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MILTON ESTEVA AND POL D. SPANOS

In this paper a micromechanics approach is presented for determining the effective elastic properties of
single-walled carbon nanotube (SWCNT) reinforced composites, while accounting for imperfect bond-
ing in the matrix-inclusion interface. For this purpose, a linear spring layer of vanishing thickness is in-
troduced to represent the interface. Furthermore, the well known Mori–Tanaka (MT) method, in conjunc-
tion with the Eshelby’s tensor, is modified to determine the effective elastic properties. The inclusions
are considered to be either perfectly aligned infinite long cylinders or aligned ellipsoidal inclusions with
a given aspect ratio; cases of perfect alignment or of randomly oriented fibers are treated. The numerical
results show that the interface weakening influences the nanocomposite properties significantly only for
high values of SWCNT volume fraction. Since most of the currently conducted experiments involve
composites which contain small volume fractions, it is thus reasonable based on the findings of this
paper to assume perfect bonding for low nanotube volumetric contents.

1. Introduction

Since the discovery of carbon nanotubes [Iijima 1991], single-walled CNTs have attracted increasing
scientific interest because of their exceptional mechanical, electrical, and thermal properties. Experimen-
tal and theoretical results have shown that the Young’s moduli of SWCNTs are approximately 1 TPa
depending on diameter size and chirality [Popov et al. 2000; Yakobson et al. 1996; Pipes et al. 2003;
Saether et al. 2003]. Despite these properties, several researchers have reported experiments with modest
improvement in the strength and stiffness of polymer nanocomposites (PNC) [Qian et al. 2002; Ajayan
et al. 2000]. On the other hand, some others have obtained a substantial increase in the effective properties
as shown in Table 1 on the next page. Researchers claim that alignment, dispersion, geometry, and load
transfer properties are parameters that could significantly affect the final properties of PNCs [Chen and
Tao 2006; Namilae and Chandra 2005].

Several techniques for modeling PNCs have been reported in the open literature. Frankland et al.
[2003] have used molecular dynamics (MD) to obtain stress-strain curves of SWCNTs embedded in a
polyethylene matrix; the interface has been simulated by nonbonding van der Waals interactions using
the Lennard-Jones potential. Odegard et al. [2003] has presented an equivalent-continuum method to
obtain an effective continuum fiber that includes interface interaction. Seidel and Lagoudas [2006] have
obtained effective continuum fiber properties using a composite cylinder micromechanics approach that
can be applied to SWCNT or multiwalled carbon nanotubes (MWCNT). They have used these properties
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Young’s Tensile
Composite modulus strength Elongation (%) NT Orientation

(GPa) (MPa)

Neat epoxy 2.02± .078 83± 3.3 6.5± 0.17 —–
Epoxy + 1 wt.% Bucky Pearl SWNT 2.12± .093 80± 4.1 5.8± 0.33 random

Epoxy + 1 wt.% functionalized 2.65± .125 104± 3.7 8.5± 0.72 random
Epoxy + 4 wt.% functionalized 3.4± .253 102± 5.4 5.5± 0.21 random

TPU 7.7± 1 12.4± 4.5 852± 130 ——
TPU + 0.5 wt.% SWNT 14.5± 3.4 13.3± 4 709± 160 aligned

Table 1. Some experimental mechanical properties of polymer nanocomposites. See
[Zhu et al. 2004] for the first four rows and [Chen and Tao 2006] for the last two.

with the self consistent (SC), MT and finite element method (FEM) to determine the effective properties
for aligned and randomly oriented perfectly bonded inclusions. In that work, an attempt to account for
imperfect bonding has been made by using interphase regions involving a multilayer composite cylinder
approach requiring the specification of elastic properties and thickness for the interphase layer. Song
and Youn [2006] have investigated the effective properties using the asymptotic expansion homogeniza-
tion method where again perfect interfacial bonding has been assumed. Liu and Chen [2003] have
implemented a three dimensional representative volume element (RVE) and have used FEM to obtain
effective mechanical properties; in this work perfect bonding between matrix and inclusion has also
been assumed. Li and Chou [2003] have adopted a structural mechanics approach to obtain effective
properties of cylindrical nanocomposites RVEs in which they have used nonlinear trusses to simulate
nonbonding interactions along the interface. Namilae and Chandra [2005] have also discussed the prob-
lem of nonperfect bonding. They have developed a multiscale model introducing a constitutive behavior
to the interface by means of cohesive zone models. They have used MD to obtain traction-displacement
relations and have then implemented them in a numerical scheme using two dimensional axysymmetric
FEM and cohesive zone elements for the interface. Despite this sophisticated model, final effective
properties strongly depend on RVE dimensions for finite nanotube lengths.

