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A REFINED SINE-BASED FINITE ELEMENT WITH TRANSVERSE NORMAL
DEFORMATION FOR THE ANALYSIS OF LAMINATED BEAMS UNDER

THERMOMECHANICAL LOADS

PHILIPPE VIDAL AND OLIVIER POLIT

In the framework of a sine model family, two new three-node beam finite elements including the trans-
verse normal effect are designed for the analysis of laminated beams. They are based on a sine distribu-
tion with layer refinement and a second-order expansion for the deflection. The transverse shear strain is
obtained using a cosine function, avoiding the use of shear correction factors. This kinematics accounts
for the interlaminar continuity conditions on the interfaces between layers, and the boundary conditions
on the upper and lower surfaces of the beam. A conforming FE approach is carried out using Lagrange
and Hermite interpolations. It is important to notice that the number of unknowns is independent of the
number of layers.

Both mechanical and thermomechanical tests for thin and thick beams are presented in order to eval-
uate the capability of these new finite elements to give accurate results with respect to elasticity or finite
element reference solutions. Both convergence velocity and accuracy are discussed and this new finite
element yields very satisfactory results at a low computational cost. In particular, the transverse stress
computed from the constitutive relation is well estimated with regards to classical equivalent single layer
models. This work focuses on the necessity to take into account the transverse normal stress, especially
for thick beam and coupled analysis.

1. Introduction

Composite and sandwich structures are widely used in industry due to their excellent mechanical proper-
ties, especially their high specific stiffness and strength. In this context, they can be subjected to severe
mechanical and thermal conditions (through heating or cooling). For composite design, an accurate
knowledge of displacements and stresses is required. Hence it is important to take into account the
effects of transverse shear deformation due to a low ratio of transverse shear modulus to axial modulus,
or failure due to delamination. In fact, such effects can play an important role in the behavior of structures,
and it is desirable to evaluate precisely their influence on local stress fields in each layer, particularly on
the interface between layers.

The aim of this paper is to develop two finite elements including the transverse normal deformation, so
as to obtain accurate predictions for the behavior of laminated composite beams subjected to mechanical
and thermal loading. This analysis is limited to the elasticity area in relation to small displacements.
In this context, we put the emphasis on the need to take into account the transverse normal effect, in
particular for thermal conditions and for thick structures.

Several theories exist in the mechanics literature for composite or sandwich structures (beams and
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plates for the present scope). They have been extended to thermomechanical problems as well. The
following classification is associated with the dependence on the number of degrees of freedom (DOFs)
with respect to the number of layers:

• The equivalent single layer approach (ESL): the number of unknowns is independent of the number
of layers, but continuity of transverse shear and normal stresses is often violated at layer interfaces.
The first work for one-layer isotropic plates was proposed in [Basset 1890]. Then, we can distinguish
classical laminate theory [Tanigawa et al. 1989] (based on the Euler–Bernoulli hypothesis and leading
to inaccurate results for composites and moderately thick beams, because both transverse shear and
normal strains are neglected), first-order shear deformation theory [Mindlin 1951] (for composite
laminates see [Yang et al. 1966]), and higher-order theories [Librescu 1967; Whitney and Sun 1973;
Lo et al. 1977; Reddy 1984].

In this family, some studies take into account transverse normal deformation. A nonconstant poly-
nomial expression for the out-of-plane displacement is considered in [Kant et al. 1997; Cook and
Tessler 1998; Barut et al. 2001; Kant and Swaminathan 2002; Matsunaga 2002; Rao and Desai 2004;
Subramanian 2006; Swaminathan and Patil 2007] with a higher-order theory. Specific functions such
as the exponential are also used [Soldatos and Watson 1997; Liu and Soldatos 2002]. All these studies
are based on a displacement approach, although other approaches are formulated on the basis of mixed
formulations [Carrera 2000b; Kim and Cho 2007]. The finite element method is also applied [Kant
and Gupta 1988; Vinayak et al. 1996; Subramanian 2001; Zhang and Kim 2005]. In the framework of
thermomechanical problems, different approaches have been developed, including mixed formulations
[Tessler et al. 2001] and displacement-based ones [Rolfes et al. 1998; Ali et al. 1999; Rohwer et al.
2001; Robaldo 2006].

• The layerwise approach (LW): the number of DOFs depends on the number of layers. This theory
aims at overcoming the ESL shortcoming of allowing discontinuity of out-of-plane stresses on the
interface layers. It was introduced in [Heller and Swift 1971; Swift and Heller 1974], and also used in
[Pagano 1969; Whitney 1969; Srinivas 1973]. For recent contributions, see [Reddy 1989; Shimpi and
Ainapure 2001; Kärger et al. 2006]. A mixed formulation also exists [Mau 1973; Murakami 1986].

Again, some models taking into account the transverse normal effect have been developed: [Icardi
2001; Pai and Palazotto 2001] within a displacement based approach and [Carrera 1999; 2000b; 2004;
Rao and Desai 2004] within a mixed formulation. For the thermomechanical analysis, readers can
refer to [Robaldo 2006] (displacement) and [Carrera 2000a; Gherlone and di Sciuva 2007] (mixed).

In this framework, refined models have been developed in order to improve the accuracy of ESL
models while avoiding the computational burden of the LW approach. Based on physical considerations
and after some algebraic transformations, the number of unknowns becomes independent of the number
of layers. Whitney [1969] has extended the work of Ambartsumyan [1969] for symmetric laminated
composites with arbitrary orientation and a quadratic variation of the transverse stresses in each layer. A
family of models, called zig-zag models, was first employed in [di Sciuva 1986], then in [Bhaskar and
Varadan 1989; Lee et al. 1992; Cho and Parmerter 1993]. More recently, it was modified and improved
in [Gaudenzi et al. 1995; Averill and Yip 1996; Aitharaju and Averill 1999; di Sciuva and Icardi 2001;
Kapuria et al. 2003; Gherlone and di Sciuva 2007] with different-order kinematics assumptions, taking
into account transverse normal strain.
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Another way to improve the accuracy of results consists in the sublaminates strategy, which is pro-
posed in [Flanagan 1994; Averill and Yip 1996]. The number of subdivisions of the laminate thickness
determines the accuracy of the approach. It allows localization of the layer refinement without increasing
the order of approximation. Nevertheless, the computational cost increases with the number of numerical
layers. For recent studies, the reader can also refer to [Icardi 2001; Rao and Desai 2004; Gherlone and
di Sciuva 2007].

The literature just cited deals with only some aspects of the broad research activity about models for
layered structures and corresponding finite element formulations. An extensive assessment of different
approaches has been made in [Noor and Burton 1990; Reddy 1997; Carrera 2002; 2003; Zhang and
Yang 2009]. About the particular point of the evaluation of transverse normal stresses, see [Kant and
Swaminathan 2000; Mittelstedt and Becker 2007].

