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In this paper, the problem of wave propagation in periodic structured composites is studied, and a disper-
sive asymptotic method for the description of these dynamic processes is proposed. Assuming a single-
frequency dependence of the solution for the one dimensional wave equation in a periodic composite
material, higher-order terms in the asymptotic expansion for the displacement functions are studied.
Nonuniformity is eliminated by finding a suitable regular asymptotic expansion for the perturbation fre-
quency. Only two spatial scales are considered, and the equivalence of this method and the introduction
of multiple slow temporal scales is shown, in good agreement with previous approaches. For a selection
of boundary problems, analytic solutions are given and graphically illustrated. The problem of failures
is also discussed, and some illustrative calculations are presented.

1. Introduction

Due to their importance in industry and their wide range of applications, many attempts have been made
to describe the global behavior of composite materials. In elastodynamics, for example, if a traveling
signal has scale comparable to the size of the material’s heterogeneities, successive wave reflections and
refractions take place at the interfaces. Significant wave dispersion then results, leading to distortions of
the pulse shape and wave front.

The introduction of multiple scales and the methods of asymptotic homogenization [Bensoussan et al.
1978; Pobedria 1984; Bakhvalov and Panasenko 1989] has been helpful in treating a particularly im-
portant problem, the prediction of global or effective properties for composites which small-scale het-
erogeneities. Asymptotic analysis, as a powerful mathematical tool in dealing with problems involving
small parameters, plays a fundamental role in bridging the small and large scales relevant to models of
composite materials [Sánchez-Huber and Sánchez-Palencia 1992].

For a composite with periodic structure, these methods involve the dependence on two geometric
scales through the expansion of the fields in powers of a small parameter ε, the ratio between the micro
and macro scales. These techniques has been successful in providing effective quantities and methods
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for the solution of partial differential equations for static problems in structures such as laminated, fiber-
reinforced composites [Guinovart-Dı́az et al. 2005], laminated piezocomposites [Castillero et al. 1998],
and helical elastic and thermoelastic structures [Vivar-Pérez et al. 2005; 2006].

Approaches other than asymptotics are also available. Wang and Rokhlin [2002a; 2002b] developed
a dynamic homogenization method based on Floquet wave theory for treating laminated composites in
which the model was restricted to a homogenization domain consisting of frequencies and incident angles
below certain critical values that depended on the composite. The problem of wave propagation in elastic
fluid media with periodic structure is considered in [Santosa and Symes 1991] for cases in which the
ratio between cell size and the shortest wavelength of the initial disturbance is small. Within this regime,
an effective dispersive medium is obtained using the Bloch expansion. A similar analysis is made in
[Sjöberg et al. 2005], in which the solutions to Maxwell’s equations in periodic media are expanded in
Bloch waves under the limiting condition that the unit cell is small compared to the wavelength.

The classical method of asymptotic homogenization describes the effect of wave dispersion by ac-
counting for the influence of the first and second-order terms on the asymptotic expansion for relatively
long wavelengths in fiber reinforced composites [Parnell and Abrahams 2006]. This approach fails when
the observation time is relatively long or when the characteristic size of the perturbation is small, i.e.,
comparable to the representative volume element.

The classical method fails because of nonuniformity that results from the existence of unbounded
higher-order terms in the asymptotic expansion. It was shown in [Fish and Chen 2001] that in an initial
boundary value problem, whereas higher-order terms are capable of capturing dispersion effects, they
introduce secular terms which grow unboundedly with time. Chen and Fish [2001] reported a recent
attempt to solve this problem successfully by introducing one or more slow temporal scales, eliminating
the problem of nonuniformity that could not be addressed by classical homogenization.

The main objective of this paper is to describe the dispersive behavior of periodic composites by means
of time variable asymptotic rescaling, which is a necessary condition for the accurate description of a
composite’s global behavior. For this purpose, a reformulation of the problem is made in which the slow
temporal scale is replaced by a single-frequency time-dependence, and an asymptotic expansion for the
main frequencies is assumed to exist. This shows that the time rescaling needed to find the effective law
of movement in composites is strongly frequency dependent. As an advantage, there is no need to study
the selection of temporal scales, because the model only treats the fast spatial variable and yields closed
form general expressions for the coefficients in the global model.

This treatment shows good agreement with the model presented in [Chen and Fish 2001]. We also
present an analytical solution for the averaged problem for certain cases, including the situation in which
a failure (defect due to the presence of fissures, voids, cracks, etc.) is present in the composite. Results for
the asymptotic expansion of eigenfrequencies show that the range of validity of the method is restricted
to low frequency wave propagation. The effective model is therefore not accurate for cases in which the
initial disturbance has significant high frequency components. In asymptotic language, high frequencies
are of order O(1/ε), where ε is the ratio between the size of the periodic cell and characteristic length
of the composite.

This work is the start of a study of wave propagation in composite materials with applications to
damage detection and health monitoring for periodic laminated composites. The dispersive method is
only considered here for one spatial dimension.
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2. Statement of the problem

Our study reduces to a periodic laminated composite of length L , that is, a specimen consisting of a
linear periodic repetition of a representative volume element (RVE) (or periodic cell) with characteristic
length ε, Figure 1. Our analysis is independent of the number of phases embedded in the RVE, although
ε is required to be small compared to the composite length, ε� L .

Figure 1. A laminated two-phase periodic composite.

The direction of wave propagation is assumed to be parallel to the x axes, normal to the lamination.
If the laminate is considered to be isotropic, the elastodynamic equation is

(Eε(x)ux)x − ρε(x)ut t = 0. (2.1)

Here, u = u(x, t) gives the longitudinal displacement from the equilibrium position at point x and time
t , while Eε = Eε(x) and ρε = ρε(x) are the elastic modulus and the mass density at each position. The
subscript ε stands for the thickness of the RVE (implying that Eε and ρε are periodic with period ε), and
subscript x, t denote the respective partial derivatives.

If, for this laminated composite, we also consider a displacement µ(t) at one end x = 0, a load F(t) at
the other end x = L , an initial displacement U (x) from the equilibrium position, and an initial velocity
V (x) at each point x , then the initial and boundary conditions for (2.1) are

u(0, t)= µ(t), Eε(L)ux(L , t)= F(t), u(x, 0)=U (x), ut(x, 0)= V (x). (2.2)

Finally, it is necessary to include the contact conditions between the faces of the laminate components.
At such interfaces, the coupling conditions must be well determined. Here we will consider ideal contact
conditions, where there is no discontinuity in displacement or traction at the interface. If we introduce
the notation ‖ f‖ν = limx→ν+ f (x)− limx→ν− f (x), the ideal contact conditions are

‖u‖ν = 0, ‖Eεux‖ν = 0, (2.3)

for every point x = ν on the interface. Under these assumptions, we would like to obtain an effective
homogeneous model with constant coefficients that can approximate the response of the heterogeneous
material under study. This avoids the difficulties of treating rapid variation in the coefficients due to
heterogeneities and, at the same time, gives information about the dispersive nature of the laminated
composite. This is achieved by first considering a single arbitrary frequency-dependence and then apply-
ing asymptotic techniques for multiple scales, which allow us to find a regular asymptotic expansion for
the single arbitrary frequency and the displacement function.
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3. Frequency dependence and asymptotic analysis

Following the classical methods of separation of variables or Fourier’s method, a solution to (2.1) in the
form u(x, t)= X (x)T (t) is sought. After substitution of this product into (2.1), we obtain

(Eε(x)Xx(x))x
ρε(x)X (x)

=
Tt t(t)
T (t)

=−ω2
ε , (3.1)

where ωε is the circular frequency of the longitudinal wave. This is equivalent to a pair of ordinary
differential equations for X (x) and T (t) (Sturm–Liouville equations),

(EεXx)x +ω
2
ερεX = 0, Tt t +ω

2
εT = 0. (3.2)

X (x) inherits the interface conditions given in (2.3):

‖X‖ν = 0, ‖EεXx‖ν = 0. (3.3)

Initial and boundary conditions can be derived from (2.2). Having assumed the periodicity conditions on
Eε(x) and ρε(x) stated in the previous section, and considering that the size of the periodic cell ε is small
compared to the characteristic length of the composite L , it is convenient to introduce the dependence
on a new scale

ξ = x/ε. (3.4)

This is the “fast spatial scale”, widely used for asymptotic analysis in periodic structures [Bensoussan
et al. 1978].

