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In this work we analyze the case of a vibrating beam, simply supported or clamped at both ends, under
the effect of a high supersonic airflow along its axial direction. A complete aerodynamic model of
the piston theory, which also takes into account the nonlinear components of the distributed aerody-
namic transversal force, is used. The postcritical flutter behavior and its influence on the vibration state
solutions of a fluttering beam without aerodynamic damping have been studied. This paper focuses
particularly on the effects of these nonlinear aerodynamic forces on three frequencies, which are useful
in characterizing the postcritical flutter solution set of the undamped beam in the whole frequency range:
the minimum frequency, the frequency where the change of the modal shape with lower amplitude occurs,
and the frequency corresponding to the solution with minimum amplitude of the vibration mode. Special
attention has been given to the influence on the solution of the vibrating undamped beam with minimum
modal amplitude, whose frequency is the most important among the three mentioned above; in fact, in
the neighborhood of this particular solution, there exists the flutter state of the vibrating damped beam
in limit cycle conditions.

Three different schemes, two of them semianalytical (based on the classical and well known Rayleigh–
Ritz and Galerkin methods) and one of them numerical (based on the finite element method), have been
herein exploited, as in the author’s previous papers, where beam flutter models with linear aerodynamic
analysis were used. The good agreement between the results obtained by the three methods corroborates
their effectiveness.

More sophisticated models have been herein set up, considering that a more accurate analysis is
necessary than in previous cases, where the aerodynamic numerical model was limited to within the
framework of the quasisteady linearized piston theory, both for the coupling component between odd
and even order vibrating modes, and for the aerodynamic damping component.

The results obtained enable us to assess quantitatively the influence of these nonlinear aerodynamic
forces on the postcritical beam flutter behavior, and particularly on the undamped beam solution with
minimum amplitude of the vibration mode.

1. Introduction

For many years steady and unsteady aerodynamic theory for aeroelastic panels flutter computations has
received a lot of interest, often in connection with high supersonic speeds. It is useful to recall the main
authors who developed studies for flutter analysis of panels exposed to a high supersonic flow.
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Lighthill [1953] first proposed a piston theory, which was proved to be an efficient and powerful tool
for panel flutter analysis. It can be used to calculate the pressure on an airfoil in steady or unsteady motion
with remarkable accuracy, even under nonisentropic conditions, whenever the flight Mach Number M∞
has such an order of magnitude that M2

∞
� 1. This piston theory is quite attractive for flutter studies due

to its simplicity in comparison with other supersonic theories.
This theory has been discussed by Ashley and Zartarian [1956], who made suggestions for future

research based on this new efficient aerodynamic tool, with particular regard to areas where computational
labor can be reduced without losing the necessary accuracy.

Morgan et al. [1958] analyzed some of the theories for two dimensional oscillatory wing structures,
which could be applied for flutter computations with high Mach Number. The results obtained by the
various aerodynamic theories have been compared for their flutter prediction in various Mach Number
ranges. Also some possible refinements of the piston theory have been proposed for high Mach Numbers.

The heritage of the studies of these authors enables us to know the complete expression of the aero-
dynamic transverse distributed force acting on a beam, which makes it possible to determine its flutter
dynamic response after appropriate approximations.

The objective of this paper is to investigate the effects of the nonlinear components of the aerodynamic
transverse force on the permanent postcritical solutions of a fluttering beam without air damping. Since
the fluttering beam solution in limit cycle conditions, derived by the aerodynamic model with damping,
is very near to the undamped vibrating beam state with minimum amplitude, these effects could also
influence the damped beam aeroelastic vibration.

Three different schemes have been exploited for the flutter computational work, as in the case of the
beam flutter analysis with linearized and idealized piston theory [Tizzi 1994; 2003]. First a numerical
procedure [Tizzi 1994; 1996; 2003] which arises from the Rayleigh–Ritz method [Kantorovich and
Krylov 1964, pp. 258–303; Mikhlin 1964, pp. 74–125 and 448–490; Reddy 1986, pp. 258–285] has
been used, together with the finite element method (FEM) [Weaver and Johnston 1984, pp. 1–102; Reddy
et al. 1988, pp. 41–89; Qin et al. 1993]. By knowing the structural and inertial forces potential functional
and the aerodynamic generalized force, it has been possible to apply the Lagrange equations [Pars 1968,
pp. 28–89] and derive the generalized governing equation in time, for which appropriate time-integration
algorithms exist.