In this work, two new finite elements for rectangular laminated beam analysis are built, in order to
have a low cost tool that is efficient and simple to use. Our approach is associated with ESL theory. The
elements are totally free of shear locking and are based on a refined shear deformation theory [Touratier
1992a] avoiding the use of shear correction factors for laminates. They are based on the sine model of
[Ganapathi et al. 1999]. The important new feature is the capability of the model to include the transverse
normal effect. So, the transverse displacement is written under a second-order expansion which avoids
the Poisson locking mechanism [Carrera and Brischetto 2008]. For the in-plane displacement, the double
superposition hypothesis from [Li and Liu 1997] is used: three local functions are added to the sine model.
Finally, this process yields to only six or seven independent generalized displacements. All interface and
boundary conditions are exactly satisfied for displacements and transverse shear stress. Therefore, this
approach takes into account physical meaning.

As far as the interpolation of these finite elements is concerned, our elements are C0-continuous except
for the transverse displacement associated with bending, which is C1.

We now outline the remainder of this article. First the mechanical formulation for the different models
is described. For each of these approaches, the associated finite element is given. They are illustrated by
numerical tests performed upon various laminated and sandwich beams. A parametric study is given to
show the effects of different parameters such as the length-to-thickness ratio and the number of DOFs.
The accuracy of computations is also evaluated by comparison with an exact 3D theory for laminates
in bending [Pagano 1969; Ali et al. 1999] and also 2D finite element computations using commercial
software. We put the emphasis on the direct calculation of the transverse shear stress from the constitu-
tive relations. The results of our model are then compared with the approach consisting in calculating
transverse shear stresses from the equilibrium equations, as in [Chaudhri 1986; Barbero et al. 1990;
Vinayak et al. 1996; Liu and Soldatos 2002; Kapuria et al. 2004; Tahani 2007]. In this framework, other
approaches are proposed to evaluate transverse shear or normal stresses accurately. Some authors use a
hybrid mixed finite element formulation [Han and Hoa 1993] or an iterative predictor-corrector computa-
tional procedure [Noor and Malik 1999]. The transverse normal stress is calculated from the integration
of the equilibrium equation, avoiding the discontinuity that arises from the use of the constitutive law.

Finally, other numerical examples are presented to demonstrate the effectiveness of the proposed
finite elements in coupled analysis. Computations for thick and thin beams of laminated composites are
compared to exact 2D elasticity solutions under thermomechanical loading.
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Figure 1. The laminated beam and coordinate system.

2. Resolution of the thermomechanical problem

The governing equations for thermomechanics. Let us consider a beam occupying the domain

B= [0, L]×
[
−

h
2
≤ z ≤ h

2

]
×

[
−

b
2
≤ x2 ≤

b
2

]
in a Cartesian coordinate (x1, x2, z). The beam has a rectangular uniform cross section of height h and
width b and is assumed to be straight. The beam is made of NC layers of different linearly elastic
materials. Each layer may be assumed to be orthotropic in the beam axes. The x1 axis is taken along the
central line of the beam whereas x2 and z are the two axes of symmetry of the cross section intersecting
at the centroid, see Figure 1. As shown in this figure, the x2 axis is along the width of the beam. This
work is based upon a displacement approach for geometrically linear elastic beams.

Constitutive relation. Each layer of the laminate is assumed to be orthotropic. Using matrix notation,
the thermoelastic stress-strain law of the k-th layer is given by

σ
(k)
11

σ
(k)
33

σ
(k)
13

=


C (k)
11 C (k)

13 0

C (k)
33 0

symmetric C (k)
55



ε
(k)
11 −α

(k)
11 1T

ε
(k)
33 −α

(k)
33 1T

ε
(k)
13

 , that is, [σ (k)] = [C (k)
][ε(k)], (1)

where 1T is the temperature rise, [σ ] is the stress tensor, [ε] is the strain tensor, the Ci j are the 3D
stiffness coefficients, and αi j are the thermal expansion coefficients obtained after a transformation from
the material axes to the Cartesian coordinate system.

The weak form of the boundary value problem. Using the above matrix notation and for admissible
virtual displacement Eu∗ ∈U∗, the variational principle is this:

Find Eu in the space U of admissible displacements such that

−

∫
B
[ε(Eu∗)]T [σ(Eu)]dB+

∫
B
[u∗]T [ f ]dB+

∫
∂BF

[u∗]T [F]d∂B=

∫
B
ρ[u∗]T [ü]dB, ∀Eu∗ ∈U∗, (2)

where [ f ] and [F] are the prescribed body and surface forces applied on ∂BF , ε(Eu∗) is the virtual strain,
and ρ is the mass density.

Equation (2) is a classical starting point for finite element approximations.
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The displacement field for laminated beams. Based on the sine function [Touratier 1991; Dau et al.
2006], we now present two models that take into account transverse normal deformation:

• SinRef-6p, a refined sine model with second-order expansion for the transverse displacement and
the refinement added in each layer; and

• SinRef-7p, a refined sine model with one more unknown than SinRef-6p for in-plane displacement.

These models are based on

• works on beams, plates and shells such as [Ganapathi et al. 1999; Touratier 1991; 1992a; 1992b;
Polit and Touratier 2002; Vidal and Polit 2006; 2009], covering the refined theory, and

• the so-called 1,2-3 double-superposition theory of [Li and Liu 1997].

It also follows the local-global approach studied in [Sze et al. 1998; Wu et al. 2005; Zhen and Wanji
2007].

These refined models (see [Vidal and Polit 2008]) take into account the continuity conditions between
layers of the laminate for both displacements and transverse shear stress, and the free conditions on the
upper and lower surfaces owing to the Heaviside function.

The kinematics of the two models is assumed to be of the following particular form, where the prime
stands for differentiation with respect to x1 and H is the Heaviside step function (H(z)= 1 if z ≥ 0 and
H(z)= 0 otherwise):

1. The 6-parameter SinRef-6p model:
u1(x1, x2, z)= u(x1)− zw0(x1)

′
+ f (z)(ω3(x1)+w0(x1)

′)

+

NC∑
k=1

(
ū(k)loc(x1, z)+ û(k)loc(x1, z)

)
(H(z− zk)− H(z− zk+1)),

u3(x1, x2, z)= w0(x1)+ zw1(x1)+ z2w2(x1).

(3)

2. The 7-parameter SinRef-7p model:
u1(x1, x2, z)= u(x1)+ zv(x1)+ f (z)(ω3(x1)+w0(x1)

′)

+

NC∑
k=1

(
ū(k)loc(x1, z)+ û(k)loc(x1, z)

)
(H(z− zk)− H(z− zk+1)),

u3(x1, x2, z)= w0(x1)+ zw1(x1)+ z2w2(x1).

