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PREFACE

The Tenth Pan American Congress of Applied Mechanics (PACAM X) was held January 7-11, 2008
in Cancun, Mexico. Its aim, like that of its predecessors, was to promote progress in the broad field of
mechanics, including composite materials, computational mechanics, controls, dynamics, fluid mechan-
ics, sensors and monitoring, and solid and structural mechanics. Previous meetings have been held in Rio
de Janeiro, Brazil (1989), Valparaiso, Chile (1991), Sao Paulo, Brazil (1993), Buenos Aires, Argentina
(1995), San Juan, Puerto Rico (1997), Rio de Janeiro, Brazil (1999), Temuco, Chile (2002), Havana,
Cuba (2004), and Mérida, Mexico (2006). This Tenth PACAM, like the previous gatherings, remains the
only conference sponsored by the American Academy of Mechanics (AAM).

PACAM X lived up to its goal of exposing engineers, scientists, and advanced graduate students
to new research methods, developments, problems, and potential collaborative opportunities in all the
areas metnioned, and provided broad opportunities for personal interactions through means of formal
presentations and informal conversations. Participation was not limited to researchers in North, Central
and South America; in fact, the PACAM conferences enable individuals to engage with scholars from
all over the world during a time when there are few other competing conferences.

A sincere acknowledgment is extended to the National Science Foundation (NSF) for their support of
this conference and specifically to Ken Chong at NSF for helping to support several participants and to
AAM. Approximately 110 international participants were able to enjoy a very productive gathering in
Cancitin. The gathering was held at the beautiful Grand Oasis Resort.

Following PACAM X, authors of selected talks were asked to submit extended full-length papers
related to their presentation at the conference. The selected papers were then subjected to the normal,
peer-review process, and the papers of the best quality were included in this special issue of the Journal
of Mechanics of Materials and Structures. 1 thank the Editor-in-Chief and Associate Editor of JoMMS,
Charles and Marie-Louise Steele, for the great opportunity to organize this special issue; the individual
authors for their excellent contributions; and the anonymous reviewers who put forth a fantastic and
detailed effort in helping to choose the best papers for this special issue.

Lastly, in this anxious time for my family, I wish to thank from the bottom of my heart my parents,
Constantine and Sofia Attard, for their unwavering support of my career and aspirations in life. Without
their unconditional love, nothing in my world would have been possible. ¥’ayond, uround.

September 2009

THOMAS ATTARD: tattard@utk.edu
Department of Civil and Environmental Engineering, The University of Tennessee, 113 Perkins Hall,
Knoxville, TN 37996-2010, United States
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FRACTAL ELEMENTS

SAMER ADEEB AND MARCELO EPSTEIN

Self-similar fractals are geometrically stable in the sense that, when generated by a recursive copying
process that starts from a basic building block, their final image depends only on the recursive generation
process rather than on the shape of the original building block. In this article we show that an analogous
stability property can also be applied to fractals as elastic structural elements and used in practice to
obtain the stiffnesses of these fractals by means of a rapidly converging numerical procedure. The relative
stiffness coefficients in the limit depend on the generation process rather than on their counterparts in the
starting unit. The stiffness matrices of the Koch curve, the Sierpinski triangle, and a two-dimensional
generalization of the Cantor set are derived and shown to abide by the aforementioned principle.

1. Introduction

It has been pointed out that many natural structures have a fractal-like composition. These structures
are subject to different kinds of loading. Trabecular bones, for instance, which are shown to possess
a fractal-like structure [Parkinson and Fazzalari 2000], are responsible for load bearing in vertebrates.
Collagen fibers, a major constituent of ligaments and cartilage, are responsible for carrying tensile forces
in those structures. The fibers themselves have the self similar fractal like composition; they are, in fact,
bundles of fibrils, which in turn are bundles of subfibrils. The subfibrils, under an electron microscope,
are seen to be bundles of microfibrils which are bundles of tropocollagen [Frank and Shrive 1999]. The
venous and arterial systems within an organism can also be seen as self similar fractals [Peitgen et al.
2004]. While most of the studies focusing on fractals discuss the shape and image properties of fractals
[Dyson 1978; Avnir et al. 1998], those studies fail to analyze their structural properties: how fractals
would behave under loading and how their behavior is affected by their fractal properties. There are
some attempts to analytically determine the deformation of fractals under load [Capitanelli and Lancia
2002; Carpinteri et al. 2001; 2004; Carpinteri and Cornetti 2002; Epstein and Sniatyscki 2006] however,
those attempts are based on advanced mathematical techniques beyond the scope of structural analysis.

The generation of a fractal image is geometrically stable as the final image of a fractal is independent of
the shape of the initial unit of generation. In the case of the Sierpiski gasket (often called the Sierpinski
triangle), for example, the shape of the fractal is recognized after a few iterations of the generation
process even if the initial generator is not a triangle. In this paper we report that an analogous behavior is
observed in the structural form of the stiffness matrix of an elastic fractal-like structure. The final form of
the stiffness matrix is, in a certain sense, independent of the stiffness properties of the unit of generation.
We also show that this final form can be obtained by applying the principle of structural self-similarity
defined previously in [Epstein and Adeeb 2008].

Keywords: fractals, finite element analysis, stiffness matrix, Koch curve, Sierpinski triangle, Cantor set.
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2. Generic stiffness matrices

A structural element is a load-carrying solid that can be connected to other elements at a finite number of
sites only. At these potential connection points (called nodes or joints) one or more degrees of freedom
(DOFs) — generally translations and/or rotations — are singled out. It is in correspondence with these
DOFs that forces and/or couples may be applied to the structural element either directly or via the
reactions arising from other elements or structural supports. The ordered set of the DOFs of a structural
element can be conceived as a vector U, called the vector of (element) DOFs. In the theory of linear
infinitesimal elasticity, to which we confine our analysis, the elastic energy W stored within an element
is given by the quadratic form
W=1U"KU,

where K is a symmetric positive-definite matrix. The physical meaning of the entry k;; of the stiffness
matrix K is as follows. Assuming that all the DOFs have been constrained by means of appropriate
supports (one support per DOF), this entry represents the reaction in correspondence with the support
number i due to a unit displacement of the support number j. The terms stiffness matrix and stiffness
coefficient allude precisely to this physical interpretation.

A necessary condition for a solid to qualify as a structural element is that the stiffness coefficients
be bounded in absolute value. Although beyond this limitation and the symmetry of the stiffness matrix
(which is a direct consequence of the conservation of energy) it appears that the stiffness coefficients
could be arbitrary, it is not difficult to see that this is not the case. Indeed, the elements of each column
of the stiffness matrix, corresponding as they do to the complete set of reactions of a structure under
no external loads, must constitute a system of forces in equilibrium. Beyond the algebraic conditions
resulting from this fact, a structural element may enjoy geometric and material symmetry properties,
which may result in further restrictions. The purpose of the remainder of this section is to derive the
general reduced forms of the stiffness matrices of a few structural elements taking all these conditions
into consideration.

2.1. The stiffness matrix of an equilateral triangle. Our first example consists of an equilateral triangle
confined to deform in its plane. The nodes are identified with the vertices of the triangle and the DOFs con-
sist of the components of the nodal displacements of these nodes. These components may be expressed
either in terms of a global coordinate system, as shown in Figure 1, right, or in terms of conveniently
chosen local directions, as illustrated in the left half of the same figure. The internal constitution of the
element is not specified at this point, but it will be assumed that the material properties enjoy at least the
same symmetries as the geometry.

2 ‘LS

5 6
47 % 6 5 |

Figure 1. The equilateral triangular element, with local coordinates (left) and global
ones (right).
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To distinguish between the two options for the DOFs shown in Figure 1, we will denote the corre-
sponding 6 x 6 stiffness matrices by KT and K7, respectively. (The superscript indicates a triangle and
should not be confused with the matrix transposition symbol tr.) By the symmetry of the stiffness matrix,
each of these matrices has at most 21 independent coefficients. To implement the extra conditions due
to geometric and material symmetry, it is convenient to use the DOFs shown in Figure 1, left. Indeed, it
is not difficult to see that in terms of these DOFs the following conditions must hold (assuming that the
three axes of geometric symmetry are axes of material symmetry as well):

’21T1=’23T3=’€5TS=AT, ’2§2=’€£4=’26T6=BT, ’21T2=’€3T4=]€5T6=0=
’21T3=’€3Ts=lgsTl =C7, ]€1T4=’23Ts=lgst=DT, I€2T3=124{5=126Tl =E, 2-1)
’22T4 2124{6 = ’gﬁTz =F".
Thus, due to geometrical and material symmetries, the total number of independent entries has been
reduced to just 6, indicated by the constants appearing on the right-hand sides of (2-1). Moreover, the

equilibrium conditions between the entries of each column (j, say) of the stiffness matrix dictate that the
following conditions must hold:

KL LGE +RE) +V3LGE - kL) =0,
k= 3k +kep) — V3305, — ks =0, (2-2)
kil + k5, +k =o0.
Using (2-2), four of the six coefficients appearing in (2-1) can be written in terms of the other two, say

A" and B'. The final reduced stiffness matrix with respect to the global DOFs (Figure 1, right) has the
form

AT+3BT 3(AT-BT) AT 3(BT-24T) AT-3BT  /3(3AT-BT)

4 4 2 2 4 4
3AT+BT  /3AT BT V3(BT-3AT)  BT-34T
4 2 2 4 4
AT 0 _Ar _3AT
kT — 2 2 . (23)
B v32A™-B") BT
2 2
T T T_ AT
Symmetric A dlfB V3(B ) A))
3AT+ BT
4

2.2. The stiffness matrix of a beam. The diagram on the right shows a |

beam element with one axis of (geometric and material) symmetry. To /N\ 5
take into consideration bending effects, each node is assigned an extra j I ?}, 4
rotational DOF. Thus, the stiffness matrix of the beam element has a 3 ! 3

hybrid mixture of coefficients of forces and moments per unit displace- L
ments and per unit rotations. Consequently, the length L of the beam
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plays a role in the relations between the stiffness coefficients. For convenience, we express the stiffness

coefficients kB in terms of homogeneous independent constants. A practical choice of units for these

constants is that of the product E x I (Young’s modulus x moment of inertia = force - length*/length?).
By the assumption of one axis of symmetry, the following nine conditions must be satisfied:

kn—kfzt:AB» k16_k3‘3:—BBL, ké?z:ks%:CB,
k33 = kgé =D"L?, k13 = kfe’ kiy = k534, (2-4)
kis = —kay, kzs = —ksg kze = —k35.

Moreover, equilibrium of every column of coefficients (equilibrium equations) dictates that, for each j,

kP +kg =0, k3+k$ =0, Kk +k&L+kE =0. (2-5)

Implementing all these conditions, the general stiffness matrix of a beam with one axis of symmetry
becomes

A2 0 BBL —ASB 0 —BBL T
CBL CBL
B B
ch = 0 C .
B B
s 1 pr1? —prr -SE (S - p?)12
KP=— 2 2 (2-6)
L AB 0 BEL
B
Symmetric cB _¢ 5 L
D812

2.3. The stiffness matrix of a square element. Figure 2, left, shows a square element for which every
geometric symmetry is also a material symmetry. Each node is assigned two DOFs of displacement in
the plane of the square and one rotational DOF in the same plane. Just as in the case of the triangle, it
is convenient to implement these symmetries in an adapted coordinate system. The 144 entries of the
stiffness matrix K° are reduced to 78 by symmetry. Following the same procedure as for the previous
examples, the geometric and material symmetry translate into a further reduction to 14 independent
stiffness coefficients. The equations due to the four axes of symmetry of the square can be expressed as

s s s s s s s s s s
K°11=K°44=K"77=K>1010=4", K°»=K"s55 =K"gg=K"1111=B",
s s s s s 2
K°33=K°66 =K 99 =K>1212=C" x L~
| 8 I
1 12 | 7 4 9 | 8 2
11’(\ L9 10 \. N,
\%/ \Jﬁ/
/ N / N
RO RN RN
V2 | R YA V2 | % A5
Z 2 | 6 4 7Y 6 4

Figure 2. A square element.
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s s s s s s s s s s
K°12=K°13=K"45=K46=K°7183=K°79=K 1011 =K 1012=K"18=K"19
s s s s s s
=K411=K’412=K’27=K"33=K"610=K"510=0,

KSu=K% 10=K’5 =K% 10=D>, KSs=K’ss=K% 1=K 11=E",
K% =K% 11 =F5,

KSis=—K5 1 =K%5=—K%4=K% 11=—K57 =K% 10=—K%s 10= G%,

K% i6=—K° 1 n=K°30=—K34=-K%6=K% 1n=—K 10=K"3 10=H® x L,
K3 =K%6=K%9y=K11 1n=1°xL, KS17=K5410=1J5,

K5 12=K%s5=K%gs =K% 1 =K’6=K%s0=K%s n=K%; 11 =K* x L,
KS9=K5% 1p=K%g=K% 1 =L°xL,
K%6=K%9=K% =K% 1n=N%x L?, K539 =K% 12=0%x L*.

Finally, the columnwise equilibrium conditions effect a further and final reduction to just 9 independent
coefficients:
K%+ K5 —K%; —K5%10; =0, KSs;+ K57, —K%; — K%, =0,
s s s s s s s s (2-7)
Lx(K>s;j+K>g3;+K>11;+K zj)/\/i—i-K 3j+ K6+ K 9j +K”12; =0.
Using the equilibrium equations, five coefficients can be written in terms of the remaining nine coeffi-
cients as follows:
G5 =31(AS -9, FS=B5—AS+ 5, LS=15-2HS5,
15 =HS — K5 - IV2(-A5 +2B5 + 2E5 + %), (2-8)
NS =-1c5 105+ 1(—A% +2B5 +2E5 + J5).
As in the case of the beam, the use of hybrid DOFs results in a lack of dimensional homogeneity of the
coefficients. For convenience, however, the stiffness coefficients are expressed in terms of 9 constants
having the same units and the length of the side, L, makes an explicit appearance wherever needed.
The final reduced stiffness matrix has the form
A0 0 D G* HL J5 0 0 DY -G¥ —HSLT
BS I’L -GS ES5 KSL 0 FS LSL G*S ES KSL
CSL* —HSL KSL NSL* 0 LSL O°L* HSL K°’L NSL?
AS 0 0 DS G® HSL JS 0 0
BS 1L -G5S ES5 K5L 0O FS LSL

K5=i CSL*> —HSL KS5L NSL*> 0 LSL OSL? (2.9)
L3 AS 0 0 DS G5 HSL
BS ISL -GS E5 KSL
Symmetric CSL* —HSL KSL NSL?
AS 0 0
BS ISL
CcSL?

(To avoid complicated expressions within this matrix, (2-8) has not been implemented explicitly.)
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2.4. Square element with inextensible diagonals. For a square with inextensible diagonals, the diag-
onal displacement of the two vertices across a diagonal are equal and are assigned a single DOF, as
seen in Figure 2, right. The stiffness matrix of such a square with respect to the DOFs shown there
has 55 coefficients after employing the symmetry of the matrix. The normalization due to the hybrid
combination of moments and forces is again utilized. The axes of symmetry can be used to reduce those
fifty five coefficients to twelve coefficients as follows:

IS IS IS IS Is IS Is Is
K% =K% yu=A", K”11=K"s55=K"77 =K"99=B",
IS IS 1S 1S 1S _ 2
K733 =K =K"g8=K"1010=C" x L,

I IS IS IS I Is IS IS IS
K 1n=K737=K"3=K"3=K7"4s=K" 45=K7410=K"7490=K"72=0,

KISy = KSgg = —K'Sog = —K'Sg 0= DS x L,
K s = —KBSo = KIS, = —K!S,y= ES, KISy = KIS, = K18, = KISy = FIS,
KBSy 0= —K'Spe = Ky = — K153, = GIS x L,
KB 16=K"10=KSss=K"Ss3=—K"57
=—K"710=-K" 9 =—K"3=H"xL,
KIS, = K15y = IS, KIS = K'Sg 0= —K™Syy = —K'Sgy= JS x L,
Ky = K'Sgs = K'Sq 10= K'S3 0= N'S x L2, Ky = K¢ 1o = O™ x 2.

