to an over-determined system, whose
(approximate) solution is obtained using the least-squares method [Toorani and Lakis 2000].

4. Numerical results and discussions

The accuracy, convergence rate and performance of the presented DCM in obtaining solutions for the
bending of laminated cylindrical panels are studied using seven test cases. Comparisons with results of
other analytical and numerical studies available in the literature are provided in each case. To facilitate
the comparison of our results with those in the literature, different definitions for dimensionless deflection
of the panel are used in each case; the appropriate parameter definitions are mentioned both in the text
and above the tables. Two kinds of loading conditions are used: uniform and sinusoidal distributed loads.
To refer to the various boundary conditions, a number from 1 to 4 is assigned to each edge of the panel;
see Figure 1. Thus, FSFC refers to a panel with free edges on the curved boundaries 1 and 3, simply
supported on edge 2 and clamped on edge 4.

Case 1: SSSS panels with uniform loading. The first example is a SSSS cylindrical panel subjected to
uniform loading q0. Three types of panels are considered: isotropic, [0/90/0] and [0/90]. The panel is
made of a square platform with side a. The ratio a/h of side length to thickness is chosen as 100, and
the ration a/R of side length to radius as 0.5. The Poisson’s ratio for the isotropic panel is 0.3, while the
material properties of the orthotropic layers are taken from [Qatu and Algothani 1994]:

E1/E2 = 15.4, G12/E2 = 0.79, n12 = 0.3. (11)

Table 2 reports the predictions of the DCM for dimensionless central deflection, moments, and forces
as defined in (7). Only 81 nodes are used to reach final convergence for DCM. Included in the table
are also results of analytical and finite element method reported in [Qatu and Algothani 1994]. It is
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Model 103w∗ 10Nx
∗ 10Nθ ∗ 10Nxθ

∗ 103 Mx
∗ 103 Mθ

∗ 103 Mxθ
∗

Analytic 179 −278 −248 0 6 −13 0
FEM 177 −274 −250 0 5 −12 0

Is
ot

ro
pi

c
(ν
=

0.
3)

DCM 179.41 −278.49 −247.96 0.000708 5.7191 −13.079 0.0003283

Analytic 86 −214 −248 0 50 −19 0
FEM 89 −215 −252 0 53 −15 0

[0
/9

0/
0]

DCM 86.09 −214.37 −247.66 0.000558 50.26 −18.814 0.0001531

Analytic 110 −268 −247 0 −40 38 0
FEM 109 −264 −247 0 −40 42 0

[0
/9

0]

DCM 110.54 −268.83 −246.79 0.000655 −40.122 37.551 0.0004902

Table 2. Dimensionless central deflection and stress resultants of SSSS cylindrical
panels under uniform load. Analytic and FEM results from [Qatu and Algothani 1994].

seen from the table that the DCM predictions for deflection, forces and moments are much closer to the
analytical results than those of the FEM, although the DCM computation used 81 grid points, versus 100
eight-node elements used in the FEM results.

Case 2: Symmetric SSSS panel under sinusoidal loading. This example deals with two kinds of sym-
metric cross-ply laminated cylindrical panels: [0/90/0] and [90/0/90]. The geometric parameters are
length a = 4, total angle α = π/4 and radius R = 1. The material properties of the layers are

E1/E2 = 25, G12/E2 = 0.5, G23/E2 = 0.2, ν12 = 0.25 (12)

and we use the sinusoidal loading condition

q = q0 sin
πx
a

sin
πθ

α
. (13)

The predictions of the presented model for normalized deflection of symmetric panels are tabulated
in Table 3 for the [0/90/0] panel and in the top half of Table 4 for the [90/0/90] panel. For comparison,
the table lists the normalized deflection w1 and the nondimensional deflection w2, defined by

w1 = 10wE1/q0s3, w2 = 10wE1/q0 Rs3
; s = R/h. (14)

DCM FEM
s = R/h n = 25 n = 41 n = 61 [Reddy 2004]

50 0.2350 0.5458 0.5459 0.5458
100 0.1500 0.4718 0.4718 0.4718
500 0.0342 0.1028 0.1026 0.1028

Table 3. Normalized central deflection w1 = 10wE1/q0s3 of a [0/90/0] symmetric SSSS
cylindrical panel under sinusoidal loading.
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[90/0/90] unsymmetric pannel

DCM FEM FEM TSDT FSDT
s = R/h n = 25 n = 41 n = 61 Bhaskar Cheng Reddy Reddy

4 2.8742 3.7792 3.8197 4.0090 3.6067 4.0816 3.7990
10 0.6992 1.0589 1.0752 1.2230 1.2033 1.1835 1.0713
50 0.2350 0.5425 0.5459 0.5495 0.5486 0.5504 0.5457

100 0.1500 0.4702 0.4718 0.4715 0.4711 0.4727 0.4718
500 0.0342 0.1025 0.1026 0.1027 0.1027 0.1028 0.1028

[0/90] unsymmetric pannel

DCM FEM FEM TSDT FSDT
s = R/h n = 25 n = 41 n = 61 Bhaskar Cheng Reddy Reddy

4 4.7670 6.8671 6.9548 6.1000 5.0970 6.6698 7.3282
10 2.0527 3.4692 3.5066 3.3300 3.1658 3.4498 3.6715
50 0.1572 2.2558 2.2641 2.2420 2.2371 2.2627 2.2865

100 0.1718 1.3665 1.3737 1.3670 1.3667 1.3738 1.3781
500 0.0435 0.1007 0.1005 0.1005 0.1005 0.1006 0.1006

Table 4. Normalized central deflection w2 = 10wE1/q0 Rs3 of a [90/0/90] symmetric
SSSS cylindrical panel (top) and a [0/90] unsymmetric SSSS cylindrical panel (bottom)
under sinusoidal loading. The columns marked “Bhaskar”, “Cheng” and “Reddy” are
taken from [Bhaskar and Varadan 1991], [Cheng et al. 2000] and [Reddy and Arciniega
2004].

We validate the model with the FEM results from [Reddy 2004; Reddy and Arciniega 2004; Bhaskar
and Varadan 1991], and the results from [Cheng et al. 2000], which are based on a new imperfect-interface
model. Considering that the loading is nonuniform in this example, the agreement is encouraging: with
only 61 grid points we get highly accurate predictions for deflection of the panel when compared with
FEM. The results for [0/90/0] deviate by less than 0.2% from those obtained in [Reddy 2004], which is
quite satisfactory.

Case 3: Unsymmetric SSSS panel under sinusoidal loading. Table 4, bottom, deals with the results for
an unsymmetric panel under the same loading condition and having the same material and geometric
properties as in case 2. The laminate arrangement is [0/90]. Verification is done with the results in
[Reddy and Arciniega 2004; Bhaskar and Varadan 1991; Cheng et al. 2000], and the nondimensional
deflection w2 defined in (14) is used. We see that even for an unsymmetric panel, the DCM provides
acceptable predictions. For lower values of s = R/h, the DCM results are closer to the third-order shear
deformation theory (TSDT) predictions.

Case 4: Symmetric panel with different boundary conditions. Next we consider a symmetric [0/90/0]
cylindrical panel made from a square platform of side a, choosing the ratios a/h = 10 and a/R = 0.2.
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DCM
n = 25 n = 41 n = 61 n = 85 n = 113 HSDT CST

FSFS 6.8906 5.7138 5.7997 5.7910 5.8390 5.7912 5.5270
SSFS 3.4831 3.0705 3.2503 3.3308 3.3760 3.3519 3.1130
CSFS 1.3319 1.4614 1.5225 1.5490 1.5609 1.5809 1.1945
SSSS 0.8818 0.9428 0.9440 0.9440 0.9436 0.9650 0.7615
CSSS 0.5563 0.6103 0.6118 0.6119 0.6117 0.6337 0.3659
CSCS 0.3876 0.4346 0.4357 0.4357 0.4357 0.4540 0.2047

Table 5. Dimensionless central deflection w3 = 100wE2h3/q0a4 of [0/90/0] cylindrical
panel with various boundary conditions under sinusoidal loading. Our DCM calculations
are based on FSDT assumptions, while the comparison results, taken from [Bhaskar and
Varadan 1991], are obtained using higher-order shear deformation theory (HSDT) and
classical shell theory (CST).

The two straight edges of the panel are simply supported, while the curved edges can be free, simply
supported or clamped. The panel is subjected to sinusoidal loading given by (13), and the material
properties of the layers are

E1=19.2×106 psi, E2=1.56×106 psi, G12=0.82×106 psi, G23=0.523×106 psi, ν12=0.24. (15)

Comparison of the dimensionless central deflection of the panel with FEM [Bhaskar and Varadan
1991] is reported in Table 5. Following that paper, the dimensionless form of the deflection reported is
w3 = 100wE2h3/q0a4.

Clearly the DCM results are closer to the HSDT predictions than the CST results. Furthermore,
the results show rapid convergence of the method; only minor differences are observed between the
predictions with 41 grid points and higher numbers.

Case 5: Unsymmetric panel with different boundary conditions. The next case differs from Case 4
only in that it deals with an unsymmetric [0/90] cylindrical panel. Table 6 presents the results for the
dimensionless central deflection w3 = 100wE2h3/q0a4. The predictions are compared with the results of
CST, FSDT and HSDT reported in [Khdeir et al. 1989]. We see that the FSDT results obtained by DCM
are in very good agreement with FSDT predictions reported in that reference, with a discrepancy never
exceeding 1.3%. The results for shells with free boundary condition show slightly higher discrepancy
than those without free edges. For instance, in comparison with the FSDT results of [Khdeir et al. 1989],
the differences for FSFS, SSFS and CSFS are 1.24%, 1.18%, and 0.95%, respectively, whereas for SSSS,
CSSS, and CSCS they are 0.63%, 0.47%, and 0.35%.

Case 6: A symmetric SSSS angle-ply [θ/−θ/θ/−θ/θ] panel. The next example is a symmetric angle-
ply [θ/−θ/θ/−θ/θ ] cylindrical panel made of a square platform with side length of a. choosing the
ratios a/h = 10 and a/R = 1

3 . All edges are simply supported and the transverse load is assumed to be
uniform. The material properties of the layers are the same as in case 2; see (12).

Table 7 shows the predictions for the dimensionless central deflection w3 = 100wE2h3/q0a4 of the
panel, for various orientation angles θ , together with FSDT- and HSDT-based results from [Bhaskar and
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DCM
n = 25 n = 41 n = 61 n = 85 n = 113 CST FSDT HSDT

FSFS 3.1259 2.9997 2.9720 2.9483 2.9576 2.6933 2.9213 2.9061
SSFS 2.3134 2.3003 2.3033 2.3062 2.3170 2.1053 2.2899 2.2791
CSFS 1.2296 1.5853 1.6198 1.6288 1.6364 1.4163 1.6210 1.6154
SSSS 1.2361 1.5666 1.5712 1.5714 1.5712 1.4211 1.5614 1.5550
CSSS 0.7472 1.0911 1.0994 1.1000 1.1002 0.9221 1.0951 1.0914
CSCS 0.4304 0.7886 0.7964 0.7971 0.7974 0.6148 0.7946 0.7925

Table 6. Dimensionless central deflection w3 = 100wE2h3/q0a4 of [0/90] cylindrical
panel with various boundary conditions under sinusoidal loading The comparison results
on the right are taken from [Khdeir et al. 1989].

DCM
n = 25 n = 41 n = 61 n = 85 n = 113 HSDT FSDT

θ = 15◦ 0.7896 0.8334 0.8481 0.8531 0.8552 0.8507 0.7802
θ = 30◦ 0.6179 0.7062 0.7233 0.7262 0.7199 0.7393 0.6386
θ = 45◦ 0.4516 0.5958 0.6234 0.6245 0.6471 0.6514 0.5561
θ = 60◦ 0.5781 0.7352 0.7421 0.7505 0.7516 0.7525 0.6517
θ = 75◦ 0.6181 0.8846 0.8812 0.8873 0.8893 0.8769 0.8053

Table 7. Dimensionless central deflection w3 = 100wE2h3/q0a4 of a [θ/−θ/θ/−θ/θ ]
SSSS cylindrical panel under uniform load. The comparison results are from [Bhaskar
and Varadan 1991].

Varadan 1991]. It can be seen that discrepancies of the results for angle-ply laminated shells are higher
than those of cross ply laminates.

Case 7: Symmetric [0/90/0] square plate under sinusoidal loading. The governing equations and so-
lution procedure discussed here can also be employed for the bending analysis of rectangular plates, by
making the panel radius R and the total angle α correspondingly small. If the dimensions of the plate
are a and b, we take a as before and α = b/R.

The last example includes a fully simply supported symmetric [0/90/0] square plate subjected to
sinusoidal load; see Equation (13). Material properties of all layers are the same as (12). Predictions
for the dimensionless central deflection w4 = wE2h3/q0a4 of the square plate are tabulated in Table
8. Again, comparisons with the results of analytical solutions [Whitney and Pagano 1970] and the
generalized differential quadrature (GDQ) method [Aghdam et al. 2006] demonstrate good agreement.
As can be concluded from the table, in the GDQ method results are obtained with 121 nodes while the
DCM reaches the same level of accuracy by employing only 61 nodes. This might potentially mean that
DCM requires less computation time than GDQ, for results of similar quality.
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DCM GDQ 11× 11 Analytic
a/h n = 13 n = 25 n = 41 n = 61 Aghdam Whitney

2 3.6450 5.2116 5.2288 5.2294 5.2293 5.2293
4 1.0174 1.7719 1.7750 1.7758 1.7758 1.7758

10 0.2086 0.6672 0.6683 0.6693 0.6693 0.6693
20 0.0556 0.4574 0.4923 0.4920 0.4921 0.4921
50 0.0021 0.1893 0.4406 0.4406 0.4411 0.4411

100 0.0001 0.1456 0.4310 0.4326 0.4337 0.4337

Table 8. Dimensionless central deflection w4 = wE2h3/q0a4 of an SSSS [0/90/0]
square plate under sinusoidal loading. The columns marked “Aghdam” and “Whitney”
are taken from [Aghdam et al. 2006] and [Whitney and Pagano 1970].

5. Conclusion

We studied the performance of the differential cubature method in the static analysis of laminated
cylindrical panels subject to uniform and sinusoidal loadings. The formulation presented allows the treat-
ment of any type of lamination, whether symmetric or unsymmetric, and any combination of clamped,
simply supported and free boundary conditions on the edges. Starting from the governing equations
for cylindrical panels based on first-order shear deformation theory (fifteen first-order partial differential
equations in the same number of unknowns), we proceed by discretizing the solution domain, governing
equations and related boundary conditions, according to the DCM procedure. The results show that
DCM can provide reasonably accurate predictions with relatively few grid points, and so may require less
computational time than other numerical techniques, for a given accuracy level. The method provides the
same order of accuracy for all stress and displacement variables within the solution domain. Comparison
of calculated stress resultants and displacement components shows good agreement with results obtained
using other analytical and numerical techniques.

List of symbols

R radius a side length
h thickness s radius–to–thickness ratio
α total angle (Figure 1) q0 uniform load or the maximum
θ orientation angle of sinusoidally distributed load
Ni j normal force Qi shear force
ux , uθ , w displacement components Mi j moment
Qi j elastic stiffness in the material βx , βθ rotations of the tangents

coordinates (local axes) Ei Young’s moduli
Gi j shear moduli νi j Poisson’s ratios
w1 normalized deflection w2 nondimension deflection
w∗, ui

∗, βi
∗ dimensionless parameters Mi j

∗, Ni j
∗, Qi

∗ dimensionless parameters
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INDENTATION ANALYSIS OF FRACTIONAL VISCOELASTIC SOLIDS

ROUZBEH SHAHSAVARI AND FRANZ-JOSEF ULM

The constitutive differential equations governing the time-dependent indentation response for axisymet-
ric indenters into a fractional viscoelastic half-space are derived, together with indentation creep and
relaxation functions suitable for the backanalysis of fractional viscoelastic properties from indentation
data. These novel fractional viscoelastic indentation relations include, as a subset, classical integer-type
viscoelastic models such as the Maxwell model or Zener model. Using the correspondence principle
of viscoelasticty, it is found that the differential order of the governing equations of the indentation
response is higher than the one governing the material level. This difference in differential order between
the material scale and indentation scale is more pronounced for the viscoelastic shear response than for
the viscoelastic bulk response, which translates, into fractional derivatives, the well-known fact that an
indentation test is rather a shear test than a hydrostatic test. By way of example, an original method for the
inverse analysis of fractional viscoelastic properties is proposed and applied to experimental indentation
creep data of polystyrene. The method is based on fitting the time-dependent indentation data (in the
Laplace domain) to the fractional viscoelastic model response. Applied to polysterene, it is shown that
the particular time-dependent response of this material is best captured by a bulk-and-deviator fractional
viscoelastic model of the Zener type.

1. Introduction

The aim of indentation analysis is to link indentation data, typically an indentation force versus inden-
tation depth curve, F-h, to meaningful mechanical properties of the indented material. It is common
practice to condense the indentation data into two quantities, the hardness H and the indentation modulus
M , which are related to measured indentation data, namely the maximum indentation force Fmax, the
initial slope (or indentation stiffness) S of the unloading curve, and the projected contact area Ac by

H def
=

Fmax

Ac
, S =

d F
dh
|h=hmax

def
=

2
√
π

M
√

Ac. (1)

Traditionally, for metals, the hardness H was early on recognized to relate to strength properties of
the indented material [Brinell 1901; Tabor 1951], and recent developments in indentation analysis have
extended those approaches to account for strain hardening [Cheng and Cheng 2004], cohesive-frictional
strength behavior [Ganneau et al. 2006], and the effect of porosity on the strength behavior [Cariou et al.
2008]. The investigation of the link between the unloading slope S and the elasticity properties of the
indented material is more recent, requiring depth sensing indentation techniques that provide a continuous

Keywords: fractional viscoelasticity, indentation analysis, creep, relaxation, correspondence principle, polysterene.
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of Material Science and Engineering.
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Indenter shape n B φ F-h relation

Cone 1 cot θ 2 tan θ
π

F = 2M tan θ
π

h2

Sphere 2 1/2R 4
√

R
3

F = 4M
√

R
3

h1.5

Flat punch →∞ 1/an 2a F = 2Mah

Table 1. F-h equations for different indenter shapes. θ is the half-cone angle, R and a
are the sphere radius and the flat cylinder punch, respectively.

record of the F-h curve during loading and unloading in an indentation test [Tabor 1951; Doerner and
Nix 1986; Oliver and Pharr 1992; Bulychev 1999]. Relation (1)2 is an exact relation for linear elastic
materials. For non-elastic materials, (1)2 becomes an approximate relation and S may be affected by the
residual stress field and by adhesion of materials [Borodich and Galanov 2008]. Application of the depth
sensing indentation techniques in indentation analysis confirmed the link provided by classical linear
elastic contact mechanics solutions [Hertz 1882; Boussinesq 1885; Love 1939; Galin 1961; Sneddon
1965; Borodich and Keer 2004] for a rigid indenter of axysmmetric shape that can be described by a
monomial function of the form z = Brn:

F = φMh1+1/n, (2)

where r and z are, respectively, the first and the third cylindrical coordinates of the surface of the tip, φ
(of dimension [φ] = L1−1/n), condenses the indenter specific geometry parameters,

φ =
2

(
√
πB)1/n

n
n+ 1

[
0(n/2+ 1/2)
0(n/2+ 1)

]
1/n, (3)

B is the shape function of the indenter at unit radius, n ≥ 0 is the degree of the homogeneous function,
0(x) is the Euler Gamma function, 0(x)=

∫
∞

0 t x−1 exp(−t)dt . Table 1 develops expression (2) for some
common indenter shapes. Finally, M is the indentation modulus. The indentation modulus M provides a
snapshot of the elasticity of the indented material. In the isotropic case, M relates to the bulk and shear
modulus (K ,G) of the indented half-space by

M = 4G
3K +G

3K + 4G
. (4)

Based on the adaptation for indentation analysis of the method of functional equations [Lee and Radok
1960], closed-form solutions for indentation in various linear viscoelastic solids became recently available
for a variety of indenter shapes: flat punch indentation [Cheng et al. 2000], spherical indentation [Cheng
et al. 2005; Oyen 2005], and conical indentation [Vandamme and Ulm 2006; Oyen 2006], which have
been synthesized into viscoelastic indentation creep and relaxation functions for any indenter of axysm-
metric shape [Vandamme and Ulm 2007]. Those linear viscoelastic approaches are relevant for materials
whose behavior can be described by the classical integer-type time-dependent differential equation of



INDENTATION ANALYSIS OF FRACTIONAL VISCOELASTIC SOLIDS 525

linear viscoelasticity [Bland 1960],

σ +

I∑
i=1

Pi
d iσ

dt i = E ′
(
ε+

J∑
j=1

Q j
d jε

dt j

)
, (for i = 1, 2, . . . I ; j = 1, 2, . . . J ), (5)

where σ and ε are stress and strain, Pi and Q j stand for relaxation and retardation time, respectively,
and E ′ is the relaxed elasticity modulus. The restriction to integer-type time derivatives to describe
the ‘real’ stress relaxation and creep behavior of polymers and other materials has been recognized as
a drawback for material characterization [Rossikhin and Shitikova 2004] and can be removed by the
introduction of fractional derivatives in the time-dependent differential equation. The application of
fractional viscoelastic material models in indentation analysis is the focus of this paper. The paper is
structured as follows: Following a brief review of the basic concepts of fractional derivatives, we derive a
general differential representation of the time-dependent indentation response of a fractional viscoelastic
material half-space using the correspondence principle. The general solution is then adapted to derive
creep and relaxation functions that potentially allow the determination of meaningful viscous material
properties from time-dependent experimental indentation data.

2. Elements of fractional order derivatives

Fractional calculus is an old mathematical topic, but its application in physics and engineering is more
recent. For instance, in viscoelasticity and hereditary solid mechanics [Bagley and Torvik 1983], elec-
tromagnetic systems [Engheta 1996], and diffusion phenomena in inhomogeneous media [Arkhincheev
1993] , fractional order derivatives have been used to describe the system behavior. From a mathematical
perspective, fractional derivatives are an extension of ordinary derivatives, and possess mathematical
definitions and properties that stem from ordinary derivatives. Some definitions of fractional derivatives
can be found in [Podlubny 1999] and [Kilbas et al. 2006]. The Riemann–Liouville definition is the
simplest one. According to this definition, the α-th order fractional derivative of a function f (t) with
respect to t is

Dα f (t)=
∂α

∂tα
f (t)=

1
0(m−α)

∂m

∂tm

∫ t

a

f (τ )
(t − τ)α+1−m dτ, m− 1≤ α < m, (6)

where m is the first integer larger than α, and a is the lower limit related to the operation of fractional
differentiation. Following [Ross 1977], we call a the lower terminal value and set a = 0 for all fractional
definitions in this article. We also use the short hand notation Dα f (t)= ∂α

∂tα f (t). The Laplace transform
of the Riemann–Liouville derivative is given by

D̂α f (t)= sα f̂ (s)−
m−1∑
k=0

sk Dα−k−1 f (0), m− 1≤ α < m, (7)

where s is the Laplace parameter and f̂ (s) stands for the Laplace transform of f (t). Applying this
definition to solve initial value problems requires knowledge of the non-integer derivatives of the initial
conditions at t = 0. Despite the fact that mathematically these problems can be solved successfully,
their solution is practically meaningless because there is no physical interpretation available for such
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initial conditions. A solution to this conflict was proposed by Caputo [1967; 1969]. Caputo’s fractional
derivative (for a zero terminal value) can be written as

Dα f (t)=
1

0(m−α)

∫ t

0

f (m)(τ )
(t − τ)α+1−m dτ, m− 1< α < m, (8)

where f (m)(τ )= ∂m

∂τm f (τ ). The Laplace transform of (8) is given by

D̂α f (t)= sα f̂ (s)−
m−1∑
k=0

sα−1−k f (k)(0), m− 1< α ≤ m, (9)

where in (9), only ordinary derivatives are acted upon initial conditions. Another main difference between
the two definitions is that the Caputo derivative (8) of a constant C is zero,

DαC = 0, (10)

whereas in the cases of a finite lower terminal value, the Riemann–Liouville fractional derivative (6) of
a constant C is not zero but is given by [Podlubny 1999]

DαC =
Ct−α

0(1−α)
. (11)

It can be shown that for α→ m, Caputo’s fractional derivative becomes a conventional m-th derivative
[Podlubny 1999; Kilbas et al. 2006],

Dα f (t)= f (m)(t). (12)

Similar to integer-order differentiation, Caputo’s fractional differentiation is a linear operation,

Dα
(
λ f (t)+µg(t)

)
= λDα f (t)+µDαg(t), (13)

where λ and µ are constants. Analogous to [Schiessel et al. 1995], by using Caputo’s fractional deriv-
ative, the well-known Hookian spring relation, σ(t)= Eε(t), and Newtonian dashpot relation, σ(t)=
η dε(t)/dt , can be generalized to

σ(t)= Eτα
dαε(t)

dtα
= EταDαε(t), 0< α < 1. (14)

In (14), the parameter τ with units of time is employed to non-dimensionalize the fractional derivative of
ε, which helps to obtain a meaningful physical relation between stress and strain. Note that here, since
0< α < 1, Eq (8) reduces to

Dα f (t)=
1

0(1−α)

∫ t

0

f (1)(τ )
(t − τ)α

dτ, 0< α < 1. (15)

Throughout this work, we will exclusively refer to Caputo’s definition when using the term fractional
derivatives. A full discussion on differences between Caputo and Riemann–Liouville fractional deriva-
tives, and the conditions when they both become equivalent, can be found in [Podlubny 1999]. The
introduction of the integrodifferential operator (15) in (14) offers a number of interesting perspectives
for modeling viscoelastic behavior. From a mathematical perspective, due to the convolution with t−α,
σ(t) has a fading memory [Baker et al. 1996]. To illustrate this behavior, consider a simple rod in uniaxial
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α = 0 No memory α = 1 Perfect memory 0< α < 1 Partial memory

σ = Eτ 0 ∂
0ε
∂t0 = Eε σ = Eτ ∂

1ε
∂t1 = η

∂1ε
∂t1 σ = Eτα ∂

αε
∂tα

Figure 1. Illustration of integer and fractional models.

extension by a strain ε. In the limit cases, if α = 0, Dαε = ε, and if α = 1, Dαε = ε̇ (this can be proved
by integration by parts). Thus, by multiplying a constant, Eτα, to Dαε, depending on the value of α,
one obtains either the elastic force (spring model) or the damping force (dashpot model). In other words,
α = 0 corresponds to a system with no memory since the stress depends only on the instantaneous
magnitude of ε (Figure 1, left), while α = 1 corresponds to a system with perfect memory since the
time history and the particular way the system has reached its current position becomes important for
derivative calculations (Figure 1, middle). For any 0 < α < 1, the system has partial memory, and
consequently the derived stress is a combination of dashpot and spring models (symbolized by a square
in Figure 1, right). Relative to discrete (integer) derivatives, therefore, fractional derivatives offer a wide
range for modeling the rate of change of the time-dependent behavior of viscoelastic materials in a
continuous fashion. Figure 2 displays a simple function along with its half-derivative and first derivative,
showing that fractional derivatives are usually sandwiched in between the closest lower and upper integer-
derivatives. This allows one to monitor changes in a much smoother and compact fashion than offered
by integer derivatives.

While spring and dashpot models can be recognized by only one material property parameter (E and η,
respectively), introducing a fractional element requires three parameters, called α, τ , and E . A fractional
element with only three parameters is mathematically and physically equivalent to an infinite number of
simple springs and dashpots connected through a certain hierarchical arrangement [Schiessel and Blumen
1993]. Thus, capturing the continuous rate of change in time by means of integer-type models requires

0 1 2 3 4 5 6
0

1

2

3

4

5

6 D0 f = f

D1/2 f = g, g(x)= 2
√

x/π

D1 f = 1

Figure 2. Derivatives of f (x)= x of order 0 (black), 1
2 (red) and 1 (blue).
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Figure 3. Fractional Zener model with identical fractional order derivatives on stress
and strain.

generally many higher integer-order derivative terms in (5) to achieve a similar accuracy. With the above
preliminary explanations, the extension of (5) to fractional derivatives can be written as

σ +

I∑
i=1

Piτ
αi Dαiσ = E ′

(
ε+

J∑
j=1

Qτβ j Dβ j ε
)
, (for i = 1, 2, . . . I ; j = 1, 2, . . . J ), (16)

where αi , β j ∈ [0, 1]. Each fractional term in (16) can be considered as a replacement of a system made
of many conventional springs and dashpots.

By way of application, consider a fractional Zener viscoelastic material, shown in Figure 3, in which
the dashpot of the conventional Zener model is replaced by a fractional element. As shown below, this
model is described by a fractional differential equation in which only the first fractional derivative terms
(I = J = 1) are present in each series in (16), and in which the fractional derivative of stress and strain is
identical (α1 = β1). There are five independent parameters in this model, called E0, E1, E2, γ, τ . Indeed,
the total strain on the right branch is

ε = εs + ε f , (17)

where subscripts s, f refer to the spring element and the fractional element, respectively. As these
elements are connected in series, their stresses are equal,

σR = E1εs = E2τ
γ Dγ ε f . (18)

We now take advantage of the linearity property of the fractional operator (13). By taking the γ -th
derivative of (17) and using (18) (assuming E1, E2 and τ are constants), we obtain

σR +
E2τ

γ

E1
Dγ σR = E2τ

γ Dγ ε, (19)

where we let

τ0 =

(E2τ
γ

E1

)1/γ
, S = E2

( τ
τ0

)γ
. (20)

Equation (19) simplifies to
σR + τ

γ
0 Dγ σR = Sτ γ0 Dγ ε. (21)
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Equation (21), which describes the behavior of the right branch of the model in Figure 3, turns out to be
the constitutive fractional differential equation of a Maxwell model in which the conventional dashpot is
replaced by the fractional element.

The total stress in the parallel system is

σ = σL + σR, (22)

where σL is the elastic stress in the left branch of the model displayed in Figure 3

σL = E0ε. (23)

Then, take the γ -th derivative of (22) and multiply the result with τ γ0 :

τ
γ
0 Dγ σ = τ

γ
0 Dγ σL + τ

γ
0 Dγ σR. (24)

Finally, by adding (24) and (22), and using (23) and (21), we obtain

σ + τ
γ
0 Dγ σ = E0ε+ (E0+ S)τ γ0 Dγ ε. (25)

Equation (25) is recognized as the one-dimensional constitutive equation of the fractional Zener model
shown in Figure 3. It is characterized by identical fractional order derivatives on stress and strain. This is
an important requirement for thermodynamic stability of the model described by (25).1 More generalized
constitutive equations including different fractional order derivatives on stress and strain can be found in
[Schiessel et al. 1995]. In what follows, we employ the fractional Zener model in indentation analysis.

3. Time-dependent indentation response of fractional viscoelastic materials

In general, the time-dependent behavior of hereditary materials, for which the stress depends nonlineraly
on the strain history, can be described by the volterra integral equations [Rabotnov 1980]. Most vis-
coelastic indentation solutions originate from the method of functional equations developed for linear
viscoelastic contact problems by Radok [1957] and completed by Lee and Radok [1960]. The method of
functional equations consists of solving the viscoelastic problem from the elastic solution by replacing
the elastic moduli with their corresponding viscoelastic operators. The method of functional equations
can be seen as an extension of the Laplace transform method, as formulated by Lee [1955]. The Laplace
transform method consists of eliminating the explicit time dependence of the viscoelastic problem by
applying the Laplace transform to the time-dependent moduli and solving the corresponding elasticity
problem in the Laplace domain. The Laplace method, however, is restricted to boundary value problems
in which the displacement and stress boundary conditions are fixed in time. This is generally not the
case in indentation problems (except for the flat punch problem), in which the contact area changes with
time, hence changing a part of the stress boundary outside the contact area into a displacement boundary
inside the contact area and vice versa. This drawback of the Laplace transform was lifted in [Radok
1957; Lee and Radok 1960], which introduced and developed the method of functional equations, valid
for linear viscoelastic problems with time-dependent boundary conditions. Galanov [1982] established

1There is a special case in which (25), with different fractional derivatives on stress and strain, can be thermodynamically
stable. That is, when the fractional derivative acting on strain is greater than that acting on stress, and only below a certain
limiting frequency [Glöckle and Nonnenmacher 1991].
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Figure 4. A rigid conical indenter on a fractional viscoelastic half-space material (mid-
dle) can be studied with a fractional Zener model describing volumetric behavior in
indentation (left) or one describing deviatoric behavior in indentation (right).

self-similarity of the contact problem for some viscoelastic solids and gave dimensionless distributions
for stresses under Vickers and Berkovich indenters. For indentation problems, the method of functional
equations remains valid as long as the contact area (or, equivalently, for viscoelastic materials, the pene-
tration depth) increases monotonically [Lee and Radok 1960]. We shall adopt this method for indentation
analysis of fractional viscoelastic materials.

