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Abstract                                                                         

 

    This work aims to the explanations of the analytical developments in the dynamic analysis  of a 

vibrating beam, simply supported or clamped at both ends, under the effects of a high supersonic 

airflow along its axial direction. A  complete aerodynamic model of the “Piston Theory”, which 

takes into account also the non-linear components of the distributed aerodynamic transversal force, 

is utilized. The post-critical  flutter behavior has been studied considering  their influence on the 

vibration state solutions of a fluttering beam without aerodynamic damping. mode). 

    Three different schemes, two of which are semi-analytical, (based on the classical and well 

known Rayleigh-Ritz and Galerkin methods), and a numerical one (based on the finite element 

method (FEM)),  have been herein exploited, like in previous author’s papers, where  beam flutter 

models with linear aerodynamic analysis were utilized. 
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    More sophisticated models have been herein set-up, considering that a more accurate analysis is 

necessary with respect to the previous cases where the aerodynamic numerical model was limited 

within the framework of the quasi-steady linearized  “Piston Theory”, both for the coupling 

component between odd and even order vibrating modes, and for the aerodynamic damping 

component      

   

 

Nomenclature 

 

sA                           beam cross-section area        

∞a                        sound speed 

wb                           beam width 

ijij ca ,,,,                    coefficients determined by integrals in Ritz and FEM models 

ijklijkl db ,,,,                

apiic                         generic coefficient of the  non-dimensional flexural deflection series expansion  

                                in the  generic ei th element of FEM model 

E                             Young’s modulus 

aF                             resultant of the aerodynamic forces acting on both sides of the beam 

                                 per unit length  

( )a
iF                         generalized aerodynamic force acting on the i th degree of freedom 

( )ξif                        generic trial describing function  of the non-dimensional flexural deflection 

                                through the beam length  

h                              beam thickness 
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I                             flexural moment of inertia 

ssccsccc JJ ,,,,             particular integrals utilized in the Galerkin method 

ijk                           stiffness matrix elements  

****
ijk                           linear structural and aerodynamic forces resultant matrix elements  

L                     beam length  

∞M                       Mach  number 

ijm                        mass matrix elements  

N                         whole number of the degrees of freedom 

EN                         whole number of the elements in FEM model 

∞p                          unperturbed air pressure 

aP                           force per unit axial length acting on a side of the beam profile    

( )e

p

i
i

Q                       generic degree of freedom in the ei th element of FEM model 

q  dynamic pressure 

t  beam state evolution time 

oT  reference time 

∞U  airflow speed 

wu,,,,  beam points axial and flexural displacements, respectively 

W  non-dimensional flexural displacement 

iW  generic coefficients of the non-dimensional flexural displacement 

                               series expansion 
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eiW  non-dimensional flexural displacement on a generic ( )1+ei th section 
ei

S of  

                               FEM model 

x                             beam axial coordinate 

 

Greek symbols 

α                            non-dimensional beam axial parameter 

mγβ ,,,,                     non-dimensional Mach numbers parameters 

γ                             ratio between the specific heat at constant pressure and volume, respectively 

"""",,,,'''' γγ                      non-dimensional aerodynamic damping coefficients 

λ                             non-dimensional mass distribution parameter        

eiθ                           rotation parameter in the generic ( )1+ei th section 
ei

S of  FEM model 

 µ                            mass per unit length 

ξ                             non-dimensional axial coordinate of the beam 

ei
ξ                           non-dimensional axial coordinate of the  ( 1+ei )th section 

ei
S  of the  

                               FEM model      

nξ                             normalized axial coordinate of a beam element in the FEM model 

∞ρ                           unperturbed air density   

σ                             dimensional dynamic pressure parameter 

dσ                          dimension-less dynamic pressure parameter 

τ                             non-dimensional time 

ijϕ                           integral of the product between the first derivatives of the generic  

                              describing functions  ( )ξif  and ( )ξjf  
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χ                           normal speed down- or up-wash      

ω                           angular frequency 

dω                        dimension-less angular frequency parameter 

 