(4)

In the classic approach, w0 is the bending deflection following the z direction, while u is associated
with the uniform extension of the cross section of the beam along the central line, and ω3 is the shear
bending rotation around the z axis.

Note that the kinematic constraint concerning the relation with the derivative of the deflection (v(x1)=

−w0(x1),1) is relaxed in the SinRef-7p model.
The local functions ū(k)loc and û(k)loc are based on the first few Legendre polynomials, which are A1(ζ )= ζ ,

A2(ζ )=−
1
2 +

3
2ζ

2, and A3(ζ )=−
3
2ζ +

5
2ζ

3. They can be written as

ū(k)loc(x1, z)= A1(ζk)uk
31(x1)+ A2(ζk)uk

32(x1), û(k)loc(x1, z)= A3(ζ
3
k )u

k
33(x1), (5)
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Figure 2. Transverse coordinate of the laminated beam.

where we have introduced the nondimensional coordinate

ζk = akz− bk, with ak =
2

zk+1− zk
and bk =

zk+1+ zk

zk+1− zk
(6)

(see Figure 2). Legendre polynomials are orthogonal over the interval [−1, 1] to constants and to each
other — that is,

∫ 1
−1 Ai (ζk) dζk = 0 for i = 1, 2, 3 and

∫ 1
−1 Ai (ζk)A j (ζk)dζk = 0 for i 6= j .

From (3), classical beam models can be deduced without the local functions and the two higher-order
terms of the transverse displacement:

- Euler–Bernoulli: f (z)= 0,

- Timoshenko: f (z)= z,

- sine model: f (z)= h
π

sin π z
h
.

The derivative of this last function will represent the transverse shear strain distribution due to bending.
Note that it is not necessary to introduce transverse shear correction factors because the two models in this
work predict the shear energy sufficiently accurately, thanks to the higher-order kinematic assumptions.

At this stage, 3×NC+5 generalized displacements are included in the SinRef-6p model and 3×NC+6
in the SinRef-7p model; see (3)+(5) and (4)+(5), respectively.

We next turn to the task of deriving relations between the kinematic unknowns from

• lateral boundary conditions, and

• interlaminar continuity conditions (displacement, transverse shear stress).

In the following, we only focus on the SinRef-7p model. The same procedure can be carried out for
the SinRef-6p model by setting v(x1)=−w0(x1),1.

Continuity conditions and free conditions. From the displacement field (4), continuity conditions on
displacements and the interlaminar stress must be imposed. For an interface layer k ∈ {2, . . . , NC}, we
have:

• Displacement continuity conditions as in [Sze et al. 1998]:

ū(k)loc(x1, zk)= ū(k−1)
loc (x1, zk), k = 2, . . . , NC,

û(k)loc(x1, zk)= û(k−1)
loc (x1, zk), k = 2, . . . , NC.

(7)
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• Transverse shear stress continuity between two adjacent layers:

σ
(k)
13 (x1, z+k )= σ

(k−1)
13 (x1, z−k ), k = 2, . . . , NC. (8)

So, 3× (NC − 1) conditions are imposed, which allows us to reduce the number of unknowns to 9
generalized displacements.

Free conditions of the transverse shear stress on the upper and lower surfaces must also be verified.
So, we have

σ
(1)
13

(
x1, z =−h

2

)
= 0, σ

(NC)
13

(
x1, z = h

2

)
= 0. (9)

Finally, the number of generalized displacements is reduced to 7, which is independent from the
number of layers.

Relation between the generalized displacements. Using the notations introduced in (5), the conditions
(7)–(9) can be written in the following form:

[A]{v} = {b}u1
31(x1)+{c}(ω3(x1)+w0(x1)

′)+{d}(v(x1)+w0(x1)
′)+{e}w1(x1)

′
+{ f }w2(x1)

′, (10)

where [A] is a (3 NC − 1)× (3 NC − 1) matrix, and {b}, {c}, {d}, {e}, { f }, and

{v}T =
{

u1
32 u1

33
... u j

31 u j
32 u j

33
... uNC

31 uNC
32 uNC

33

}T

are vectors with 3 NC − 1 components.
From the resolution of this linear system, relations between u j

31 ( j 6= 1), u j
32, u j

33, j = 1, . . . , NC , and
u1

31 can be deduced. This relation can be written in the following form:

u j
3i (x1)= β

j
i

(
ω3(x1)+w0(x1)

′
)
+ η

j
i

(
v(x1)+w0(x1)

′
)

+ δ
j
i u1

31(x1)+ λ
j
i w1(x1)

′
+µ

j
i w2(x1)

′, j = 1, . . . , NC, i = 1, 2, 3, (11)

with δ1
1 = 1 and β1

1 = η
1
1 = λ

1
1 =µ

1
1 = 0, and where β j

i , δ j
i , λ j

i , µ j
i , and η j

i (i = 1, 2, 3) are the coefficients
deduced from (10).

Finally, the 7 unknowns become u, w0, ω3, v, w1, w2, and u1
31. It is noted that the SinRef-6p model

involves 6 unknowns (u, w0, ω3, w1, w2, and u1
31).

Expression of strains. Matrix notation can be easily defined using a generalized displacement vector as

[u]T= [Fu(z)][Eu], [Eu]
T
=
[
u · · · w0 w0,1 · · · ω3 · · · u1

31 · · · v · · · w1 w1,1 · · · w2 w2,1
]
, (12)

and [Fu(z)] depends on the normal coordinate z according to

[Fu(z)] =

[
1 0 Fu13(z) Fu14(z) Fu15(z) Fu16(z) 0 Fu18(z) 0 Fu110(z)