We consider the fractional Zener model shown in Figure 3, whose one-dimensional behavior is de-
scribed by (25).2 We employ this model separately for the volumetric and deviatoric part of the three-
dimensional stress tensor and strain tensors of the material response to indentation. For the volumetric
part with parameters Q0, Q1, Q2,α, τv, by setting, similarly to (20),

ζv =
(Q2τ

α
v

Q1

)1/α
, K0 = Q2

(τv
ζv

)α
, (26)

the fractional differential equation governing the time-dependent spherical isotropic material response
reads (Figure 4, left),

σv + ζ
α
v Dασv = Q0εv + (Q0+ K0)ζ

α
v Dαεv, (27)

where σv = 1
3(tr σ )1, εv = 1

3(tr ε)1, are the volumetric parts of the second order stress tensor σ and second
order strain tensor ε, respectively. Similarly, for the deviatoric part with parameters q0, q1,q2, β, τd , by
setting

ζd =

(q2τ
β
d

q1

)1/β
, G0 = q2

(τd

ζd

)β
, (28)

the fractional differential equation governing the time-dependent deviatoric isotropic material response
reads (Figure 4, right)

σd + ζ
β
d Dβσd = q0εd + (q0+G0)ζ

β
d Dβεd . (29)

Here σd and εd are, respectively, the deviatoric parts of the second order stress and strain tensors, σ and
ε. From basic tensor algebra, relations σ = σv + σd , ε = εv + εd hold. Thus, as Figure 4 shows, based

2For a general nonlinear stress-strain behavior in solids, the fraciotnal calculus can be integrated into the volterra equations
[Rabotnov 1980].
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on our chosen models, there are in total 10 independent parameters Q0, Q1, Q2,α, τv, q0, q1,q2, β, τd

that describe the volumetric and deviatoric material behavior (five for each behavior). For simplicity in
notation and avoiding carrying too many parameters in our analytical derivations, we rewrite (27) and
(29) as

σv(t)+ P Dασv(t)= Q0εv(t)+ Q Dαεv(t), (30)

σd(t)+ pDβσd(t)= q0εd(t)+ q Dβεd(t), (31)

where we let

P = ζ αv , Q = (Q0+ K0)ζ
α
v , (32)

p = ζ βd , q = (q0+G0)ζ
β
d . (33)

Using (9), the Laplace transforms of (30) and (31) are readily obtained:

(1+ Psα)σ̂v(s)− Psα−1σv(0)= (Q0+ Qsα)ε̂v(s)− Qsα−1εv(0),

(1+ psβ)σ̂d(s)− psβ−1σd(0)= (q0+ qsβ)ε̂d(s)− qsβ−1εd(0),
(34)

where σ̂v(s), σ̂d(s), ε̂v(s), ε̂d(s) denote the Laplace transforms of σv(t), σv(t), εv(t), εd(t), whereas
σv(0), σd(0), εv(0), εd(0) represent the stress and strain initial conditions at t = 0. We remind ourselves
of the classical Laplace transformations of the stress convolution integrals of linear isotropic viscoelas-
ticity [Christensen 1971]:

σv(t)=
∫ t

−∞

3K (t − τ)
d

dτ
εv(τ )dτ → σ̂v(s)= 3s K̂ (s)ε̂v(s),

σd(t)=
∫ t

−∞

2G(t − τ)
d

dτ
εd(τ )dτ → σ̂d(s)= 2sĜ(s)ε̂d(s),

(35)

where K (t) and G(t) are the time-dependent bulk and shear modulus, respectively. Then, by comparing
(34) and (35), one obtains the following relations for bulk and shear response of the fractional material:

3s K̂ (s)=
Q0+ Qsα

1+ Psα
, 2sĜ(s)=

q0+ qsβ

1+ psβ
, (36)

and
Pσv(0)= Qεv(0), pσd(0)= qεd(0). (37)

Equations (37) indicate that the initial conditions acting upon stress and strain are not completely inde-
pendent, and relations such as (37) must be satisfied. These constraints do not appear only in fractional
viscoelastic models. Analogous constraints on initial conditions also exist for integer-order viscoelastic
models [Christensen 1971; Shahsavari and Ostoja-Starzewski 2005].

Similarly, application of the correspondence principle to the elastic indentation modulus M defined
by (4) yields [Vandamme and Ulm 2006]

M→ s M̂(s)= 4sĜ(s)
3s K̂ (s)+ sĜ(s)

3s K̂ (s)+ 4sĜ(s)
. (38)
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Next, analogously to (35), the application of the correspondence principle of viscoelasticity to the
elastic indentation force relation (2) yields

F(t)= φ
∫ t

−∞

M(t − τ)
d

dτ
h1+1/n(τ ) dτ H⇒ F̂(s)= φs M̂(s) ̂h1+1/n(s). (39)

In (39), we a priori assumed the geometry parameter φ is a time-independent parameter, following [Lee
and Radok 1960]. By substituting (36) in (38) and then in (39), one obtains the viscoelastic relation be-
tween F̂(s) and ĥ1+1/n in the transformed Laplace space. Next, by extensively rearranging the terms and
using the relation (9) along with the linearity property (13) for the fractional order terms, the constitutive
differential equation governing the time-dependent indentation response becomes

DF (F(t))= 2φDh(h1+1/n(t)). (40)

This is a differential equation with constant coefficients involving the operators

DF = c0+ c1 Dα
+ c2 Dβ

+ c3 Dα+β
+ c4 Dα+2β

+ c5 D2β,

Dh = l0+ l1 Dα
+ l2 Dβ

+ l3 Dα+β
+ l4 Dα+2β

+ l5 D2β
(41)

with coefficients

c0 = Q0+ 2q0, l0 =
1
2q2

0 + q0 Q0,

c1 = Q+ 2Pq0, l1 = q0 Q+ 1
2 Pq2

0 ,

c2 = 2Q0 p+ 2q + 2pq0, l2 = q0 pQ0+ qq0+ q Q0,

c3 = 2Qp+ 2Pq + 2Ppq0, l3 = q0 pQ+ Pqq0+ q Q,

c4 = Qp2
+ 2Ppq, l4 = qpQ+ 1

2 Pq2,

c5 = Q0 p2
+ 2pq, l5 = qpQ0+

1
2q2.

(42)

Note that in view of (37) the following relations between initial conditions hold:

ci F(0)= 2φli�(0), (i = 1, 2, . . . , 5), (43)

ci F (1)(0)= 2φli�
(1)(0), (i = 3, 4, 5), (44)

c4 F (2)(0)= 2φl4�
(2)(0), (45)

where we have set �(0) = h1+1/n (0). Considering the initial conditions above, the use of Caputo’s
derivative results in five integer-order relations in (43) and four inter-order derivatives in (44) and (45).
In order for (44) to hold with i = 3, we must have α+ β > 1; the same relation with i = 4 and i = 5
requires α+ 2β > 1 and 2β > 1, respectively. Similarly, (45) requires that α+ 2β > 2. If any of these
conditions is not met, the corresponding relation in (44)–(45) does not exist.

The following observations deserve attention:
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Figure 5. Left: Maxwell model. Right: Zener model.

(i) For α = β = 0, which corresponds to the case of a material with no memory (Figure 1, left), Equation
(40) reduces to the elastic indentation relation (2), with

M =
2l0

c0
= 2q0

Q0+
1
2q0

Q0+ 2q0
, K =

1
3

Q0, G =
1
2

q0. (46)

(ii) Letting α = 0 corresponds to the case of a pure deviatoric creep, a case which was extensively
studied in integer-type viscoelastic indentation analysis (for example, [Cheng and Cheng 2004; Cheng
et al. 2000; 2005; Vandamme and Ulm 2006]). In this case β = 1, and one obtains(

c0+ (c2+ c3)D1
+ (c4+ c5)D2)F(t)= 2φ

(
l0+ (l2+ l3)D1

+ (l4+ l5)D2)h1+1/n(t). (47)

Note that a deviatoric creep behavior described at a material level by a first-order differential equation
(see (31) for β = 1), yields a second-order differential equation that governs the F(t)− h(t) indentation
response. This includes, as integer subset models, the three-parameter deviator creep Maxwell model
and the four-parameter deviator creep Kelvin–Voigt or Zener model (Figure 5), for which the constant
coefficients read as follows:

P Q0 Q p q0 q

Maxwell 0 3K 0 ηM/G 0 2ηM

Zener 0 3K 0 ηV
G+GV

2 GGV
G+GV

2 G
G+GV

ηV

(48)

Here ηM and ηV stand for the viscosity in the respective models. Use of (48) in (42) and then in (47)
yields the following differential equations for the two particular integer-type viscoelastic models:

Maxwell: F(t)+
c2

c0

∂F
∂t
+

c5

c0

∂2 F
∂t2 = 2φ

( l2

c0

∂h1+1/n

∂t
+

l5

c0

∂2h1+1/n

∂t2

)
, (49)

Zener: F(t)+
c2

c0

∂F
∂t
+

c5

c0

∂2 F
∂t2 = 2

l0

c0
φ
(

h1+1/n
+

l2

l0

∂h1+1/n

∂t
+

l5

l0

∂2h1+1/n

∂t2

)
. (50)

(iii) The difference in differential order between the material and the indentation scale becomes even
more apparent for α = β = 1, which converts the fractional model into an integer-type model governed
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by a third-order differential equation:(
c0+(c1+c2)D1

+(c3+c5)D2
+c4 D3)F(t) = 2φ

(
l0+(l1+l2)D1

+(l3+l5)D2
+ l4 D3)h1+1/n(t). (51)

Setting α = β reduces the model to the often considered case of a material with time independent
Poisson’s ratio [Gao and Ogden 2003], which is obtained by letting P = p, q = bQ, and q0 = bQ0 for
any non-negative value of b in (30)–(31) and (42). This concept is similar to using two same-type integer
viscoelastic models with the aforementioned relations between their parameters which lead to a constant
Poisson’s ratio [Tschoegl et al. 2002].

(iv) This difference in differential order between the material and the indentation scale holds true for
fractional materials; that is, because of the definition of the differential operators in (41), the order of the
fractional derivatives at the indentation scale given by (40), is always greater than the one of the material
level defined by (30)–(31). For example, for a deviatoric fractional creep model, α = 0, the differential
equation (31) governing the material behavior is of order 0< β < 1, while the indentation response is
of order 2β, and can thus be greater than unity:(

c0+ (c2+c3)Dβ
+ (c4+c5)D2β)F(t)= 2φ

(
l0+ (l2+l3)Dβ

+ (l4+l5)D2β)h1+1/n(t). (52)

The specification of (52) for a fractional deviatoric Maxwell material (P = Q = q0 = 0) and a fractional
deviatoric Zener material (P = Q = 0) reads as follows:

Maxwell: F(t)+
c2

c0

∂βF
∂tβ
+

c5

c0

∂2βF
∂t2β = 2φ

( l2

c0

∂βh1+1/n

∂tβ
+

l5

c0

∂2βh1+1/n

∂t2β

)
, (53)

Zener: F(t)+
c2

c0

∂βF
∂tβ
+

c5

c0

∂2βF
∂t2β = 2

l0

c0
φ
(

h1+1/n
+

l2

l0

∂βh1+1/n

∂tβ
+

l5

l0

∂2βh1+1/n

∂t2β

)
, (54)

where the coefficients c0, . . . , c5 and l0, . . . , l5) are still given by (42). Their dimensionality, however,
changes due to the application of non-integer time derivatives. For instance, we have [c2/c0] = [l2/ l0] =

T β , while [c5/c0] = [l5/ l0] = T 2β , and so on. Still, analogously to (19)–(20), one can define parameters
similar to τ0 with the dimension of time and replace the the fractional dimension of c2/c0, etc.

(v) The operators (41) are not symmetric with respect to α and β; that is, in contrast to α, which is the
fractional exponent for the volumetric viscoelastic response (30), there are some extra terms that involve
higher derivatives of order 2β, which is the fractional exponent for the viscoelastic shear response (31).
This observation translates, into fractional derivatives, the well-known fact that an indentation test is a
shear test than a hydrostatic test. For this reason, the effect of β dominates over the effect of α in the
fractional derivatives that define the indentation response (40). This dominance of shear over bulk exists
for conventional viscoelastic materials in indentation, but it is hidden in the constitutive equations.

4. Indentation creep and relaxation functions

A convenient way to analyze time-dependent experimental indentation data is in the form of indentation
creep and relaxation functions, derived for a step force loading or step displacement loading, respectively.
It is also a formidable illustration of the use of the fractional model developed here before.
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4.1. Indentation creep compliance. Consider a Heaviside step loading F(t) = FmaxH(t), where Fmax

is the maximum load, and H(t) the Heaviside step function. We recall the Laplace transform F̂(s) of
the Heaviside load function:

F(t)= FmaxH(t) ⇐⇒ F̂(s)=
Fmax

s
. (55)

Then, a substitution of (55) in (39) along with a substitution of (55) in Laplace transform of (40) can be
developed in the form

L̂(s)=
φ ̂h1+1/n(s)

Fmax
=

1

s2 M̂(s)
=

D̂F (s)

2s D̂h(s)
, (56)

where DF (s) and Dh(s) are the Laplace transforms of the operators (41) according to definition (9):3

D̂F (s)= c0+ c1sα + c2sβ + c3sα+β + c4sα+2β
+ c5s2β, (57)

D̂h(s)= l0+ l1sα + l2sβ + l3sα+β + l4sα+2β
+ l5s2β . (58)

Note that the inverse Laplace transform of (56), L(t), has dimension of compliance [L] = 1/(L−1 MT−2),
and can therefore be appropriately called an indentation creep compliance function. As discussed in detail
for integer-type viscoelasticity models in [Vandamme and Ulm 2007], the indentation creep compliance
is independent of the indenter-shape. The right-hand side of (56), therefore, is representative of the
material response of the considered fractional viscoelastic material. The inverse transform of (56) exists,
is real, and continuous. The following statements are derived in the Appendix:

(i) For a ‘double’ Zener model (Zener bulk and Zener deviatoric creep model), the inverse Laplace
transform of (56) yields the following expression of the time-dependent indentation creep compliance:

L(t)=
φh1+1/n(t)

Fmax

=
c0

2l0
+

1
π

Im
∫
∞

0

̂DF (re−iπ )

2re−iπ ̂Dh(re−iπ )
exp(−r t) dr +

∑
j

lim
s→λm

j

(s− λm
j )

D̂F (λ
m
j ) exp(λm

j t)

2λm
j D̂h(λ

m
j )

, (59)

where m is the smallest common denominator of the fractional numbers α and β. Note that λm is a
complex number with negative real part. Thus, as t→∞, the second and the third terms on the right-
hand side of (59) vanish and L(t) converges to a constant c0/2l0. This is because in Zener-type models
(either fractional or integer; see Figure 5, right), there is a spring parallel to the rest of the system that
prevents infinite deformation.

3Initial conditions in the Laplace transform of a derivative of a Heaviside function are zero, since 0− ( and not 0+ ) is taken
as a lower limit of Laplace integration for a Heaviside function. More details can be found in [Flügge 1967].
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(ii) For a ‘double’ Maxwell model, the expression of the inverse Laplace transform is the same one as
(59), except for the first term on the right:

L(t)=
φh1+1/n(t)

Fmax

=
1

2(k− 1)!
∂k−1

∂uk−1 [ f (u) exp(um t)]u=0+
1
π

Im
∫
∞

0

̂DF (re−iπ )

2re−iπ ̂Dh(re−iπ )
exp(−r t) dr

+

∑
j

lim
s→λm

j

(s− λm
j )

D̂F (λ
m
j ) exp(λm

j t)

2λm
j D̂h(λ

m
j )

, (60)

where k = m(1+β) is an integer, and

f (u)=
c1+ c2um(β−α)

+ c3umβ
+ c4u2mβ

+ c5um(2β−α)

2(l3+ l4umβ + l5um(β−α))
, α ≤ β,

f (u)=
c1um(α−β)

+ c2+ c3umα
+ c4um(α+β)

+ c5umβ

2(l3um(α−β)+ l4umα + l5)
, α > β.

(61)

Specification of (60) for a fractional deviatoric Maxwell material (P = Q = q0 = 0, α = 0) and of (59)
for a fractional deviatoric Zener material (P = Q = 0, α = 0) yields

Maxwell: L(t)=
1

2(k− 1)!
∂k−1

∂uk−1

[
Q0+ (2Q0 p+ 2q)umβ

+ (Q0 p2
+ 2pq)u2mβ

q Q0+ (qpQ0+
1
2q2)umβ

exp(um t)
]

u=0

+
1
π

Im
∫
∞

0

Q0+ (2Q0 p+ 2q)rβe−iπβ
+ (Q0 p2

+ 2pq)r2βe−2iπβ

2r1+βe−iπ(1+β)
(
q Q0+ (qpQ0+

1
2q2)rβe−iπβ

) exp(−r t) dr

+

∑
j

lim
s→λm

j

(s−λm
j )

Q0+ (2Q0 p+ 2q)λβm
j + (Q0 p2

+ 2pq)λ2βm
j

2λm(1+β)
j

(
q Q0+ (qpQ0+

1
2q2)sβ

) exp
(
λm

j t
)
, (62)

Zener: L(t)=
1
2 Q0+ q0

1
2q2

0 + q0 Q0

+
1
π

Im
∫
∞

0

(
Q0+ 2q0+ (2Q0 p+ 2q + 2pq0)rβe−iπβ

+ (Q0 p2
+ 2pq)r2βe−2iπβ

)
exp(−r t)

2re−iπ
( 1

2q2
0 + q0 Q0+ (q0 pQ0+ qq0+ q Q0)rβe−iπβ + (qpQ0+

1
2q2)r2βe−2iπβ

) dr

+

∑
j

lim
s→λm

j

(
s− λm

j
) Q0+ 2q0+ (2Q0 p+ 2q + 2pq0)λ

βm
j + (Q0 p2

+ 2pq)λ2βm
j

2λm
j

( 1
2q2

0+q0 Q0+(q0 pQ0+qq0+q Q0)sβ+(qpQ0+
1
2q2)s2β

) exp(λm
j t). (63)

(iii) For β = 1, since e−iπ
=−1, the imaginary part of the integrand in the middle terms of both (62) and

(63) become zero and hence the middle terms vanish. In this case, the other two terms in (62) and (63)
are found to reduce to the known indentation creep compliance functions of the integer-type deviatoric
models as follows [Vandamme and Ulm 2007]:

Maxwell: L(t)=
1
M
+

t
4ηM
+
(1− 2ν)2

4E

(
1− exp

(
−

E
3ηM

t
))
, (64)

Zener: L(t)=
1
M
+

1
4GV

(
1− exp

(
−

GV

ηV
t
))
+

(1− 2ν)2

4(E + 3GV )

(
1− exp

(
−

E+3GV
3ηV

t
))
. (65)
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Here we have used the notation (42) and (42) along with the well known elasticity relations

E =
9K G

3K +G
, ν =

3K − 2G
2(3K +G)

.

(iv) Finally, the indentation creep compliance function can be used to study the time-dependent indenta-
tion response h(t) for any prescribed monotonically increasing indentation load history F(t)= Fmax F(t),
in both the Laplace and time domain [Vandamme and Ulm 2007]:

φ ̂h1+1/n(s)
Fmax

= s L̂(s)F̂(s) H⇒
φh1+1/n(t)

Fmax
=

∫ t

−∞

L(t − τ)
d

dτ
F(τ )dτ, (66)

where F̂(s) is the Laplace transform of the normalized loading history F(t) = F(t)/Fmax, satisfying
(dF/dt)(t)≥ 0.

4.2. Indentation relaxation modulus. For a Heaviside displacement loading h1+1/n(t) = h1+1/n
max H(t),

one can principally proceed in a similar way as for the indentation creep compliance. Alternatively, one
can make use of the link between indentation creep compliance L(t) and indentation relaxation modulus
M(t), given by (see [Vandamme and Ulm 2007])

(s M̂(s))−1
= s L̂(s). (67)

The expression of the relaxation modulus in the Laplace space thus becomes

M̂(s)=
F̂(s)

φh1+1/n
max

=
1

s2 L̂(s)
=

2D̂h(s)

s D̂F (s)
. (68)

The inverse Laplace transform for a selected number of models are as follows:

(i) For the ‘double’ Zener material:

M(t)=
F(t)

φh1+1/n
max

=
2l0

c0
+

1
π

Im
∫
∞

0

2D̂h(s)

s D̂F (s)
exp(−r t) dr +

∑
j

(
s− λm

j
)2D̂h

(
λm

j

)
exp

(
λm

j t
)

λm
j D̂F

(
λm

j

) . (69)

(ii) For the ‘double’ Maxwell material:

M(t)=
F(t)

φh1+1/n
max

=
1

(k− 1)!
∂k−1

∂uk−1 [ f (u) exp(um t)]u=0

+
1
π

Im
∫
∞

0

2 ̂Dh(re−iπ )

re−iπ ̂DF (re−iπ )
exp(−r t) dr +

∑
j

(
s− λm

j
)2D̂F

(
λm

j

)
exp

(
λm

j t
)

2λm
j D̂h

(
λm

j

) , (70)

where k = m(1−β) is an integer, and

f (u)=
2(l3+ l4umβ

+ l5um(β−α))

c1+ c2um(β−α)+ c3umβ + c4u2mβ + c5um(2β−α) , α ≤ β,

f (u)=
2(l3um(α−β)

+ l4umα
+ l5)

c1um(α−β)+ c2+ c3umα + c4um(α+β)+ c5umβ , α > β.

(71)
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The relaxation moduli for fractional deviatoric Maxwell and Zener materials are, respectively,

M(t)=
1

(k− 1)!
∂k−1

∂uk−1

[
Q0+ (2Q0 p+ 2q)umβ

+ (Q0 p2
+ 2pq)u2mβ

q Q0+ (qpQ0+
1
2q2)umβ

exp(um t)
]

u=0

+
1
π

Im
∫
∞

0

2
(
Q0+ (2Q0 p+ 2q)rβe−iπβ

+ (Q0 p2
+ 2pq)r2βe−2iπβ

)
r1+βe−iπ(1+β)

(
q Q0+ (qpQ0+

1
2q2)rβe−iπβ

) exp(−r t) dr

+

∑
j

lim
s→λm

j

(s− λm
j )

2
(
Q0+ (2Q0 p+ 2q)λβm

j + (Q0 p2
+ 2pq)λ2βm

j

)
λ

m(1+β)
j

(
q Q0+ (qpQ0+

1
2q2)sβ

) exp(λm
j t), (72)

M(t)=
1
2q2

0 + q0 Q0
1
2 Q0+ q0

+
1
π

Im
∫
∞

0

2
( 1

2q2
0 + q0 Q0+ (q0 pQ0+ qq0+ q Q0)rβe−iπβ

+ (qpQ0+
1
2q2)r2βe−2iπβ

)
exp(−r t)

re−iπ
(
Q0+ 2q0+ (2Q0 p+ 2q + 2pq0)rβe−iπβ + (Q0 p2+ 2pq)r2βe−2iπβ

) dr

∑
j

lim
s→λm

j

(s−λm
j )

2
( 1

2q2
0+q0 Q0+(q0 pQ0+qq0+q Q0)λ

βm
j +(qpQ0+

1
2q2)λ

2βm
j

)
exp(λm

j t)

λm
j

(
Q0+ 2q0+ (2Q0 p+ 2q + 2pq0)sβ + (Q0 p2+ 2pq)s2β

) , (73)

Similar to creep compliances, for β = 1, the previous expressions are found to reduce to the known
indentation relaxation modulus expressions of the integer-type deviatoric models [Vandamme and Ulm
2007]:

Maxwell: M(t)= M −
E

2(1+ ν)
(1− e−

E
2(1+ν)ηM

t
)−

E
2(1− ν)

(
1− exp

(
−

E
6(1− ν)ηM

t
))
, (74)

Zener: M(t)= M −
E2

2(1+ ν)(E + 2G(1+ ν))

(
1− exp

(
−
(E + 2G(1+ ν))t

2ηV (1+ ν)

))
(75)

−
E2

2(1− ν)(E + 6G(1− ν))

(
1− exp

(
−
(E + 6G(1− ν))t

6ηV (1− ν)

))
.

The indentation relaxation modulus functions can be used to study the time-dependent force relaxation
history F(t) for any prescribed monotonically increasing indentation displacement history h1+1/n(t)=
h1+1/n

max G(t), in both Laplace and time domain [Vandamme and Ulm 2007]:

F̂(s)

φh1+1/n
max

= s M̂(s)Ĝ(s) H⇒
F(t)

φh1+1/n
max

=

∫ t

−∞

M(t − τ)
d

dτ
G(τ )dτ, (76)

where Ĝ(s) is the Laplace transform of G(t)= h1+1/n(t)/h1+1/n
max , the normalized displacement loading

history, which satisfies (dG/dt)(t)≥ 0.

5. Application

In this section, we illustrate the application of the above theoretical derivations in indentation analysis
of the fractional and viscous parameters of polystyrene (Dupont, Wilmington, DE) under a creep test.
Depth-sensing indentation experiment was performed with a Nanotest 600 nanoindenter (MicroMaterials
Ltd., Wrexham) with a Berkovich indenter. As is common practice in indentation analysis, the Berkovich
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Maximum force [mN] 500 Thermal drift [nm/sec] < 0.1
Load resolution [nN] 2–3 Machine compliance [nm/mN] 0.3–0.4
Load noise floor [nN] 100 Specimen clamping [nm/mN] ∼ 0.01
Maximum depth [µm] 15 Feedback control Open loop
Displacement resolution [nm] 0.05–0.06 Drift correction No

Table 2. Specifications of Nanotest 600 nanoindenter (values provided by the manufac-
turer and pretesting calibration). See also [Micromaterials 2002; Constantinides 2006].

Fmax [mN] 31.45 hmax [nm] 2579
S [mN/nm] 0.0696 τL [sec] 3.12
M [GPa] 4.83 τH [sec] 29.99
H [GPa] 0.19 τU [sec] 4.14

Table 3. Indentation data for the Nanotest run.

indenter is assimilated to a cone of half-opening angle θ = 70.32◦. Table 2 provides more specifications
on the nanoindenter device.

The load function is a prescribed trapezoidal force history:

F(t)= Fmax F(t), F(t)=


t/τL 0≤ t ≤ τL ,

1 τL ≤ t ≤ τL+τH ,

1−t/τU τL+τH ≤ t ≤ τL+τH+τU .

(77)

The load was increased linearly up to Fmax, held constant during the creep phase and then decreased
to zero linearly. In (77), τL , τH , and τU are, respectively, loading, holding, and unloading time which
are given in Table 3. By monitoring force-indentation depth data (Figure 6), we get M and H from (1).
Indentation parameters and moduli are summarized in Table 3.
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Figure 6. Load versus indentation depth for polystyrene.
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Theoretical derivations throughout this paper are based on pure viscoelastic deformation. However, the
monitored indentation depth is a mixture of elastic and plastic deformations, particular around the tip of
the nanoindenter where there is a high stress concentration. Thus, in what follows, we first approximate
the elastic indentation depth by removing the plastic indentation. Next, we fit the elastic experimental
data to the theoretical creep compliance to identify the fractional model parameters.

5.1. Correcting for plasticity. Extensive works on plastic analysis of nanoindentation are available in
the literature (see [Cheng and Cheng 2004], for example). Here we use the method proposed by Sakai
in [Sakai 1999] and [Shimizu et al. 1999] to approximate the plastic deformations. In this method, the
quadratic load-depth relations are experimentally observed through the relation

F = k1h2. (78)

Here k1 is a parameter related to hardness H in (1)1 and the true hardness HT . For loading, k1 reads

k1 =
gH
γ 2 . (79)

In this equation, γ is a geometrical factor which relates the total penetration depth h and the contact depth
hc through h = γ hc (we approximate γ ≈ 1), and g is the geometrical factor of the indenter that relates to
the contact area Ac by g = Ac/h2

c . For a Berkovich indenter, g = 24.5. Sakai’s analysis for elastoplastic
indentation deformation is based on a Maxwell model in which F = Fe = Fp and h = he+ h p (indices
e and p refer to elastic and plastic, respectively). This model consists of a perfectly elastic component
with an elastic modulus M (as opposed to E) connected in series to a perfectly plastic component with
true hardness HT given by

HT =
k1(√

g−
√

2 cot θ
√

k1/M
)2 . (80)

Plastic indentation can be computed from the quadratic relation between Fp = F and h p by

h p(t)=

√
F(t)
gHT

. (81)

Finally, he(t), based on Sakai’s procedure, is straightforward:

he(t)= h(t)− h p(t). (82)

During a creep test (constant load), h p(t) simplifies to a constant. By having indentation moduli in Table
3 and following (79) to (81), the plastic indentation depth during the holding phase is approximated to
be h p = 1380 nm. In fact, it is implicitly assumed that there is no further plasticity during the creep test.

5.2. Viscoelastic fitting procedure. Now we consider fitting the approximated elastic data obtained ex-
perimentally to the viscoelastic model creep compliance. Direct fitting of the analytical solutions, (59)
or (60), to the elastic experimental data in the time domain is a complicated task (because the analytical
solutions require parametrically finding the roots of a rational function, Equation (58), with fractional
exponents; see the Appendix). However, once the fractional and viscous parameters are known, Equa-
tions (59) and (60) are handy to use. In order to find the fractional and viscous parameters, we proceed
in the following way, which leads to a curve-fitting in the Laplace domain:
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Figure 7. Time-dependent compliance L(t) for polystyrene. The large window indi-
cates Lexp(t) for the loading and holding phases (0 < t < τL + τH ) where recorded
experimental depth h(t) is used; The small window shows Lexp

e (t) for the holding phase
(τL < t < τL + τH ), where an elastic indentation depth he(t) is used.

(i) From the recorded indentation depth h(t), determine the experimental indentation creep compliance
function Lexp for the equivalent cone representing the Berkovich indenter (n = 1, B = cot θ , see Table
1):

Lexp(t)=
φh1+1/n(t)

Fmax
=

2 tan θ
πFmax

h2(t). (83)

Lexp(t) is shown in the large window in Figure 7 and consists of the loading and the holding phases.

(ii) Focus on the creep response and consider the holding phase t > τL = 3.12 sec where the load is
constant. Determine elastic indentation depth he(t) by using (79)–(82), and replace h(t) by he(t) in
(83) to get the elastic compliance function Lexp

e (t). This is shown in the small window of Figure 7, and
Lexp

e (t) reads

Lexp
e (t)=

φh1+1/n(t)
Fmax

=
2 tan θ
πFmax

h2
e(t). (84)

(iii) Transfer the time-dependent Lexp
e (t) to the Laplace domain. One can do this either numerically

using a Finite Laplace Transform method, or by fitting a continuous function to Lexp
e (t) and then analyt-

ically transforming the fitted function to the Laplace space. We choose the latter procedure. By using
a nonlinear optimization algorithm (for example, the lsqnonlin function in Matlab v7.4), it turns out
that the best fitted function is a power function of the form

Lexp
e (t)= atb

+ c, (85)
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Figure 8. Left: curve-fitting in the Laplace domain for the compliance. Blue squares

represent Laplace transform of experimental compliance L̂exp
e (s) while the red line rep-

resents the Laplace of the theoretical model compliance L̂(s). Right: validation of
the curve-fitting in the time domain. Blue squares represent experimental compliance
Lexp

e (t) and the red line represent theoretical model compliance L(t) which perfectly
coincides with Lexp

e (t).

where, for the test data in (84), a = 0.0102, b = 0.318, and c = 0.052. The parameter b is dimensionless,
but [a] = L M−1T 2−b and [c] = L M−1T 2. The Laplace transform of (85) is

L̂exp
e (s)=

0.01020(1+ 0.318)
s1.318 +

0.052
s

. (86)

(iv) In Laplace space, fit the transformed elastic compliance response L̂exp
e (s), given by (86), to the

transformed model response L̂(s) in (56), involving fractional exponents and parameters. In view of the
considered models in Figure 4, this is equivalent to determining 10 independent unknown parameters in
L̂(s), namely α, Q0, Q1, Q2, τv for the bulk and β, q0, q1, q2, τd for the shear behavior. For the purpose
of fitting in the complex plane, we refer to the Identity Theorem in complex analysis (for example,
[Carrier et al. 1966; Marsden and Hoffman 1999]) and consider s as a real variable on the positive real
axis. This fitting in the Laplace space does not require any a priori assumption of the particular model
(double Maxwell, double Zener, etc.). Therefore, we minimize the quadratic error between the elastic
compliance function, (86), and the model function (56) by

min
α,β :α<β,

Q0,Q1,Q2,τv
q0,q1,q2,τd

n+1∑
i=1

(
L̂exp

e (si )−
D̂F (si )

2si D̂h(si )

)2

, (87)

where the linear constraint α < β renders an account of the fact that the indentation test is more of a
shear test, for which reason the effect of shear at the constitutive model is more influential. The result of
this minimization yields the following values for the 10 parameters:

α = 0.257, Q0 = 3.37 GPa, Q1 = 30.85 GPa, Q2 = 58.01 GPa, τv = 3.92 sec

β = 0.374, q0 = 0.84 GPa, q1 = 13.99 GPa, q2 = 59.46 GPa, τd = 4.47 sec.
(88)
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Since all parameters in (88) are nonzero, it is recognized that the tested material, polystyrene, follows
best the double fractional Zener model with the sum of quadratic errors being 0.22× 10−9. By reducing
the unknown parameters down to 8 for the double Maxwell models, this error becomes 3.1× 10−9. For
validation, after identifying the model parameters of L̂(s), the inverse Laplace transform of L(s) must
match with Lexp

e (t), (84), in the time domain. This is numerically confirmed in Figure 8 by using the
Talbot algorithm [Abate and Valkó 2004]) for Laplace inversion.