Special symbols 

∂                           partial differentation 

( )SH 2                   square summable functions space      

S                          definition domain of the describing functions        

DB,,,,                    utilized matrices in the generalized form equation 

F                         structural and linear aerodynamic forces matrix 

M                       mass matrix  

T                        kinetic energy 

U                        potential energy 

ZW,,,,                 column vectors of the unknown variables and their time first derivatives 

( )3W                  column vector with elements the triple products between unknown variables 

( )3dW                column vector with elements the triple products between two unknown variables 
                           and a time first derivative of a third variable  

 

Subscripts 

d                            subscript referring to dimension-less parameters 

lkji ,,,,,,,,,,,,                   subscripts referring to functions and unknown variables coefficients  
                              of the flexural displacement series expansion  

ei                           subscript referring to the ( 1+ei )th section 
ei

S  of the FEM model 
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pppp lkji ,,,,,,,,,,,,      subscripts characterizing the unknown variables and the coefficients of the                                       

                             flexural displacement series expansion in the  ei th element of FEM model 

nd                        subscript referring to non-dimensional variables  

∞                          subscript referring to the unperturbed airflow 

Superscripts 

( )ei                           superscript referring to the   ei th element of FEM model 

acronyms 

FEM                      finite element method 

 

 

    1. Introduction 

 

    From many years steady and unsteady aerodynamic theory for aeroelastic panels flutter 

computations has received a lot of interest also in high supersonic speed regimen. It is useful to 

bring into perspective the main authors who developed studies for flutter analysis of panels  exposed 

to a high supersonic flow. 

    Lighthill [1953] first proposed  a “Piston Theory”, which was proved  to be an efficient and 

powerful tool for  panel flutter analysis. It  can be used to calculate the pressure on an airfoil in 

steady or unsteady motion with remarkable accuracy, even under non-isentropic conditions, 

whenever the flight Mach Number ∞M has such an order of magnitude that  1>>∞
2M .  This 

Piston theory is quite attractive for flutter studies due to  its simplicity in comparison with other 

supersonic theories. 
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    This theory has been discussed by Ashley and Zartarian [1956], who made suggestions on 

following researches based on this new efficient aerodynamic tool, with particular regard to areas 

where computational labor can be reduced without losing the necessary accuracy. 

    Morgan et al. [1958] analyzed some of the theories for two-dimensional oscillatory wing 

structures, able to be applied for flutter computations in high Mach Number. The results obtained by 

the various aerodynamic theories have been compared for their flutter prediction in various Mach 

Number  ranges. Also some possible refinements of the “Piston Theory” have been proposed for 

high Mach Numbers. 

    The heritage of the studies of the above mentioned authors enables us to know the complete 

expression of the aerodynamic transverse distributed force acting on a beam,  which  makes possible 

to determine its flutter dynamic response  after  appropriate approximations.  

    The object of this paper is to give detailed enough explanations of the utilized algorithms for this     

bean flutter dynamic analysis. 

    Three different schemes have been exploited  for the flutter computational work, like in the case 

of the beam flutter analysis with linearized and idealized “Piston Theory” [Tizzi  1994; 2003]. First  

a numerical procedure [Tizzi 1994; 1996; 2003] which arises from the Rayleigh-Ritz method 

[Kantorovich and Krylov 1964; Mikhlin 1964; Reddy 1986], has been utilized,  together with the 

finite element method (FEM) [Weaver and Johnston 1984; Reddy et al. 1988;  Qin et al. 1993].  By 

knowing the structural and inertial  forces potential functional and the aerodynamic generalized 

force, it has been possible to apply the Lagrange equations [Pars 1968] and derive the generalized 

governing equation in time, for which appropriate time-integration algorithms exist.   
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    Then  the Galerkin method [Kantorovich and Krylov 1964; Mikhlin 1964; Tizzi 1994; 2003] has 

been employed in the simply supported beam case, as in the Dowell’s model [Dowell 1966; 1967],  

to validate the results of Ritz and FEM procedures.  