0 1 0 0 0 0 z 0 z2 0

]
, (13)

where

Fu13(z)= f (z)+ Sβ(z)+ Sη(z),

Fu14(z)= f (z)+ Sβ(z),

Fu15(z)= Sδ(z),

Fu16(z)= z+ Sη(z),

Fu18(z)= Sλ(z),

Fu110(z)= Sµ(z),

and
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Sβ(z)=
NC∑
k=1

(
ζkβ

k
1 +

(
−

1
2 +

3
2ζ

2
k
)
βk

2 +
(
−

3
2ζk +

5
2ζ

3
k
)
βk

3
)
1H(k, k+ 1),

Sδ(z)=
NC∑
k=1

(
ζkδ

k
1 +

(
−

1
2 +

3
2ζ

2
k
)
δk

2 +
(
−

3
2ζk +

5
2ζ

3
k
)
δk

3
)
1H(k, k+ 1),

Sη(z)=
NC∑
k=1

(
ζkη

k
1 +

(
−

1
2 +

3
2ζ

2
k
)
ηk

2 +
(
−

3
2ζk +

5
2ζ

3
k
)
ηk

3
)
1H(k, k+ 1),

Sλ(z)=
NC∑
k=1

(
ζkλ

k
1+

(
−

1
2 +

3
2ζ

2
k
)
λk

2+
(
−

3
2ζk +

5
2ζ

3
k
)
λk

3
)
1H(k, k+ 1),

Sµ(z)=
NC∑
k=1

(
ζkµ

k
1+

(
−

1
2 +

3
2ζ

2
k
)
µk

2+
(
−

3
2ζk +

5
2ζ

3
k
)
µk

3
)
1H(k, k+ 1),

with 1H(k, k+ 1)= H(z− zk)− H(z− zk+1).
The strains for the laminated beam are

ε11 = u,1+ zv,1+ ( f (z)+ Sβ(z))(w0,11+ω3,1)+ Sδ(z)u1
31,1

+ Sλ(z)w1,11+ Sµ(z)w2,11+ Sη(z)(w0,11+ v,1),

ε33 = w1+ 2zw2,

γ13 = ( f (z),3+ Sβ(z),3)(w0,1+ω3)+ Sδ(z),3u1
31

+ (0+ Sη(z),3)(w0,1+ v)+ (z+ Sλ(z),3)w1,1+ (z2
+ Sµ(z),3)w2,1.

(14)

These expressions can be described in matrix notation by

[ε] = [Fs(z)][Es],

[Es]
T
=
[
u,1

... w0,1 w0,11
... ω3 ω3,1

... u1
31 u1

31,1
... v v,1

... w1 w1,1 w1,11
... w2 w2,1 w2,11

]
, (15)

and [Fs(z)] depends on the normal coordinate z as

[Fs(z)] =

1 0 f (z)+ Sβ(z)+ Sη(z) 0 . . .

0 0 0 0 . . .

0 1+
(

f (z),3+ Sβ(z),3+ Sη(z),3
)

0
(

f (z),3+ Sβ(z),3
)
. . .(

f (z)+ Sβ(z)
)

0 Sδ(z) 0 z+ Sη(z) 0 0 Sλ(z) 0 0 Sµ(z)

0 0 0 0 0 1 0 0 2z 0 0
0 Sδ(z),3 0 1+ Sη(z),3 0 0 z+ Sλ(z),3 0 0 z2

+ Sµ(z),3 0

 . (16)

Matrix expression for the weak form. From the weak form of the boundary value problem (2), and using
(15) and (16), an integration throughout the cross-section is performed analytically in order to obtain an
unidimensional formulation. Therefore, the first left term of (2) can be written in the following form:∫

B
[ε(Eu∗)]T [σ(Eu)]dB=

∫ L

0
[E∗s ]

T
[k][Es]dx1, [k] =

∫
�

[Fs(z)]T [C][Fs(z)]d�, (17)

where [C] is the constitutive law given on page 1130 and � represents the cross-section[
−

h
2
≤ z ≤ h

2

]
×

[
−

b
2
≤ x2 ≤

b
2

]
.
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Figure 3. Description of the laminated beam finite element DOF. SinRef-6p (left) and
SinRef-7p (right).

In (17), the matrix [k] is the integral of the beam’s material characteristics throughout the cross-
section. An advantage of the Legendre polynomials is the easy calculation of the matrices [k], arising
from orthogonality (page 1132).

The finite element approximation. This section is devoted to the finite element approximation of the
generalized displacement, see the matrices [Es], [E∗s ], [Eu], and [E∗u] from (15) and (12). We describe it
briefly; for details see [Ganapathi et al. 1999; Vidal and Polit 2008].

The geometric approximation. Given the displacement field constructed above for sandwich and lami-
nated beams, a corresponding finite element is developed in order to analyze the behavior of laminated
beam structures under combined loads. Let us consider the e-th element Le

h of the mesh
⋃

Le
h . This

element has three nodes, denoted by (g j ) j=1,2,3, see Figure 3. The coordinate x1 of a point on the central
line of the beam is approximated by

x1(ξ)=

2∑
j=1

Nl j (ξ)x1
e(g j ), (18)

where the Nl j (ξ) are Lagrange linear interpolation functions and the x1
e(g j ) are Cartesian coordinates

(measured along the x1 axis) of node g j of element Le
h . The isoparametric or reduced coordinate ξ

ranges in the interval [−1, 1].

Interpolation for the bending-traction beam element. The finite element approximations of the assumed
displacement field components are hereafter symbolically written as ui

h(x1, x2, z) where the superscript
h refers to the mesh

⋃
Le

h .
The kinematic equation (4) states that the transverse displacement wh

0 must be C1-continuous; the
rotation angle ω3

h , the extension displacement uh , and the variables vh and u1
31 might be only C0-

continuous. Therefore, the generalized displacements wh
0 , wh

1 , and wh
2 are interpolated by the Hermite

cubic functions Nh j (ξ).
According to the transverse shear locking condition, the other shear bending generalized displacements

and the rotation angle ω3
h are interpolated by Lagrange quadratic functions, denoted by Nq j (ξ). This

choice allows the same order of interpolation for both wh
0 ,1 and ω3

h in the corresponding transverse
shear strain components due to bending, thus avoiding transverse shear locking according to the field
compatibility approach [Polit et al. 1994].

Finally, the generalized displacements uh , vh , u1
31 are interpolated by Lagrange quadratic functions.
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Elementary matrices. Having defined all the finite element mechanical approximations, we can now
deduce the elementary stiffness matrix [K e

uu] from (17). It has the expression

[K e
uu] =

∫
Le

[B]T [k][B]d Le, (19)

where [B] is deduced from the relation between the generalized displacement vectors (15) and the ele-
mentary vector of DOFs, denoted by [qe]:

[Es] = [B][qe]. (20)

The matrix [B] contains only the derivatives of the interpolation functions and the Jacobian components.
The same technique can be used to define the elementary mechanical load vector, denoted [Be

u], but it is
not detailed here.

3. Results and discussion

In this section, several static tests are presented validating our finite element and evaluating its efficiency.
The influence of transverse normal stress is also discussed and evaluated through the integration of the
equilibrium equation. Then, a thermomechanical problem is carried out.

Mechanical analysis. The aim of our investigation is to study the efficiency of these new elements to
analyze the flexural behavior of highly inhomogeneous laminated beams for static mechanical problems
under global and localized pressure. The results are compared with those obtained with SinRef-c, the sine
model with Heaviside function [Vidal and Polit 2008], which does not take into account the transverse
normal effect; and also with reference solutions (the exact solution [Pagano 1969] or a 2D solution
calculated with ANSYS). To evaluate the performance of the element in bending, we considered various
cases in the next three sections.

