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This paper studies the dynamic fatigue or slow crack growth in piezoelectric ceramics under electrome-
chanical loading by a combined numerical-experimental approach. Constant load-rate testing was con-
ducted in three-point flexure using the single-edge precracked-beam specimens under zero and positive
electric fields, and the effects of electric field and loading-rate on the fracture load and crack propagation
were examined. A finite element analysis was also employed to calculate the energy release rate for the
permeable, impermeable and open crack models, and the effect of electric field on the energy release rate
was discussed. Crack propagation velocity versus energy release rate curves at various loading-rate were
then estimated based on the finite element analysis using measured data.

1. Introduction

Piezoelectric ceramics of the lead zirconate titanate (PZT) class have been used for a number of years as
sensors and actuators. The high mechanical stresses and intense electric fields in PZT ceramics can induce
cracking that can lead to premature failure of the piezoelectric devices. The properties of PZT ceramics
are also susceptible to degradation under electromechanical loading. Therefore, an understanding of
piezoelectric fracture [Shindo et al. 2003; 2005] and fatigue [Cao and Evans 1994; Lynch et al. 1995]
is a key issue for the efficient and reliable design of the piezoelectric devices. Shindo et al. [2007]
conducted an experimental and analytical study of the static fatigue behavior of PZT ceramics under
electromechanical loading. Narita et al. [2007] also reported experimental and numerical examination
of the fatigue crack growth in PZT ceramics under a cyclic mechanical load and a constant electric field.

Certain environments may affect formation and extension of cracks over time and at stress levels well
below that which causes immediate failure to occur. This process is called dynamic fatigue or slow crack
growth. Slow crack growth parameters have been estimated for only a few commercial ceramics and
glass, and no one has investigated the resistance of piezoelectric ceramics to slow crack growth and the
influence of electric field on the dynamic fatigue behavior.

In this study, we report numerical and experimental examination of the dynamic fatigue or slow crack
growth in piezoelectric ceramics under electromechanical loading. A crack was created normal to the
poling direction. Constant load-rate testing was conducted in three-point flexure under zero and positive
electric fields using single-edge precracked-beam method. A finite element analysis was also used to
evaluate the energy release rate for the permeable, impermeable and open crack models, and the effect

Keywords: elasticity, finite element method, material testing, piezoelectric materials, dynamic fatigue, smart materials and
structures.
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Elastic stiffnesses Piezoelectric coefficients Dielectric constants
(×1010 N/m2) (C/m2) (×10−10 C/Vm)

c11 c33 c44 c12 c13 e31 e33 e15 ε11 ε33

17.0 16.5 3.05 10.6 11.5 −5.99 15.6 13.7 95.2 68.4

Table 1. Material properties of PCM-80.

of electric field on the energy release rate was discussed. The results were then examined in terms of the
crack propagation velocity vs energy release rate curve.

2. Experimental procedure

Constant load-rate (dynamic fatigue) testing of commercially supplied hard PZT PCM-80 (Panasonic
Electric Devices Co., Ltd., Japan) was carried out. The material properties are listed in Table 1. The
specimens were 5 mm thick, 5 mm wide and 15 mm long. Poling was done along the axis of the 15 mm
dimension. Through-thickness crack was introduced using the method described in [Narita et al. 2007];
the crack is about 0.5 mm long and has an initial gap of under 200 nm.

Figure 1 shows the testing set-up. A three-point flexure fixture with 13 mm span was used, and a load
controlled mode was employed to apply for load rates from 0.05 to 1 Ns−1 under 0 and +0.1 MV/m.
Crack growth was monitored during the test on the surface of the specimen with the aid of a digital
microscope camera at 1000-fold magnification. The video camera records were also carefully observed
to determine the crack length and the crack tip. From the detailed video photographs, the crack length
can be easily measured. Because of the good resolution of the camera, the visual measurement of the
crack length is not subject to large errors. This type of measurement procedure is used regularly. Due
to cost and time constraints, the number of specimens was limited to two or three for each load-rate and
electric field.
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Figure 1. Testing set-up.
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Figure 2. Schematic representation of finite element model.

3. Analysis

Consider a linear piezoelectric material with no body force and free charge. The basic equations for PZT
ceramics, from [Tiersten 1969], are given in Appendix A.

Measured crack length a was recorded via video camera and then obtained as a function of the time t .
In order to evaluate the energy release rate G of PZT, plane strain finite element analysis (ANSYS) was
carried out for the cracked piezoelectric specimens. The specimen and loading geometries are shown in
Figure 2. Let the coordinate axes x = x1 and z = x3 be chosen such that the y = x2 axis coincides with
the thickness direction. The z axis is oriented parallel to the poling direction. The three-point flexure
specimen with a span S is a beam of width W and length L containing a crack of length a. Because of
symmetry, only the right half of the model was used in the finite element analysis.