      The same procedures have been utilized in previous author’s paper, but herein for the first time, 

these methods have been applied with non-linear aerodynamic forces presence.  

    

 

 2.  Mathematical  formulation 

 

    A vibrating beam exposed to a high supersonic flow along the x  axis, previously analyzed  with 

the linear aerodynamic model [Tizzi 1994; 2003], is considered and drawn  in Fig.1. 

     The interest of the analysis herein developed is limited to the non-linear aerodynamic forces 

components of the “Piston Theory”, considering that the terms of all structural and linear 

aerodynamic forces components have been sufficiently illustrated. The exact expression of the 

pressure acting on a beam element  (unidimensional flow) is [Lightill 1953; Ashley and Zartarian 

1956; Morgan et al. 1958]:  

                       

                                                        
1

2

2
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where:  vp cc ////=γ  is the ratio between the specific heat at constant pressure and volume,  pc  and 

vc ,  respectively,  χ  is the normal down- or up-wash, that is the component of the fluid velocity in  
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the −z direction, normal to the beam profile, and 
∞

∞
∞ =

ρ
γ p

a  is the sound speed; furthermore 

∞p  and ∞ρ  are the pressure and density of the unperturbed airflow.  This  pressure can be 

expressed in terms of series expansion function elements vs χ , as follows: 
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 The dimensional dynamic pressure parameter  σ  is also introduced:                                          

 

                                                                  wb
q

β
σ 2=                                                                        (3) 

 

where:  12 −= ∞Mβ ,  ∞∞∞ = aUM ////  is the Mach number, 2

2

1
∞∞= Uq ρ  is the dynamic 

pressure, ∞U   is the airflow speed, and wb  is the beam width.  Like in the previous author’s paper  

[Tizzi 2003], the aerodynamic expressions of an infinite plate along the third not considered y  axis, 

are applied, together with the structural constitutive relations of a beam; this  hyphothesis can be 

accepted   if the  beam  width wb is very higher than L .    

    Since it is true that: 

 

                                                           ∞∞ ≅− MM 12                                                           (4) 
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if the Mach number  is high enough, it is also true that: 

 

                                                      ww bMpb
q

∞∞≅= γ
β

σ 2
                                                         (5) 

 

in view of the  previously introduced expressions of ∞Mq,,,,  and ∞a . 

   Thus the force per unit axial length acting on each side of  the beam profile can be evaluated from 

Eq. (2), and, by virtue of Eq. (5) and the expression of ∞M , it can be written as: 
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where  ∞−=∆ ppp is the pressure variation with respect to the unperturbed static conditions 

∞= pp . 

    The analysis has been developed only for  symmetric cases, that is, both sides of the beam profile 

are exposed to the same airflow, and consequently only the odd  powers give a contribution. In fact, 

taking into account that the normal speed component χ  has opposite values on the upper and lower 

side,  their effects sum-up for the odd powers and vanish for the even ones. Thence the resultant of 

the aerodynamic forces acting on both sides per unit length can be written as: 
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    The normal speed component due to the profile dynamics can be expressed as: 

 

                                                               
t
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∂
∂= ∞χ                                                                 (8) 

where  w  is the beam points flexural displacement. 

    Substituting formula (8) of the normal fluid velocity into Eq. (7) gives the  new expression of the  

resultant aerodynamic distributed force:   
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                       where:                                  21
∞

+= Mm 12

γγ                                                             (9a) 

 

and the subsequent terms in the series expansion can be neglected. This is formed by two 

components: (1)  the first 1aF , containing only spatial derivatives, is the coupling element between 

odd and even vibrating modes,  which exists also without damping, (2) the second  2aF , containing 

also time derivatives, give rise to the aerodynamic dissipative force and damping. This second 

component is not considered for the  undamped vibrating beam resolution. 