Equilibrium equations for the square in Figure 2, right, have the form
KISZj +K1S9j +KIS5j —0, KISU +K1S7j + K1S4j —0, 10

Using the equilibrium equations, five coefficients can be written in terms of the remaining seven coeffi-
cients as follows:

IS _ 1418 1S __ 1S 1S IS _ nlS 1S

FS=-1AB  [S=_BS_FS  J5S=DI5_G",

H'S = —D" + 1G" + 1V2(A"S —4B'S —4E"), (2-11)
IS 1 (1 AIS IS IS N IS

NP =—-3(;A" -B"+C” —E”+0").

The final stiffness matrix has the form

[ pIs 0 DL FIs EIS  gIisg 11 JISL _EIs  gisp ]
A 0 0 F'S —GISL 0 0 F'S GSL
CISLZ _GISL HISL NISL2 _JISL OISL2 _HISL NISLZ
A™S 0 0 F'S GSL 0 0
1 BIS DISL _EIS HISL IIS JISL
IS
K™ = F CISL2 _HISL NISL2 _JISp oIS[? (2-12)

BIS _DISL EIS _HISL

Symmetric cSL? —HISL NISL?
BIS _DISL

_DISL CISLZ
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3. Structural analysis of generated fractals

3.1. Structural analysis of a Sierpiriski gasket. The Sierpinski gasket is a fractal generated from an
equilateral triangle. The generation process starts by dividing the area inside the equilateral triangle into
four similar copies of the original triangle and removing the middle inverted one as shown in Figure
3a. Each of the remaining three copies is again divided into four copies and the middle inverted one is
removed and so on ad infinitum. The process is equivalent to starting with a triangle and making two extra
copies and placing them as shown in Figure 3b. The new generated structure is then replicated again and
the process is repeated ad infinitum. This process of generation is used to generate a Sierpinski gasket
from a triangular structural element. A finite element analysis package (ABAQUS 6.6) is utilized to
generate a three-node triangle using a plane stress element with a thickness of 1 unit and side dimensions
of 1unit. The three-node triangle is regarded as a structural element rather than a finite element. The
stiffness matrix of the generated structure with respect to the three vertices is obtained in every step
during the generation process for the triangle by applying a unit deformation in the vertical direction
and obtaining the reactions in the corner nodes. Figure 4 shows the generated Sierpinski gasket at the
generation step n = 8. Since the generated structure obeys the symmetries described in Section 2.1, the
generated stiffness matrix has two independent coefficients, AT and BT, which can be calculated from
the obtained reactions, per (2-2).

As pointed out, the (isotropic) material properties of the originator (namely, the triangular building
block) do not affect the final ratios between the stiffness coefficients of the fractal obtained as limit. We
have referred to this property as stability. To check that this is indeed the case, we examine two cases
separately. In both cases the Young’s modulus of the originator triangle was assumed to be equal to 1 unit,
but the Poisson’s ratio was set to O for the first case and to 0.4999 for the second. The stiffness matrix
of the generated structure converges to one single form for both sets. The ratio BT/AT stabilizes and
reaches the value 3 after a few steps of the generation process indicating that the details of the stiffness

2,

Figure 3. Generation of a Sierpiiski gasket by division (a) and by copying (b).
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Figure 4. The generated Sierpinski gasket after applying an upward unit deformation
at the top vertex while restraining the remaining DOFs. The gasket is shown at the
generation step n = 8.

of the originator disappear after a few steps of the generation process (see Figure 5a). The generated
stiffness matrix for a Sierpinski gasket has only one independent coefficient, namely A”. The obtained
stiffness matrix throughout the generation process appears to be scaled down by the same scaling factor
from one step to the next. After a few generation steps, the value of AT at a generation step n approaches
half the value of AT at the generation step n — 1 (see Figure 5b).

45

0.53

4
0.52 1
3 \e\s\e\g
3 W = = = = %
s T 05
< <
= 2 = 049 o
= 048
15 ';c
| 047 1
0.5 0.46
0 T T T T 045 T T T T
0 2 4 6 8 10 0 2 4 6 8 10
n n
—A— =
(a) v=0 (b)

—— v =0.4999

Figure S. Stability of the stiffness form of a Sierpifiski gasket for both sets of stiffness
for the originator triangle: (a) the ratio BT/AT stabilizes at a value of 3; (b) the ratio
AT(n)/AT(n — 1) stabilizes at a value of 0.5. Each part shows the result for two values
of the Poisson’s ratio v.
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Unit Length

Figure 7. The generated Koch beam at n = 5.

3.2. Structural analysis of a Koch beam. The Koch curve is generated by dividing a line segment into
three equal parts, removing the middle part, and replacing it by two copies of itself rotated by an angle
of sixty degrees. The process is then repeated for the generated four line segments ad infinitum (see
Figure 6). The six-DOF structure thus generated is called the Koch beam. ABAQUS 6.6 was used to
generate a Koch beam with unit length as a combination of Euler—Bernoulli elastic beams with a Young’s
modulus of 1 unit and a moment of inertia of 1 unit. The area of the beams was taken as an arbitrary large
number (10000 units) as the deformations are expected to be primarily due to bending. The generated
stiffness matrix has four independent coefficients as described in (2-6), namely A8, BB, C®, and D5. By
analyzing (2-6) it is obvious that rows 4 and 6 are sufficient to obtain the four independent coefficients
of the stiffness matrix of such a beam. Those independent coefficients can be obtained by applying a
unit deformation to DOF number 4 and a unit rotation to DOF number 6 shown (see figure at bottom of
page 783). Just as with the Sierpiniski gasket, the stiffness form of the generated Koch beam stabilizes
after a few generation steps. Each of the ratios of B2, C?, and D? with respect to A% reaches a limit
(see Figure 8a) and the scaling factor (the ratio between the stiffness A at a generation step n and the
stiffness A® at the generation step n — 1) stabilizes at a value of 3/4 (see Figure 8b). This factor of 3/4
is only attainable due to keeping the total length of the Koch beam at each generation step n equal to
the length at the previous generation step (n — 1). It should be noted here that the ratio between A% at a
generation step n and the value of a® (being the equivalent stiffness of one of the four legs of the Koch
beam during the same generation step) is equal to 1/36. The leg on its own is considered to be in the
generation step n — 1, thus having a higher scaling stiftness, with value 4/3. The length of the leg is three
times less than the length of the whole Koch beam and thus the 1/L> term in the stiffness matrix further
increases the stiffness of the leg by a value of 27. The total increase in stiffness of the leg compared to
that of the whole Koch beam is equal to 36.

3.3. Structural analysis of a two-dimensional modification of the Cantor set. An interesting structural
fractal, based on a square and reminiscent of the Cantor set, can be obtained as follows. At the generation
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0.15

@ —

0.1 4

0.05 —

—x— BYIAP
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f=3
W

Stiffness coefficient /4%

—a— YA

\‘K —a— DP/A®

-0.15

0.9

(b)

0.8

0.7

0.6

AB()AE (n-1)

n

Figure 8. Stability of the stiffness form of a Koch beam. (a) The ratio of each of B2, C2,
and DB to AP stabilizes at a constant value. (b) The ratio A®(n)/A®(n — 1) stabilizes
at a value of 0.75.

step n = 1, the square is divided into nine equal squares, four of which are removed (see Figure 9). The
removed squares are those involving the middle third of each side of the original square. Taking a closer
look at the side, it can be noticed that at the first generation step, the open set ]1/3, 2/3[ of the line
segment [0, 1] representing each side has been removed. In the following generation steps, the process
is repeated for every remaining square. As far as the sides of the original square are concerned, this
process results in the generation of the Cantor set.

For this structure to be stable, each square should have a rotational DOF at the corner node; hence
the need for the stiffness matrix described in Section 2.3. Nine arbitrary values for the stiffness matrix
(2-9) were chosen, ensuring that the matrix is positive definite. The chosen stiffness matrix was rotated to
appropriate DOFs that can be implemented in a commercial finite element package using the relationship
Krowed — gt K 0 where @ is the rotation matrix between the two sets of DOFs. ABAQUS 6.6 was used
to generate the model of this fractal at different generation steps. Step n = 0 represents a square of unit
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Figure 9. Two-dimensional modification of the Cantor set.

Figure 10. Deformation shape of the two-dimensional Cantor set at n = 5 when ap-
plying a unit rotation to DOF number 3 and restraining all remaining DOFs at the four
corner vertices.

side length with the specified stiffness matrix. Step n = 1 represents five squares, each of unit side length
and with the specified stiffness matrix. Thus, the total side length of the model grew with the generation
steps. The user element option was used to input the stiffness matrix for the square unit against the
DOFs in a Cartesian coordinate system. By close examination of (2-9), any three columns belonging
to the DOFs of one node are sufficient to reproduce the nine coefficients of the matrix. Thus, three
separate loading cases were applied on a chosen corner node; two perpendicular unit displacements and
a unit rotation. At each generation step and in each loading case, the resulting reactions at the remaining
three nodes were obtained and were used to regenerate the stiffness matrix in a Cartesian coordinate
system. The stiffness matrix generated was then rotated back to the DOFs shown in Figure 2 and the
nine stiffness coefficients of the generated structure were extracted according to (2-9). The ratios of
the coefficients with respect to AS obtained for the different generation steps reveal that seven of the
generated coefficients approached zero (see Figure 11). The ratio J5/A% on the other hand approached
unity. The stiffness entry AS represents the force needed to extend the diagonal a unit displacement while
the stiffness entry JS represents the reaction to the force AS on the opposite side of the diagonal. This
clearly indicates that the diagonals become infinitely stiff because of the way this fractal is generated;
material is always removed during the generation process except from the diagonals. Any force applied
in the diagonal direction is totally absorbed by the reaction on the opposite side of the diagonal and all the
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Figure 11. Ratios of stiffness coefficients obtained for the square with respect to the
stiffness coefficients A”.

other reactions to that force are relatively zero. In order to analyze different modes of deformation, the
stiffness matrix of a square with inextensible diagonals was introduced in Section 2.4. The new structure
with inextensible diagonals will be analyzed in Section 4.3 using the principle of self similarity stated in
Section 4.

4. Principle of stiffness self-similarity

It was shown in Section 3 that the stiffness form of fractal structures stabilizes after a few generation steps.
It will be shown here that this final form can be achieved by applying the principle of self-similarity to
the stiffness matrix of each of the fractals under consideration. A fractal is said to be self-similar if it is
an almost disjoint union of shapes that are a reduced copy of the fractal itself. The principle of structural
self-similarity was first introduced in [Epstein and Adeeb 2008] and states that for a self-similar fractal
the stiffness matrix of K/ is proportional to the stiffness matrix K of one of its reduced constituent
copies with respect to the corresponding DOFs, namely:

K/ =aKF, (4-1)

where o is a constant.

The n x n stiffness matrix K with (where 7 is the number of DOFs chosen for the fractal) as described
in Section 3 contains m independent coefficients after employing all the symmetries and equilibrium
conditions. The stiffness matrix K/ of the whole fractal can be constructed by structural analysis as-
sembly procedures of the different units, then condensation to the chosen DOFs of the whole fractal.
The assembled stiffness matrix K/ also has n x n entries. Since the assembled structure has the same
symmetries and equilibrium conditions of its units, it will also have m independent entries. These entries
will be nonlinear equations of the m independent entries of the stiffness matrix K*. Equation (4-1)
can be considered as a system of m equations in m + 1 unknowns after the introduction of the scaling
factor a. Its solution will, therefore, yield the value of a and of the m — 1 independent ratios between
the m independent stiffness values. In order to solve this system of equations, a numerical procedure
is employed. Starting with initial values for the m independent coefficients of the stiffness matrix K%',



FRACTAL ELEMENTS 793

Figure 12. Building up the stiffness of a Sierpifiski gasket by assembling three scaled-
down copies of the whole structure.

the global stiffness matrix of the whole fractal K/ is assembled. The new m independent coefficients
are then extracted from the global stiffness matrix K/ and an average factor « is obtained by dividing
the new m independent coefficients of the matrix K/ by the original m independent coefficients of the
matrix K and averaging the resulting factors. The new independent coefficients divided by the obtained
average factor are then used as input for the next step. This process was applied to the fractals under
consideration and was shown to lead to the solution obtained in Section 3.

4.1. Stiffness self-similarity of the Sierpinski gasket. The numerical procedure described above was
applied to the Sierpinski gasket. As shown in Figure 12, the equilateral triangle abc is assumed to be
composed of three smaller equilateral triangles (aed, ebf, and dfc) with identical 6 x 6 stiffness matrices
K. Arbitrary positive values are assigned for the coefficients AT and BT in (2-3). The global stiffness
matrix has 12 x 12 entries and can be assembled by combining the three smaller stiffness matrices
according to their nodal connectivity. The global stiffness matrix can be reduced to a 6 x 6 matrix K’
by assuming that there are no external forces applied at nodes d, e or f. Thus, the stiffness matrix K’
of the condensed structure abc can be calculated as follows:

KiA +K,Ay=F,  KYA +K:A =0, K'=K, —KK;'KY, (4-2)

where tr denotes the transpose, K is the first 6 x 6 entries of the 12 x 12 global stiffness matrix, A is
the array of DOFs 1 through 6, K> is the submatrix containing the entries of rows 1 to 6 and columns
7 to 12 of the global stiffness matrix, A, is the array of DOFs 7 through 12, F is the array of external
forces applied to DOFs 1 through 6, and K3 is the submatrix containing the entries of rows 7 to 12 and
columns 7 to 12 of the global stiffness matrix.

After the process of assembly and condensation, the entries k”33 and k44 in the matrix K’ are extracted
and are divided by the initial arbitrary values of AT and BT to obtain two values that are averaged to
obtain a coefficient «. The new values of AT and BT for the next iteration are then taken to be k'3 /o
and k' 44 /o respectively. The process was repeated until the values of BT and a stabilized. The results
obtained are similar to those obtained in Section 3.1. The ratio of BT/AT stabilized at a value of 3 while
o. converged to a value of 0.5.

4.2. Stiffness self-similarity of the Koch beam. The assembly of a Koch beam from four similar parts
follows the same procedure used for the Sierpifiski gasket described in Section 4.1. The beam ab can be
assumed to be composed of the assembly of the four beams ac, cd, de, and eb, each having a stiffness
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Figure 13. Assembly of a Koch beam from four scaled down copies of the original.

matrix with four independent coefficients according to (2-6). The stiffness matrix K 2 for beams cd and
de, however, needs to be rotated to the global nodal directions shown in Figure 13. The global assembled
stiffness matrix has 15 x 15 entries and can be reduced to a 6 x 6 matrix K? by the equations

KiA i+ KA =F, KYA +K;A,=0, K’'=K,—KK;'KY, (4-3)

where K is the first 6 x 6 entries of the 15 x 15 global stiffness matrix, A; is the array of DOFs 1
through 6, K is the submatrix containing the entries of rows 1 to 6 and columns 7 to 15 of the global
stiffness matrix, A, is the array of DOFs 7 through 15, F is the array of external forces applied to DOFs
1 through 6, and K3 is the submatrix containing the entries of rows 7 to 15 and columns 7 to 15 of the
global stiffness matrix.

In the first iteration four arbitrary positive values are assumed for the entries AB BB CEB, and D® of
the stiffness matrix K5, After assembly of the matrix K the entries k2, and k®,, are extracted and are
multiplied by the cube of the length of the whole beam (3 units), then divided by A®? and C? to obtain
two values of the scale factor a. The entry k%3 is multiplied by the square of the length of the whole
beam and divided by the entry B2 to obtain another value for the scale factor a. A fourth value for «
is then obtained by multiplying the entry kZ33 by the length of the whole beam and then dividing the
result by the entry DB, The four values of a are then averaged and the new values for A%, B, C8, and
DB are used for the next iteration by using the following entries: kB /27a, kB3 /9a, kB, /270, and
kB33 /3a respectively. The results obtained are similar to those obtained in Section 2.2. The values of
BB/AB, CB/AB, DB/AB, and o stabilized at —0.09623, 0.1111, 0.0444 and 3/4 respectively.