The crack is traction free and on its surface the normal component of the electric displacement and the
tangential component of the electric field are continuous. Also, the geometry and the fields are symmetric.
Thus

σzx(x, 0)= 0 (0≤ x ≤W ) (1)

{
uz(x, 0)= 0 (0≤ x ≤W − a)
σzz(x, 0)= 0 (W − a < x ≤W )

(2)


φ(x, 0)= 0 (0≤ x ≤W − a)
Ex(x, 0)= Ec

x(x, 0) (W − a < x ≤W )

Dz(x, 0)= Dc
z (x, 0) (W − a < x ≤W )

(3)

where the superscript c stands for the electric quantity in the void inside the crack. Equations (3) consti-
tute the permeable crack boundary conditions [Parton 1976; Shindo et al. 1990]. The electric potential
is all zero on the symmetry planes inside the crack and ahead of the crack, so the boundary conditions
of (3) reduce to φ(x, 0) = 0 (0 ≤ x ≤ W ). The electric field intensity Ec

x(x, 0) is equal to zero, and
the electric displacement Dc

z (x, 0) is determined precisely by (3)3 with the electric permittivity of the
vacuum ε0 = 8.85× 10−12 C/Vm. A mechanical load is produced by the application of a prescribed force
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P at x = 0, z = 0 along the x-direction. For electrical loads, a negative or positive electric potential φ0/2
is applied at the edge 0≤ x ≤W , z = L/2. Other boundary conditions are summarized below.
At x = 0 (top surface)

σxx(0, z)=−Pδ(z) (4)

σxx(0, z)= 0 (0< z ≤ L/2) (5)

σxz(0, z)= 0 (0≤ z ≤ L/2) (6)

Dx(0, z)= 0 (0≤ z ≤ L/2) (7)

At z = L/2 (side surface)

σzz(x, L/2)= 0 (0≤ x ≤W ) (8)

σzx(x, L/2)= 0 (0≤ x ≤W ) (9)

φ(x, L/2)= φ0/2 (0≤ x ≤W ) (10)

At x =W (bottom surface)

σxx(W, z)= 0 (0≤ z < S/2, S/2< z ≤ L/2) (11)

ux(W, S/2)= 0 (12)

σxz(W, z)= 0 (0≤ z ≤ L/2) (13)

Dx(W, z)= 0 (0≤ z ≤ L/2) (14)

In Equation (4), δ(z) is the Dirac-delta function. The condition (10) gives the electric field E0 =−φ0/L .
In the finite element analysis, the energy release rate was computed using the path-independent integral
approach. The energy release rate G is given by

G =
∫
00

{Hnx − (σxx ux,x + σzx uz,x)nx − (σzx ux,x + σzzuz,x)nz + Dx Ex nx + Dz Ex nz}d0 (15)

where 00 is a contour closing a crack tip and nx , nz are the components of the outer unit normal vector.
The electrical enthalpy density H is expressed as

H = 1
2{c11(ux,x)

2
+ c33(uz,z)

2
+ 2c13ux,x uz,z + c44(ux,z + uz,x)

2
}−

1
2{ε11(Ex)

2
+ ε33(Ez)

2
}

−{e15(ux,z + uz,x)Ex + (e31ux,x + e33uz,z)Ez}. (16)

Equation (15) was implemented numerically in ANSYS using the J -integral approach, and the energy
release rate was computed. For the calculation of J , three contours were defined in the finite element
mesh. The values of J for each of these contours are practically identical and the variations with respect
to the average value of J from three contours are less than 2%. Four-node element PLANE 13 was used
in the model. The finite element mesh had 1900 elements and 1981 nodes. Our previous measurements of
strain near electrode tip in piezoelectric devices [Yoshida et al. 2003; Shindo et al. 2004] and piezoelectric
actuator tip deflection [Hayashi et al. 2003] verified the accuracy of the above scheme, and showed that
the results obtained are of general applicability.
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Figure 3. Left: Energy release rate versus applied load. Right: Energy release rate
versus electric field.

McMeeking [2004] showed that due to a change of stored electrostatic energy within the crack, the
energy release rate for an elliptical cavity of any shape is not equal to the energy release rate G for the
slit-like crack as the material separates. Then he reported that if the initial crack gap is small, there is
little difference between the energy release rate for the elliptical cavity and the G — see Equation (15) —
for the slit-like crack. The energy release rates G for the impermeable [Deeg 1980; Pak 1990] and open
[Hao and Shen 1994; McMeeking 1999] crack models are also discussed in Appendix B.