Remark 1. Since s is, in general, a complex number, one may expect that both real and imaginary parts
of s are required for the purpose of curve-fitting in the Laplace domain. But The Identity Theorem
for single-valued analytic functions states that if two single-valued functions are analytic in a common
region and coincide identically in a subset of that region (for instance, on a segment of a curve) then
the two functions coincide identically throughout their common region of analyticity; see, for example,
[Carrier et al. 1966; Marsden and Hoffman 1999]. A continuous function is analytic in a region of the
complex plane if it is free of singularities in that region. Given that for any linear stable physical system,

such as creep in indentation, L̂(s) and L̂exp
e (s) are free of singularities in the right-half of the complex

plane where Re(s) > 0 (see the Appendix), then if L̂(s)= L̂exp(s) on the positive real axis of s (which

is a subset of the complex plane in which L̂(s) and L̂exp
e (s) are analytic), then directly from the Identity

Theorem, L̂(s) = L̂exp
e (s) throughout all regions of their analyticity in the complex plane. Hence, for

fitting L̂(s) and L̂exp
e (s) on the complex plane, as long as these functions coincide in a region where s

lies on the positive real axis, there is no need for the imaginary parts of s to be taken into account. Here
we used a relatively large interval up to s = 1000 sec−1 (since the exponent of est is dimensionless, the
dimension of s is 1/time which indicates that large s refers to small times and small s to large times).

Increasing this interval is practically insignificant because L̂exp
e (s) approaches zero at around s = 4 sec−1

(Figure 8).

Remark 2. The optimization problem (87) defined in the Laplace domain involves a ten-dimensional
shallow hypersurface for the ten unknown parameters (α, Q0, Q1, Q2, τv, β, q0, q1, q2, τd), in which
there are many local minima. To approach the global minimum, we use ten nested loops over initial
parameter guesses, each loop covering the given range of that parameter (we consider 0< α, β < 1 and
0 < τv, τd < 10 sec, 0 < Q0, Q1, Q2, q0, q1, q2 < 70 GPa). We then regularly discretize the range of
each parameter and repeat the optimization as many times as different combinations of initial parameter
guesses exist through the ten nested loops.

Remark 3. The optimization algorithm starts from different points within the hypersurface and each
time finds a closest local minimum by calling the ’lsqnonlin’ subroutine in Matlab v7.4, which uses a
subspace trust region method for each set of initial parameter guesses. This subroutine is based on the
interior-reflective Newton method [Coleman and Li 1994; 1996], and is set to a maximum of 20,000
iterations and function evaluations. Each iteration in this subroutine involves the approximate solution
of the large linear system using the method of preconditioned conjugate gradients (PCG). Over all initial
parameter guesses, the criterion for the best fit (or the global minimum among these local minima) will
be the one that has the least quadratic error. For a double Zener model, the run time for finding the global
minimum was 2 days, and the mean and standard deviation of the minima are 1.8× 10−5 and 2.9× 10−4,
respectively.
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Given that the quadratic error function for the global minimum is orders of magnitude less than the
mean of the minima, the objective function must be highly sensitive to the model parameters. To clarify
this dependence we perform a sensitivity analysis.

5.3. Sensitivity analysis of the model parameters. Once the model parameters are identified, one can
perform a sensitivity analysis to determine the quality of the employed models and the parameters that
contribute most to the output variability, which in this case is the objective function (88). Sensitivity
analysis also enables us to study the optimal– or instability– regions within the space of each parameter
for which the objective function is guaranteed not to jump from the global minimum to the next lowest
local minimum. Let’s use the symbol 2 to indicate the objective function (88). We numerically disturb a
model parameter, say α, from its optimum value while keeping all the other model parameters unchanged.
Next, by monitoring the change in 2 to a defined tolerance 12, we can measure the sensitivity of 2 with
respect to each model parameter. Then, one can simply repeat this procedure for each model parameter
and find a tolerance in which 2 is assured not to exceed the allowable drift. Here, for a double Zener
model, we set 12 = (0.59− 0.22)× 10−9

= 0.37× 10−9, which is the difference between the global
minimum 2 and its next lowest local minimum. For this case, we obtain

1α =±0.0001, 1Q0 =±0.7 MPa, 1Q1 =±2.1 MPa, 1Q2 =±5.6 MPa, 1τv =±0.0015 sec,

1β =±0.00004, 1q0 =±0.2 MPa, 1q1 =±0.3 MPa, 1q2 =±3.6 MPa, 1τd =±0.0007 sec.
(89)

In view of (89), the following observations are in order:

1. All parameters on the second line of (89) which are related to the deviatoric Zener model, are
less than their counterpart on the first line, which are related to the volumetric Zener model. This
suggests that the creep phenomenon during indentation is more sensitive to the deviatoric (shear)
behavior. In other words, the time-dependent response of the shear behavior is more pronounced
than that of the bulk behavior.

2. For each of the deviatoric and volumetric Zener models, the fractional parameters α and β, with the
least tolerance, are the most sensitive parameters in the quadratic error function, or, alternatively,
the most dominant parameters in the time-dependent response function.

3. Among all the parameters of the two models, the β parameter in the deviatoric model is the most
sensitive factor in the error function (equivalently, the most dominant factor for the time-dependent
response function), followed by α, which is the second most dominant (second least sensitive)
parameter in the response function.

The results of the sensitivity analysis are in agreement with the observation that the effect of β (or
shear) dominates over the effect of α. In fact, 2 is a nonlinear rational function of the independent
variable s, the model parameters (α, Q0, Q1, Q2, τv) for bulk and (β, q0, q1, q2, τd) for shear behavior.
Among these parameters, the fractional parameters α, β have significant influence in determining 2. This
is because α, β appear as the exponents of s in 2. For instance, in the case of shear behavior, in view of
(28)1 and (33), it is readily seen that the other four viscous model parameters appear only as coefficients
of s,and thus their variations are not as critical as β. Then, between α and β, β, with greater exponent,
is clearly the dominant parameter.
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6. Conclusions

The fractional viscoelastic model offers new possibilities for the characterization of materials whose time-
dependent response may be poorly captured by classical integer-type viscoelastic models. The analysis
and method developed in this paper aims at determining the fractional properties from indentation anal-
ysis. The following conclusions can be drawn:

(i) The derived constitutive differential equations governing the indentation response show that the
differential order of the constitutive differential equations of the indentation response is higher than
the one governing the material level. This difference in differential order between the material scale
and indentation scale holds for both fractional and integer-type viscoelastic models, the latter being
recognized as a subset of the more general fractional modeling framework. The found difference is more
pronounced for the viscoelastic shear response than for the viscoelastic bulk response. This is explicitly
shown with higher order derivatives in β than in α for fractional viscoelastic materials. This observation
is in agreement with the sensitivity analysis performed on the error function, and it translates into the
well-known fact that an indentation test is rather a shear test than a hydrostatic test.

(ii) The general constitutive differential equations are readily employed to derive indentation creep and
relaxation functions, which, analogously to uniaxial creep compliance and relaxation functions, can be
used in fractional indentation analysis for any monotonically increasing force- or depth-load histories
applied in indentation testing. On this basis, explicit solutions for specific fractional creep models can be
derived, as illustrated for the double Zener, double Maxwell, and deviatoric Maxwell and Zener models.

(iii) In order to translate time-dependent indentation data into fractional material model properties, we
suggest fitting the experimental response to the model response in the Laplace domain. This reduces
the mathematical complexity of obtaining properties from indentation data without compromising the
accuracy of the fit in the time domain. Our optimization method has two important features: the optimum
model parameters do not depend on the initial parameter guesses; and in our curve-fitting on the complex
plane, all functions are treated as real functions by making use of the Identity Theorem.

Appendix

The fractional expression D̂(s) can be converted into a polynomial of integer order by

D̂(s)=
∑

j

b j s j/m
=

∑
j

b j u j
= X (u), (90)

where u j
= s j/m , and m > 0 is the smallest common denominator of the fractional parameters α and β.

Some of the coefficients b j are clearly zero, while any non-zero b j corresponds to the coefficient of s
in D̂(s) whose exponent becomes equal to j/m. The inverse transform of a function, f̂ (s), exists and
is real, continuous, and causal when (i) f̂ (s) is analytic for Re(s) > 0, (ii) f̂ (s) is real for s real and
positive, (iii) f̂ (s) is of order s−γ , where γ > 1, for |s| large in the right half s plane [Churchill 1958].
One can simply show that L̂(s) in (56) satisfies all three conditions. By definition, the inverse Laplace
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Figure 9. Integration contour on the complex s-plane for the calculation of (91).

transform of (56) is then

L(t)=
1

2π i

∫ γ+i∞

γ−i∞
est D̂F (s)

2s D̂h(s)
ds. (91)

One can evaluate this line integral by extending it into a closed contour integration, as in Figure 9.
Recall that the residue theorem states that the integral along any closed contour, divided by 2π i , is equal
to the sum of the residues of poles of the integrand within that contour. The contour in Figure 9, is
divided into six segments with arrows which indicate the direction of integration. (Segments 3, 4, 5 are
needed since the branch cut of s1/m lies along the negative real axis.) We thus can write

1
2π i

∫
C1

est D̂F (s)

2s D̂h(s)
ds+

1
2π i

6∑
k=2

∫
Ck

est D̂F (s)

2s D̂h(s)
ds =

∑
j

b j , (92)

where b j are the residues. Equation (91) is the first term in (92) when its limits are extended to infinity
in the negative and positive imaginary directions of the s plane. The radii of the segments 2 and 6
are increased infinitely to ensure the continuity of the closed contour. Similarly, segments 3 and 5 are
stretched to infinity on the negative real axis. When the radius approaches infinity, it can be shown that
the integrals along the contours 2 and 6 are zero. By using the following lemma [MacRobert 1962] one
can obtain the contour integral along the segment 4,

Lemma. If lim(s − a) f (s) = k as s→ a, where k is a constant, then lim
∫

f (s)ds = i(θ2 − θ1)k, the
integral being taken for s→ a and r→ 0 around an arc from θ1 to θ2 of the circle |s− a| = r .

It follows that since (θ2− θ1)= 0, ∫
4

est D̂F (s)

2s D̂h(s)
ds = 0. (93)

One can also show that∫
3

est D̂F (s)

2s D̂h(s)
ds+

∫
5

est D̂F (s)

2s D̂h(s)
ds =−2i Im

∫
∞

0
e−r t

̂DF (re−iπ )

2s ̂Dh(re−iπ )
dr. (94)
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Finally, using the conventional technique, the residues are calculated as

b j = lim
s→λm

j

(s− λm
j )

D̂F (s)

2s D̂h(s)
est . (95)

Here, λ j refers to the j -th root of the integer polynomial X (u). In view of equations (90) and (56), the
roots of X (u) correspond to the poles of L(t). Lastly, by substituting (93), (94), and (95) into (92), one
can find the general solution in the time domain. For specific solutions, we need to consider different
models. For a double Zener models, since all the c and l coefficients in (42) are nonzero, s = 0 in (56) is a
simple pole, and because its exponent is one and an integer number, this pole is on the s-plane. Thus, its
residue via (95) is simply the first term in (59). Other poles of (56) λi (those that make D̂h(s)= 0) were
found in the s1/m plane. Since the Laplace transform is performed in the s-plane, the poles λi should be
transformed into λm

i to be on the s-plane. However, that transformation maps some of the original poles
onto Riemann surfaces out of the closed contour of integration in the s−plane. Thus, according to the
residue theorem, the residues of such poles do not contribute to the solution. Hence, the summation over
the index j in (59) (and through all equations in this paper) pertains only to those poles that remain in
the closed contour’s plane after the transformation. This indicates that, for a linear physical system, λm

i
must have a negative real part in order for the system to be stable.

For double Maxwell models, c0 = l0 = l1 = l2 = 0, and (56) simplifies to

L̂(s)=
D̂F (s)

2s D̂h(s)
=

c1sα + c2sβ + c3sα+β + c4sα+2β
+ c5s2β

2s(l3sα+β + l4sα+2β + l5s2β)
. (96)

In the case of α ≤ β, after cancelling out sα, (96) yields

L̂(s)=
c1+ c2sβ−α + c3sβ + c4s2β

+ c5s2β−α

2s1+β(l3+ l4sβ + l5sβ−α)
. (97)

Clearly, s = 0 in (97) is not a simple pole, rather, it is a pole of fractional order 1 + β. Consider
this fractional number to be k/m, where k and m are two integer numbers. By using the following
transformation:

s1+β
= (s1/m)k = uk, (98)

one can convert (97) into quotient of two polynomials as

L̂(u)=
c1+ c2um(β−α)

+ c3umβ
+ c4u2mβ

+ c5um(2β−α)

2uk(l3+ l4umβ + l5um(β−α))
. (99)

Now, u = 0 in (99) is a multiple pole of order k. In order to find its residue, we use the fact that the
residue of a function f (s)= Q(s)/(s− a)n+1 at a multiple pole a of order n+ 1 is given by

F(s, t)=
1
n!
∂n

∂ns
[Q(s)est

]s=a.

(see [Churchill 1958], for example). Applying this to (99) leads to (61)1. Similarly, in the case of α > β,
after cancelling out sβ , one can find (61)2. The residue theorem in conjunction with fractional-order
derivatives has been used in [Bagley and Torvik 1983] and [Ostoja-Starzewski and Shahsavari 2008] in
a slightly different way.
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MACROSCALE MODELLING OF MICROSTRUCTURE DAMAGE EVOLUTION
BY A RIGID BODY AND SPRING MODEL

SIRO CASOLO

A mechanistic approach is presented for macroscale modelling of a structured solid material. The model
consists of an assemblage of rigid mass-elements connected to each other by normal and shear line-
springs at each side. The characteristics of these springs govern the macroscopic behaviour of the model
that is able to incorporate an internal length and a polarity, in analogy with an orthotropic Cosserat solid
material. The present numerical implementation addresses the in-plane modelling of a masonry-like
composite whose main macroscopic constitutive aspects are: very low tensile strength, texture-dependent
evolution of the damage, and orthotropy of shear strength and internal friction. The constitutive rules
are assigned by following a heuristic approach, based on the main in-plane damage mechanisms that
are identified at the mesoscale, on a representative volume element of the composite solid material. In
particular, specific separate constitutive laws for the normal and the shear springs are adopted. Two
numerical tests compare the present macroscale approach with a detailed finite element micromodelling,
and demonstrate the capability of the proposed model to describe the main microstructure features of the
damaging process with very few degrees of freedom.

1. Introduction

The mechanical response and damage evolution of a composite material made with a periodic texture are
strictly related to its internal geometry and to the ratio between the microstructure characteristic length
and the global size of the system. In the present study, attention is focused on the postelastic macroscale
response of a plane masonry-like material that is composed of blocks jointed by mortar layers where the
strain tends to localise and the main part of the mechanical degradation occurs. It is well known that
the texture geometry produces perceivable effects at the macroscale that tend to evolve and to become
more evident with the progressive degradation of the material. In particular, the different topology of the
continuous horizontal mortar joints with respect to the vertical joints, interrupted by the blocks, causes a
marked orthotropy of the macroscopic shear response, as also shown by specific laboratory experiment
[Malyszko 2005].

Experiments as well as numerical and analytical studies have shown that often the damage behaviour
of a masonry-like material can be described on the basis of a limited number of mesoscale mechanisms
[Dhanasekar et al. 1985; Zucchini and Lourénço 2002]. At the macroscale level, most of these damage
mechanisms can be modelled in the frame of a Cauchy solid continuum approach [Lourénço et al. 1997;
Pietruszczak and Ushaksaraei 2003; Massart et al. 2004; Milani et al. 2006]. Nevertheless, there are
cases in which microscale effects need to be explicitly considered and the description of the mechani-
cal degradation entails taking into account the local rotation of the blocks and the orthotropy of shear

Keywords: RBSM, rigid, spring, macroscale, microstructure, heuristic, Cosserat.
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strength. Dealing with regular textures, the micro/macroscale transition can thus be performed toward
an enriched generalised continuum, which retains some information on the microstructure and internal
length [Masiani et al. 1995; Sulem and Mühlhaus 1997; Forest and Sab 1998]. More recently, the
relationship between the micro and macroscale for the specific case of masonry-like periodic rigid block
assemblies has also been handled by resorting to a multiscale strategy [Trovalusci and Masiani 2005;
Brasile et al. 2007].

An alternative computational approach that adopts a specific mechanistic model was proposed in
[Casolo 2004]. In this case, the heterogeneous solid material is imaged as a mechanism consisting
of rigid masses connected by simple elastic-plastic damaging springs, in the spirit of the rigid body
spring model (RBSM) [Kawai 1978; Griffiths and Mustoe 2001; Ostoja-Starzewski 2002] and somewhat
in the vast family of discrete element models [Lemos 2007]. Given a representative volume of the
periodic heterogenous solid material, the core of the proposed model is a macroscopic mechanical device
consisting of 4 masses connected by springs, as shown in Figure 1. This discrete mechanical device
should possess the relevant macroscopic properties of the periodic microstructured solid material, and
we tentatively name it the representative macroscopic segment or heuristic molecule. The linear elastic
characteristics of the three line springs that connect the elements at each side can be defined either by the
relationship with a corresponding continuum or by a direct computational approach [Casolo 2006]. To
describe the mean damage evolution of the material, a heuristic approach was initially proposed in [Boffi
and Casolo 1998], and then in [Casolo and Peña 2007], based on the phenomenological consideration of
the main in-plane damage mechanisms that can be described at the mesoscale.

The sequel of such research is presented in this paper, with the emphasis now placed on discerning the
impact of material texture on the orthotropic damage evolution at the macroscale level. As a case study,
a masonry-like material made of three material components is considered: the blocks, and the horizontal
and vertical mortar joints. The load is applied on an area whose size is comparable with the internal
microstructure length of the periodic arrangement. In this case the orthotropy of the shear response
and the local rotation of the blocks play an important role in the development of damage, also at the

/ heuristic−molecule 

representative macroscopic segment

RVE  

bx

bx

ybyb

k y
A

k x
Ax

y k v
Q

k
Q
h

Figure 1. Heuristic representation of the correspondence between an RVE (represen-
tative volume element) of the composite material and the representative macroscopic
segment, or heuristic molecule, made of rigid masses and springs.
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macroscale. The numerical application presented at the end of the paper will investigate and compare
the proposed mechanistic model with a finite element continuum model that describes the masonry-like
texture with a microscale level of detail, assuming a modified Drucker–Prager plasticity model for the
three material components [ABAQUS 2007].

2. The macroscale rigid body and spring model

2.1. Discrete formulation of the kinematics. The masonry-like composite material is modelled as a
plane solid body partitioned into m quadrilateral mass-elements ωi such that no vertex of one quadrilateral
lies on the edge of another quadrilateral [Casolo 2006]. Given a global reference frame {O, x, y}, the
deformed configuration of the discrete model is described by the displacements and rotation {ui , vi , ψi }

of the local reference frames {oi , ξ i , ηi
} fixed in each element’s barycentre oi . These 3m variables are

assembled into the vector of Lagrangian coordinates {u} that is conjugated in virtual work with the
corresponding vector of external loads {p} (see Figure 2a), as

{u}T = {u1, v1, ψ1, u2, v2, ψ2, . . . , um, vm, ψm}, {p}T = {p1, q1, µ1, p2, q2, µ2, . . . , pm, qm, µm}.

Three line springs connect each couple of adjoining mass-elements in correspondence of points P , Q and
R, placed along the common side as shown in Figure 2b.1 Then, average strain measures are associated
with these connecting devices: the axial strains, εP and εR , are associated with the volumes of pertinence
VP and VR , while the shear strain εQ is associated with the volume VQ , defined by VQ

= VP
+VR .

Considering a discrete model with r sides that connect all the elements, the generalised strain vector {ε}
and the diagonal matrix of volumes of pertinence [V ] are defined as

{ε}T = {εP
1 , ε

Q
1 , ε

R
1 , ε

P
2 , ε

Q
2 , ε

R
2 , . . . , ε

P
r , ε

Q
r , ε

R
r },

[V ] = diag{VP
1 ,VQ

1 ,VR
1 ,VP

2 ,VQ
2 ,VR

2 , . . . ,VP
r ,VQ

r ,VR
r }.

(1)

Under the assumption of small displacements, the strain-displacement relation can be expressed by con-
sidering a 3r × 3m matrix [B] as {ε} = [B]{u} (see Appendix A for a specific example).

2.2. Incremental formulation of the balance laws. A measure of stress, conjugated in virtual work with
the strain associated to each connecting device, is introduced, and the corresponding vector of generalised
stress {σ } is assembled as {σ }T = {σ P

1 , σ
Q
1 , σ

R
1 , σ

P
2 , σ

Q
2 , σ

R
2 , . . . , σ

P
r , σ

Q
r , σ

R
r }. Out of the linear elastic

field, the stress σ and the tangent stiffness k of each spring depend on the whole past deformation history
(designated by the symbol ?) which is subdivided into discrete time intervals. Given the stress σ 0 for a
generic spring at instant ti , the following linear expression is adopted for predicting the stress at instant
t ∈ [ti , ti+1]: σ(t, ?)= σ 0(ti , ?)+ k(ti , ?)1ε, with 1ε being the evaluated strain increment in the spring.
The local tangent stiffness matrix [Dt ] of all the connecting springs is

[Dt ] = diag{k P
1 , k Q

1 , k R
1 , k P

2 , k Q
2 , k R

2 , . . . , k P
r , k Q

r , k R
r }. (2)

1The absence of the axial springs that connect the rigid elements along the diagonals of the heuristic molecule limits the
present RBSM to behaving at the macroscale like a solid material with a Poisson’s ratio of zero. This has been assumed for
simplicity, after considering the limited importance of the Poisson effect for the main damaging mechanisms of a masonry-
like composite material. In general, a range of different values for the macroscopic Poisson’s coefficient can be obtained by
combining different types of spring (axial, shear, or rotational) and by an appropriate definition of the lattice geometry [Stakgold
1950; Ostoja-Starzewski 2002].
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Figure 2. Notation adopted and disposition of the connecting springs [Casolo and Peña 2007].

Thus, the internal virtual work done by the elastic-plastic springs is

δWi
= {δε}T [V ]{σ 0

}+ {δε}T [V ][Dt ]{1ε} = {δu}T ({ f 0
}+ [Kt ]{1u}), (3)

where { f 0
} is the vector of generalised forces and [Kt ] is the generalised tangent stiffness matrix, defined

as { f 0
}

T
= {σ 0

}
T
[V ][B], and [Kt ] = [B]T [V ][Dt ][B], respectively. On the other hand, the virtual work

done by the external forces is simply δWe
= {δu}T {p}. Then, by means of the balance of virtual works

δWi
= δWe, ∀{δu}, the following system of incremental static equations is obtained:

{ f 0
}+ [Kt ]{1u} = {p}. (4)

This is solved adopting the full Newton–Raphson iteration scheme until numerical convergence is attained
[Zienkiewicz and Taylor 1991].

2.3. Constitutive laws: linear elastic field. A computational approach based on the five elemental load-
ing tests sketched in Figure 3 is adopted, in the linear elastic field, to identify the four spring stiffness
k P

x , k P
y , k Q

x , and k Q
y , and the two distances bx and by [Casolo 2004]. Alternatively, these six param-

eters can also be obtained by a direct relation with the elastic tensor C of an “equivalent” orthotropic

k x
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Figure 3. Scheme of the deformed shape of the five elemental tests of loading. The finite
element model of the RVE (top row) and the the corresponding rigid element schemes
(bottom row).
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Cosserat continuum,2 as explained in [Casolo 2006] and summarised in Appendix B. The microscale
model adopts a very common masonry-like texture, with a typical Italian brick geometry for the blocks:
2l × 2h = 25× 5.5 cm. The case of single leaf masonry is considered here for the sake of clarity as
a first approach, with a depth of 12 cm. The reference RVE is a 26× 26 cm square domain made by
finite elements. Homogeneity, isotropy, and perfect bonding are assumed for the three components of
the heterogeneous masonry-like material. The elastic modulus of the blocks is Eb = 10000 MPa, the
elastic moduli of the horizontal and the vertical mortal joints are Eh = 2000 MPa and Ev = 1000 MPa,
respectively, while the Poisson’s coefficient is fixed as ν = 0.1 for all the components.

The stiffness of the axial springs can be directly computed by considering the RVE subjected to simple
normal loading acting parallel to a material principal direction and traction-free boundary condition along
the other two sides (the first and second loading cases, in the left part of Figure 3). Given the generalised
axial strains εx = u/e and εy = v/e, and the corresponding average elastic energy densities UA

x and UA
y ,

then the axial stiffnesses per unit volume to be attributed to the normal connecting devices are

k P
x =

2UA
x

ε2
x
, k P

y =
2UA

y

ε2
y
. (5)

The evaluation of the shear response requires some more attention. In fact, in addition to the mean
shear deformation Es it is necessary to select a criterion for measuring the mean local rotation ψ of the
blocks [Casolo 2006]. A direct test can be made, in which the RVE is subjected to periodic displacement
boundary conditions and loaded by shear actions along the four boundaries that have equal absolute value
S12 = S21 (this is the loading case shown in the centre of Figure 3). The average symmetric shear strain
is εs = (u+ v)/2e, while the average local rotation measured on the blocks is directly assigned to the
rigid elements. The generalised shear strains for the vertical and the horizontal connecting devices are
then

εv = εs −ψ = εs(1− ρ), εh = εs +ψ = εs(1+ ρ), (6)

with the local rigid rotation ratio ρ = ψ/εs . The equilibrium of the shear stresses implies that the
stiffnesses of the shear connecting devices of the vertical and horizontal sides must be related by the
following equation:

k Q
h

k Q
v

=
εv

εh
=

1− ρ
1+ ρ

. (7)

Thus, a generalized symmetric shear stiffness ks can be defined, such as

k Q
v = (1+ ρ)ks, k Q

h = (1− ρ)ks .

Finally, ks is defined as a function of the average elastic energy Us per unit volume stored in the volume
of pertinence:

ks =
Us

(1− ρ2)ε2
s

(8)

2Clearly, the reduction from eight to six parameters in the passage from the plane orthotropic Cosserat continuum to the
present RBSM implies a loss of information about the axial and shear coupling effects. The correspondence would be ideal
in the case of an equivalent Cosserat continuum with a diagonal elastic tensor as proposed in [Masiani et al. 1995; Sulem and
Mühlhaus 1997].
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The distances bx and by of the axial springs from the mid-point of each side are evaluated by means
of the two in-plane bending tests, shown in Figure 3 on the right. After measuring the average elastic
energy densities UF

x and UF
y from the RVE finite element model, we have

βx =
bx

e
=

1
ψ

√
2UF

x

k P
x
, βy =

by

e
=

1
ψ

√
2UF

y

k P
y
. (9)

The six values identified for the springs in the linear-elastic field are as follows:3

k P
x = 5650 MPa k Q

h = 3520 MPa βx = 0.61

k P
y = 7600 MPa k Q

v = 11780 MPa βy = 0.57
(10)

2.4. Constitutive laws: elastic-plastic field.

2.4.1. Overview of the heuristic approach. Modelling the mechanical degradation when the effects at
the microstructure level entail taking the local rotation of the blocks and the orthotropy of shear strength
into account is the focus of this contribution. To do this, the main hypothesis of the proposed constitu-
tive model is that the damage evolution can be described using a limited number of mesoscale mecha-
nisms that are strictly related with the internal microstructure geometry [Malyszko 2005; Trovalusci and
Masiani 2005].

The five basic mesoscale elemental mechanisms are sketched in Figure 4:

(i) cracking of vertical joints with sliding of bed-joint under horizontal tension;

(ii) global crushing and local splitting of joints under horizontal compression;

(iii) bed-joints cracking and opening under vertical tension;

(iv) global crushing given by simultaneous splitting of blocks and cracking of vertical joints under ver-
tical compression; and

(v) shear sliding of mortar joints along a stepwise pattern under shear loading with local rotation of the
blocks.

(ii) (iii) (iv) (v)(i)

Figure 4. Heuristic description of the five types of damage mechanism considered at the mesoscale.

3Note that the size effect can significantly affect the macroscopic response of microstructured materials. Ideally, when
the size of the discrete elements is much larger than the characteristic length of the RVE, then the parameters that govern the
microstructure effects must become negligible at the macroscale level. The present RBSM is designed to deal with this aspect
by progressively reducing the orthotropy of the shear springs and by making βx and βy tend to 1/

√
3, as described in [Casolo

2004].



MACROSCALE MODELLING OF MICROSTRUCTURE DAMAGE EVOLUTION 557

Mechanisms (i) and (v) are those for which the effect of the texture on the global response is more
significant. In fact, in the first case the tensile strength is strictly related to the aspect ratio of the blocks,
in combination with the friction coefficient of the horizontal mortar joints and the presence of a vertical
compressive stress. On the other hand, in the last mechanism the mean local rotation of the blocks as
well as the orthotropy of the shear response is also strictly related to the shape and disposition of the
blocks. Moreover, it is evident that the presence of a mean compression stress has an impact on the
strength characteristics that is orthotropic and depends on the texture geometry.

The proposed constitutive model exploits the observation that the mesoscale damage mechanisms
are limited, by associating a particular damage pattern almost exclusively to each type of spring. The
model works at the macroscale, without the need of describing the effective texture geometry with the
mesh; this is the essential difference with respect to the classical continuum approach usually adopted in
finite element models, which generally require to describing the geometry of the material microstructure,
except when adopting a generalised continuum [Masiani et al. 1995]. Clearly, in the present formulation
the springs should be as much as possible aligned with the principal axes of the material texture, otherwise
a good approximation cannot be taken for granted. Furthermore, at present no particular steps have been
taken to deal with the localisation and the mesh objectivity which are a consequence of strain-softening
material behaviour [Lourénço et al. 1997; de Borst 2001]. As a rule of thumb, the model should be
composed by units whose size is approximately comparable to the size of the RVE. In any case, the tests
presented in the following section will reveal a limited sensitivity with respect to mesh size.

Even if the present work is focused on the monotonic response, this notwithstanding the RBSM is
implemented into a computer code that is designed to perform dynamic analyses. Thus, the constitutive
laws also include the hysteretic response, with different rules for strength and stiffness degradation of
the axial and shear springs, as is schematically shown in Figure 5, by following the paths indicated by
the points labelled 1–9. The skeleton curves degrade depending on the maximum positive and maximum
negative deformation reached during the loading history. The degradation of loading stiffness, unloading
stiffness, and strength also depends on the maximum deformation reached. Out of the range of defor-
mation defined by the interval [S−, S+], the skeleton curves are horizontal and correspond to a residual
strength which is assumed to remain constant until the ultimate deformation is reached. These hysteretic
rules are strictly derived from those already described with more detail in [Casolo 2000; Casolo and
Peña 2007], based on phenomenological evidence [Naraine and Sinha 1991; Binda et al. 1992; Magenes
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Figure 5. Hysteretic behaviour of the axial (left) and shear (right) connecting springs.



558 SIRO CASOLO

pt |0 (MPa) φ (◦) ϑ (◦)

Brick 0.425 30 5
Horizontal mortar 0.10 30 5
Vertical mortar 0.05 30 5

Table 1. Parameters assigned to the material components of the masonry-like RVE: pt |0
is the initial hydrostatic tension strength of the material, while φ and ϑ are the material
angle of friction and the dilatation angle, respectively.

and Calvi 1992; Anthoine et al. 1995], while in the following sections attention will be only devoted to
define the parameters that govern the monotonic response.

2.4.2. Monotonic tests on the finite element RVE. The RVE is made by 4-node bilinear generalised plane
strain finite elements that adopt the Drucker–Prager plasticity material model available within [ABAQUS
2007]. The hyperbolic yield criterion has been assigned to the three material components: the bricks,
and the horizontal and vertical mortar joints. This criterion is a continuous combination of the maximum
tensile stress condition of Rankine (tensile cut-off) and the linear Drucker–Prager condition at high
confining stress:

F =
√(

d ′|0− pt |0 tanφ
)2
+ q2− p tanφ− d ′ = 0, (11)

where d ′ is the hardening parameter, pt |0 is the initial hydrostatic tension strength of the material, φ
is the material angle of friction, q is the von Mises equivalent stress, and p is the equivalent pressure
stress.4 In the present application, the hardening parameter is

d ′ =
√
(d ′|0− pt |0 tanφ)2+ d2, (12)

and it is defined by the cohesion yield stress, d =
√

3τ , data (where τ is the yield stress in a shear test)
as a function of the equivalent shear plastic strain

ε pl
=
γ pl
√

3
.

The values assigned to pt |0, φ, and the dilatation angle ϑ in the p−q plane at high confining pressure are
reported in Table 1, while the hardening behaviour of the three elemental materials is shown in Figure 6,
left, in terms of a simple shear test.5 The finite element mesh of the composite RVE is shown in Figure
6, right. The thickness of the mortar joints is t = 1 cm, and the vertical head-joints, interrupted by the
bricks, are considered as weaker than the horizontal continuous bed-joints.