Then the Galerkin method [Kantorovich and Krylov 1964; Mikhlin 1964; Tizzi 1994; 2003] was
employed in the case of a simply supported beam, as in Dowell’s model [1966; 1967], to validate the
results of Ritz and FEM procedures.

The effectiveness of the three methods is apparent from the good accordance of the results obtained
by the three different simulation approaches.

An analysis of the results achieved has been necessary to point out the influence of the nonlinear
aerodynamic force components on particular frequency parameters characterizing the undamped beam
solution set in the whole frequency range. It is fundamental to evaluate the effects of these nonlinear
forces on the solution with minimum amplitude of the modal shape, considering that the flutter solution
in limit cycle conditions of the damped vibrating beam lies in its neighborhood.

Studies on the influence of the nonlinear aerodynamic terms on the postcritical limit cycle of fluttering
panels have also been developed by other authors [McIntosh 1973; Smith and Morino 1976]. However,
investigations into the effects of these nonlinear aerodynamic components, in the presence of nonlinear
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structural forces, on the postcritical flutter solutions of a beam in an airflow without damping, have been
herein performed. Moreover, a fluttering beam with both simply supported and clamped ends has been
considered; this is useful because the boundary conditions of panels actually employed in aerospace
structures often lie between the two supposed ones in the analyzed cases.

Index of notation

As beam cross-section area

am nondimensional modal shape amplitude
(maximum transverse displacement along
the beam, divided by length of beam)

a∞ speed of sound

bw beam width

ai j , ci j , bi jkl , di jkl coefficients determined by
integrals in Ritz and FEM models

ci p ia generic coefficient of the nondimensional
flexural deflection series expansion in the
generic ie-th element of FEM model

E Young’s modulus

Fa resultant of the aerodynamic forces acting
on both sides of the beam per unit length

F (a)
i generalized aerodynamic force acting on the

i-th degree of freedom
fi (ξ) generic trial describing function of the

nondimensional flexural deflection through
the beam length

h beam thickness

I flexural moment of inertia

Jsccc, Jsscc particular integrals utilized in the
Galerkin method

ki j stiffness matrix elements

k∗i j linear structural and aerodynamic forces
resultant matrix elements

L beam length

M∞ Mach number

mi j mass matrix elements

N whole number of the degrees of freedom

NE whole number of the elements in FEM
model

p∞ unperturbed air pressure

Pa force per unit axial length acting on a side of
the beam profile

Q(ie)
i p

generic degree of freedom in the ie-th
element of FEM model

q dynamic pressure

t beam state evolution time

To reference time

U∞ airflow speed

u, w beam points axial and flexural
displacements, respectively

W nondimensional flexural displacement

Wi generic coefficients of the nondimensional
flexural displacement series expansion

Wie nondimensional flexural displacement on a
generic (ie+ 1)-th section Sie of FEM model

x beam axial coordinate

Greek symbols

α nondimensional beam axial parameter

β, γm nondimensional Mach numbers parameters

γ ratio between the specific heat at constant
pressure and volume, respectively

γ ′, γ ′′ nondimensional aerodynamic damping
coefficients

λ nondimensional mass distribution parameter

θie rotation parameter in the generic (ie+ 1)-th
section Sie of FEM model

µ mass per unit length

ξ nondimensional axial coordinate of the
beam

ξie nondimensional axial coordinate of the
(ie+ 1)-th section Sie of the FEM model
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ξn normalized axial coordinate of a beam
element in the FEM model

ρ∞ unperturbed air density

σ dimensional dynamic pressure parameter

σd dimensionless dynamic pressure parameter

τ nondimensional time

ϕi j integral of the product between the first
derivatives of the generic describing
functions fi (ξ) and f j (ξ)

χ normal speed down- or up-wash

ω angular frequency

ωd dimensionless angular frequency

Special symbols

H2(S) square summable functions space

S definition domain of the describing
functions

B, D utilized matrices in the generalized form
equation

F structural and linear aerodynamic forces
matrix

L extended Lagrangian functional

M mass matrix

T kinetic energy

U strain energy

W , Z column vectors of the unknown variables
and their time first derivatives

W (3) column vector with elements the triple
products between unknown variables

W (3d) column vector with elements the triple
products between two unknown variables
and a time first derivative of a third variable

Subscripts and superscripts

d subscript indicating dimensionless
parameters

i, j, k, l subscripts indicating functions and unknown
variables coefficients of the flexural
displacement series expansion

ie subscript indicating the (ie+ 1)-th section
Sie of the FEM model

(ie) superscript indicating the ie-th element of
FEM model

i p, jp, kp, lp subscripts characterizing the unknown
variables and the coefficients of the flexural
displacement series expansion in the ie-th
element of FEM model

nd subscript indicating nondimensional
variables

∞ subscript indicating the unperturbed airflow

2. Mathematical formulation

A vibrating beam exposed to a high supersonic flow along the x axis, previously analyzed with the linear
aerodynamic model [Tizzi 1994; 2003], is considered and drawn in Figure 1.