In this paper, a micromechanics model for determining the effective properties of PNCs is presented.
The model accounts for imperfect bonding between the matrix and the fiber. For this purpose, a spring
layer of finite stiffness but of negligible thickness is introduced in the inclusion model. The layer produces
continuous interfacial tractions but discontinuous displacements. The introduction of imperfect interfaces
necessitates modified expressions for the Eshelby tensor [1957], which is used in conjunction with the
MT method for composites [Qiu and Weng 1990]. In this modified MT approach, the properties of the
fiber are derived using a composite cylinder concept [Seidel and Lagoudas 2006]. Results are presented
for composites with infinite cylinders and ellipsoidal shape fibers which are either aligned or randomly
oriented in the matrix.

2. The original Mori–Tanaka concept

Recently, the original MT approach has been used by several authors to estimate the mechanical prop-
erties of nanocomposites [Odegard et al. 2003; Seidel and Lagoudas 2006]. Specifically, interest has
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been focused on the calculation of the effective elastic properties of a two phase composite where the
inclusion phase is either aligned or randomly oriented. In this section, a review of the derivation of
the MT equations is presented first towards accounting for the effect of imperfect bonding between the
matrix and the inclusion; obviously this is done towards facilitating the elucidation of the herein adopted
procedure, without claiming conceptual novelty.

Assume that the analyzed composite comprises two phases. The matrix is considered to be isotropic
and linearly elastic with stiffness tensor L0 and volume fraction c0. Strictly speaking, the stiffness matrix
relates the strains with the stresses they produce by the generalized Hooke’s law

σi j = L i jklεkl .

In a similar way, the inclusion phase is assumed to have ellipsoidal shape and its material is considered
to be transversely isotropic with stiffness tensor L1 and volume fraction c1. Throughout this section
explicit tensor notation will be omitted for clarity unless needed.

Consider the two configurations shown in Figure 1. These represent the composite material and the
comparison material where the properties of the later are those of the matrix. If displacements are
specified at the boundary to produce a uniform strain in both materials (εa), the average stress of the
composite (σ̄ ) and that in the comparison material (σ̄0) are σ̄ = Lεa and σ̄0 = L0εa , where L is the
effective stiffness tensor of the composite and an overscore represents volume average.

The presence of the inclusions causes the strain field in the matrix to be nonuniform. Thus, the average
strain in the matrix is in this case represented by the equation ε̄0 = εa + ε̄

pt
0 . The same change happens

to the inclusion phase; the strain is perturbed from that of the matrix and is quantified as

ε̄1 = ε̄0+ ε
pt
1 . (1)

Using the equivalent inclusion method developed in [Eshelby 1957], a relation between the inhomoge-
neous inclusion problem (Figure 1, left) and the homogeneous inclusion problem (Figure 1, right) can
be pursuit. In other words, the properties of the inclusion can be related to the properties of the matrix
by the equation

σ̄1 = L1ε̄1 = L0(ε̄1− ε
∗), (2)

1

3

2
1

3

2

!
a!

L0!

!*!

L1!

"
1
!

(a)                                                           (b)!

Figure 1. Eshelby’s equivalent inclusion problem.
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where ε∗ is the inclusion eigenstrain. Eshelby [1957] demonstrated that this eigenstrain is related to the
inclusion perturbation strain by the equation

ε
pt
1 = Sε∗, (3)

where the tensor S is well known as the Eshelby’s tensor; expressions for cylindrical and ellipsoidal
inclusions used herein can be found in references such as [Qiu and Weng 1990; Nemat-Nasser and Hori
1998].

Next, solving for ε∗ in (2). The expression for the eigenstrain in terms of the average strain in the
inclusion is found to be

ε∗ =−L−1
0 (L1− L0)ε̄1. (4)

Substituting (4) into (1) and making use of (3), the dilute strain concentration tensor Adil is found. This
tensor relates the average strain in the inclusion with the average strain in the matrix and is given by

ε̄1 = Adilε̄0 = [I + SL−1
0 (L1− L0)]

−1ε̄0, (5)

where I is the fourth-order identity tensor.
The relationship between the fiber and matrix strain averages and the overall strain average (εa) can

be established by the use of the total volume average. That is,

c0ε̄0+ c1ε̄1 = εa. (6)

By substituting (5) into (6), the strain concentration tensor of the matrix (A0) is obtained. This quantity
relates the applied strain with the average strain in the matrix by the equation

ε̄0 = A0εa = [c0 I + c1 Adil
]
−1εa. (7)

