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Abstract

This work aims to the explanations of the atiedy developments in the dynamic analysis of a
vibrating beam, simply supported or clamped at miltls, under the effects of a high supersonic
airflow along its axial direction. A complete adymamic model of the “Piston Theory”, which
takes into account also the non-linear componehtiseodistributed aerodynamic transversal force,
is utilized. The post-critical flutter behavior héeen studied considering their influence on the
vibration state solutions of a fluttering beam withaerodynamic damping. mode).

Three different schemes, two of which are senalytical, (based on the classical and well
known Rayleigh-Ritz and Galerkin methods), and aenical one (based on the finite element
method (FEM)), have been herein exploited, likgpiavious author’'s papers, where beam flutter

models with linear aerodynamic analysis were @diz
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More sophisticated models have been hereingetonsidering that a more accurate analysis is
necessary with respect to the previous cases wheraerodynamic numerical model was limited
within the framework of the quasi-steady linearizetPiston Theory”, both for the coupling
component between odd and even order vibrating mjodad for the aerodynamic damping

component

Nomenclature

Ag beam cross-section area

Ao sound speed

by beam width

ajj , Cij coefficients determined by intdg in Ritz and FEM models

biji » diji

Ci | generic coefficient of tm®n-dimensional flexural deflection series expansi

p'a

in the generjgh element of FEM model

E Young’'s modulus

Fa resultant of the aenoayic forces acting on both sides of the beam
per unit length

F,(a) generalized aerodynamicédaacting on théth degree of freedom

f; (&) generic trial describing étion of the non-dimensional flexural deflection
through the beanmglé

h beam thickness



J Scco J SSCC

flexural moment of itiar

particular integrals utilized in thel&&in method

stiffness matrix elements

linear structural andaBmamic forces resultant matrix elements

beam length

Mach number

mass matrix elements

whole number of the degreeseedom
whole number of the elerséntFEM model
unperturbed air pressure

force per unit axial I&m@cting on a side of the beam profile
generic degree of freedorthmi th element of FEM model

dynamic pressure

beam state evolution time

reference time

airflow speed

beam points axial and flexural displacements,eetypely
non-dimensional flexural displacement

generic coefficients of the non-dimensional fletudisplacement
series expansion



Wi, non-dimensional flexural displacement on a gen@gi& 1)th section§;  of
FEM model

X beam axial coordinate

Greek symbols

a non-dimensional beamabgarameter

B, Vm non-dimensional Mach numbenspeeters

y ratio between the spetieat at constant pressure and volume, resgdygtiv

v,V non-dimensional aerodynamimping coefficients

A non-dimensional masdrihution parameter

&, rotation parameter in @fweric(ie +1)th section§; of FEM model

Y7, mass per unit length

& non-dimensional axiabadinate of the beam

$ig non-dimensional axial miinate of the i +1)th section§;_ of the
FEM model

én normalized axial coorate of a beam element in the FEM model

Poo unperturbed air density

o dimensional dynamicgsu@e parameter

gq dimension-less dynamicsgtee parameter

T non-dimensional time

Pij integral of the produetween the first derivatives of the generic

describing functiorfs(¢) and f ; (¢)



W

normal speed down- onash
angular frequency

dimension-less angular fregy parameter

Special symbols

Subscripts
d

i,k

partial differentation

square summable functions space

definition domain of thesttribing functions
utilized matrices in the genered form equation
structural and linear agmoaimic forces matrix
mass matrix
kinetic energy
potential energy

column vectors of the unknown viales and their time first derivatives

column vector with elements thplérproducts between unknown variables

column vector with elements thel&iproducts between two unknown variables
and a time first derivatof a third variable

subscript referring imdnsion-less parameters

subscripts referring to functi@sl unknown variables coefficients
of the flexural displacement series expansion

subscript referring te ff, +1)th sectionSie of the FEM model



k

ip’jp’ p’lp

nd

00
Superscripts
(ie)
acronyms

FEM

subscripts characterizing the unknown varsbledthe coefficients of the
flexural displacement series expansion in i@¢h element of FEM model

subscript referring to namdnsional variables

subscript referring to tigerturbed airflow

superscript referringhe i.th element of FEM model

finite element method

1. Introduction

From many years steady and unsteady aerodyn#meiory for aeroelastic panels flutter

computations has received a lot of interest alsbigi supersonic speed regimen. It is useful to

bring into perspective the main authors who devediogtudies for flutter analysis of panels exposed

to a high supersonic flow.