Properties of the finite element. Before proceeding to the detailed analysis, numerical computations are
carried out for the rank of the element (spurious mode), convergence properties and the effect of aspect
ratio (shear locking).

The test concerns simply supported thick symmetric composite beams and is taken from [Pagano
1969]. It is detailed below.

Geometry: Composite cross-ply beam (0◦/90◦/0◦) and length to thickness ratio S = 4 (S = L
h ); half of

the beam is meshed. All layers have the same thickness.

Boundary conditions: Simply supported beam subjected to a sinusoidal load q(x1)= q0 sin πx1
L

.

Material properties:

EL = 172.4 GPa, ET = 6.895 GPa, GLT = 3.448 GPa, GT T = 1.379 GPa, νLT = νT T = 0.25,

where L refers to the fiber direction, and T refers to the transverse direction.
This element has a proper rank without any spurious energy modes when exact integration is applied

to obtain the stiffness matrix [Ganapathi et al. 1999]. For this purpose, a scheme with three integration
points is used. There is also no need to use shear correction factors here, as the transverse strain is
represented by a cosine function.



A REFINED SINE FINITE ELEMENT FOR THE THEMOMECHANICAL ANALYSIS OF LAMINATED BEAMS 1137

number σ̄13(0, 0)
N of DOFs w̄(L/2, 0) error direct error equil. eq. error

1 12 2.8984 0.4% 1.4395 0.6% 0.9404 34%
2 24 2.8897 0.1% 1.4184 0.9% 1.2974 9%
4 48 2.8887 0.1% 1.4168 1% 1.3960 2%
8 96 2.8886 0.0% 1.4167 1% 1.4212 0.7%

16 192 2.8886 0.0% 1.4328 0.1% 1.4421 0.7%

Table 1. σ̄13(0, 0) and w̄(L/2, 0) for different number of DOFs: mesh convergence
study, with three layers (0◦/90◦/0◦), S = 4, SinRef-6p. The word “direct” labels results
derived from the constitutive equation, rather than the equilibrium equation.

Table 1 gives the convergence of the SinRef-6p model for the transverse displacement and the trans-
verse shear stress for S= 4. For this last component, results can be obtained using the constitutive relation
(column labeled “direct” with its corresponding percent error), or alternatively using the equilibrium
equation at the postprocessing level, that is

σ13(z)=−
∫ z

−h/2
σ11,1 dx3,

(column labeled “equil. eq” and its error). It must be noticed that the deflection is less sensitive to the
mesh than the shear stress. The convergence velocity is very high. Based on progressive mesh refinement,
a N = 8 mesh is adequate to model the thick laminated beam for a bending analysis. Moreover, the results
obtained with coarse meshes are in good agreement with the reference values. Note that this model gives
very good results for the transverse shear stress calculated with the constitutive relation.

Considering various values for the aspect ratio, the normalized displacement obtained at the middle
of the simply supported composite beam is shown in Figure 4 along with the exact solution [Pagano
1970], and they are found to be in excellent agreement. It is also inferred from Figure 4 that the present
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Figure 4. Nondimensional maximum displacement wm = 100u3(L/2, 0)ET h3/(q0L4)

versus aspect ratio S, with three layers (0◦/90◦/0◦), mesh N = 8, SinRef-6p model.
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element is free from the shear locking phenomenon as the element is developed using a field compatibility
approach.

Bending analysis of laminated composite beam. This test is about simply supported symmetric and an-
tisymmetric composite beams from Reference [Pagano 1970]. It is detailed below.

Geometry: Composite cross-ply beam (0◦/90◦/0◦) and (0◦/90◦) and length to thickness ratio from S = 2
to S = 40; half of the beam is meshed. All layers have the same thickness.

Boundary conditions: Simply supported beam subjected to a sinusoidal load q(x1)= q0 sin πx1
L

.

Material properties: Same properties as on page 1136.

Mesh: N = 8.

Results: The results (ū, w̄, σ̄11, σ̄13) are made nondimensional using

ū =
ET u1(0, h/2)

hq0
, w̄ =

100ET u3(L/2, 0)
S4hq0

, σ̄11 =
σ11(L/2,±h/2)

q0
, σ̄13 =

σ13(0, 0 or − h/4)
q0

. (21)

The two layer case (0◦/90◦) is presented first. The numerical results for deflection, in-plane displace-
ment, shear stress, and in-plane stress are given in Tables 2–4 with respect to the span-to-thickness ratio:

ū(0, h/2)
S SinRef-7p error SinRef-6p error SinRef-c error exact

2 0.760 0.3% 0.801 5% 0.848 11% 0.762
4 4.55 0.1% 4.60 1% 4.78 5% 4.55

20 485.22 < 0.1% 485.32 < 0.1% 486.20 0.2% 485.15
40 3856.1 < 0.01% 3856.3 < 0.01% 3858.7 < 0.1% 3856.3

w̄(L/2, 0)
S SinRef-7p error SinRef-6p error SinRef-c error exact

2 10.691 1% 10.438 3% 10.5608 2% 10.849
4 4.682 0.2% 4.614 1% 4.696 < 0.1% 4.695

20 2.702 < 0.1% 2.699 0.1% 2.703 < 0.1% 2.703
40 2.639 0.01% 2.638 < 0.1% 2.640 < 0.1% 2.639

Table 2. ū(0, h/2) and w̄(L/2, 0) for different values of S, with two layers (0◦/90◦).

maximum of σ̄13

SinRef-7p SinRef-6p SinRef-c
S direct error equil.eq error direct error equil.eq error direct error equil.eq error exact

2 1.213 5% 1.112 3% 1.121 3% 1.163 0.6% 1.202 4% 1.248 8% 1.155
4 2.761 2% 2.679 1% 2.546 5% 2.717 0.4% 2.588 4% 2.768 2% 2.706

20 14.709 0.6% 14.540 0.5% 13.463 7% 14.549 0.5% 13.450 8% 14.555 0.5% 14.620
40 29.488 0.5% 29.167 0.5% 26.981 7% 29.172 0.5% 26.940 8% 29.165 0.5% 29.324

Table 3. Maximum value of σ̄13 for different values of S, with two layers (0◦/90◦). The
maximum occurs at (0,−h/4) for S = 4, 20, 40.
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σ̄11(L/2,−h/2)
S SinRef-7p error SinRef-6p error SinRef-c error exact

2 9.9 12% 10.0 13% 11.1 26% 8.8
4 30.8 2% 31.0 3% 31.9 6% 30.0

20 702.7 0.4% 703.1 0.5% 703.5 0.5% 699.7
40 2803.3 0.3% 2803.7 0.4% 2803.1 0.3% 2792.6

Table 4. σ̄11(L/2,−h/2) for different values of S, with two layers (0◦/90◦).