To derive the expression for the effective elastic moduli, the key assumption in the MT method is in-
troduced. That is, when identical particles are introduced in the composite, the average strain in the
inclusion is related to the average strain in the matrix by the dilute strain concentration tensor

ε̄1 = Adilε̄0. (8)

This means, that to account for inclusion interaction, the applied strain that each inclusion feels is the
average strain in the matrix. Substituting (7) into (8), the nondilute strain concentration tensor is obtained
(Andil). This tensor relates the applied strain to the average strain in the inclusion by the equation

ε̄1 = Andilεa = Adil A0εa. (9)

Finally, to find the overall effective stiffness tensor for aligned inclusions, a similar expression as in (6)
is used but for the case of stresses this is

σ̄ = c0σ̄0+ c1σ̄1 = Lεa, (10)

where substitution of Hooke’s law in (10) gives

σ̄ = c0 L0ε̄0+ c1 L1ε̄1 = Lεa.
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Solving for L and using (7) and (9), the final expression for the effective stiffness tensor of the MT
estimate is obtained as

L = (c0 L0+ c1 L1 Adil)(c0 I + c1 Adil)−1. (11)

This is the equation to implement the MT method for an aligned two phase composite.
It is also of interest to derive a MT estimate when the inclusions are randomly oriented inside the matrix.

To this aim, the effective composite stiffness tensor will be determined using the orientational average
of the pertinent properties. The difference between the aligned and the randomly oriented inclusions lies
in that for the latter case the relation (6) becomes

c0ε̄0+ c1{Adilε̄0} = (c0 I + c1{Adil
})ε̄0 = εa, (12)

where the brackets {·} designate the average over all possible orientations [Qiu and Weng 1990]. Similarly,
(10) becomes

σ̄ = c0 L0ε̄0+ c1{L1ε̄1} = (c0 L0+ c1{L1 Adil
})ε̄0 = Lεa. (13)

Finally, combining (12) and (13), the expression for the MT estimate for the case of randomly oriented
inclusions is obtained as

L = (c0 L0+ c1{L1 Adil
})(c0 I + c1{Adil

})−1, (14)

which is similar to the expression for the case of aligned inclusions, except for those appropriate averaged
quantities. Clearly, the MT approach can be used as a tool for deriving an effective stiffness tensor for
the composite material. Specific studies regarding the MT method have been previously presented [Qiu
and Weng 1990; Tucker and Liang 1999; Schjødt-Thomsen and Pyrz 2001; Benveniste 1987; Wang and
Pyrz 2004].

3. Mori–Tanaka approach for composites with slightly weakened interfaces

In a model developed by Qu [1993] in conjunction with generic composite materials mechanics, imper-
fection in the interface can be introduced by using a layer of insignificant thickness in which tractions
remain continuous and displacements become discontinuous. The equations that model the interfacial
traction continuity and the displacement jump (1ui ) at the interface can be written as

1σi j n j ≡ [σi j (S+)− σi j (S−)]n j = 0, (15)

and
1ui ≡ [ui (S+)− ui (S−)] = ηi jσ jknk (16)

respectively. In (15) and (16), S and n represent the interface and its unit outward normal vector, respec-
tively. The terms u(S+) and u(S−) are the values of the displacements when approaching from outside
and inside of the inclusion respectively. The second order tensor, ηi j , accounts for the compliance of
the spring layer. It is obvious that when the tensor ηi j tends to zero (infinite stiffness), the displacement
jump is zero and continuity in displacements are recovered. This tensor is chosen to be symmetric and
positive definite and can be expressed in the form

ηi j = αδi j + (β −α)ni n j , (17)
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where ni is the normal outward vector and δi j is the Kronecker delta.
It is important to address the physical meaning of the parameters α and β. To define these terms

more completely, an example is presented. Consider a two dimensional plane where a horizontal surface
divides the matrix and the inclusion material (see Figure 2). The unit outward normal vector n is pointing
in the vertical direction. Performing summation over dummy indexes in (16), the displacement jumps in
direction 1 and 2 are

1u1 = η11σ11n1+ η11σ12n2+ η12σ21n1+ η12σ22n2,

1u2 = η21σ11n1+ η21σ12n2+ η22σ21n1+ η22σ22n2.
(18)

Because the outward normal vector is in the vertical direction, n1 = 0 and n2 = 1. Using these values,
(18) reduces to

1u1 = η11σ12n2+ η12σ22n2, 1u2 = η21σ12n2+ η22σ22n2. (19)

In a similar manner and also making use of the Kronecker delta properties, (17) is used to generate the
four required elements in (19). That is,

η11 = αδ11+ (β −α)n1n1 = α,

η21 = αδ21+ (β −α)n2n1 = 0,

η12 = αδ12+ (β −α)n1n2 = 0,

η22 = αδ22+ (β −α)n2n2 = β.
(20)

Substituting (20) into (19), the displacement jumps in direction 1 and 2 are

1u1 = ασ12 = ατ, 1u2 = βσ22 = βσ. (21)

It is clear in (21) that α and β are parameters that represent the compliance in the tangential and normal
directions respectively as shown in Figure 2. Furthermore, setting the parameter β to zero (infinite
stiffness in the normal direction) prevents material interpenetration.

