
Journal of

Mechanics of
Materials and Structures

HOMOGENIZATION AND EFFECTIVE PROPERTIES OF PERIODIC
THERMOMAGNETOELECTROELASTIC COMPOSITES

Julian Bravo-Castillero, Reinaldo Rodríguez-Ramos, Houari Mechkour,
José A. Otero, Joanka Hernández Cabanas, Lazaro Maykel Sixto,

Raul Guinovart-Díaz and Federico J. Sabina

Volume 4, Nº 5 May 2009

mathematical sciences publishers





JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 4, No. 5, 2009
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THERMOMAGNETOELECTROELASTIC COMPOSITES

JULIAN BRAVO-CASTILLERO, REINALDO RODRÍGUEZ-RAMOS,
HOUARI MECHKOUR, JOSÉ A. OTERO, JOANKA HERNÁNDEZ CABANAS,

LAZARO MAYKEL SIXTO, RAUL GUINOVART-DÍAZ AND FEDERICO J. SABINA

Using asymptotic homogenization, we derive the local problems and the corresponding homogenized
coefficients of periodic thermomagnetoelectroelastic heterogeneous media. The theory is applied to
obtain analytical expressions for all effective properties of an important class of periodic multilaminated
composites. Universal relations involving homogenized thermal coefficients of two-phase laminated
and fibrous piezoelectric/piezomagnetic periodic composites, with transversely isotropic constituents,
are obtained. Theoretical evidence is shown for the existence of pyroelectric and pyromagnetic effects
even if neither phase exhibits them. Numerical calculations and comparisons with others theories are
included.

1. Introduction

A coupled effect is the capacity to convert system energy from one type to another (for instance, among
magnetic, electric, mechanical, and thermal effects). Composites made of thermopiezoelectric and
thermomagnetic components exhibit a magnetoelectric effect that is not present in their individual con-
stituents. The knowledge of the global properties of such composites allows us to address the control
of the response of smart structures whose phases are, in general, made of thermomagnetoelectroelastic
(TMEE) materials.

Different methods have been employed to estimate the overall properties of TMEE periodic compos-
ites. For instance, Li and Dunn [1998b] developed a micromechanical methodology based on the mean
field approach of Mori and Tanaka [1973] combined with the Eshelby tensor [Li and Dunn 1998a] to
derive explicit formulae for the effective coefficients of two-phase laminated and fibrous composites.
Aboudi [2001] employed a general micromechanical homogenization theory to investigate the global
behavior of multiphase TMEE materials. His results show good agreement with those he derived in
[Aboudi 1998], via the generalized method of cells, and those obtained in the work of Li and Dunn
[1998b]. Using the theory of uniform fields in TMEE heterogeneous media by proper boundary condi-
tions, universal relations between the effective properties of two-phase fibrous composites were derived
in [Benveniste 1995]. In all these works, like in the present paper, the fully coupled constitutive laws for
TMEE materials were used. Based on the asymptotic homogenization method, analytical expressions
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for magnetoelectroelastic unidirectional two-phase fibrous composites with circular cross section fibers
and transversely isotropic constituents were derived in [Camacho-Montes et al. 2006].

In this paper, based on the asymptotic homogenization method, the general theory developed in
[Bravo-Castillero et al. 2008], for magnetoelectroelastic heterogeneous media, is applied to determine
analytical formulae for the effective properties of periodic multilaminated TMEE composites. The
formulae obtained generalize those that appear in [Castillero et al. 1998] and in [Galka et al. 1996],
where piezoelectric and thermopiezoelectric periodic composites, respectively, were studied. Here a
general formula is presented in a unified way which is more adequate for computational implementation.
This unified formula is specified for one example of multilayered composites with any finite number
of transversely isotropic TMEE constituents to obtain all their effective coefficients. For the particular
case of two-laminated media, such effective coefficients prove to satisfy the universal relations derived
by Benveniste and Dvorak [1992] for orthotropic fibrous composites. Finally, by using a link between
four local problems on the periodic cell for two-phase unidirectional fibrous TMEE composites with
transversely isotropic constituents and arbitrary smoothness shape of the fibre cross section, universal
relations involving pyromagnetic, pyroelectric, thermoelastic, elastic, piezoelectric, and piezomagnetic
effective coefficients are derived [Benveniste 1995]. In particular, a proportion relating the pyromagnetic
and pyroelectric components in the direction of the fibers is found. The constant of proportionality
involves information relative to the piezoelectric and piezomagnetic constants of both phases.

2. Constitutive laws and equilibrium equations of TMEE materials

Let � ⊂ R3 be open, bounded and sufficiently regular, with boundary ∂�. The properties of a three-
dimensional body, that is, �, made of a heterogeneous TMEE material are described by the elasticity four-
order tensor c, the piezoelectric coupling third-order tensor e, the piezomagnetic coupling third-order
tensor q, the electric permittivity second-order tensor κ , the magnetic permeability second-order tensor
µ, the magnetoelectric second-order tensor α, the thermoelastic second-order tensor λ, the pyroelectric
vector p, and the pyromagnetic vector m. Also, η stands for the heat conductivity second-order tensor,
and β=Ce/T0; Ce is the specific heat at constant strain per unit volume and T0 is the reference (absolute)
temperature. Thus, with Y the so-called unit periodic cell and the small parameter ε > 0, the material
functions just introduced are εY -periodic in the local variable y = x/ε, and for each x ∈� we write, for
instance,

ci jkl
ε (x)= ci jkl(x/ε), eikl

ε (x)= eikl(x/ε), q ikl
ε (x)= q ikl(x/ε), κ i j

ε (x)= κ
i j (x/ε),

µi j
ε (x)= µ

i j (x/ε), αi j
ε (x)= α

i j (x/ε), λi j
ε (x)= λ

i j (x/ε), pi
ε(x)= pi (x/ε),

mi
ε(x)= mi (x/ε), ηi j

ε (x)= η
i j (x/ε), βε(x)= β(x/ε).