S = 2 (very thick), S = 4 (thick), S = 20 (moderately thick), or S = 40 (thin). The percent error with
respect to S are also compared in these tables. The variation of the normalized in-plane, transverse shear,
and normal stresses, and the transverse displacement through the thickness (S = 2, S = 4) are presented
in Figures 5–7 for further comparison (only the most critical tests).
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Figure 5. Distribution of σ̄13 along the thickness, S = 2 (left) and S = 4 (right), with
two layers (0◦/90◦), SinRef-7p.
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Figure 6. Distribution of σ̄11 S = 2 (left) and σ̄11 S = 4 (right) along the thickness, with
two layers (0◦/90◦), SinRef-7p.
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Figure 7. Distribution of σ̄33 (left) and w̄ (right) along the thickness, S = 2, with two
layers (0◦/90◦).

For the displacements, the SinRef-7p model gives more precise results than the two other models,
especially for the very thick case. For S ≥ 4, the error is less than 1% for the deflection, and less than
5% for the in-plane displacement regardless of the model. For S = 2, the two present models take into
account the nonconstant variation through the thickness (see Figure 7, right).

Concerning the stresses, the evolution of the transverse shear stress is improved using one more
unknown in the model (see Table 3) but no influence is denoted for the in-plane stress (see Table 4).
The effect of the transverse normal stress in the model allows us to improve the accuracy of σ̄13 and
σ̄11, especially for the very thick beam. For the SinRef-7p model, errors on σ̄13 calculated from the
constitutive law are less than 5%. For the in-plane stress, all the errors are less than 6% for S ≥ 4.

It is seen from Figures 5–7 that the SinRef-7p element performs very well for thick as well as thin
beams (all results are not presented here for brevity). The distribution of the in-plane displacement (not
presented here) and stress is similar to the exact Pagano solution regardless of the length-to-thickness ratio.
The transverse shear stress obtained using the equilibrium equation gives excellent results, especially for

ū(0, h/2)
S SinRef-7p error SinRef-6p error SinRef-c error exact

2 0.237 8% 0.238 9% 0.204 6% 0.218
4 0.944 0.5% 0.945 0.6% 0.942 0.3% 0.939

20 66.776 0.1% 66.758 0.1% 66.864 < 0.01% 66.869
40 517.88 < 0.1% 517.84 0.04% 518.08 < 0.01% 518.08

w̄(L/2, 0)
S SinRef-7p error SinRef-6p error SinRef-c error exact
2 8.505 0.2% 8.488 0.4% 8.746 2% 8.524
4 2.888 < 0.1% 2.888 0.04% 2.908 < 1% 2.887

20 0.617 < 0.01% 0.617 0.01% 0.617 < 0.1% 0.617
40 0.537 < 0.01% 0.537 < 0.01% 0.537 < 0.01% 0.537

Table 5. w̄(L/2, 0) and ū(0, h/2) for different values of S, with three layers (0◦/90◦/0◦).
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σ̄13(0, 0)

SinRef-7p SinRef-6p SinRef-c
S direct error equil.eq error direct error equil.eq error direct error equil.eq error exact

2 0.5328 0.2% 0.5312 0.5% 0.4841 9% 0.5300 0.8% 0.4989 6% 0.5379 0.6% 0.5343
4 1.4303 <0.1% 1.4216 0.7% 1.4167 1% 1.4212 0.7% 1.4213 <1% 1.4236 <1% 1.4318

20 8.7480 <0.01% 8.6965 0.5% 9.006 2.9% 8.697 0.5% 9.0052 2.9% 8.6973 <1% 8.7490
40 17.642 <0.01% 17.539 0.5% 18.186 3% 17.539 0.5% 18.184 3% 17.539 <1% 17.634

Table 6. σ̄13(0, 0) for different values of S, with three layers (0◦/90◦/0◦).

σ̄11(L/2, h/2)
S SinRef-7p error SinRef-6p error SinRef-c error exact

2 9.70 9% 9.74 9% 8.07 9% 8.90
2 (−h/2) 6.96 1.2% 7.01 1.9% 8.07 17% 6.87
4 18.4 2% 19.0 1% 18.6 1% 18.8

20 264.2 0.3% 264.0 < 0.5% 264.0 < 0.5% 263.2
40 1023.2 0.3% 1023.0 < 0.5% 1023.0 < 0.5% 1019.8

Table 7. σ̄11(L/2, h/2) for different values of S, with three layers (0◦/90◦/0◦).

the very thick beam with S= 2 (see Figure 5). For design applications, the variation of the transverse shear
stress deduced from the constitutive relation yields satisfactory distributions even for the very thick beam,
without computational cost at the postprocessing level. The accuracy of the transverse normal stress is
also very good (see Figure 7, left).

Next we consider the three-layer case (0◦/90◦/0◦). The results are summarized in Tables 5–7. Figures
8–11 (SinRef-7p model) show the transverse normal and shear stresses and out-of-plane displacement.
All models give excellent results for S = 4, 20, 40. Again, note that the SinRef-7p model improves the
accuracy of the results for both displacements and transverse shear stresses especially for thick laminates.
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Figure 8. Distribution of σ̄13 along the thickness, S = 2, with three layers (0◦/90◦/0◦),
SinRef-7p.
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Figure 9. Distribution of w̄ and σ̄33 along the thickness, S = 2, with three layers (0◦/90◦/0◦).
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Figure 10. Distribution of σ̄13 and σ̄11 along the thickness, S = 4, 0◦/90◦/0◦, SinRef-7p.
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Figure 11. Distribution of w̄ (left) and σ̄33 (right) along the thickness, S = 4, 0◦/90◦/0◦.

The error is less than 0.7% for in-plane and transverse displacements, and transverse shear stress with
S ≥ 4. The variation of the transverse shear stress calculated from the constitutive relation also gives
good results. Moreover, for S = 2, Figure 11, left, shows that w̄ is nonconstant. Note that the two
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Figure 12. Left: beam under localized pressure. Right: the ANSYS mesh.

models with stretching effects take into account the nonsymmetrical variation of the transverse shear and
the in-plane stress through the thickness (see Figure 8).

Bending analysis of laminated composite beam under localized pressure. This test is about simply sup-
ported symmetric and antisymmetric composite beams submitted to a localized pressure. It focuses on
the capability of these elements to capture local behavior. It is detailed below.

Geometry: Composite cross-ply beam (0◦/90◦/0◦) and (0◦/90◦) and S = 4; half of the beam is meshed.
All layers have the same thickness.

Boundary conditions: Simply supported beam subjected to a transverse pressure q(x1)= q0 applied on
a line located at the beam center and whose dimension is L p = L/8 (see Figure 12).