4. Results and discussion

Figure 3, left, presents the plot of the energy release rate G versus applied load P for the piezoelectric
specimen (PZT PCM-80) with a crack of length a = 0.5 mm under electric field E0 = 0 V/m. Little
difference among three piezoelectric crack models is observed. Figure 3, right, shows the dependence
of the energy release rate G for the permeable, impermeable and open crack models on the electric
field E0 under P = 100 N for a = 0.5 mm. The energy release rate for the permeable crack model is
independent of the electric field. In the impermeable and open crack models, applying the electric field
in either direction decreases the energy release rate. A negative energy release rate is also produced
under large electric fields. According to the fracture mechanics interpretation, a negative energy release
rate would correspond to a crack that could absorb energy due to crack extension. Since this would
exclude the fracture in piezoelectric ceramics under electric fields, in contradiction with the experimental
observations [Park and Sun 1995; Shindo et al. 2001, 2005], the parameters for the impermeable and
open crack models have questionable physical significance. Therefore, the electrical boundary conditions
(B.1) and (B.2) are not appropriate for a slit crack in piezoelectric ceramics, and the permeable crack
model can be used to calculate the G of the specimens.

A summary of the results of constant load-rate testing for PZT PCM-80 under applied electric field
E0 = 0 and +0.1 MV/m is shown in Figure 4, where log Pc (fracture load) was plotted as a function of
log (dP/dt) (load-rate). The error bars indicate maximum and minimum fracture loads at each load-rate
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Figure 4. Fracture load as a function of load-rate.

and electric field, and triangle and dot are average values. The margin of error is larger at lower rates
because of changes in microstructures near the crack tip at low load-rates. The PZT ceramics show
an increase in fracture load as the load-rate increases, similar to behavior reported for dynamic fatigue
in other non-piezoelectric ceramics [Pan et al. 1998; Choi and Salem 1998; Andrews et al. 2002]. The
results also indicate that an overall decrease in fracture load occurs when testing under E0 =+0.1 MV/m.
Although experimental results show some scatter, the data are good enough to allow a relation between
the fracture load and load-rate. The fracture load as a function of load-rate can be approximated by

Pc = K (dP/dt)1/(n+1), (17)

where

K = 147, n = 34.6 (E0 = 0 V/m),

K = 131, n = 99.5 (E0 =+0.1 MV/m).
(18)

Figure 5, left, shows typical curves of crack propagation, 1a, measured as a function of loading time
t , under an electric field E0 = 0 and +0.1 MV/m at load-rate of 1.0 N/s. The crack can be seen to grow
at progressively decreasing growth rates, with increasing size only after a certain delay time, 50 s. The
rate of crack growth of the specimen under E0 = +0.1 MV/m is substantially greater than that under
E0 = 0 V/m. The final failure occurred when the total crack growth distance on the side surface under
E0 = 0 and +0.1 MV/m is about 159 and 184µm, respectively. Note that the rate of crack growth does
not depend on the electric field before 50 s of delay time. Figure 5, right, shows similar results at a
load-rate of 0.05 N/s. The stable crack growth velocity occurs after a delay time of about 1600 s. The
final failure occurred when the crack growth increment of the specimen under E0 = 0 and +0.1 MV/m
is about 91 and 171µm, respectively.

Figure 6, left, shows a comparison of crack propagation velocities da/dt under E0= 0 and +0.1 MV/m
at 1.0 N/s, plotted as a function of the energy release rate G. The crack propagation velocity is obtained
by the experiment, whereas the energy release rate is calculated by the finite element analysis for the
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Figure 5. Variation of crack length as a function of time. Left: dP/dt=1.0 N/s. Right: dP/dt=0.05 N/s.

2 4 6 8
10-8

10-7

10-6

10-5

G (J/m
2
)

E0 = 0.1 MV/m
         0

Load-rate 1.0 N/s

d
a
/d
t 
(m

/s
)

Permeable crack

2 4 6 8

10-8

10-7

10-6

G (J/m
2
)

E0 = 0.1 MV/m
         0

Load-rate 0.05 N/s

d
a
/d
t 
(m

/s
)

Permeable crack

Figure 6. Crack propagation velocity as a function of energy release rate. Left:
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piezoelectric specimen with a permeable crack. The crack propagation velocity increases very quickly
with the energy release rate, reaching a peak and then decreases before final failure. The decrease in the
crack velocity is probably associated with microcrack nucleation and crack bridging [Lynch et al. 1995;
Fang et al. 2004]. It can also been seen that positive electric field enhances crack propagation, whereas
for G > 5 J/m2, the crack velocity is not influenced by the electric field anymore. Figure 6, right, shows
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similar results at load-rate of 0.05 N/s. The data suggest that there is a small influence of the electric field
on the crack propagation for small G. At 0.05 N/s, the velocities are always lower than those at 1.0 N/s.