After introducing the imperfect interface into the equivalent inclusion method, Qu found a modified ex-
pression for the Eshelby’s tensor, for the case of ellipsoidal inclusions with slightly weakened interfaces.
The new expression is written as

S̄M
i jkl = Si jkl + (Ii j pq − Si j pq)Hpqrs Lrsmn(Imnkl − Smnkl), (22)

where Si jkl is the original Eshelby’s tensor and L i jkl is the matrix stiffness tensor. The second term in the
right hand side of (22) is produced due to the introduction of the weakened interface, where the tensor

Figure 2. Physical meaning of parameters α and β in the compliance tensor ηi j .
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H is given by the equation
Hi jkl = αPi jkl + (β −α)Qi jkl;

expressions for tensor P and Q are given in the Appendix.
Once the modified Eshelby’s tensor has been included in the analysis, the modified MT estimate is

introduced. Following the same procedure to find (11) and using the result in [Qu 1993] for the average
strains, the expression for the modified MT estimate for a two phase aligned composite is obtained as

L =
(
co Lo+ c1 L1 Adil)(co I + c1[Adil

+ H L1 Adil
]
)−1
, (23)

where
Adil
= [I + S̄M L−1

0 (L1− L0)]
−1. (24)

In all this new expressions, if the parameters α and β are set to zero, the tensor H vanishes and equations
(22), (23), and (24) reduce to the original MT expression shown in (11). It is worth mentioning that the
expression for the effective elastic properties in (23) is length dependent, in contrast to the original MT
which is aspect ratio dependent.

When the inclusions are randomly oriented inside the matrix, determination of the effective elastic
properties can be obtained following the same procedure as in (14). Using the result found in [Qu 1993]
for the total average strain, the MT expression with slightly weakened interfaces for the case of randomly
oriented inclusions is

L =
(
c0 L0+ c1{L1 Adil

}
)(

c0 I + c1{Adil
}+ c1{H L1 Adil

}
)−1
. (25)

Likewise, if the parameters α and β are set to zero, the tensor H vanishes and (25) reduce to the original
MT expression shown in (14). Similar studies have been reported for the case of inclusions with specific
shape and material properties [Benveniste and Aboudi 1984; Benveniste 1985; Hashin 1991].

4. Implementation of the Mori–Tanaka estimate

As stated in the previous sections, to obtain effective elastic properties by means of the MT method it
is necessary to use fourth-order tensor operations. To avoid the complexity that this task involves, the
notation originally developed in [Walpole 1981] and used later in [Qiu and Weng 1990; Wang and Pyrz
2004] will be used. In this notation, a general symmetric fourth-order tensor can be represented by the
equation

L = (2k, l, l ′, n, 2m, 2p), (26)

where the quantities k, l, l ′, n,m and p are related to the fourth-order tensor elements by the equation

k = 1
2(L2222+ L2233), l = L1122, l ′ = L2211, n = L1111, m = 1

2(L2222− L2233), p = L1212,

in which for the case of a transversely isotropic stiffness tensor, the quantities l and l ′ are identical. An
isotropic stiffness tensor can also be represented using this notation and the aforementioned quantities
are defined as

k = K + 1
3µ, l = l ′ = K − 2

3µ, n = K + 4
3µ, m = p = µ, (27)
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where K and µ are the bulk modulus and the shear modulus, respectively. Thus, whenever a fourth-
order tensor is expressed using this notation, algebraic operations of this kind of tensor can be easily
performed.

The expression for the MT estimate requires the use of tensor inner products. The computation of
the inner product of the two tensors A= (c, g, h, d, e, f ) and B = (c′, g′, h′, d ′, e′, f ′) is given by the
equation

AB = (cc′+ 2hg′, gc′+ dg′, hd ′+ ch′, dd ′+ 2gh′, ee′, f f ′). (28)

Besides inner products, tensor inversion is also required by the MT estimate. The inverse operation of
tensor A, denoted by A−1, satisfies the equation

AA−1
= I, (29)

where I is the identity tensor. If this tensor is expressed as I = (1, 0, 0, 1, 1, 1), it follows from (28) and
(29) that

A−1
=

(
d

cd − 2gh
,−

g
cd − 2gh

,−
h

cd − 2gh
,

c
cd − 2gh

,
1
e
,

1
f

)
.