Lighthill [1953] first proposed a “Piston Thgt, which was proved to be an efficient and

powerful tool for panel flutter analysis. It cée used to calculate the pressure on an airfoil in

steady or unsteady motion with remarkable accurawgn under non-isentropic conditions,

whenever the flight Mach NumbeM ., has such an order of magnitude thid (f, >> 1. This

Piston theory is quite attractive for flutter steslidue to its simplicity in comparison with other

supersonic theories.



This theory has been discussed by Ashley antbian [1956], who made suggestions on
following researches based on this new efficiembdgnamic tool, with particular regard to areas
where computational labor can be reduced withaihtpthe necessary accuracy.

Morgan et al. [1958] analyzed some of the tiesorfor two-dimensional oscillatory wing
structures, able to be applied for flutter compatet in high Mach Number. The results obtained by
the various aerodynamic theories have been comgaretieir flutter prediction in various Mach
Number ranges. Also some possible refinementh@f‘Piston Theory” have been proposed for
high Mach Numbers.

The heritage of the studies of the above maatoauthors enables us to know the complete
expression of the aerodynamic transverse distribiastece acting on a beam, which makes possible
to determine its flutter dynamic response aftpprapriate approximations.

The object of this paper is to give detailediegh explanations of the utilized algorithms fasth
bean flutter dynamic analysis.

Three different schemes have been exploitedth® flutter computational work, like in the case
of the beam flutter analysis with linearized andailized “Piston Theory” [Tizzi 1994; 2003]. First
a numerical procedure [Tizzi 1994; 1996; 2003] whigrises from the Rayleigh-Ritz method
[Kantorovich and Krylov 1964; Mikhlin 1964; Redd®86], has been utilized, together with the
finite element method (FEM) [Weaver and Johnstog4] ®Reddy et al. 1988; Qin et al. 1993]. By
knowing the structural and inertial forces potahfunctional and the aerodynamic generalized
force, it has been possible to apply the Lagrarmgetons [Pars 1968] and derive the generalized

governing equation in time, for which appropriated-integration algorithms exist.



Then the Galerkin method [Kantorovich and KwylL964; Mikhlin 1964; Tizzi 1994; 2003] has
been employed in the simply supported beam case, tag Dowell’'s model [Dowell 1966; 1967],
to validate the results of Ritz and FEM procedures.

The same procedures have been utilized in preaattsor’'s paper, but herein for the first time,

these methods have been applied with non-lineadgeamic forces presence.

2. Mathematical for mulation

A vibrating beam exposed to a high supersdoig ilong thex axis, previously analyzed with
the linear aerodynamic model [Tizzi 1994; 2003k assidered and drawn in Fig.1.

The interest of the analysis herein develojgetimited to the non-linear aerodynamic forces
components of the “Piston Theory”, considering thla¢ terms of all structural and linear
aerodynamic forces components have been suffigialitistrated. The exact expression of the
pressure acting on a beam element (unidimensitowa) is [Lightill 1953; Ashley and Zartarian

1956; Morgan et al. 1958]:

_p=(1+y‘1iy'l (1)

where: y =c, /¢, is the ratio between the specific heat at congisegsure and volumec, and

c,, respectively, y is the normal down- or up-wash, that is the conpbf the fluid velocity in



the z —direction, normal to the beam profile, aad, = yp—°° is the sound speed; furthermore

P and p., are the pressure and density of the unperturbdbvai This pressure can be

expressed in terms of series expansion functioneaiés vsy , as follows:

2 3
p X .1 X 1 b%
=1+y-2-+= y+])(—] + = y+1(—] +.... (2)
Peo A, 4y( A, 12y( ) A,

The dimensional dynamic pressure parameteis also introduced:

g=—"hy (3)

where: [ = MO% -1, My, =U, /a, is the Mach numberg :%pmuf, is the dynamic

pressurel,, is the airflow speed, anbl, is the beam width. Like in the previous authqéper
[Tizzi 2003], the aerodynamic expressions of amitd plate along the third not considergdaxis,

are applied, together with the structural constitutelations of a beam; this hyphothesis can be

accepted if the beam width, is very higher tharl .