We can now express the elastic modulus as E(ξ)= E(x/ε)= Eε(x) and the mass density as ρ(ξ)=
ρ(x/ε)= ρε(x). Note that E(ξ) and ρ(ξ) are 1-periodic (periodic with period 1), regardless of the value
of ε, due to the periodic structure of the composite under consideration. The dependence of X on ξ ,
X = X (x, ξ), now yields, from (3.2)1,

(E(ξ)Xx(x, ξ))x +ω2
ερ(ξ)X (x, ξ)= 0. (3.5)

Taking regular asymptotic expansions of the principal frequency of the perturbation and X (x, ξ) gives1

ωε = ω0+ εω1+ ε
2ω2+ · · · =

∑
n≥0

εnωn, (3.6)

X (x, ξ)= X0(x, ξ)+ εX1(x, ξ)+ ε2 X2(x, ξ)+ · · · =
∑
n≥0

εn Xn(x, ξ), (3.7)

where ωn are constant and Xn are 1-periodic with respect to the variable ξ . Introducing a comma notation
for the derivative with respect to the variable indicated, X,x = ∂X/∂x , the chain rule and (3.4) give
Xx = ε

−1 X,ξ +X,x . Then we have for X (x, ξ) and ωε:

(E Xx)x =
1
ε2 (E X,ξ ),ξ +

1
ε

[
(E X,ξ ),x +(E X,x ),ξ

]
+ (E X,x ), x , (3.8)

ω2
ε =

∑
n≥0

εnαn. (3.9)

1The equalities in (3.6) and (3.7) are defined in the asymptotic sense, and do not imply convergence of the series.
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The numbers αn are related to ωn through the chain of equations:

α0 = ω
2
0, α1 = 2ω1ω0, α2 = 2ω2ω0+ω

2
1, . . . αn =

n∑
k=0

ωkωn−k . (3.10)

With the aid of (3.8) and (3.9), it is possible to substitute the asymptotic expansions (3.6) and (3.7) into
(3.5) and reorder the result by powers of ε,∑

n≥−2

εn Hn(x, ξ)= 0. (3.11)

The coefficients Hn(x, ξ), for n ≥−2, are given by

H−2 = (E X0,ξ ),ξ , (3.12)

H−1 = (E X1,ξ ),ξ +(E X0,ξ ),x +(E X0,x ),ξ , (3.13)
...

Hn = (E Xn+2,ξ ),ξ +(E Xn+1,ξ ),x +(E Xn+1,x ),ξ +(E Xn,x ), x +ρ

n∑
k=0

αk Xn−k, (3.14)

The asymptotic sum in (3.11) vanishes, yielding

Hn(x, ξ)= 0. (3.15)

Bearing in mind (3.12)–(3.14), this constitutes a recurrent system of partial differential equations with
unknown functions Xn(x, ξ) in which the solutions Xn and Xn+1 for the n-th and (n+1)-th equations
are inserted into the next (n+2)-th equation. Once the functions Xn are found, they can be used in (3.7)
to approximate X (x, ξ). Observe that the numbers αn must also be found. This is accomplished by
imposing conditions of boundedness over the functions Xn discussed in the next section.

The substitution process for the asymptotic expansion (3.7) must be made in the expressions for the
interface coupling conditions, (3.3), to find the conditions that Xn should satisfy at the interfaces:

‖X0‖ν = 0, ‖E X0,ξ ‖ν = 0; ‖Xn+1‖ν = 0, ‖E Xn+1,ξ +E Xn,x ‖ν = 0 for n ≥ 0. (3.16)

4. Asymptotic homogenization up to O(ε0)

In this section, we describe a method for solving the system resulting from imposing (3.15) onto (3.12)–
(3.14), to find the approximating functions Xn(x, ξ) and the numbers αn for each power of ε in the
asymptotic expansion for X and the square of the frequency ωε, respectively. For this purpose it will be
helpful to state the following lemma.

Lemma 1. Consider positive functions E(ξ), f (ξ), and F(ξ), all periodic of period 1, defined over the
interval [0, 1], and continuously differentiable except, perhaps, at finitely many points 0 ≤ ν1 < ν2 <

· · ·< νm ≤ 1 where they might be discontinuous. The equation

(Ev,ξ ),ξ = f (4.1)

in the function v(ξ), defined for all points ξ ∈ (0, 1) apart from the νi and satisfying the conditions

‖v(ξ)‖νi = 0, ‖Ev,ξ +F‖νi = 0, (4.2)
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has a 1-periodic solution, unique up to an additive constant, if and only if 〈 f 〉 =
∑m

i=1 ‖F‖νi , where

〈 〉 =

∫ 1

0
dξ (4.3)

is the averaging operator over the RVE.

A proof can be found in the first chapter of [Bensoussan et al. 1978].
Considering (3.15) for n =−2 leads to the equation, of order O(ε−2),

(E X0,ξ ),ξ = 0. (4.4)

Here, X0 is restricted to 1-periodicity conditions, X0(x, 0) = X0(x, 1), and to the conditions given in
(3.16)1,2. Lemma 1 supports the conclusion that, since E is a positive function, the general solution for
X0 in (4.4) is

X0(x, ξ)= X̂0(x). (4.5)

Having solved the equation for the order corresponding to O(ε−2), the equation for next order O(ε−1)

is recalled by considering again (3.15), this time with n =−1,

(E X1,ξ ),ξ +(E X0,ξ ),x +(E X0,x ),ξ = 0, (4.6)

and the conditions (3.16)3,4 for n = 0,

‖X1‖ν = 0, ‖E X1,ξ +E X0,x ‖ν = 0. (4.7)

From (4.6) and the fact that X0 does not depend on the fast variable ξ , it follows that

(E X1,ξ ),ξ +E,ξ X̂0,x = 0. (4.8)

Due to the linear nature of this equation, its general solution is a sum of two terms,

X1(x, ξ)= N1(ξ)X̂0,x (x)+ X̂1(x). (4.9)

Here, X̂1(x) only depends on the slow scale x . By substituting (4.9) into (4.7)–(4.8), we find an expres-
sion for the 1-periodic function N1(ξ),

(EN1,ξ +E),ξ = 0, (4.10)

and the continuity conditions

‖N1‖ = 0, ‖EN1,ξ +E‖ = 0. (4.11)

This is the first local problem. Lemma 1 guarantees the existence of the local function N1 up to an
additive constant. To avoid nonuniqueness, we will take N1 so that 〈N1〉 = 0.

Before solving for X2, which corresponds to the next order in the asymptotic expansion of X , we note
that N1(ξ) does not need to be found explicitly to obtain a homogenized model. (4.10) and (4.11)2 imply
that it is sufficient that EN1,ξ +E = C , where C is a constant that does not depend on ξ . The average
〈N1,ξ 〉 = 0 vanishes because N1 is a 1-periodic continuous function. We have N1,ξ +1= C/E(ξ) and,
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applying the averaging operator 〈〉 to both sides of the equality, we obtain 1 = C〈1/E〉. Finally, the
equality C = 〈1/E〉−1 holds, and consequently

EN1,ξ +E =
〈 1

E

〉−1
= Ê . (4.12)

For the analysis of the O(ε0) equation, consider (3.15) and (3.14), for n = 0,

(E X2,ξ ),ξ +(E X1,ξ ),x +(E X1,x ),ξ +(E X0,x ), x +ρω
2
0 X0 = 0. (4.13)

Here, we substitute the expressions found for X0 and X1 into (4.5) and (4.9), respectively,

(E X2,ξ ),ξ +
[
(EN1),ξ +EN1,ξ +E

]
X̂0,xx +E,ξ X̂1,x +ρω

2
0 X̂0 = 0. (4.14)

Averaging both sides of the equation over one period and considering that E X2,ξ satisfies the condition
(3.16)3,4 and is therefore a 1-periodic continuous function in ξ , we have

〈EN1,ξ +E〉X̂0,xx +ω
2
0〈ρ〉X̂0 = 0. (4.15)

The coefficients 〈EN1,ξ +E〉 and 〈ρ〉 are the effective coefficients given in previous discussions of
homogenization [Pobedria 1984; Bakhvalov and Panasenko 1989]. They are well known, and for one-
dimensional periodic structured composites, they can be found explicitly. Finally, we write

Ê X̂0,xx +ω
2
0ρ̂ X̂0 = 0, (4.16)

where Ê is given in (4.12) and ρ̂ = 〈ρ〉.
As we can see, (4.16) contains X̂0 by itself, and does not show dispersive wave propagation behavior

in the composite. This result is obtained if we set ε = 0 in our model. In this case, the structure is
effectively homogeneous and nondispersive if the component materials are nondispersive. Applying the
normalization condition 〈N1〉 = 0, dropping the approximation 〈X〉 ≈ X̂0, and applying the principle of
superposition, we are led from (4.16) and (3.2)2 with ωε ≈ ω0 to the averaged model for the function
〈u〉 = û,

Ê û,xx −ρ̂ût t = 0. (4.17)

The classical method of asymptotic homogenization yields the same result, although this result is not
expected if the wavelength is comparable to the size of the periodic cell. To describe the dispersive
behavior, more terms must be considered in (3.15).