As shown in (14), when the inclusions in the composite are randomly oriented within the matrix, certain
quantities require to be averaged over all possible directions. The result of this operation is a naturally
isotropic tensor. Only two properties are required to fully define the tensor. For the case of tensor L in
(26), the isotropic bulk and shear modulus are calculated as

K = 1
9 [4k+ 2(l + l ′)+ n], µ= 1

15 [k− (l + l ′)+ n+ 6(m+ p)].

Once these two quantities are obtained, one can form the new isotropic tensor by using the expressions
in (27).

5. Estimation of nanocomposite effective elastic properties

The modified MT method is applied herein to obtain the effective elastic properties of the composite.
Fiber and matrix material properties (for all cases in this paper) are identical to those shown in Table 2.

The work done in [Namilae and Chandra 2005] was used to obtain reasonable values for the parameter
α, they used molecular dynamics to perform a fiber pull out test. Three values for the parameter α are
chosen for all cases in this section (0, 0.01, and 0.05 nm/GPa) and β is set to zero to prevent material
interpenetration. In this section, computations of composites with aligned inclusions and those with
randomly oriented fibers are presented.

Matrix: EPON 862
E = 2.026 v = 0.3

Effective carbon nanotubes
E11 = 704 GPa ν12 = 0.14
E22 = 345 GPa ν23 = 0.37
µ12 = 227 GPa φ = 1.7 nm

Table 2. Input data for effective properties computations. From [Seidel and Lagoudas 2006].
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Figure 3. Effective axial modulus for composites with cylindrical inclusions.

Aligned SWCNT composites. It is known that for the case of isotropic matrices and aligned transversely
isotropic inclusions, the resulting overall properties are also transversely isotropic. Five independent
elastic properties fully describe the behavior of this type of materials. The modified MT method is
applied and the computations assume aligned infinitely long nanotubes. The results shown in Figure 3
are for the effective axial modulus. No effect of weakened interfaces is observed as expected and the
behavior is that of the rule of mixtures.

Figure 4 shows how interface properties impact the transverse modulus; it is slightly affected for
almost the entire range of volume fractions but it is significantly reduced for values greater than 0.8. For
the axial and transverse shear moduli similar behavior is found (see Figure 5). An important result of
introducing imperfect interfaces in the model is that composite properties do not converge to nanotube

0!

50!

100!

150!

200!

250!

300!

350!

0! 0.2! 0.4! 0.6! 0.8! 1!

T
ra

n
sv

er
se

 M
o
d
u
lu

s 
(G

P
a)
!

CNT Volume Fraction!

Effective Transverse Modulus vs CNT Volume Fraction!

a=0 (Perfectly Bonded)!

a=1e-20 (m/Pa)!

a=5e-20 (m/Pa)!

2.0!

2.5!

3.0!

3.5!

4.0!

4.5!

5.0!

0! 0.1! 0.2! 0.3! 0.4! 0.5!

Figure 4. Dependence of transverse modulus on parameter α for composites with cylin-
drical inclusions, d = 1.7 nm.
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Figure 5. Effective axial (left) and transversal (right) shear moduli versus parameter α
for composites with cylindrical inclusions, d = 1.7 nm.

properties when the volume fraction approaches 1, as can be seen in Figure 4 and Figure 5. This can be
expected as the fiber material is no longer homogeneous; it is affected by the presence of the negligible
layer with displacement discontinuities.

Another important aspect of the effective nanocomposite properties computation is to study the impact
of inclusion aspect ratio (length/diameter) when the fibers are not considered infinitely long. Calculations
of this type of composite can be conducted using the modified Eshelby’s tensor for ellipsoidal inclusions.
Expressions for the computation of required tensors are shown in the Appendix, in which numerical
integration is used due to the complex terms generated. Figure 6 captures the impact of the parameter
α on the calculation of the axial and transverse effective modulus. These results are for the specific
case of a nanotube diameter of 1.7 nm and an aspect ratio of 50. Similarly to the case of infinitely long
nanotubes, the transverse modulus is affected more than the axial modulus by the presence of imperfect
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bonding. And, in this case, aspect ratio starts to slightly affect the axial modulus as it does not follow
the rule of mixtures anymore.