4.3. Stiffness self-similarity of a two-dimensional modification of the Cantor set. The assembly of the
two-dimensional Cantor set (Section 3.3) as a union of five scaled copy of itself is shown in Figure 14.
The fractal structure abcd with supports on a, b, ¢, and d can be considered as a union of the fractal
structures aehg, fbji, himl, klod, and mncp which have stiffnesses that are a scaled copy of the stiffnesses
of the global structure. The principle of self-similarity stated can be applied to this fractal as follows:
Arbitrary values are given to the nine stiffness entries of the unit square in (2-9). The stiffness matrix
is then rotated to the global DOFs shown in Figure 14. After assembly, the global stiffness matrix had
48 x 48 entries. The stiffness matrix was then reduced into a 12 x 12 matrix by eliminating the DOFs
atnodese, f, g, h,i, j, k, I, m, n, o, and p as described in Sections 4.1 and 4.2. After reduction, the
stiffness matrix was then rotated to the DOFs shown in Figure 14b. The new stiffness and the ratios were
then extracted as described in Sections 4.1 and 4.2. Results similar to those described in Section 3.3
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Figure 14. Assembly of the two-dimensional modification of the Cantor set fractal from
five scaled down copies of the original.

were obtained using the self-similarity principle. The fractal is infinitely stiff in the diagonal direction
with respect to the remaining DOFs. All the stiffness coefficients approached zero except AS and JS
which had equal values, indicating that the generation of this fractal causes the diagonals to be infinitely
stiff compared to other deformation shapes. The ratio between the input stiffness entry k°;; of the unit
square and the output stiffness entry K51; was found to be 3, which is the ratio of the side length of the
output structure to the side length of the input unit square.

The stiffness form of the described fractal in modes of deformation other than along the diagonals
can be obtained by applying the principle of self-similarity to the assembled fractal structure in Figure
15. In this case, however, the deformations along the diagonals are considered to be single DOFs and

3 units

Figure 15. Assembly of the two-dimensional modification of the Cantor set fractal from
five scaled down copies of the original, all having inextensible diagonals.
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thus the global stiffness matrix has 38 x 38 entries. The same procedure used for the Koch beam and for
the Sierpiniski gasket is employed to find the form of the stiffness matrix K5 shown in Equation (2-12)
and the ratios between the stiffness coefficients of the global structure and the stiffness coefficients of
the unit structure. The final converged ratios of the seven independent coefficients B/S, C'S, DS, E'S,
G'S, and 05 with respect to A’S were equal to 0.40625, 0.078125, —0.15468, —0.09375, —0.17678,
and —0.00521. The ratio between the stiffness entry k’S,, of the initial unit square stiffness matrix K'*
and the stiffness entry K'5,; of the global stiffness matrix of the whole structure K’S after assembly
and reduction was equal to 27. As the global structure has a length that is 3 times higher than the unit
of generation, the length scaling described in Section 3.2 has to be taken into consideration. Thus, the
entry k'S5, is multiplied by the cube of the length of the unit square to obtain a5, while the entry K’5,,
is multiplied by the cube of the length of the global structure to obtain A’:

k1522 aIS Is AIS Is kIS22 aIS
KI5, = 27, ——— =k"n, YTE =K"»n= 7 L (4-4)
22 unit square unit square unit square

Thus, A’ is equal to a’® and the scaling factor a for this fractal is equal to unity.

5. Conclusions

The geometrical stability of self-similar fractals has been shown previously to be reflected in the fact that
the final image of a self-similar fractal is not dependent on the image of the building block but rather on
the generation procedure [Peitgen et al. 2004]. In this paper we showed that when we consider the fractals
as elastic structures, the stiffness form of such structures will also depend on the generation process rather
than on the numerical values of the stiffness coefficients of the building block, as long as it is isotropic.
This structural-form stability was shown in three fractal-like structures: the Sierpinski triangle the Koch
curve, and a two-dimensional generalization of the Cantor set. For each of those fractals, it was shown
that there is a final relationship between the independent entries of the stiffness matrix of the generated
fractal. This relationship is shown to be independent of the initial relationship among the entries of the
stiffness matrix of the building block and to depend only on the generation process and the geometric
and material symmetries of the fractal.

In order to find the relationship between the entries and/or the form of the stiffness matrix of a fractal,
the principle of structural self similarity has been previously introduced by Epstein and Adeeb [2008].
The structural self-similarity principle states that the stiffness matrix of a fractal is proportional to the
stiffness matrix of a reduced copy of that same fractal, thus a relationship between the entries can be
obtained. In this paper we show a numerical algorithm by which this structural self-similarity principle
can be applied to obtain those relationships among the stiffness matrix entries. The principle was applied
to the Koch curve, the Sierpifiski triangle, and a two-dimensional generalization of the Cantor set. The
relationship between the stiffness matrix entries obtained for the three fractal structures using the self-
similarity principle exactly match the relationship obtained by the structural analysis of the generated
fractals.

The question that poses itself is that self-similar fractals in the strict sense as defined by Mandelbrot
[1982] are objects that replicate themselves at all scales, but many of the fractal-like objects found in
nature have only a finite range in which they are effectively self-similar [Avnir et al. 1998; Parkinson and
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Fazzalari 2000]. The results of our analysis show that the structural properties of a fractal as seen in this
work (see Figures 5, 8, and 11) reach a very close approximation to their final stabilized values at the
iteration step n = 4 or 5. It does not really take long for the originator structural properties to disappear
and for the fractal behavior to be dominant.
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APPLICATION AND DESIGN OF LEAD-CORE BASE ISOLATION
FOR REDUCING STRUCTURAL DEMANDS
IN SHORT STIFF AND TALL STEEL BUILDINGS AND HIGHWAY BRIDGES
SUBJECTED TO NEAR-FIELD GROUND MOTIONS

THOMAS L. ATTARD AND KITTINAN DHIRADHAMVIT

The performance of nonlinear lead-core-rubber base isolators (LCR) to passively control highly non-
linear vibrations in two steel buildings and a prestressed concrete bridge under various ground motion
inputs is evaluated. The Bouc and Wen model is used to predict the behavior of the lead-core component
of the LCR base isolator. Members of the steel buildings that may have yielded are analyzed according
to a highly nonlinear constitutive rule used to model the smooth stiffness degradation in the damaged
members. The previously developed constitutive rule analyzes kinematically strain-hardened materials
under cyclic conditions. The ability of the LCR to reduce displacement, velocity, and acceleration de-
mands is demonstrated numerically using an algorithm developed herein called BISON (base isolation
in nonlinear time history analysis). The performance of the LCR isolation is measured for a two story
isolated building excited by the El Centro ground motion, a nonstationary signal, and the Northridge
ground motion. An eight-story building exhibiting higher-mode influence is also analyzed, and finally
the overpass bridge on Highway 99 in Selma, CA is modeled, outfitted with LCR isolation, and also
analyzed. The hysteresis of the force-displacement relationships of the structures and the LCR isolators
are analyzed parametrically through two LCR design parameters. The results indicate that with an appro-
priate tuning of these parameters, which affect the inelastic stiffness of the LCR isolator, an appropriate
LCR system may be designed to behave with a stationary-like hysteresis and that can very adequately
reduce the structural demands under the various excitations.

1. Introduction

In large civil structures, including highway bridges and buildings, passive energy dissipation systems
are preferred over active control systems because of lower cost, less maintenance, and lower power
consumption. Seismic base isolation implementation remains one of the most widely used and accepted
passive methods used to protect buildings and bridges from potential earthquake hazards. The concept
of base isolation focuses on altering a structure’s natural frequency away from the dominant frequency
components of a seismic event [Kikuchi and Aiken 1997; Furukawa et al. 2005]. Base isolation systems
are also used to protect the nonstructural components in buildings, including pipes, electrical wires,
and various equipment, which may be found in hospitals and communication centers [Pozo et al. 2006;
Matsagar and Jangid 2004], by reducing interstory displacement demands and accelerations through
hysteretic energy dissipation [Matsagar and Jangid 2008; Dolce et al. 2007]. Some typical base isolators

Keywords: base isolation, passive control, bridge isolation, lead-core rubber base isolation, higher-mode effects, plastic
analysis, inelastic structures.
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include friction pendulums, rubber bearings, and lead-core-rubber base isolators (LCR) [Dimizas and
Koumousis 2005].

Disadvantages of base isolation systems include their vulnerability to strong pulse-type ground mo-
tions generated at near-fault zones [Kelly 1999]. The complementary damping provided by the base
isolation may in certain cases induce energy into the higher modes of vibration and increase member de-
formations and accelerations of an isolated structure resulting in subsequent structural and nonstructural
damages [Ramallo et al. 2002].

Examples of base isolated structures include the Los Angeles City Hall, Foothill Law, and the Justice
Center in Los Angeles, California [Hart and Wong 2000]. The Bai-Ho Bridge that spans across the Gia-
Nan canal in Taiwan utilizes an LCR isolation device [Shen et al. 2004], and the Yama-age Bridge in
Japan employs a high-damping-rubber bearing dissipation system [Chaudhary et al. 2001]. The Marga-
Marga Bridge in Vina del Mar, which is located in a high seismic risk area in Chile, is protected using
high-damping rubber bearings [Boroschek et al. 2003]. Following the Great Hanshin/Awaji earthquake
(also referred to as the Hyogo-Ken Nanbu, or Kobe earthquake) on January 17, 1995, the Benten Viaduct
Highway Bridge in Kobe City, Japan was rebuilt in 18 months using LCR isolation [Yoshikawa et al.
2000].

Such catastrophes have motivated researchers to develop effective damage mitigation systems to pro-
tect various types of structures [Jangid 2004]. Base isolation has become a conventional method for
protecting buildings and bridges from seismic events [Choi et al. 2006; Shen et al. 2004; Dicleli 2002].
Base isolation has been used to prevent brittle failure in piers [Hwang and Chiou 1996], to reduce the
spectral accelerations in stiff piers, and to reduce the shear force at the bases of bridges [Soneji and
Jangid 2006]. In short, it is generally considered a convenient alternative to typical bridge bearings
[Chaudhary et al. 2001]. Tsopelas and Constantinou [1997] experimentally studied the use of sliding
disc bearings and rubber restoring force devices to isolate bridge models under various types of ground
motion excitations. The results showed that these devices resulted in significantly smaller responses
than nonisolated bridges. Tsopelas et al. [1996] also performed analytical and experimental studies of
elastoplastic isolated systems and concluded that these systems are vulnerable to shock-type seismic
motions that result in large displacement demands. Over the last two decades, LCR isolators have been
integrated into various buildings and bridges because of their large energy dissipation capability (via
their large hysteresis region) and because of their attractive physical compactness [Choi et al. 2006].

In the current investigation, LCR isolators were applied in a benchmark study on the Highway 99
overpass at Second St. in Selma, CA in an effort to improve the performance of the overpass under
a ground motion excitation. There are two physical components of LCR isolation that define its con-
stituency. Several layers of rubber that help to support vertical loads while providing lateral flexibility,
and the lead core component, which may be represented using the Bouc and Wen model [Wen 1976;
Attard and Mignolet 2008], which has a significant physical advantage over bilinear models because of
the additional energy dissipation capability that it provides [Ramallo et al. 2002].

The investigation herein focuses on five components. First, dynamic responses of an isolated stiff
steel building are examined in order to validate the ability of the LCR isolator to protect structures
from far field ground motions. Secondly, the ability of LCR isolators to reduce vibrations in stiff steel
buildings subjected to near-field ground motions is analyzed. In this case, the near-field ground motion
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is modeled as a nonstationary signal generated as modulated white noise filtered through a Kanai—Tajimi-
like spectrum. Thirdly, the procedure is repeated by outfitting the LCR isolator in a building subjected
to a component of the 1994 Northridge earthquake. Fourthly, the ability of LCR isolators to control the
responses of an eight-story building responding at ‘higher-mode effects’ (HME) of vibration is analyzed
under the ground motion of the El Centro ground acceleration record (SOOE component) of the 1940
Imperial Valley Earthquake. Finally, a two-span bridge is modeled and analyzed using the El Centro
motion.

Two parameters of the LCR isolator, which include the total yield force of the isolator and the pre-
yield to post-yield stiffness ratio of the lead-core component, are parametrically varied in order to reduce
the responses under the influence of HME or near-field or far-field ground motions and to determine
the appropriate design of the LCR isolator. The steel sections of the shear frame buildings are defined
using a highly nonlinear material model [Attard 2005], where the member stiffness is assumed to degrade
smoothly following a constitutive rule that was developed to assess the behavior of kinematically strain-
hardened materials under cyclic conditions. The results are compared to uncontrolled, or as-is, systems
that would otherwise degrade highly nonlinearly [Attard 2005]. The yield force of the LCR system was
represented using the Bouc and Wen model, whereas the bridge structure was linearly analyzed. The
bridge was numerically modeled using site-plan information, and a suitable LCR isolator was designed.
Responses of the isolated bridge subjected to the El Centro ground motion were evaluated and compared
to those of the nonisolated bridge.

2. Equation of motion and the LCR model

The equation of motion of a structure integrated with LCR isolators and excited by a ground motion

acceleration given as X, is
Mx+Cx+Kx+Fr=Tf—MXx,. (1)

Here M and C are the mass and damping matrices, respectively, where the mass matrix of the structure
also includes a grade beam. The Caughey damping matrix [1960], C, is assembled using all structural
modal damping ratios. The displacement vector relative to the ground is defined as x (). The stiffness
matrix, K, of the structure and the rubber component of the LCR isolator is elastic and provides a linear
nonhysteretic component to the structure-LCR system until yielding occurs. At the point of yielding,
the spring force in the post-yielded members remains constant (where x; () = Xyelq,i, Where x; (¢) is the
individual i -th member displacement, and xyjelq,; iS the respective yield displacement), and the subsequent
hysteretic spring force, Fg, is activated in those members where x;(f) > Xyjelq,i» including the LCR
isolator. The nonlinear restoring force, Fg, accounts for the material anisotropy in inelastic members
that undergo cyclic deformations and that may be assumed to kinematically strain harden [Wu 2005;
Elnashai and Izzuddin 1993]. The location vector I" implies the position of the LCR isolator at the grade
beam level, and f is a complementary hysteretic force of the lead core component of the LCR isolator of
the form

f=20,, )
where Q) is the yielding force of the lead core and Z is a hysteretic component of the lead core used to
smoothly transition the lead core’s response between the elastic and post-yielded states. Tan and Huang
[2000] used a bilinear hysteretic model to evaluate the behavior of LCR isolators in bridges, whereas in
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the current investigation, this hysteretic component is represented using the Bouc and Wen model [Bouc
1968; Wen 1976; Attard and Mignolet 2008], the results of which have been shown to consistently match
experimental data [Ramallo et al. 2002]. The Bouc and Wen model is given by

7 =—al|x| 2" = px|Z"| + A% for odd values of n, (3)
where a, 8, A, and n are shape parameters [Ramallo et al. 2002] and where

Kinitial

Qtotal ,
Here Kipitia1 is the initial stiffness of the LCR isolator and Qo is the yield force of the LCR isolator
which may be calculated as a percentage of a total weight of the structure. The equation of motion (1) is
solved herein by marching in time from zero initial conditions by the Newmark Beta scheme assuming
a linear change in the acceleration between time steps spread 0.02 s apart. The response simulations are
made using an algorithm that was developed as part of this study called BISON (base isolated nonlinear
time history analysis) that analyzes the local nonlinear plastic strain and global displacements of any
damaged structural members using a nonlinear rule of kinematic strain hardening and formulates the LCR
isolator force using the smooth Bouc and Wen model. Because the Bouc and Wen model is intrinsically
hysteretic, the parameter n is chosen as ‘one,” which allows a purely plastic region to exist once the
lead core yields and enables a desirable smooth transition between the elastic and inelastic states. The
LCR isolator is phenomenologically modeled as shown in Figure 1 and includes a slider that will open
to indicate purely plastic behavior of the lead core after it yields (n = 1); the relative displacement of
the two sides of the closed slider remains zero prior to yielding. Further, the displacement time histories
of the lead core would ‘drift’ [Attard 2003; Attard and Mignolet 2005] using the Bouc and Wen model
without inclusion of the nonhysteretic rubber components, and thus, these are consequently defined as
kpx and cpx and are included in the model of the LCR isolator as indicated by the equation

A=

o=p, A=a+p. 4)

FLCR=ZQy +kbx—|—cbfc. (5)

The total force provided by the LCR isolator is F7cg. The parameters kj, and ¢, are the elastic stiffness
and damping parameters of the rubber component where the nonhysteretic term, kp, is included in the
build-up of the matrix K in Equation (1). Once the lead core yields, the inelastic stiffness of the LCR
isolator (lead core component + rubber component) is defined as k; while the Bouc and Wen component
of the LCR isolator provides a constant force equal to Q that is calculated at x; (f) = Xyielq,i -

BISON calculates k; by determining the stiffness of an additional so-called fictitious bottom story (in
the case of a building) such that the fundamental period of the entire ‘building + additional fictitious
story’ system is equal to 2.5 seconds [Ramallo et al. 2002]. This fictitious bottom story represents the
LCR base isolator in the real structure. Caughey damping, which has been used in a previous study by
[Attard 2007], is assumed to be 5% in each mode of vibration. The value of Kj,ita 1S calculated as

Kinitial = Bratio X kp, (6)

where the parameters By, and the LCR isolator yield force, Qqotal, are LCR isolator design parameters
that may be appropriately tuned to attain the desired response and controllability of the structure in
question. In this study, stiff structures, structures subjected to near-field earthquakes, structures with and
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Figure 1. LCR isolator model assuming n = 1 in the Bouc and Wen model resulting in
a sliding effect (perfectly plastic) after the lead core yields.

without HME, and a 2-span bridge are analyzed parametrically for various values of Bi,tio and Qqotar. It
has been suggested, however, that the following values be used for the parameter B, depending on the
peak ground acceleration (PGA) of the ground motion [Spencer et al. 2000]:

6 if PGA <0.35¢g,
ratio = (7)

10 if PGA > 0.35g.