From (4.16), we have

X̂0 =−
1
ω2

0

Ê
ρ̂

X̂0,xx , (4.18)

which, in combination with (4.14), leads to

(E X2,ξ ),x +
[
(EN1),ξ +EN1,ξ +E −

ρ

ρ̂
〈EN1,ξ +E〉

]
X̂0,xx ++ E,ξ X̂1,x = 0. (4.19)

Because this equation is linear, the general solution, X2, is

X2(x, ξ)= N2(ξ)X̂0,xx +N1 X̂1,x +X̂2(x). (4.20)
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Analogously to previous cases, X̂2(x) only depends on x , and N2(ξ) is the 1-periodic function called the
second local function. This function yields a null average, 〈N2〉 = 0, and must satisfy the second local
problem,

(EN2,ξ +EN1),ξ +EN1,ξ +E −
ρ

ρ̂
〈EN1,ξ +E〉 = 0, (4.21)

with conditions
‖N2‖ = 0, ‖EN2,ξ +EN1‖ = 0. (4.22)

5. Higher-order homogenization

In this section, we continue with higher-order approximations in the asymptotic expansion, (3.11). The
objective is to relate the terms of the asymptotic expansions of ωε and X (x, ξ), given in (3.6) and (3.7),
to the periodicity of the composite laminated structure.

From the equation corresponding to O(ε), we have

(E X3,ξ ),ξ +(E X2,ξ ),x +(E X2,x ),ξ +(E X1,x ), x +ω
2
0ρX1+ 2ω1ω0ρX0 = 0. (5.1)

Combining the formulas for X0, X1, and X2 given in (4.5), (4.9), and (4.20), respectively, and taking
ĉ2
= Ê/ρ̂, we have

(E X3,ξ ),ξ +
[
(EN2),ξ +EN2,ξ +EN1− ĉ2ρN1

]
X̂0,xxx

+
[
(EN1),ξ +EN1,ξ +E

]
X̂1,xx +E,ξ X̂2,x ++ω

2
0ρ X̂1+ 2ω0ω1ρ X̂0 = 0. (5.2)

Averaging this equation, and using (4.12), we have

〈EN2,ξ +EN1− ĉ2ρN1〉X̂0,xxx +Ê X̂1,xx +ω
2
0ρ̂ X̂1+ 2ω0ω1ρ̂ X̂0 = 0. (5.3)

It can be shown that
〈EN2,ξ +EN1− ĉ2ρN1〉 = 0. (5.4)

The functions N1 and N2 are continuous because they satisfy (4.11) and (4.22)1. This is also true for the
functions EN1,ξ +E and EN2,ξ +EN1 due to (4.11)2 and (4.22)2. Then,〈[

N2(EN1,ξ +E)− N1(EN2,ξ +EN1)
]
,ξ
〉
= 0, (5.5)

because the bracketed function is continuous and 1-periodic. Applying the rule for the derivation of the
product, we have

〈N2,ξ (EN1,ξ +E)− N1,ξ (EN2,ξ +EN1)〉+ 〈N2(EN1,ξ +E),ξ −N1(EN2,ξ +EN1),ξ 〉 = 0. (5.6)

Substituting the first and second local problems (4.10) and (4.21) yields

〈N2,ξ (EN1,ξ +E)− N1,ξ (EN2,ξ +EN1)+ N1(EN1,ξ +E)− ĉ2ρN1〉 = 0. (5.7)

Finally, after eliminating parentheses and reducing terms, we obtain (5.4). Therefore, from (5.3), we
conclude that

Ê X̂1,xx +ω
2
0ρ̂ X̂1 =−2ω0ω1ρ̂ X̂0. (5.8)
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This equation is a second-order ordinary differential equation in X̂1 with constant coefficients. The
right-hand side satisfies the corresponding homogeneous second-order equation from (4.16). To obtain
bounded solutions for (5.8), we must set ω1 = 0 because ω0 and X̂0 are arbitrary. This yields

Ê X̂1,xx +ω
2
0ρ̂ X̂1 = 0, ω1 = 0. (5.9)

Combining (5.9) and (5.2), we have

(E X3,ξ ),ξ +
[
(EN2),ξ +EN2,ξ +EN1− ĉ2ρN1

]
X̂0,xxx

+
[
(EN1),ξ +EN1,ξ +E − ĉ2ρ

]
X̂1,xx +E,ξ X̂2,x = 0. (5.10)

The general solution, X3, to (5.10) is

X3(x, ξ)= N3(ξ)X̂0,xxx +N2 X̂1,xx +N1 X̂2,x +X̂3(x). (5.11)

The third 1-periodic local function N3, for which 〈N3〉 = 0, is the solution to the third local problem,

(EN3,ξ +EN2),ξ +EN2,ξ +EN1− ĉ2ρN1 = 0, (5.12)

with continuity conditions
‖N3‖ = 0, ‖EN3,ξ +EN2‖ = 0, (5.13)

obtained by substituting (5.11) and (4.20) into the ideal contact conditions given in (3.16)3,4 for n = 2.
ω1 does not change the result obtained thus far for ωε. Improvements on this value must be made at
subsequent levels of approximation.

Continuing with the term of order O(ε2), we have

(E X4,ξ ),ξ +(E X3,ξ ),x +(E X3,x ),ξ +(E X2,x ), x +ω
2
0ρX2+ 2ω2ω0ρX0 = 0. (5.14)

Substituting in (5.14) the values of X2 and X3 from (4.20) and (5.11), and the constraints (4.16) and
(5.9)1 satisfied by X̂0 and X̂1, we get

(E X4,ξ ),ξ +
[
(EN3),ξ+EN3,ξ+EN2−ĉ2ρN2

]
X̂0,xxxx +

[
(EN2),ξ+EN2,ξ+EN1−ĉ2ρN1

]
X̂1,xxx

+(EN1,ξ +E)X̂2,xx +ω
2
0ρ X̂2+2ω2ω0ρ X̂0 = 0. (5.15)

Averaging over this last equality yields

〈EN3,ξ +EN2− ĉ2ρN2〉X̂0,xxxx +Ê X̂2,xx +ω
2
0ρ̂ X̂2+ 2ω2ω0ρ̂ X̂0 = 0. (5.16)

Considering the second-order homogeneous equation (4.16), we have

X̂0 =−
ĉ2

ω2
0

X̂0,xx =
ĉ4

ω4
0

X̂0,xxxx . (5.17)

Consequently, we can rewrite (5.16) as

Ê X̂2,xx +ω
2
0ρ̂ X̂2 =−

[
〈EN3,ξ +EN2− ĉ2ρN2〉

ω4
0

ĉ4 + 2ω2ω0ρ̂
]

X̂0. (5.18)

Once again, we have obtained a second-order differential equation, this time for the function X̂2. Because
X̂0 satisfies the corresponding second order homogeneous equation, the right-hand side of (5.18) does
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also. To avoid unbounded solutions for X̂2, we must select ω2 so that the coefficient of X̂0 in the right-
hand side is equal to zero:

ω2 =−
ω3

0

2ĉ4ρ̂
〈EN3,ξ +EN2− ĉ2ρN2〉. (5.19)

The equation for X̂2 is
Ê X̂2,xx +ω

2
0ρ̂ X̂2 = 0. (5.20)

With this result, an averaged expression for (2.1), up to O(ε2), can be obtained. Combining

X̂ = X̂0+ ε X̂1+ ε
2 X̂2 (5.21)

and the normalization condition, 〈Nn〉 = 0 for n = 1, 2, . . . , it can be seen that 〈X〉 ≈ X̂ , and we have

Ê X̂ ,xx +ω
2
0ρ̂ X̂ = 0. (5.22)

If u = X (x, ξ)T (t), then û = 〈u〉 = 〈X (x, ξ)T (t)〉 ≈ X̂T , and

ρ̂ût t = ρ̂ X̂Tt t =−ρ̂ω
2
ε X̂T, (5.23)

considering (3.2)2. Taking only the terms up to the second-order of approximation in the second equality
of (5.23), we obtain

ρ̂ω2
ε X̂T ≈ ρ̂(ω0+ ε

2ω2)
2 X̂T = ρ̂ω2

0 X̂T + ε2ρ̂2ω0ω2 X̂T + ε4ρ̂ω2
2 X̂T

= ρ̂ω2
0 X̂T + ε22ρ̂ω2(ω0+ ε

22ω2)X̂T − ε4ρ̂3ω2
2 X̂T

= ρ̂ω2
0 X̂T + ε22ρ̂

ω2

ω0
ω2
ε X̂T − ε4ρ̂3ω2

2 X̂T . (5.24)

Neglecting terms of order O(ε4) and substituting the value for ω2 from (5.19), this reduces to

ρ̂ X̂Tt t =−ρ̂ω
2
0 X̂T − ε2ω

2
0

ĉ4 κω
2
ε X̂T, (5.25)

where we have set κ = 〈EN3,ξ +EN2− ĉ2ρN2〉. In view of (5.22) and (3.2)2, we can substitute
ω2

0

ĉ2 X̂ =
−X̂xx and ω2

εT =−Tt t to obtain

ρ̂ X̂Tt t = Ê X̂xx T −
ε2κ

ĉ2 X̂xx Tt t . (5.26)

Finally, we have, for û,

ρ̂ût t = Ê ûxx −
ε2κ

ĉ2 ûxxtt . (5.27)

Applying the principle of superposition, we find that this equation is valid for more general functions û
which are sums of stationary modes û(x, t)= X̂(x)T (t) multiplied by a constant amplitude. This result
demonstrates the dispersive nature of wave propagation in the composite under study.