Randomly oriented SWCNT composites. Next, the properties of SWCNT composites with randomly
oriented cylindrical and ellipsoidal fibers are calculated assuming nanotubes have good dispersion in
the matrix. The final elastic properties for both types of inclusions are fully isotropic because they
are obtained from an average over all possible orientations [Qiu and Weng 1990]. Figure 7 shows the
effective modulus of randomly oriented infinitely long cylinders and ellipsoids respectively. They both
have the same type of behavior, but the effective properties predicted for the ellipsoidal inclusions are less
than those for the cylindrical inclusions due to the aspect ratio dependence. The impact of introducing
imperfect bonding is still more evident for high volume fractions (more than 0.6) as noted in Figure 7.
Finally, Figure 8 provides the result on the effect of aspect ratio and volume fraction in the effective
properties of nanocomposites with ellipsoidal randomly oriented inclusions and slightly weakened inter-
faces (α = 0.05 nm/GPa). As expected, for high values of aspect ratio (more than 200) the behavior of
cylindrical inclusions is reached but for values less than 200, effective modulus is highly affected.

6. Concluding remarks

The effect of introducing imperfect bonding in the calculation of PNC effective properties has been
studied in this paper. Effective properties have been computed using a modified MT method to include the
effect of the weakened interface. The properties of the effective fiber have been obtained by a composite
cylinder method [Seidel and Lagoudas 2006]. Furthermore, three different configurations for the fibers
have been considered. First, nanotubes were treated as aligned infinitely long cylinders where bonding
imperfection affects only the transverse properties of the composite for high volume fractions values.
Second, the nanotubes were treated as ellipsoidal fibers with a given aspect ratio. In this case, both the
axial and the transverse properties were affected by the aspect ratio. Once more, the weakened interface
became important only for high volume fraction values. Lastly, the cylindrical and the ellipsoidal fibers
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Figure 7. Effective modulus dependence on parameter α for composites with either
cylindrical (a) or ellipsoidal (b) randomly oriented inclusions.
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Figure 8. Effective modulus versus CNT volume fraction and aspect ratio for ellipsoidal
inclusions with α = 0.05 nm/GPa.

were treated as randomly oriented fibers. For the cylindrical fibers, the effective properties did not follow
the rule of mixtures as in the aligned case, and the weakened interface became significant only at high
volume fractions.

All of the numerical results reported have shown that interfacial weakening influences the effective
nanocomposite properties significantly for high values of SWCNT volume fractions. Since most of
the currently conducted experiments involve composites which contain small volume fractions, it is
reasonable to assume perfect bonding for low nanotube volumetric contents. Nonetheless, the developed
procedure is applicable for assessing the interfacial weakening effect for an arbitrary volume fraction.

The H tensor

The tensor H needed to compute the modified MT estimate can be written as follows with axis 1 as the
symmetry axis

Hi jkl = αPi jkl + (β −α)Qi jkl,

where the components of tensors P and Q depend on the inclusion shape and can be obtained using the
following expressions:
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For ellipsoids

Pi jkl =
3

16π

∫ π

0

[∫ 2π

0
(δik n̂ j n̂l + δ jk n̂i n̂l + δil n̂k n̂ j + δ jl n̂k n̂i )n−1dθ

]
sinφdφ,

Qi jkl =
3

4π

∫ π

0

[∫ 2π

0
n̂i n̂ j n̂k n̂ln−3dθ

]
sinφdφ, n =

√
n̂i n̂i ,

n̂ =
(

cosφ
a1

,
sinφ cos θ

a2
,

sinφ sin θ
a3

)T

.

For cylinders (a2 = a3 = a and a1→∞) so

P2222 = P3333 = 4P3131 = 4P2121 = 2P2323 =
3π
8a
,

Q2222 = Q3333 = 3Q2233 = 3Q3322 = 3Q2323 =
9π
32a

,

with all others being 0.

References

[Ajayan et al. 2000] P. M. Ajayan, L. S. Schadler, C. Giannaris, and A. Rubio, “Single-walled carbon nanotube-polymer
composites: strength and weakness”, Adv. Mater. 12:10 (2000), 750–753.

[Benveniste 1985] Y. Benveniste, “The effective mechanical behaviour of composite materials with imperfect contact between
the constituents”, Mech. Mater. 4:2 (1985), 197–208.

[Benveniste 1987] Y. Benveniste, “A new approach to the application of Mori–Tanaka’s theory in composite materials”, Mech.
Mater. 6:2 (1987), 147–157.

[Benveniste and Aboudi 1984] Y. Benveniste and J. Aboudi, “A continuum model for fiber reinforced materials with debond-
ing”, Int. J. Solids Struct. 20:11–12 (1984), 935–951.

[Chen and Tao 2006] W. Chen and X. Tao, “Production and characterization of polymer nanocomposite with aligned single
wall carbon nanotubes”, Appl. Surf. Sci. 252:10 (2006), 3547–3552.