Since it is true that:

JM2 -10M, (4)



if the Mach number is high enough, it is also titoe:
2
0 =2 B O Maably (5)

in view of the previously introduced expressiohgjpM ,, and a,, .
Thus the force per unit axial length acting asteside of the beam profile can be evaluated from

Eq. (2), and, by virtue of Eg. (5) and the exp@ssif M, , it can be written as:

+1 2 +1 3
Pa=ApbW=UUX +y4 Mw()(j +Y Mf{){j +... (6)

where Ap = p - p. IS the pressure variation with respect to the unpeed static conditions
P= Pow-

The analysis has been developed only for symreEases, that is, both sides of the beam profile
are exposed to the same airflow, and consequenljytbe odd powers give a contribution. In fact,
taking into account that the normal speed componeritas opposite values on the upper and lower
side, their effects sum-up for the odd powers aush for the even ones. Thence the resultant of

the aerodynamic forces acting on both sides perdemgth can be written as:

Fa = 20

+1 3
X yYripel X . 7)
Uy, 12 Us
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The normal speed component due to the profiheaohics can be expressed as:

ow ow
=U,—+— 8
X ox ot ®)

where w is the beam points flexural displacement.
Substituting formula (8) of the normal fluidlweity into Eq. (7) gives the new expression & th

resultant aerodynamic distributed force:

3 2
ow ow 1 ow ow 1 ow
F. =20 2= + — | +...| +200——+ — | ——+...... +.... 9
a {ax ym[axj ] J{uw ot y”‘lg(ax] U, at ] } ®)
. y+1,.,2
where: Ym = T Mg (9a)

and the subsequent terms in the series expansionbeaneglected. This is formed by two

components: (1) the first,, containing only spatial derivatives, is the conglelement between
odd and even vibrating modes, which exists algbout damping, (2) the secong,,, containing

also time derivatives, give rise to the aerodynadigsipative force and damping. This second
component is not considered for the undamped tildeam resolution.

The linear component of the distributed aeraayic force in Eq. (9) is equal to the one obtdine
by Ashley [Bisplinghoff and Ashley 1975; Tizzi 2003xcept for the presence of the ratio
(MO% —2)/(M£ —1) before the time derivativ@w / dt, which is approximately equal to the unity

for high Mach numbers.
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It is necessary to recall the vibration goverrmgggiation of the fluttering beam [Tizzi 2003]:

4 2 2732
EIO_W_'_'UO_W_EASE(O_WJ a_W+|:a:o (20)
ax* T at? 2\0x) gx?

where A, = b,h is the cross-sectional ared is the beam thicknessE is the Young’'s modulus,

M is the distributed mass per unit length, dnd Eb,vh3/12 is the flexural moment of inertia.

2
Furthermore@—wj has been previously defined as the mean squate \al the flexural
X

displacement first axial derivative over the whibéam length; the third term of Eq. (10), containing
this mean square value, corresponds to the noarlic@mponent of the transverse structural force,
due to the beam axial stretching .

The axial inertia effects are being neglectlke in the previous analysis with linearized
aerodynamic model, considering that the axial vibra frequencies are higher than the
corresponding ones of the flutter vibration, and the axial vibration frequency range is different
from the flutter frequency range .

Substitution of the expression (9) of the agnasnic distributed force into Eq. (10), with the
assumed approximations, leads to the followingegowmg equation:

4 2 2 52 3
Ela wwa W_EAsl(a_wj 0 W+20_6_W+ym(a_wj
x4 at? 2\0x ) 9x? ox 0X

2
1 ow ow 1 ow
+20{——+ —| —— 1} =0 11
{um ot ym[{axj Ug at]} (1)
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which can be reformulated in dimension-less fosm a

2 2
oy S Ga] |4 S () e e

where the flexural displacement and the axial coate have been reformulated in non-dimensional

form, and other dimension-less parameters have ineéeduced::

4
(,):W(x,t) £ X 't ot 123
L L EITZ To
2013 12 20 L
Oy =—— a=— =— '=3 12b
d =g | y UL BN, V'=3/ Vm (12b)

and further T, is a reference time.