    The linear component of the distributed aerodynamic force in Eq.  (9) is  equal to the one obtained 

by Ashley [Bisplinghoff and Ashley 1975; Tizzi 2003], except for the presence of the ratio  

( ) ( )12 −− ∞∞
22 MM ////  before the time derivative tw ∂∂ //// , which  is approximately equal to the unity  

for high Mach numbers.  
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  It is necessary to recall the vibration governing equation of the fluttering beam [Tizzi 2003]:                                          
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where hbA ws =  is the cross-sectional area,  h is the beam thickness,  E  is the Young’s modulus, 

µ  is the distributed mass per unit length, and 123////hEbI w=  is the flexural moment of inertia.      

    Furthermore 
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displacement first axial derivative over the whole beam length; the third term of Eq. (10), containing 

this mean square value, corresponds to the non-linear component of the transverse structural force, 

due to the beam axial stretching .  

    The axial inertia effects are being neglected, like in the previous analysis with linearized 

aerodynamic model, considering that the axial vibration frequencies are higher than the 

corresponding ones of the flutter vibration, and so  the axial vibration frequency range is different 

from the flutter frequency range .         

    Substitution of the expression (9) of the aerodynamic distributed force into Eq. (10), with the 

assumed approximations, leads to the  following governing equation: 
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which can be reformulated  in dimension-less form as: 
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where the flexural displacement and the axial coordinate have been reformulated in non-dimensional 

form, and other dimension-less parameters have been introduced:: 
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and further   oT  is a reference time. 

    The third and fifth terms in Eq. (12) refer to the non-dimensional equivalent form of the 

distributed aerodynamic force expression in Eq. (9): 
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    The Einstein’s summation convention for repeated indices will be adopted in all the forthcoming 

expressions.  

     A series expansion for ( )τξ ,,,,W  in terms of function elements can be chosen: 

 

                                                ( ) ( ) ( )ξττξ ii fWW =,,,,             Ni ....,....,....,....,1,2=                                        (14) 

 

where each coefficient ( )τiW  is a Lagrangian degree of freedom and ( )ξif  are polynomial 

describing functions, belonging to the space of the square summable functions  ( )SH 2 , defined in 

the domain S  (which in this case is the whole beam length). These satisfy only the geometric 

boundary conditions, as in the Ritz and FEM methods. The meaning of the coefficients  ( )τiW  and 

the describing functions ( )ξif  are illustrated in Appendix A for the Ritz method, and Appendix B 

for FEM. 

    Eq. (12) can be transformed into its generalized equivalent form by the variational principle   

[Pars 1968], if the Lagrangian functional  is introduced: 

 

                                                                    U-TL =                                                                     (15) 

 

where T  is the kinetic energy and U  is the strain energy. Thus the generic generalized i th 

governing equation can be written in the classical Lagrangian form:  
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where ( )a
iF  is the generalized aerodynamic force acting on the  i th degree of freedom. It is possible 

to set a correspondence between  each term of this generalized equation with each one of the   

governing Eq. (12). 

    The potential strain energy expression has been already determined [Tizzi 2003]: 

 

                       jilkklijjiij WWWWWWk ϕϕα
82

1 +=U                  Nlkji ....,....,....,....,,,,,,,,,,,,, 1,2=                   (17) 

where:                                     

                                                     
( ) ( )

ξ
ξ
ξ

ξ
ξ

ϕ d
ff ji

ij ∂

∂

∂
∂

= ∫
1

0

                                                            (17a) 

 

    The stiffness matrix elements ijk   have been previously evaluated [Tizzi 1994]; obviously jijWk &&  

is the generalized linear structural force acting on the i th degree of freedom , which corresponds to 

the first term in Eq. (12). The elements of the second term at the second member of Eq. (17), 

corresponding to the non-linear contribution to the structural strain energy , are  also  known.  