4In more detail, according with the notation of the [ABAQUS 2007] manual, p =− 1
3 tr [S] and q =

√
2
3 [S

d ] : [Sd ], where
[S] is the Cauchy stress tensor.

5The flow potential is G =
√
(0.1d|0 tanϑ)2+ q2− p tanϑ , with d|0 the initial cohesion yield stress. This flow potential

is continuous and smooth and ensures that the flow direction is always uniquely defined. This function approaches the linear
Drucker–Prager flow potential asymptotically at high confining pressure stress and intersects the hydrostatic pressure axis at
90◦ [ABAQUS 2007].
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Figure 7. Macroscale results of the monotonic tests on the finite element RVE.
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Four sets of elemental computational tests were considered on the basis of the heuristic description
already sketched in Figure 4. At the macroscale, the effect of the internal friction is evaluated by consider-
ing tests with a different level of mean compression along the horizontal and vertical principal directions.
The responses, written in terms of mean stress-strain relations, are reported in detail in Figure 7. The
following synthetic observations can be made:

• Tension: In this case the strength is very low and the calculated response appears to be completely
brittle due to the lack of numerical convergence of the computer code. Note that the strength along
the horizontal direction (top right) is higher than along the vertical direction (top left) because the
vertical joints are interrupted by the blocks.

• Compression: In this case the material exhibits its maximum bearing capacity with a progressive
mechanical degradation once the peak value of the strength is reached. In the present case the
response is almost isotropic.

• Shear: This case is governed by the response of the mortar joints. The residual shear strength
is enhanced by a vertical compression, obeying a Coulomb-type relation, while the presence of a
horizontal mean compression produces a global instability.

• Local rotation: In the case of symmetric shear loading the texture effects are evident, involving the
local rotation of the blocks, measured by the angle ψ . The ratio ρ = ψ/εs is reported in Figure 7
as a function of the symmetric shear deformation Es , where Es = (E12+ E21)/2.

2.4.3. Definition of the constitutive laws of the springs. The elastic-plastic characteristics given to the
connecting springs descend from the identification tests made on the RVE, summarized in Figure 7.

In the macroscopic compression region the constitutive laws of the axial springs are directly related
to the axial responses of the reference RVE, as shown in the top row of Figure 8, while for simplicity
βx and βy have the fixed values reported in (10) on page 556. In the tensile region, on the other hand,
the completely brittle response of this RVE at the macroscopic level is mainly due to a global lack of
numerical convergence of the computer code. In fact, when adopting uneven loading conditions the
tensile behaviour exhibits some strain softening at the local level. Unfortunately this effect is not easily
quantifiable, since it depends on the size of the specimen as well as on the different boundary conditions.
Thus, a softening behaviour has been tentatively given to the axial springs under tensile loading by
assigning a negative slope that is in accord with the negative slope of the compression branch, as shown
in Figure 8.

The definition of the horizontal and vertical shear springs requires fitting both the macroscale response
in terms of the symmetric shear stress-strain relation and the evolution of the local rotation ratio ρ as
a function of the mean shear strain Es = εs = (εh + εv)/2. To do this, different constitutive laws are
assigned to the vertical and horizontal shear springs, as shown in the middle row of Figure 8, according
with the criterion already explained in [Casolo 2004]. A partial validation of the combined effect of
these assignments on the global shear behaviour is shown in the bottom row of Figure 8, where the
macroscopic responses of the RBSM heuristic molecule in terms of τs(εs) and ρs(εs) are compared with
the finite element RVE.

Since the macroscale shear strength is enhanced by the presence of vertical compression, it is also
assumed that the shear skeleton curve translates as a function of the mean vertical axial stress σ v in the
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Figure 8. Elastic-plastic characteristics of the rigid element springs. The the character-
istics of the axial springs (top row), and the characteristics of the shear springs and the
corresponding local rotation ratio ρ (middle and bottom rows).

corresponding volume of pertinence VQ , as shown in Figure 9. From the results of the shear test with
fixed S22, the value φ = 0.3 has been given to this Coulomb-type internal friction coefficient. At present,
the model assumes that the influence of the shear on the response of the axial springs is negligible.

Up to now, no specific steps have been taken to deal with localisation and mesh objectivity, which are
consequences of strain-softening material behaviour [Lourénço et al. 1997; de Borst 2001].

v
−− φ σσQr

σQr

Qσ

02G ε Q

Figure 9. Variation of the skeleton curve of a shear spring as a function of the mean
vertical stress σ v.
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3. The case study

To evaluate the performance of the present approach, a situation where the microstructure effects are
significant has been investigated in depth. The case study is a square plane domain subjected to two
boundary and loading conditions that cause a highly nonhomogeneous stress-strain field, also at the
macroscale. The vertical and the horizontal load are monotonically applied over a distributed small
volume, as shown in the scheme of Figure 10, left. The parts drawn with dotted line hatching indicate a
kinematic boundary condition of full clamping. Note that the block size is not far from the macroscale
characteristic length of the problem.

3.1. Response of the reference FE wall. The microscale model adopted as the reference wall is made
by means of a refined mesh of 3600 plane 4-node bilinear finite elements as shown in Figure 10, right,
for a total of 7425 degrees of freedom.

Figure 11 shows the maps of the deformed shape and of the equivalent plastic strain (called PEEQ
in ABAQUS) for a loading configuration close to the collapse. The response of this FE model clearly
reveals the role played by the masonry-like texture that produces quite different kinematics of the two
collapse mechanisms. This is due to the combined effect of the texture geometry with the internal
friction, that enhances the shear strength of the horizontal joints in the presence of a vertical pressure.
In the case of vertical applied load, the collapse mechanism involves a significant local rotation of the
blocks, while in the case of horizontal load the kinematics can be mainly described in terms of horizontal
relative translation of the blocks. As a first consequence, the distribution of the plastic strain evidences
a diffused damaged area in the first case, while the damage is concentrated in few horizontal layers of
mortar with the horizontal load. At the macroscale, the final consequence is that we have a very different
bearing capacity, with a maximum vertical load that is 83% higher than the maximum horizontal load

0.26 m 

1.30 m 

0.26 m 

V

0.26 m 

1.30 m 

H

0.26 m 

Figure 10. Left: scheme of the masonry walls used as reference. Right: finite element
mesh for the microscale reference model.
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(a) vertical load= 83.4 kN

(b) horizontal load= 45.5 kN

Figure 11. Deformed shape and equivalent plastic strain (peeq) for the microscale finite
element model for a configuration close to collapse. The vertical (a) and horizontal (b)
applied loads.

(∼ 84 kN versus ∼ 46 kN).6 Also quite different is the trend of the decay of the stiffness as a function of
the increasing displacement at the point of application of the load.

3.2. Response of the RBSM. The response of the RBSM is here presented making reference to regular
meshes of 5× 5, 10× 10 and 20× 20 square elements (hence 75, 300 and 1200 degrees of freedom).
With this model, the fully clamped boundary condition should be intended in the sense that the border
elements are connected to a solid base that is completely rigid. Ideally, this base could be also modelled
by a rigid body and springs that have infinite stiffness. In practice, the connecting springs placed along
the clamped boundary have an effective length that is half that of the internal ones, while the strength
remains unchanged.

6It is interesting to recall that in the laboratory experiment by Malyszko [2005] the orthotropic shear strengths were evaluated
by arranging the boundary conditions as to obtain a predetermined single plane of failure: (i) for a loading H tangential to the
bed joints, and (ii) for a loading V normal to the bed joints. In the first case the global strength was related to the shear strength
of the horizontal mortar joint, while in the second case the collapse mechanics was more complex and the shear strength of the
bricks was also determinant. The ratio of the two shear strengths was V/H = 1.65.
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First, the capability of the present model to account for the specific microstructure effects can be
appreciated from the maps shown in Figure 12, which report the responses of the two RBSMs subjected
to the same value of load, equal to 35 kN, along the vertical and horizontal directions. This load produces
some mechanical degradation in these models, with a decay of ∼ 10% of the global stiffness in the case
of vertical load, and a decay of ∼ 30% in the case of horizontal load. In this test, it is noticeable that the
central part of the model subjected to the vertical load presents horizontal stripes of alternate positive and
negative axial stress σh , which indicates the presence of a local in-plane flexural mechanism. Clearly,
this effect is strictly related to the specific RBSM capability of retaining memory of the original internal
texture. In fact, this behaviour is correctly absent in the case of a horizontal applied load. From these

(a) vertical load= 35 kN
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(b) horizontal load= 35 kN
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Figure 12. Deformed shape and maps of the generalised stresses in the axial springs
(σh , σv) and in the shear springs (τh , τv) as obtained by means of the nonlinear rigid
element model subjected to a vertical load (a) and a horizontal load (b).
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Figure 13. Force-displacement response curve and stiffness decay. The displacements
are evaluated as the average in the loaded area.

maps it is also evident that the orthotropy of the shear springs favours the bearing capacity in the case of
a vertical load, in conjugation with the presence of a prevailing situation of vertical compression stress.

The RBSM responses in terms of global variables are compared with the reference FE models in the
graphs of Figure 13, where the results obtained with three different mesh refinements are shown together.
The force-displacements curves are given on the left side, for both vertical (red lines) and horizontal
(blue lines) loads. The corresponding curves of decay of the global stiffnesses are plotted on the right
side Figure 13. They are evaluated by calculating the average slope of the previous curves. Globally, the
performance can be judged as quite good, with the exception of the small underestimation of the bearing
capacity in the vertical loading case.7 The responses in terms of force show an acceptable sensitivity to
the mesh size, being in the range 70.4–74.6 kN for the vertical load, and in the range 40.0–51.9 kN for
the horizontal load. Note that the lower values are obtained with the finest mesh, for which there is a
clear problem of localisation due to the fact that the element size is too small with respect to the internal
characteristic length of the periodic material. The responses in terms of varying stiffness show the more
pronounced stepped decay of the coarse meshes. It is worth noting that the RBSM is able to predict the
very different bearing capacity of the two loading cases, as well as the completely different kinematics of
the two collapse mechanisms, as shown in the enlarged detail of Figure 14. This capability is essentially
related with the specific nonsymmetric characteristics of the shear springs and with the choice of adopting
couples of axial springs placed at distances bx 6= by . As a counter-check, when adopting a RBSM that
does not have the present specific microstructure characteristics (i.e., the shear springs are symmetric
and βx = βy = 1/

√
3), then the maximum loads are ∼ 40 kN and ∼ 45 kN for the vertical and horizontal

7In this connection, it is possible to enhance the model by introducing a specific rule for varying βx as a function of the
increasing damage. This would be in accord with the results obtained in [Casolo 2006], because βx tends to increase as a
function of the ratio between the elastic modulus of the blocks and of the mortar, while βy tends to remain constant.
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(a) vertical load= 74.6 kN (b) horizontal load= 44.5 kN

Figure 14. Enlarged detail of the collapse kinematics in the load application area with
the 10× 10 mesh.

loads respectively (note that in this case the vertical maximum load would be completely wrong, and even
smaller than the horizontal). This performance seems particularly interesting when considering the results
obtained with the coarsest mesh, for which a single element has the same size of the composite RVE.

3.3. Effects of mesh distortion on the RBSM. As already stated, each type of spring is associated almost
exclusively with a definite damage pattern. Thus, the heuristic molecules should be regular, and as
much as possible aligned in accord with the principal axes of the material texture, in order to grant a
good performance. On the other hand, realistic applications sometimes require dealing with irregular
geometries, even if a masonry-like material is usually laid down with a certain degree of regularity due
to the presence of the horizontal mortar layers. In the linear-elastic case, this issue has already been
considered in [Casolo 2004].8 Now, the points that define the skeleton curve of an inclined spring must
also be recalculated in order to account for the strength orthotropy. Given the couple of strengths (σ̂v and
σ̂h), along the vertical and horizontal directions, the most simple trigonometric rule has been chosen for
evaluating the strength along a direction of inclination α: σ̂ (α)= σ̂h cos2 α+ σ̂v sin2 α. The performance
of the RBSM has been tested by means of the meshes shown in Figure 15. The mesh on the right side
has been named the bad mesh because of the high distortion of some elements, that are close to being
triangles.

These meshes have been subjected to the same loading conditions described in the previous section,
and Figure 16 shows graphs that compare the corresponding responses. It is evident that the performance
can be judged as acceptable in the case of a limited distortion, while the bad mesh suffers for some
problems of numerical convergence. It also tends to underestimate the bearing capacity of the reference
wall in both situations.

8Given the angle of inclination α, the following expressions are adopted for the normal spring stiffness k P and shear spring
stiffness k Q :

k P (α)=k P
x cos4 α+ k P

y sin4 α+ 4
k Q
v k Q

h

k Q
v+k Q

h

cos2 α sin2 α, k Q(α)=

2(k P
x +k P

y ) cos2 α sin2 α+2
k Q
v k Q

h

k Q
v+k Q

h
(cos2 α− sin2 α)2

1−
k Q
v −k Q

h

k Q
v +k Q

h
(cos2 α− sin2 α)

.

Moreover we take β(α)= βx cos2 α+βy sin2 α.



MACROSCALE MODELLING OF MICROSTRUCTURE DAMAGE EVOLUTION 567

Figure 15. Meshes adopted to test the response in the case of geometric distortion. The
reasonable (left) and the bad (right) meshes.
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Figure 16. Comparison of the force-displacement response curve and stiffness decay
when adopting distorted meshes.

4. Final remarks

The present contribution is part of a research project that has the objective of modelling the nonlinear
response of masonry-like materials by a macroscale mechanistic approach. The core of the proposed
rigid body and spring model (RBSM) is a specific heuristic molecule, or representative macroscopic
segment made by four rigid elements, which has the capability of describing the fundamental damage
mechanisms at the mesoscale, also including some mechanical effects that are strictly related with the
internal microstructure. The parameters that govern the model can be obtained by relatively simple tests
that consider the macroscale response of a RVE of the original microstructured material. The computer
tests gave good results, in particular when considering the terrific reduction of the required degrees of
freedom. At present, the idea is implemented into a specific Fortran computer code that has its natural
engineering application in the field of the dynamics of structures made by complex nonlinear materials,
as in the case of the seismic analysis of masonry monuments.
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Appendix A: Matrix [B] for the case of square elements

The geometric strain-displacement relationship for the representative macroscopic segment, also called
the heuristic molecule, is reported as an example (see Figure 17):
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Figure 17. Example of a regular representative macroscopic segment, also referred to
as a heuristic molecule.

Appendix B: Relationship with Cosserat continuum elastic moduli

Given the macroscopic axial elastic moduli Cααββ that can be evaluated by applying antiperiodic tractions
under symmetric periodic boundary conditions [Anthoine 1995], the stiffnesses per unit volume of the
axial springs are:

k P
x = k R

x =
C1111C2222−C2

1122

C2222
, k P

y = k R
y =

C1111C2222−C2
1122

C1111
.

The stiffnesses of the orthotropic shear springs have the following relationship with the macroscopic
Cosserat shear moduli C1212, C1221, and C2121, in accordance with [Casolo 2006]:
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k Q
h =

C1212C2121−C2
1221

C2121−C1221
, k Q

v =
C1212C2121−C2

1221

C1212−C1221
.

Finally, the distances bx and by can be obtained as a function of the in-plane Cosserat flexural stiffnesses
as follows [Casolo 2006]:

bx = βx e =

√
D3131

k P
x
, by = βye =

√
D3232

k P
y
.

References

[ABAQUS 2007] ABAQUS, Abaqus documentation, Version 6.7, Dassault Systèmes/SIMULIA, Providence, RI, 2007.

[Anthoine 1995] A. Anthoine, “Derivation of the in-plane elastic characteristics of masonry through homogenization theory”,
Int. J. Solids Struct. 32:2 (1995), 137–163.

[Anthoine et al. 1995] A. Anthoine, G. Magenes, and G. Magonette, “Shear compression testing and analysis of brick masonry
walls”, pp. 1657–1662 in Proceeding of the 10th European Conference on Earthquake Engineering (Vienna, 1994), edited by
G. Duma, A. A. Balkema, Rotterdam, 1995.

[Binda et al. 1992] L. Binda, G. Gatti, G. Mangano, C. Poggi, and G. Sacchi Landriani, “The collapse of the civic tower of
Pavia: a survey of the materials and structure”, Masonry Int. 6:1 (1992), 11–20.

[Boffi and Casolo 1998] G. Boffi and S. Casolo, “Non-linear dynamic analysis of masonry arches”, pp. 99–108 in Monument
98: Workshop on Seismic Performance of Monuments (Lisbon, 1998), Laboratório Nacional de Engenharia Civil, Lisbon,
1998.

[de Borst 2001] R. de Borst, “Some recent issues in computational failure mechanics”, Int. J. Numer. Methods Eng. 52:1 (2001),
63–95.

[Brasile et al. 2007] S. Brasile, R. Casciaro, and G. Formica, “Multilevel approach for brick masonry walls, I: A numerical
strategy for the nonlinear analysis”, Comput. Methods Appl. Mech. Eng. 196:49–52 (2007), 4934–4951.

[Casolo 2000] S. Casolo, “Modelling the out-of-plane seismic behaviour of masonry walls by rigid elements”, Earthquake Eng.
Struct. Dyn. 29:12 (2000), 1797–1813.

[Casolo 2004] S. Casolo, “Modelling in-plane micro-structure of masonry walls by rigid elements”, Int. J. Solids Struct. 41:13
(2004), 3625–3641.

[Casolo 2006] S. Casolo, “Macroscopic modelling of structured materials: relationship between orthotropic Cosserat contin-
uum and rigid elements”, Int. J. Solids Struct. 43:3–4 (2006), 475–496.

[Casolo and Peña 2007] S. Casolo and F. Peña, “Rigid element model for in-plane dynamics of masonry walls considering
hysteretic behaviour and damage”, Earthquake Eng. Struct. Dyn. 36:8 (2007), 1029–1048.

[Dhanasekar et al. 1985] M. Dhanasekar, A. W. Page, and P. W. Kleeman, “The failure of brick masonry under biaxial stresses”,
pp. 295–313 in Proceedings of the Institution of Civil Engineers, 2: Research and theory, vol. 79, Thomas Telford, London,
1985.

[Forest and Sab 1998] S. Forest and K. Sab, “Cosserat overall modeling of heterogeneous materials”, Mech. Res. Commun.
25:4 (1998), 449–454.

[Griffiths and Mustoe 2001] D. V. Griffiths and G. G. W. Mustoe, “Modelling of elastic continua using a grillage of structural
elements based on discrete element concepts”, Int. J. Numer. Methods Eng. 50:7 (2001), 1759–1775.

[Kawai 1978] T. Kawai, “New discrete models and their application to seismic response analysis of structures”, Nucl. Eng. Des.
48:1 (1978), 207–229.

[Lemos 2007] J. V. Lemos, “Discrete element modeling of masonry structures”, Int. J. Archit. Herit. 1:2 (2007), 190–213.

[Lourénço et al. 1997] P. Lourénço, R. de Borst, and J. Rots, “A plane stress softening plasticity model for orthotropic materi-
als”, Int. J. Numer. Methods Eng. 40:21 (1997), 4033–4057.



570 SIRO CASOLO

[Magenes and Calvi 1992] G. Magenes and G. M. Calvi, “Cyclic behaviour of brick masonry walls”, pp. 3517–3522 in Pro-
ceedings of the 10th World Conference on Earthquake Engineering (Madrid, 1992), edited by A. Bernal, A. A. Balkema,
Rotterdam, 1992.

[Malyszko 2005] L. Malyszko, “In-plane shear and tensile strength tests of small brickwork specimens”, pp. 291–298 in Struc-
tural analysis of historical constructions: possibilities of numerical and experimental techniques (Padova, 2004), edited by C.
Modena et al., A. A. Balkema, Leiden, 2005.

[Masiani et al. 1995] R. Masiani, N. Rizzi, and P. Trovalusci, “Masonry as structured continuum”, Meccanica (Milano) 30:6
(1995), 673–683.

[Massart et al. 2004] T. J. Massart, R. H. J. Peerlings, and M. G. D. Geers, “Mesoscopic modeling of failure and damage-
induced anisotropy in brick masonry”, Eur. J. Mech. A Solids 23:5 (2004), 719–735.

[Milani et al. 2006] G. Milani, P. B. Lourenço, and A. Tralli, “Homogenised limit analysis of masonry walls, I: Failure surfaces”,
Comput. Struct. 84:3–4 (2006), 166–180.

[Naraine and Sinha 1991] K. Naraine and S. Sinha, “Cyclic behavior of brick masonry under biaxial compression”, J. Struct.
Eng. (ASCE) 117:5 (1991), 1336–1355.

[Ostoja-Starzewski 2002] M. Ostoja-Starzewski, “Lattice models in micromechanics”, Appl. Mech. Rev. (ASME) 55:1 (2002),
35–60.

[Pietruszczak and Ushaksaraei 2003] S. Pietruszczak and R. Ushaksaraei, “Description of inelastic behaviour of structural
masonry”, Int. J. Solids Struct. 40:15 (2003), 4003–4019.

[Stakgold 1950] I. Stakgold, “The Cauchy relations in a molecular theory of elasticity”, Quart. Appl. Math. 8:2 (1950), 169–
186.

[Sulem and Mühlhaus 1997] J. Sulem and H.-B. Mühlhaus, “A continuum model for periodic two-dimensional block struc-
tures”, Mech. Cohes. Frict. Mater. 2:1 (1997), 31–46.

[Trovalusci and Masiani 2005] P. Trovalusci and R. Masiani, “A multifield model for blocky materials based on multiscale
description”, Int. J. Solids Struct. 42:21–22 (2005), 5778–5794.

[Zienkiewicz and Taylor 1991] O. C. Zienkiewicz and R. L. Taylor, The finite element method, vol. II, McGraw-Hill, London,
1991.

[Zucchini and Lourénço 2002] A. Zucchini and P. B. Lourénço, “A micro-mechanical model for the homogenisation of ma-
sonry”, Int. J. Solids Struct. 39:12 (2002), 3233–3255.

Received 31 Oct 2008. Revised 10 Feb 2009. Accepted 25 Feb 2009.

SIRO CASOLO: Siro.Casolo@polimi.it
Dipartimento di Ingegneria Strutturale, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano,
Italy
http://www.stru.polimi.it/people/casolo/index.plp



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 4, No. 3, 2009

PERFORMANCE AND PARAMETRIC STUDY
OF ACTIVE MULTIPLE TUNED MASS DAMPERS

FOR ASYMMETRIC STRUCTURES UNDER GROUND ACCELERATION

CHUNXIANG LI, JINHUA LI, ZHIQIANG YU AND YAN QU

The application of active multiple tuned mass dampers (AMTMD) for suppressing translational and
torsional responses is addressed for a simplified two-degree of freedom structure, able to represent the
dynamic characteristics of general asymmetric structures subject to ground motions. By employing
the developed optimum parameter and effectiveness criteria of the AMTMD, the influences of the nor-
malized eccentricity ratio and the torsional-to-translational frequency ratio of asymmetric structures on
the optimum parameters and effectiveness of the AMTMD are investigated in detail. For comparison
purposes, the results of a single active tuned mass damper also are taken into consideration.

A list of symbols can be found starting on page 584.

1. Introduction

Structural vibration control using passive, hybrid, semiactive, and active control strategies is a viable
technology for enhancing structural functionality and safety against natural hazards such as strong earth-
quakes and high wind gusts. Significant strides have been made in recent years toward the development
and application of hybrid, semiactive, and active control schemes for vibration control of civil engineering
structures (including accounting for nonlinearity) in seismic zones. A multiobjective optimal design of
a hybrid control system, consisting of a tuned mass damper (TMD) and an active mass driver (AMD),
has been proposed for seismically excited structures by Ahlawat and Ramaswamy [2002a]. To achieve
response reductions in smart base isolated buildings in near-fault earthquakes, a new semiactive indepen-
dently variable damper has been developed by Nagarajaiah and Narasimhan [2007]. For active control
systems, either an active tuned mass damper (ATMD) or an AMD can be installed on the top floor of a tall
building to alleviate the acceleration response under wind excitations [Yang et al. 2004] or to attenuate
the seismic response [Spencer et al. 1998a; 1998b]. In particular, structural control technology aimed
at nonlinear structures has received considerable attention from researchers in recent years [Ohtori et al.
2004; Nagarajaiah and Narasimhan 2006; Nagarajaiah et al. 2008; Narasimhan et al. 2006; 2008]. Thus
the significance of structural control for inelastic structures under strong earthquakes is well recognized.

The TMD is one of the simplest and most reliable control devices. It consists of a mass, a spring, and
a viscous damper attached to the structure. Its mechanism for attenuating undesirable oscillations of a

Keywords: vibration control, active multiple tuned mass dampers, asymmetric structures, ground acceleration,
torsional-to-translational frequency ratio, normalized eccentricity ratio, damping, structural control.
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structure is to transfer the vibration energy of the structure to the TMD and dissipate it there through
damping.

To increase the dissipation energy in the TMD, it is very important to determine its optimum parame-
ters. Conversely, a main drawback of TMDs is that performance may worsen due to mistuned frequency
or off-optimum damping. A possible remedy for this is to use more than one TMD with different dy-
namic characteristics. Multiple tuned mass dampers (MTMD) with distributed natural frequencies were
proposed by Xu and Igusa [1992], and investigated by many authors [Yamaguchi and Harnpornchai 1993;
Abe and Fujino 1994; Kareem and Kline 1995; Jangid 1999; Li 2000; 2006, Gu et al. 2001; Park and
Reed 2001; Chen and Wu 2003; Bakre and Jangid 2004; Kwon and Park 2004; Yau and Yang 2004a;
2004b; Hoang and Warnitchai 2005; Li and Li 2005; Li and Zhang 2005; Lin et al. 2005; Han and Li
2006]. MTMDs have been shown to be more effective in the mitigation of oscillations than TMDs.

The effectiveness of TMDs can be further enhanced by introducing an active force to act between the
structure and the TMD; this is the principle of the ATMD [Chang and Soong 1980]. However, neither
the robustness against change nor the estimation error in the structural natural frequency of ATMDs
can be compared with that of MTMDs. Investigations in optimizing the feedback gains and damper
characteristics of ATMDs in order to minimize structural displacements and/or accelerations have been
carried out, for example, in [Chang and Yang 1995; Ankireddi and Yang 1996; Yan et al. 1999]. However,
as a building gets taller and more massive, in order to achieve the required level of response reduction
during strong earthquakes or typhoons, a heavier additional mass is required, requiring too much space
to be economically practical. With an active control system, a large control force must be created and the
power limitations of the actuator prevent this system from being implemented in large buildings. Thus it
is of great practical interest to search for control systems that can relax the requirements for masses and
control forces.

In view of this, active multiple tuned mass dampers (AMTMD) have been proposed [Li and Liu
2002; Li et al. 2003] to attenuate undesirable oscillations of structures under ground acceleration. In
studies on AMTMD, for design purposes it is assumed that a structure vibrates in only one direction or
in multiple directions independently, each with its fundamental modal properties, without considering
transverse-torsional coupled effects. This assumption simplifies the analysis of a system and the synthesis
of a controller. In real structures, however, this assumption is not always appropriate because structures
generally possess multidirectional coupled vibration modes and the control performance of controllers
will degrade due to parameter variation or spillover induced by the effects of their coupling. Furthermore,
there exist not only transverse vibrations but also torsional vibrations in real structures, which generally
possess coupling. A real structure is asymmetric to some degree, even with a nominally symmetric
plan, and will undergo lateral as well as torsional vibrations simultaneously under purely translational
excitations. Consequently, controller design must take into account the effects of transverse-torsional
coupled vibration modes in such cases.

For representative studies of TMD, ATMD, MTMD and HMD (hybrid mass damper) design, taking
into account the effects of transverse-torsional coupled vibration modes, see [Jangid and Datta 1997;
Arfiadi and Hadi 2000; Lin et al. 2000a; 2000b; Ahlawat and Ramaswamy 2002b; 2003; Singh et al.
2002; Pansare and Jangid 2003; Wang and Lin 2005; Li and Qu 2006]. It is well known that structures
where the center of mass and center of resistance do not coincide will develop a coupled lateral-torsional
response when subjected to earthquake ground motions. For practical applications, it would be important
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to include the effects of torsional coupling in consideration when estimating the performance of an
AMTMD. Recently, Li and Xiong [2008] investigated AMTMD performance for asymmetric structures
using a simplified two-degree of freedom (2-DOF) structure able to represent the dynamic characteristics
of general asymmetric structures subject to ground motions. This structure is a generalized 2-DOF sys-
tem of an asymmetric structure with predominant translational and torsional responses under earthquake
excitations using the mode reduced-order method. Depending on the torsional-to-translational eigen-
frequency ratio λω of the asymmetric structure, three cases can be distinguished: torsionally flexible
structures (TFS), when λω < 1.0; torsionally intermediate stiff structures (TISS), when λω ≈ 1.0; and
torsionally stiff structures (TSS), when λω > 1.0.

The search criterion for optimum parameters of an AMTMD is the minimization of the minimum
values of the maximum translational and torsional displacement dynamic magnification factors (DMF)
of an asymmetric structure with an AMTMD. The criterion used for assessing the effectiveness of an
AMTMD is the ratio of the minimization of the minimum values of the maximum translational and
torsional displacement DMF of the asymmetric structure with an AMTMD to the maximum translational
and torsional displacement DMF of the asymmetric structure without an AMTMD. By employing these
criteria, a careful examination of the effects of the normalized eccentricity ratio on the effectiveness
and robustness of the AMTMD is carried out in the mitigation of both the translational and torsional
responses of the asymmetric structure for different values of λω. Likewise, the effectiveness of a single
ATMD with optimum parameters is presented and compared with that of an AMTMD.

Following the direction of [Li and Xiong 2008], we investigate further the optimum performance of
AMTMD in attenuating the translational and torsional responses of asymmetric structures under ground
acceleration. The chosen optimization criteria are the (separate) minimizations of the translational and
torsional displacement variances of the AMTMD-endowed asymmetric structure. The measure of effec-
tiveness we adopt for the AMTMD is the ratio of the minimum translational or torsional displacement
variance of AMTMD-endowed structure to the same variances for the structure without an AMTMD.

Using these evaluation criteria, we quantitatively discuss and demonstrate the influence of the normal-
ized eccentricity ratio ER the and the torsional-to-translational eigenfrequency ratio λω of an asymmetric
structure on the optimum parameters and effectiveness of AMTMDs in the reduction of both the transla-
tional and torsional responses of asymmetric structures under ground acceleration.

2. Damping of asymmetric structures

We take the structure to be controlled with an AMTMD to be asymmetric, in the sense that the center of
resistance (CR) of the structure does not coincide with the center of mass (CM), as shown in Figure 1.
The two uncoupled frequencies of the asymmetric structure are defined as

ωs =

√
ks

ms
, ωθ =

√
kθ

msr2 , (1)

in which ms is the mode-generalized mass of the structure; ks = ks1+ ks2 is the mode-generalized lateral
stiffness of the structure in the x direction, where ks1 and ks2 refer to the stiffnesses of the two resisting
elements; kθ = ks1 y2

s1+ ks2 y2
s2 represents the mode-generalized torsional stiffness of the structure with

respect to the CM, where ys1 and ys2 denote the distances from the CM to the two resisting elements;
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Figure 1. Generalized 2-DOF system of an asymmetric structure with the predominant
translational and torsional responses set with the AMTMD.

and r represents the radius of gyration of the deck about the vertical axis through the CM. The equations
of motion of the asymmetric structure can be written in matrix form as[

ms 0
0 msr2

] [
ẍs

θ̈s

]
+

[
cs csθ

csθ cθ

] [
ẋs

θ̇ s

]
+

[
ks ksey

ksey kθ

] [
xs

θs

]
=−

[
ms

0

]
ẍg(t), (2)

where cs , csθ , and cθ denote the elements of the damping matrix, to be determined next; ey is the
eccentricity between the CR and CM, defined as ey = (ks1 ys1− ks2 ys2)/(ks1+ ks2); and ẍg(t) is the
ground acceleration.

We denote the fundamental and second natural frequencies by ωs1 and ωs2 (so ωs2 > ωs1). They can
be derived by solving the eigenvalue problem associated with (2) as

ωs1

ωs
=

√√√√1+ λ2
ω−

√
(λ2
ω− 1)2+ 4E2

R

2
,

ωs2

ωs
=

√√√√1+ λ2
ω+

√
(λ2
ω− 1)2+ 4E2

R

2
, (3)

in which ER = ey/r , or normalized eccentricity ratio (NER), is the ratio of the eccentricity to the radius
of gyration of the deck, and λω = ωθ/ωs , is the uncoupled torsional-to-translational frequency ratio
(TTFR).