Figure 1. Beam, simply supported or clamped at both ends, exposed to a high super-
sonic flow.
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The focus of the analysis developed here is limited to the nonlinear aerodynamic force components of
piston theory, given that the terms of all structural and linear aerodynamic force components have been
sufficiently illustrated. The exact expression of the pressure acting on a beam element (one-dimensional
flow) is [Lighthill 1953; Ashley and Zartarian 1956; Morgan et al. 1958]:

p
p∞
=

(
1+

γ − 1
2

χ

a∞

)2γ /(γ−1)

, (1)

where γ = cp/cv is the ratio between the specific heats at constant pressure and volume (cp and cv); χ
is the normal down- or up-wash, that is, the component of the fluid velocity in the z-direction, normal to
the beam profile; a∞ =

√
γ p∞/ρ∞ is the speed of sound; and p∞ and ρ∞ are the pressure and density of

the unperturbed airflow. This pressure can be expressed in terms of series expansion function elements
versus χ , as follows:

p
p∞
= 1+ γ

χ

a∞
+

1
4
γ (γ + 1)

( χ
a∞

)2
+

1
12
γ (γ + 1)

( χ
a∞

)3
+ · · · . (2)

The dimensional dynamic pressure parameter σ is also introduced:

σ =
2q
β

bw, (3)

where β =
√

M2
∞
− 1, M∞ =U∞/a∞ is the Mach number, q = 1

2ρ∞U 2
∞

is the dynamic pressure, U∞
is the airflow speed, and bw is the beam width. As in [Tizzi 2003], the aerodynamic expressions of an
infinite plate along the third, not considered y axis are applied, together with the structural constitutive
relations of a beam; this hypothesis can be accepted if the beam width bw is much greater than L .

Since √
M2
∞
− 1∼= M∞, (4)

if the Mach number is high enough, it is also true that

σ =
2q
β

bw ∼= γ p∞M∞bw, (5)

in view of the previously introduced expressions of q,M∞ and a∞.
Thus the force per unit axial length acting on each side of the beam profile can be evaluated from (2),

and, by virtue of (5) and the expression for M∞, it can be written as

Pa =1pbw = σ
[
χ

U∞
+
γ + 1

4
M∞

( χ

U∞

)2
+
γ + 1

12
M2
∞

( χ

U∞

)3
+ · · ·

]
, (6)

where 1p = p− p∞ is the pressure variation with respect to the unperturbed static conditions p = p∞.
The analysis has been developed only for symmetric cases, that is, both sides of the beam profile are

exposed to the same airflow, and consequently only the odd powers give a contribution. In fact, taking
into account that the normal speed component χ has opposite values on the upper and lower side, their
effects sum-up for the odd powers and vanish for the even ones. Thus the resultant of the aerodynamic
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forces acting on both sides per unit length can be written as

Fa = 2σ
[
χ

U∞
+
γ + 1

12
M2
∞

( χ

U∞

)3
+ · · ·

]
. (7)

The normal speed component due to the profile dynamics can be expressed as

χ =U∞
∂w

∂x
+
∂w

∂t
, (8)

where w is the beam point’s flexural displacement.
Substituting (8) into (7) gives the new expression of the resultant aerodynamic distributed force:

Fa = 2σ
[
∂w

∂x
+ γm

(∂w
∂x

)3
+ · · ·

]
+ 2σ

{
1

U∞

∂w

∂t
+ γm

[
3
(∂w
∂x

)2 1
U∞

∂w

∂t
+ · · ·

]
+ · · ·

}
, (9)

where

γm =
γ + 1

12
M2
∞

(10)

and the subsequent terms in the series expansion can be neglected. This is formed by two components:
Fa1, containing only spatial derivatives, which is the coupling element between odd and even vibrating
modes, and which exists also without damping; and Fa2, containing also time derivatives, which give
rise to the aerodynamic dissipative force and damping. This second component is not considered for the
undamped vibrating beam solution.