[Eshelby 1957] J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems”, Proc.
R. Soc. Lond. A 241:1226 (1957), 376–396.

[Frankland et al. 2003] S. J. V. Frankland, V. M. Harik, G. M. Odegard, D. W. Brenner, and T. S. Gates, “The stress-strain
behavior of polymer-nanotube composites from molecular dynamics simulation”, Compos. Sci. Technol. 63:11 (2003), 1655–
1661.

[Hashin 1991] Z. Hashin, “Thermoelastic properties of particulate composites with imperfect interface”, J. Mech. Phys. Solids
39:6 (1991), 745–762.

[Iijima 1991] S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354 (1991), 56–58.

[Li and Chou 2003] C. Li and T.-W. Chou, “Multiscale modeling of carbon nanotube reinforced polymer composites”, J.
Nanosci. Nanotechnol. 3:5 (2003), 423–430.

[Liu and Chen 2003] Y. J. Liu and X. L. Chen, “Evaluations of the effective material properties of carbon nanotube-based
composites using a nanoscale representative volume element”, Mech. Mater. 35:1–2 (2003), 69–81.

[Namilae and Chandra 2005] S. Namilae and N. Chandra, “Multiscale model to study the effect of interfaces in carbon
nanotube-based composites”, J. Eng. Mater. Technol. (ASME) 127:2 (2005), 222–232.

[Nemat-Nasser and Hori 1998] S. Nemat-Nasser and M. Hori, Micromechanics: overall properties of heterogeneous materials,
2nd rev. ed., North Holland, Amsterdam, 1998.

http://dx.doi.org/10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
http://dx.doi.org/10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
http://dx.doi.org/10.1016/0167-6636(85)90016-X
http://dx.doi.org/10.1016/0167-6636(85)90016-X
http://dx.doi.org/10.1016/0167-6636(87)90005-6
http://dx.doi.org/10.1016/0020-7683(84)90082-9
http://dx.doi.org/10.1016/0020-7683(84)90082-9
http://dx.doi.org/10.1016/j.apsusc.2005.05.028
http://dx.doi.org/10.1016/j.apsusc.2005.05.028
http://dx.doi.org/10.1098/rspa.1957.0133
http://dx.doi.org/10.1016/S0266-3538(03)00059-9
http://dx.doi.org/10.1016/S0266-3538(03)00059-9
http://dx.doi.org/10.1016/0022-5096(91)90023-H
http://dx.doi.org/10.1038/354056a0
http://dx.doi.org/10.1166/jnn.2003.233
http://dx.doi.org/10.1016/S0167-6636(02)00200-4
http://dx.doi.org/10.1016/S0167-6636(02)00200-4
http://dx.doi.org/10.1115/1.1857940
http://dx.doi.org/10.1115/1.1857940


900 MILTON ESTEVA AND POL D. SPANOS

[Odegard et al. 2003] G. M. Odegard, T. S. Gates, K. E. Wise, C. Park, and E. J. Siochi, “Constitutive modeling of nanotube-
reinforced polymer composites”, Compos. Sci. Technol. 63:11 (2003), 1671–1687.

[Pipes et al. 2003] R. B. Pipes, S. J. V. Frankland, P. Hubert, and E. Saether, “Self-consistent properties of carbon nanotubes
and hexagonal arrays as composite reinforcements”, Compos. Sci. Technol. 63:10 (2003), 1349–1358.

[Popov et al. 2000] V. N. Popov, V. E. Van Doren, and M. Balkanski, “Elastic properties of crystals of single-walled carbon
nanotubes”, Solid State Comm. 114:7 (2000), 395–399.

[Qian et al. 2002] D. Qian, G. J. Wagner, W. K. Liu, M.-F. Yu, and R. S. Ruoff, “Mechanics of carbon nanotubes”, Appl. Mech.
Rev. (ASME) 55:6 (2002), 495–533.

[Qiu and Weng 1990] Y. P. Qiu and G. J. Weng, “On the application of Mori–Tanaka’s theory involving transversely isotropic
spheroidal inclusions”, Int. J. Eng. Sci. 28:11 (1990), 1121–1137.

[Qu 1993] J. Qu, “The effect of slightly weakened interfaces on the overall elastic properties of composite materials”, Mech.
Mater. 14:4 (1993), 269–281.

[Saether et al. 2003] E. Saether, S. J. V. Frankland, and R. B. Pipes, “Transverse mechanical properties of single-walled carbon
nanotube crystals, I: Determination of elastic moduli”, Compos. Sci. Technol. 63:11 (2003), 1543–1550.