Hypothesizing the same damping ratio ξs1 = ξs2 = ξs for the two modes (in this study, ξs = 0.02) and
superposing the modal damping matrices, the damping matrix can be expressed in the form[

cs csθ

csθ cθ

]
= a0

[
ms 0
0 msr2

]
+ b0

[
ks ksey

ksey kθ

]
, (4)
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where
a0 =

2(ξs2ωs1− ξs1ωs2)

ω2
s1−ω

2
s2

ωs1ωs2, b0 =
2(ξs1ωs1− ξs2ωs2)

ω2
s1−ω

2
s2

. (5)

Rearranging (4) yields the elements of the damping matrix

cs = 2asmsξsωs, csθ = 2asθmsrξsωs, cθ = 2aθmsr2ξsωs, (6)

in which

as =

ωs1
ωs
×
ωs2
ωs
+ 1

ωs1
ωs
+
ωs2
ωs

, asθ =
ER

ωs1
ωs
+
ωs2
ωs

, aθ =

ωs1
ωs
×
ωs2
ωs
+ λ2

ω

ωs1
ωs
+
ωs2
ωs

. (7)

3. State equations of the AMTMD asymmetric structure system

Referring again to Figure 1, consider an AMTMD evenly placed within the width b, with its center at
the CM; we are interested in its effectiveness in reducing the translational and torsional responses of the
asymmetric structure. The ordinate of each ATMD in the AMTMD can be determined by

y j =

(
−

1
2
+

j−1
n−1

)
b ( j = 1, 2, . . . , n). (8)

When the relative displacements of the structure (xs) and of each ATMD (xT j ) with reference to the
ground are introduced, the equations of motion for the asymmetric structure with AMTMD under ground
acceleration can be formulated as follows:

ms ẍs + cs ẋs + ks xs + csθ θ̇s + kseyθs =−ms ẍg(t)+
n∑

j=1
F j (t),

msr2θ̈s + cθ θ̇s + kθθs + csθ ẋs + ksey xs =
n∑

j=1
y j F j (t),

mT j (ẍg(t)+ ẍT j )+ cT j
(
ẋT j − (ẋs + y j θ̇s)

)
+ kT j

(
xT j − (xs + y jθs)

)
= u j (t),

F j (t)= cT j
(
ẋT j − (ẋs + y j θ̇s)

)
+ kT j

(
xT j − (xs + y jθs)

)
− u j (t).

(9)

An active control algorithm is required in order to use the measured responses of the 2-DOF torsionally
coupled structure-AMTMD system to calculate an active control force to drive the mass block. The linear
quadratic regulator algorithm developed by several authors [Chang and Soong 1980; Abe 1996; Ikeda
1997; Nagashima 2001] may be employed, but here we choose instead the frequency domain design
method adopted by some others [Chang and Yang 1995; Ankireddi and Yang 1996; Yan et al. 1999]. In
this method one starts with the optimum MTMD configuration, obtained earlier. It is expected that the
inertial force of the AMTMD can be increased by feeding back the acceleration of the structure. However,
this acceleration feedback will disturb the performance of the optimum MTMD. An alternative approach
to this problem is to move the optimum MTMD over to another optimum operating point and feed back
the displacement and velocity of the MTMD. In view of this, the active control force can be explicitly
expressed as

u j (t)=−mt j ẍs − ct j
(
ẋT j − (ẋs + y j θ̇s)

)
+ kt j

(
xT j − (xs + y jθs)

)
, (10)

in which mT j , cT j , and kT j are the mass, damping, and stiffness, respectively of the j-th ATMD; and
mt j , ct j , and kt j the gains of the acceleration, velocity, and displacement feedback of the j-th ATMD.
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Here we make the stiffness and damping for all the ATMDs (kT j = kT and cT j = cT for each j) but
let their masses mT j be different. Likewise, the control forces of the AMTMD are generated assuming
the displacement and velocity feedback gains are all the same (kt j = kt and ct j = ct for each j ) while the
acceleration feedback gains mt j are allowed to differ.

We now define the normalized acceleration feedback gain factor α j = mt j/mT j = α, assumed the
same for each j , and we introduce the further notation

ω2
j =

kT j + kt j

mT j
=

kT + kt

mT j
, µT =

mT

ms
=

n∑
j=1

mT j

ms
=

n∑
j=1

µT j , ξ j =
cT j + ct j

2mT jω j
=

cT + ct

2mT jω j
,

Defining ωT , the average natural frequency of the AMTMD, by ωT =
∑n

j=1(ω j/n), we choose the
natural frequency of each ATMD as

ω j = ωT

(
1+

(
j − n+1

2

)
β

n−1

)
= f ωs

(
1+

(
j − n+1

2

)
β

n−1

)
, (11)

where β = (ωn −ω1)/ωT is a nondimensional frequency spacing parameter and f = ωT /ωs is the tuning
frequency ratio of the AMTMD.

From (11), the ratio of the natural frequency of each ATMD to the controlled natural frequency of the
structure is seen to be

r j =
ω j

ωs
= f

(
1+

(
j − n+1

2

)
β

n−1

)
. (12)

Since the damping ratios of the ATMDs are unequal, it is necessary to introduce the average damping
ratio ξT =

∑n
j=1 ξ j/n. The total mass ratio and the damping ratio of each ATMD is then

µT =

n∑
j=1

µT j =

( n∑
j=1

1
r2

j

)
µT 1r2

1 =

( n∑
j=1

1
r2

j

)
µT 2r2

2 = · · · =

( n∑
j=1

1
r2

j

)
µT nr2

n , (13)

ξT =

n∑
j=1

ξ j

n
= ξ1r−1

1 f = ξ2r−1
2 f = · · · = ξnr−1

n f ; (14)

see [Li 2000; Li and Qu 2006]. For the deduction of the state equations, we rewrite (9) and (10) in matrix
form as

Mẍ +Cẋ + K x = 0 ẍg(t), (15)

where we have set

x =
[
xs rθs xT 1 . . . xT j . . . xT n

]T
, ẋ =

[
ẋs r θ̇s ẋT 1 . . . ẋT j . . . ẋT n

]T
,

ẍ =
[
ẍs r θ̈s ẍT 1 . . . ẍT j . . . ẍT n

]T
, 0 =

[
−1 0 −µT 1 . . . −µT j . . . −µT n

]T
,

M=

 A1 0 01×n

B1 B2 01×n

(C1)n×1 (C2)n×n 0n×1

, C=

 A2 A3 (A4)1×n

B3 B4 (B5)1×n

(C3)n×1 (C4)n×1 (C5)n×n

, K =

 A5 A6 (A7)1×n

B6 B7 (B8)1×n

(C6)1×n (C7)n×1 (C8)n×n

,
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with

A1 = 1−
n∑

j=1

αµT j , A2 = 2ωs

(
αsξs +

n∑
j=1

µT jξ j f
(

1+
(

j − n+1
2

)
β

n−1

))
,

A3 = 2ωs

(
asθξs +

n∑
j=1

µT jξ j f
( y j

r

)(
1+

(
j − n+1

2

)
β

n−1

))
,

A4 =−2ωs

[
µT 1ξ1 f

(
1− β

2

)
. . . µT jξ j f

(
1+

(
j − n+1

2

)
β

n−1

)
. . . µT nξn f

(
1+ β

2

)]
,

B1 =−

n∑
j=1

αµT j

( y j

r

)
, B2 = 1, B3 = A3,

B4 = 2ωs

(
aθξs +

n∑
j=1

µT jξ j f
( y j

r

)2
(

1+
(

j − n+1
2

)
β

n−1

))
,

B5 =−2ωs

[
µT 1ξ1 f

(y j

r

)(
1−β

2

)
. . . µT jξ j f

(y j

r

)(
1+
(

j−n+1
2

)
β

n−1

)
. . . µT nξn f

(y j

r

)(
1+β

2

)]
,

C1 =
[
αµT 1 . . . αµT j . . . αµT n

]T
,

C2 = diag
[
µT 1 . . . µT j . . . µT n

]
, C3 = AT

4 , C4 = BT
5 ,

C5 = 2ωs diag
[
µT 1ξ1 f

(
1− β

2

)
. . . µT jξ j f

(
1+

(
j − n+1

2

)
β

n−1

)
. . . µT nξn f

(
1+ β

2

)]
,

A5 = ω
2
s

(
1+

n∑
j=1

µT j f 2
(

1+
(

j − n+1
2

)
β

n−1

)2 )
,

A6 = B6 = ω
2
s

(
ER +

n∑
j=1

µT j f 2
( y j

r

)(
1+

(
j − n+1

2

)
β

n−1

)2 )
,

A7 =−ω
2
s

[
µT 1 f 2

(
1− β

2

)2
. . . µT j f 2

(
1+

(
j − n+1

2

)
β

n−1

)2

. . . µT n f 2
(

1+ β
2

)2
]
,

B7 = ω
2
s

(
λ2
ω+

n∑
j=1

µT j f 2
( y j

r

)2
(

1+
(

j − n+1
2

)
β

n−1

)2 )
,

B8 =−ω
2
s

[
µT 1 f 2

(y j

r

)(
1−β

2

)2
. . . µT j f 2

(y j

r

)(
1+
(

j−n+1
2

)
β

n−1

)2

. . . µT n f 2
(y j

r

)(
1+β

2

)2
]
,

C6 = AT
7 , C7 = BT

8 ,

C8 = ω
2
s diag

[
µT 1 f 2

(
1− β

2

)2
. . . µT j f 2

(
1+

(
j − n+1

2

)
β

n−1

)2

. . . µT n f 2
(

1+ β
2

)2
]
.

(Here of course diag[· · · ] stands for the n× n diagonal matrix with the given entries.)
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Equation (15) can further be transformed into the state equations

Ẋ = AX + Bw, Y = C X + Dw, (16)

where the 2(n+2)× 1 state vector X , the state matrix A, the input matrix B, the output matrix C , the
output vector Y , and the input w are as follows (E(n+2)×(n+2) being the identity matrix of rank n+ 2):

X =
[

x
ẋ

]
, A =

[
0(n+2)×(n+2) E(n+2)×(n+2)

−M−1K −M−1C

]
, B =

[
0(n+2)×1

M−10

]
,

C =
[

0(n+2)×(n+2) 0(n+2)×(n+2)

0(n+2)×(n+2) E(n+2)×(n+2)

]
, D =

[
0(n+2)×1

0(n+2)×1

]
, Y =

[
0(n+2)×1

x(n+2)×1

]
, w = ẍg(t),

4. Optimum AMTMD criteria for asymmetric structures

We now assumed fixed the number n of ATMDs, the normalized width b/r and structural damping ratio
ξs of the structure, the normalized eccentricity ratio ER , the torsional-to-translational frequency ratio λω,
the normalized acceleration feedback gain factor α, and the total mass ratio µT of the AMTMD.

The optimization of the three parameters f , ξT , and β is done numerically by the gradient search
method (GSM), an iterative method where the objective function and its partial derivatives are evaluated
at each step. We now select appropriate objective functions for the optimization.

Based on a single-frequency oscillation ẍg(t)= Xge−iωt , where Xg represents the displacement trans-
fer function of earthquake ground motions, the translational and torsional displacements of the structure
are given by

xs = Hxs (−iω)e−iωt and rθs = Hθs (−iω)e−iωt ,

leading to the translational and torsional displacement variances:

σ 2
xs
=

∫
+∞

−∞

∣∣Hxs (iω)
∣∣2 ∣∣Xg(iω)

∣∣2dω, σ 2
rθs
=

∫
+∞

−∞

∣∣Hθ (iω)∣∣2 ∣∣Xg(iω)
∣∣2dω. (17)

We can also define nondimensionalized variances

σ ∗xs

2 and σ ∗rθs

2 (18)

by dividing by the corresponding quantities for the same structure without an AMTMD.
These four variances are the objective functions to be minimized. We thus distinguish four minima:

RI = min
f,ξT ,β

σ 2
xs
, RII = min

f,ξT ,β
σ 2

rθs
, RIII = min

f,ξT ,β
σ ∗xs

2, RIV = min
f,ξT ,β

σ ∗rθs

2. (19)

We will primarily use RIII and RIV as our quantitative estimates of the effectiveness of the AMTMD
in controlling the translational and torsional displacements of asymmetric structures, respectively.

Note that the normalized acceleration feedback gain factor α gets smaller as n increases. The smaller
α is, the less control force is required. Thus the AMTMD is more easily implemented than an ATMD of
the same effectiveness, when a large control force must be created.
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5. Numerical results

The minimization procedure was carried out with the following choices for the parameters: n = 5;
b/r = 1.0; ξs = 0.02; α = 4 or 8; ER = 0, 0.05, 0.1, 0.2, 0.3, 0.4; and µT = 0.01, 0.02, 0.03, 0.04, 0.05.
Further we choose λω = 0.5, 1.0 and 2.0 to represent respectively TFS, TISS and TSS (see page 573).
ER and λω are the key parameters in quantitatively assessing the effectiveness and robustness of the
AMTMD for asymmetric structures.

Translational response. Figure 2 displays the optimum parameters and the RIII (translational) effective-
ness of the AMTMD for a TFS (λω = 0.5), in terms of the values of α, ER , and µT just listed. The figure
suggests that the influence of ER on the optimum tuning frequency ratio is not significant, regardless of
the value of α. The effect of ER on the optimum frequency spacing (robustness) of the AMTMD is also
not remarkable, regardless of α. But, in the case of α = 4.0, a pronounced difference in the optimum
average damping ratio can be detected when the total mass ratio is below 0.03.

Comparison of the cases α = 4.0 and α = 8.0 shows that the interrelation between the effectiveness
of the AMTMD and the total mass ratio has the same trend:

(1) For ER = 0.1, the effectiveness of the AMTMD for asymmetric structures with λω = 0.5 is almost
the same as for symmetric structures (ER = 0).

(2) For ER > 0.1, the effectiveness falls with increasing ER , and drastically so when ER = 0.4.

(3) Increasing α may enhance the effectiveness for asymmetric structures with λω = 0.5.

(4) As the total mass ratio increases, the effectiveness initially increases, then remains almost invariant
when the total mass ratio is above 0.02.

λω = 0.5 α = 4.0
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Figure 2. Optimum parameters fopt, ξopt, βopt and translational effectiveness RIII as
functions of µT , ER , and α, for a TFS (λω = 0.5). The total number n of AMTDs is 5
for all graphs up to Figure 7.
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Figure 3. Optimum parameters fopt, ξopt, βopt and translational effectiveness RIII as
functions of µT , ER , and α, for a TISS (λω = 1.0).
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Figure 4. Optimum parameters fopt, ξopt, βopt and translational effectiveness RIII as
functions of µT , ER , and α, for a TSS (λω = 2.0).

Figure 3 shows the corresponding results for a TISS (λω = 1.0). We see that ER has an influence on
the optimum tuning frequency ratio and the optimum frequency spacing, but it is not great. The value
of ER has a significant effect on the optimum average damping ratio of the AMTMD, especially for the
smaller value of α (4.0). The effectiveness of the AMTMD for the TFS and the TISS show similar trends,
but it is less influenced by ER in the TFS.
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Figure 4 reports the corresponding results for a TSS (λω = 2.0). Here ER seems to have very little
influence on the optimum parameters and effectiveness.

Torsional response. Figure 5 shows the optimum parameters and the RIV (rotational) effectiveness of
the AMTMD for a TFS (λω = 0.5), for the same values of α, ER , and µT as before (apart from ER = 0).

λω = 0.5 α = 4.0
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Figure 5. Optimum parameters fopt, ξopt, βopt and torsional effectiveness RIV as func-
tions of µT , ER , and α, for a TFS (λω = 0.5).
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Figure 6. Optimum parameters fopt, ξopt, βopt and torsional effectiveness RIV as func-
tions of µT , ER , and α, for a TISS (λω = 1.0).
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Figure 7. Optimum parameters fopt, ξopt, βopt and torsional effectiveness RIV as func-
tions of µT , ER , and α, for a TSS (λω = 2.0).

It can be seen that the optimum frequency spacing βopt generally increases somewhat with ER . So does
the optimal average damping ratio ξopt, albeit in an irregular fashion.

With the lower value of α (4.0), the effectiveness is somewhat higher than for α = 8.0, and not very
sensitive to ER . With the higher α, the effectiveness varies irregularly with increasing ER , decreasing
while ER ≤ 0.2 and increasing again when ER ≥ 0.3.

Figure 6 shows the corresponding data for a TISS (λω = 1). In this case ER significantly affects the
optimum parameters and the effectiveness of the AMTMD. With the exception of the case of ER = 0.4
and α = 8.0, the optimum frequency spacing of the AMTMD tends to be greatest for ER = 0.05. More
importantly, the torsional effectiveness takes on an irregular pattern; it decreases with increasing ER .

Figure 7 is the corresponding display for a TSS (λω = 2.0). The influence of ER on the optimum tuning
frequency ratio and average damping ratio is rather negligible here, especially in the case of α = 8.0.
However, ER significantly affects the optimum frequency spacing; the two numbers move in opposite
directions. The effectiveness decreases with increasing ER for α = 4.0, but is very little affected by ER

for α = 8.0.

Comparison with a single ATMD. Figure 8 presents the effectivenesses RIII and RIV of a single ATMD
over the same ranges of µT , λω, α, and ER that we used for the AMTMD calculations. By comparing
Figure 8 with the corresponding graphs in Figures 2–7, one sees that, in comparison with a single ATMD,
the AMTMD is slightly more effective in reducing the translational response of asymmetric structures,
but slightly less effective in controlling the tosional response of asymmetric structures,

6. Conclusions

The following major conclusions can be drawn:
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Figure 8. Translational effectiveness RIII (first and third columns) and torsional effec-
tiveness RIV (second and fourth columns) as functions of µT , ER , and α for a single
ATMD.

(1) In attenuating the translational response of TFS (λω = 0.5), the effect of ER on the optimum fre-
quency spacing (robustness) of the AMTMD is not significant; the effectiveness of the AMTMD for
asymmetric structures with ER smaller than 0.1 is practically equal to that for symmetric structures
(ER = 0) and reduces as ER increases above 0.1.

(2) In attenuating the torsional response of TFS, the optimum frequency spacing of the AMTMD gener-
ally increases with increasing ER . With smaller α, the effectiveness of the AMTMD improves with
increasing ER , though this is not very obvious. With higher α, the effectiveness of the AMTMD
decreases with increasing ER when ER ≤ 0.2, and increases with increasing ER when ER ≥ 0.3.

(3) In controlling the translational response of TISS (λω = 1.0), ER has influence on the optimum
frequency spacing of the AMTMD, but it is not that obvious; the effectiveness of the AMTMD for
TISS has similar trends as that for TFS.

(4) In controlling the torsional response of TISS, the optimum frequency spacing and effectiveness of
the AMTMD generally decreases with increasing ER .
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(5) In mitigating the translational response of TSS, the AMTMD will take on the same optimum pa-
rameters, robustness, and effectiveness, regardless of different ER values.

(6) In reducing the torsional response of TSS, the optimum frequency spacing of the AMTMD generally
decreases with increasing ER . The effectiveness of the AMTMD with a smaller α, such as α = 4.0,
decreases as ER increases. The influence of ER on the effectiveness of the AMTMD with higher α,
such as α = 8.0, is rather negligible.

(7) The AMTMD provides slightly higher effectiveness than a single ATMD in reducing the transla-
tional response of asymmetric structures.

(8) The AMTMD are slightly less effective than a single ATMD in controlling the tosional response of
asymmetric structures.

We point out that by employing the present approach, which falls into the frequency domain design
method of control, Li et al. [2007] have numerically investigated the earthquake resistant performance of
AMTMD for asymmetric buildings, so as to further validate the effectiveness and robustness of AMTMD
in reducing the translational and torsional responses of asymmetric buildings in the time domain. The
SIMULINK analysis has been implemented on a three-story asymmetric steel structure building under
various earthquakes, taking into account both the certainty and uncertainty in the structural stiffness.
The numerical simulations indicate that AMTMD can effectively control the translational and torsional
responses of asymmetric buildings subjected to earthquakes. Likewise, AMTMD generally have better
performance than an ATMD for seismically excited asymmetric buildings. More recently, in order to
further validate the control force decentralization of AMTMD for the control of wind-induced vibrations
of tall buildings in the time-domain, a 22-story steel-frame building is chosen as an example problem [Li
et al. 2009]. The numerical results in the time-domain indicate that a large control force can indeed be
decentralized into many smaller control forces when using AMTMD. Simultaneously, the effectiveness
of AMTMD is a little larger than that of an ATMD based on the DRF and ARF criteria [Li et al. 2009].

List of symbols

AMTMD active multiple tuned mass dampers
α normalized acceleration feedback gain factor (NAFGF)
b/r normalized width of an asymmetric structure, here set equal to 1.0
β nondimensional frequency spacing
CM center of mass
CR center of resistance
cs mode-generalized damping coefficient
cT constant damping coefficient of the AMTMD
cT j damping coefficient of the j-th ATMD in the AMTMD
ct j velocity feedback of the j-th ATMD in the AMTMD
ct constant velocity feedback of the j-th ATMD in the AMTMD
ER normalized eccentricity ratio (ratio between eccentricity and gyration radius of the deck)
ey eccentricity between the CR and CM
f tuning frequency ratio of the AMTMD
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Hxs (−iω) transfer function for translational displacement
Hθs (−iω) transfer function for torsional displacement
j number of ATMDs in the AMTMD
ks mode-generalized lateral stiffness of an asymmetric structure in the translational x direction
kT constant spring stiffness of the AMTMD
kT j spring stiffness of the j-th ATMD in the AMTMD
kt constant displacement feedback of the j-th ATMD in the AMTMD
kt j displacement feedback of the j-th ATMD in the AMTMD
kθ mode-generalized torsional stiffness of an asymmetric structure with respect to the CM
λω uncoupled torsional-to-translational frequency ratio (TTFR)
MTMD multiple tuned mass dampers
ms mode-generalized mass of an asymmetric structure
mT j mass of the j-th ATMD in the AMTMD
mt j acceleration feedback of the j-th ATMD in the AMTMD
µT j mass ratio of the j-th ATMD in the AMTMD
µT total mass ratio of the AMTMD
n total number of ATMDs in the AMTMD
RI minimum of translational displacement variance over f, ξT , β

RII minimum of torsional displacement variance over f, ξT , β

RIII effectiveness of the AMTMD in attenuating the structure’s translational response; see (19)
RIV effectiveness of the AMTMD in attenuating the structure’s torsional response; see (19)
r radius of gyration of the deck about the vertical axis through the CM
r j ratio of the natural frequency of the j-th ATMD to the uncoupled translational natural

frequency of an asymmetric structure
θs torsional displacement of an asymmetric structure
ẍg(t) ground acceleration
xs translational displacement of an asymmetric structure with respect to the ground
xT j translational displacement of each ATMD with reference to the ground
ξ j damping ratio of the j-th ATMD in the AMTMD
ξs structural damping ratio, which is set equal to 0.02 in this study
ξT average damping ratio of the AMTMD
y j translational displacement of each ATMD with reference to the ground
y(n+1)/2 center of the AMTMD, placement of the (n+ 1)/2-th ATMD in the AMTMD
ω external excitation frequency
ω j natural frequency of the j-th ATMD in the AMTMD
ωs uncoupled translational natural frequency of an asymmetric structure
ωs1 coupled fundamental natural frequency of an asymmetric structure
ωs2 coupled second natural frequency of an asymmetric structure
ωθ uncoupled torsional natural frequency of an asymmetric structure
ωT average natural frequency of the AMTMD



586 CHUNXIANG LI, JINHUA LI, ZHIQIANG YU AND YAN QU

References

[Abe 1996] M. Abe, “Rule-based control algorithm for active tuned mass dampers”, J. Eng. Mech. (ASCE) 122:8 (1996),
705–713.

[Abe and Fujino 1994] M. Abe and Y. Fujino, “Dynamic characterization of multiple tuned mass dampers and some design
formulas”, Earthquake Eng. Struct. Dyn. 23:8 (1994), 813–835.

[Ahlawat and Ramaswamy 2002a] A. S. Ahlawat and A. Ramaswamy, “Multi-objective optimal design of FLC driven hybrid
mass damper for seismically excited structures”, Earthquake Eng. Struct. Dyn. 31:7 (2002), 1459–1479.

[Ahlawat and Ramaswamy 2002b] A. S. Ahlawat and A. Ramaswamy, “Multiobjective optimal FLC driven hybrid mass
damper system for torsionally coupled, seismically excited structures”, Earthquake Eng. Struct. Dyn. 31:12 (2002), 2121–
2139.

[Ahlawat and Ramaswamy 2003] A. S. Ahlawat and A. Ramaswamy, “Multiobjective optimal absorber system for torsionally
coupled seismically excited structures”, Eng. Struct. 25:7 (2003), 941–950.

[Ankireddi and Yang 1996] S. Ankireddi and H. T. Y. Yang, “Simple ATMD control methodology for tall buildings subject to
wind loads”, J. Struct. Eng. (ASCE) 122:1 (1996), 83–91.

[Arfiadi and Hadi 2000] Y. Arfiadi and M. N. S. Hadi, “Passive and active control of three-dimensional buildings”, Earthquake
Eng. Struct. Dyn. 29:3 (2000), 377–396.

[Bakre and Jangid 2004] S. V. Bakre and R. S. Jangid, “Optimum multiple tuned mass dampers for base-excited damped main
system”, Int. J. Struct. Stability Dyn. 4:4 (2004), 527–542.

[Chang and Soong 1980] J. C. H. Chang and T. T. Soong, “Structural control using active tuned mass damper”, J. Eng. Mech.
(ASCE) 106:6 (1980), 1091–1098.

[Chang and Yang 1995] C. C. Chang and H. T. Y. Yang, “Control of buildings using active tuned mass dampers”, J. Eng. Mech.
(ASCE) 121:3 (1995), 355–366.

[Chen and Wu 2003] G. Chen and J. Wu, “Experimental study on multiple tuned mass dampers to reduce seismic responses of
a three-storey building structure”, Earthquake Eng. Struct. Dyn. 32:5 (2003), 793–810.

[Gu et al. 2001] M. Gu, S. R. Chen, and C. C. Chang, “Parametric study on multiple tuned mass dampers for buffeting control
of Yangpu Bridge”, J. Wind Eng. Ind. Aerod. 89:11-12 (2001), 987–1000.

[Han and Li 2006] B. Han and C. Li, “Evaluation of multiple dual tuned mass dampers for structures under harmonic ground
acceleration”, Int. J. Struct. Stability Dyn. 6:1 (2006), 59–75.

[Hoang and Warnitchai 2005] N. Hoang and P. Warnitchai, “Design of multiple tuned mass dampers by using a numerical
optimizer”, Earthquake Eng. Struct. Dyn. 34:2 (2005), 125–144.

[Ikeda 1997] Y. Ikeda, “Effect of weighting a stroke of an active mass damper in the linear quadratic regulator problem”,
Earthquake Eng. Struct. Dyn. 26:11 (1997), 1125–1136.

[Jangid 1999] R. S. Jangid, “Optimum multiple tuned mass dampers for base-excited undamped system”, Earthquake Eng.
Struct. Dyn. 28:9 (1999), 1041–1049.

[Jangid and Datta 1997] R. S. Jangid and T. K. Datta, “Performance of multiple tuned mass dampers for torsionally coupled
system”, Earthquake Eng. Struct. Dyn. 26:3 (1997), 307–317.

[Kareem and Kline 1995] A. Kareem and S. Kline, “Performance of multiple mass dampers under random loading”, J. Struct.
Eng. (ASCE) 121:2 (1995), 348–361.

[Kwon and Park 2004] S.-D. Kwon and K.-S. Park, “Suppression of bridge flutter using tuned mass dampers based on robust
performance design”, J. Wind Eng. Ind. Aerod. 92:11 (2004), 919–934.

[Li 2000] C. Li, “Performance of multiple tuned mass dampers for attenuating undesirable oscillations of structures under the
ground acceleration”, Earthquake Eng. Struct. Dyn. 29:9 (2000), 1405–1421.

[Li 2006] C. Li, “Performance of dual-layer multiple tuned mass dampers for structures under ground excitations”, Int. J. Struct.
Stability Dyn. 6:4 (2006), 541–557.

[Li and Li 2005] C. Li and Q. S. Li, “Evaluation of the lever-type multiple tuned mass dampers for mitigating harmonically
forced vibration”, Int. J. Struct. Stability Dyn. 5:4 (2005), 641–664.



PERFORMANCE AND PARAMETRIC STUDY OF ACTIVE MULTIPLE TUNED MASS DAMPERS 587

[Li and Liu 2002] C. Li and Y. Liu, “Active multiple tuned mass dampers for structures under the ground acceleration”, Earth-
quake Eng. Struct. Dyn. 31:5 (2002), 1041–1052.

[Li and Qu 2006] C. Li and W. Qu, “Optimum properties of multiple tuned mass dampers for reduction of translational and
torsional response of structures subject to ground acceleration”, Eng. Struct. 28:4 (2006), 472–494.

[Li and Xiong 2008] C. Li and X. Xiong, “Estimation of active multiple tuned mass dampers for asymmetric structures”, Struct.
Eng. Mech. 29:5 (2008), 505–530.

[Li and Zhang 2005] C. Li and J. Zhang, “Evaluation of arbitrary integer based multiple tuned mass dampers for structures”,
Int. J. Struct. Stability Dyn. 5:3 (2005), 475–488.

[Li et al. 2003] C. Li, Y. Liu, and Z. Wang, “Active multiple tuned mass dampers: a new control strategy”, J. Struct. Eng.
(ASCE) 129:7 (2003), 972–977.

[Li et al. 2007] C. Li, C. Wang, and L. Zhang, “Simulations of earthquake-resistant asymmetric buildings with active multiple
tuned mass dampers based on simulink”, Chinese J. Vibration Shock 26:9 (2007), 45–50.

[Li et al. 2009] C. Li, B. Han, J. Zhang, Y. Qu, and J. Li, “Active multiple tuned mass dampers for reduction of undesirable
oscillations of structures under wind loads”, Int. J. Struct. Stability Dyn. 9:1 (2009), 127–149.

[Lin et al. 2000a] C. C. Lin, J. M. Ueng, and T. C. Huang, “Seismic response reduction of irregular buildings using passive
tuned mass dampers”, Eng. Struct. 22:5 (2000), 513–524.

[Lin et al. 2000b] Y. Y. Lin, C. M. Cheng, and C. H. Lee, “A tuned mass damper for suppressing the coupled flexural and
torsional buffeting response of long-span bridges”, Eng. Struct. 22:9 (2000), 1195–1204.

[Lin et al. 2005] C. C. Lin, J. F. Wang, and B. L. Chen, “Train-induced vibration control of high-speed railway bridges equipped
with multiple tuned mass dampers”, J. Bridge Eng. (ASCE) 10:4 (2005), 398–414.

[Nagarajaiah and Narasimhan 2006] S. Nagarajaiah and S. Narasimhan, “Smart base-isolated benchmark building, II: phase I
sample controllers for linear isolation systems”, Struct. Control Health Monitoring 13:2-3 (2006), 589–604.

[Nagarajaiah and Narasimhan 2007] S. Nagarajaiah and S. Narasimhan, “Seismic control of smart base isolated buildings with
new semiactive variable damper”, Earthquake Eng. Struct. Dyn. 36:6 (2007), 729–749.

[Nagarajaiah et al. 2008] S. Nagarajaiah, S. Narasimhan, and E. Johnson, “Structural control benchmark problem, phase II:
Nonlinear smart base-isolated building subjected to near-fault earthquakes”, Struct. Control Health Monitoring 15:5 (2008),
653–656.

[Nagashima 2001] I. Nagashima, “Optimal displacement feedback control law for active tuned mass damper”, Earthquake Eng.
Struct. Dyn. 30:8 (2001), 1221–1242.

[Narasimhan et al. 2006] S. Narasimhan, S. Nagarajaiah, E. A. Johnson, and H. P. Gavin, “Smart base-isolated benchmark
building, I: problem definition”, Struct. Control Health Monitoring 13:2-3 (2006), 573–588.

[Narasimhan et al. 2008] S. Narasimhan, S. Nagarajaiah, and E. Johnson, “Smart base-isolated benchmark building, IV: Phase
II sample controllers for nonlinear isolation systems”, Struct. Control Health Monitoring 15:5 (2008), 657–672.

[Ohtori et al. 2004] Y. Ohtori, R. E. Christenson, B. F. Spencer, Jr., and S. J. Dyke, “Benchmark control problems for seismically
excited nonlinear buildings”, J. Eng. Mech. (ASCE) 130:4 (2004), 366–385.

[Pansare and Jangid 2003] A. P. Pansare and R. S. Jangid, “Tuned mass dampers for torsionally coupled systems”, Wind Struct.
6:1 (2003), 23–40.

[Park and Reed 2001] J. Park and D. Reed, “Analysis of uniformly and linearly distributed mass dampers under harmonic and
earthquake excitation”, Eng. Struct. 23:7 (2001), 802–814.

[Singh et al. 2002] M. P. Singh, S. Singh, and L. M. Moreschi, “Tuned mass dampers for response control of torsional build-
ings”, Earthquake Eng. Struct. Dyn. 31:4 (2002), 749–769.

[Spencer et al. 1998a] B. F. Spencer, Jr., S. J. Dyke, and H. S. Deoskar, “Benchmark problems in structural control, I: active
mass driver system”, Earthquake Eng. Struct. Dyn. 27:11 (1998), 1127–1139.

[Spencer et al. 1998b] B. F. Spencer, Jr., S. J. Dyke, and H. S. Deoskar, “Benchmark problems in structural control, II: active
tendon system”, Earthquake Eng. Struct. Dyn. 27:11 (1998), 1141–1147.