3. Numerical examples: Five case studies

3.1. Two-story steel building subjected to the El Centro ground motion. The responses of a two-story
steel building designed using LCR isolation were simulated using BISON. The building was excited
using the El Centro ground motion with a time-step of 0.02 seconds. The shear frame is supported with
a grade beam as shown in Figure 2, and the mass of each story, including the grade beam, is 0.5 kip-s?/in.
Each mode of vibration was assumed to have a damping ratio of 5% (assuming Caughey damping), and
rock-like soil conditions were considered at the foundation level.

M = 0.5 k-s?/in., typ.

]
M = 0.5 k-s?/in., typ.
M
|
M

ABxE0, e
typ.

Grade Beam, M 12ft,

12ft,
typ.

R

—
@]
Pl
-
(@]
py)
z
el

W18x50,
typ.

—

Figure 2. Two story stiff steel building: (a) passively controlled using LCR isolation
supported under a grade beam; (b) uncontrolled (““as-is”).
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Figure 3. Hysteresis of a 2-story steel building subjected to the 1940 El Centro ground
motion: (a) as-is frame [Attard 2005]; (b) isolated frame.

The frame was constructed using W18 x50 steel sections that were 12 ft tall. The necessary post-yield
stiffness of the LCR isolator (k) was calculated as 9.87 kip/in, whereby the fundamental period of the
isolated structure equaled 2.5 seconds. The LCR isolator was designed to protect the building against
moderate ground motions [Ramallo et al. 2002], having a PGA under 0.35 g’s, with a corresponding
Bratio equal to 6; see (7). Skinner et al. [1993] and Spencer et al. [2000] suggest that the value of the
yield force of the LCR isolator (Qqora1) be 5% of the total weight of the structure.

The responses of the building in Figure 2 were marched in time from zero initial conditions using
BISON. The force-displacement hysteresis of the as-is, or uncontrolled, frame is shown in Figure 3a,
where the W18 x50 members, especially those of the bottom story, experience significant damage. The
nonlinear stiffness degradation model that was embedded in BISON and used to simulate the response
time histories was derived following the one proposed by [Attard 2005]. The ability of the LCR isolator
to reduce the displacement and velocity time histories is shown in Figures 3b and 4.
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Figure 4. Velocity time histories of top and bottom stories of isolated and as-is frames
subjected to the El Centro ground motion.
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In Figure 3b, the maximum displacement of the frame with LCR isolation was reduced by over 50%
with respect to the maximum displacement of the as-is building, implying that the higher frequencies of
the ground motion were adequately filtered through the LCR isolator. Further, the structural members
of the isolated frame did not exceed their yield limit (i.e., they remained elastic.). The LCR isolator was
also able to significantly reduce the velocity time histories in the two-story building (Figure 4), which
indicates that a significant amount of the input earthquake energy was dissipated, and that the acceleration
responses were also reduced.

Finally, Figure 5a shows the smooth hysteresis of the LCR isolator, which was developed in BISON
using the smooth Bouc and Wen model with the following parameters determined for Equation (3): n =1,
A =3.06,y =1.53, f =1.53.

The perfectly plastic hysteresis of the lead-core component is illustrated in Figure 5b, which shows
the smooth transition between the elastic and plastic states (n = 1). Finally, Figure 5c shows that the
rubber component remains elastic with a stiffness, kp, equal to 9.87 kip/in, which is also the post-elastic
stiffness of the LCR isolator shown in Figure 5a.

Force (k)

Displacement (in)) Displacement (in) Displacement (in)

Figure 5. Hysteresis relationships of the (a) LCR isolator, (b) lead-core component us-
ing the Bouc and Wen model, and (c) rubber component using k;, = 9.87 kip/in.

3.2. Two-story building subjected to an artificial nonstationary excitation. In a second study, BISON
was used to simulate the responses of the same two-story building in Figure 2 using a near-field ground
excitation that was produced using a nonstationary signal generated as modulated Gaussian white noise
filtered through a Kanai—Tajimi-like spectrum, Sge () equal to

21/ At
(@2 — 0?2+ 2Ewgw)?’

where the ground intensity factor of the spectrum, G, is 0.126, and the ground frequency and damping
terms, wg and &, are 15.6 radians/second and 0.6 [Clough and Penzien 1993]. It is possible to obtain the
time histories of the ground motion (x) [Attard and Mignolet 2008], as the solution response to Equation
(9) for a single-degree-of-freedom (single-DOF) ground system subjected to a white noise process, Xg,
that has a spectral density of G,(27/At), where

See(@) = Go (8)

g+ 2 gwgky + woxg = —igp 9)

and

xg(t):/Oth(t—r)F(r)dt (10)
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or
n

x A== (g0 (m A1) +562go((m —1)Ar)

h((n —m)At)At, (11)
m=1
where h(t — 7) is the unit impulse response function, and n is the total number of time steps.

The k;, parameter equals to 9.87 kip/in in order to produce a fundamental period of 2.5 seconds to the
isolated structure. The LCR isolator was redesigned with a new value of Q1 [Inaudi and Kelly 1993],
following the ground excitation, X,. Park and Otsuka [1999] suggested that the optimal range of Qo be
between 14% to 18% of the total weight of the building in order to achieve adequate seismic isolation and
control building responses under severe ground motion. Spencer et al. [2000] further suggest that Qiotal
be selected between 13% to 17% of the total building weight and to select the stiffness ratio, Biaio, to be
approximately 101n order to significantly reduce base drifts and moderate the acceleration responses for
buildings subjected to severe ground motions. In this light, the LCR yield force, Qowal, Was selected as
18% and B, = 10 with due respect of the severe excitation described by (8) and (9). Figure 6 shows
the force- displacement hysteresis of the as-is (uncontrolled) and LCR isolated buildings.

A comparison of the two figures indicates that the high energy content of the nonstationary excitation
was not adequately dissipated via the lead core component of the LCR isolator. While the displacements
of the top story were reduced as was the number of cycles, which indicated that the response remained
linear for a longer period of time, the bottom story displacements were only marginally reduced as the
structural member stiffness appears significantly nonlinear, which thus implies significant damage. An
observation of the velocity time histories in Figure 7a— calculated relative to the LCR isolator velocities,
which themselves are calculated relative to the ground — reveals that while the lead core component by
definition increases the energy-dissipation capability of the base isolation system, the large velocities
in particular indicate that LCR isolation is ineffective in reducing potential structural damages to the
W18x 50 structural members under this nonstationary excitation. It is in fact observed that the relative
velocities of the bottom story of the LCR isolated frame exceed those of the as-is frame (red versus yellow
in Figure 7a). In Figure 7b, the LCR isolation appears to have little impact on reducing the displacement

700+

Force (kips)

¥

,/‘44’11’"’
7

— Bottom Story
- -Top Story

-600 -700-
Inter-story Displacement (in.) Inter-story Displacement (in.)

Force (kips)

-20

10 20

—Top Story
— Bottom Story

Figure 6. (a) As-is hysteresis. (b) LCR isolated hysteresis of 2-story steel building
subjected to a nonstationary ground excitation.
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Figure 7. (a) Velocity and (b) displacement time histories of the Figure 2 frame under a
nonstationary ground excitation having Kanai—Tajimi-like spectra.

time histories, but does appear to impose an out-of-phase component in the displacement time histories
starting at about 6.5 seconds where the frequency abruptly reduces by a factor of about 2.

3.3. Two-story frame subjected to the Northridge (Pacoima Dam) motion. In a third investigation, the
frame in Figure 2 was analyzed using the 1994 Northridge ground acceleration record (Pacoima Dam,
Upper Left Abutment), which was a near-field ground motion having a PGA of 1.58 g’s. According to (7),
Biatio should be equal to 10. Further, the value of Q) is selected as 0.18. The results are shown in Figures 8
and 9, which indicates that LCR isolation is actually effective in reducing damages under this near-
field excitation. Figure 8a shows the degree of structural damage to the W18 x50 members in the as-is
frame, where the damage was significantly reduced (Figure 8b), when LCR base isolation was integrated
into the frame. The force-displacement hysteresis of the LCR isolation system is shown in Figure 8c,
and a comparison of Figures 5a and 8c demonstrates the potential influence that pulse-type, near-field
ground motions, such as the Northridge earthquake which was identifiable with historic structural and
nonstructural damage, may have on the ability of an LCR isolation system to reduce structural responses,
as indicated by the “nonstationary-like” hysteresis shown in Figure 8c. The comparison to Figure 5a,
which had been determined using the El Centro earthquake, which was a far-field ground motion, shows
that while the lead-core component is to some extent capable of dissipating the energy content of an
incoming earthquake, the effects of which may be manifested in the velocity and acceleration time
histories of the structural members, this may not necessarily be the case for pulse-type motions (9).
In Figure 9, the story-level velocities are calculated relative to the LCR velocities. In this case, LCR
isolation ineffectively attenuates the relative velocities, especially in the top story and especially later
in the response-history when the velocities are actually shown to increase. This may be correlated to
the ‘nonstationary-like’ nature of the LCR hysteresis, and in fact indicates that the velocities are most
significantly reduced in either story when the LCR system does not reverse direction which occurs from
4.56 seconds to 5.36 seconds. This would then suggest that LCR isolation in this case precludes a structure
from dissipating sufficient energy and reducing the structural velocities.
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Figure 8. Responses of the LCR isolated 2-story steel frame (Northridge excitation)

assuming Bt = 10: (a) as-is force-displacement hysteresis; (b) LCR-controlled hys-
teresis; (c) LCR hysteresis.
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Figure 9. Responses of the LCR isolated 2-story steel frame (Northridge excitation)
assuming By, = 10: (a) top story velocity time histories; (b) bottom story velocity time
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Figure 10. Responses of the LCR isolated 2-story steel frame (Northridge excitation)
assuming Braio = 6: (a) force-displacement hysteresis; (b) LCR hysteresis.

In a follow-up to this analysis, a value of Byaio = 6, while O, was held at 0.18, was used to design
anew LCR system to try to mitigate the velocity differences between far-field and near-field excitations.
The results are shown in Figures 10 and 11.

While the displacements were again effectively reduced, the structural velocity time histories (Figure
11) calculated relative to the LCR system, are also significantly smaller than those corresponding to
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Figure 11. Responses of the LCR isolated 2-story steel frame (Northridge excitation)
assuming Biaio = 6: (¢) top story velocity time histories; (d) bottom story velocity time
histories.

Figure 9, where Biaio = 10. What may be most telling in this comparison is the less nonstationary-like
appearance of the LCR hysteresis in Figure 10b.

Finally, Figure 12 shows that the absolute acceleration time histories (structure + LCR isolator +
ground accelerations) using a Biaqo = 10 versus Braio = 6. As was the case with the velocity time
histories — see Figure 9 versus Figure 11— a significant disparity exists between top story absolute
accelerations for the suggested Byyio 0f (7), versus the suggested value herein (Biaio = 6). The current
findings reveal that at least for near-field motions having large PGAs, LCR isolation systems should
be designed using a softer elastic stiffness Kinitial (i-€., Bratio = 6), which affects energy dissipation of
the lead-core component (A) —see (4) and (5)—and which finally results in a more stationary-like
hysteresis (where the stiffness of the rubber component, kj;, remains unchanged).

3.4. Eight-story steel building responding with HME. In order to study the influence of HME on the
design of an LCR isolation system, an eight story steel shear frame was designed having the properties as
shown in Table 1. Each story was designed using W18 x50 steel cross sections having a yield stress, oyjeld,
of 36 ksi. The stiffness of the first story, k;, was 9.54 times that of k7; see Table 1. While the stiffness
distribution over the height of the building (see 3rd column, Table 1) does not necessarily represent that
of an actual building, it does ensure that the building will respond with HME in order to assess the
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Figure 12. Comparison of absolute accelerations using (a) Byyio = 10 and (b) Bratio = 6.
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mass .

story (kip-s2/in) X /k; modal mass ratio
0.5 8 1.1% (8th mode)
0.5 9.54  5.5% (7th mode)
0.5 8 0.7% (6th mode)

0.5 5.35  0.6% (5th mode)
0.5 9.54  8.0% (4th mode)
0.5 3.38  8.2% (3rd mode)
0.5 1 9.4% (2nd mode)
0.5 1 66.4% (1st mode)

— N Wk NN J

Table 1. Property distribution of an eight story stiff steel building with HME.

applicability of LCR isolation in HME-type systems. The modal mass ratio was 66.4%, which was less
than 75% [Attard 2007], thus implying the presence of HME. If any of the W18x50 sections were to
begin yielding, a smooth nonlinear model previously proposed by [Attard 2005] was assumed to govern
the inelastic behavior, which was embedded in BISON. The damping ratio in each mode was assumed
to be 5% following the previously mentioned Caughey model for damping.

The elastic stiffness of the LCR rubber component and the post-yield stiffness of the LCR (i.e., kp)
are calculated as 49.5 kip/in by BISON. The eight-story building is subjected to the El Centro ground
motion. The value of By,to 1S 6, and Qiorar is 5% of the total weight of the building as previously suggested
[Skinner et al. 1993; Spencer et al. 2000].

The responses of the as-is and LCR-controlled buildings are shown in Figure 13. A comparison of
the two figures reveals that LCR isolation significantly reduces the absolute maximum displacements
(measured relative to the story immediately below, i.e., interstory displacements) on each story in the
range of 7.29% to 33.06%, except for the 7th story which showed a slight increase of 0.23% in its
interstory displacement, possibly due to the HME.

Bottom Story

Inter-Story Displacement (in) Inter-Storv Displacement (in)

Figure 13. Eight-story steel building subjected to El Centro ground motion: (a) as-is
hysteresis; (b) controlled hysteresis.
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Figure 14. Distribution of interstory displacements between the as-is and LCR-
controlled 8-story buildings (with HME); the percent error is shown to the side of each
displacement pair per story.

The results are shown graphically in Figure 14, which display the percent error to the side of each
interstory displacement. The negative error on story 7 indicates that the interstory displacement increased
(0.23%) when LCR isolation was included. All other stories showed a substantial decrease. Note that the
stiffness of the 4th story abruptly decreases following the first three ‘stiff” stories. This sudden difference
may be observed in Table 1 between k;/k3 and k;/ k4, as the structure above the 3rd story in a sense
‘decouples’ from the first three stiff stories, thus enabling the first three stories to behave as a ‘fixed-
end’ where stories 4-8 act as a ‘cantilevered end.” The implication of this is that some dominant lower
frequencies (HME exceeding 75%) remain unfiltered by the LCR isolator.