    The expression of generalized aerodynamic force ( )a
iF  acting on the i th degree of freedom, 

corresponding to the third and fifth terms in Eq. (12), can be obtained by the use of the series 

expansion (14) in Eq. (13), and projecting the whole  Eq. (13) onto the generic function element 

( )ξif .  Thus: 

                      

                          ( )
jlkijkljijjlkijklmjij

a
i WWWdWcWWWbWaF && """"'''' γγγ +++=                            (18) 
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                                     Nlkj ....,....,....,....,,,,,,,,, 1,2=                    Ni ....,....,....,....,1,2=       

 

where the coefficients ija  and  ijc  are well known from the previous analysis [Tizzi 2003]: 
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and the new introduced ones are defined as:  
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    The coefficients   ijklb  and  ijkld  have been determined both for the Ritz method and for FEM, in 

Appendix A and B, respectively. 

    Also the mass matrix elements ijm  in the kinetic energy expression:  

                                                                        

                               jiij WWm &&

2

1=T            τ∂∂= /////ii WW&           Nji ....,....,....,....,,,,, 1,2=                           (19) 

 

have been previously evaluated [Tizzi 1994]. It is true that: 

                                                                       ijij cm λ=                                                                    (20)               
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    where the non-dimensional coefficient λ  has been defined in Eq. (12a). It is well known that 

jijWm &&−  is the generalized inertial force acting on the i th degree of freedom, corresponding to the 

second term of the governing Eq. (12). 

    If the expressions of the strain and kinetic energy in Eqs. (17) and (19), respectively, along with 

the expression of the generalized aerodynamic force in Eq. (18),  are substituted into Eq. (16), in 

view of the Lagrangian functional expression  in Eq. (15), it is possible to achieve the equivalent 

generalized form of the governing Eq. (12), corresponding to the generic i th degree of freedom, as 

follows: 

   

   ( ) 0
2

=++++






 + jlkijkljijjijjlkijklmjlkklijij WWWdWcWmWWWbWWWk &&&& """"''''**** γγγϕϕα
   (21)    

                                                    Nlkj ....,....,....,....,,,,,,,,, 1,2=           Ni ....,....,....,....,1,2=                                            

                

    The matrix elements ****
ijk , referring to both structural and aerodynamic linear forces, can be written 

as:                     

                                                                  ijijij akk +=****                                                              (22) 

 

     Thus jijWk****  is the generalized linear structural–aerodynamic force acting on the same i th degree 

of freedom, which corresponds to the first term and the first part of the third term of the governing 

Eq. (12). 
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     Further the term  ( )lkkl WWϕ  between brackets in Eq. (21), is the mean square value 
2










∂
∂

ξ
W

 of 

the first derivative  
ξ∂

∂W
 over the whole beam length, which has been already introduced in  Eq. 

(10). This is the reason for which it has been written separately in round  brackets. As above 

mentioned, it takes into account the beam axial stretching, which gives rise to the non-linear 

component of the structural transverse force, as in the fourth term of Eq. (12).  

    The term containing the coefficient  mγ  in Eq. (21) is equivalent to the second part of the third 

term of Eq. (12),  and the terms containing  ''''γ  and  """"γ  are equivalent to the ones with the same 

coefficients in the governing  Eq. (12). 

    The system of the generalized  governing Eqs. (21),  in view of Eq. (20),  can also be written in 

matrix form:                                                                            

                           

                          WZ &=  

                         ( ) ( )d
m

31311 DWMZBWMFWMZ −−− −−−−= """"
'''' γ
λ
γγ&               (23) 

 

where:  (1) W   and Z  are the column vectors of the coefficients jW  and their first derivatives jW&  

vs time τ , respectively,  (2) F  is the matrix whose elements are:  

 

                                                            ( ) ijlkklijij WWkf ϕϕα
2

+= ****                                                     (24) 
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 (3) M  is the mass matrix, (4) B  is a matrix with dimensions 3NN × , whose elements are 

ijklij bb
t

=
3

  ( 3tj  is the contraction  of the three indices jkl   and obviously  31,2 Njt ................=3 ),  (5) 

( )3W  is the column vector with dimensions 3N , whose  elements are the triple products 

jlkjt WWWp =3  between the coefficients of the series expansion in Eq. (14),  (6) D   is a matrix 

whose elements are  ijklij dd
t

=
3

 and with the same dimensions of  B , and at last (7) ( )d3W  is a 

column vector with the same dimensions of ( )3W ,  whose elements are the triple products 

jlkjt WWWq &=3 .  