Latin indices run over the set {1, 2, 3}. The Einstein summation convention will be used throughout. The
tensors of material functions satisfy the usual symmetry conditions:

ci jkl
ε = c j ikl

ε = ci jlk
ε = ckli j

ε , eikl
ε = eilk

ε , q ikl
ε = q ilk

ε , κ i j
ε = κ

j i
ε ,

µi j
ε = µ

j i
ε , αi j

ε = α
j i
ε , λi j

ε = λ
j i
ε , ηi j

ε = η
j i
ε .

We make the further assumption that there exists a constant δ > 0 such that, for any a ∈ R3 and any
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symmetric 3× 3 matrix X ,

ci jkl
ε (x)X i j Xkl ≥ δX i j X i j

κ i j
ε (x)ai a j ≥ δai ai

µi j
ε (x)ai a j ≥ δai ai

λi j
ε (x)ai a j ≥ δai ai

ηi j
ε (x)ai a j ≥ δai ai


for almost every x ∈�.

For a fixed ε > 0, the TMEE behavior of this body is given by the elastic displacement field uε = (ui
ε),

the electric potential ϕε, the magnetic potential ψε, and the entropy sε, which satisfy the equilibrium
equations

− div σε(uε, ϕε, ψε, sε)= f

− div Dε(uε, ϕε, ψε, sε)= 0

− div Bε(uε, ϕε, ψε, sε)= 0

− div Tε(uε, ϕε, ψε, sε)= 0

 in �, (2-1)

where σε = (σ
i j
ε ) is the stress tensor, Dε = (Di

ε) the electric displacement, Bε = (Bi
ε) the magnetic

displacement, and Tε = (η
i j
ε ∂ jθε) the flux of the temperature θε, Also ∂i = ∂/∂xi , (div σ ε)i = ∂ jσ

i j
ε ,

div Dε = ∂i Di
ε, div Bε = ∂i Bi

ε, and div Tε = ∂i (η
i j
ε ∂ jθε), x = (xi ) ∈ �. The constitutive equations are

given by
σ i j
ε (uε, ϕε, ψε, sε)= ci jkl

ε sk j (uε)+ emi j
ε ∂mϕε + qni j

ε ∂nψε − λ
i j
ε sε,

Di
ε(uε, ϕε, ψε, sε)= eikl

ε skl(uε)− κ im
ε ∂mϕε −α

in
ε ∂nψε + pi

εsε,

Bi
ε(uε, ϕε, ψε, sε)= q ikl

ε skl(uε)−αim
ε ∂mϕε −µ

in
ε ∂nψε +mi

εsε,

θε(uε, ϕε, ψε, sε)=−λkl
ε skl(uε)+ pm

ε ∂mϕε +mn
ε∂nψε +βεsε,

(2-2)

where skl(uε), ∂kϕε, and ∂kψε are, respectively, the linearized strain and the gradients of the electric and
magnetic potentials, and skl(uε)= 1

2(∂kul
ε + ∂luk

ε). In (2-1) we have a system of six partial differential
equations for finding uε, ϕε, ψε, and sε. It has to be completed by suitable boundary conditions. For
instance, we can assume homogeneous boundary conditions (uε = 0, ϕε = 0, ψε = 0, and sε = 0) on the
external boundary ∂�.

3. Homogenization

The method of two-scale asymptotic expansions will be applied in order to find the homogenized system.
The solution of (2-1)–(2-2) can be sought in the form

uε(x)= u0(x, y)+ εu1(x, y)+ . . . ,

ϕε(x)= ϕ0(x, y)+ εϕ1(x, y)+ . . . ,

ψε(x)= ψ0(x, y)+ εψ1(x, y)+ . . . ,

sε(x)= s0(x, y)+ εs1(x, y)+ . . . ,

(3-1)
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where u0(x, y), u1(x, y), . . . , ϕ0(x, y), ϕ1(x, y), . . . , ψ0(x, y), ψ1(x, y), . . . , s0(x, y), s1(x, y), . . . ,
are Y -periodic functions with respect to the second variable y = x/ε. Similarly, as in the linear ther-
mopiezolectric or magnetoelectroelastic problem (see, for instance, [Galka et al. 1996; Bravo-Castillero
et al. 2008]), the functions u0(x, y), ϕ0(x, y), and ψ0(x, y) do not depend on y. However, in general, s0

depends on both x and y. See [Galka et al. 1992] for a complete description in the thermopiezoelectric
case. Due to the linearity of this problem and assuming both regularity of the inclusions’ shapes and
smoothness in the variation of coefficients, we have

u1(x, y)= sr t,x(u0(x))wr t(y)+ ∂m,xϕ
0(x)gm(y)+ ∂n,xψ

0(x)hn(y)+ θh(x)0(y),

ϕ1(x, y)= sr t,x(u0(x))ζ r t(y)+ ∂m,xϕ
0(x)πm(y)+ ∂n,xψ

0(x)χn(y)+ θh(x)Q(y),

ψ1(x, y)= sr t,x(u0(x))ηr t(y)+ ∂m,xϕ
0(x)ξm(y)+ ∂n,xψ

0(x)γ n(y)+ θh(x)R(y),

(3-2)

where ∂m,xφ = ∂φ/∂xm and sr t,x(u) = 1
2(∂ur/∂xt + ∂ut/∂xr ). The functions u0(x), ϕ0(x), and ψ0(x)

are, respectively, the mechanical displacement field, the electric potential and the magnetic potential of
the effective (homogenized) TMEE body while its temperature field θh is given by

θh(x)=−〈λkl
〉(∂l,x u0

k + ∂k,yu1
k)+〈p

k
〉(∂k,xϕ

0
+ ∂k,yϕ

1)+〈mk
〉(∂k,xψ

0
+ ∂k,yψ

1)+〈β〉s0(x, y),

where 〈g〉 = |Y |−1 ∫
Y g(y)dy and the angle brackets denote averaging over the periodic cell Y . Note that

in general s0 depends not only on x but also on the microscopic variable y. The local functions wr t , ζ r t ,
ηr t ; gm , πm , ξm ; hm , χm , γ m ; and 0, Q, R are Y -periodic solutions of the following problems on the
cell Y :