B ratio Qtotal 8 7 6 5 4 3 2 1 GB

6 5% —0.699 —-1.501 —-1.792 —1.558 3.837 1.016 —-0.331 —-0.413 —4.436
8% —0.819 —1.734 2199 —-1.352 3280 0978 —-1.041 0.853 —4.861
10% —0.840 —-1.875 —-1.927 -1.522 -3.66 —1.078 —-0.694 —-0.537 —-5.711
15% —0.851 1.906 2905 1.843 5915 1590 3.809 —2459  6.645
18% —0.897 2.696 2870 1587 3388 1.650 1450 1355  3.541

10 5% —0.758 —1.395 1.638  1.027 2266 —-0.815 —-1.037 0.689 —3.927
10 8% 0.754 1378 2465 1.679 4388 1.044 0436 0474 -—-10.07
10  10% —0.891 1.511 2.874 2.168 5345 1332 9817 -10.21 -10.28
10 15% —-0918 1.821 2376 1.537 5.063 1269 0.868 —0.582 10.63
10 18% —1.152 -2.384 2210 —-1.366 -3.028 3.077 —-8.615 7.055 5.815

15 5% —0.729 —1.677 —2.485 —-2424 —-6414 -3.111 -—-8.036 9.565 —7.122
15 8% 0.664 1464 2478 1.672 4393 2694 -5221 3.863 —5.559
15 10% —-0.823 —1.736 1.741 1.156 —3.049 —-1.291 0.642 —-0.901 —8.254
15 18% 0915 1.830 3.189 2019 4256 1.229 1218 0.592 —29.762

()N e Ne)

Table 2. Maximum interstory displacement as a function of story number, pre-yield to
post-yield stiffness ratio, and yield force of the LCR. The last column corresponds to the
grade beam.
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Table 2 shows the results of a comparative investigation of the influence of parameters By, and Qtotal,
where the latter is the yield force of the LCR isolator and is given as a percentage of the total weight
of the building, to correlate these parameters to the HME-induced responses, in this case for the 8-story
building. The values of Biai, Were chosen as 6, 10, and 15, and for each By,o, the yield forces of
the LCR isolator, Qoa1, Were varied between 0.05, 0.08, 0.10, 0.15, and 0.18 (except for Byaio = 15,
which did not include Qo1 = 0.15) as the percentage of the total weight of the building. The responses
were marched in BISON for 24 seconds (where the time between time steps, A¢, was assumed to be
0.02 seconds. The maximum displacements of each story in Table 2 include positive and negative signs
of the calculated values to indicate the drift direction (right or left) of the maximum absolute displacement.
The findings reveal that a combination of By, = 10 and Qo1 = 0.05 produces the smallest collection
of interstory displacements and grade beam displacement. To validate these results, the use of By = 6
and Qqoral = 0.05 will also result in reasonable interstory displacement time histories, although not as
good as Braio = 10 and Qqorar = 0.05, which is consistent with the findings of [Spencer et al. 2000].

A subsequent examination of the case where By, = 6 shows that while an increase in Qo Will
generally decrease the maximum interstory displacement on the 4th story (except for Qa1 = 0.15) via a
larger dissipative LCR hysteresis and because of the abrupt stiffness change on this floor, the unfiltered
incoming lower frequencies tend to excite other pertinent HME resulting in an increase in the maximum
displacements of the other stories, including the grade beam. These effects are more apparent as Biagio
increases. While a value of Qa1 = 0.18 provides the best result for the grade beam displacement, this
design value typically increases the maximum interstory displacements of many of the other stories. In
the case of Biaio = 10, the maximum displacements of many stories increase with an increase in Qtotal,
especially for Qo1 = 0.10, where the maximum interstory displacements of the stiff 1st and 2nd stories
abruptly increase. In this case, the inelastic stiffness of the LCR isolator, kp, is relatively small and A in
(4) and Frcr in (5) are also small indicating that the “stiff”” LCR isolator is unable to filter the ground
motion frequencies associated with the stiff lower stories of the structure that result in a resonating effect
in the response. In the case where Byaio = 15, a decrease in Qyotar (€.8., Qrotal = 0.05 or 0.08) needs to be
avoided in order to protect and not create a resonant-like response in the stiff lower stories. The results
are illustrated in Figure 15, where Qo as indicated is a percentage of the total weight of the building.

Story No.
Grade Beam)

©
S R O S = S IN=1)

o L, N W A O O N ®
S R S R B

o B N W A O O N ®
T R R R S

0 1 2 3 4 5 6 0 2‘ z‘t (‘5 z; 1‘0 0 5; 1;) 1‘5 22) 215 321
Inter-Story Displacement (in.) Inter-Story Displacement (in.) Inter-Story Displacement (in.)
Figure 15. Maximum interstory displacement distributions measuring the impact of
Ototal (%) on the LCR isolator design, for various Bi,o equal to 6 (left), 10 (middle)
and 15 (right). The values of Qo are 5 (thin black curve), 8 (magenta dashed curve),
10 (green dashed curve), 15 (red curve), 18 (thick black curve).
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Figure 16. Elevation views of the two-span Highway 99 overpass used in the benchmark
and LCR analyses: (a) overpass in the E-W direction; (b) cap girder supporting the LCR
isolation pads; (c) 2-DOF model of the girder/cap-beam system; (d) overpass in the N-S
direction of traffic.

3.5. Highway bridge protection using LCR isolation. In a final investigation, the highway 99 overpass
across Second Street in Selma, CA was outfitted with LCR isolation using a lead core represented by the
Bouc and Wen model. The bridge was numerically modeled following specifications of the California
Department of Transportation. The LCR isolator was designed for the El Centro earthquake. Figure 16a
shows an elevation view of the bridge, which spans 156 ft across two abutments. The bottom flanges of
the supporting prestressed concrete girders are 15.1 ft above the ground and are supported by two center
columns. An elevation view of the cap-beam is shown in Figure 16b; a detail of the girder-cap connection
is shown in Figure 16c¢. Figure 16d shows the six-girder system together with the two columns aligned
perpendicular to the flow of traffic in the North—South direction.

Using a unit weight of concrete of 150 Ibs/ft> and a compressive concrete strength of 5,000 psi, the
modulus of elasticity was calculated as 4,287 ksi, and the weight of the cap-beam was calculated as
89.51 kips. Each of the two columns supports half the weight of each of the two spans, where there are
six girders per span; the weight of girders is 115.26 kips, and the diameter of each column is 3.74 ft.
To study the effects of LCR base isolation on this bridge, LCR isolators were placed between the cap-
beam and the girder to reduce the cap-beam displacement. The isolated bridge was modeled as a two-
DOF system composed of the superstructure girders and the substructure cap-beam [Chaudhary et al.
2000; 2001]. The LCR isolator is situated between the cap-beam and the girders; see Figure 16¢. The
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Girder Cap-beam
Bratio Qtotat  displ. accel. displ. accel.
(in) (@n/s*)  (in) (in/s?)
5% 3405 161.2 0.0617 163.3
10% 3.452 1734 0.0612 163.3
15% 3.643 180.0 0.0604 163.3

10 5% 3253 156.6 0.0604 163.3
10 10% 2.923 1663 0.0596 163.2
10 15% 3.057 177.7 0.0589 163.2

15 5% 3375 151.8 0.0598 163.3
15 10% 2473 1647 0.0591 163.2
15 15% 2520 178.0 0.0584 163.2

AN N O

Table 3. Maximum absolute displacements and accelerations of the girders and cap-
beam (fixed-pin boundary conditions), for various values of Biyo.

as-is system (having no LCR isolation) is modeled as a singe-DOF system having mass equal to that of
the girders plus the cap-beam. Both systems were analyzed for a fixed-pinned boundary condition, per
Caltrans’ specs. The parameter By, was varied between 6, 10, and 15, and Qi Was varied among
0.05, 0.10, 0.15 of the superstructure of the superstructure weight (girders) that was part of a parametric
study used to design the LCR isolator for this bridge. For the assumed fixed-pinned boundary conditions,
the post-yield stiffness of the LCR isolator was calculated as 1.89 kips/in using BISON that had resulted
in a natural period of vibration for the system equal to 2.5 seconds after the lead-core had yielded. The
maximum absolute displacements and accelerations of the girders and cap-beam are shown in Table 3,
where Qo) 1S again given a percentage of the total weight of the bridge.

Table 3 shows that B, has virtually no impact on the cap-beam accelerations and tends to result
in a decrease in cap-beam displacements as it increases. The smallest absolute displacements of the
girders (2.473in) and cap-beam (0.0584 in) occur using Qtora1 = 0.10 and Biatio = 15, and Qiotal =
0.15 and B0 = 15, respectively. The girder accelerations (164.7 in/s?) were smallest when Orotal =
0.10 and By = 15, and the cap-beam displacement (0.0591 in) was also adequately reduced using
this combination in an ideal LCR design for a fixed-pinned connection. A comparison of the time
history displacements and time history accelerations to those of the as-is case shows that the displacement
demands on the cap-beam were reduced by 50% using LCR isolation (Figure 17a), and many of the time
history accelerations of the cap-beam were also reduced, as indicated in Figure 17b. Figure 18 shows
the hysteresis of the LCR isolator that had been modeled using the Bouc and Wen equations where
Qtotal = 0.10 and Byato = 15.

4. Conclusions

The ability of lead-core rubber base isolation (LCR) to reduce responses of buildings and bridges is
investigated. Five case studies, including parametric analyses, of a stiff two-story structural steel building
under (1) the El Centro (SOOE component) ground motion, (2) a nonstationary signal, which was modeled
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Figure 17. Response of the overpass bridge in Selma, CA with Biaio = 15, Qota = 10.
Black curve: as-is response; superimposed lighter curve: LCR-isolated response.
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Figure 18. Response of the overpass bridge in Selma, CA with B,tio = 15, Qtotal = 10:
LCR isolator’s hysteresis.

as modulated Gaussian white noise passed through a Kanai—Tajimi filter, and (3) the Northridge (Pacoima
Dam component) ground motion were analyzed. In addition, an eight-story steel building (4) exhibiting
higher-mode effects was also studied, and a prestressed concrete bridge overpass (5) in Selma, CA were
also examined using an in-house developed algorithm, called BISON (base isolation in nonlinear time
history analysis). It appears that in all five cases, except under the action of the nonstationary signal input,
parameters used to design the LCR isolator may be selected to very adequately reduce displacements,
velocities, and accelerations by appropriately tuning the ratio of the LCR elastic-to-inelastic stiffness and
the LCR yield force. Both parameters affect the LCR hysteresis, which was modeled using the Bouc and
Wen model. In the cases where the LCR hysteresis had a stationary-like appearance, the responses were
very adequately controlled, which was not the case under the nonstationary signal, where the high energy
content associated with the low frequencies of the input appeared to not be adequately dissipated by the
LCR isolator. However, in the four other cases, LCR isolation appears to be a very effective means of
reducing seismic structural demands if appropriately tuned.
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HOMOGENIZATION AND EFFECTIVE PROPERTIES OF PERIODIC
THERMOMAGNETOELECTROELASTIC COMPOSITES

JULIAN BRAVO-CASTILLERO, REINALDO RODRIGUEZ-RAMOS,
HOUARI MECHKOUR, JOSE A. OTERO, JOANKA HERNANDEZ CABANAS,
LAZARO MAYKEL SIXTO, RAUL GUINOVART-DIAZ AND FEDERICO J. SABINA

Using asymptotic homogenization, we derive the local problems and the corresponding homogenized
coefficients of periodic thermomagnetoelectroelastic heterogeneous media. The theory is applied to
obtain analytical expressions for all effective properties of an important class of periodic multilaminated
composites. Universal relations involving homogenized thermal coefficients of two-phase laminated
and fibrous piezoelectric/piezomagnetic periodic composites, with transversely isotropic constituents,
are obtained. Theoretical evidence is shown for the existence of pyroelectric and pyromagnetic effects
even if neither phase exhibits them. Numerical calculations and comparisons with others theories are
included.

1. Introduction

A coupled effect is the capacity to convert system energy from one type to another (for instance, among
magnetic, electric, mechanical, and thermal effects). Composites made of thermopiezoelectric and
thermomagnetic components exhibit a magnetoelectric effect that is not present in their individual con-
stituents. The knowledge of the global properties of such composites allows us to address the control
of the response of smart structures whose phases are, in general, made of thermomagnetoelectroelastic
(TMEE) materials.

Different methods have been employed to estimate the overall properties of TMEE periodic compos-
ites. For instance, Li and Dunn [1998b] developed a micromechanical methodology based on the mean
field approach of Mori and Tanaka [1973] combined with the Eshelby tensor [Li and Dunn 1998a] to
derive explicit formulae for the effective coefficients of two-phase laminated and fibrous composites.
Aboudi [2001] employed a general micromechanical homogenization theory to investigate the global
behavior of multiphase TMEE materials. His results show good agreement with those he derived in
[Aboudi 1998], via the generalized method of cells, and those obtained in the work of Li and Dunn
[1998b]. Using the theory of uniform fields in TMEE heterogeneous media by proper boundary condi-
tions, universal relations between the effective properties of two-phase fibrous composites were derived
in [Benveniste 1995]. In all these works, like in the present paper, the fully coupled constitutive laws for
TMEE materials were used. Based on the asymptotic homogenization method, analytical expressions

Keywords: thermomagnetoelectroelastic composites, effective properties, universal relations, laminated, fibrous composites,
homogenization, periodic heterogeneous materials.
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for magnetoelectroelastic unidirectional two-phase fibrous composites with circular cross section fibers
and transversely isotropic constituents were derived in [Camacho-Montes et al. 2006].

In this paper, based on the asymptotic homogenization method, the general theory developed in
[Bravo-Castillero et al. 2008], for magnetoelectroelastic heterogeneous media, is applied to determine
analytical formulae for the effective properties of periodic multilaminated TMEE composites. The
formulae obtained generalize those that appear in [Castillero et al. 1998] and in [Galka et al. 1996],
where piezoelectric and thermopiezoelectric periodic composites, respectively, were studied. Here a
general formula is presented in a unified way which is more adequate for computational implementation.
This unified formula is specified for one example of multilayered composites with any finite number
of transversely isotropic TMEE constituents to obtain all their effective coefficients. For the particular
case of two-laminated media, such effective coefficients prove to satisfy the universal relations derived
by Benveniste and Dvorak [1992] for orthotropic fibrous composites. Finally, by using a link between
four local problems on the periodic cell for two-phase unidirectional fibrous TMEE composites with
transversely isotropic constituents and arbitrary smoothness shape of the fibre cross section, universal
relations involving pyromagnetic, pyroelectric, thermoelastic, elastic, piezoelectric, and piezomagnetic
effective coefficients are derived [Benveniste 1995]. In particular, a proportion relating the pyromagnetic
and pyroelectric components in the direction of the fibers is found. The constant of proportionality
involves information relative to the piezoelectric and piezomagnetic constants of both phases.