The linear component of the distributed aerodynamic force in (9) equals that obtained in [Bisplinghoff
and Ashley 1975, pp. 416–437; Tizzi 2003], except for the presence of the ratio (M2

∞
− 2)/(M2

∞
− 1)

before the time derivative ∂w/∂t , which is approximately equal to unity for high Mach numbers.
It is necessary to recall the vibration-governing equation of the fluttering beam [Tizzi 2003]:

E I
∂4w

∂x4 +µ
∂2w

∂t2 − E As
1
2

(∂w
∂x

)2 ∂2w

∂x2 + Fa = 0, (11)

where As = bwh is the cross-sectional area, h is the beam thickness, E is the Young’s modulus, µ is the
distributed mass per unit length, and I = Ebwh3/12 is the flexural moment of inertia.

Furthermore, (∂w/∂x)2 has been previously defined as the mean square value of the flexural displace-
ment first axial derivative over the whole beam length; the third term of (11), containing this mean square
value, corresponds to the nonlinear component of the transverse structural force, due to the beam axial
stretching.

The axial inertia effects are being neglected, as in the previous analysis with a linearized aerodynamic
model, considering that the axial vibration frequencies are higher than the corresponding ones of the
flutter vibration, and so the axial vibration frequency range is different from the flutter frequency range.

Substitution of (9) into (11), with the approximation assumptions, leads to the following governing
equation:

E I
∂4w

∂x4 +µ
∂2w

∂t2 − E As
1
2

(∂w
∂x

)2 ∂2w

∂x2 + 2σ
[
∂w

∂x
+ γm

(∂w
∂x

)3
]

+ 2σ
{

1
U∞

∂w

∂t
+ γm

[
3
(∂w
∂x

)2 1
U∞

∂w

∂t

]}
= 0, (12)
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which can be reformulated in dimensionless form as

∂4W
∂ξ 4 + λ

∂2W
∂τ 2 + σd

[
∂W
∂ξ
+ γm

(∂W
∂ξ

)3
]
−
α

2

(∂W
∂ξ

)2 ∂2W
∂ξ 2 +

[
γ ′+ γ ′′

(∂W
∂ξ

)2
]
∂W
∂τ
= 0, (13)

where the flexural displacement and the axial coordinate have been reformulated in nondimensional form,
and other dimensionless parameters have been introduced:

W (ξ, τ )=
w(x, t)

L
, ξ =

x
L
, λ=

µL4

E I T 2
o
, τ =

t
To
, (14)

σd =
2σ L3

E I
, α =

As L2

I
, γ ′ =

2σ
U∞

L4

E I To
, γ ′′ = 3γ ′γm, (15)

and To is a reference time.
The third and fifth terms in (13) refer to the nondimensional equivalent form of the distributed aero-

dynamic force expression in (9):

(Fa)nd = σd

[
∂W
∂ξ
+ γm

(∂W
∂ξ

)3
]
+

[
γ ′+ γ ′′

(∂W
∂ξ

)2
]
∂W
∂τ

. (16)

Einstein’s summation convention for repeated indices will be adopted in all the following expressions.
A series expansion for W (ξ, τ ) in terms of function elements can be chosen:

W (ξ, τ )=Wi (τ ) fi (ξ), i = 1, 2, . . . , N , (17)

where each coefficient Wi (τ ) is a Lagrangian degree of freedom, and fi (ξ) are polynomials describing
functions, belonging to the space of the square summable functions H2(S), defined in the domain S
(which in this case is the whole beam length). These satisfy only the geometric boundary conditions, as
in the Ritz and FEM methods. The meaning of the coefficients Wi (τ ) and the describing functions fi (ξ)

are illustrated in the electronic supplement to this paper.
Equation (13) can be transformed into its generalized equivalent form by the variational principle [Pars

1968], if the Lagrangian functional is introduced:

L= T−U, (18)

where T is the kinetic energy and U is the strain energy. Thus the generic generalized i-th governing
equation can be written in the classical Lagrangian form:

d(∂L/∂Ẇi )

dτ
−
∂L

∂Wi
+ F (a)i = 0, i = 1, 2, . . . , N , (19)

where F (a)i is the generalized aerodynamic force acting on the i-th degree of freedom. It is possible to
set a correspondence between each term of this generalized equation with each one of (13).