• Problem Lr t
1 : Find the Y -periodic functions wr t , ζ r t , ηr t such that:

−∂ j,yσ
i j (wr t , ζ r t , ηr t , 0)= ∂ j,yci jr t

−∂i,y Di (wr t , ζ r t , ηr t , 0)= ∂i,yeir t

−∂i,y Bi (wr t , ζ r t , ηr t , 0)= ∂i,yq ir t

 on Y. (3-3)

• Problem Lm
2 : Find the Y -periodic functions gm , πm , ξm such that

−∂ j,yσ
i j (gm, πm, ξm, 0)= ∂ j,yemi j

−∂i,y Di (gm, πm, ξm, 0)=−∂i,yκ
im

−∂i,y Bi (gm, πm, ξm, 0)=−∂i,yα
im

 on Y. (3-4)

• Problem Lm
3 : Find the Y -periodic functions hm , χm , γ m such that

−∂ j,yσ
i j (hm, χm, γ m, 0)= ∂ j,yqmi j

−∂i,y Di (hm, χm, γ m, 0)=−∂i,yα
im

−∂i,y Bi (hm, χm, γ m, 0)=−∂i,yµ
im

 on Y. (3-5)
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• Problem L4: Find the Y -periodic functions 0, Q, R such that

−∂ j,yσ
i j (0, Q, R, 0)=−∂ j,yλ

i j

−∂i,y Di (0, Q, R, 0)=−∂i,y pi

−∂i,y Bi (0, Q, R, 0)=−∂i,ymi

 on Y. (3-6)

• Problem Lk
5: Find the Y -periodic function T k such that

−∂i,y(η
i j∂ j,yT k)= ∂i,yη

ik on Y. (3-7)

Here ∂m,yφ = ∂φ/∂ym . The homogenized problem can be written as

− div σ̄ (u0, ϕ0, ψ0, θh)= f

− div D(u0, ϕ0, ψ0, θh)= 0

− div B(u0, ϕ0, ψ0, θh)= 0

− div T (u0, ϕ0, ψ0, θh)= 0


on �, (3-8)

with the homogeneous boundary conditions u0
= 0, ϕ0

= 0, ψ0
= 0, and θh

= 0 on ∂�. The effective
constitutive laws are given by

σ̄ i j (u0, ϕ0, ψ0, θh)= c̄i jklsk j (u0)+ ēmi j∂mϕ
0
+ q̄ni j∂nψ

0
− λ̄i jθh,

Di (u0, ϕ0, ψ0, θh)= ēiklskl(u0)− κ̄ im∂mϕ
0
− ᾱin∂nψ

0
+ p̄iθh,

Bi (u0, ϕ0, ψ0, θh)= q̄ iklskl(u0)− ᾱim∂mϕ
0
− µ̄in∂nψ

0
+miθh,

θ̄ (u0, ϕ0, ψ0, θh)=−λ̄klskl(u0)+ p̄m∂mϕ
0
+mn∂nψ

0
+ β̄θh,

(3-9)

where the bar indicates an effective property. The local problems must be completed with additional con-
tact conditions on the interfaces between the constituents of the composite of interest. The homogenized
effective coefficients have the definitions

c̄i jr t
=
〈
ci jkl
[skl,y(w

r t)+ δr t
kl ] + eki j∂k,yζ

r t
+ qki j∂k,yη

r t 〉,
ēir t
=
〈
eikl
[skl,y(w

r t)+ δr t
kl ] − κ

ik∂k,yζ
r t
−αik∂k,yη

r t 〉,
q̄ ir t
=
〈
q ikl
[skl,y(w

r t)+ δr t
kl ] −α

ik∂k,yζ
r t
−µik∂k,yη

r t 〉,
ēmi j
=
〈
ci jklskl,y(gm)+ esi j

[∂s,yπ
m
+ δm

s ] + qsi j∂s,yξ
m 〉,

κ̄ im
=
〈
−eiklskl,y(gm)+ κ is

[∂s,yπ
m
+ δm

s ] +α
is∂s,yξ

m 〉,
ᾱim
=
〈
−q iklskl,y(gm)+αis

[∂s,yπ
m
+ δm

s ] +µ
is∂s,yξ

m 〉,
ᾱim
=
〈
−eiklskl,y(hm)+αik

[∂s,yγ
m
+ δm

k ] + κ
ik∂k,yχ

m 〉,
q̄mi j
=
〈
ci jklskl,y(hm)+ qsi j

[∂s,yγ
m
+ δm

s ] + esi j∂s,yχ
m 〉,

µ̄im
=
〈
−q iklskl,y(hm)+αik∂k,yχ

m
+µik

[∂k,yγ
m
+ δm

k ]
〉
,

λ̄i j
=
〈
λi j
−ci jklskl,y(0)−eki j∂k,y Q−q i jk∂k,y R

〉
, p̄i

=
〈
pi
+eiklskl,y(0)−κ

ik∂k,y Q−αik∂k,y R
〉
,

mi
=
〈
mi
+q iklskl,y(0)−α

ik∂k,y Q−µik∂k,y R
〉
, β̄ =

〈
β−λklskl,y(0)+ pk∂k,y Q+mk∂k,y R

〉
,

(3-10)
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and
η̄i j
=
〈
ηi j
+ ηil∂l,yT j 〉, (3-11)

where δkl
i j =

1
2(δ

i
jδ

k
l + δ

i
kδ

j
l ) and δ j

l is the Kronecker delta.

4. Closed-form expressions for effective coefficients of multilayered TMEE composites

The local problems above, with equations (3-3)–(3-6), can be written in a unified way as follows: Find
a Y -periodic W c′t

b′ such that

−∂m(Ca′mb′n∂nW c′t
b′ )= ∂m(Ca′mc′t), (4-1)

where

C imkn
≡ cimkn, C im44

≡−λim, C4mkn
≡ emkn, C4m4n

≡−κmn, C4m44
≡ pm,

C4444
≡ β, C5mnk

≡ qmnk, C5m4n
≡−αmn, C5 j44

≡ m j , C5m5n
≡−µmn,

W r t
k ≡ w

r t
k , W r t

4 ≡ ζ
r t , W r t

5 ≡ η
r t , W 4m

k ≡ gm
k , W 4m

4 ≡ π
m, W 4m

5 ≡ ξ
m,

W 5m
k ≡ f m

k , W 5m
4 ≡ ξ

m, W 5m
5 ≡ γ

m, W 44
k ≡ 0k, W 44

4 ≡ Q, W 44
5 ≡ R.