One-dimensional homogenization yields a closed-form expression for κ , which depends on the coeffi-
cients in the original equation, E(ξ) and ρ(ξ). This procedure is presented in the Appendix. If we define

R =
∫ ξ

0

(ρ
ρ̂
− 1

)
ds, B =

∫ ξ

0

( Ê
E
− 1

)
ds, (5.28)
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then

κ = Ê
[〈( Ê

E
R− B

)(
R−

〈 Ê
E

R
〉)〉
+

〈(
ρ
ρ̂

B− R
)
(B−〈B〉)

〉]
. (5.29)

If E(ξ)ρ(ξ) is a constant, then κ = 0. Under such conditions, ρ(ξ)/ρ̂ = Ê/E(ξ), R = B, and

κ = Ê
[〈

2
( Ê

E
− 1

)
B2
〉
−

〈( Ê
E
+ 1

)
B
〉〈( Ê

E
− 1

)
B
〉]
. (5.30)

This expression vanishes if we consider d B/dξ = Ê/E − 1: indeed, this condition implies〈( Ê
E
− 1

)
Bn
〉
=

1
n+1

〈 d
dξ
(Bn+1)

〉
= 0, (5.31)

because Bn is a 1-periodic function. This fact can be used to verify that the quantity in brackets in (5.30)
is zero. From a physical standpoint, this demonstrates that for constant acoustic impedance Eρ in a
periodic composite, dispersion is not observed in the global model because that would imply that κ = 0.

6. Arbitrary orders of approximation

The results obtained in the last section can be extended to arbitrary orders of approximation for the
functions X (x, ξ) and the angular frequency ωε. To achieve this goal, we require the following result.

Lemma 2. For all n ≥ 0, we have

Xn(x, ξ)=
n∑

m=0

Nn−m(ξ)
dn−m X̂m

dxn−m (x), (6.1)

and the expressions for αn become

αn =−
1
ρ̂

(
−
ω2

0

ĉ2

)n/2+1
〈

ENn+1,ξ +ENn +

n/2−1∑
k=0

α2k

(
−

ĉ2

ω2
0

)k+1
ρNn−2k

〉
, (6.2)

for n even, or
αn = 0, (6.3)

otherwise. By convention, we take N0 ≡ 1, and d0/dx0 is the identity operator. The local functions Nn

are 1-periodic, of null average, and must satisfy the recurrent set of local problems given by

(ENn+2,ξ +ENn+1),ξ +ENn+1,ξ +ENn +

[n/2]∑
k=0

α2k

(
−

ĉ2

ω2
0

)k+1
ρNn−2k = 0. (6.4)

[n/2] is the largest integer less than or equal to n/2, and the 1-periodic solution Nn+2 to this equation is
restricted to the continuity conditions

‖Nn+2‖ = 0, ‖ENn+2,ξ +ENn+1‖ = 0. (6.5)

All functions X̂n satisfy the equation

ĉ2 X̂n,xx +ω
2
0 X̂n = 0. (6.6)
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Proof. (The reader may prefer to skip to the end of the proof, on page 964.) We proceed by induction. Suppose
n0 is even, (6.1)–(6.3) are valid for n < n0+ 2, and (6.4)–(6.6) hold for every n < n0. From the expression for the
order O(εn0), we have

(E Xn0+2,ξ ),ξ +(E Xn0+1,ξ ),x +(E Xn0+1,x ),ξ +(E Xn0 ,x ), x +ρ
n0/2∑
k=0

αk Xn0−k = 0. (6.7)

A necessary and sufficient condition for the existence of a 1-periodic solution Xn0+2 for this equation is〈
(E Xn0+1,x ),ξ +(E Xn0 ,x ), x +ρ

n0∑
k=0

αk Xn0−k

〉
= 0. (6.8)

Once the expressions for Xn0 and Xn0+1 from (6.3) are substituted into this equality, we have

n0−1∑
m=0

〈
ENn0−m+1,ξ +ENn0−m +

[ n0−m
2

]∑
k=0

α2k

(
−

ĉ2

ω2
0

)k+1
ρNn0−m−2k

〉dn0−m+2 X̂m

dxn0−m+2

+〈EN1, ξ + E〉
d2 X̂n0

dx2 +ω
2
0〈ρ〉X̂n0 = 0. (6.9)

As long as (6.5)1 is valid for n < n0, we have〈
ENn+1,ξ +ENn +

[n/2]∑
k=0

α2k

(
−

ĉ2

ω2
0

)k+1
ρNn−2k

〉
= 0, (6.10)

for n < n0. All terms in the sum from m = 0 to m = n0− 1 in (6.9) vanish except for the one corresponding to
m = 0, and (6.9) is equivalent to

〈EN1, ξ + E〉
d2 X̂n0

dx2 +ω
2
0〈ρ〉X̂n0 =−

〈
ENn0+1,ξ +ENn0 +

n0
2∑

k=0
α2k

(
−

ĉ2

ω2
0

)k+1
ρNn0−2k

〉dn0+2 X̂0

dxn0+2 . (6.11)

At the same time, we have
dn0+2 X̂0

dxn0+2 =

(
−
ω2

0

ĉ2

)n0/2+1
X̂0. (6.12)

(6.11) is a second-order differential equation, with constant coefficients, in the unknown functions X̂n0+1. To
obtain a bounded solution, we must set the right-hand side equal to zero because X̂0 satisfies the corresponding
homogeneous equation. Then,〈

ENn0+1,ξ +ENn0 +

n0/2∑
k=0

α2k

(
−

ĉ2

ω2
0

)k+1
ρNn0−2k

〉
= 0, (6.13)

and solving for αn0 , we obtain precisely (6.2), for n = n0, and for X̂n0 , we get (6.6). This yields

X̂n0 =−
ĉ2

ω2
0

d2 X̂n0

dx2 . (6.14)

We can use this fact and (6.2) to obtain, from (6.7)

(E Xn0+2,ξ ),ξ +
n0+1∑
m=0

[
(ENn0−m+1),ξ +ENn0−m+1,ξ +ENn0−m +

[ n0−m
2

]∑
k=0

α2kρNn0−m−2k

]
dn0−m+2 X̂m

dxn0−m+2 = 0.

Because this equation is linear, the general solution Xn0+2, for (6.15), is the expression given in (6.1) for n = n0+ 2,
where the local functions Nn0+2(ξ) satisfy (6.4)–(6.5) when n = n0.

Next, we consider the equation corresponding to the order O(εn0+1):

(E Xn0+3,ξ ),ξ +(E Xn0+2,ξ ),x +(E Xn0+2,x ),ξ +(E Xn0+1,x ), x +ρ
n0/2∑
k=0

αk Xn0−k+1 = 0. (6.15)
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If we average over a period, we have〈
(E Xn0+2,x ),ξ +(E Xn0+1,x ), x +ρ

n0/2∑
k=0

αk Xn0−k+1

〉
= 0. (6.16)

Analogously to the previous case, this is equivalent to

〈EN1, ξ + E〉
d2 X̂n0+1

dx2 +ω2
0〈ρ〉X̂n0+1 =

−

〈
ENn0+2,ξ +ENn0+1+

n0
2∑

k=0
α2k

(
−

ĉ2

ω2
0

)k+1
ρNn0−2k+1

〉dn0+3 X̂0

dxn0+3 −αn0+1〈ρ〉X̂0.