The potential strain energy expression has been already determined [Tizzi 2003]:

U=
1
2

ki j Wi Wj +
α

8
ϕi jϕkl Wk Wl Wi Wj , i, j, k, l = 1, 2, . . . , N , (20)

http://pjm.math.berkeley.edu/jomms/2009/4-3/jomms-v4-n3-x02-tizzi-supplement.pdf
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where

ϕi j =

∫ 1

0

∂ fi (ξ)

∂ξ

∂ f j (ξ)

∂ξ
dξ. (21)

The stiffness matrix elements ki j have been previously evaluated [Tizzi 1994]; obviously ki j Ẅ j is
the generalized linear structural force acting on the i-th degree of freedom, which corresponds to the
first term in (13). The elements of the second term at the second member of (20), corresponding to the
nonlinear contribution to the structural strain energy, are also known.

The expression for the generalized aerodynamic force F (a)i acting on the i-th degree of freedom,
corresponding to the third and fifth terms in (13), can be obtained by the use of the series expansion (17)
in (16), and projecting the whole equation (16) onto the generic function element fi (ξ). Thus

F (a)i = ai j Wj + γmbi jkl Wk Wl Wj + γ
′ci j Ẇj + γ

′′di jkl Wk Wl Ẇj ,

j, k, l = 1, 2, . . . , N , i = 1, 2, . . . , N , (22)

where the coefficients ai j and ci j are well known from the previous analysis [Tizzi 2003]:

ai j = σd

∫ 1

0
fi (ξ)

∂ f j (ξ)

∂ξ
dξ, ci j =

∫ 1

0
fi (ξ) f j (ξ)dξ, (23)

and the newly introduced ones are defined as

bi jkl = σd

∫ 1

0
fi (ξ)

∂ f j (ξ)

∂ξ

∂ fk(ξ)

∂ξ

∂ fl(ξ)

∂ξ
dξ, di jkl = σd

∫ 1

0
fi (ξ) f j (ξ)

∂ fk(ξ)

∂ξ

∂ fl(ξ)

∂ξ
dξ. (24)

The knowledge of the describing functions of the series in (17) allows us to determine the coefficients
bi jkl and di jkl ; see the electronic supplement.

The mass matrix elements mi j in the kinetic energy expression,

T= 1
2 mi j Ẇi Ẇ j , Ẇi = ∂Wi/∂τ, i, j = 1, 2, . . . , N , (25)

have also been previously evaluated [Tizzi 1994]. It is true that

mi j = λci j , (26)

where the nondimensional coefficient λ has been defined in (14). It is well known that −mi j Ẅ j is the
generalized inertial force acting on the i-th degree of freedom, corresponding to the second term of (13).

If the expressions of the strain and kinetic energy in (20) and (25), along with the expression of the
generalized aerodynamic force in (22), are substituted into (19), in view of the Lagrangian functional
expression in (18), it is possible to achieve the equivalent generalized form of (13), corresponding to the
generic i-th degree of freedom, as follows:[
k∗i j +

α

2
ϕi j (ϕkl Wk Wl)

]
Wj + γmbi jkl Wk Wl Wj +mi j Ẅ j + γ

′ci j Ẇ j + γ
′′di jkl Wk Wl Ẇ j = 0,

j, k, l = 1, 2, . . . , N , i = 1, 2, . . . , N . (27)

The matrix elements k∗i j , referring to both structural and aerodynamic linear forces, can be written as

k∗i j = ki j + ai j . (28)

http://pjm.math.berkeley.edu/jomms/2009/4-3/jomms-v4-n3-x02-tizzi-supplement.pdf
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Thus k∗i j Wj is the generalized linear structural-aerodynamic force acting on the same i-th degree of
freedom, which corresponds to the first term and the first part of the third term of (13).

Furthermore, the term (ϕkl Wk Wl) between brackets in (27) is the mean square value (∂W/∂ξ)2 of the
first derivative ∂W/∂ξ over the whole beam length, which has been already introduced in (11). This
is the reason for which it has been written separately in round brackets. As mentioned above, it takes
into account the beam axial stretching, which gives rise to the nonlinear component of the structural
transverse force, as in the fourth term of (13).

The term containing the coefficient γm in (27) is equivalent to the second part of the third term of (13),
and the terms containing γ ′ and γ ′′ are equivalent to the ones with the same coefficients in (13).