The primed Latin indices run from 1 to 5.
The homogenized effective coefficients given by all the Equations (3-10) can be expressed by

Ca′mb′t
= 〈Ca′mb′t

〉+ 〈Ca′mc′n∂nW b′t
c′ 〉. (4-2)

The unified formulation above is very convenient for some specific problems. For instance, let us consider
the particular case of a laminated TMEE composite, made of cells which are periodically distributed along
the axis y1. Each cell may be made of any finite number of homogeneous TMEE layers. The axes of
symmetry of each layer are parallel to each other and the y1-axis is perpendicular to the layering. In
this case, the material functions Ca′mb′t and the local functions W b′t depend only on the fast variable y1.
Consequently, expressions (4-1) and (4-2) take the form

D1(Ca′1b′1 D1W c′t
b′ )=−D1(Ca′1c′t), (4-3)

Ca′mb′t
= 〈Ca′mb′t

〉+ 〈Ca′mc′1 D1W b′t
c′ 〉, (4-4)

where D1 denotes the ordinary derivative in the generalized sense with respect to the y1 coordinate. The
angle brackets define the average per unit length of the relevant quantity over the periodic cell, that is,
〈F〉 = |Y |−1 ∫

Y F(y1)dy1, where |Y | denotes the length of Y . For simplicity, a periodic unit cell Y will be
considered. This is a one-dimensional homogenization problem which consists in finding the 1-periodic
solution of (4-3), with an average of zero on Y , and satisfying the usual contact interface conditions; see,
for instance, [Pobedrya 1984, Chapter 5].

Solving the system of ordinary differential equations defined by (4-3), taking into account perfect
bonding conditions at the interfaces, and using (4-4), it is possible to obtain a general closed-form formula
for all the TMEE effective coefficients:

Ca′mb′t
= 〈Cb′mb′t

〉+
〈
Cb′mc′1(Cc′1d ′1)−1Cd ′1b′t 〉

+
〈
Ca′mc′1(Cc′1d ′1)−1〉〈(Cd ′1e′1)−1〉−1〈

(Ce′1 f ′1)−1C f ′1b′t 〉. (4-5)
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Here (Ca′1b′1)−1 denotes the components of the inverse matrix of (Ca′1b′1). Equation (4-5) is a general-
ization of [Pobedrya 1984, Equation (1.11), p. 145] where the purely elastic case was investigated. From
(4-5), for the particular case of a two-laminated TMEE composite, the following was derived:

Ca′mb′t
= Ca′mb′t

ν − v1(1− v1)[[Ca′mc′1
]]B−1

c′d ′[[C
d ′1b′t
]], (4-6)

where v1 is the volume fraction of phase 1 (BaTiO3); the material coefficients of such composite are
piecewise constants, defined by

Ca′mb′t(y1)=

{
Ca′mb′t

1 for y1 ∈ (0, v1),

Ca′mb′t
2 for y1 ∈ (v1, 1),

and Ca′mb′t
ν = v1Ca′mb′t

1 + (1− v1)Ca′mb′t
2 , [[Ca′mc′1

]] = Ca′mc′1
1 − Ca′mc′1

2 , a row vector for a′m fixed,
[[Cd ′1b′t

]] = Cd ′1b′t
1 −Cd ′1b′t

2 , a column vector for b′t fixed, and [Bc′d ′] = [v1Cc′1d ′1
2 − (1− v1)Cc′1d ′1

1 ],
where B−1

c′d ′ is the inverse matrix of Bc′d ′ . Equation (4-6) is similar to [Galka et al. 1996, Equation (17),
p. 138] for laminated thermopiezoelectric composites.

4.1. Effective properties of a multilaminate with an orthotropic global behavior. We now specialize
formula (4-5) for the case of a multilaminated composite whose periodic unit cell can possess any
finite number of homogeneous TMEE materials with transversely isotropic properties. Each phase is
characterized by the following independent constants:

Five elastic constants:

C1111
= C2222(≡ c1111

= c2222), C1133
= C2233(≡ c1133

= c2233),

C1122(≡ c1122), C3333(≡ c3333), 2C1212
≡ 2c1212

= (c1111
− c1122).

Three piezoelectric constants:

C4311
= C4322(≡ e311

= e322), C4333(≡ e333), C4113
= C4223(≡ e113

= e223).

Three piezomagnetic constants:

C5311
= C5322(≡ q311

= q322), C5333(≡ q333), C5113
= C5223(≡ q113

= q223).

Two dielectric permittivity constants: C4141
= C4242(≡−κ11

=−κ22) and C4343(≡−κ33).

Two magnetoelectric constants: C5141
= C5242(≡−α11

=−α22) and C5343(≡−α33).

Two magnetic permeability constants: C5151
= C5252(≡−µ11

=−µ22) and C5353(≡−µ33).

Two thermal constants: C1144
= C2244(≡−λ11

=−λ22) and C3344(≡−λ33).

One pyroelectric constant: C4344(≡ p3).

One pyromagnetic constant: C5344(≡ m3).

The heat capacity: C4444(≡ β).

Using (4-5), the effective coefficients for this composite material are:
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Nine elastic effective constants:

c̄1111
= 1/〈1/c1111

〉, c̄1122
= 〈c1122/c1111

〉/〈1/c1111
〉, c̄1133

= 〈c1133/c1111
〉/〈1/c1111

〉,

c̄2222
= 〈c1111

〉− 〈(c1122)2/c1111
〉+ 〈c1122/c1111

〉
2/〈1/c1111

〉,

c̄2233
= 〈c1133

〉− 〈c1122c1133/c1111
〉+ 〈c1122/c1111

〉〈c1133/c1111
〉/〈1/c1111

〉,

c̄3333
= 〈c3333

〉− 〈(c1133)2/c1111
〉+ 〈c1133/c1111

〉
2/〈1/c1111

〉,

c̄2323
= 〈c1313

〉, c̄1313
= et

1〈M
−1
13 〉
−1e1, c̄1212

= 1/〈1/c1212
〉.