    Eqs. (21) and (23) are the same of the previous analysis with linearized aerodynamic forces, 

except for  the presence of the terms with ijklb  and ijkld  in Eqs. (21), and the corresponding matrices 

B  and D  in Eq. (23), referring to the non-linear contribution of the “Piston Theory” to the 

aerodynamic forces. The system of  Eqs. (23) can be integrated in time by appropriate algorithms. 

    In the case of a simply supported beam  it is easy to apply also the Galerkin method, as in the 

Dowell’s model [Dowell 1966; 1967], as shown in Appendix C. Tha advantages of the Galerkin 

procedure arise from  the diagonal form of the mass matrix M , due to the orthogonality between 

different describing function elements.  
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Appendix A 

 

    Only the parameters which refer to the non-linear aerodynamic forces are herein evaluated. The 

way to determine the others has been sufficiently illustrated in the previous author’s papers  [Tizzi 

1994; 2003].             

    The generic describing function of the bending deflection  ( )τξ ,,,,W  series expansion in Eq. (14) 

can be written as: 

                                              ( ) ( )ξξξ −= 1i
if        or        ( ) ( )2ξξξ −= + 11i

if                                 (A.1) 

 

for the simply supported or clamped at both ends beam, respectively. 

    This function can also be  written in a more general  concise form:      

 

                                              ( ) ****iii
ii

m
m

sf ++= ξξ            lm ii 0,1...=                                               (A.2)       

 

where   1=li  refers to the simply supported beam, whereas if  2=li   the beam clamped at both 

ends is considered.  Furthermore it is assumed that:  

 

                        1−= lii****              and        10 =s       1 lis −=         12 =s                                 (A.2a) 

        

    If the generic describing function in Eq. (A.2) is substituted into the expression of the  

coefficients ijklb   in Eq. (18b), one obtains: 
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( )( )( )
24

1

−++++++++
++++++=

****
************

illkkjjii
sssslilkikjijb

mmmm
lkjimmmijkl mmmm

 

                                   lmmmm ilkji 0,1...=,,,,,,,,                   Nlkji ....,,,,,,,,,,,, 1,2..=                                 (A.3) 

 

and the analogous expression of the other  coefficients  ijkld    in Eq. (18b) can be  written as: 

 

   ( )( )
14

1

−++++++++
++++=

****
********

illkkjjii
sssslilkikd

mmmm
lkjimmijkl mmmm

 

                       lmmmm ilkji 0,1...=,,,,,,,,                         Nlkji ....,,,,,,,,,,,, 1,2..=                                       (A.4) 

 

 

Appendix B 

 

     Also for FEM only the coefficients referring to the non-linear components of the aerodynamic 

forces are herein evaluated, because sufficient explanations to determine the other beam flutter 

parameters have been given in the previous mentioned author’s papers. 

     The beam is divided into EN  elements  and the generic ei th element  lies between the sections 

1−ei
S  and  

ei
S , whose non-dimensional axial coordinates are  ( ) Eei Ni

e
////11 −=−ξ  and  

Eei Ni
e

////=ξ , respectively. The non-dimensional normalized axial coordinate of a generic ei th 

element  can be introduced: 
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                                 ( ) Ein N
e 1−−= ξξξ        

ee ii ξξξ ≤≤−1       10 ≤≤ nξ                                   (B.1) 

 

    The non-dimensional bending tranverse deflection  ( )ξW  can be expressed vs the normalized 

axial coordinate  nξ  in the  ei th element  in the classical and well known form [Tizzi 1994; 2003]: 

         

                                        ( ) ( ) 1−= a
ap

e

p

i
nii

i
i

cQW ξξ               1,2,3,4=ap ii ,,,,                                     (B.2) 

 

where  the index  pi  characterizes the nodal degree of freedom at the two delimiting sections  1−eiS  

and  
ei

S , that is: 

  

                     ( )
11 −=

e
e

i
i WQ         ( )