The system of the generalized governing equations (27), in view of (26), can also be written in matrix
form:

Z = Ẇ , Ż =−M−1 FW − γm M−1 BW (3)
−
γ ′

λ
Z− γ ′′M−1 DW (3d), (29)

where: W and Z are the column vectors of the coefficients Wj and their first derivatives Ẇ j versus time
τ , respectively; F is the matrix whose elements are:

fi j = k∗i j +
α

2
(ϕkl Wk Wl)ϕi j ; (30)

M is the mass matrix; B is a matrix with dimensions N × N 3, whose elements are bi jt3 = bi jkl ( jt3 is the
contraction of the three indices jkl and obviously jt3 = 1, 2, . . . , N 3); W (3) is the column vector with
dimensions N 3, whose elements are the triple products p j t3 =Wk Wl Wj between the coefficients of the
series expansion in (17); D is a matrix whose elements are di jt3 = di jkl and with the same dimensions
of B; and W (3d) is a column vector with the same dimensions of W (3), whose elements are the triple
products q j t3 =Wk Wl Ẇ j .

Equations (27) and (29) are the same as in the previous analysis with linearized aerodynamic forces,
except for the presence of the terms with bi jkl and di jkl in (27), and the corresponding matrices B and
D in (29), referring to the nonlinear contribution of the piston theory to the aerodynamic forces. The
system (29) can be integrated in time by appropriate algorithms.

In the case of a simply supported beam it is easy to apply also the Galerkin method, as in Dowell’s
model [Dowell 1966; 1967]. The advantages of the Galerkin procedure arise from the diagonal form
of the mass matrix M, due to the orthogonality between different describing function elements; see the
electronic supplement for details.

3. Applications and results

The analysis of the results is limited to the regular solutions with repetitive dynamic characteristics,
obtained by giving particular starting conditions (τ = 0) to the vibrating system. There are also many
more spurious solutions, which are quite irregular and without any particular meaning.

The first case considered is the simply supported beam. The ratio between the length L and the
thickness h is assumed to be 100.

http://pjm.math.berkeley.edu/jomms/2009/4-3/jomms-v4-n3-x02-tizzi-supplement.pdf
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Figure 2. Solid curves: modal shape amplitude am versus dimensionless frequency ωd

for two undamped beam systems (Table 1 lists the values). Dashed curves: evolution
of the damped beam vibration state towards the limit cycle in each of the two systems
(Table 2). All values take into account the nonlinear aerodynamic force components.

All the characteristic behavior features of the nondimensional modal shape amplitude am as a function
of the dimensionless frequency

ωd = ω

√
µL4

E I
(31)

(where ω is the angular frequency) are known from previous analyses [Tizzi 2003]. These features are
illustrated by the solid curve in Figure 2, left, in the case of a simply supported undamped beam for
σd = 500. (See also the top half of Table 1.) In fact this graph is similar to the one obtained without the
nonlinear aerodynamic force components.

Three frequency values are particularly important and useful in characterizing this curve: the min-
imum frequency ωmin; the frequency ωI , which separates the frequency range where lower amplitude
modal shapes have only one half-wave from the range where these shapes have two half-waves; and the
frequency ωII , where the modal shape amplitude reaches its minimum.

The dashed lines in Figure 2 show the dynamic evolution of the fluttering beam towards the limit cycle
conditions (still taking into account aerodynamic damping), for two different starting conditions. Clearly
the dynamic solution of the fluttering beam in limit cycle conditions, also in the presence of nonlinear
aerodynamic forces, lies in the neighborhood of the undamped beam solution with minimum amplitude.
For this reason this particular solution is of paramount importance, and ωII plays a privileged role, along
with its corresponding modal shape amplitude value.

To see the influence of the nonlinear aerodynamic components of the piston theory of a high supersonic
idealized flow. it is necessary to show the functional dependence of these frequencies on the dynamic
pressure, with and without nonlinear aerodynamic forces. Particular attention must be given to these
nonlinear forces’ effects on ωII and the corresponding modal amplitude behavior versus σd .
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Simply supported, undamped beam, σd = 500

ωd am ωd am ωd am ωd am

73.06 0.04144 42.00 0.02592 34.24 0.01348 42.35 0.00741
66.43 0.03858 38.22 0.02188 34.40 0.01216 47.84 0.00800
56.40 0.03427 35.43 0.01772 35.02 0.01063 55.97 0.00978
48.23 0.03052 34.41 0.01501 38.13 0.00812 66.74 0.0124

73.06 0.0140

Doubly clamped, undamped beam, σd = 800

ωd am ωd am ωd am ωd am

87.53 0.0347 66.12 0.0170 65.08 0.0106 82.31 0.0110
75.01 0.0252 65.17 0.0154 66.12 0.0099 87.53 0.0118
72.17 0.0231 64.47 0.0125 68.34 0.0094
69.25 0.0206 64.60 0.0115 79.31 0.0106

Table 1. Modal amplitude am versus dimensionless frequency ωd , taking into account
nonlinear aerodynamic force components.