2. Constitutive laws and equilibrium equations of TMEE materials

Let Q C R? be open, bounded and sufficiently regular, with boundary 8Q. The properties of a three-
dimensional body, that is, €2, made of a heterogeneous TMEE material are described by the elasticity four-
order tensor c, the piezoelectric coupling third-order tensor e, the piezomagnetic coupling third-order
tensor g, the electric permittivity second-order tensor x, the magnetic permeability second-order tensor
1, the magnetoelectric second-order tensor a, the thermoelastic second-order tensor 4, the pyroelectric
vector p, and the pyromagnetic vector m. Also, # stands for the heat conductivity second-order tensor,
and f=C./Tp; C, is the specific heat at constant strain per unit volume and Ty is the reference (absolute)
temperature. Thus, with Y the so-called unit periodic cell and the small parameter ¢ > 0, the material
functions just introduced are ¢Y -periodic in the local variable y = x /¢, and for each x € Q we write, for
instance,

M) =cx/e), ) =eMx/e), g0 =q"/e), K () =x(x/e),
pd () =p(x/e), al(x)=aV(x/e), A (x)=27(x/e), pix)=p'(x/e),
mi(x)=m'(x/e), nl(x)=n"(x/e),  Be(x)=Pplx/e).
Latin indices run over the set {1, 2, 3}. The Einstein summation convention will be used throughout. The
tensors of material functions satisfy the usual symmetry conditions:
cijkl _ Cé’ikl _ cijlk _ Clglij’ eikl _ eilk, qékl :qélk’ e
wl=ul L

&

We make the further assumption that there exists a constant 6 > 0 such that, for any a € R® and any
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symmetric 3 X 3 matrix X,
i jki 1
V() Xij X = 0Xij Xij
k) (x)aja; > oa;a;
,uf?j (x)a;a; > da;a; for almost every x € Q.

i’aj (x)aja; > da;a;

)

nd (x)a;a; > da;a;

For a fixed & > 0, the TMEE behavior of this body is given by the elastic displacement field u, = (u?),
the electric potential ¢., the magnetic potential ., and the entropy s., which satisfy the equilibrium
equations

—divo,(ug, Pes We, Se) = [
—div D, (u, Pe»r We, 5¢) =0

. in Q, 2-1)
—div B, (ug, P> We, S¢) =0

—div Tg(ug, Des Ye, SS) =0

where o, = (agj ) is the stress tensor, D, = (D!) the electric displacement, B, = (B!) the magnetic
displacement, and T, = (r]i:/ 0j0;) the flux of the temperature 6,, Also o; = 9/0x;, (div o.) =0 jaéj ,
div D, = 6; D', div B, = 6; B, and div T, = &; (%/ 9;0;), x = (x;) € Q. The constitutive equations are
given by

O-gij (ug, Do We, Sg) = cijklskj (”s) + ei:nijam(Ps + qyijan We — lijss'a

Dé(”e, P> We, Sg) = eéklskl (”s) - Kémamﬁﬁs - aén nWe + pése, 2:2)
Bé(”ea Pe»r We, Sg) = q;klskl(us) - aémam(ﬂg - ﬂi-nan ve + mi;sga
0, (u, Pe»r We, Sg) = _/llglskl (us) + pg"amqﬂp +mgan We + Bese,

where s (u,), Or@., and O v, are, respectively, the linearized strain and the gradients of the electric and
magnetic potentials, and sg;(u.) = %(@kué + alu’;). In (2-1) we have a system of six partial differential
equations for finding u,, ¢., v., and s.. It has to be completed by suitable boundary conditions. For
instance, we can assume homogeneous boundary conditions (#, =0, ¢, =0, . =0, and s, = 0) on the
external boundary 0€.

3. Homogenization

The method of two-scale asymptotic expansions will be applied in order to find the homogenized system.
The solution of (2-1)—(2-2) can be sought in the form

ug(x) =u’(x, y) +eul(x,y)+...,
e (x) = p°(x, y) +ep' (x, )+ ...,
e (x) =y e, y) ey )+,
s:(x) =50, y) s, )+,

(3-1)
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where u®(x, ), u'(x,¥), ..., 0%, ), 0 (x, y), L w0, y), wlx, y), oL S0, ), st (L ),
are Y-periodic functions with respect to the second variable y = x/¢. Similarly, as in the linear ther-
mopiezolectric or magnetoelectroelastic problem (see, for instance, [Galka et al. 1996; Bravo-Castillero
et al. 2008]), the functions u°(x, y), 9°(x, y), and w°(x, y) do not depend on y. However, in general, s°
depends on both x and y. See [Galka et al. 1992] for a complete description in the thermopiezoelectric
case. Due to the linearity of this problem and assuming both regularity of the inclusions’ shapes and
smoothness in the variation of coefficients, we have

u (@, y) = 5702 @)W (3) + 0 x0° ()g"™ () + 8y )R (3) + 0" ()T (),
0! (x,3) = 5r0x U N () + 00" ()T (V) + O W ") +O" ()0 (y),  (3-2)
w! (, 3) = 500 @O () + B x 0 )E™ () + 8n ' ()7 " () + 0" ()R (),

where 0y, ¢ = 0¢/0x,, and s, (u) = 3(0u,/0x, + du, /dx,). The functions u°(x), p°(x), and y°(x)
are, respectively, the mechanical displacement field, the electric potential and the magnetic potential of
the effective (homogenized) TMEE body while its temperature field 6" is given by

0" (x) = — (2K (0,2 ul + Op yu}) + (PF) @1 0® 4 31 y0 ") + (mFY @1 v + Ok ") + (B)s0(x, ),

where (g) = |Y|™! fY g(y)dy and the angle brackets denote averaging over the periodic cell Y. Note that
in general s° depends not only on x but also on the microscopic variable y. The local functions w’’, ¢,
't g™, ™, EM R, ™, y™;and T, Q, R are Y-periodic solutions of the following problems on the
cell Y:

e Problem L'": Find the Y-periodic functions w*, ¢, " such that:

_aj,yo_ij (W', Crt, ’7”3 0) = aj’ycijrt
_ai,yDi (w”, Crt’ ’,/rt’ 0) — a,-,yei” onY. (3-3)
_ai,yBi(w”, Crl’ 77”» 0) — ai,yqirt
e Problem L%': Find the Y-periodic functions g", z", ™ such that
—aj,yO'ij(gm, ™, Em, 0) = aj’yemij
—8iyD'(g", &, ™, 0) = —0;,yx™ t on Y. (3-4)
_6i,yBi(gm, n.m’ sz, O) — _ai,yaim

e Problem L%': Find the Y -periodic functions A", ™, ™ such that

_aj,yo-ij(hm: va ymv 0) = aj,quij
—8i,yD' (W™, ™, y™,0) = —8;ya'™ } onY. (3-5)
_6i,yBi(hm, K™ y™,0) = _5i,yﬂim
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e Problem L4: Find the Y-periodic functions I', O, R such that
—8j,y0"(T', Q, R, 0) = —0; A"
—0;,yD'(T', Q, R,0)=—0;,p' { onY. (3-6)
—8,yB'(T, Q, R,0) = —¢; ym'
o Problem L’g: Find the Y-periodic function T* such that
~a1y(n"0; T = 0; yn'™* on Y. (3-7)
Here 0,,,y¢ = 0¢/0y,. The homogenized problem can be written as
—dive®, 9% y°, 0" = f
—divD@®, ¢°, w°, 6" =0
—divBu®, ¢°, y°, 0" =0
—divT @®, ¢°, »°,6M =0

on Q, (3-8)

with the homogeneous boundary conditions u® =0, ¢° =0, y° =0, and 6" = 0 on 6Q. The effective
constitutive laws are given by

&P, (/)0, l//o’ oy = Eijklskj(uo) +émijam¢0 1" e, l/lo _jiigh,

DI, 00, w0, 0") = &5 (u®) — R Bp® — "0,y + 0",

B, 00 w0, 0 = G50 ®) — "0 0° — "0,y + 0,
0@w®, °, y°, 0"y = = 5, (u°) + p" 00 +m" 8,y + pO",

(3-9)

where the bar indicates an effective property. The local problems must be completed with additional con-
tact conditions on the interfaces between the constituents of the composite of interest. The homogenized
effective coefficients have the definitions

&I = (M 51,y (W) + S 1+ € ary ' + ¢ Oy ™),
( lkl[skl y(wrt) 40 t] _ Kikak,yé,rt _ (Xikak,yﬂrt>,

G = (g™ 510,y (W) + O] — a0y, — ko W),

il = (C”klskz (g™ + esu [0 yn' + 5m] + q“fa fm)

7im = (=M gy, (&™) + K5[0y " 407 +a'*o, yé'm) (3-10)
am = Skly(g )+ a’ [0y + O+ 15, &™),

Gim

q" = c””skzy(hm)+q”f[asyy +0 T+ e o5 1),

My (W™ + o oy ™ + w0k, yy ™ + 5711),
/_lij:(/lij—cijklskl,y(l“)—e fak,yQ—qf ak,yR), p' :(p +e’k1sk1,y(l“)—zc ak,yQ—a"kak,yR),
m' = (m'+q" s, (T)—a™ oy O— '™ o yR), B =(B— s,y (T)+por,yQ+m a4 R),

(-
(~a
(=M sty (W) + ™ (05,7 ™ + 1+ kO y ™),
(
(~a
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and
il = (' + nita, T, (3-11)

where 5;‘; = %(55.51" + 5,"{5{ ) and élj is the Kronecker delta.

4. Closed-form expressions for effective coefficients of multilayered TMEE composites

The local problems above, with equations (3-3)—(3-6), can be written in a unified way as follows: Find
a Y-periodic W' such that

_ m(ca/mb/nan Wc/’t) = 0 (Cu/mc/t)’ (4-1)
where
Cimkn = cimkn’ Cim44 = _/Iim, C4mkn = emkn’ C4m4n = _Kmn’ C4m44 = pm’
C4444 = ,B, CSmnk = qmnk, C5m4n = —(an, C5j44 = mj, CSmSn = _ﬂmn’

Wrt = U),’;t, Wrt = Crt’ W5rt = 77”7 W]?m = glr:l, ij = n_m’ W54m = ém’
Sm __ Sm __ Sm __ 44 __ 44 __ 44 __
kaszm, W4m=fm, W5m=ym, Wk =Fk, W4 =Q, WS = R.

The primed Latin indices run from 1 to 5.
The homogenized effective coefficients given by all the Equations (3-10) can be expressed by

CUmbt = (Camy 4 (c e, WET). (4-2)

The unified formulation above is very convenient for some specific problems. For instance, let us consider
the particular case of a laminated TMEE composite, made of cells which are periodically distributed along
the axis y;. Each cell may be made of any finite number of homogeneous TMEE layers. The axes of
symmetry of each layer are parallel to each other and the y;-axis is perpendicular to the layering. In
this case, the material functions C¢”?"* and the local functions W depend only on the fast variable y;.
Consequently, expressions (4-1) and (4-2) take the form

D, (Ca’lb’l D W;//I) =D, (Ca’lc’t), (4_3)
Ea/mh/t — (Ca’mh’t> + <Ca’mc/ll)1 ch,’t>’ (4_4)

where D denotes the ordinary derivative in the generalized sense with respect to the y; coordinate. The
angle brackets define the average per unit length of the relevant quantity over the periodic cell, that is,
(Fy=1Y|! fy F(y1)dy1, where |Y| denotes the length of Y. For simplicity, a periodic unit cell ¥ will be
considered. This is a one-dimensional homogenization problem which consists in finding the 1-periodic
solution of (4-3), with an average of zero on Y, and satisfying the usual contact interface conditions; see,
for instance, [Pobedrya 1984, Chapter 5].

Solving the system of ordinary differential equations defined by (4-3), taking into account perfect
bonding conditions at the interfaces, and using (4-4), it is possible to obtain a general closed-form formula
for all the TMEE effective coefficients:

Eu’mb’t — (Cb’mb’t> + (Cb/mc/l (Cc’ld’l)—l Cd/lb’t)
+<Ca/mc/l(Cc/ld’l)—l)((Cd’le’l)—l>—1<(Ce’1f/l)—lCf/lb’t>' (4-5)
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Here (C“17'1)~! denotes the components of the inverse matrix of (C¢'*'!). Equation (4-5) is a general-
ization of [Pobedrya 1984, Equation (1.11), p. 145] where the purely elastic case was investigated. From
(4-5), for the particular case of a two-laminated TMEE composite, the following was derived:

Camb't = camt —yy (1 — o) [CY B IC Y, (4-6)

where v; is the volume fraction of phase 1 (BaTiO3); the material coefficients of such composite are
piecewise constants, defined by

cymt for yi € (v1, 1),

and C,‘j/’"b/’ = 01Cf’mb” + (1 - Ul)Cglmb,’, [Caml) = C‘f/mc/l — Cg/’"cll, a row vector for a’m fixed,
[C4W] = C{l,”’/’ — Cg“b,’, a column vector for &'t fixed, and [Byg'] = [vng,ld/1 -1 - vl)Cflld/l],
where Bgé, is the inverse matrix of B . Equation (4-6) is similar to [Galka et al. 1996, Equation (17),
p. 138] for laminated thermopiezoelectric composites.

4.1. Effective properties of a multilaminate with an orthotropic global behavior. We now specialize
formula (4-5) for the case of a multilaminated composite whose periodic unit cell can possess any
finite number of homogeneous TMEE materials with transversely isotropic properties. Each phase is
characterized by the following independent constants:

Five elastic constants:

Cllll — C2222(E Cllll — 6‘2222) C1133 — C2233(E Cll33 — 02233)’

b
Ccl12(=  1122)) BB (= (33 201212 = ¢ 1212 — (1111 _ 1122y,
Three piezoelectric constants:

C4311 — C4322(E 6311 — 6322), C4333(E 6333), C4113 — C4223(E 6113 — 6223).

Three piezomagnetic constants:

CHI = 09322(= 311 = ;322 5B (= ¢33 CS113 = 09223 (= 4113 — 4223
Two dielectric permittivity constants: C44! = C4% (= —k!! = —x?2) and CPH (= —«?).
Two magnetoelectric constants: C>'* = C?# (= —a!! = —a??) and C>38 (= —a??).

Two magnetic permeability constants: C>°! = C3%%(= —u!! = —4??) and C3333 (= — ).
Two thermal constants: C!'* = C2?% (= — 1!l = —)??) and C*3* (= —13Y).

One pyroelectric constant: C*% (= p?).
One pyromagnetic constant: C33*4 (= m?).

The heat capacity: C** (= p).

Using (4-5), the effective coefficients for this composite material are:
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Nine elastic effective constants:

—1111=1/<1/Cllll>’ 51122=<C1122/C1111>/<1/C1“1>, 51133=(Cll33/cllll>/<1/cllll>’

—2222 <C1111> (01122)2/01111>+<01122/Cllll>2/<1/Cllll>’

—2233 <C1133> (c 112261133/C1111)+<C1122/61111)(61133/01111)/<1/C1111), (4_7)
—3333 (6333%) (C“33)2/Cl“1)+<C1133/C“11)2/<1/C1111>,

—2323 <C1313>, 51313 — etl <M1_3,1>_lela 51212 — 1/<1/01212>'

Five piezoelectric effective constants:

5322 — <e311) +<e311/61111)(61122/C1111>/(1/01111) _ (6311C1122/C1111)

b

&3 = (6333) (31 11Ty (1133 1Ly g plTTLy (311133 Ty (4-8)
S = (311 /1y /ety 5113=e’2(M1_31)_1e1, &3 — (113,
Three dielectric permittivity effective constants:
k11=_6t2<M1—31>7162, }222:<K11>, (4 9)
733 = (133) 4 (312 /(1) (@311 /p 11102 g o1y,

Five piezomagnetic effective constants:
G2 = (P (g1 e Iy (1122 /1Ty g ety 31101122 10y
G333 = (¢33 4 (gB11 /ety (1133 /11Ty /(g etTiTy (3111133 11y (4-10)
3 = (@31 ey (1 gy, 5113:e§<M131>—161, 32 = (¢,

Three magnetoelectric effective constants:

&11:_65<M1—31>—162, &22:(a11>’ (4 11)
@33 = (a33) 4 (¢33 /1MLy _ (o310 /Iy ( 3111y g L1y
Three magnetic permeability effective constants:
=11 tig—1y—1 =22 11
H =€ (M ) es, M = <:u ))
SRS (4-12)

733 = (1) 4 (P2 ey — (31 1IN 2 g ey,
Three thermoelastic effective constants:
A= (A1 ey g ettty
722 = (AMy (12210 /eIy 1122 1Ty 1Ty g Ty (4-13)
T33 = (A33y = (M3 eIy (1133 1Ty 1L Ty g /ey,

One pyroelectric effective constant:

]53 — <p3> + <e311111/61111> _ (6311/Cllll>(ill/C““)/(l/C““). (4_14)
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One pyromagnetic effective constant:
3 = (m3) + (@3N ey (g3 ey g1 ety g ety (4-15)
Effective heat capacity:
B = (B) — (A2 /ety (a1 7et2 g ettty (4-16)

where ¢; (i =1, 2, 3) are the vectors of the standard orthonormal basis for the Euclidean space R3, and
M 1_31 is the inverse matrix of

313 Q113 113
My = [ 3 —xll g1
113 11 11
g’ —al —pu

As we can observe the corresponding homogenized material behaves as a TMEE material with orthorhom-
bic symmetry (2 mm). From the equations involving M 1_31 in (4-7), (4-8), (4-9), (4-10), (4-11), and (4-12),
we can find the expression

51313 5113 ~113

e q
M13=(M1_31)_1, Mpi=| &3 —glt _gi
6?113 _&11 —,l_lll
Consequently, . o
~1313 z “11 131 g =11 1
c - - __rx _9° 7 _ K __ (4-17)
A A Ap Az Ap Az A

where A is the determinant of the (M 1Y matrix, and A;; ; 1s the minor obtained by excluding the i-th
row and j-th column. From (4-17), one can observe that if one of the six effective coefficients is known
then it is possible to calculate the other ones.