(6.17)

Here it can be proved that 〈
ENn0+2,ξ +ENn0+1+

n0
2∑

k=0
α2k

(
−

ĉ2

ω2
0

)k+1
ρNn0−2k+1

〉
= 0. (6.18)

Consider, for that purpose, the identity〈 n0+1∑
n=0

(−1)n
[
Nn0−n+2(ENn+1,ξ +ENn)

]
,ξ

〉
= 0. (6.19)

Applying here the rule for the derivative of the product, we arrive at〈 n0+1∑
n=0

(−1)n Nn0−n+2,ξ (ENn+1,ξ +ENn)
〉
+

〈 n0+1∑
n=0

(−1)n Nn0−n+2(ENn+1,ξ +ENn),ξ

〉
= 0. (6.20)

We can substitute the expressions for the local problems in (6.4) into the second term of the left-hand side of (6.20)
to obtain, after some algebra,〈 n0+1∑

n=0
(−1)n ENn0−n+2,ξ Nn+1,ξ

〉
+〈ENn0+2,ξ 〉+

〈 n0+1∑
n=1

(−1)n ENn0−n+2,ξ Nn

〉
+

〈 n0+1∑
n=1

(−1)n+1 ENn0−n+2 Nn,ξ

〉
+〈ENn0+1〉+

〈 n0+1∑
n=2

(−1)n+1 ENn0−n+2 Nn,ξ

〉
+

〈 n0/2∑
q=0

α2q

(
−

ĉ
ω2

0

)q+1
ρNn0−2q+1

〉
+

〈 n0+1∑
n=2

(−1)n+1 Nn0−n+2

[n/2−1]∑
k=0

α2k

(
−

ĉ
ω2

0

)k+1
ρNn−2k+1

〉
= 0. (6.21)

The first term in this expression is equal to zero. To verify this, is sufficient to change the summation index to
n = n0−m+ 1. Recalling that n0 is an even number, we have
n0+1∑
n=0

(−1)n ENn0−n+2,ξ Nn+1,ξ =
n0−m+1=n0+1∑

n0−m+1=0
(−1)n0−m+1 ENm+1,ξ Nn0−m+2,ξ =−

n0+1∑
m=0

(−1)m ENm+1,ξ Nn0−m+2,ξ ,

That is, the sum is equal to its negative and hence vanishes. A similar procedure can be used to verify that the third
and fourth terms in left-hand side of (6.21) cancel, the sixth and eighth terms are zero as well, and (6.21) gives
(6.18). Finally, (6.17) reduces to〈

EN1, ξ + E
〉d2 X̂n0+1

dx2 +ω2
0〈ρ〉X̂n0+1 =−αn0+1〈ρ〉X̂0. (6.22)

Here, we must take αn0+1 = 0 to obtain bounded solutions for the unknown X̂n0+1 in (6.22), consistent with (6.3),
which is the goal of this proof. This leaves, for X̂n0+1, the equation given in (6.6) for n = n0+ 1. This can be used
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to restate (6.15):

(E Xn0+3,ξ ),ξ

+

n0+2∑
m=0

[
(ENn0−m+2),ξ +ENn0−m+2,ξ +ENn0−m+1+

[ n0−m+1
2

]∑
k=0

α2kρNn0−m−2k+1

]dn0−m+3 X̂m

dxn0−m+3 = 0. (6.23)

Then, the general solution, Xn0+3, to this equation is given by (6.1), for n = n0+ 3, and by substitution it can be
seen that the local function Nn0+3 must satisfy (6.4)–(6.5) for n = n0+ 1 which is the goal of the proof.

Finally, the expressions for X0 and X1 become

X0(x, ξ)= X̂0(x), X1(x, ξ)= N1(ξ)
d X̂0

dx
(x)+ X̂1(x),

from Section 4. Combining this with the first local problem, (4.10)–(4.11), and the relation α0 = ω
2
0 we conclude

the proof for the lemma. �

The equality (6.1) gives the following asymptotic expansion for the function X (x, ξ),

X (x, ξ)=
∑
n≥0

εn
n∑

m=0

Nn−m(ξ)
dn−m X̂m

dxn−m (x). (6.24)

As a consequence, if we take
X̂(x)=

∑
n≥0

εn X̂n(x), (6.25)

then (6.24) and the normalization condition 〈Nn〉 = 0 yield

X (x, ξ)=
∑
n≥0

εn Nn(ξ)
dn X̂
dxn , 〈X〉 = X̂ , Ê X̂xx +ω

2
0ρ̂ X̂ = 0. (6.26)

Because we now have an explicit expression for X̂ and have solved the local problems, X can be suc-
cessfully approximated. The condition that αn = 0 if n is odd implies that ωn = 0 if n is odd, and

ωε =
∑
n≥0

ε2nω2n. (6.27)

Note that all ω2n satisfy the recurrence condition in (6.3) and can therefore be found for arbitrary n once
ω0 is obtained. Then, for the function T (t),

Tt t + (ω0+ ε
2ω2+ ε

4ω4+ · · · )
2T = 0. (6.28)

This allows us to define û. The boundary conditions allow calculation of the eigenfunctions X̂ (n) and the
eigenfrequencies ω(n)0 from (6.26). The formula (6.2) for αn tell us that all quantities αn and ωn depend
recurrently on ω0. Once ω0 and the local functions Nn are determined up to a certain order, ωn can be
obtained which define a suitable approximation for ωε. Substituting ωε into the equation for T (t) in (3.2)2

and defining initial conditions, the functions T (n)(t) can be calculated to give û =
∑
∞

n X̂ (n)T (n). This
result will be described in the next section, in which an analytic solution for û is obtained for select cases.
It should be emphasized that the procedure followed so far is equivalent to the one introduce in the original
problem, (2.1)–(2.2). This procedure depends on a rescaled temporal variable τ = (1+εr1+ε

2r2+· · · )t ,
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following the method of strained coordinates or the method of Linsted-Poincaré [Sánchez-Huber and
Sánchez-Palencia 1992].

Note that rn = ωn/ω0 depend on ω0. From (6.2) and (6.3), we can deduce a general expression for ωε
that depends on ω0. Considering the expressions given in (3.10) and using induction, one obtains

ωε = ω0

(
1− ε2ω2

0
K1

ĉ2 + · · ·+ (−1)nε2nω2n
0

Kn

ĉ2n + · · ·

)
, (6.29)

where Kn depend only on the local functions Ni , for i = 1, 2, . . . , 2n + 1, and the coefficients in the
original equation.

7. Solution for the averaged model

We next consider wave propagation problems under various initial and boundary conditions. We present
analytical solutions to the propagation equations and an explicit expression for the averaged model.

7A. Perturbation from the steady state. First, consider the one-dimensional problem of wave propa-
gation given by (2.1), with boundary conditions given in (2.2)1,2, with µ(t) = 0 and F(t) = 0. The
initial conditions are given by (2.2)3,4 with U (x)= f (x) and V (x)= 0. This corresponds to an initial
disturbance from the equilibrium position.

From (6.26) and the homogeneous boundary conditions introduced, we have the following equation
and boundary conditions for X̂ :

Ê X̂ ,xx +ω
2
0ρ̂ X̂ = 0, X̂(0)= 0, X̂ ,x (L)= 0. (7.1)

This is a second-order linear differential equation with constant coefficients, and the solution can be
explicitly determined as X̂ (n)(x)= sin (ω(n)0 /ĉ)x , where

ω
(n)
0 =

(2n− 1)π ĉ
2L

, (7.2)

for n = 1, 2, 3, . . . , yielding

X̂ (n)(x)= sin
(2n− 1)πx

2L
. (7.3)

Next, the functions T (n)(t), corresponding to each value of ω(n)0 , are solved as follows:

T (n)
t t + (ω

(n)
ε )2T (n)

= 0, T (n)(0)= f (n), T (n)
t (0)= 0. (7.4)

Here the ω(n)ε , with n = 1, 2, 3, . . . , can be found from ω
(n)
0 using (6.29), and the f (n) are the coefficients

of the Fourier expansion of the initial condition f (x), relative to the orthogonal basis X̂ (n):

f (n) =

∫ L
0 f (x)X̂ (n)(x) dx∫ L

0 [X̂
(n)(x)]2 dx

. (7.5)

The approximation for ω(n)ε is easily calculated to second order. Using the expression for ω2 in (5.19)
and the expansion for ωε in (6.29), we derive

ω
(n)
(2) = ω

(n)
0

(
1−

(εω
(n)
0 )2

ĉ2

K
2

)
, (7.6)
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where K = κ/Ê is a material constant based on the parameter κ of (5.29). The f (n) are then given by

f (n) =
2
L

∫ L

0
f (x) sin

(2n− 1)πx
2L

dx, (7.7)

for n = 1, 2, 3, . . . . The solution to (7.4) is given by T (n)
(2) (t)= f (n) cosω(n)(2) t , where

T (n)
(2) (t)= f (n) cos

(2n− 1)π ĉ
2L

(
1−

[ε(2n− 1)π
2L

]2 K
2

)
t . (7.8)

Having found the expressions for X̂ (n) and T (n), with n = 1, 2, 3, . . . , û is given analytically as

û(x, t)=
∞∑

n=1

f (n) sin
(2n− 1)πx

2L
cos

(2n− 1)π ĉ
2L

(
1−

[ε(2n− 1)π
2L

]2 K
2

)
t . (7.9)

Note that the same analytical solution is obtained using the classical asymptotic homogenization
method, setting ε = 0 in (7.9). The qualitative differences between our approach and the classical
asymptotic homogenization approach become evident upon inspection of (7.9). The difference between
these two approaches arises when

(
ε(2n− 1)π/(2L)

)2
(K/2)t is comparable to unity, that is, when t is

of the order ( 2L
ε(2n− 1)π

)2 2
K
.