[Wang and Lin 2005] J. F. Wang and C. C. Lin, “Seismic performance of multiple tuned mass dampers for soil–irregular
building interaction systems”, Int. J. Solids Struct. 42:20 (2005), 5536–5554.



588 CHUNXIANG LI, JINHUA LI, ZHIQIANG YU AND YAN QU

[Xu and Igusa 1992] K. Xu and T. Igusa, “Dynamic characteristics of multiple substructures with closely spaced frequencies”,
Earthquake Eng. Struct. Dyn. 21:12 (1992), 1059–1070.

[Yamaguchi and Harnpornchai 1993] H. Yamaguchi and N. Harnpornchai, “Fundamental characteristics of multiple tuned mass
dampers for suppressing harmonically forced oscillations”, Earthquake Eng. Struct. Dyn. 22:1 (1993), 51–62.

[Yan et al. 1999] N. Yan, C. M. Wang, and T. Balendra, “Optimum damper characteristics of ATMD for buildings under wind
loads”, J. Struct. Eng. (ASCE) 125:12 (1999), 1376–1383.

[Yang et al. 2004] J. N. Yang, A. K. Agrawal, B. Samali, and J. C. Wu, “Benchmark problem for response control of wind-
excited tall buildings”, J. Eng. Mech. (ASCE) 130:4 (2004), 437–446.

[Yau and Yang 2004a] J. D. Yau and Y. B. Yang, “Vibration reduction for cable-stayed bridges traveled by high-speed trains”,
Finite Elem. Anal. Des. 40:3 (2004), 341–359.

[Yau and Yang 2004b] J. D. Yau and Y. B. Yang, “A wideband MTMD system for reducing the dynamic response of continuous
truss bridges to moving train loads”, Eng. Struct. 26:12 (2004), 1795–1807.

Received 19 Nov 2008. Revised 12 Jan 2009. Accepted 29 Jan 2009.

CHUNXIANG LI: li-chunxiang@vip.sina.com
Department of Civil Engineering, Shanghai University, 149 Yanchang Road, Shanghai 200072, China

JINHUA LI: Department of Civil Engineering, Shanghai University, 149 Yanchang Road, Shanghai 200072,
China

ZHIQIANG YU: Department of Civil Engineering, Shanghai University, 149 Yanchang Road, Shanghai 200072,
China

YAN QU: Department of Civil Engineering, Shanghai University, 149 Yanchang Road, Shanghai 200072, China



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 4, No. 3, 2009

EFFECTS OF SURFACE AND INITIAL STRESSES ON THE BENDING
STIFFNESS OF TRILAYER PLATES AND NANOFILMS

HANXING ZHU, JIANXIANG WANG AND BHUSHAN KARIHALOO

Simple closed-form analytic solutions have been obtained for the effect of initial residual stress on the
bending stiffness of a symmetric trilayer plate/beam and for the combined effect of surface elasticity and
initial surface stress on the bending stiffness of a nanofilm/nanobeam. The relative effect of the initial
residual stress is generally limited to the range of the material yield strain. For nanofilms and nanobeams,
the effect of the surface elasticity reduces with an increase in the thickness, but the initial surface stress
effect can be retained at a constant level of up to the limit of elastic strain if it can be controlled, for
example by the application of an electrical potential.

1. Introduction

Multilayer plate structures are widely used in applications at different size scales ranging from macro civil
and mechanical structures down to microelectromechanical systems (MEMS) and nanoelectromechanical
systems (NEMS). Elastic and thermal mismatch of individual materials can result in significant internal
residual stresses in multilayer systems. As internal residual stresses can influence the overall mechanical
properties (such as the stiffness and the natural frequency) and hence the dynamic and stability charac-
teristics of multilayer systems, their determination has long interested material scientists and engineers
[Stoney 1909; Freund 2000; Hui et al. 2000; Klein 2000; Dodin et al. 2001; Freund and Johnson 2001;
Thompson and Clyne 2001; Donadon et al. 2002; Xu and Zhang 2003; Malzbender 2004; Huang and
Zhang 2006; Huang and Zhang 2007]. Both the experimental measurement of internal stresses and the
optimal design of multilayer systems rely heavily on the accuracy of the involved correlations. To the
best of our knowledge, there is no reliable closed-form solution for the effect of initial residual stress on
the bending stiffness of a symmetric trilayer plate structure (Figure 1).

The demand for smaller and faster devices has encouraged technological advances in the production
of systems at micro- and nanoscales. While MEMS technology is now a well established area, nanoelec-
tromechanical systems (NEMS) have been attracting more interest lately [Bunch et al. 2007; Masmanidis
et al. 2007], as have the mechanical properties of nanomaterials and nanostructures. It has been well
recognized that the effect of surface elasticity on the stiffness of nanostructures is size-dependent [He
et al. 2004; Lim and He 2004; Cuenot et al. 2004; Zhou and Huang 2004; Duan et al. [2005a; 2005b;
2006]; Chen et al. 2006; Wang et al. 2006; Zhu and Karihaloo 2008]. As the surface to volume ratio
is large, the stiffness and deformation of a nanostructure greatly depend on the surface stress, while the
latter depends on the electric charge which in turn depends on the applied electric potential [Haiss et al.
1998; Weissmüller et al. 2003; Kramer et al. 2004]. Therefore the deformation of a nanostructure can
be controlled by adjusting the applied electric potential [Kramer et al. 2004]. Miller and Shenoy [2000]

Keywords: residual stress, bending stiffness, surface effect, nanoplate, nanobeam.
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Figure 1. Schematic diagram of a prestressed trilayer plate. Left: materials and initial
residual stresses. Right: dimensions and coordinate system.

showed that the relative contribution of the surface elastic modulus to the bending stiffness of a nanoplate
is 6S/(Eh), where S is the surface elastic modulus, E is the Young’s modulus of the bulk material and
h is the thickness of the nanoplate.

However, the effect of the initial residual stresses on the bending stiffness of a nanoplate (or nanobeam)
has not yet been considered. Zhu [2008] has considered the combined effects of surface elasticity and
initial stresses on the bending stiffness of a core-shell nanowire with a circular cross-section. In this
paper we consider the effect of initial stress on the bending stiffness of a symmetric trilayer plate/beam
and the combined effects of surface elasticity and the initial stresses on the bending stiffness of a
nanoplate/nanobeam with a rectangular or square cross-section.

2. Pure bending of a prestressed symmetric trilayer plate/beam

Figure 1 shows the cross-sectional geometry of a trilayer plate. The middle layer of thickness h is made of
material 1 with Young’s modulus E1 and Poisson’s ratio ν1. Both the top and bottom layers of thickness
t are made of material 2 with Young’s modulus E2 and Poisson’s ratio ν2. The width direction is denoted
as z, which is normal to the xy-plane. The trilayer plate is initially flat and there is no initial residual
stress in the thickness direction (that is, the y direction). The initial residual stresses in both the x and
the z directions within the middle and the surface layers are σ01 and σ02, respectively. Obviously, they
satisfy the equilibrium condition

hσ01+ 2tσ02 = 0. (1)

When the symmetric trilayer plate is bent by a pure moment M , the radius of the neutral surface is
assumed to be R. To obtain a simple closed-form analytic solution for this problem, the following two
assumptions are made: i) the materials are linear elastic and the deformation is very small; ii) the plate
thickness does not change and R is much larger than the plate thickness. When a pure bending moment
is applied to the initially flat symmetric trilayer plate, the deformed trilayer plate obviously becomes a
cylinder but the initial cross-sectional planes remain plane after bending (as there is no net shear force in
cross-sectional planes). As the superposition principle applies to this elastic small deformation problem,
all the stresses and strains in the analysis of this paper, unless otherwise mentioned, are their changes
from the initial prestressed state resulting from the application of the pure bending moment M .
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When a wide trilayer plate is subjected to pure bending, the change of the strain in the z direction
(which is normal to the xy-plane of Figure 1) εz is a constant through the thickness of the three layers
and is to be determined. To simplify the analysis, we assume that thickness of the three layers does not
change after bending and the neutral surface is always in the middle of the middle layer as the bending
deformation is very small. This assumption will be subsequently validated.

We look at the deformation of the top layer first. Hooke’s law requires

σ z
2 (y)= E2εz + ν2σ

x
2 (y)+ ν2σ

y
2 (y) (h/2≤ y ≤ h/2+ t), (2)

where σ z
2 , σ x

2 , σ y
2 are the stress changes in the z, x and y directions, respectively and the subscript

2 refers to material 2 of the outer layers (Figure 1, left). All the stress changes are functions of the
coordinate y (Figure 1, right). The equilibrium equation in the radial direction of the bent plate, namely
dσ r/dr = (σ θ − σ r )/r , requires that

d(rσ r
2 )= σ

θ
2 dr,

where σ θ2 = σ
x
2 + σ02 and σ r

2 = σ
y
2 . Integrating both sides and making use of the boundary condition

(rσ r
2 )|r=R+t+h/2 = 0, we get for constant initial residual stress σ02 in the outer layers∫ R+t+h/2

R+y
d(rσ r

2 ) = −(R+ y)σ y
2 =

∫ R+t+h/2

R+y
σ θ2 dr =

∫ t+h/2

y
(σ x

2 + σ02)dy.

Since the thickness of the trilayer plate is far less than R (that is, |y| � R), this can be rewritten as

σ
y
2 (y) = −

1
R+ y

∫ t+h/2

y
(σ x

2 + σ02)dy ≈ −
1
R

∫ t+h/2

y
(σ x

2 + σ02)dy. (3)

Substituting (2) and (3) into Hooke’s law

εx
2 (y)=

y
R
=

1
E2
(σ x

2 − ν2σ
z
2 − ν2σ

y
2 ),

gives
yE2

R
= (1− ν2

2)σ
x
2 (y)− ν2 E2εz +

ν2(1+ ν2)

R

∫ t+h/2

y

(
σ x

2 (y)+ σ02
)
dy. (4)

Differentiating both sides with respect to y leads to

(1− ν2
2)

dσ x
2 (y)
dy

−
ν2(1+ ν2)

R

(
σ x

2 (y)+ σ02
)
−

E2

R
= 0. (5)

It should be mentioned that in (3), R is used to approximate r ; otherwise, there is an additional term
of −ν2(1+ ν2)r−2

∫ t+h/2
y

(
σ x

2 (y)+ σ02
)
dy on the left hand side of (5). As 1/r2

≈ 1/R2 is a higher
order small number, the term is ignored in the differential equation (5). The solution of the first order
differential equation (5) is

σ x
2 (y)= A exp ν2 y

(1−ν2)R
−

E2

ν2(1+ ν2)
− σ02 (h/2≤ y ≤ h/2+ t), (6)
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where A is a constant of integration to be determined by substituting (6) into (4):

A =
(
ν2 E2εz

1− ν2
2
+ σ02+

E2

ν2(1+ ν2)
+
(h+ 2t)E2

2R(1− ν2
2)

)
exp

(
−
(h+2t)ν2
2(1−ν2)R

)

≈
ν2 E2εz

1− ν2
2
−

ν2
2 E2εz(h+ 2t)

2(1− ν2)(1− ν2
2)R
+ σ02+

E2

ν2(1+ ν2)
−
(h+ 2t)ν2σ02

2(1− ν2)R
.

(7)

The exponential function has been expanded into a polynomial and the terms of order higher than 1/R
have been ignored in (7), since 1/R is very small.

It is easy to see that (5) is also the governing differential equation for the stress change in the x
direction within the bottom layer. The solution is therefore

σ x
2 (y)= B exp ν2 y

(1−ν2)R
−

E2

ν2(1+ ν2)
− σ02 (−h/2− t ≤ y ≤−h/2), (8)

where,

B =
(
ν2 E2εz

1− ν2
2
+ σ02+

E2

ν2(1+ ν2)
−
(h+ 2t)E2

2R(1− ν2
2)

)
exp

(
(h+2t)ν2
2(1−ν2)R

)

≈ σ02+
E2

ν2(1+ ν2)
+
(h+ 2t)ν2σ02

2(1− ν2)R
+
ν2 E2εz

1− ν2
2
+

ν2
2 E2εz(h+ 2t)

2(1− ν2)(1− ν2
2)R

.

(9)

In a similar manner, the governing differential equation for the stress change in the x direction within
the middle layer can be obtained as

(1− ν2
1)

dσ x
1 (y)
dy

−
ν1(1+ ν1)

R

(
σ x

1 (y)+ σ01
)
−

E1

R
= 0 (−h/2≤ y ≤ h/2), (10)

where the subscript 1 refers to material 1 of the middle layer. The solution of (10) is

σ x
1 (y)= C exp ν1 y

(1−ν1)R
−

E1

ν1(1+ ν1)
− σ01 (−h/2≤ y ≤ h/2), (11)

where the constant of integration is given by

C =
(
ν1 E1εz

1−ν2
1
+σ01+

E1

ν1(1+ν1)
−

tν1

(1−ν1)R
A+

t E2ν1

ν2(1+ν2)(1−ν1)R
+

hE1

2(1−ν2
1)R

)
exp

(
−

ν1h
2(1−ν1)R

)
for 0≤ y ≤ h/2 and by

C =
(
ν1 E1εz

1−ν2
1
+σ01+

E1

ν1(1+ν1)
+

tν1

(1−ν1)R
B−

t E2ν1

ν2(1+ν2)(1−ν1)R
−

hE1

2(1−ν2
1)R

)
exp

(
−

ν1h
2(1−ν1)R

)
for −h/2≤ y ≤ 0; in either case, we have

C ≈
ν1 E1εz

1− ν2
1
+

ν2
1 E1εzh

2(1− ν1)(1− ν2
1)R
+ σ01+

E1

ν1(1+ ν1)
(−h/2≤ y ≤ h/2).

(Here we have used (1), (7), (9) and the relationships σ z
1 (y) = E1εz + ν1σ

x
1 (y)+ ν1σ

y
1 (y) (valid for

−h/2≤ y ≤ h/2) and εx
1 (y)= y/R = (1/E1)(σ

x
1 − ν1σ

z
1 − ν1σ

y
1 ).)
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Therefore, the change of the stress in the x direction within the symmetric trilayer plate after the
application of the external pure bending moment M is

σ x(y)=



A exp
ν2 y

(1− ν2)R
−

E2

ν2(1+ ν2)
− σ02 (h/2≤ y ≤ t + h/2),

C exp
ν1 y

(1− ν1)R
−

E1

ν1(1+ ν1)
− σ01 (−h/2≤ y ≤ h/2),

B exp
ν2 y

(1− ν2)R
−

E2

ν2(1+ ν2)
− σ02 (−t − h/2≤ y ≤−h/2),

(12)

which can be rewritten as

σ x(y)=
ν2 E2εz

1− ν2
2
−

ν2
2 E2εz(h+ 2t)

2(1− ν2)(1− ν2
2)R
+

ν2
2 E2εz y

(1− ν2)(1− ν2
2)R
−

ν2σ02

(1− ν2)R

(h
2
+ t − y

)
+

E2 y
(1− ν2

2)R

for h/2≤ y ≤ t + h/2,

σ x(y)=
ν1 E1εz

1− ν2
1
+

ν2
1 E1εzh

2(1− ν1)(1− ν2
1)R
+

ν2
1 E1εz y

(1− ν1)(1− ν2
1)R
+

ν1σ01

(1− ν1)R
y+

E1 y
(1− ν2

1)R

for −h/2≤ y ≤ h/2, and

σ x(y)=
ν2 E2εz

1− ν2
2
+

ν2
2 E2εz(h+ 2t)

2(1− ν2)(1− ν2
2)R
+

ν2
2 E2εz y

(1− ν2)(1− ν2
2)R
+

ν2σ02

(1− ν2)R

(h
2
+ t + y

)
+

E2 y
(1− ν2

2)R

for −t − h/2≤ y ≤−h/2.
Now we look at the amplitude of the strain change in the z direction εz . The cylindrical bending

condition requires a zero resultant force in the z direction

Fz =

∫ R+t+h/2

R−t−h/2
rσ zdr = 0. (13)

Substituting (2), (12) and σ z
1 (y)= E1εz + ν1σ

x
1 (y)+ ν1σ

y
1 (y) into (13), one has

Fz =

∫ R+t+h/2

R−t−h/2
rσ z dr

= 2t E2εz R+ hE1εz R+ ν2

∫ R+t+h/2

R−t−h/2
(σ x
+ σ y)r dr + (ν1− ν2)

∫ R+h/2

R−h/2
(σ x

1 + σ
y
1 )r dr.

(14)

Here r = R+ y. It is easy to verify that

ν2

∫ R+t+h/2

R−t−h/2
(σ x
+ σ y)r dr = ν2r2σ y

∣∣∣∣y=t+h/t

y=−t−h/2
= 0, (15)

as there is no traction on the outside surface of the top and the bottom layers, and

(ν1− ν2)

∫ R+h/2

R−h/2
(σ x

1 + σ
y
1 )r dr =

ν1− ν2

2
r2σ y

∣∣∣∣y=h/2

y=−h/2
. (16)
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Substituting (14)–(16) into (13) and ignoring the terms of order higher than 1/R, one has

εz =

ν2(ν1−ν2)(1+2t/h)
1−ν2

σ02t
E2 R

8t/h+ 4E1
E2
−

2ν2(1−ν2)t
(1−ν2

2)R
+

2(ν1−ν2)ν
2
2(1+2t/h)t

(1−ν2)(1−ν2
2)R

≈
ν2(ν1− ν2)(1+ 2t/h)

(8t/h+ 4E1/E2)(1− ν2)2
·

t
R
ε02, (17)

where ε02 = σ02(1− ν2)/E2 is the initial elastic residual strain in the top or bottom layer before the
application of the bending moment M . Equation (17) shows clearly that εz is zero if ν1 = ν2. As t/R is
very small, |εz| � |ε02| when ν1 6= ν2, it will be set equal to zero to simplify the analysis that follows.

The total stress in the x direction within the symmetric trilayer plate after the application of the external
pure bending moment M is given by superposition

6x(y)= σ x(y)+


σ02

σ01

σ02

=



σ02−
ν2σ02

(1− ν2)R

(h
2
+ t − y

)
+

E2 y
(1− ν2

2)R
(h/2≤ y ≤ t + h/2),

σ01+
ν1σ01

(1− ν1)R
y+

E1 y
(1− ν2

1)R
(−h/2≤ y ≤ h/2),

σ02+
ν2σ02

(1− ν2)R

(h
2
+ t + y

)
+

E2 y
(1− ν2

2)R
(−t − h/2≤ y ≤−h/2).

(18)

It is easy to verify the following facts:

• There is no net resultant axial force in the trilayer plate in the x direction: Nx =

∫ t+h/2

−t−h/2
6x(y)dy = 0.

• The stress in the radial direction (the y direction in Figure 1), given by

σ y(y)=−
1
R

∫ t+h/2

y
6x(y)dy

(the equilibrium condition in the y direction), satisfies the stress continuity condition across the neutral
surface and the interfaces between the middle and the surface layers.

• There is no traction in the y direction on both the top and bottom surfaces; that is, σ y
2 (t + h/2) =

σ
y
2 (−t − h/2)= 0.

For a given bending curvature 1/R, we are now in a position to compute the amplitude of the applied
bending moment

M =
∫ t+h/2

−t−h/2
6x(y) y dy. (19)

Substituting (18) into (19), the bending stiffness of the prestressed symmetric trilayer plate can be ob-
tained as

D = M/(1/R)=
E2
(
(h+ 2t)3− h3

)
12(1− ν2

2)
+

E1h3

12(1− ν2
1)
+

ν1σ01h3

12(1− ν1)
−
ν2σ02t2(3h+ 2t)

6(1− ν2)
. (20)
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When the initial residual stresses σ02 and σ01 are absent, the bending stiffness of the symmetric trilayer
plate is denoted by

D0 =
E2
(
(h+ 2t)3− h3

)
12(1− ν2

2)
+

E1h3

12(1− ν2
1)
. (21)

From equations (20) and (21), the contribution of the initial residual stresses to the bending stiffness of
a symmetric trilayer plate is therefore

D− D0 =
σ01

12

(
ν1h3

1− ν1
+
ν2th(3h+ 2t)

1− ν2

)
=

E1ε01

12(1− ν1)

(
ν1h3

1− ν1
+
ν2th(3h+ 2t)

1− ν2

)

=−
σ02

6

(
ν1th2

1− ν1
+
ν2t2(3h+ 2t)

1− ν2

)
=−

E2ε02

6(1− ν2)

(
ν1th2

1− ν1
+
ν2t2(3h+ 2t)

1− ν2

)
.

(22)

Equation (1) has been used in obtaining (22), where ε01 = (1− ν1)σ01/E1 and ε02 = (1− ν2)σ02/E2

are the initial residual strains within the middle and extreme layers. Equation (22) shows clearly that an
initial tensile residual stress or strain (that is, ε01 > 0) in the middle layer increases the bending stiffness
of a trilayer plate. If the plate is made of a metallic material, the initial effective residual stresses should
be smaller than the yield strength of the metal. According to the von Mises yield criterion, one has

|ε01| = (1− ν1)|σ01|/E1 ≤ (1− ν1)σy1/E1 = (1− ν1)εy1 (23a)

and likewise
|ε02| ≤ (1− ν1)εy2. (23b)

Equations (22) and (18) can be used to optimize the design and to determine experimentally the residual
stresses or material properties for symmetric trilayer structures such as thermal barrier coated engine
blades. Equations (23a) and (23b) give the limits for the possible amplitude of the initial residual elastic
strains in symmetric trilayer structures. However, if a trilayer structure is made of a hyper-elastic material,
such as a polymer or a rubber, the initial linear elastic residual strain could be as large as a few percent.

Now we consider the pure bending of a symmetric trilayer beam with a rectangular cross-section. The
structure, the coordinate system, the initial residual stresses and strains of the unbent symmetric trilayer
beam are the same as those of the unbent symmetric trilayer plate. The only difference is its width
dimension in the z direction of Figure 1. When it is bent by a pure moment, the deformation is assumed
to satisfy the plane stress condition. Following the above analysis procedure, it can be shown that the
total stresses in the x direction within the trilayer beam are

6x(y)=



σ02−
ν2σ02

R

(h
2
+ t − y

)
+

E2 y
R

(h/2≤ y ≤ t + h/2),

σ01+
ν1σ01

R
y+

E1 y
R

(−h/2≤ y ≤ h/2),

σ02+
ν2σ02

R

(h
2
+ t + y

)
+

E2 y
R

(−t − h/2≤ y ≤−h/2).

(24)

The bending stiffness of the prestressed beam is therefore

D =
E2
(
(h+ 2t)3− h3

)
12

+
E1h3

12
+
ν1σ01h3

12
−
ν2σ02t2(3h+ 2t)

6
. (25)
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When the initial residual stresses σ02 and σ01 are absent, the bending stiffness of the symmetric trilayer
beam is denoted as

D0 =
E2
(
(h+ 2t)3− h3

)
12

+
E1h3

12
. (26)

The effect of the initial residual stresses on the bending stiffness is

D− D0 =
ν1σ01h3

12
−
ν2σ02t2(3h+ 2t)

6
. (27)

Obviously, the relative effect of the initial residual stresses on the bending stiffness of a symmetric trilayer
beam is at the same level as on that of a symmetric trilayer plate discussed above.

Following the line of the analysis in this paper or in [Zhu 2007], it is possible to obtain the exact
closed-form analytical solution for large curvature elastic pure bending of the same structure. However,
as the exact solution is a very lengthy function, it is not convenient to use in practice. Although it is easy
to obtain a numerical solution for large curvature elastic bending, it is difficult to see the correlations
between the different parameters such as the structure dimensions, the material properties and the initial
residual stresses (or strains). That is why we have simplified the analysis above to obtain a simple
closed-form solution for small curvature.

The simplified closed-form solution is valid not only for macro civil structures, but also for micro-
and nanostructures. The schematic symmetric trilayer structure shown in Figure 1 is one of the most
typical structures of microactuators. For example, a typical conducting polymeric actuator consists of
a polymer membrane (usually, Nafion, Flemion or Aciplex) covered on both faces by a noble metal,
generally platinum or gold [Nemat-Nasser 2002; Alici et al. 2005]. When the actuator is stimulated by
the application of a small (1–3 V) alternating potential, it undergoes flexural vibrations [Nemat-Nasser
2002]. The precision, resolution and reliability of such a MEMS system mainly depend on its mechanical
structure. The outcome of this paper provides an enhanced degree of understanding and predictability in
quantifying the actuator’s performance and hence paves the way towards the optimal design and precise
experimental measurement of such structures.

3. Pure bending of a nanoplate/nanobeam

For nanostructures, as the surface to volume ratio is large, the surface elasticity, in addition to any residual
surface stresses, plays a very important role in the deformation process [Cuenot et al. 2004; Duan et al.
2005a; 2005b; 2006; Chen et al. 2006; Wang et al. 2006; Zhu and Karihaloo 2008]. In continuum
models, nanoplates are usually treated as “sandwich structures” consisting of the bulk material and very
thin facets [He et al. 2004; Lim and He 2004; Miller and Shenoy 2000; Lu et al. 2006]. The linear
constitutive relation of the surface can be written as [Miller and Shenoy 2000; Cammarata and Sieradzki
1994]

τi j = τ
0
i j + Si jklεkl, (28)

where τi j is the surface stress after deformation , τ 0
i j is the initial stress before deformation, Si jkl is the

surface modulus tensor and εkl is the surface strain. The surface stress and surface elastic constants
have reduced dimensionality. It has been found that the effect of surface elastic modulus on the stiffness
of nanostructures is size-dependent. The effect of surface elasticity on the mechanical properties of
materials and structures has been extensively studied [Miller and Shenoy 2000; Lu et al. 2006; Gurtin
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and Murdoch 1975], and the relative contribution of the surface elasticity to the bending stiffness of
a nanoplate has been found to be 6S/(Eh), where S is the surface elastic modulus, E is the Young’s
modulus of the bulk material and h is the thickness of the nanoplate [Miller and Shenoy 2000]. This
contribution does not include the effect of any initial surface stress.

For a nanoplate, the surfaces are notionally assumed so only in a mathematical sense, whose thickness
t is much smaller than the thickness h of the core of the plate. In this case, we still use Figure 1 as the
structural model and the stresses are assumed not to change through thickness of the top and the bottom
surfaces. Similarly to the macroplate, we assume that when the nanoplate is bent to a very small curvature
1/R (R is much larger the plate thickness h) by a pure bending moment, both the “surface” and the bulk
material are linear elastic; and the thickness of the nanoplate remains unchanged. Obviously the original
cross-sectional planes remain plane as there is no net shear force in the cross-sectional planes. It is easy
to verify that the neutral surface is still in the middle of the bulk plate. Therefore, the stresses in the x
direction in the top and bottom surfaces are respectively

τ x
t = τ0+

S
1− ν2

2

h
2R

(N/m) and τ x
b = τ0−

S
1− ν2

2

h
2R

(N/m), (29)

where τ0 is the initial surface stress, S is the surface elastic modulus and ν2 is the Poisson ratio of the
surfaces.

The stresses in the y direction on the top and bottom interfaces of bent bulk plate are respectively

σ
y
1

∣∣
y=h/2 =−

τ x
t

R
≈−

τ0

R
and σ

y
1

∣∣
y=−h/2 =

τ x
b

R
≈
τ0

R
. (30)

In the similar manner, it is easy to verify that (10) is still the governing differential equation for the stress
change in the x direction within the bulk plate. The solution to the stress change in the x direction within
the bulk plate is the same as (11), but the constant of integration C is determined by making use of the
stress continuity conditions (30) in the radial direction across the top and bottom interfaces,

C = σ01+
E1

ν1(1+ ν1)
(−h/2< y < h/2). (31)

As before, the exponential function has been replaced by a polynomial function with the terms of order
higher than 1/R ignored, and the equilibrium condition σ01 =−

2τ0
h has been used in deriving the solution.

Therefore the total stress in the x direction within the bulk plate after the application of the external pure
bending moment M is given by superposition

6x(y)=−
2τ0

h
−

2ν1τ0

(1− ν1)h
y
R
+

E1 y
(1− ν2

1)R
(−h/2< y < h/2). (32)

On the top and the bottom surfaces, the surface stresses are given in (29).
The applied pure bending moment can be calculated as

M =
Sh2

2(1− ν2
2)R
+

∫ h/2

−h/2
6x(y) y dy
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and the bending stiffness of a nanoplate is therefore

D =
Sh2

2(1− ν2
2)
+

E1h3

12(1− ν2
1)
−

ν1τ0h2

6(1− ν1)
. (33)

Since D0 =
1
12 E1h3/(1− ν2

1) is conventionally taken as the bending stiffness of a nanoplate when the
surface effect is absent, the relative contribution of the initial residual surface stress τ0 and the surface
elasticity to the elastic bending capacity is therefore

D− D0

D0
=

6S(1− ν2
1)

(1− ν2
2)E1h

−
2τ0ν1(1+ ν1)

E1h
=

6(1− ν2
1)

(1− ν2
2)
·
`n

h
+
ν1(1+ ν1)

1− ν1
ε01, (34)

where

ε01 =
(1− ν1)σ01

E1
=−

2(1− ν1)τ0

E1h
is the initial elastic residual strain within the core of the nanoplate and `n = S/E1 is an intrinsic length
scale. Since the plate is in an elastic state, according to the Mises yield criterion, (23a) gives the limit
for the possible maximum elastic residual strain ε01 for the plate bulk material. This is because first, the
surface stress of a nanoelement depends on the applied electric potential [Haiss et al. 1998]; second, the
deformation (hence the bending stiffness) can be controlled by adjusting the applied electric potential
[Weissmüller et al. 2003; Kramer et al. 2004]; third, the maximum residual elastic strain (or the maximum
residual elastic stress) is limited by the yield strength [Diao et al. 2006].

Equation (34) gives a linear scaling law for the normalized bending stiffness (D/D0) of a nanoplate.
Similar scaling has been previously observed in many physical properties at the nanoscale [Wang et al.
2006]. It shows that the thinner a nanoplate is, the larger its normalized bending stiffness will be. The
first term of (34) is the relative effect of surface elasticity on the bending stiffness of a nanoplate. If
the Poisson ratio of the surface is the same as that of the bulk material (that is, ν2 = ν1), this term is
identical to Miller and Shenoy’s analytical result for a nanoplate [Miller and Shenoy 2000]. The second
term quantifies the relative effect of the initial surface stress on the bending stiffness of a nanoplate.

Equation (34) can be rewritten as

D− D0

D0
=

6S(1− ν2
1)

(1− ν2
2)E1h

−
τ0

E1h
F(ν1),

where
F(ν1)= 2ν1(1+ ν1). (35)

For normal metallic nanoplates, the initial surface stress τ0 is of the same order of the surface modulus
S [Cammarata and Sieradzki 1994]. Atomistic simulations show that the surface modulus and the initial
surface stress of a nanofilm can be either positive or negative [Miller and Shenoy 2000; Gurtin et al.
1976]. Equation (34) shows that an initial tensile surface stress tends to reduce the bending stiffness of
a nanoplate.

Based on continuum elasticity, supplemented by surface elasticity [Miller and Shenoy 2000; Gurtin
and Murdoch 1975] we have performed a number of numerical simulations on the pure bending of
a nanoplate to validate the analytical predictions obtained in this paper. Firstly, we have numerically
confirmed that when the initial surface stress is absent the analytical result of (34) (or Miller and Shenoy’s
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Figure 2. Comparison of the simplified analytical prediction with numerical simula-
tions: F versus nondimensional bending curvature 1/R (left), and versus the Poisson’s
ratio ν1 (right).

analytical result [Miller and Shenoy 2000]) provides exact predictions. Secondly, when the surface
elasticity is ignored (that is, S = 0) and the Poisson ratio of the core material is fixed (ν1 > 0), the relative
effect of the initial surface stress on the bending stiffness of a nanoplate is proportional to τ0/(E1h), as
predicted by (34). Thirdly, when the value of τ0/(E1h) is fixed, the relative effect of the initial surface
stress τ0 on the bending stiffness of a nanoplate is a function of the Poisson ratio of the core material
ν1, as shown is in Figure 2. The left half of the figure shows that F(ν1) is almost a constant over
the normalized bending curvatures ranging from 0.0005 to 0.05 for a fixed value of ν1 (the normalized
bending curvature is h/R). We see on the right that the numerical result F(ν1) is nearly identical to that
of analytical prediction in (35). Although the analytical results obtained in this paper are derived from
the small deformation theory, the numerical tests (Figure 2) provide us with sufficient confidence that
the analytical results can be used in optimal design or experimental measurements for deformations up
to a normalized bending curvature of 0.1 (that is, h/R = 0.1). Beyond this value of curvature, deviations
occur as a result of the plate thickness reduction [Zhu 2007]. Note that the analytical results obtained in
this section can be mathematically deduced from the analysis of the previous section (see Equation (20))
when the thickness t of the top and the bottom layers tends to zero. However, we have not been tempted
by this limiting process as it would require us to relate the bulk elastic constant E to the surface modulus
S, whereas there is no reason why such a relationship should exist.