4.2. Two-laminated TMEE composites: Benveniste—-Dvorak type relations. In this section we illustrate
how Equations (4-7)—(4-16), for the case of two-laminated composites, can be used to derive universal
relations of the type obtained in [Benveniste and Dvorak 1992]. In fact, from these formulae we can
obtain the following expressions for the effective coefficients:

G 1 11172 gl iz etz g2n_ 2 112272
c - =—Klc T, - =Klc e 0, = =K[c 17,  (4-18)

~1133__ 1133 1111 1133 ~2233 1133 1122 1133 ~3333__ 333% 113332
c =K[c "lllc "1, ¢ =K[c “lllc "l, ¢ =K[c 7", (4-19)

—311_ :K[[c“ll]][[e311]], é322— 311 =K[[C“22]][[e311]], 5333_ IK[[61133]][[6311]], (4_20)
—311 qsll—K[[Cllll]][[qSM]], é qgll—K[[Cllzz]][[qu]], 5333 q333—K[[c1133]][[q3“]], (4_21)
#3B 33 —K[M]2, 6c33—a53:—1<|[e3”]][[q3”]], ﬁ%—#v‘ :—Kl[q3”]]2, (4-22)
/—111_/111)1:[([[61111]][[/111]]’ /_122—/1]1)1=K[[c”22]][[/1“]], 233—133=K[[c“33]][[/1“]], (4-23)
p-py=—KI[2"IA"L, mt-m)=—K[g*" 1AM, B—p.=K[A'TP, (4-24)

where K = v1(1 — 01)/(1ci""! + (1 — vy)el!!). Eliminating K from (4-18),, (4-18)3, and (4-19)s,
and then again from (4-19), 2 3, from (4-20); 2.3, from (4-21); 2 3, and from (4-23); » 3, we derive the
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universal relations

[[Cllll +C“22]] _ 52222 +51122 _ (63222 —|—C11,122) B 51133 +E2233 _ 2C$133

T G2233 _ o113 - 3333 _ 3333
5311 5322 31‘)1 =311 4 =322 311 _U]l 722 11 (4-25)
e et =2 q g —2q) A+ =121,
- 2333 333 - 7333 333 - 2
e’ —e; PP —q 233 — 333

Analogously, from expressions (4-18) 3, (4-19)2.3, (4-20)1.2, (4-21)2.3, (4-22); 3, (4-23)1 2,3, one can
obtain the common constant [[e>!1]] / [c'133], and hence the following relations connecting the effective
properties:

[[8311]] é311_ 311 é322_ 311 é333_ 333 33 33 33 33 =3

e > 3
e, e, e, Ky~ —K o,"—a>  p,—p

= — = — = — = — = — = = (4-26)
[cT13] — G35 _l133 — G233 1133 — g3 _ (3333~ 233303 333333~ 7333

The following relations are obtained by manipulating (4-18),, (4-19)2, (4-20)1,3, (4-21),, (4-22)1 2,
(4-23),, (4-24);:

311 =311 311 ~333 333 33 ~-33 33 ~33 3 -3
g1 g —gq, q7" —q, My — M a,” —a m;, —m

_ _ vV
1133~ A1133 _ 1133 73333 _ 3333 333 _ ,333 ;333 _ ,333 _ 33 .
[c!33) ¢ c) c el q q; e e 33 =233

4-27)

The universal relations (28) and (29) of [Benveniste and Dvorak 1992] are contained respectively in
(4-25) and (4-26). Similarly (12) and (13) of [Benveniste 1995] are included in (4-27). On the other
hand these equations illustrate the interrelation between effective thermal terms with other individuals
and global elastic, piezoelectric, and piezomagnetic properties. From (4-26) and (4-27) the following
relation of proportionality among effective pyromagnetic and pyroelectric properties can be produced:

[ _ 5 - p
[[q311]] m3 _mg'

(4-28)

This relation can also be obtained from the explicit expressions for the effective moduli p> and m> given
in [Li and Dunn 1998b, p. 409] for fibrous (circular cylinder) composites.

4.3. Two-phase TMEE fibrous composites: Benveniste type exact connections. Next we determine
exact relations (a la [Benveniste 1995]) between the elastic, piezoelectric, piezomagnetic, and thermal
effective moduli of two-phase periodic fibrous composite systems characterized by a cylindrical geometry
and consisting also of transversely isotropic TMEE constituents. The axis of the cylinder coincides with
the axis x3. Here such exact connections will be derived in a different way, without solving any local
problem, based on certain links among the solutions of the local problems L?'q’, L%, Lg, and L4. In
order to show that, these local problems will be presented in a compact form as the problem L@ with
q =1,2,3,4. The two-phase periodic cell is denoted by Y, while X represents the contact interface
between the matrix Y, and the inclusion Y, (see Figure 1).



HOMOGENIZATION OF PERIODIC THERMOMAGNETOELECTROELASTIC COMPOSITES 829

y=x/e 57

U010
U010
U010
U010
U010
U010
U010

Figure 1. A part of a periodic domain and the unit cell.

The cell problem L@ consists in finding the ¥ -periodic functions v @, ¢, and 49, with an average
of zero on Y, satisfying the following equations and continuity conditions on Y:

8, 0_1] (w(q) C(q) ((q), 0)=0
3y D (D, ¢ D 5D 0) =0 in Y,, (4-29)
0.y B’ (w(q) év(q) (q)’ 0)=0

[[w(q)]] =0
[c“1=0
[71=0

[[Ulé(w(q) Cogq), n(q) 0)ns]] = 7l1
o, P, 1, 0)nsll = Dn,
IIU%(w(q) Céq)’ n(gq) 0)nsl =0

[[D(S(w(q) év(q), ,Iéq) 0)ns] =0
[[Bﬁ(w(q) C(Q), ,7((;1) 0)ns] =0

- on X, (4-30)

where w(l) = w3, (D =B, 0 =3 @ = g3 @ =73 y@ = 3 B = pd O =3
7P =y3and w® =T, (@ = Q, 4 = R are, respectively, the solutions of the local problems L33,
L%, Lg, and L4. The jump xP) on the interface ¥ is defined for each local problem by the constants
kWD =[P, @ = —[31], «® = —[¢>"'], and «® = [A'!]]. The structure of the problems (4-29)—
(4-30) is very similar to the corresponding ones for elastic [Guinovart-Diaz et al. 2001; Rodriguez-Ramos
et al. 2001]) and piezoelectric [Bravo-Castillero et al. 2001; Sabina et al. 2001] unidirectional fibrous
composites. The unique nonzero solutions of these problems are the elastic plane-strain local functions
wi‘”(yl, y,) and wéq)(yl, y»), for ¢ = 1,2, 3, 4, which are connected by

31
o_IEM o e 1 6w A
a |I1133]] W > a |I1133]] W ™ a [[c1133]] We >

(4-31)

Taking into account the above considerations and notations, and using (3-10), the following expressions
for effective properties can be obtained:
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« From the problem L3 (= LM):

6”33=(c“33)+(c““8 w(1)+c“226 w(l))’
3333 — (e3333) 1 (1335, 1w ™ 4 65 50V
(™) + (e ( L zzul)z ) 432
7333 (6333>+<e%11(a w()+62 2w )))
q_333=(q333)+( 3“(6 1w +62 w2l)))

o From the problem L3 (= L?):

@33 = <K33) _ (e311(61,1u)(2) 16 2w(Z))>,
a» = (o)~ (> @10 + 8208)), (4-33)

231 <e3“)+(c““61,1w§2)+c“2282,2w§2)).

e From the problem Lg (= LO):

13 = (1)~ @10 + 8 008),

) (4-34)
q311 =(q3“)+(c”“61,1w§3)+c”22c’7’2,2w§3)).

« From the problem L4 (= L®):

(/111> (01111a w§4)—|—c“228 w(4)>

(/133) (c”33(61 10 ) +62,2w§4))),
ﬁ (p%) < 311(61,1w(4)+822w(4))), (4-35)
= (m

={

3) ( 311((3 lw(4)+62 2w(4))>
B)— (2" @110 + 8220)).

Now, combining (4-32) and (4-35) and making use of (4-31)s, the following universal relations can be
obtained:

1133 ~1133 1133 -3333 3333 333 _ =333 333 _ =333
[c ]]_c —c, G —¢,77 e —e g —(q (4-36)
[[/111]] /1”—1,1}1 /133_133 ﬁ3—P3 ,;13_m‘3)

Note that Equations (4-36) involve all thermal global coefficients with the exception of 5. However, if
the interface X is smooth enough so that Green’s formula can be applied, then, from (4-31)3, (4-32)3,
(4-32)4, and (4-35)3.4,5 one can obtain

] ] _ [[/111]]2
&P - =M, PP -¢ P =-1"Mm, f-p = T L,
4-37
N VI [P PR vl (U -
P —py =g 1L, me—m, =gy 1L
v [[01133]] v [[C1133]]



HOMOGENIZATION OF PERIODIC THERMOMAGNETOELECTROELASTIC COMPOSITES 831

Parameters  Units BaTiO3; CoFe,0O4 epoxy
cltl GPa 166. 286. 5.53
cl1?2? GPa 77. 173. 2.97
cl133 GPa 78. 170.5 2.97
3333 GPa 162. 269.5 5.53
c1313 GPa 43. 45.3 0
ell3 C/m? 11.6 0 0
el C/m? —4.4 0 0
333 C/m? 18.6 0 0
x!l 10~1°C? /Nm? 112. 0.8 1
K33 10~1°C?/Nm? 126. 0.93 1
g'B N/Am 0 550. 0
g N/Am 0 580.3 0
g3 N/Am 0 699.7 0
ull 10~° Ns?/C? 5. —590. 1
w3 1076 Ns?/C? 10. 157. 1

Table 1. Material properties used in the calculations. Taken from [Lee et al. 2005].

where I = | . (wgl)d Vo — wél)dyl). Eliminating IT from these equations, it is possible to obtain relations
involving £:

[[c1133]] [[)ull]] 6333 _ 5333 [[/111]] q333 _ 6333

e f-p 061 B-A
In equations (4-36) and (4-38) nine effective properties are involved. The knowledge of one fixes the
values of the others eight. In a similar way, other relations can be derived. For instance, by manipulating
(4-37)3,4 we can derive (4-28). On the other hand, combining (4-31);, (4-32)3, and (4-33);, or again
(4-31),, (4-32)4, and (4-34) one can find the relationships

(4-38)

5333 _ 3 3 ~333
[c!133] 333 (333 [cl3] 3% — g3 w30
30 T 433 _g33° 3 T o33 _g33 i
[g>"'1 a7’ —a [e’"]  o)° —a

These equations coincide with (13) and (15) of [Benveniste 1995]. Finally, it is interesting to observe
that working with expressions (4-31)—(4-35) one can get relations (4-26) and (4-27). All these relations
are valid independently of the geometrical cross section of the fibers.

5. Numerical examples

The closed-form formulae for the effective properties of TMEE multilaminated composites, summarized
in Section 4.1, were analytically checked in Section 4.2 by means of the derivation (from such formulae)
of the universal relations of [Benveniste and Dvorak 1992] and [Benveniste 1995]. For the case of a
binary laminated composite, with transversely isotropic piezoelectric constituents, Equations (4-7)—(4-9)
yield [Benveniste and Dvorak 1992, (47), p. 1309].
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Since TMEE multilaminated composites could be considered as a limit case of unidirectional fibrous
composites, formulas of the type described can be useful for checking numerical codes.

To illustrate the performance of the formulae for three-phase magnetoelectroelastic composites, we
present the results for a three-phase laminate made of a piezoelectric phase (BaTiO3), a piezomagnetic
phase (CoFe;04), and an isotropic linear elastic phase (epoxy). The material properties are given in
Table 1. The volume fraction v3 of the epoxy phase is fixed at 0.4.

In Figures 2 and 3, all effective properties (elastic, piezoelectric, piezomagnetic, electric permittivity,
magnetic permeability, and magnetoelectric) of these composites are plotted against the piezomagnetic
volume fraction. In Figure 2 we observe that the curves for ¢ GlI33 c1313 52323 and 3333 show
the same trend as those appearing in [Lee et al. 2005, Figure 17], where a three-phase fibrous magneto-
electroelastic composite was investigated via a finite element model. The same figure also shows that
the coefficient ¢'>'% agrees better with the corresponding one from [Lee et al. 2005, Figure 18] than the
one derived from the Mori—Tanaka method of [Li and Dunn 1998b]. The rest of the elastic effective
properties ¢2222, ¢2233, and ¢!1?? also have a linear behavior but cannot be compared because the global
behavior of the three-laminate (orthorhombic 2 mm) is different that of the three-phase fibrous composite
(tetragonal 4 mm) of [Lee et al. 2005].

A similar situation can be observed in Figure 3, which shows the effective piezoelectric (¢°3, '3 and
&3y, piezomagnetic (33, 73! and §''3), dielectric (ic*3, '!), and magnetic (%3, i'!) constants to be

practically the same as those in [Lee et al. 2005, Figures 19-22, pp. 810-811]. Finally, the piezomagnetic

v,=0.4 v,=0.4
x10"° 3 x 10° 3
12 T T 8 T T
75 e b
101 . -7 R PR
- 7r 7 R
T 2222 7
_ -7 ~ %833 651" J
g 8" — - 2233 1 @
0 €« +t--——-"—-=-—-—-——-—=—=-==7="717
% — 2323 % oF i
@ c'n @ cl122
c c
8 8 c1133
L 6r 7] 2 551 1212 7
2 E c
3 3 c1313
2 2 s5¢ 1
g -1 8
= 4r - 4 =
w - Hoast 1
.-
4+ 4
2F 4
3.5 i
0 . . 3 ! I
0 0.2 0.4 0.6 0 0.2 0.4 0.6
CoFe204 volume fraction CoFeZO4 volume fraction

Figure 2. Effective elastic properties of a three-phase magnetoelectroelastic laminated
composite versus volume fraction of piezomagnetic phase, for vz = 0.4.
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Figure 3. Effective piezoelectric (top left), and piezomagnetic (top right), dielectric
(bottom left) and magnetic permeability (bottom right) properties of a three-phase mag-
netoelectroelastic laminated composite versus volume fraction of piezomagnetic phase,
for vy = 0.4.
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Figure 4. Effective magnetoelectric properties of a three-phase magnetoelectroelastic
laminated composite versus volume fraction of piezomagnetic phase, for vz = 0.4.
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Figure 5. Effective pyroelectric and pyromagnetic properties of a two-phase BaTiO3-
CoFe,04 TMEE laminated composite versus volume fraction of piezomagnetic phase.

effective constants (&' and @33) illustrated in Figure 4 have the same tendency (magnetoelectric effect)
as those in [Lee et al. 2005, Figures 23 and 24, p. 812].