7B. One moving boundary. Next, we evaluate the problem of wave propagation in (2.1) setting F(t)=
U (x) = V (x) = 0 in (2.2). These conditions correspond to a regime of movement on one boundary
with a free load on the other border, starting from the equilibrium position. For homogeneous boundary
conditions, we consider the auxiliary function v(x, t)= u(x, t)−µ(t), which satisfies

(Evx)x − ρvt t = ρµ
′′(t), v(0, t)= 0, vx(L , t)= 0, v(x, 0)=−µ(0), vt(x, 0)=−µ′(0).

The total derivative of µ is denoted by a prime. Following the procedure in the previous section, we find
that ω(n)0 and X̂ (n) are as in (7.2) and (7.3). Then,

T (n)
t t + (ω

(n)
ε )2T (n)

=−k̂(n)µ′′(t), T (n)(0)=−k̂(n)µ(0), T (n)
t (0)=−k̂(n)µ′(0), (7.10)

where

k̂(n) =

∫ L
0 X̂ (n)(x) dx∫ L

0 [X̂
(n)(x)]2 dx

=
4

(2n− 1)π
. (7.11)

This nonhomogeneous second-order equation with constant coefficients can be solved the theory of dis-
tributions; see [Schwartz 1966] for details. We obtain

T (n)(t)=−k̂(n)µ(t)+ω(n)ε k̂(n)
∫ t

0
µ(s) sinω(n)ε (t − s)ds. (7.12)

This gives an analytic expression for v̂(x, t)= 〈v〉,

v̂(x, t)=−µ(t)+
∞∑

n=1

ω(n)ε k̂(n) X̂ (n)(x)
∫ t

0
µ(s) sinω(n)ε (t − s)ds. (7.13)
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Considering approximations only up to the second power of ε, that is, ω(n)ε ≈ ω
(n)
(2) , we get

û(x, t)=
2ĉ
L

∞∑
n=1

[
1−

(ε(2n− 1)π
2L

)2 K
2

]
sin

(2n− 1)πx
2L

×

∫ t

0
µ(s) sin

(2n− 1)π ĉ
2L

[
1−

(ε(2n− 1)π
2L

)2 K
2

]
(t − s)ds. (7.14)

7C. Modeling failures. Next we consider the problem described in Section 7B with the added presence
of a failure in the composite at x = θL , where 0< θ < 1. The failure will be described mathematically as
a dimensionless spring at x = θL in the domain [0, L]. In addition to satisfying (2.1) and the boundary
and initial conditions given in Section 7B, F(t)=U (x)= V (x)= 0 in (2.2), the displacement functions
must satisfy

q‖u‖x=θL = E
du
dx

∣∣∣∣
x=θL

,

∥∥∥∥E
du
dx

∥∥∥∥
x=θL
= 0, (7.15)

where q is the elastic coefficient for the dimensionless spring. In the limit as q approaches infinity,
the right-hand side of (7.15) approaches zero (division by q), which corresponds to the case when no
failure is present. When q approaches zero, the left-hand side of the equality approaches zero, which
corresponds to the case when two faces at x = θL are under free stress conditions, that is, the material
consists of two separate pieces. The methodology used for the standard case is applied again, with the
same auxiliary function v(x, t)= u(x, t)−µ(t). Thus, we are looking for an expression for X̂ , satisfying
(7.1) and the conditions

‖X̂‖x=θL =
Ê
q

d X̂
dx

∣∣∣∣
x=θL

,
∥∥∥d X̂

dx

∥∥∥
x=θL
= 0. (7.16)

In this case, the function X̂ defined by

X̂(x)=
{

A sin (ω0x/ĉ) for 0< x < θL ,
B cos (ω0(L − x)/ĉ) for θL < x < L ,

(7.17)

automatically satisfies the conditions (7.1). Substituting (7.17) into (7.16) and introducing the quantity
φ = ω0L/ĉ for convenience, we obtain a system of linear equations in A and B:{

B cos
(
(1− θ)ϕ

)
− A

(
sin(θϕ)+ ϕ Ê

q L
cos(θϕ)

)
= 0,

B sin
(
(1− θ)ϕ

)
− A cos (θϕ) = 0.

(7.18)

The only solution is A = 0 and B = 0 unless the determinant vanishes, leading after simplification to the
condition

cosϕ−
Ê

q L
ϕ cosϕθ sinϕ(1− θ)= 0. (7.19)
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Once the solutions ϕ(n) to this equation are found, we can take

A = sinϕ(n)(1− θ), B = cosϕ(n)θ if ϕ(n) 6=
2n− 1

2
π,

A = 1, B = 1 if ϕ(n) =
2n− 1

2
π,

from which we finally determine the functions X̂ (n):

X̂ (n)(x)=
{

sinϕ(n)(1− θ) sinϕ(n)x/L if 0< x/L < θ,
cosϕ(n)θ cosϕ(n)(1− x/L) if θ < x/L < 1.

(7.20)

This expression holds if ϕ(n) is not a half-integer multiple of π ; otherwise X̂ (n) takes the form given in
equation (7.3). The steps for finding T (n) are analogous to those in Section 7B. Since T (n) satisfies (7.10)
we write it in the for (7.12). Again, for k̂(n) we have

k̂(n) =

∫ L
0 X̂ (n)(x) dx∫ L

0 [X̂
(n)(x)]2 dx

. (7.21)

This finally gives

k̂(n) =
2
ϕ(n)

sinϕ(n)(1− θ)

θ sin2 ϕ(n)(1− θ)+ (1− θ) cos2 ϕ(n)θ + (Ê/q L) sin2 ϕ(n)(1− θ) cos2 ϕ(n)θ
, (7.22)

except when ϕ(n) is a half-integer multiple of π , in which case k̂(n) is as in (7.11). The expression for
v̂ is exactly the same we found in (7.13), except that X̂ (n) and k̂(n) have the values in (7.20) and (7.22).
For ωε we have

ω(n)ε ≈ ω
(n)
(2) =

ĉϕ(n)

L

[
1−

(εϕ(n)
L

)2 K
2

]
. (7.23)

We have now arrived at the final analytic expression for û(x, t),

û(x, t)= 2
ĉ
L

∞∑
n=1

rn

[
1−

(εϕ(n)
L

)2 K
2

]
X̂n(x)

∫ t

0
µ(s) sin

ĉϕ(n)

L

[
1−

(εϕ(n)
L

)2 K
2

]
(t − s)ds, (7.24)

where the rn , for n = 1, 2, . . . , are given by

rn =


sinϕ(n)(1−θ)

θ sin2 ϕ(n)(1−θ)+(1−θ) cos2 ϕ(n)θ+ Ê
q L sin2 ϕ(n)(1−θ) cos2 ϕ(n)θ

if ϕ(n) 6= 2n−1
2

π,

1, if ϕ(n) = 2n−1
2

π.

(7.25)

8. Numerical results

We performed several numerical computations in order to illustrate these results. For this purpose, we
used the example of the composite described in [Chen and Fish 2001]. For all calculations, L = 40 m and
ε = 0.2 m. The periodic cell is composed of two homogeneous materials with properties E1 = 120 GPa,
E2 = 6 GPa, ρ1 = 8000 kg/m3, and ρ2 = 3000 kg/m3, distributed on the periodic cell with a volume ratio
of ν = 0.5. This gives ĉ = (Ê/ρ̂)1/2 = 1441.5 m/s and K = 0.03849 m2.
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8A. Propagation of an initial disturbance. To verify the efficacy of the results obtained, we compared
our formulation to the method proposed in [Chen and Fish 2001]. Consider the problem of an initial
disturbance from the steady state with homogeneous boundary conditions at points x = 0 and x = L ,

(Eεux)x − ρεut t = 0, u(0, t)= 0, Eε(L)ux(L , t)= 0, u(x, 0)= f (x), ut(x, 0)= 0.