Simply supported beam
τ ωd am τ ωd am

Upper dashed curve Lower dashed curve
0. 51.5 0.0334 0. 37.18 0.00071
0.16 41.88 0.0279 0.16 38.08 0.0016
0.30 36.74 0.0234 0.24 39.27 0.0030
0.47 34.15 0.0190 1.33 40.27 0.0061
0.56 34.17 0.0156 1.81 41.28 0.0070
1.18 39.27 0.0081
2.37 41.24 0.0070

Doubly clamped beam
τ ωd am τ ωd am

Left dashed curve Right dashed curve
0. 45.20 0.0240 0. 86.20 0.00002
0.43 53.10 0.0232 0.47 81.10 0.0051
0.85 61.23 0.0191 2.63 75.12 0.0102
1.47 66.03 0.0143 5.33 71.19 0.0121
2.53 67.52 0.0102 9.81 67.52 0.0102

Table 2. Modal amplitude versus dimensionless frequency ωd at various times, taking
into account aerodynamic damping and nonlinear aerodynamic force components.

In some of the following figures the frequency values, derived both by the idealized and linearized
beam model and by the nonlinear approach, are drawn together. This is useful for having an overall
picture of all the possible beam flutter solutions in pre- and postcritical conditions, obtained by the two
different approaching models. It is important to emphasize the convergence of the nonlinear model
solutions towards those of the linear approach, as the dynamic pressure, and consequently the flutter
modal amplitude, diminishes. The solutions coincide when this amplitude vanishes, considering that the
influence of the nonlinear components of the acting forces can be neglected as the vibrating modes tend
to disappear.
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Figure 3. Frequencies ωmin (top left), ωI (top right) and ωII (bottom left) versus σd for
the simply supported, undamped beam, with and without nonlinear aerodynamic force
components (dashed lines). The horseshoe-shaped solid curve shows the dependence of
σd on ωd for the linearized model (see text). Also shown is the minimum amplitude
(am)min as a function of σd for the same beam system (bottom right).

Figure 3, top left, shows the behavior of the minimum frequency ωmin of the undamped solutions versus
the dynamic pressure dimensionless parameter σd ; the two types of dashed lines indicate the presence
or absence of nonlinear aerodynamic forces in the calculation. The solid line describes the classical and
well known dependence of σd on ωd for the linearized beam flutter simulation model, where only the
linear components of both structural and aerodynamic forces are considered.

The dependence of the frequencies ωI and ωII on σd is sketched in the next two parts of Figure 3, with
the same conventions. Finally, the bottom right part of the figure is a graph of the minimum amplitude
(am)min versus σd , with and without nonlinear aerodynamic forces. The bottom two graphs in Figure 3
are particularly important for the reasons mentioned above. See also the top half of Table 3.



NONLINEAR AERODYNAMIC FORCE COMPONENTS ON A BEAM IN SUPERSONIC AIRFLOW 471

Simply supported, undamped beam

σd ωmin ωI ωII (am)min× 102

L NL L NL L NL L NL

214 18.46 18.46
225 19.15 19.18
250 20.65 20.76
275 22.04 22.28
294.6 24.76 24.76
300 23.34 23.75 25.06 25.08
325 26.39 26.51
343.356 32.43 32.43 0. 0.
350 25.73 26.62 27.66 27.93 32.95 33.02 0.13 0.14
375 28.87 29.36 34.40 34.48 0.28 0.31
400 27.90 29.44 30.04 30.79 35.79 36.19 0.37 0.42
425 36.99 37.75 0.45 0.52
450 29.89 32.02 32.26 33.71 38.41 39.22 0.51 0.60
475 39.70 40.81 0.56 0.67
500 31.75 34.24 34.35 36.64 40.86 42.35 0.61 0.74
550 33.49 36.44 36.25 39.04 43.18 45.34 0.69 0.86
600 35.12 38.67 38.16 41.11 45.20 47.89 0.76 0.96