The energy release rate for the permeable crack model is calculated by the finite element analysis and
plotted as a function of the measured crack extension under E0 = 0 and +0.1 MV/m at 1.0 N/s in Figure
7. Also shown is the energy release rate for the impermeable crack model under E0 = +0.1 MV/m.
Comparing the energy release rates under E0 = 0 MV/m for the permeable and impermeable crack
models, little difference is observed (not shown). For the permeable crack model, the energy release
rate increases with increasing the crack length and is independent of the electric field for small crack
extensions. If we use the impermeable crack model to calculate the G, the energy release rate becomes
negative (−0.04 J/m2 for 1a = 500 nm) under E0 =+0.1 MV/m and so, as mentioned earlier, we cannot
use the impermeable crack model. Also, the energy release rate depends on the electric field for small
crack extensions which is not in agreement with the experimental observations.

5. Conclusions

A combined numerical and experimental study is made to understand the influence of applied electric
field on the crack behavior of piezoelectric ceramics. It is found that the piezoelectric ceramics under
positive electric field has low dynamic fatigue or slow crack growth resistance, compared to those under
no electric field. The crack propagation velocity increases at first with increasing the energy release rate,
reaching a peak, and then tends to decrease at higher energy release rate before final failure. We expect
the present study to encourage further research on the crack behavior of the piezoelectric ceramics under
electromechanical loading.
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Appendix A

The governing equations in Cartesian coordinates xi (i = 1, 2, 3) are

σ j i, j = 0, (A.1)

Di,i = 0, (A.2)

where σi j is the stress tensor, Di is the electric displacement vector, ,i denotes partial differentiation with
respect to the coordinate xi , and the Einstein summation convention over repeated indices is used. The
relation between the strain tensor εi j and the displacement vector ui is

εi j =
1
2(u j,i + ui, j ). (A.3)

The electric field intensity is

Ei =−φ,i , (A.4)

where φ is the electric potential. The constitutive relations can be written as

σi j = ci jklεkl − eki j Ek, (A.5)

Di = eiklεkl + εik Ek, (A.6)

where ci jkl and eikl are the elastic and piezoelectric constants, εik is the dielectric permittivity, and

ci jkl = c j ikl = ci jlk = ckli j , eki j = ek ji , εik = εki . (A.7)

For piezoelectric ceramics which exhibit symmetry of a hexagonal crystal of class 6 mm with respect to
the principal axes x1, x2, x3, the constitutive relations can be written in the form

σ1

σ2

σ3

σ4

σ5

σ6


=



c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66





ε1

ε2

ε3

ε4

ε5

ε6


−



0 0 e31

0 0 e31

0 0 e33

0 e15 0
e15 0 0
0 0 0




E1

E2

E3

 , (A.8)


D1

D2

D3

=
 0 0 0 0 e15 0

0 0 0 e15 0 0
e31 e31 e33 0 0 0




ε1

ε2

ε3

ε4

ε5

ε6


+

 ε11 0 0
0 ε11 0
0 0 ε33


E1

E2

E3

 , (A.9)

where
σ1 = σ11, σ2 = σ22, σ3 = σ33,

σ4 = σ23 = σ32, σ5 = σ31 = σ13, σ6 = σ12 = σ21,

}
(A.10)

ε1 = ε11, ε2 = ε22, ε3 = ε33,

ε4 = 2ε23 = 2ε32, ε5 = 2ε31 = 2ε13, ε6 = 2ε12 = 2ε21,

}
(A.11)
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c11 = c1111 = c2222, c12 = c1122, c13 = c1133 = c2233, c33 = c3333,

c44 = c2323 = c3131, c66 = c1212 =
1
2(c11− c12),

}
(A.12)

e15 = e131 = e223, e31 = e311 = e322, e33 = e333. (A.13)

Appendix B

A solution procedure for the impermeable and open crack models is outlined here. The impermeable
boundary condition becomes

φ(x, 0)= 0 (0≤ x ≤W − a),

Dz(x, 0)= 0 (W − a < x ≤W ).
(B.1)

The energy release rate G for the impermeable crack model is given by Equation (15). The crack face
electrical boundary condition for the open crack model is

φ(x, 0)= 0 (0≤ x ≤W − a),

D+z = D−z (W − a < x ≤W ),

D+z (u
+

z − u−z )= ε0(φ
−
−φ+) (W − a < x ≤W ),

(B.2)

where the superscripts + and − denote, respectively, the right and left sides of the cross-section where the
crack is located (see Figure 2). The open crack model calculations start with φ = 0 on the crack surface
[McMeeking 1999]. The crack opening displacement and electric displacement on the crack surface
are estimated, and the resulting potential difference is applied to the crack surface. The electroelastic
fields are again solved leading to new crack opening displacement and electric displacement on the crack
surface. If this is accomplished, then the potential difference is applied once more to the crack surface.
The process is repeated until the solution converges. The energy release rate G for the open crack model
is obtained by Equation (15).
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