The method proposed here yields an analytic solution for û = 〈u〉 (to a second-order approximation), as
described in Section 7A,

û(x, t)=
∞∑

n=0

f (n) sin (2n−1)πx
2L

cos
[
(2n− 1)π ĉ

2L

(
1−

[
(2n−1)πε

2L

]2 K
2

)
t
]
, (8.1)

where

f (n) =
2
L

∫ L

0
f (x) sin

2n− 1
2

πx
L

dx, K =
κ

Ê
=

1

Ê
〈EN3,ξ +EN2− ĉ2ρN2〉.

To reproduce the conditions given in [Chen and Fish 2001], we worked with following class of initial
disturbances:

f (x)=
f0

δ8

(
x − (x0− δ)

)4(x − (x0+ δ)
)4(1− H(x − x0− δ)

)(
1− H(x0− δ− x)

)
, (8.2)

where H(x) is the Heaviside step function, and f0, δ, and x0 are the magnitude, half-width, and center
coordinate of the pulse. For calculations, we only considered pulses of magnitude f0 = 1 centered at
x0 = 20 m with different values for the half-width δ = 1.4 m, δ = 0.8 m, and δ = 0.6 m, illustrated in
Figure 2. These values were selected to evaluate the effect of the typical width of the disturbance and
the size of the RVE.

The results of the comparison are shown in Figure 3. They agree well with those given in [Chen and
Fish 2001] and corroborate the conclusion that asymptotic homogenization does not give good results if
the characteristic size of the initial perturbation is comparable to the size of the periodic cell. According
to the method of Chen and Fish, this discrepancy can be seen for long observation times. Our model
demonstrates that this discrepancy should appear if the length traveled by the initial perturbation is

1

0.8

0.6

0.4

0.2

0

18 19 20 21 22

u(x, 0)/m

x /m

Figure 2. Shape and position of the initial pulses used for numerical illustration.
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Figure 3. Value of the solution at x = 30 m for δ= 1.4 m (left column) and for δ= 0.6 m
(right column) as a function of time.

relatively large (of order O(1/ε)). In the left column of the figure, it is apparent that classical asymptotic
homogenization can be applied provided that the distance traveled by the wave front is not too large.
The same is not true when the width of the perturbation is 4 times the size of the periodic cell and the
distance traveled is larger than 20 m, as shown in the right column.

8B. Traveling pulse. We next illustrate the results of the proposed method by describing the behavior
of a traveling pulse under the dispersion effect induced by the heterogeneous periodic structure of the
composite material. We consider the case of a pulse applied to one end, x = 0, with free load conditions
on the other end, x = L . If the process starts from static equilibrium, the problem is described by

(Eεux)x−ρεut t =0, u(0, t)=µ(t), Eε(L)ux(L , t)=0, u(x, 0)=0, ut(x, 0)=0. (8.3)

The proposed method gives the following analytic solution (up to second order) for û = 〈u〉, as seen in
Section 7B:
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Figure 4. Different pulses used for numerical illustration.

û(x, t)=
2ĉ
L

∞∑
n=1

[
1−

(ε(2n− 1)π
2L

)2 K
2

]
sin

(2n− 1)πx
2L

×

∫ t

0
µ(s) sin

(2n− 1)π ĉ
2L

[
1−

(ε(2n− 1)π
2L

)2 K
2

]
(t − s)ds. (8.4)

The following type of pulses will be considered:

µ(t)=
A
2

(
1− cos

2π t
d

)
sin

2πωt
d

H
(

1−
t2

d2

)
, (8.5)

where H(x) is the Heaviside step function, and A, d, and ω are the magnitude, duration, and number
of oscillations. The shapes of these pulses for A = 1 m, d = 0.001 s, and ω = 1

2 , 1, 2 are illustrated in
Figure 4. For numerical experimentation we considered only these values of A, d and ω.

The results for ω = 1
2 are shown in Figure 5, left. The pulse shapes as a function of t are indicated by

a dashed line for the classical asymptotic homogenization and by a solid line for the dispersive model. A
decrease of the pulse amplitude due to the dispersion effect and wiggles behind the wave front predicted
by the dispersive model are apparent. For greater distances traveled by the pulse, the dispersive effect
becomes more pronounced. At larger values of ω, the effect appears earlier, at smaller distances. The
explanation for this is that for larger values of ω the characteristic size of pulse shape variation becomes

Figure 5. Prediction of the evolution of the pulse shape for ω= 1
2 (left) and ω= 1 (right),

and for times t = 0.004 s and t = 0.012 s, using standard asymptotic homogenization
(dashed line) and the proposed dispersive model (solid line).
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smaller and approaches the size of the periodic cell, producing more reflections and refractions at the
interfaces separating component materials. This effect is also observed in Figure 5, right, for the evolution
of the pulse shape when ω = 1.

8C. Interaction with failures. Next we consider numerical descriptions of the behavior of a traveling
pulse when a failure in the periodic structure composite is present. A failure in the material is modeled
by a dimensionless spring with elasticity constant q. The boundary conditions and equation of motion
describing wave propagation under these assumptions are given in (8.3). The failure is accounted for
mathematically by including conditions (7.15) on the displacements functions u(x, t) at a point θL ,
0< θ < 1, belonging to the interval [0, L].

Using the proposed method as in Section 7C, the expression for û = 〈u〉 becomes

û(x, t)= 2
ĉ
L

∞∑
n=1

rn

[
1−

(εϕ(n)
L

)2 K
2

]
X̂n(x)

∫ t

0
µ(s) sin

ĉϕ(n)

L

[
1−

(εϕ(n)
L

)2 K
2

]
(t − s) ds, (8.6)

where K and ĉ = (Ê/ρ̂)1/2 are material constants, the ϕ(n), for n = 1, 2, . . . , are the roots of

cosϕ−
Ê

q L
ϕ cosϕθ sinϕ(1− θ)= 0, (8.7)

the values of rn are given in (7.25), and the functions X̂n , in this case, are piecewise defined as in (7.20)
for ϕ(n) 6= (n− 1

2)π , and

X̂n(x)= sin
(2n− 1)πx

2L
for ϕ(n) = (n− 1

2)π .

We will work with the same type of pulses as in (8.5), again with A = 1 m, d = 0.001 s and ω = 1
2 , 1.

The n-th root ϕ(n) of (8.7) lies in the interval (0, π/2] for n = 1 and in
(
(2n− 3)π/2, (2n− 1)π/2

]
for n > 1. A variant of Newton’s method was used to find the roots numerically. Figure 6 shows the

0 5 10 15 20 25 30
−10

−5

0

5

10

φ (radians)

f (φ)

Figure 6. Plots of the function f (ϕ) = cosϕ − (Ê/q L)ϕ cosϕθ sinϕ(1− θ) against
ϕ over the interval [0, 9π ] for θ = 1/4 and different choices of q. Thicker lines and
wider variations correspond to low q; in order, q = 2× 108 N/m2 (Ê/q L = 1.429),
2× 109 N/m2 (0.143), 2× 1010 N/m2 (0.014), and∞ (0).
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distribution of roots on the real axis for f (ϕ)= cosϕ− (Ê/q L)ϕ cosϕθ sinϕ(1− θ), θ = 1
4 , and several

values of q . Solutions to (8.7) are given by the intersections of f (ϕ) with the ϕ-axis.
Once the quantities ϕ(n) and the roots of (8.7) are found, (8.6) can be evaluated. presented in the

following examples. The results are illustrated in Figures 7 and 8 for ω= 1
2 and ω=1, and q=2·108 N/m3,

q = 2 · 109 N/m3, and q = 2 · 1010 N/m3. We also set θ = 1
4 ; that is, the failure occurs at x = 10 m.

The pulse shapes for different values of t are shown for the classical asymptotic homogenization
(dashed line) and for the dispersive model (solid line). In these figures, the evolution of the pulse shape
after reaching the point of failure x = 10 m is illustrated for two values of the constant q (recall that low
q means severe debonding). For q = 2 · 108 N/m3, the reflection of the pulse at the point of failure is
almost complete for both cases. In contrast, for the larger value q = 2 ·1010 N/m3, the pulse splits and two
traveling perturbations emanate from the point of failure, instead of one. Also, in contrast to the classical

Figure 7. Prediction of the evolution of the pulse shape for ω = 1
2 and q = 2 · 108 N/m3

(left) or q = 2 ·1010 N/m3 (right), at times t = 0.008 s, t = 0.010 s and t = 0.012 s after the
pulse reaches the point of failure, x = 10 m, using standard asymptotic homogenization
(dashed line) and the proposed dispersive model (solid line).
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Figure 8. Prediction of the evolution of the pulse shape for ω = 1 and q = 2 · 108 N/m3

(left) or q = 2 ·1010 N/m3 (right), at times t = 0.008 s, t = 0.010 s and t = 0.012 s after the
pulse reaches the point of failure, x = 10 m, using standard asymptotic homogenization
(dashed line) and the proposed dispersive model (solid line).

asymptotic homogenization, the pulse shape described by the dispersive model becomes distorted. Thus
the dynamical responses, translated by the reflected and transmitted perturbations after interaction with
the failure, are different for each approach, and more noticeably so for larger ω.