The third and fifth terms in Eqg. (12) refer toe non-dimensional equivalent form of the

distributed aerodynamic force expression in Eq. (9)

oo 3 el o o
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The Einstein’s summation convention for repéatelices will be adopted in all the forthcoming

expressions.

A series expansion fcw(f, r) in terms of function elements can be chosen:

w(¢,7) =W (z)5(¢) i=12...,N (14)

where each coefficienw,(r) is a Lagrangian degree of freedom arip(f) are polynomial
describing functions, belonging to the space ofdtpgare summable functions{Z(S), defined in
the domaings (which in this case is the whole beam length). seheatisfy only the geometric
boundary conditions, as in the Ritz and FEM methdti® meaning of the coefficientW,(r) and
the describing functiond, ({) are illustrated in Appendix A for the Ritz methahd Appendix B

for FEM.
Eq. (12) can be transformed into its generdlizquivalent form by the variational principle

[Pars 1968], if the Lagrangian functional is imuced:

L=T-U (15)

where 7 is the kinetic energy and is the strain energy. Thus the generic generalizbd

governing equation can be written in the clasdiegrangian form:

dlocew) o

+r@ =g i=1.2... N 16
dT avvl | I ’ ( )

14



where F,(a) is the generalized aerodynamic force acting onitttedegree of freedom. It is possible
to set a correspondence between each term ofgémsralized equation with each one of the
governing Eq. (12).

The potential strain energy expression has b#eady determined [Tizzi 2003]:

v= % ij WiWj +%¢ij P W W W W i,i,kl=12..,N 17)

where:

Lo, (£) of ; (£)
gi = |~ ———d& (17a)
! £ 0  oF

The stiffness matrix elemenks have been previously evaluated [Tizzi 1994]; obsly kijV'\'/j

is the generalized linear structural force actingfwe i th degree of freedom , which corresponds to
the first term in Eq. (12). The elements of theoselcterm at the second member of Eq. (17),

corresponding to the non-linear contribution toshectural strain energy , are also known.
The expression of generalized aerodynamic fd-ﬁé%) acting on theith degree of freedom,

corresponding to the third and fifth terms in E§2)( can be obtained by the use of the series

expansion (14) in Eq. (13), and projecting the whdtqg. (13) onto the generic function element

fi (5) Thus:

Fi(a) = ajWj + Vmbijia WM W + )/ W + " dijlg WM W (18)
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Lkl =12..,N i=1,2...,N

where the coefficients; and ¢; are well known from the previous analysis [Tiz@03]:

1 of . 1
CY %h@jgw G = | fi(é)f;(é)de (18a)
0 0

and the new introduced ones are defined as:

T o) an (€) o, (¢) i ot (€) of, (¢)
b = og fi(§) 222K LTS g dy = oy [ f()f (§) LT g (18b)
ikl d£ af af af jkl d£ j af 0{

The coefficients by, and djj have been determined both for the Ritz methodf@nBEM, in

Appendix A and B, respectively.

Also the mass matrix elementy in the kinetic energy expression:
T = My

W =0W //oT i,j=12..,N (19)

have been previously evaluated [Tizzi 1994]. lri that:

m; = Ag; (20)
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where the non-dimensional coefficieat has been defined in Eqg. (12a). It is well knowat th

- mjVVj is the generalized inertial force acting on thile degree of freedom, corresponding to the

second term of the governing Eq. (12).