(4-7)

Five piezoelectric effective constants:

ē322
= 〈e311

〉+ 〈e311/c1111
〉〈c1122/c1111

〉/〈1/c1111
〉− 〈e311c1122/c1111

〉,

ē333
= 〈e333

〉+ 〈e311/c1111
〉〈c1133/c1111

〉/〈1/c1111
〉− 〈e311c1133/c1111

〉,

ē311
= 〈e311/c1111

〉/〈1/c1111
〉, ē113

= et
2〈M

−1
13 〉
−1e1, ē223

= 〈e113
〉.

(4-8)

Three dielectric permittivity effective constants:

κ̄11
=−et

2〈M
−1
13 〉
−1e2, κ̄22

= 〈κ11
〉,

κ̄33
= 〈κ33

〉+ 〈e311
〉

2/〈c1111
〉− 〈e311/c1111

〉
2/〈1/c1111

〉.
(4-9)

Five piezomagnetic effective constants:

q̄322
= 〈q311

〉+ 〈q311/c1111
〉〈c1122/c1111

〉/〈1/c1111
〉− 〈q311c1122/c1111

〉,

q̄333
= 〈q333

〉+ 〈q311/c1111
〉〈c1133/c1111

〉/〈1/c1111
〉− 〈q311c1133/c1111

〉,

q̄311
= 〈q311/c1111

〉/〈1/c1111
〉, q̄113

= et
3〈M

−1
13 〉
−1e1, q̄223

= 〈q113
〉.

(4-10)

Three magnetoelectric effective constants:

ᾱ11
=−et

3〈M
−1
13 〉
−1e2, ᾱ22

= 〈α11
〉,

ᾱ33
= 〈α33

〉+ 〈q311e311/c1111
〉− 〈q311/c1111

〉〈e311/c1111
〉/〈1/c1111

〉.
(4-11)

Three magnetic permeability effective constants:

µ̄11
=−et

3〈M
−1
13 〉
−1e3, µ̄22

= 〈µ11
〉,

µ̄33
= 〈µ33

〉+ 〈(q311)2/c1111
〉− 〈q311/c1111

〉
2/〈1/c1111

〉.
(4-12)

Three thermoelastic effective constants:

λ̄11
= 〈λ11/c1111

〉/〈1/c1111
〉,

λ̄22
= 〈λ11

〉− 〈c1122λ11/c1111
〉+ 〈c1122/c1111

〉〈λ11/c1111
〉/〈1/c1111

〉,

λ̄33
= 〈λ33

〉− 〈c1133λ11/c1111
〉+ 〈c1133/c1111

〉〈λ11/c1111
〉/〈1/c1111

〉.

(4-13)

One pyroelectric effective constant:

p̄3
= 〈p3

〉+ 〈e311λ11/c1111
〉− 〈e311/c1111

〉〈λ11/c1111
〉/〈1/c1111

〉. (4-14)
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One pyromagnetic effective constant:

m̄3
= 〈m3

〉+ 〈q311λ11/c1111
〉− 〈q311/c1111

〉〈λ11/c1111
〉/〈1/c1111

〉. (4-15)

Effective heat capacity:

β̄ = 〈β〉− 〈(λ11)2/c1111
〉+ 〈λ11/c1111

〉
2/〈1/c1111

〉. (4-16)

where ei (i = 1, 2, 3) are the vectors of the standard orthonormal basis for the Euclidean space R3, and
M−1

13 is the inverse matrix of

M13 =

c1313 e113 q113

e113
−κ11

−α11

q113
−α11

−µ11

 .
As we can observe the corresponding homogenized material behaves as a TMEE material with orthorhom-
bic symmetry (2 mm). From the equations involving M−1

13 in (4-7), (4-8), (4-9), (4-10), (4-11), and (4-12),
we can find the expression

M13 = 〈M−1
13 〉
−1, M13 =

c̄1313 ē113 q̄113

ē113
−κ̄11

−ᾱ11

q̄113
−ᾱ11

−µ̄11

 .
Consequently,

c̄1313

111
=−

ē131

112
=−

κ̄11

122
=

q̄131

113
=
ᾱ11

123
=−

µ̄11

133
=

1
1
, (4-17)

where 1 is the determinant of the 〈M−1
13 〉 matrix, and 1i j is the minor obtained by excluding the i-th

row and j-th column. From (4-17), one can observe that if one of the six effective coefficients is known
then it is possible to calculate the other ones.

4.2. Two-laminated TMEE composites: Benveniste–Dvorak type relations. In this section we illustrate
how Equations (4-7)–(4-16), for the case of two-laminated composites, can be used to derive universal
relations of the type obtained in [Benveniste and Dvorak 1992]. In fact, from these formulae we can
obtain the following expressions for the effective coefficients:

c̄1111
−c1111

ν =−K [[c1111
]]

2, c̄1122
−c1122

ν =K [[c1111
]][[c1122

]], c̄2222
−c2222

ν =K [[c1122
]]

2, (4-18)

c̄1133
−c1133

ν =K [[c1111
]][[c1133

]], c̄2233
−c1133

ν =K [[c1122
]][[c1133

]], c̄3333
−c3333

ν =K [[c1133
]]

2, (4-19)

ē311
−e311

ν =K [[c1111
]][[e311

]], ē322
−e311

ν =K [[c1122
]][[e311

]], ē333
−e333

ν =K [[c1133
]][[e311

]], (4-20)

q̄311
−q311

ν =K [[c1111
]][[q311

]], q̄322
−q311

ν =K [[c1122
]][[q311

]], q̄333
−q333

ν =K [[c1133
]][[q311

]], (4-21)

κ̄33
−κ33

ν =−K [[e311
]]