For a nanobeam with a rectangular cross-section of thickness h and width b, as shown in Figure 3, left,
the initial axial residual stress is σ x

0 =−2τ0/h− 2τ0/b, where τ0 is the initial surface stress. When this
nanobeam is bent by a pure moment, a plain stress deformation mode is created. Following the above
analysis procedure, the total stress within the bulk material of the nanobeam in the axial direction can
be calculated as

6x(y)=
E1

R
y−

ν1τ0

R
−
ν1σ

x
0

2R
(h− 2y)+ σ x

0 (36)



600 HANXING ZHU, JIANXIANG WANG AND BHUSHAN KARIHALOO

!

"

#

$

!

"

#

Figure 3. Left: a rectangular cross-section with the neutral axis z parallel to the sides.
Right: a square cross-section with the neutral axis z coincided to the diagonal.

and the total surface stress in the x direction can be obtained as

τ x(y, z)=


τ0+ Sh/(2R) (y = h/2 and 0< z < b),

τ0+
Sy
R
−
ν1τ0h

2R
−
ν1τ0

R
y (−h/2≤ y ≤ h/2 and z = 0 or b),

τ0− Sh/(2R) (y =−h/2 and 0< z < b),

(37)

where the Poisson ratio of the surface is assumed to be the same as that of the bulk material.
The elastic bending capacity is

M =
Sbh2

2R
+

∫ h/2

−h/2
2
(

S
R

y−
ν1τ0

R
y
)

y dy+
∫ h/2

−h/2
6x(y) by dy

=
Sbh2

2R
+

Sh3

6R
−
ν1τ0h3

6R
+

E1bh3

12R
+
ν1σ

x
0

12R
bh3.

(38)

Therefore the bending stiffness of the nanobeam is

D = M/(1/R)=
Sbh2

2R
+

Sh3

6R
−
ν1τ0h3

6R
+

E1bh3

12
+
ν1σ

x
0

12
bh3. (39)

As the bending stiffness of the bulk beam is D0 = E1bh3/12, the relative effect of the initial surface
stress and the surface elasticity is

D− D0

D0
=

6S
E1h
+

2S
E1b
+
ν1σ

x
0

E1
−

2ν1τ0

E1b

=
6ln

h
+

2ln

b
−

4ν1τ0

E1b
−

2ν1τ0

E1h
=

6ln

h
+

2ln

b
+

(2h+ b)ν1

(b+ h)(1− ν1)
εx

0 ,

(40)

where, as before the internal length parameter `n = S/E1, and

εx
0 =

1
E1
(σ x

0 − ν1σ
y
0 − ν1σ

z
0 )=−

2τ0

E1bh
(b+ h)(1− ν1) (41)
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is the initial residual elastic strain in the bulk nanobeam in the x direction. According to the Mises yield
criterion,

|εx
0 | ≤

(b+ h)(1− ν1)
√

b2+ h2− bh
εy, (42)

where εy is the uniaxial yield strain of the beam bulk material.
For a nanobeam with a square cross-section (that is, b = h), Equation (40) reduces to

D− D0

D0
=

8ln

h
−

6ν1τ0

E1h
=

8ln

h
+

3ν1

2(1− ν1)
εx

0 . (43)

The first term in (43) is identical to Miller and Shenoy’s analytical result (namely (D − D0)/D0 =

8S/(Eh)= 8`n/h) for a nanobeam with a rectangular cross-section in the absence of the initial stress
[Miller and Shenoy 2000]. Metallic nanomaterials can be used to make nanoactuators and the initial sur-
face stress τ0 can be controlled by the application of an electric potential [Haiss et al. 1998; Weissmüller
et al. 2003; Kramer et al. 2004]. Equations (34) and (40) show that the effect of surface elasticity S on
the bending stiffness of a nanoplate or nanobeam vanishes when its thickness h reaches about 100 nm,
while the effect of the initial residual stress is proportional to ε01 which could be retained at a level up to
a few percent by the application of an electric potential even for microplates and beams. Equations (34)
and (40) provide a reliable estimate of the combined effects of surface elasticity S and initial surface
stress τ0 on the bending stiffness (and hence the dynamic characteristics) of nanoplates and nanobeams.
It has important applications both in the optimal design of nanostructures and in the measurement of
their characteristics.

For completeness, we will also give, without details, the effect of initial surface stress and surface
elasticity on the stiffness, if a nanobeam with square section of side length h is bent about a diagonal
plane as shown in Figure 3, right,

D− D0

D0
=

4
√

2ln

h
+
ν1σ

x
0

E1
=

4
√

2ln

h
+

ν1

(1− ν1)
εx

0 . (44)

In this case, the effect of the surface elasticity on the bending stiffness, given by the first term of (44), is
smaller than that given by [Miller and Shenoy 2000].

For either a nanoplate/nanobeam or a macro symmetric trilayer plate/beam, we assume that its bending
stiffness and natural frequency are respectively D0 and ω0 when the initial residual stress and the surface
elasticity (for nanoplate/nanobeam) are absent; and D and ω when the initial residual stress and the
surface elasticity (for nanoplate/nanobeam) are present. The combined effect of the initial residual stress
and the surface elasticity for nanoplate/nanobeam on its natural frequency therefore scales as

ω/ω0 = (D/D0)
1/2. (45)

Lagowski et al. [1975] found experimentally that the normal mode of vibration of thin crystals depends
strongly on the surface preparation. They related this to the initial surface stress effect, which was
treated as an external force. However, Gurtin et al. [1976] argued that the combination of the initial
surface stress and the residual stress in the bulk material would cancel their individual effects. They
attributed the dependence of the normal mode of vibration of thin crystals on surface preparation to
surface elasticity. We have shown conclusively that the dynamic response depends both on the initial
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residual stress in the surfaces and the bulk and on surface elasticity at the nanoscale. Wang and Feng
[2007] have also considered the combined effects of surface elasticity and residual surface tension on the
natural frequency of microbeams. However, as they did not take into account the effect of the residual
stress in the bulk material, their result is suspect.

4. Conclusion

A simple closed-form analytical solution identifying the effect of initial residual stresses (or strains)
on the bending stiffness of a symmetric trilayer structure or a nanoplate/nanobeam has been obtained.
At the macro- and microscales, the relative effect is at the level of the initial elastic residual strain. If
the structure is made of a hyperelastic material (such as a conducting polymer) and the initial elastic
residual stress (or strain) is controllable, the relative effect of the initial stress (or strain) could reach a
few percent. At the nanoscale, if the thickness of the nanoplate/nanobeam is around 10 nm or smaller,
then the surface elasticity rather than the initial surface stress generally has a stronger relative effect on
the bending stiffness. The surface elasticity effect however reduces with an increase in the plate/beam
thickness, but the initial surface stress effect can be retained at a constant level of up to the limit of elastic
strain if it can be controlled, for example by the application of an electrical potential.
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NUMERICAL MODELING OF CRACK PROPAGATION IN ROCKS
UNDER TBM DISC CUTTERS

MOHAMMAD FATEHI MARJI, HASAN HOSSEINI NASAB AND AMIN HOSSEIN MORSHEDI

The mechanism of rock fragmentation underneath disc cutters is not fully understood although a number
of experimental and numerical investigations have been carried out in this field. Linear elastic fracture
mechanics is widely applied for the analysis of crack problems in rock mechanics. In this study, the
higher order displacement discontinuity method is modified for the analysis of crack problems using the
cubic variations of displacement discontinuities and three special crack tip elements. It is shown how
a new formulation of the indirect boundary element method known as the displacement discontinuity
method (DDM) can be used to determine the stress intensity factors of the cracks produced in rocks
underneath disc cutters of tunnel boring machines (TBMs). Crack initiation angles and propagation paths
in the rock can also be predicted using this numerical procedure and a mixed mode fracture criterion
(for example, the maximum tensile stress criterion). In this numerical approach, three special crack tip
elements are used to increase the accuracy of the displacement discontinuities near the crack tips. This
method has been used to find approximately the effect of the specific disc parameters (except speed) on
the thrust force, the rolling force, and the specific energy. Crack propagation in rocks under disc cutters
is numerically modeled and an optimum ratio of disc spacing to penetration depth of about 10 is obtained,
in good agreement with the theoretical and experimental results in the literature.

1. Introduction

Tunnel boring machines (TBMs) are usually equipped with disc cutters. The most dominant fracture
process involved in cutting by TBMs is due to the subsurface crack propagation and interaction, or
subsurface chipping, between adjacent cutters. The chipping process is due to forces from the multi-
ple disc cutters mounted on the cutting head of the machines on the rock face. Several experimental,
empirical, analytical and semianalytical models have been used for TBM performance prediction, such
as those developed by the Earth Mechanics Institute of the Colorado School of Mines, the University
of Trondheim and the Norwegian Institute of Technology, and the Department of Mining Engineering
at the Technical University of Istanbul [Lislerud 1988; Nilsen and Ozdemir 1993; Rostami et al. 1994;
Johanessen 1995; Bilgin et al. 2000]. Other experimental and theoretical research and work has also been
reported for the investigation of the mechanism of rock fragmentation underneath the disc cutters, but its
true mechanism is not fully understood yet [Roxborough and Phillips 1975; Howarth and Roxborough
1982; Snowdon et al. 1982; Tan et al. 1996].

Keywords: crack analysis, cubic elements, semi-infinite problems, displacement discontinuity method, crack tip elements, disc
cutters.
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Several attempts have been made to use fracture mechanics principles via boundary element methods
(especially the displacement discontinuity method), for the simulation of rock fracture mechanics prob-
lems [Guo et al. 1992; Whittaker et al. 1992; Shen and Stephansson 1994; Alehossein et al. 2000; Bobet
2001]. In this study, fracture mechanics principles are implemented in the higher order (third order)
displacement discontinuity method modified for crack problems. The cubic variations of displacement
discontinuity and three special crack tip elements for each crack tip are used for the discretization of the
boundary of the problem. The rock breakage mechanism under disc cutters of tunnel boring machines
(TBMs) is modeled and studied by the proposed method. The displacement discontinuity solution based
on three special crack tip elements is thoroughly explained and the required formulations are derived and
given in the text.

Fundamentally, there are three mixed mode fracture criteria: the maximum tangential stress fracture
criterion (or σ -criterion), the maximum strain energy release rate fracture criterion (or G-criterion), and
the minimum strain energy density fracture criterion (or S-criterion) [Erdogan and Sih 1963; Ingraffea
1983; Huang and Wang 1985; Ouchterlony 1988; Broek 1989]. The recent fracture codes, such as
FRACOD, which is based on the two-dimensional displacement discontinuity method, uses the modified
version of Griffith’s G-criterion (the F-criterion) to describe the fracture propagation processes [Shen
and Stephansson 1994]. All of the mixed mode fracture criteria can be implemented in the proposed
higher order displacement discontinuity method. However, the fracture propagation process predicted
using the σ -criterion lies between those processes predicted using the other two classic criteria [Ingraffea
1983; Whittaker et al. 1992]: the G-criterion is more conservative and the S-criterion is less. (Note that
the K I C predicted by the S-criterion depends on the material parameter of the Poisson’s ratio ν.)

In this paper, crack propagation analysis is accomplished by using a suitable mixed mode fracture
criterion, the maximum tangential stress criterion (or σ -criterion) of [Erdogan and Sih 1963]. This
simple mixed mode criterion, used by several researchers [Ingraffea 1983; Guo et al. 1992; Whittaker
et al. 1992; Bobet 2001], compares the computed Mode I and Mode II stress intensity factors K I and K II

with K I C and K II C , Mode I and Mode II fracture toughness values under plane strain condition [Erdogan
and Sih 1963; Ingraffea 1983; Huang and Wang 1985; Ouchterlony 1988; Broek 1989; Whittaker et al.
1992].

A good deal of research [Stephansson et al. 2001; Stephansson 2002; Backers et al. 2002; 2003; Rao
et al. 2003; Backers 2004; Backers et al. 2004; Shen et al. 2004] has shown that the Mode II fracture
toughness of rock material is usually higher than the Mode I fracture toughness, especially when the
confining pressure increases. It also showed that the rocks are stronger under confining pressure, and
that usually crack propagation occurs in Mode II loading under this condition [Backers 2004]. Backers
et al. 2002 described a new experimental method for determination of Mode II (shear) fracture toughness
of rock, K II C , and compared the outcome to results from Mode I (tensile) fracture toughness, K I C , using
the International Society of Rock Mechanics chevron bend test method.

Fracture toughness describes the resistance of rock to fracturing. This parameter is therefore important
in estimating the failure of rock and rock structures using rock fracture mechanics principles. In this study,
wedge-shaped cracks under mixed mode loading conditions are considered. These cracks are produced
on a free surface of a semi-infinite rock mass by forcing the disc cutters onto the rock. As the confining
pressure near the rock surface is negligible, the cracks will propagate mostly by mixed mode loading.
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The displacement discontinuity solution used in the analysis presented here is of third order, which
gives very accurate results of the displacement discontinuity variations along the general boundary ele-
ments with only two degrees of freedom. Because of the singularities of the displacement discontinuities
at the crack tips, special crack tip elements have been proposed and used in the literature, but in most cases
only one or two crack tip elements have been used. To obtain a more accurate result of the near crack tip
displacement discontinuities, three or more crack tip elements can be used. This increases computation
time, but not to a significant extent for modern computers. Therefore, the displacement discontinuity
solution based on three general special crack tip elements is thoroughly explained and given here.

2. The cubic variation of displacement discontinuity element

A displacement discontinuity element of length 2a along the x-axis (Figure 1, left) is characterized by a
general displacement discontinuity distribution D(ε). By taking Dx and Dy components of the general
displacement discontinuity D(ε) to be constant in the interval (−a,+a) as shown in Figure 1, right, the
constant element displacement discontinuities Dx and Dy are defined as [Crouch 1976]

Dx = ux(x, 0−)− ux(x, 0+),

Dy = u y(x, 0−)− u y(x, 0+),
(1)

where ux(x, 0−), u y(x, 0−), ux(x, 0+), and u y(x, 0+) are the x and y components of displacements in
the negative side of y(y = 0−) and positive side of y(y = 0+), respectively.

The general displacement discontinuity method and its formulation for the constant and the higher
elements (using equal subelements) are explained in the literature [Crouch 1976; Crawford and Curran
1982; Crouch and Starfield 1983; Shou and Crouch 1995; Fatehi Marji et al. 2006]. In the present paper,
the general linear and cubic variations (subelements may or may not be equal) of the displacement
discontinuity method are discussed, and their numerical results are compared with each other.

The linear element displacement discontinuity is based on analytical integration of linear collocation
shape functions over collinear straight-line displacement discontinuity elements. Figure 2, left, shows
the linear displacement discontinuity distribution, which can be written in a general form as

Di (ε)= N1L(ε)D1
i + N2L(ε)D2

i , i = x, y, (2)

where D1
i and D2

i are the linear nodal displacement discontinuities.
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Figure 1. Left: Displacement discontinuity element and the distribution of u(ε). Right:
Constant element displacement discontinuity and positive sign convention.
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Figure 2. Linear (left) and cubic (right) collocations for the higher order displacement
discontinuity variations.

The linear shape functions N1L(ε) and N2L(ε) can be defined as

N1L(ε)=−
ε− a2

a1+ a2
, N2L(ε)=

ε+ a1

a1+ a2
, (3)

which are their linear collocation shape functions. Note that a linear element has two nodes, the centers
of its two subelements.

Similarly, the cubic element displacement discontinuity is based on analytical integration of cubic
collocation shape functions over collinear straight-line displacement discontinuity elements. Figure 2,
right, shows the cubic displacement discontinuity distribution, which can be written as

Di (ε)=

4∑
j=1

N j (ε)D
j
i , i = x, y, (4)

where D1
i , D2

i , D3
i , and D4

i are the cubic nodal displacement discontinuities, and the cubic collocation
shape functions N j (ε) can be defined as

N j (ε)=

4∑
j=1

(
A j + B jε+C jε

2
+ D jε

3), (5)

where the constants A j , B j , C j and D j are successively defined by the following equalities:

A1 = a2 B1− a2
2C1+ a3

2 D1, A2 = 1+ a2 B2− a2
2C2+ a3

2 D2,

A3 = a2 B3− a2
2C3+ a3

2 D3, A4 = a2 B4− a2
2C4+ a3

2 D4,

B1 = (a2−a3)C1−(a2
2−a2a3+a2

3)D1, B2 =−
1

a2+a3
+(a2−a3)C2−(a2

2−a2a3+a2
3)D2,

B3 =
1

a2+a3
+(a2−a3)C3−(a2

2−a2a3+a2
3)D3, B4 = (a2−a3)C4−(a2

2−a2a3+a2
3)D4,

C1 = C20(1+C2D D1), C2 = C20(C22+C2D D2), C3 = C20(C31+C2D D3), C4 = C2D D4,

D1 =
D1N

DD
, D2 =

D2N

DD
, D3 =

D3N

DD
, D4 =

D10

DD
, DD = 1− D10 D1CC10C1D,
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C10 =
1

(2a2+a1)(a1+a2+a3)−a2a3
, C11 =

a2
a2+a3

, C12 =−
2a2+a1
a2+a3

, C13 =
a1+a2
a2+a3

,

C20 =
1

(2a2+a1)2−a2
2−(a1+a2)(a2−a3)

, C22 =−
a1+2a2+a3

a2+a3
, C23 =

a1+a2
a2+a3

,

C1D =−(2a2+ a1)
(
(a2

2 − a2a3+ a2
3)− (2a2+ a1)

2),
C2D = (2a2+ a1)

3
− a3

2 − (a1+ a2)(a2
2 − a2a3+ a2

3),

D1N = D10(D11+D1CC10C11), D2N = D10(D12+D1CC10C12), D3N = D10(D13+D1CC10C13),

D10 =
1

(2a3+ a4)3+ a2a3(a2− a3)− (2a3+ a4)(a2
2 − a2a3+ a2

3)
, D11 =−

a3

a2+ a3
,

D12 =
2a3+ a4

a2+ a3
, D13 =−

a2+ 2a3+ a4

a2+ a3
, D1C = a2a3− (2a3+ a4)(a2+ a3+ a4).

A cubic element has four nodes, the centers of its four subelements (Figure 2). For the special case
a1 = a2 = a3 = a4, the general shape functions given by (5) reduce to [Fatehi Marji et al. 2007]

N1(ε)=−
3a3

1 − a2
1ε− 3a1ε

2
+ ε3

48a3
1

, N2(ε)=
9a3

1 − 9a2
1ε− a1ε

2
+ ε3

16a3
1

,

N3(ε)=
9a3

1 + 9a2
1ε− a1ε

2
− ε3

16a3
1

, N4(ε)=−
3a3

1 + a2
1ε− 3a1ε

2
− ε3

48a3
1

.

(6)

Crouch [1976] expressed the displacements for a line crack in an infinite body along the x-axis in terms
of single harmonic functions g(x, y) and f (x, y) as

ux = 2(1− ν) f,y − y f,xx − (1−2ν)g,x − yg.xy, u y = (1− 2ν) f,x − y f,xy+2(1− ν)g,y − yg.yy, (7)

while the corresponding stresses are

σxx = 2µ
(
2 f,xy + y f,xyy + g,yy + yg,yyy

)
,

σyy = 2µ
(
−y f,xyy + g,yy − yg,yyy

)
,

σxy = 2µ
(
2 f,yy + y f,yyy − yg,xyy

)
.

(8)

Here µ is the shear modulus, ν is Poisson’s ratio, and the subscript comma denotes partial differential
with respect to the following variable(s). These potential functions for the cubic element case can be
found from

f (x, y)=
−1

4π(1− ν)

4∑
j=1

D j
x F j (x, y), g(x, y)=

−1
4π(1− ν)

4∑
j=1

D j
y F j (x, y), (9)

where

F j (x, y)=
∫ a

−a
N j (ε) ln

√
(x − ε)2+ y2 dε. j = 1, 2, 3, 4, (10)
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Using the coefficients in (6), one can write the F j in terms of the integrals

Ik(x, y)=
∫ a

−a
εk ln

√
(x − ε)2+ y2 dε, (11)

whose explicit expressions are, in terms of the auxiliary quantities θ1 = arctan y
x−a

, θ2 = arctan y
x+a

,
r1 =

√
(x − a)2+ y2, and r2 =

√
(x + a)2+ y2, given by

I0(x, y)= y(θ1− θ2)− x ln r1
r2
+ a ln(r1r2)− 2a, (12a)

I1(x, y)= xy(θ1− θ2)+
y2
−x2
+a2

2
ln r1

r2
− ax, (12b)

I2(x, y)= y
3
(3x2
− y2)(θ1− θ2)+

3xy2
−x3

3
ln r1

r2
+

a3

3
ln(r1r2)−

6ax2
−6ay3

+2a3

9
, (12c)

I3(x, y)=−xy(x2
− y2)(θ1− θ2)+

3x4
−6x2 y2

+8a2x2
+a4
−y4

4
ln r1

r2

− 2ax(x2
+ a2) ln(r1r2)+

9ax3
−18axy2

+7a3x
6

. (12d)

As discussed, the boundary and crack of any specified problem are discretized by N elemental finite
line segments. Let D j

s and D j
n be the shear and normal components of the nodal displacement disconti-

nuities given in (4) for each boundary element.
The corresponding nodal stresses are[

σ i
s
σ i

n

]
=

[
Ai j

ss Ai j
sn

Ai j
ns Ai j

nn

][
D j

s

D j
n

]
, (13)

where σ i
n and σ i

s are the normal and stress components at the i-th node, and the matrix entries (Ai j
ss , etc.)

are the influence coefficients obtained by using (8)–(12). Similarly, the displacements are[
ui

s
ui

n

]
=

[
Bi j

ss Bi j
sn

Bi j
ns Bi j

nn

][
D j

s

D j
n

]
, (14)

where ui
n and ui

s are the normal and shear displacement component, at the i-th node, and the matrix entries
(Bi j

ss , etc.) are the influence coefficients obtained by using (7) and (9)–(12). By using the specified values
of the stresses or displacements to the boundaries and crack of the problem, it is possible to find the
required displacement discontinuities D j

s and D j
n at each elemental node.

3. Computation of mixed mode stress intensity factors

Consider a body of arbitrary shape with a crack subjected to mixed mode loading (that is, tensile and
shear loadings). The displacements and stresses near the crack tip of a crack of arbitrary size (in a
body of arbitrary shape) subjected to arbitrary tensile and shear loading are given in [Irwin 1957]. The
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Figure 3. Special three-element crack tip for boundary collocation technique.

displacements are

ux =
K I
4G

√
r

2π

[
(2κ − 1) cos θ

2
− cos 3θ

2

]
+

K II
4G

√
r

2π

[
(2κ + 3) sin θ

2
+ sin 3θ

2

]
,

u y =
K I
4G

√
r

2π

[
(2κ − 1) sin θ

2
− sin 3θ

2

]
−

K II
4G

√
r

2π

[
(2κ − 3) cos θ

2
+ cos 3θ

2

]
,

(15a)

and the stresses are

σx =
K I
√

2πr
cos θ

2

[
1− sin θ

2
sin 3θ

2

]
−

K II
√

2πr
sin θ

2

[
2+ cos θ

2
cos 3θ

2

]
+ · · · ,

σy =
K I
√

2πr
cos θ

2

[
1+ sin θ

2
sin 3θ

2

]
+

K II
√

2πr
sin θ

2
cos θ

2
cos 3θ

2
+ · · · ,

σxy =
K I
√

2πr
sin θ

2
cos θ

2
cos 3θ

2
+

K II
√

2πr
cos θ

2

[
1− sin θ

2
sin 3θ

2

]
+ · · · ,

(15b)

where κ = (3− 4ν) for plane strain and κ = (3− ν)/(1+ ν) for plane stress, K I and K II are the Mode I
and Mode II stress intensity factors, and r and θ are polar coordinates defined as in Figure 3.

The displacement discontinuity method allows crack surfaces to be discretized and computes the nor-
mal displacement discontinuity (crack opening displacement) and the shear displacement discontinuity
(crack sliding displacement) directly as part of the solution for each element. Based on LEFM (linear
elastic fracture mechanics) theory, the Mode I and Mode II stress intensity factors K I and K II can be
written from (1) and (15a) in terms of the normal and shear displacement discontinuities as

K I =
µ

4(1− ν)

√
2π
a

Dy(a), K II =
µ

4(1− ν)

√
2π
a

Dx(a). (16)

In previous work, usually one or two special crack tip elements have been used [Shou and Crouch
1995; Fatehi Marji et al. 2006]. In the present paper, three special crack tip elements are used, to achieve
better accuracy for the displacement discontinuities near the crack ends, and in particular to model the
1/
√

r behavior of (15b), characteristic of the stress field in the near field region of the crack tip.
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!

Figure 4. The three special crack tip element lengths l1 = 2a1 =
2
9 l, l2 = 2a2 =

3
9 l, and

l3 = 2a3 =
4
9 l.

Consider a crack tip of length l = 2a = 2(a1+a2+a3) in an infinite isotropic elastic body, as shown in
Figure 3. Omitting details, which can be found in [Fatehi Marji et al. 2006], the variation of displacement
discontinuities along this crack tip element can be written as

Di (ε)= NC1(ε)D1
i (a)+ NC2(ε)D2

i (a)+ NC3(ε)D3
i (a), (17)

where the functions NC j are given below.
We first consider the subelement lengths l1 = 2a1 =

2
9 l, l2 = 2a2 =

3
9 l, and l3 = 2a3 =

4
9 l, as shown

in Figure 4. The general shape functions NC1(ε), NC2(ε), and NC3(ε) of (17) in this case are

NC1(ε)=
(a22− a33)

(
a22a33ε

1/2
− (a22+ a33)ε

3/2
+ ε5/2

)
a111/2(a11− a22)(a11a22− a11a33− a22a33+ a332)

, (18a)

NC2(ε)=
(a33− a11)

(
a11a33ε

1/2
− (a11+ a33)ε

3/2
+ ε5/2

)
a221/2(a11− a22)(a11a22− a11a33− a22a33+ a332)

, (18b)

NC3(ε)=
a11a33ε

1/2
− (a11+ a33)ε

3/2
+ ε5/2

a331/2(a11a22− a11a33− a22a33+ a332)
, (18c)

where a11 = a1 =
1
9 l, a22 = 2a1+ a2 =

7
18 l, and a33 = 2(a1+ a2)+ a3 =

7
9 l.

If instead we take a1 = a2 = a3, the shape functions NC1(ε), NC2(ε), and NC3(ε) become (see
[Fatehi Marji et al. 2007])

NC1(ε)=

√
ε

a1

(
15
8
−
ε

a1
+
ε2

8a2
1

)
, (19a)

NC2(ε)=−

√
ε

3a1

(
5
4
−

3ε
2a1
+
ε2

4a2
1

)
, (19b)

NC3(ε)=

√
ε

5a1

(
3
8
−

ε

2a1
+
ε2

8a2
1

)
. (19c)

Substituting (18) or (19) into (17), and then substituting these equations into (7) and (8), and working
as in the derivation of the general potential functions F j in (10), we can obtain the general potential
function fC(x, y) for the crack tip element as

fC(x, y)=
−1

4π(1− ν)

3∑
j=1

D j
i

∫ a

−a
N j (ε) ln

√
(x − ε)2+ y2 dε, (20)
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which can conveniently be written in terms of the integrals

ICk(x, y)=
∫ a

−a
εk−1

2 ln
√
(x − ε)2+ y2 dε, k = 1, 2, 3 (21)

using the coefficients of powers of ε given in (18) or (19).
Two degrees of freedom are used for each node at the center of each subelement, as explained in [Shou

and Crouch 1995].

4. Crack initiation and propagation

Based on LEFM principles, a crack will start propagation in the direction of the crack initiation angle
θ = θ0 [Ingraffea 1983]. (See Figure 3 for notation.) Several mixed mode fracture criteria have been
proposed for the estimation of this angle [Ingraffea 1983; Broek 1989; Whittaker et al. 1992], the main
three being the maximum tangential stress criterion or σ -criterion, the maximum strain energy release rate
criterion or G-criterion, and the minimum strain energy density criterion or S-criterion. Modified forms
of these criteria (for example, the F-criterion, which derives from the G-criterion) have also been used in
the fracture mechanics literature [Ingraffea 1983; Broek 1989; Whittaker et al. 1992; Stephansson 2002].

All these criteria have demonstrated that a crack in a plate under a general in-plane load does not initiate
and propagate in its original plane, that is, θ0 6= 0. In brittle substances (like most rocks), although fracture
of Mode II plays an important role under certain loading conditions and Mode I fracture toughness (K I C)

is less than that of Mode II (K II C ), due to weakness (low strength) under tension the rock breaks due
to tensile stress. In most such cases, the influence of K I C prevails over that of K II C under pure tensile,
pure shear, tension-shear, and compression-shear loading conditions [Rao et al. 2003].

To predict the crack initiation angle θ0 and the path of crack propagation, the maximum tangential
stress criterion or σ -criterion, is used here. This is one of the classical mixed mode fracture criteria which
are widely used by several researchers [Ingraffea 1983; Guo et al. 1992]. Based on this criterion, the
crack will start its propagation when the critical maximum tangential tensile stress σθ0 (in the direction
of the crack propagation angle θ0) satisfies the following condition [Ingraffea 1983; Guo et al. 1992;
Whittaker et al. 1992]:

σθ0 =
1
√

2πr
cos

θ0

2

[
K I sin

θ0

2
cos

θ0

2
+ K II

(
1− 3 sin2 θ0

2

)]
= 0. (22)

From this equation, the crack propagation angle θ0 can be estimated as

θ0 = 2 tan−1
(

K I

4K II
±

1
4

√
K 2

I

K 2
II
+ 8

)
for K II 6= 0 and θ0 = 0 for K II = 0. (23)

Finally, the general form of the σ -criterion in term of the Mode I fracture toughness of the material,
(K I C), and the crack propagation angle θ0 can be expressed as

cos
θ0

2

[
K I cos2 θ0

2
−

3
2

K II sin
θ0

2

]
= K I C (or 0.866K II ). (24)

In the present paper, Equations (22), (23), and (24) are used for a given crack length b (or a central
crack length 2b). To predict the crack propagation path, the original crack of length b is extended by
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Figure 5. Variation of effective stress intensity with crack length [Ingraffea 1983].

an amount 1b so that a new crack length b+1b is obtained, and again (22), (23), and (24) are used
to predict the new conditions of crack propagation for this new crack. This procedure is repeated until
the crack stops its propagation or the material breaks away. This procedure can give a propagation path
for a given crack under a certain loading condition. Considering the effective (or normalized) stress
intensity factor K ∗I C = K I /K I C , Figure 5 shows the stress intensity variation with crack length for any
in-plane crack problem. The load level Pi+1 = (K I C/K I+1)Pi can be computed for each crack increment
length, 1b [Ingraffea 1983]. Therefore, a new algorithm is added to the main displacement discontinuity
program to evaluate the effective stress intensity factor K ∗I C = K I /K I C and a new crack propagation
angle θ0 in each iteration.

5. A pressurized center crack in an infinite plane

As an example, the pressurized crack problem shown in Figure 6 is solved numerically by the proposed
method. The numerical results are compared with those results obtained analytically by [Sneddon 1951].
As shown in Figure 6, a center crack of length 2b in an infinite plane is subjected to a uniform pressure
p. The analytical solution for the normal displacement discontinuity Dy along the crack boundary and
the normal stress σy near the crack tip (|x |> b) can be written as

Dy =−
2(1− ν)P

µ

√
b2− x2 if |x |> b and σy =

Px
√

x2− b2
− P if |x |< b. (25)
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Figure 6. A pressurized crack in an infinite plane.
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Dy(a)/b× 103

Number of Distance from Analytical Ordinary One special Three specialelements crack tip solution elements crack tip element crack tip elements

4 0.25 −1.1906 −1.5463 −1.3275 −1.2092
10 0.1 −0.7846 −0.9964 −0.8569 −0.8168
20 0.05 −0.5621 −0.7089 −0.6104 −0.5874
40 0.025 −0.4000 −0.5029 −0.4332 −0.4183

Table 1. Displacement discontinuity Dy(a)/b× 103 at the center x = a of an element
at the crack tip using ordinary elements, one special crack tip element and three special
crack tip elements.

In the following analysis, a pressurized crack problem with half crack length b = 1 m, normal pressure
P =−10 MPa, modulus of elasticity E = 2.2 GPa, and Poisson’s ratio ν = 0.1 is considered.

Table 1 compares the different values of the normalized displacement discontinuity distribution Dy/b
along the surface of the pressurized crack using the constant (ordinary) displacement discontinuity pro-
gram TWODD with three crack tip elements [Crouch and Starfield 1983]. As shown in this table, by
using only one special crack tip element, the percent error of displacement discontinuity Dy at a distance
x = 0.05b from the crack tip is reduced from 26.12% to 8.59%, and by using three special crack tip
elements it is reduced to 4.5%.

If the same problem is solved using 15 cubic elements (60 nodes) with the proposed method, the
percentage error of displacement discontinuity Dy at a distance x = 0.05b from the crack tip will be
5.23% (without the special crack tip elements), and the results obtained by using the constant element
displacement discontinuity method (the TWODD program) with the same number of nodes (60 constant
elements) gives an error of 24.17% [Crouch and Starfield 1983]. Table 2 compares the variation of the
normalized displacement discontinuity Dy/b along the surfaces of a pressurized crack using ordinary
(constant element) and higher order (cubic element) displacement discontinuity methods. The results
given in Tables 1 and 2 demonstrate that although all displacement discontinuity results are very close to
their corresponding analytical values, those using three special crack tip elements are somewhat superior.