If the expressions of the strain and kinetiergg in Eqs. (17) and (19), respectively, alonghwit
the expression of the generalized aerodynamic fordeq. (18), are substituted into Eq. (16), in
view of the Lagrangian functional expression in ELp), it is possible to achieve the equivalent

generalized form of the governing Eq. (12), coroesjing to the genericth degree of freedom, as

follows:

* a .. . ’ .
[kij +E¢ij (BraWiW )}WJ + Ymbijlt WW W+ my Wy + / cjW; + )" dijg MWW, =0 (21)

ik, =1,2...,N i=1,2...,N

The matri>e|ementski; , referring to both structural and aerodynamicdirferces, can be written

as:

ki? = ki + g (22)
Thusk{Wi is the generalized linear structural-aerodynamice acting on the sameh degree

of freedom, which corresponds to the first term #refirst part of the third term of the governing

Eq. (12).
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2
Further the term(¢, W\ ) between brackets in Eq. (21), is the mean sqtmime{%—?) of

the first derivative %—V:(/ over the whole beam length, which has been alr@atdyduced in Eqg.

(10). This is the reason for which it has been temitseparately in round brackets. As above
mentioned, it takes into account the beam axiatdting, which gives rise to the non-linear

component of the structural transverse force, aéisariourth term of Eq. (12).

The term containing the coefficient,, in Eqg. (21) is equivalent to the second part ef tthird

J

term of Eq. (12), and the terms containing and y” are equivalent to the ones with the same
coefficients in the governing Eqg. (12).

The system of the generalized governing E2f), (in view of Eq. (20), can also be written in

matrix form:

Z=W

7 =-MtFw -y M Bw —%z ~y'Mpw() (23)

where: (1) W and Z are the column vectors of the coefficied¥s and their first derivativer

vs time 7, respectively,(2) F is the matrix whose elements are:

fj =k + % (B ) (24)
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(3) M is the mass matrix(4) B is a matrix with dimensions\ x N2, whose elements are

b, =B itz is the contraction of the three indicgld and obviously ji; = 1,2...N%), (5)

W(3) is the column vector with dimensionsl®, whose elements are the triple products
Pits = WMWW, between the coefficients of the series expansioRd. (14), (6) D is a matrix

whose elements ared; . = dj, and with the same dimensions &, and at las{7) W(3d) IS a

ijt3
column vector with the same dimensions W(3), whose elements are the triple products
Qjts = W, .

Egs. (21) and (23) are the same of the prevamadysis with linearized aerodynamic forces,
except for the presence of the terms vy and d;y in Egs. (21), and the corresponding matrices
B and D in Eq. (23), referring to the non-linear contribbat of the “Piston Theory” to the
aerodynamic forces. The system of Egs. (23) cantbgrated in time by appropriate algorithms.

In the case of a simply supported beam itasydo apply also the Galerkin method, as in the
Dowell’'s model [Dowell 1966; 1967], as shown in Agoplix C. Tha advantages of the Galerkin
procedure arise from the diagonal form of the nraatrix M, due to the orthogonality between

different describing function elements.
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Appendix A

Only the parameters which refer to the nondingerodynamic forces are herein evaluated. The
way to determine the others has been sufficielitigtrated in the previous author’'s papers [Tizzi

1994; 2003].
The generic describing function of the benditeflection w(&,r) series expansion in Eq. (14)

can be written as:

fil€)=¢l-¢) o fle)="0-¢f (A1)

for the simply supported or clamped at both endsrheespectively.

This function can also be written in a moraeyal concise form:

f(e)=g & m im=0,1.j) (A2)

where iy = 1lrefers to the simply supported beam, whereag i  th2 beam clamped at both

ends is considered. Furthermore it is assumed that

i*=ip- 1 and = 1 s =- =1 (A.2a)

If the generic describing function in Eq. (A.B substituted into the expression of the

coefficientsy, in Eq. (18b), one obtains:
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1
Mi+im+ ]+ im+tK+Kky+l +l,+4i % -2

b = (J +1 % +jm)k +i % +k )l +i* Hig)g i s
iy Koy | = 0,1 i,k =1,2..N (A.3)

and the analogous expression of the other coeffisid;,, in Eq. (18b) can be written as:

1
Mitimt ]+ imtk+tkny+l +l+4i*-1

dijg = (K +i %+ )l +i % +lp)s_sj s §

imimy Kmslm = 0,11 i, i,k =12.N (A.4)

Appendix B

Also for FEM only the coefficients referring the non-linear components of the aerodynamic
forces are herein evaluated, because sufficientaeapons to determine the other beam flutter

parameters have been given in the previous mermtianghor’'s papers.