2, ᾱ33
−α33

ν =−K [[e311
]][[q311

]], µ̄33
−µ33

ν =−K [[q311
]]

2, (4-22)

λ̄11
−λ11

ν =K [[c1111
]][[λ11

]], λ̄22
−λ11

ν =K [[c1122
]][[λ11

]], λ̄33
−λ33

ν =K [[c1133
]][[λ11

]], (4-23)

p̄3
−p3

ν=−K [[e311
]][[λ11

]], m̄3
−m3

ν=−K [[q311
]][[λ11

]], β̄−βν=K [[λ11
]]

2, (4-24)

where K = v1(1− v1)/(v1c1111
2 + (1− v1)c1111

1 ). Eliminating K from (4-18)2, (4-18)3, and (4-19)2,
and then again from (4-19)1,2,3, from (4-20)1,2,3, from (4-21)1,2,3, and from (4-23)1,2,3, we derive the
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universal relations

[[c1111
+ c1122

]]

[[c1133]]
=

c̄2222
+ c̄1122

− (c2222
ν + c1122

ν )

c̄2233− c1133
ν

=
c̄1133
+ c̄2233

− 2c1133
ν

c̄3333− c3333
ν

=
ē311
+ ē322

− 2e311
ν

ē333− e333
ν

=
q̄311
+ q̄322

− 2q311
ν

q̄333− q333
ν

=
λ̄11
+ λ̄22

− 2λ11
ν

λ̄33− λ33
ν

.

(4-25)

Analogously, from expressions (4-18)2,3, (4-19)2,3, (4-20)1,2, (4-21)2,3, (4-22)1,3, (4-23)1,2,3, one can
obtain the common constant [[e311

]]/[[c1133
]], and hence the following relations connecting the effective

properties:

[[e311
]]

[[c1133]]
=

ē311
−e311

ν

c̄1133−c1133
ν

=
ē322
−e311

ν

c̄2233−c1133
ν

=
ē333
−e333

ν

c̄3333−c3333
ν

=
κ33
ν −κ̄

33

ē333−e333
ν

=
α33
ν −ᾱ

33

q̄333−q333
ν

=
p3
ν− p̄3

λ̄33−λ33
ν

. (4-26)

The following relations are obtained by manipulating (4-18)2, (4-19)2, (4-20)1,3, (4-21)2, (4-22)1,2,
(4-23)2, (4-24)1:

[[q311
]]

[[c1133]]
=

q̄311
− q311

ν

c̄1133− c1133
ν

=
q̄333
− q333

ν

c̄3333− c3333
ν

=
µ33
ν − µ̄

33

q̄333− q333
ν

=
α33
ν − ᾱ

33

ē333− e333
ν

=
m3
ν − m̄3

λ̄33− λ33
ν

. (4-27)

The universal relations (28) and (29) of [Benveniste and Dvorak 1992] are contained respectively in
(4-25) and (4-26). Similarly (12) and (13) of [Benveniste 1995] are included in (4-27). On the other
hand these equations illustrate the interrelation between effective thermal terms with other individuals
and global elastic, piezoelectric, and piezomagnetic properties. From (4-26) and (4-27) the following
relation of proportionality among effective pyromagnetic and pyroelectric properties can be produced:

[[e311
]]

[[q311]]
=

p̄3
− p3

ν

m̄3−m3
ν

. (4-28)

This relation can also be obtained from the explicit expressions for the effective moduli p̄3 and m̄3 given
in [Li and Dunn 1998b, p. 409] for fibrous (circular cylinder) composites.

4.3. Two-phase TMEE fibrous composites: Benveniste type exact connections. Next we determine
exact relations (à la [Benveniste 1995]) between the elastic, piezoelectric, piezomagnetic, and thermal
effective moduli of two-phase periodic fibrous composite systems characterized by a cylindrical geometry
and consisting also of transversely isotropic TMEE constituents. The axis of the cylinder coincides with
the axis x3. Here such exact connections will be derived in a different way, without solving any local
problem, based on certain links among the solutions of the local problems L33

1 , L3
2, L3

3, and L4. In
order to show that, these local problems will be presented in a compact form as the problem L(q) with
q = 1, 2, 3, 4. The two-phase periodic cell is denoted by Y , while 6 represents the contact interface
between the matrix Y1 and the inclusion Y2 (see Figure 1).
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Y2

Y1

Y

S
W

y=x�Ε

Figure 1. A part of a periodic domain and the unit cell.

The cell problem L(q) consists in finding the Y -periodic functions w(q), ζ (q), and η(q), with an average
of zero on Y , satisfying the following equations and continuity conditions on Y :

∂ j,yσ
i j (w(q)α , ζ (q)α , η((q)α , 0)= 0

∂i,y Di (w(q)α , ζ (q)α , η(q)α , 0)= 0

∂i,y Bi (w(q)α , ζ (q)α , η(q)α , 0)= 0

 in Yα, (4-29)

[[w(q)]] = 0

[[ζ (q)]] = 0

[[η(q)]] = 0

[[σ 1δ(w(q)α , ζ (q)α , η(q)α , 0)nδ]] = κ(q)n1

[[σ 2δ(w(q)α , ζ (q)α , η(q)α , 0)nδ]] = κ(q)n2

[[σ 3δ(w(q)α , ζ (q)α , η(q)α , 0)nδ]] = 0

[[Dδ(w(q)α , ζ (q)α , η(q)α , 0)nδ]] = 0

[[Bδ(w(q)α , ζ (q)α , η(q)α , 0)nδ]] = 0



on 6, (4-30)

where w(1) ≡ w33, ζ (1) ≡ ζ 33, η(1) ≡ η33; w(2) ≡ g3, ζ (2) ≡ π3, η(2) ≡ χ3; w(3) ≡ h3, ζ (3) ≡ ξ 3,
η(3) ≡ γ 3; and w(4) ≡ 0, ζ (4) ≡ Q, η(4) ≡ R are, respectively, the solutions of the local problems L33

1 ,
L3

2, L3
3, and L4. The jump κ(p) on the interface 6 is defined for each local problem by the constants