Figure 5 illustrates the behavior of the pyroelectric and pyromagnetic effective constants of a two-phase
(BaTiO3-CoFe;04) TMEE laminated composite against the piezomagnetic volume fraction. The data for
the thermal expansion constants of the constituents were taken from [Ootao and Tanigawa 2003, p. 476];
theyare 0! =022 =15.7x107°K~!, 63 =6.4x 107 K~! (BaTiO3), and ' =9?>* =63 =10x 1070 K~!
(CoFey04) where A = /¥ @* 1In this figure, the existence of pyroelectric and pyromagnetic effects is
apparently, though neither phase by itself exhibits them.
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6. Concluding remarks

In this paper, based on the asymptotic homogenization method, a description of the derivation of the
local problems and the formulae to obtain all homogenized effective coefficients of a thermomagneto-
electroelastic (TMEE) periodic heterogeneous media are given. The general homogenization model is
applied to obtain closed-form formulae for effective (elastic, piezoelectric, piezomagnetic, dielectric,
magnetic, magnetoelectric, thermoelastic, pyroelectric, pyromagnetic, and heat capacity) coefficients of
periodic multilaminated composites with any finite number of transversely isotropic TMEE constituents.
Such formulae are specified for the case of a two-phase laminated composite with an orthotropic global
behavior which satisfies the universal relations of [Benveniste and Dvorak 1992]. These relations il-
lustrate the interrelation among magnetoelectroelastic and thermal effective properties. In particular,
(4-28) shows the proportionality connecting the pyroelectric and pyromagnetic effective coefficients
with the proportionality constant given by the ratio of the piezoelectric and piezomagnetic individual
properties. Another application of the general homogenization model is devoted to obtaining universal
relations (4-36) and (4-38)—(4-39) for two-phase periodic unidirectional fibrous composites with TMEE
transversely isotropic individual phases. The derivation of such universal relations does not require the
solution of any local problem, and is based on certain links, given by (4-31), among the solutions of
four local problems which are expressed in a compact form by (4-29)—(4-30). Several universal relations
reported in [Benveniste and Dvorak 1992; Benveniste 1995] are recovered here following a different
method. Some numerical calculations for three-phase laminated magnetoelectroelastic show a good
concordance with similar results obtained for three-phase fibrous composites in [Ootao and Tanigawa
2005]. The magnetoelectric effect expressed by (4-28) is illustrated in Figure 5. The analytical formulae
and universal relations of this work can be useful for checking numerical code.
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DEPLOYMENT PROCEDURE FOR THE TETRAHEDRON CONSTELLATION

PEDRO A. CAPO-LUGO AND PETER M. BAINUM

The NASA Benchmark Tetrahedron Constellation is a four-satellite formation that requires a nominal
separation distance at every apogee point. The deployment procedure of a tetrahedron constellation is
complex and depends on the separation distance between any pair of satellites within the constellation.
In this paper, the deployment procedure of the tetrahedron constellation will be divided into two stages:
the deployment from a circular parking orbit to an elliptical orbit, and the correction of the separation
distance between pairs of satellites within the constellation. The solution of this problem will be imple-
mented with a combination of Hohmann transfer maneuvers and the digital linear quadratic regulator
control scheme showing a minimum consumption of fuel. In summary, the combination of these two
techniques will provide a different approach to the deployment procedure of the NASA benchmark
tetrahedron constellation.

1. Introduction

One concern in the NASA Benchmark Tetrahedron Constellation problem [Carpenter et al. 2003] is the
deployment and reconfiguration procedures. Some papers solved these procedures using different nu-
merical schemes based on pseudospectral methods [Williams and Trivailo 2006; Huntington et al. 2006;
Huntington and Rao 2006]. The pseudospectral method solves an optimal control problem by dividing the
highly elliptical orbit into sections. In these sections, a two-point boundary value problem will be solved
for coasting and thruster burning phases. To solve the pseudospectral method, the problem is transformed
into another domain that contains the desired solution of the optimal control problem. After every two-
point boundary value problem is solved in every section of the highly elliptical orbit, the control effort
and the time for the different coasting and burning phases are mapped into the actual problem to show the
solution. This numerical method may take a longer period of time to solve the optimal control problem. In
addition, the pseudospectral methods involve a complex mathematical development to include different
characteristics of the tetrahedron constellation. For these reasons, the objective of this paper is to present
a different solution to the deployment procedure of the NASA Benchmark Tetrahedron Constellation
without the use of complex mathematical models.

The satellites will be transferred from a circular orbit to an elliptical orbit with a Hohmann transfer
maneuver [Wertz and Larson 1999]. This transfer maneuver represents the most fuel efficient procedure
to obtain the desired elliptical orbit for the four satellites. The Hohmann transfer orbit has been used to
deploy a different tetrahedron constellation as shown in [Dow et al. 2004]. Also, Bainum et al. [2005]
have showed that, by using a modified Hohmann transfer, an along-track constellation can be launched

Keywords: discrete linear quadratic regulator, impulse maneuvers, deployment procedure, tetrahedron constellation.
Research supported by Alliances for Graduate Education and Professoriate (AGEP) Program.
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from a circular orbit to an elliptical orbit. With these maneuvers, the satellites in the along-track constel-
lation reach the required configuration at the final apogee point. A similar procedure can be used here to
achieve the final formation for the proposed tetrahedron constellation.

After the Hohmann transfer maneuver is used, the digital linear quadratic regulator (DLQR) will be
used to correct the drifts in the separation distance and the velocities between any pair of satellites within
the constellation. This DLQR control scheme can be used to provide a faster solution to the correction of
the separation distances and velocities between any pair of satellites within the proposed constellation. A
thrust requirement will be included into the formulation of the DLQR active control scheme to determine
the consumption of force during the drift correction.

The purpose of this research work is to present a combination of two techniques to finally deploy
the NASA Benchmark Tetrahedron Constellation from an along-track circular orbit to a highly elliptical
orbit. With this scheme, a different solution will be provided to obtain the deployment procedure without
the use of complex mathematical models and methods.

2. Desired conditions of the satellites in the proposed tetrahedron constellation

The tetrahedron constellation will be used to measure the components of the Earth’s magnetic field with
the critical data taken at the apogee point by magnetometers. In order to obtain a precise mapping of the
Earth’s magnetic field, it is important that the positions of all the instruments be accurately placed at or
near the apogee point.

According to the NASA Benchmark problem [Carpenter et al. 2003] definition for the tetrahedron
constellations, the nominal separation distance between any two of the satellites at apogee is 10 km, and
the separation error at subsequent apogees should be within 10%, giving an acceptable range between 9
and 11 km. At other points in the orbit, the minimum separation distance between any pair of satellites
should be 1 km. Figure 1 shows a representation of the tetrahedron constellation at the apogee point. SB
and SC are assumed to be located along the semimajor axis with a separation distance of 10 km. SA forms
the equilateral triangle and is orbiting around the centroid in the equilateral triangle. SH is the fourth
satellite located above the centroid of the equilateral triangle which forms the tetrahedron constellation.

X

>Y

SH

SA

< fa

>
>
> r’ -«

Figure 1. Two dimensional view of the configuration at apogee point.
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SA SB SC SH

X (km) —8.6602 0 0 —2.8868

Y (km) —72582.4525 —72587.1941 —72577.7109 —72585.0433

Z (km) —24285.7489 —24287.3354 —24284.1624 —24278.0058

V. (km/sec) 0.973083288  0.972733623  0.973432881  0.973083324
Vy, V, (km/sec) 0 0 0 0

Table 1. Satellite initial positions and velocities for Phase L.

SA SB SC SH
a (km) 42095.7 42095.7 42095.7 42095.7
e 0.818182 0.818301 0.818064 0.818182
i (degrees) 18.5 18.5 18.5 18.494
Q (degrees) 0 0 0 0
w (degrees)  89.9921 90 90 89.9974

Table 2. Orbital elements for the four satellites within the constellation (Phase I).

Using the techniques explained in [Capd-Lugo and Bainum 2005; 2006b], the constellation has a similar
configuration at the perigee point, and the tetrahedral formation is obtained with the required separation
distance constraints at the apogee point. These techniques were based on the orbital elements of the
constellation and did not contain an active control scheme to satisfy the separation distance conditions
of the NASA Benchmark Tetrahedron Constellation.

For the first specific size (phase I) of the proposed constellation [Carpenter et al. 2003], the initial
positions and velocities for the four satellites are expressed in Table 1. These initial coordinates and
velocities are the required conditions such that the final tetrahedron constellation can be obtained at
the apogee point. Without perturbations [Capd-Lugo and Bainum 2005; 2006b], the satellites in the
constellation satisfied the separation distance constraints for a long period of time, and, with perturbation,
the constellation maintains the separation distance conditions for a limited number of complete orbits.
For phase I, Table 1 can be used to define the orbital elements for every satellite. Table 2 shows the
desired orbital elements at the final apogee point which will be used to calculate the Hohmann transfer
maneuvers. In Table 2, a is the semimajor axis, e is the eccentricity, i is the inclination angle, € is the
right ascension of the ascending node, and w is the argument of perigee.

3. Transfer from a circular orbit to the elliptical orbit (Stage 1)

The transfer procedure from a circular orbit to an elliptical orbit is complex and may take a period of
time before it is achieved. Dow et al. [2004] used a modified Hohmann transfer maneuver to transfer
four satellites from a circular orbit to a final elliptical orbit. In their paper, a small consumption of fuel
was obtained because the tetrahedron constellation was deployed using intermediate elliptical orbits. If
the satellites are in a circular orbit and are transferred to an elliptical orbit with an eccentricity of 0.8, as
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an example, the intermediate elliptical orbit is defined as the chosen intermediate values of eccentricity
(between 0 and 0.8) used to perform the Hohmann transfer maneuvers.

On the contrary, [Bainum et al. 2005] show that a modified Hohmann transfer orbit can be used to
deploy an along-track constellation from a circular parking orbit to an elliptical orbit. In this technique,
the satellites are deployed with restrictions on the period of the transfer orbit; in this way, the satellites
can reach the apogee point at the same time in the along-track constellation. The required difference in
velocity (AV) [Bainum et al. 2005] to transfer the satellites from the circular to the elliptical transfer orbit
is very similar for all of them which are a characteristic of the modified Hohmann transfer maneuvers.

This section will use similar modified Hohmann transfer maneuvers [Bainum et al. 2005] to transfer
the four satellites from a circular orbit into their respective elliptical orbits. After the satellites are
released from a rocket, the four satellites will be assumed to be in a circular orbit forming an along-track
configuration; also, the separation distance between any pair of satellite within the constellation will be
assumed constant. It will be also assumed that the circular orbit will have an inclination angle of 18.5°
and a radius equal to 1.2ER, where ER means Earth radius. As shown in [Capd-Lugo and Bainum 2005;
2006b], this is the radius of perigee and inclination angle for phase I. Before the difference in velocity
for the Hohmann transfer maneuvers is calculated, the period of the transfer orbit for every satellite must
be studied to determine the order in which the satellites will be deployed. The period of a satellite is

defined as
PE
T=2rx, —. (1)
u

To calculate the semimajor axis (a), the radius of perigee (r,,) for every satellite is set equal to 1.2ER,
and the radius of apogee will be defined for every satellite depending on the desired eccentricity and
semimajor axis as shown in Table 2. Table 3 illustrates the radius of apogee (r,), semimajor axis for the
transfer orbit (a;), and the transfer period for every satellite (7;).

It can be seen from Table 3 that SB and SC, respectively, has the highest and smallest period in
comparison with the satellites SA and SH. The period of the four satellites provides the order in which
the satellites will be departing from the circular orbit. The first satellite to depart is SB because it has
the highest period. The second satellite is SA because it must be ahead of SH to form the equilateral
triangle. The third satellite to depart from the circular orbit will be SH. This satellite will be in the same
plane as the other three satellites, but, after the transfer maneuvers, it will be corrected with the DLQR to
exhibit out-of-plane motion. The last satellite to depart in the circular orbit is SC which has the smallest
period. The separation distance between the satellites in the circular orbit will be considered because, at
the final apogee point, it will make a difference in the separation distance between any pair of satellites
within the constellation in the final elliptical orbit.

The deployment procedure from the circular orbit to the elliptical orbit is defined as follows:

SA SB SC SH

ro (km) 76537.64 76545388  76532.638  76537.64
a; (km) 4209570  42099.58 42093.20 42095.70
T; (sec) 85910.72  85922.59 85903.07 85910.72

Table 3. Radius of apogee, semimajor axis of the transfer orbit, and period for every satellite.
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1. After the four satellites are released from the rocket, these satellites are assumed to be traveling in
a circular orbit forming an along-track constellation. The circular orbit has a radius equal to 1.2ER,
and it is assumed that the orbit has an inclination angle equal to 18.5°. Initially, the satellites are
assumed to be separated by 0.5° in the true anomaly angle. This difference in the true anomaly
angle between any pair of satellites can be changed to larger values, but, at the final apogee point of
the transfer ellipse, the separation distance between any pair of satellites will be higher. In addition,
the satellites may not reach the apogee point at the same time; for this reason, the separation in the
true anomaly angle between some of the pairs of satellites in the along track constellation will be
constrained to angles between 0 and 1 degree. Figure 2 shows the difference in the true anomaly
angle between the satellites in the along-track constellation in the circular orbit. In Figure 2, df is
the difference in the true anomaly angle, f is the true anomaly angle, and the center of the Earth is
denoted by the center of the Cartesian system X and Y. The difference in the true anomaly angle
is assumed equal to 0.5° and creates a separation distance of approximately 66.79 km between the
pairs SB-SA, SA-SH, and SH-SC in the along-track constellation. The four satellites have a velocity
in the circular orbit equal to 7.2166 km/sec. As said earlier, the first satellite to be deployed is SB.
The semimajor axis of the transfer orbit for SB is defined in Table 3, and the velocity at the perigee
point in the elliptical transfer orbit is equal to

Vyss = u (i - l) — 9.73088 (km/sec). (2a)

r P a;
The necessary AV to transfer SB from the circular orbit to the elliptical transfer orbit is equal to

AVp sg =9.73088 — 7.2166 = 2.5148 (km/sec). (2b)

SC

SB

Figure 2. Location and separation of the four satellites in the circular orbit.
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This AV maneuver is applied in the direction of the motion of the satellite to increase its velocity
such that the satellite can be transferred into the elliptical orbit. This AV procedure will be per-
formed when the true anomaly angle is equal to 90° because, when the satellite is in the elliptical
transfer orbit, the angle at which the satellite departs will be its argument of perigee (w).

. 9.25 seconds after SB has departed, SA will be at the transfer point in the circular orbit (f = 90°).

From Table 3, the difference in the period of the transfer orbit between SB and SA is 11.87 seconds.
A correction to the period of the transfer orbit is not necessary because SA will be 2.62 seconds
ahead of SB. This difference in time will cause SA to reach the position of SB in a short period of
time. For this reason, a correction in the period of the elliptical transfer orbit for SA is not necessary.
The velocity and AV to change SA from a circular orbit to the elliptical transfer orbit is

2 1
Vipsa= /1 (a e

) =9.7308 km/sec, AV, sa =9.73083 —7.2166 = 2.5142km/sec.  (3)

3. 9.25seconds after SA has departed, SH has reached the transfer point in the circular orbit. The

difference in the transfer period between SA and SH is zero (Table 3), but the time that SH takes
to reach the transfer point provides the required condition to avoid a collision between these two
satellites. For this reason, the transfer period for SH is not altered. The velocity and AV to maneuver
SH into the elliptical transfer orbit are

2 1
V,.sn = (— -
p,SH H rp ar.sH

) =9.7307km/sec, AV, sy =9.7307—7.2166 =2.5141 km/sec. ~ (4)

. 9.25 seconds after SH has departed, SC will reach the transfer point (f = 90°). The difference in the

transfer period between SB and SC is 19.52 seconds. Once more, a correction to the period of the
elliptical transfer orbit is not necessary because the time that SC takes to reach the transfer point will
provide enough distance between the other three satellites to avoid a collision. The velocity and the
AV at the transfer point required to maneuver SC into the elliptical transfer orbit can be defined as

2 1
Vosc=/u (a T s

) =9.7308 km/sec, AV, sc =9.7308 —7.2166 = 2.5142km/sec. (5)

. Once the satellites have reached the apogee point, a second AV maneuver will be performed to

correct the semimajor axis and the eccentricity of the final elliptical orbit. To perform this maneuver,
the velocity of the satellite at the apogee point in the elliptical transfer orbit is calculated and, then,
is subtracted from the velocity at the apogee point defined in Table 1. Table 4 shows the velocity
and AV required for the four satellites in the constellation at the apogee point.

SB SA SH SC
V, (km/sec) 0.97299 0.9730833  0.973083  0.97343288
AV, (km/sec) —0.2888 x 1073 0 0 0.2828 x 1073

Table 4. Velocity at the apogee point in the transfer orbit and the AV required to correct
the in-plane conditions of the final orbit.
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Circular Orbit

Final Elliptical Orbit

Figure 3. Diagram of the deployment procedure of the constellation.

At the apogee point, this AV maneuver will be also applied along the positive or negative tan-
gential direction of the satellite. Figure 3 shows the AV maneuvers and the different orbits that will
be obtained with these modified Hohmann transfer maneuvers. The Cartesian axis at the center of
the Earth is rotated because the elliptical orbit will be created over the X axis in which the true
anomaly angle is equal to 90°. This angle will define the argument of p