Material properties: Same properties as on page 1136.

Mesh: N = 16.

Results: The reference solution is issued from a 2D elasticity analysis with a very refined mesh including
3800 DOFs in ANSYS. The element PLANE82 is used.

The results are shown in Table 8. We observe that the three models perform quite well with respect to
the 2D solution except for the in-plane stress in the SinRef-c model. This is due to the nonsymmetrical
results across the thickness which can not be taken into account in this model. From Figures 13 and 14,
it can be noticed that the transverse displacement is nonconstant across the thickness. In all cases, the
models including the transverse deformation are in excellent agreement with the reference solution.
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Figure 13. Distribution of σ̄13 along the thickness, S = 4, with two layers (left) and
three layers (right), SinRef-7p, localized pressure.
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(0◦/90◦/0◦) (0◦/90◦)
(x1, z) error ANSYS (x1, z) error ANSYS

σ̄13 direct (0, 0) 0.3059 0.1% 0.3061 (0,−h/4) 0.5656 1% 0.5602
σ̄13 equiv.eq (0, 0) 0.3055 0.2% (0,−h/4) 0.5616 0.2%

Si
nR

ef
-7

p

σ̄11 (L/2,−h/2) 6.4510 14% 5.6406 (L/2,−h/2) 9.8455 9% 8.9715
w̄ (L/2, 0) 0.7809 0.4% 0.7847 (L/2, 0) 1.2510 0.8% 1.2617
ū (0, h/2) 0.2131 1% 0.2165 (0, h/2) 1.0774 0.1% 1.0788

σ̄13 direct (0, 0) 0.3084 0.7% 0.3061 (0,−h/4) 0.5117 8% 0.5602
σ̄13 equiv.eq (0, 0) 0.3048 0.4% (0,−h/4) 0.5290 5%

Si
nR

ef
-6

p

σ̄11 (L/2,−h/2) 6.4195 13% 5.6406 (L/2,−h/2) 9.2047 2% 8.9715
w̄ (L/2, 0) 0.7809 0.4% 0.7847 (L/2, 0) 1.2310 2% 1.2617
ū (0, h/2) 0.2142 1% 0.2165 (0, h/2) 1.0871 0.7% 1.0788

σ̄13 direct (0, 0) 0.3082 0.7% 0.3061 (0,−h/4) 0.5211 7% 0.5602
σ̄13 equiv.eq (0, 0) 0.3051 0.3% (0,−h/4) 0.5659 1%

Si
nR

ef
-c

σ̄11 (L/2,−h/2) 7.5326 33% 5.6406 (L/2,−h/2) 11.8810 32% 8.9715
w̄ (L/2, 0) 0.7969 1.5% 0.7847 (L/2, 0) 1.2451 1% 1.2617
ū (0, h/2) 0.2181 0.7% 0.2165 (0, h/2) 1.1259 4% 1.0788

Table 8. S = 4, with two and three layers, localized pressure.
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Figure 14. Distribution of σ̄33 and w̄ along the thickness, S = 4, with two layers
(0◦/90◦), localized pressure.

As in the previous case, the SinRef-7p model improves results issued from the SinRef-6p model,
especially for the transverse shear stress in the antisymmetric lay-up.

Bending analysis of a sandwich beam under uniform pressure. The test deals with a sandwich beam
under uniform pressure with two different boundary conditions. Only the more accurate model, the
SinRef-7p model, is used in this severe test. This example is detailed now.

Geometry: The 3-layer sandwich beam has graphite-epoxy faces and a soft core with thicknesses 0.1h,
0.8h, 0.1h and length to thickness ratios S = 2.5, S = 5, S = 10; half of the beam is meshed.
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Boundary conditions: Simply supported or clamped-clamped (C-C) beam under an uniform pressure q0.

Material properties (face): E11 = 131.1 GPa, E22 = E33 = 6.9 GPa, G12 = 3.588 GPa, G13 = 3.088 GPa,
G23 = 2.3322 GPa, ν12 = ν13 = 0.32, ν23 = 0.49.

Material properties (core): E11 = 0.2208 MPa, E22 = 0.2001 MPa, E33 = 2760 MPa, G12 = 16.56 MPa,
G13 = 545.1 MPa, G23 = 455.4 MPa, ν12 = 0.99, ν13 = 0.00003, ν23 = 0.00003.

Mesh: N = 16.

Results: The results are presented in nondimensional form as

w̄ = 100wY0/hS4q0, σ̄11 = σ11/S2q0, τ̄13 = τ13/Sq0, Y0 = 6.9 GPa.

They are compared with the available 2D exact solution from [Kapuria et al. 2004] and results from
a commercial code with a very refined mesh including 3800 DOFs. This choice is justified by the
convergence study given in Table 9 for a slenderness ratio S = 2.5. The error on the stresses with respect
to the reference mesh (61000 DOFs) becomes negligible when the number of DOFs is greater than 3800.

Tables 10 and 11 show that the model is very efficient and accurate, even for the very thick case. Figure
15 gives the distribution of in-plane, transverse shear, and normal stresses through the thickness for the
clamped-clamped beam with S = 2.5. These stresses are very well estimated, in particular the maximum
transverse shear stress in the face and the asymmetrical maximum value due to the thickness and the load.

σ̄11(L/2,−h/2) 1% 0.5% 0.1% 0.03% 2.1000
σ̄13 max 12% 0.7% 0.7% 0.0% 0.8309

DOFs 700 2000 3800 15000 61000

Table 9. Convergence study (ANSYS), S = 2.5, C-C. Reference values are in the last column.

S error literature ANSYS

σ̄13(0, 0) 0.4773 0.1% 0.4777

2.5 σ̄11(L/2, h/2) −3.2370 0.3% −3.2285
σ̄11(L/2,−h/2) 3.2686 1.1% 3.2318
w̄(L/2, 0) 25.5916 0.1% 25.5761

σ̄13(0, 0) 0.5153 0.2% 0.5144 0.5155

5 σ̄11(L/2, h/2) −1.9729 0.2% −1.9698 −1.9655
σ̄11(L/2,−h/2) 1.9727 0.2% 1.9689 1.9655
w̄(L/2, 0) 7.8804 0.0% 7.8778 7.8925

σ̄13(0, 0) 0.5346 0.1% 0.5338 0.5344

10 σ̄11(L/2, h/2) −1.6466 0.1% −1.6451 −1.6441
σ̄11(L/2,−h/2) 1.6466 0.1% 1.6449 1.6441
w̄(L/2, 0) 3.2416 0.2% 3.2486 3.2521

Table 10. Sandwich, uniform pressure, simply supported. Literature values are taken
from [Kapuria et al. 2004].
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S error ANSYS