Conclusions

In this work, an asymptotic model for describing wave propagation in periodic composites was proposed.
In this approach, the heterogeneous nature of the composite introduces a perturbation in the principal
frequencies relative to the homogenized problem. As a result, no new temporal scales need be consid-
ered. Instead, a regular aymptotic expansion for the eigenfrequencies is obtained from the condition
of boundedness for the solution. The results are graphically illustrated for different types of boundary
problems. The model is asymptotically valid for low frequency wave propagation.
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This approach describes the dispersion effects in periodic composites, and we have discussed the dif-
ferences between this model and the classical asymptotic homogenization. This model provides a starting
point for the study of frequency perturbations in laminated composites when the angle of incidence is
not perpendicular to the laminates, and the periodicity take place at small scales.

Appendix: Closed form expression of κ

We present the calculation of the constant κ = 〈EN3,ξ +EN2− ĉ2ρN2〉. First, (4.12) is solved to find

d N1

dξ
=

Ê
E
− 1, (A.1)

and consequently,
N1 = B−〈B〉, (A.2)

where B is given in (5.28). Considering the second local problem described in (4.21) and (4.12), we
have (EN2,ξ +EN1),ξ = Ê(ρ/ρ̂− 1). Because N1 has a null average, it can be deduced that

EN2,ξ +EN1 = Ê
(

R−
〈 Ê

E
R
〉)
, (A.3)

and R is given in (5.28). Substituting the formula for N1 gives

N2,ξ =
Ê
E

(
R−

〈 Ê
E

R
〉)
− B+〈B〉. (A.4)

Now, the equation (5.12) of the third local problem is multiplied by N1 and averaged over the period to
obtain 〈

N1(EN3,ξ +EN2),ξ
〉
=−

〈
N1(EN2,ξ +EN1− ĉ2ρN1)

〉
. (A.5)

Integrating the left-hand side by parts and using (A.1) and the equality 〈N2〉 = 0, we find that

〈N1(EN3,ξ +EN2),ξ 〉 = −〈N1,ξ (EN3,ξ +EN2)〉 = −
〈( Ê

E
− 1

)
(EN3,ξ +EN2)

〉
= 〈EN3,ξ +EN2〉.

On the other hand, −〈ρĉ2 N2〉 = −Ê
〈ρ
ρ̂

N2

〉
= Ê

〈
R

d N2

dξ

〉
. Together with (A.5), this leads to

〈EN3,ξ +EN2− ĉ2ρN2〉 =

〈
Ê R

d N2

dξ
− N1(EN2,ξ +EN1− ĉ2ρN1)

〉
. (A.6)

Substituting equations (A.2) and (A.3), we obtain (5.29).

References

[Bakhvalov and Panasenko 1989] N. Bakhvalov and G. Panasenko, Homogenisation: averaging processes in periodic media,
Kluwer, Dordrecht, 1989.

[Bensoussan et al. 1978] A. Bensoussan, G. C. Papanicolaou, and J. L. Lions, Asymptotic analysis for periodic structures,
North Holland, Amsterdam, 1978.

[Castillero et al. 1998] J. B. Castillero, J. A. Otero, R. R. Ramos, and A. Bourgeat, “Asymptotic homogenization of laminated
piezocomposite materials”, Int. J. Solids Struct. 35:5–6 (1998), 527–541.



976 VIVAR, GABBERT, BERGER, RODRÍGUEZ, BRAVO, GUINOVART AND SABINA

[Chen and Fish 2001] W. Chen and J. Fish, “A dispersive model for wave propagation in periodic heterogeneous media based
on homogenization with multiple spatial and temporal scales”, J. Appl. Mech. (ASME) 68:2 (2001), 153–161.

[Fish and Chen 2001] J. Fish and W. Chen, “Higher-order homogenization of initial/boundary-value problem”, J. Eng. Mech.
(ASCE) 127:12 (2001), 1223–1230.

[Guinovart-Díaz et al. 2005] R. Guinovart-Díaz, R. Rodríguez-Ramos, J. Bravo-Castillero, F. J. Sabina, and G. A. Maugin,
“Closed-form thermoelastic moduli of a periodic three-phase fiber-reinforced composite”, J. Therm. Stresses 28:10 (2005),
1067–1093.

[Parnell and Abrahams 2006] W. J. Parnell and I. D. Abrahams, “Dynamic homogenization in periodic fibre reinforced media:
quasi-static limit for SH waves”, Wave Motion 43:6 (2006), 474–498.

[Pobedria 1984] B. E. Pobedria, Mechanics of composite materials, Moscow State University Press, Moscow, 1984.

[Sánchez-Huber and Sánchez-Palencia 1992] J. Sánchez-Huber and E. Sánchez-Palencia, Introduction aux méthodes asympto-
tiques et à l’homogénéisation, Masson, Paris, 1992.

[Santosa and Symes 1991] F. Santosa and W. W. Symes, “A dispersive effective medium for wave propagation in periodic
composites”, SIAM J. Appl. Math. 51:4 (1991), 984–1005.

[Schwartz 1966] L. Schwartz, Mathematics for the physical sciences, Hermann, Paris, 1966.

[Sjöberg et al. 2005] D. Sjöberg, C. Engrström, G. Kristensson, D. J. N. Wall, and N. Wellander, “A Floquet–Bloch decompo-
sition of Maxwell’s equations applied to homogenization”, Multiscale Model. Simul. 4:1 (2005), 149–171.

[Vivar-Pérez et al. 2005] J. Vivar-Pérez, J. Bravo-Castillero, R. Rodríguez-Ramos, and M. Ostoja-Starzewski, “Homogeniza-
tion of a micro-periodic helix”, Philos. Mag. 85:33-35 (2005), 4201–4212.

[Vivar-Pérez et al. 2006] J. Vivar-Pérez, J. Bravo-Castillero, R. Rodríguez-Ramos, and M. Ostoja-Starzewski, “Homogeniza-
tion of a micro-periodic helix with parabolic or hyperbolic heat conduction”, J. Therm. Stresses 29:5 (2006), 467–483.

[Wang and Rokhlin 2002a] L. Wang and S. I. Rokhlin, “Floquet wave homogenization of periodic anisotropic media”, J. Acoust.
Soc. Am. 112:1 (2002), 38–45.

[Wang and Rokhlin 2002b] L. Wang and S. I. Rokhlin, “Floquet wave ultrasonic method for determination of single ply moduli
in multidirectional composites”, J. Acoust. Soc. Am. 112:3 (2002), 916–924.

Received 8 Mar 2009. Accepted 17 May 2009.

JUAN MIGUEL VIVAR-PÉREZ: jm@matcom.uh.cu
Facultad de Matemática y Computación, Universidad de La Habana, San Lázaro esq. L, Vedado, Habana 4, CP 10400, Cuba

ULRICH GABBERT: ulrich.gabbert@mb.uni-magdeburg.de
Facultät für Maschinembau, Otto-von-Guericke Universität, Universitätsplatz 2, 39106 Magdeburg, Germany

HARALD BERGER: harald.berger@mb.uni-magdeburg.de
Facultät für Maschinembau, Otto-von-Guericke Universität, Universitätsplatz 2, 39106 Magdeburg, Germany

REINALDO RODRÍGUEZ-RAMOS: reinaldo@matcom.uh.cu
Facultad de Matemática y Computación, Universidad de La Habana, San Lázaro esq. L, Vedado, Habana 4, CP 10400, Cuba

JULIÁN BRAVO-CASTILLERO: jbravo@matcom.uh.cu
Facultad de Matemática y Computación, Universidad de La Habana, San Lázaro esq. L, Vedado, Habana 4, CP 10400, Cuba

RAUL GUINOVART-DÍAZ: guino@matcom.uh.cu
Facultad de Matemática y Computación, Universidad de La Habana, San Lázaro esq. L, Vedado, Habana 4, CP 10400, Cuba

FEDERICO J. SABINA: fjs@mym.iimas.unam.mx
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México,
Apartado Postal 20-726, Delegación de Álvaro Obregón, 01000 México, DF, Mexico