12 −=
e

e
i

iQ θ           ( )
e

e
i

i WQ =3        ( )
e

e
i

iQ θ=4                        (B.3) 

 

and  
ee iiW θ,,,,  are the flexural displacement and a rotation parameter (the true rotation divided by 

EN ), respectively,  at the section  
ei

S . The values of the coefficients 
apiic  can be evaluated by 

imposing that the boundary conditions in Eq. (B.3) of  the ei th element  are fulfilled. Thus the 

matrix  [ ]C , whose elements are the same coefficients  
apiic , can be written in the well known form 

as: 
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                                                        [ ]


















=

1-100

2-3 00

12-10

23-01

C                                                             (B.4)                                                                           

     

    The index  i , characterizing the generic coefficient iW  and the generic describing function ( )ξif  

of the series expansion in Eq. (14), is connected with the above introduced indices ei  and pi via the  

introduced relations in the same previous author’s paper [Tizzi 2003]. The generic polynomial 

describing function ( )ξif  of the bending displacement in the  ei th element of FEM model  is the 

same introduced in Eq. (B.2):  

 

                                               ( ) 1−= a
ap

i
niii cf ξξ            ( )pe iiii ,,,,=                                               (B.5) 

                         1,2,3,4=ap ii ,,,,                  Ee Ni 1,2....=                  Ni 1,2....=                   

  

where  ENN 2=  for the simply supported beam and  ( )1−= ENN 2   for the beam clamped at both 

ends. The generic Lagrangian degree of freedom is  ( )e

p

i
i

Q , whose meaning has been explained in Eq. 

(B.3). Thus, by the use of the describing function in Eq. (B.5),  the expression of the coefficients 

ijklb  and ijkld , introduced in Eq. (18b),   can be evaluated  in the ei th beam element  and written as: 

 

 

6

12

−+++
=

aaaa
llkkjjiiaaaEijkl lkji

cccclkjNb
apapapap

                       (B.6) 
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                                                1,2,3,4=ai                         2,3,4=aaa lkj ,,,,,,,,      

 

                               
5

1

−+++
=

aaaa
llkkjjiiaaEijkl lkji

cccclkNd
apapapap

                .        (B.7) 

                                         1,2,3,4=aa ji ,,,,                           2,3,4=aa lk ,,,,                                

           1,2,3,4=pppp lkji ,,,,,,,,,,,,      ( )pe iiii ,,,,=       ( )pe jijj ,,,,=      ( )pe kikk ,,,,=      ( )pe lill ,,,,=       (B.7a)     

     

 taking into account that  En Ndd ////ξξ =  from Eq. (B.1). By summing-up  the effects of all beam 

elements it is possible to know the resulting value of these coefficients, which can be substituted 

into the generalized Eq. (21) to find the requested solution. 

 

 Appendix C 

 

     Also with Galerkin method the interest of computational work is limited to the non-linear 

aerodynamic forces components, because the other parameters are already known.  

     The  chosen describing function of the transverse deflection series expansion is the trigonometric 

type:   

 

                                                             ( ) ( ) ( )πξττξ iWW i sin=,,,,                                                    (C.1) 

    This series expansion can be substituted into Eq. (12) , and then by pre-multiplying by the generic 

describing function  ( )πξisin  and integrating throughout the beam length, it is possible to achieve 

the dynamic governing equation: 



 25

  

    [ ] 0forces- structurallinear - non mslinear ter =+++ jlkssccjlkscccm WWWJWWWJ &""""γγ       (C.2)   

                                                        Nlkj 1,2....=,,,,,,,,  

where:                                                                

                    ( )( )( ) ( ) ( ) ( ) ( ) ξπξπξπξπξπππ dlkjilkjJsccc coscoscossin∫=
1

0
                            (C.2a)                                          

                    ( )( ) ( ) ( ) ( ) ( ) ξπξπξπξπξππ dlkjilkJsscc coscossinsin∫=
1

0
                                   (C.2b)                            

 

    The two introduced integrals can be easily determined. 
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