κ(1)=−[[c3311
]], κ(2)=−[[e311

]], κ(3)=−[[q311
]], and κ(4)=[[λ11

]]. The structure of the problems (4-29)–
(4-30) is very similar to the corresponding ones for elastic [Guinovart-Dı́az et al. 2001; Rodrı́guez-Ramos
et al. 2001]) and piezoelectric [Bravo-Castillero et al. 2001; Sabina et al. 2001] unidirectional fibrous
composites. The unique nonzero solutions of these problems are the elastic plane-strain local functions
w
(q)
1 (y1, y2) and w(q)2 (y1, y2), for q = 1, 2, 3, 4, which are connected by

w(2)α =
[[e311
]]

[[c1133]]
w(1)α , w(3)α =

[[q311
]]

[[c1133]]
w(1)α , w(4)α =−

[[λ11
]]

[[c1133]]
w(1)α , (4-31)

Taking into account the above considerations and notations, and using (3-10), the following expressions
for effective properties can be obtained:
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• From the problem L33
1 (≡ L(1)):

c̄1133
=
〈
c1133〉

+
〈
c1111∂1,1w

(1)
1 + c1122∂2,2w

(1)
2

〉
,

c̄3333
=
〈
c3333〉

+
〈
c1133(∂1,1w

(1)
1 + ∂2,2w

(1)
2 )
〉
,

ē333
=
〈
e333〉
+
〈
e311(∂1,1w

(1)
1 + ∂2,2w

(1)
2 )
〉
,

q̄333
=
〈
q333〉
+
〈
q311(∂1,1w

(1)
1 + ∂2,2w

(1)
2 )
〉
.

(4-32)

• From the problem L3
2 (≡ L(2)):

κ̄33
=
〈
κ33〉
−
〈
e311(∂1,1w

(2)
1 + ∂2,2w

(2)
2 )
〉
,

ᾱ33
=
〈
α33〉
−
〈
q311(∂1,1w

(2)
1 + ∂2,2w

(2)
2 )
〉
,

ē311
=
〈
e311〉
+
〈
c1111∂1,1w

(2)
1 + c1122∂2,2w

(2)
2

〉
.

(4-33)

• From the problem L3
3 (≡ L(3)):

µ̄33
=
〈
µ33〉
−
〈
q311(∂1,1w

(3)
1 + ∂2,2w

(3)
2 )
〉
,

q̄311
=
〈
q311〉
+
〈
c1111∂1,1w

(3)
1 + c1122∂2,2w

(3)
2

〉
.

(4-34)

• From the problem L4 (≡ L(4)):

λ̄11
=
〈
λ11〉
−
〈
c1111∂1,1w

(4)
1 + c1122∂2,2w

(4)
2

〉
,

λ̄33
=
〈
λ33〉
−
〈
c1133(∂1,1w

(4)
1 + ∂2,2w

(4)
2 )
〉
,

p̄3
=
〈
p3〉
+
〈
e311(∂1,1w

(4)
1 + ∂2,2w

(4)
2 )
〉
,

m3
=
〈
m3〉
+
〈
q311(∂1,1w

(4)
1 + ∂2,2w

(4)
2 )
〉
,

β̄ =
〈
β
〉
−
〈
λ11(∂1,1w

(4)
1 + ∂2,2w

(4)
2 )
〉
.

(4-35)

Now, combining (4-32) and (4-35) and making use of (4-31)3, the following universal relations can be
obtained:

[[c1133
]]

[[λ11]]
=

c̄1133
− c1133

ν

λ̄11− λ11
ν

=
c̄3333
− c3333

ν

λ̄33− λ33
ν

=
e333
ν − ē333

p̄3− p3
ν

=
q333
ν − q̄333

m̄3−m3
ν

. (4-36)

Note that Equations (4-36) involve all thermal global coefficients with the exception of β̄. However, if
the interface 6 is smooth enough so that Green’s formula can be applied, then, from (4-31)3, (4-32)3,
(4-32)4, and (4-35)3,4,5 one can obtain

ē333
− e333

ν =−[[e
311
]]5, q̄333

− q333
ν =−[[q

311
]]5, β̄ −βν =−

[[λ11
]]

2

[[c1133]]
5,

p̄3
− p3

ν =
[[λ11
]][[e311

]]

[[c1133]]
5, m̄3

−m3
ν =
[[λ11
]][[q311

]]

[[c1133]]
5,

(4-37)
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Parameters Units BaTiO3 CoFe2O4 epoxy

c1111 GPa 166. 286. 5.53
c1122 GPa 77. 173. 2.97
c1133 GPa 78. 170.5 2.97
c3333 GPa 162. 269.5 5.53
c1313 GPa 43. 45.3 0
e113 C/m2 11.6 0 0
e311 C/m2

−4.4 0 0
e333 C/m2 18.6 0 0
κ11 10−10 C2/Nm2 112. 0.8 1
κ33 10−10 C2/Nm2 126. 0.93 1
q113 N/Am 0 550. 0
q311 N/Am 0 580.3 0
q333 N/Am 0 699.7 0
µ11 10−6 Ns2/C2 5. −590. 1
µ33 10−6 Ns2/C2 10. 157. 1

Table 1. Material properties used in the calculations. Taken from [Lee et al. 2005].

where 5=
∫
6(w

(1)
1 dy2−w

(1)
2 dy1). Eliminating 5 from these equations, it is possible to obtain relations

involving β:
[[c1133

]]

[[λ11]]
=
[[λ11
]]

[[e311]]

e333
ν − ē333

β̄ −βν
=
[[λ11
]]

[[q311]]

q333
ν − q̄333

β̄ −βν
. (4-38)

In equations (4-36) and (4-38) nine effective properties are involved. The knowledge of one fixes the
values of the others eight. In a similar way, other relations can be derived. For instance, by manipulating
(4-37)3,4 we can derive (4-28). On the other hand, combining (4-31)1, (4-32)3, and (4-33)2, or again
(4-31)2, (4-32)4, and (4-34) one can find the relationships

[[c1133
]]

[[q311]]
=

ē333
− e333

ν

α33
ν − ᾱ

33 ,
[[c1133

]]

[[e311]]
=

q̄333
− q333

ν

α33
ν − ᾱ

33 . (4-39)

These equations coincide with (13) and (15) of [Benveniste 1995]. Finally, it is interesting to observe
that working with expressions (4-31)–(4-35) one can get relations (4-26) and (4-27). All these relations
are valid independently of the geometrical cross section of the fibers.