6. Edge cracks in a half plane

Edge crack problems in a half plane can also be solved using the cubic element formulation, but a proper
mixed-mode fracture criterion such as that one explained in Section 3 should be implemented in the
program to investigate the crack propagation direction and its propagation path. Figure 7 shows the
oblique edge cracks with different inclination angles β on a traction-free half plane. For the problem
shown in Figure 7, the inclination angle is β = 45◦, the crack length is b= 1 m, and the ratio of the crack
tip element length, l, to crack length, b, is 0.1 (that is, l/b = 0.1). The normalized stress intensity factors
K I /(σ

√
πb) and K II /(σ

√
πb) for this particular problem can be estimated from the results given by

[Bowie 1973] as 0.729 and 0.371, respectively.
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x/b Dy/b× 103

Distance Constant
from the Analytical Elements Error (%) Cubic Error (%)
crack tip Results (TWODD) Elements

0.000 3.980 4.046 1.66 3.985 0.13
0.086 3.946 4.032 2.18 3.957 0.28
0.171 3.901 3.989 2.26 3.914 0.33
0.257 3.827 3.916 2.33 3.839 0.31
0.343 3.720 3.812 2.47 3.736 0.43
0.429 3.578 3.673 2.66 3.589 0.31
0.514 3.396 3.497 2.97 3.407 0.32
0.600 3.168 3.276 3.41 3.182 0.44
0.686 2.882 3.000 4.09 2.897 0.52
0.771 2.520 2.654 5.33 2.536 0.62
0.857 2.040 2.203 7.99 2.073 1.60
0.950 1.237 1.536 24.17 1.289 4.20

Table 2. Comparison of displacement discontinuity Dy/b× 103 along the surface of
a pressurized crack using ordinary (constant) elements and higher order elements for
displacement discontinuity methods without using a special crack tip element.
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Figure 7. Oblique edge cracks in a semi-infinite plane.

The numerical results for the same problem are obtained by using the displacement discontinuity
method for a traction-free half plane with different kind of elements, that is, ordinary elements (constant
elements), quadratic elements, and the new cubic elements presented in this study. Table 3 shows the
effect of the number of elements along the cracks using a constant l/b = 0.1, and taking sufficient
elements (48 nodes) along the boundary of the problem (it should be noted that three special crack tip
elements are used for obtaining these results).
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K I /(σ
√
π b) K II /(σ

√
π b)

Number Constant Error Cubic Error Constant Error Cubic Errorof nodes elements (%) elements (%) elements (%) elements (%)

12 0.775 6.310 0.742 1.783 0.398 7.278 0.379 2.156
24 0.768 5.350 0.736 0.960 0.390 5.121 0.376 1.348
36 0.763 4.664 0.735 0.547 0.388 4.582 0.375 1.078
48 0.760 4.252 0.734 0.410 0.387 4.312 0.374 0.809
60 0.759 4.115 0.734 0.410 0.386 4.043 0.373 0.539

Table 3. Analytical and numerical values of the Mode I and Mode II stress intensity
factors K I /(σ

√
π b) and K II /(σ

√
π b) for the 45 ◦ oblique edge crack using different

number of elements along the crack (l/b = 0.1).

K I /(σ
√
π b) K II /(σ

√
π b)

l/b Constant Error Cubic Error Constant Error Cubic Error
elements (%) elements (%) elements (%) elements (%)

0.05 0.764 4.801 0.732 0.137 0.390 5.121 0.370 −0.270
0.10 0.760 4.252 0.734 0.410 0.388 4.582 0.373 0.540
0.15 0.758 3.978 0.735 0.547 0.386 4.043 0.372 0.270
0.20 0.759 4.115 0.729 −0.274 0.387 4.312 0.374 0.809
0.25 0.760 4.252 0.727 −0.547 0.388 4.582 0.375 1.078

Table 4. Analytical and numerical values of the Mode I and Mode II stress intensity
factors K I /(σ

√
π b) and K II /(σ

√
π b) for the 45 ◦ oblique edge crack using different

l/b ratios.

Table 4 shows the effect of the crack tip element length, l, on the normalized stress intensity factors
K I /(σ

√
πb) and K II /(σ

√
πb). The results given in this table are obtained using a constant number of

nodes (48, 12 cubic elements) along the crack. The results presented in Tables 3 and 4 demonstrate the
accuracy and effectiveness of the proposed method.

7. Crack propagation mechanisms due to disc cutters in a semi-infinite rock mass

Disc cutters over the surface of a continuous rock mass are shown schematically in Figures 10 and 11. It
is assumed that the disc cutters have diameter D, disc edge angle ϕ, penetration depth Pd , and spacing S.
The thrust force Ft is required to maintain the disc at the desired depth of penetration, and the rolling force
Fr is also necessary to keep the disc rolling at this penetration depth. Specific energy ES (in MJ/m3 in
three dimensions or in MPa/m2 in two dimensions) is a measure of the amount of energy that is required
for breaking the rock under the disc cutter. Penetration depth Pd , disc edge angle ϕ, disc diameter D,
spacing S, and speed are the primary variables related to disc cutters. Roxborough and Phillips [1975]
showed that the specific energy ES and rolling force Fr are nearly independent of the disc diameter, but
the thrust force Ft increases with an increase of disc diameter.
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Figure 8. Side view of four equally spaced rows of disc cutters over the surface of a
continuous rock mass.

In this section we use the semi-infinite displacement discontinuity method for crack analysis using
cubic elements (SDDMCAC), with three special crack tip elements at each crack end, to find the ap-
proximate effects of the thrust force Ft , the rolling force Fr , and the specific energy ES , for a constant
disc diameter D (for example, D = 432 mm) on the penetration depth Pd and the disc spacing S. We
consider a typical TBM with a thrust of 250 kN per cutter, with disc cutters of 15 mm width and 432 mm
diameter [Roxborough and Phillips 1975]. The typical rock is Aspo diorite, with K I C = 3.83 MPa m1/2

and K II C = 5.09 MPa m1/2 [Backers 2004]. The other parameters of this rock, as reported in the same
source, are σt = 15 MPa, σC = 220 MPa, E = 68 GPa, and ν = 0.24.

The symmetric problem of four rows of disc cutters is shown in Figure 8. Taking into account the
symmetry of each wedge about a vertical plane, simple trigonometry shows that the normal and shear
forces along each side of the groove equal, respectively, (Ft/2) cos(φ/2) and (Ft/2) sin(φ/2), while the
length b of the side of the cut is b = Pd/ cos(φ/2). Assuming strain conditions, we therefore obtain for
the normal and shear components of stresses along the crack length b

σn = Ft
cos(ϕ/2)

2bl
, σs = Ft

sin(ϕ/2)
2bl

. (26)

The values of the normal and shear stresses along these cracks are determined by fixing the normal
stress at an assumed value and calculating the shear stress from the geometry of the wedge. By changing
the value of normal stress and its corresponding shear stress and checking whether the crack starts its
propagation or not, it is possible to predict the minimum value of the normal and shear stresses at which
the crack propagation begins. Then, the minimum values of the thrust force Ft can be evaluated from
(26) for different disc edge angles ϕ.

The rolling force Fr can be estimated from the thrust force Ft through the formula

Fr =
Ft

√
(D− Pd)/Pd

, (27)

(see [Roxborough and Phillips 1975]), where D is the diameter of the disc cutter, taken here as 432 mm.
The primary crack propagation due to disc cutters, used here to investigate the effect of adjacent disc

cutters on the penetration of cracks and the formation of major chips can be modeled as in Figure 9 [Guo
et al. 1992; Whittaker et al. 1992]. The effect of the penetration depth Pd on the minimum value of the
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Figure 9. Geometry of adjacent disc cutters showing the cutting spacing S and initial
assumed crack length b on a semi-infinite rock mass [Whittaker et al. 1992].

thrust force Ft and the corresponding rolling force Fr (which are needed to start the propagation of the
crack) are obtained numerically for ϕ = 80, 90, and 100 ◦, and disc spacing S = 30 mm.

The numerical results for thrust force Ft and rolling force Fr, for different penetration depths Pd ,
and for three different disc edge angles, ϕ = 80, 90, and 100 ◦ are given in Table 5. The numerical
results obtained here are normalized and verified by those given experimentally in [Bilgin et al. 2000]
for ϕ = 90 ◦ in Figure 10, which shows good agreement between numerical and experimental values.

The specific energy ES for each disc cutter can be estimated numerically from the formula [Howarth
and Roxborough 1982]

Es = Fr/Q, (28)

where Q is the extracted volume (area in two dimensions) of the rock measured in m3. In all of the
analysis here, a constant disc edge angle ϕ = 90 ◦ and penetration depth Pd = 6 mm are considered to
estimate the value of the extracted area Q which is theoretically very difficult to evaluate. The geometry
of the problem considered here is shown in Figure 11, in which each side of the cut (wedge) is considered
to be a separate crack. The four cracks CR1–CR4, from left to right in this figure, are solved numerically
and the crack propagation angle θ0 for each crack has been calculated in five different steps. In each
step the crack length in the direction of θ0 is extended between 1 mm and 4 mm (depending on the S/Pd

ratio).

ϕ = 80◦ ϕ = 90◦ ϕ = 100◦

Pd (mm) Ft (kN) Fr (kN) Ft (kN) Fr (kN) Ft (kN) Fr (kN)

2 74.045 5.005 79.804 6.412 82.540 5.589
4 112.406 10.911 117.123 11.489 130.173 12.853
6 142.878 17.623 152.453 18.231 172.172 20.873
8 171.916 24.025 183.230 25.785 197.281 29.569

10 193.114 30.436 207.987 31.897 224.549 34.754
12 213.986 35.719 231.012 39.125 245.167 41.895

Table 5. The minimum thrust force Ft and rolling force Fr corresponding to different
penetration depths Pd for disc spacing S = 30 mm and different disc edge angles ϕ.
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Figure 10. Comparison of the relation between Ft/Fr and Pd for a disc edge angle of
90 ◦: pink squares, results from Table 5; black triangles, results from [Bilgin et al. 2000].
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Figure 11. Symmetrical 90 ◦ disc cutters. Four cracks CR1–CR4 are shown from left to right.

Step CR1 CR2 CR3 CR4

0 −68.95 51.18 −69.14 51.27
1 −27.89 8.51 −33.37 7.87
2 −23.85 10.13 −9.36 15.17
3 12.48 33.63 −2.15 18.14
4 −18.26 17.65 −8.98 11.79
5 −4.44 22.99 −8.65 13.42

Table 6. Numerical values of crack propagation angle θ0 (in degrees) for S/Pd = 15 for
a 90 ◦ disc cutter. Pd = 6 mm and crack increment 1b = 4 mm (5 increments).



NUMERICAL MODELING OF CRACK PROPAGATION IN ROCKS UNDER TBM DISC CUTTERS 621

A ratio of crack tip element length l to crack length b, that is, l/b = 0.1, is used for the analysis of
these cracks. We have taken 10 cubic elements along each original crack length and 2 cubic elements
along each crack increment, and a crack tip element (with three subelements or three special crack tip
elements) is added to the last crack increment. As the S/Pd ratio is one of the most important parameters
in studying the mechanism of rock breaking due to disc cutters, different values of this parameter are
considered here. As an example, the results obtained for S/Pd = 15 showing the crack propagation
angle θ0 are given in Table 6. Approximate values of the extracted area Q are obtained by finding the
area restricted by the crack propagation path. The numerical values of the extracted area Q (mm2) are
estimated from the area under the crack propagation paths, for example, from those shown in Figures 12
and 13. The cracks labeled CR1 and CR2 are related to the inner disc, which represent its breaking
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Figure 12. The crack propagation path for S/Pd = 15, for a 90 ◦ disc cutter, Pd = 6 mm,
and crack increment 1b = 4 mm.
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Figure 13. The crack propagation path for S/Pd = 10, for a 90 ◦ disc cutter, Pd = 6 mm,
and crack increment 1b = 4 mm.
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S/Pd σn (MPa) Ft (kN) Fr (kN) Q (mm2) Es (MJ/m3)

3.33 −56 1344 159.53 176 906.42
5.00 −51 1224 145.29 352 412.76
6.67 −44 1056 125.35 451 277.94
8.33 −35 840 99.71 676 147.50

10.00 −39 936 111.10 903 123.03
11.67 −40 960 113.95 802 142.08
13.33 −41 984 116.80 751 155.53
15.00 −43 1032 122.49 676 181.20

Table 7. Estimated values of thrust force Ft , rolling force Fr , extracted area Q, and
specific energy Es for 1b = 1, 2 and 4 mm, for different S/Pd ratios.

action. Here only the inner disc force and the area associated with this disc are used in estimating the
final extracted area (Figure 14). Assuming a unit thickness for the rock, the specific energy Es can be
evaluated for different values of the ratio S/Pd (Figure 15).

In this analysis, the crack length b is increased incrementally by an amount 1b, and, correspondingly,
the normal stress σn and shear stress σs are also increased to provide the sufficient energy for the crack
to propagate in the direction of θ0. As a result of increasing the stresses at the crack boundaries, the
crack starts its propagation, then a new crack length increment with 2 cubic elements and 3 crack tip
elements is added in the propagation direction θ0, and the procedure is repeated for each crack increment
1b. Some estimated values for the forces Ft and Fr in kN, extracted area Q in mm2, and specific energy
Es in MJ/m3 are tabulated in Tables 5 and 6 and also illustrated in Figures 14 and 15.

Table 7 shows that the thrust force is high for small disc spacing, and after reaching a minimum value
it again increases to a larger value for very large disc spacing. Previous experimental work showed a
steadily increasing thrust force with S/Pd ratio [Roxborough and Phillips 1975]. However, the model
presented here is based on the propagation of existing cracks. These cracks require higher forces to
propagate for smaller disc spacing due to the confinement effect of the adjacent cutters. As a result,
higher forces are required to propagate the cracks for smaller disc spacings.

Figure 14, left, shows that the the thrust force Ft (kN) decreases as the S/Pd reaches about 10, but
after this value it increases slowly. Figure 14, right, illustrates that the maximum extracted area that can
be achieved occurs at S/Pd = 10. As shown in Figure 15, left, the optimum S/Pd ratio is between 8
and 15, which is in good agreement with the experimental results reported in [Roxborough and Phillips
1975; Howarth and Roxborough 1982].

Figure 15, right, illustrates the effect of the angle ϕ on the specific energy Es . These results show that
Es increases with the increase in the angle ϕ (especially for the disc edge angles above 90 ◦).

8. Discussion

The tunnel boring machine (TBM) is a full-face excavator which cuts rock by means of disc cutters
mounted on a circular revolving cutting head. The TBM breaks rock with disc cutters mounted on its
rotating cutter-head in such a pattern that they roll against the rock of the tunnel face in a series of
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Figure 14. Estimated values of the thrust force Ft (left) and extracted area Q (right) for
different S/Pd ratios.
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Figure 15. Specific energy Es as a function of S/Pd at a constant Fr (left), and as a
function of the disc edge angle ϕ (right).

concentric circular grooves. The cutting force is produced by powerful hydraulic thrust rams. Each disc
cutter is free to rotate within its mounting manifold. To maintain contact with the rock and to maintain
the optimum spacing between cutting grooves, the machine is held stable by a combination of its great
mass and by hydraulic jacks acting against the side of the tunnel.

It should be noted that there is no single universally accepted theory for the formation of rock chips
by indenter tools. Most of the researches believe that the main cause of rock breakage is the propagation
of tensile fractures, but the mechanism by which these fractures are first initiated is somewhat uncertain.
Actually, rock breakage takes place because a tensile fracture is initiated and propagated. This fracture is
induced as a result of combined loading (or mixed loadings), including the tensile extension of preexisting
flaws along the fracture plane and tensile stresses induced by the crushed zone beneath the wedge. Hood
and Roxborough [1992] describes a model for disc cutters developed by Lindqvist and Ranman [1980]
which assumes that most of the force is directed normally into the rock, similar to the action of a flat-
bottomed punch. Induced tensile stresses generate cracks that run nearly parallel to the rock surface, and
if the spacing between the cutters is sufficiently small, tensile cracks propagating from each groove will
join up to form a rock chip.
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In the analysis proposed here, to simulate the cutting mechanism of the TBM disc cutters, each cutting
groove is chosen as a single original crack and two successive grooves with varying spacing are simulated.
The grooves are assumed to be vertical, although inclined grooves can also be easily modeled. In the
displacement discontinuity method, each side of the crack can be discredited separately, and one of the
crack surfaces can be considered as a fictitious boundary (this is one of the main advantages of the indirect
boundary element methods). The higher order displacement discontinuity used here considers a cubic
variation of the displacement discontinuities along each element on the boundary of the problem and also
along the crack boundaries (except the crack tips) which results in very accurate general displacement
discontinuities . The higher order crack tip elements are also used here to obtain more accurate results of
the mixed mode stress intensity factors near the crack ends, where crack propagation begins. Although
rock breakage theory predicts that tensile fractures are first initiated and then propagated, fractures are
induced as a result of combined loading, where the action of the shear loading should also be taken into
account.

If one only considers the tensile fracture and first mode of loading, propagated cracks may not the-
oretically meet each other or the rock surfaces, a prediction which deviates from experimental results
and the reality of cheap formation processes. Therefore, in the analysis given in this study, one of the
well-known mixed mode fracture criteria (the σ -criterion) has been used. All three fundamental mixed
mode I-II fracture criteria can be used for the analysis. The σ -criterion is used based on the fracture
toughness envelopes given by Whittaker et al. [1992], as shown schematically in Figure 16.

Here, the problem of a crack propagation mechanism under disc cutters is modeled in such a manner
that the various effective parameters such as the thrust force, S/Pd ratio, the specific energy, etc. for
various cases can be obtained. The numerical results are compared with those cited in the literature, and
some good results are gained. For example, the results given in Table 6 show that the thrust force is high
for small disc spacing, and after reaching minimum value, it again increases to a larger value for very
large disc spacing. However, the model presented here is based on the propagation of existing cracks.
These cracks require higher forces to propagate for smaller spacing due to the confinement effect of the
adjacent cutters. As a result, for smaller disc spacing, higher forces are required to propagate the cracks.
We see from Figure 14 that the thrust force Ft (kN) decreases as S/Pd approaches 10, but subsequently
increases slowly.

Figure 14, right, indicates that the maximum achievable extracted area occurs at S/Pd = 10. As shown
in Figure 15, left, the optimum S/Pd ratio ranges from 8 to 15. Figure 15, right, illustrates the effect of
the angle ϕ on specific energy Es . These results show that Es increases with an increase in the angle ϕ
(especially for the disc edge angles above 90 ◦).

9. Conclusion

In this work, crack propagation mechanisms under disc cutters are numerically modeled and studied
using the higher order displacement discontinuity method. To increase the accuracy of displacement
discontinuities near crack tips, three special crack tip elements are used for the treatment of each crack
end. The maximum tangential stress fracture criterion is employed to investigate the crack propagation
and its direction under disc cutters, and some of the computed results are compared with previously
reported experimental results. This comparison shows that in most of the cases, the numerical results
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Figure 16. Fracture toughness envelopes based on various mixed mode fracture crite-
ria [Whittaker et al. 1992]. Plotted experimental points taken [Ingraffea 1983] (open
squares; Westerly granite), [Huang and Wang 1985] (black circles), and [Sun 1990]
(open circles).

are in good agreement with their corresponding experimental values. As a result, for small disc spacing
(S/Pd < 6), higher forces (more energy) are required to propagate cracks for inner discs, and for large
disc spacing (S/Pd > 15), the specific energy Es increases slowly because the extracted area Q tends
to be constant as the spacing is increased. However, the optimum S/Pd ratio is between 8 and 15, as
was expected from comparison to experimental results [Roxborough and Phillips 1975; Howarth and
Roxborough 1982; Lislerud 1988; Nilsen and Ozdemir 1993; Rostami et al. 1994; Johanessen 1995;
Bilgin et al. 2000]. It is also concluded that as the disc edge angle ϕ increases, the specific energy Es

increases.
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[Bilgin et al. 2000] N. Bilgin, C. Balcı, O. Acaroğlu, H. Tunçdemir, and c. Eskikaya, “Development of rapid excavation tech-
nologies for the Turkish mining and tunnelling industries”, NATO TU Excavation project report, Istanbul Technical University,
Faculty of Mines, Mining Engineering Department, 2000. pp. 172.

[Bobet 2001] A. Bobet, “A hybridized displacement discontinuity method for mixed mode I-II-III loading”, Int. J. Rock Mech.
Min. 38:8 (2001), 1121–1134.

[Bowie 1973] O. L. Bowie, “Solutions of plane crack problems by mapping techniques”, in Methods of analysis and solutions
of crack problems. Recent developments in fracture mechanics. Theory and methods of solving crack problems, edited by G. C.
Sih, Mechanics of fracture 1, Noordhoff International, Leyden, 1973.

[Broek 1989] D. Broek, The practical use of fracture mechanics, 4th ed., Kluwer, Dordrecht, 1989.

[Crawford and Curran 1982] A. M. Crawford and J. H. Curran, “Higher-order functional variation displacement discontinuity
elements”, Int. J. Rock Mech. Min. 19:3 (1982), 143–148.

[Crouch 1976] S. L. Crouch, “Solution of plane elasticity problems by the displacement discontinuity method, I: infinite body
solution”, Int. J. Numer. Methods Eng. 10:2 (1976), 301–343.

[Crouch and Starfield 1983] S. L. Crouch and A. M. Starfield, Boundary element methods in solid mechanics: with applications
in rock mechanics and geological engineering, Allen and Unwin, London, 1983.

[Erdogan and Sih 1963] F. Erdogan and G. C. Sih, “On the crack extension in plates under plane loading and transverse shear”,
J. Basic Eng. (ASME) 85 (1963), 519–527.

[Fatehi Marji et al. 2006] M. Fatehi Marji, H. Hosseini-Nasab, and A. H. Kohsary, “On the uses of special crack tip elements
in numerical rock fracture mechanics”, Int. J. Solids Struct. 43:6 (2006), 1669–1692.

[Fatehi Marji et al. 2007] M. Fatehi Marji, H. Hosseini-Nasab, and A. H. Kohsary, “A new cubic element formulation of the
displacement discontinuity method using three special crack tip elements for crack analysis”, JP J. Solids Struct. 1:1 (2007),
61–91.

[Guo et al. 1992] H. Guo, N. I. Aziz, and L. C. Schmidt, “Rock cutting study using linear elastic fracture mechanics”, Eng.
Fract. Mech. 41:5 (1992), 771–778.

[Hood and Roxborough 1992] M. C. Hood and F. F. Roxborough, “Rock breakage: mechanical”, Chapter Chapt 9.1, pp. 680–
721 in SME mining engineering handbook, vol. 1, edited by H. L. Hartman, Society for Mining, Metallurgy and Exploration,
Littleton, CO, 1992.

[Howarth and Roxborough 1982] D. F. Howarth and F. F. Roxborough, “Some fundamental aspects of the use of disc cutters
in hard-rock excavation”, J. South Afric. Inst. Min. Metall. (1982), 309–315.

[Huang and Wang 1985] J. Huang and S. Wang, “An experimental investigation concerning the comprehensive fracture tough-
ness of some brittle rocks”, Int. J. Rock Mech. Min. 22:2 (1985), 99–104.

[Ingraffea 1983] A. R. Ingraffea, “Numerical modeling of fracture propagation”, pp. 151–208 in Rock fracture mechanics,
edited by H. P. Rossmanith, Springer-Verlag, Wien, New York, 1983.

[Irwin 1957] G. R. Irwin, “Analysis of stresses and strains near the end of a crack traversing a plate”, J. Appl. Mech. (ASME)
24:3 (1957), 361–364.

[Johanessen 1995] O. Johanessen, “Hard rock tunnel boring”, University of Trondheim, the Norwegian Institute of Technology,
1995. p.165.

[Lindqvist and Ranman 1980] P. E. Lindqvist and K. E. Ranman, “Mechanical rock fragmentation: chipping under a disc
cutter”, Technical report 59T, University of Lulea, Lulea, Sweden, 1980.

[Lislerud 1988] A. Lislerud, “Hard rock tunnel boring: prognosis and costs”, Tunn. Undergr. Space Technol. 3:1 (1988), 9–17.

[Nilsen and Ozdemir 1993] B. Nilsen and L. Ozdemir, “Hard rock tunnel boring prediction and field performance”, in Rapid
excavation and tunneling conference (RETC) proceedings, edited by L. D. Bowerman and J. E. Monsees, Boston, 1993.
Chapter 52.

[Ouchterlony 1988] F. Ouchterlony (coordinator), “Suggested methods for determining the fracture toughness of rock”, Int. J.
Rock Mech. Min. 25:2 (1988), 71–96.

[Rao et al. 2003] Q. Rao, Z. Sun, O. Stephansson, C. Li, and B. Stillborg, “Shear fracture (mode II) of brittle rock”, Int. J. Rock
Mech. Min. 40:3 (2003), 355–375.



NUMERICAL MODELING OF CRACK PROPAGATION IN ROCKS UNDER TBM DISC CUTTERS 627

[Rostami et al. 1994] J. Rostami, L. Ozdemir, and M. D. Neil, “Performance prediction: a key issue in mechanical hard rock
mining”, Min. Eng. 11 (1994), 1263–1267.

[Roxborough and Phillips 1975] F. F. Roxborough and H. R. Phillips, “Rock excavation by disc cutter”, Int. J. Rock Mech. Min.
12:12 (1975), 361–366.

[Shen and Stephansson 1994] B. Shen and O. Stephansson, “Modification of the G-criterion for crack propagation subjected
to compression”, Eng. Fract. Mech. 47:2 (1994), 177–189.

[Shen et al. 2004] B. Shen, O. Stephansson, M. Rinne, H.-S. Lee, L. Jing, and K. Roshoff, “A fracture propagation code and
its applications to nuclear waste disposal”, Int. J. Rock Mech. Min. 41:3 (2004), 448–449. SINOROCK2004 Paper 2B 02.

[Shou and Crouch 1995] K. J. Shou and S. L. Crouch, “A higher order displacement discontinuity method for analysis of crack
problems”, Int. J. Rock Mech. Min. 32:1 (1995), 49–55.

[Sneddon 1951] I. N. Sneddon, Fourier transforms, McGraw-Hill, New York, 1951.

[Snowdon et al. 1982] R. A. Snowdon, M. D. Ryley, and J. Temporal, “A study of disc cutting in selected british rocks”, Int. J.
Rock Mech. Min. 19:3 (1982), 107–121.

[Stephansson 2002] O. Stephansson, “Recent rock fracture mechanics developments”, pp. 675–698 in 1st Iranian Rock Me-
chanics Conference (Tehran, 2002), 2002.

[Stephansson et al. 2001] O. Stephansson, T. Backers, G. Dresen, and E. Rybacki, “Shear fracture mechanics of rocks and a
new testing method for K I I C ”, pp. 163–168 in Rock mechanics: a challenge for society: proceedings of the ISRM regional
symposium, EUROCK 2001 (Espoo, Finland, 2001), edited by P. Sarkka and P. Eloranta, 2001.

[Sun 1990] G. X. Sun, Application of fracture mechanics to mine design, Ph.D. thesis, Department of Mining Engineering,
University of Nottingham, 1990.

[Tan et al. 1996] X. C. Tan, S. Q. Kou, and P. A. Lindqvist, “Simulation of rock fragmentation by indenters using DDM and
fracture mechanics”, in Rock mechanics: tools and techniques: proceedings of the 2nd North American Rock Mechanics
Symposium, NARMS’96, a regional conference of ISRM (Montreal, 1996), edited by M. Aubertin et al., A. A. Balkema,
Rotterdam, 1996.

[Whittaker et al. 1992] B. N. Whittaker, R. N. Singh, and G. Sun, Rock fracture mechanics: principles, design and applications,
Elsevier, Amsterdam, 1992.

Received 31 Dec 2008. Revised 11 Mar 2009. Accepted 11 Mar 2009.

MOHAMMAD FATEHI MARJI: mfatehi@yazduni.ac.ir
Department of Mining Engineering, Yazd University, Safaiyeh, Yazd 89195741, Iran,

HASAN HOSSEINI NASAB: hhn@yazduni.ac.ir
Department of Industrial Engineering, Yazd University, Safaiyeh, Yazd 89195741, Iran,

AMIN HOSSEIN MORSHEDI: morshedy82@gmail.com
Department of Mining and Petroleum Engineering, Tehran University, Tehran, Iran





SUBMISSION GUIDELINES

ORIGINALITY
Authors may submit manuscripts in PDF format on-line. Submission of a manuscript acknowledges that the manuscript is
original and has neither previously, nor simultaneously, in whole or in part, been submitted elsewhere. Information regarding
the preparation of manuscripts is provided below. Correspondence by email is requested for convenience and speed. For further
information, write to:

Marie-Louise Steele
Division of Mechanics and Computation

Durand Building, Room 262
Stanford University
Stanford CA 94305

LANGUAGE
Manuscripts must be in English. A brief abstract of about 150 words or less must be included. The abstract should be self-
contained and not make any reference to the bibliography. Also required are keywords and subject classification for the article,
and, for each author, postal address, affiliation (if appropriate), and email address if available. A home-page URL is optional.

FORMAT
Authors are encouraged to use LATEX and the standard article class, but submissions in other varieties of TEX, and, exceptionally
in other formats, are acceptable. Electronic submissions are strongly encouraged in PDF format only; after the refereeing
process we will ask you to submit all source material.

REFERENCES
Bibliographical references should be listed alphabetically at the end of the paper and include the title of the article. All references
in the bibliography should be cited in the text. The use of BIBTEX is preferred but not required. Tags will be converted to the
house format (see a current issue for examples), however, in the manuscript, the citation should be by first author’s last name
and year of publication, e.g. “as shown by Kramer, et al. (1994)”. Links will be provided to all literature with known web
locations and authors are encoraged to provide their own links on top of the ones provided by the editorial process.

FIGURES
Figures prepared electronically should be submitted in Encapsulated PostScript (EPS) or in a form that can be converted to EPS,
such as GnuPlot, Maple, or Mathematica. Many drawing tools such as Adobe Illustrator and Aldus FreeHand can produce EPS
output. Figures containing bitmaps should be generated at the highest possible resolution. If there is doubt whether a particular
figure is in an acceptable format, the authors should check with production by sending an email to:

production@mathscipub.org

Each figure should be captioned and numbered so that it can float. Small figures occupying no more than three lines of vertical
space can be kept in the text (“the curve looks like this:”). It is acceptable to submit a manuscript with all figures at the end, if
their placement is specified in the text by means of comments such as “Place Figure 1 here”. The same considerations apply to
tables.

WHITE SPACE
Forced line breaks or page breaks should not be inserted in the document. There is no point in your trying to optimize line and
page breaks in the original manuscript. The manuscript will be reformatted to use the journal’s preferred fonts and layout.

PROOFS
Page proofs will be made available to authors (or to the designated corresponding author) at a web site in PDF format. Failure to
acknowledge the receipt of proofs or to return corrections within the requested deadline may cause publication to be postponed.



Journal of Mechanics of Materials and Structures

Volume 4, Nº 3 March 2009

Design of crack-resistant two-dimensional periodic cellular materials
FABIAN LIPPERMAN, MICHAEL RYVKIN AND MOSHE B. FUCHS 441

Influence of the nonlinear aerodynamic force components on a vibrating beam, simply
supported or clamped at both ends, exposed to a high supersonic airflow along its axial
direction SILVANO TIZZI 459

Finite element formulations via the theorem of expended power in the Lagrangian,
Hamiltonian and total energy frameworks JASON HAR AND KUMAR K. TAMMA 475

Static bending analysis of laminated cylindrical panels with various boundary conditions
using the differential cubature method

S. MAHMOUD MOUSAVI AND MOHAMAD M. AGHDAM 509
Indentation analysis of fractional viscoelastic solids

ROUZBEH SHAHSAVARI AND FRANZ-JOSEF ULM 523
Macroscale modelling of microstructure damage evolution by a rigid body and spring model

SIRO CASOLO 551
Performance and parametric study of active multiple tuned mass dampers for asymmetric

structures under ground acceleration
CHUNXIANG LI, JINHUA LI, ZHIQIANG YU AND YAN QU 571

Effects of surface and initial stresses on the bending stiffness of trilayer plates and nanofilms
HANXING ZHU, JIANXIANG WANG AND BHUSHAN KARIHALOO 589

Numerical modeling of crack propagation in rocks under TBM disc cutters
M. FATEHI MARJI, H. HOSSEINI NASAB AND A. HOSSEIN MORSHEDI 605

1559-3959(200903)4:3;1-7

JournalofM
echanics

ofM
aterials

and
S

tructures
2009

Vol.4,N
º

3

Journal of

Mechanics of
Materials and Structures

Volume 4, Nº 3 March 2009

mathematical sciences publishers


	cover-front-print
	Masthead and Copyright
	print01
	print02
	print03
	print04
	print05
	print06
	print07
	print08
	print09
	instructions-print
	cover-back-print