The beam is divided intblg elements and the geneiigh element lies between the sections
S.-1 and S, whose non-dimensional axial coordinates arj _; = (ie —1)/ Ng and

¢, =le/ Ng, respectively. The non-dimensional normalized lag@ordinate of a generigth

element can be introduced:
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&G=l-& - Ne &1sé<§,  0sé&<i (B.1)

The non-dimensional bending tranverse deflectM/({) can be expressed vs the normalized

axial coordinateé, in the igth element in the classical and well known fornz£i 1994; 2003]:
i i.-1 ..
W(g) = Ql(:)e)c| p|a£|!1a Iplla :1)2131‘ (B.Z)

where the indexi, characterizes the nodal degree of freedom attbelelimiting sections§_-;

and §_, thatis:
(B.3)

and vvie,eie are the flexural displacement and a rotation patam(the true rotation divided by

Ng), respectively, at the sectiorg; . The values of the coefficientsqpia can be evaluated by

imposing that the boundary conditions in Eq. (Bo8) the ioth element are fulfilled. Thus the

matrix [C] whose elements are the same coeﬁiciem]'lto$a, can be written in the well known form

as.
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1 0 -3 2
01 -2 1
[c]= (B.4)
00 3 -2
00 1 -1

The index i, characterizing the generic coefficia and the generic describing functidr({)
of the series expansion in Eq. (14), is connectigd e above introduced indicés andiyvia the

introduced relations in the same previous authpéper [Tizzi 2003]. The generic polynomial

describing functionf; (E) of the bending displacement in thigth element of FEM model is the

same introduced in Eq. (B.2):

in—1 . .
fi(€)=cij, &t i =iflesip) (B.5)
ipsia =1,2,3, ie =1,2..Ng i=1,2..N
where N = 2Ng for the simply supported beam and = 2(NE —1) for the beam clamped at both

ends. The generic Lagrangian degree of freedo@ﬁé), whose meaning has been explained in Eq.
p

(B.3). Thus, by the use of the describing functioreqg. (B.5), the expression of the coefficients

b andd, , introduced in Eq. (18b), can be evaluatedhéith beam element and written as:

_ 1
iy = NZjaKalaCi i Ci i C c B.6
ijkl Ela¥alaCipia®jpja “kpka lplaia+ Jatka tlg =6 =o
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ia = ’Bg jal kalla = 2’3,Z

_ 1
diji = NEKalaCiji, Cj i, Ckpka Ol la ¥ .k, +1. -5 . (B7)
g, jg =1,2,3, kyylg = 2,34
i iprkpslp =123 i =ileip) i=ilieip) k=kliekp) 1=llelp) (B.72)

taking into account thatdé = d¢, / Ng from Eq. (B.1). By summing-up the effects of ladlam

elements it is possible to know the resulting vadfiehese coefficients, which can be substituted

into the generalized Eq. (21) to find the requestddtion.

Appendix C

Also with Galerkin method the interest of camgiional work is limited to the non-linear
aerodynamic forces components, because the othenpters are already known.

The chosen describing function of the trarsyeleflection series expansion is the trigonometri

type:

W(¢, 7) =W (r)sin(i725) (C.1)
This series expansion can be substituted igtdR) , and then by pre-multiplying by the geaeri
describing function sin(i7Z) and integrating throughout the beam length, fidssible to achieve

the dynamic governing equation:
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[Iinear tems+ non- linearstructurat force§+ YmJd sccMWW; + JSSCkaV\/|Wj =0 (C.2)

ikl =12..N

where:
Iscce = (k)i ) sinfi7)oos(j e pos(krat oos( 7)dé (C.2a)
Issce= (ki m)f; sinfi sin(j 22 os{kiat oos{ 72 )dé (C.2b)

The two introduced integrals can be easilyrdateed.
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