5. Numerical examples

The closed-form formulae for the effective properties of TMEE multilaminated composites, summarized
in Section 4.1, were analytically checked in Section 4.2 by means of the derivation (from such formulae)
of the universal relations of [Benveniste and Dvorak 1992] and [Benveniste 1995]. For the case of a
binary laminated composite, with transversely isotropic piezoelectric constituents, Equations (4-7)–(4-9)
yield [Benveniste and Dvorak 1992, (47), p. 1309].
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Since TMEE multilaminated composites could be considered as a limit case of unidirectional fibrous
composites, formulas of the type described can be useful for checking numerical codes.

To illustrate the performance of the formulae for three-phase magnetoelectroelastic composites, we
present the results for a three-phase laminate made of a piezoelectric phase (BaTiO3), a piezomagnetic
phase (CoFe2O4), and an isotropic linear elastic phase (epoxy). The material properties are given in
Table 1. The volume fraction v3 of the epoxy phase is fixed at 0.4.

In Figures 2 and 3, all effective properties (elastic, piezoelectric, piezomagnetic, electric permittivity,
magnetic permeability, and magnetoelectric) of these composites are plotted against the piezomagnetic
volume fraction. In Figure 2 we observe that the curves for c̄1111, c̄1133, c̄1313, c̄2323, and c̄3333 show
the same trend as those appearing in [Lee et al. 2005, Figure 17], where a three-phase fibrous magneto-
electroelastic composite was investigated via a finite element model. The same figure also shows that
the coefficient c̄1212 agrees better with the corresponding one from [Lee et al. 2005, Figure 18] than the
one derived from the Mori–Tanaka method of [Li and Dunn 1998b]. The rest of the elastic effective
properties c̄2222, c̄2233, and c̄1122 also have a linear behavior but cannot be compared because the global
behavior of the three-laminate (orthorhombic 2 mm) is different that of the three-phase fibrous composite
(tetragonal 4 mm) of [Lee et al. 2005].

A similar situation can be observed in Figure 3, which shows the effective piezoelectric (ē333, ē113 and
ē311), piezomagnetic (q̄333, q̄311 and q̄113), dielectric (κ̄33, κ̄11), and magnetic (µ̄33, µ̄11) constants to be
practically the same as those in [Lee et al. 2005, Figures 19–22, pp. 810–811]. Finally, the piezomagnetic
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Figure 2. Effective elastic properties of a three-phase magnetoelectroelastic laminated
composite versus volume fraction of piezomagnetic phase, for v3 = 0.4.
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netoelectroelastic laminated composite versus volume fraction of piezomagnetic phase,
for v3 = 0.4.
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Figure 4. Effective magnetoelectric properties of a three-phase magnetoelectroelastic
laminated composite versus volume fraction of piezomagnetic phase, for v3 = 0.4.
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Figure 5. Effective pyroelectric and pyromagnetic properties of a two-phase BaTiO3-
CoFe2O4 TMEE laminated composite versus volume fraction of piezomagnetic phase.

effective constants (ᾱ11 and ᾱ33) illustrated in Figure 4 have the same tendency (magnetoelectric effect)
as those in [Lee et al. 2005, Figures 23 and 24, p. 812].

Figure 5 illustrates the behavior of the pyroelectric and pyromagnetic effective constants of a two-phase
(BaTiO3-CoFe2O4) TMEE laminated composite against the piezomagnetic volume fraction. The data for
the thermal expansion constants of the constituents were taken from [Ootao and Tanigawa 2005, p. 476];
they are θ11

=θ22
=15.7×10−6 K−1, θ33

=6.4×10−6 K−1 (BaTiO3), and θ11
=θ22

=θ33
=10×10−6 K−1

(CoFe2O4) where λi j
= ci jklθ kl . In this figure, the existence of pyroelectric and pyromagnetic effects is

apparently, though neither phase by itself exhibits them.
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6. Concluding remarks

In this paper, based on the asymptotic homogenization method, a description of the derivation of the
local problems and the formulae to obtain all homogenized effective coefficients of a thermomagneto-
electroelastic (TMEE) periodic heterogeneous media are given. The general homogenization model is
applied to obtain closed-form formulae for effective (elastic, piezoelectric, piezomagnetic, dielectric,
magnetic, magnetoelectric, thermoelastic, pyroelectric, pyromagnetic, and heat capacity) coefficients of
periodic multilaminated composites with any finite number of transversely isotropic TMEE constituents.
Such formulae are specified for the case of a two-phase laminated composite with an orthotropic global
behavior which satisfies the universal relations of [Benveniste and Dvorak 1992]. These relations il-
lustrate the interrelation among magnetoelectroelastic and thermal effective properties. In particular,
(4-28) shows the proportionality connecting the pyroelectric and pyromagnetic effective coefficients
with the proportionality constant given by the ratio of the piezoelectric and piezomagnetic individual
properties. Another application of the general homogenization model is devoted to obtaining universal
relations (4-36) and (4-38)–(4-39) for two-phase periodic unidirectional fibrous composites with TMEE
transversely isotropic individual phases. The derivation of such universal relations does not require the
solution of any local problem, and is based on certain links, given by (4-31), among the solutions of
four local problems which are expressed in a compact form by (4-29)–(4-30). Several universal relations
reported in [Benveniste and Dvorak 1992; Benveniste 1995] are recovered here following a different
method. Some numerical calculations for three-phase laminated magnetoelectroelastic show a good
concordance with similar results obtained for three-phase fibrous composites in [Ootao and Tanigawa
2005]. The magnetoelectric effect expressed by (4-28) is illustrated in Figure 5. The analytical formulae
and universal relations of this work can be useful for checking numerical code.
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