Doubly clamped, undamped beam

σd ωmin ωI ωII (am)min× 102

L NL L NL L NL L NL

449 35.53 35.53 35.53 35.53
500 38.16 19.18 38.17 38.60
550 40.54 41.80 40.60 42.00
600 42.76 45.15 42.89 45.83
636.569 52.36 52.36 0. 0.
650 44.85 49.44 45.06 50.25
655 53.36 54.01 0.20 0.30
675 54.48 56.13 0.28 0.45
700 46.83 53.69 47.14 54.69 55.69 58.76 0.36 0.59
725 56.96 61.27 0.42 0.70
750 48.71 58.91 49.13 59.91 58.19 63.70 0.48 0.80
775 59.41 65.88 0.53 0.87
800 50.50 64.47 51.05 66.50 60.57 68.34 0.57 0.94

Table 3. Values of ωmin, ωI , ωII and (am)min versus the dimensionless dynamic pressure
σd , without (L) and with (NL) nonlinear components of the aerodynamic forces for the
undamped beam.
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Figure 4. Frequencies ωmin (top left), ωI (top right) and ωII (bottom left) versus σd for
the doubly clamped, undamped beam, with and without nonlinear aerodynamic force
components (dashed lines). The horseshoe-shaped solid curve shows the dependence of
σd on ωd for the linearized model (see text). Also shown is the minimum amplitude
(am)min as a function of σd for the same beam system (bottom right).

We next display the results obtained in the case of a beam clamped at both ends. The ratio between the
length L and the thickness h is taken to be 110. Figure 2, right, shows the modal amplitude am behavior
of the fluttering undamped solution versus ωd for σd = 800 (also described in the bottom half of Table 1),
together with the vibrating damped beam state evolution towards the limit cycle point, which lies in the
neighborhood of the representative point of the undamped solution with minimum amplitude. The two
dashed lines correspond to two different starting values of the fluttering beam with damping. Figure 4,
organized in the same way as Figure 3, shows the dependence of ωmin, ωI , ωII and (am)min on σd for
the undamped beam clamped at both ends, again with and without taking into account the nonlinear
components of the aerodynamic forces. See also the bottom half of Table 3.
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4. Conclusions

On the basis of the results achieved, some concluding remarks can be made.

(1) In both cases considered, the minimum frequency value ωmin is higher compared to the corresponding
one derived by the linearized piston theory, which means that the frequency range of the undamped
solutions decreases with respect to the case of the linearized aerodynamic model, although this reduction
is very limited.

(2) Limited decrease of the resistance to the flutter phenomenon is introduced by the nonlinear aero-
dynamic force contributions, considering that the minimum value of the undamped vibration modal
amplitude (am)min, which is very close to the limit cycle amplitude value, increases; but this relative
growth is not considerable.

(3) Undoubtedly these nonlinear aerodynamic forces influence the whole postcritical flutter behavior of a
beam under the effects of a high supersonic flow at both sides, but, unless the dynamic pressure grows very
much over its critical value of the linear model, these effects are limited. Hence the linear aerodynamic
analysis of the piston theory is sufficient to describe, within acceptable limits, this postcritical behavior.

(4) The results obtained don’t predict a threat to the stability, because in the cases considered, the airflow
speed doesn’t exceed overmuch the limit critical value of the linearized model (limited Mach number),
as in [McIntosh 1973; Smith and Morino 1976]. For very high values of M∞ the destabilizing effect of
aerodynamic nonlinearities is predominant and the limit cycle becomes unstable. However the presence
of particular initial conditions (such as those induced by a gust) can lead to instability and chaos even
before the dynamic pressure reaches its critical value [Dessi et al. 2002]. The presence of shock waves
in transonic flight could also instigate instability in the flutter phenomenon.

(5) The dynamic analysis of the fluttering beam has been limited to the case of symmetrically distributed
aerodynamic forces, which is worse, in terms of fluttering beam stability, than the case of a high su-
personic flow acting only on one side of the vibrating beam. Therefore all considerations regarding the
fluttering stability are very likely valid for asymmetric cases as well.

(6) This study of postcritical behavior has been limited to a one-dimensional panel, as in the linearized
piston theory case, but similar conclusions are likely valid for two-dimensional panels.

(7) This dynamic analysis can also be extended to cases not considered here.
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