[Schjødt-Thomsen and Pyrz 2001] J. Schjødt-Thomsen and R. Pyrz, “The Mori–Tanaka stiffness tensor: diagonal symmetry,
complex fibre orientations and non-dilute volume fractions”, Mech. Mater. 33:10 (2001), 531–544.

[Seidel and Lagoudas 2006] G. D. Seidel and D. C. Lagoudas, “Micromechanical analysis of the effective elastic properties of
carbon nanotube reinforced composites”, Mech. Mater. 38:8–10 (2006), 884–907.

[Song and Youn 2006] Y. S. Song and J. R. Youn, “Modeling of effective elastic properties for polymer based carbon nanotube
composites”, Polymer 47:5 (2006), 1741–1748.

[Tucker and Liang 1999] C. L. Tucker, III and E. Liang, “Stiffness predictions for unidirectional short-fiber composites: review
and evaluation”, Compos. Sci. Technol. 59:5 (1999), 655–671.

[Walpole 1981] L. J. Walpole, “Elastic behavior of composite materials: theoretical foundations”, Adv. Appl. Mech. 21 (1981),
169–242.

[Wang and Pyrz 2004] J. Wang and R. Pyrz, “Prediction of the overall moduli of layered silicate-reinforced nanocomposites, I:
Basic theory and formulas”, Compos. Sci. Technol. 64:7–8 (2004), 925–934.

[Yakobson et al. 1996] B. I. Yakobson, C. J. Brabec, and J. Bernholc, “Nanomechanics of carbon tubes: instabilities beyond
linear response”, Phys. Rev. Lett. 76:14 (1996), 2511–2514.

[Zhu et al. 2004] J. Zhu, H. Peng, F. Rodriguez-Macias, J. L. Margrave, V. N. Khabashesku, A. M. Imam, K. Lozano, and
E. V. Barrera, “Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes”, Adv. Funct.
Mater. 14:7 (2004), 643–648.

Received 17 Apr 2008. Revised 16 May 2009. Accepted 17 May 2009.

MILTON ESTEVA: mesteva@rice.edu
Rice University, Department of Mechanical Engineering and Material Science - MS 321, PO Box 1892,
Houston, TX 77521-1892, United States

POL D. SPANOS: spanos@rice.edu
Rice University, Department of Mechanical Engineering and Material Science - MS 321, PO Box 1892,
Houston, TX 77521-1892, United States

http://dx.doi.org/10.1016/S0266-3538(03)00063-0
http://dx.doi.org/10.1016/S0266-3538(03)00063-0
http://dx.doi.org/10.1016/S0266-3538(03)00020-4
http://dx.doi.org/10.1016/S0266-3538(03)00020-4
http://dx.doi.org/10.1016/S0038-1098(00)00070-3
http://dx.doi.org/10.1016/S0038-1098(00)00070-3
http://dx.doi.org/10.1115/1.1490129
http://dx.doi.org/10.1016/0020-7225(90)90112-V
http://dx.doi.org/10.1016/0020-7225(90)90112-V
http://dx.doi.org/10.1016/0167-6636(93)90082-3
http://dx.doi.org/10.1016/S0266-3538(03)00056-3
http://dx.doi.org/10.1016/S0266-3538(03)00056-3
http://dx.doi.org/10.1016/S0167-6636(01)00072-2
http://dx.doi.org/10.1016/S0167-6636(01)00072-2
http://dx.doi.org/10.1016/j.mechmat.2005.06.029
http://dx.doi.org/10.1016/j.mechmat.2005.06.029
http://dx.doi.org/10.1016/j.polymer.2006.01.013
http://dx.doi.org/10.1016/j.polymer.2006.01.013
http://dx.doi.org/10.1016/S0266-3538(98)00120-1
http://dx.doi.org/10.1016/S0266-3538(98)00120-1
http://dx.doi.org/10.1016/S0065-2156(08)70332-6
http://dx.doi.org/10.1016/S0266-3538(03)00024-1
http://dx.doi.org/10.1016/S0266-3538(03)00024-1
http://dx.doi.org/10.1103/PhysRevLett.76.2511
http://dx.doi.org/10.1103/PhysRevLett.76.2511
http://dx.doi.org/10.1002/adfm.200305162
mailto:mesteva@rice.edu
mailto:spanos@rice.edu

	1. Introduction
	2. The original Mori--Tanaka concept
	3. Mori--Tanaka approach for composites with slightly weakened interfaces
	4. Implementation of the Mori--Tanaka estimate
	5. Estimation of nanocomposite effective elastic properties
	6. Concluding remarks
	The H tensor
	References