σ̄13(L/8, 0) 0.3280 0.5% 0.3263
σ̄13 max 0.8038 3% 0.8310

2.5 σ̄11(L/2, h/2) −2.3326 7% −2.1610
σ̄11(L/2,−h/2) 2.0056 4% 2.1000
w̄(L/2, 0) 20.2549 1.4% 20.5340

σ̄13(L/8, 0) 0.3877 0.1% 0.3880
5 σ̄11(L/2, h/2) −0.9966 4% −0.9520

σ̄11(L/2,−h/2) 0.9237 1.7% 0.9398
w̄(L/2, 0) 6.0218 1.1% 5.9550

σ̄13(L/8, 0) 0.4120 0.1% 0.4125
10 σ̄11(L/2, h/2) −0.6351 2% −0.6224

σ̄11(L/2,−h/2) 0.6154 0.6% 0.6193
w̄(L/2, 0) 1.8186 0.9% 1.8358

Table 11. Sandwich, uniform pressure, C-C. The tranverse shear stress is calculated at
x = L/8 because the 2D finite element solution is not valid at a fixed edge.
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Figure 15. Distribution of σ̄11, σ̄13 and σ̄33 along the thickness, S = 2.5, sandwich,
SinRef-7p, uniform pressure, C-C.
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4. A thermomechanical problem

In this section, the accuracy of the present theory is assessed in thermomechanical analysis. The results
are compared with the exact 2D thermoelasticity solution [Bhaskar et al. 1996]. The problem is described
as follows:

Geometry: Composite cross-ply beam (0◦/90◦/0◦) and (0◦/90◦), slenderness ratio S ranging from 4 to
100; half of the beam is meshed. All layers have the same thickness.

Boundary conditions: Simply supported beam subjected to the temperature field

T (x1, z)= Tmax
2z
h

sin πx1
L
. (22)

It corresponds to a cylindrical bending.

Material properties: Same properties as on page 1136, plus αT = 1125αL , where αL , αT are the thermal
expansion coefficients in the fiber and normal direction.

Mesh: N = 8.

Results: As in reference [Carrera 2000a], we define the dimensionless quantities:

ū =
u1

αL TmaxL
, w̄ =

hu3

αL TmaxL2 , σ̄11 =
σ11

αL ET Tmax
, σ̄13 =

σ13

αL ET Tmax
. (23)

The reference results have been obtained upon an extension to the thermomechanical problem of the
exact Pagano solution given in [Pagano 1969].

The numerical results for deflection, in-plane displacement, shear stress, and in-plane stress are given
in Tables 12–14 and 15–17 for two and three layers, respectively. These examples show clearly the
necessity to take into account the transverse normal deformation in the model. In fact, the improvement
is significant for the SinRef-6p and SinRef-7p models compared to the SinRef-c one.

ū(0, h/2)
S SinRef-7p error SinRef-6p error SinRef-c error exact

4 155.1 0.2% 156.60 0.8% 153.39 1% 155.36
10 114.22 0.03% 114.35 0.1% 111.88 2% 114.18
50 104.50 < 0.01% 104.50 < 0.01% 101.93 2% 104.50

100 104.18 0.01% 104.18 < 0.01% 101.60 2% 104.19

w̄(L/2, 0)
S SinRef-7p error SinRef-6p error SinRef-c error exact

4 42.652 0.5% 41.302 3% 45.882 7% 42.889
10 43.285 0.01% 43.023 0.6% 42.191 2% 43.293
50 43.158 < 0.01% 43.146 0.03% 41.314 4% 43.161

100 43.152 < 0.01% 43.149 0.01% 41.286 4% 43.155

Table 12. ū(0, h/2) and w̄(L/2, 0) for different values of S, with two layers (0◦/90◦).
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σ̄13(0,−h/4)

SinRef-7p SinRef-6p SinRef-c
S direct error equil.eq error direct error equil.eq error direct error equil.eq error exact

4 136.350 3% 129.610 1% 109.820 16% 134.320 2% 119.600 9% 133.170 1% 131.730
10 68.707 1% 67.422 0.8% 55.351 18% 67.834 0.2% 59.742 12% 68.341 0.5% 67.964
50 14.430 0.6% 14.240 0.6% 11.611 18% 14.244 0.6% 12.519 12% 14.391 0.4% 14.333

100 7.225 0.6% 7.132 0.6% 5.814 19% 7.133 0.6% 6.269 12% 7.207 0.3% 7.179

Table 13. σ̄13(0,−h/4) for different values of S, with two layers (0◦/90◦).

σ̄11(L/2,−h/2)
S SinRef-7p error SinRef-6p error SinRef-c error exact

4 2044.1 2% 2075.4 4% 1774.5 11% 1994.7
10 2142.4 0.6% 2150.1 1% 2115.3 0.6% 2129.0
50 2179.8 0.4% 2180.1 0.4% 2197.1 1% 2170.2

100 2181.1 0.4% 2181.2 0.4% 2199.8 1% 2171.7

Table 14. σ̄11(L/2,−h/2) for different values of S, with two layers (0◦/90◦).

ū(0, h/2)
S SinRef-7p error SinRef-6p error SinRef-c error exact

4 7.5399 0.9% 7.5262 0.7% 0.2608 96% 7.4696
10 5.0069 0.05% 5.0013 0.1% 0.7346 85% 5.0095
50 4.4667 < 0.01% 4.4665 0.01% 0.8622 80% 4.4670

100 4.4493 < 0.01% 4.4492 < 0.01% 0.8665 80% 4.4494

w̄(L/2, 0)
S SinRef-7p error SinRef-6p error SinRef-c error exact

4 3.6285 0.3% 3.6272 0.3% 0.2332 93% 3.6156
10 1.8935 0.01% 1.8919 0.08% 0.3762 80% 1.8934
50 2.7924 < 0.01% 2.7924 < 0.01% 0.5449 80% 2.7924

100 2.8197 < 0.01% 2.8197 < 0.01% 0.5506 80% 2.8197

Table 15. ū(0, h/2) and w̄(L/2, 0) for different values of S, with three layers (0◦/90◦/0◦).

SinRef-7p SinRef-6p SinRef-c
S direct error equil.eq error direct error equil.eq error direct error equil.eq error exact

4 21.4280 0.04% 21.7350 1.5% 20.2340 5% 21.7010 1.3% 6.8092 68% 14.3210 33% 21.4178
10 7.1544 0.1% 7.2837 2% 6.2585 12% 7.2771 1.8% 3.7459 47% 6.5851 7% 7.1436
50 1.3522 0.1% 1.3778 2% 1.1538 14% 1.3777 2% 0.8040 40% 1.3629 1% 1.3497

100 0.6748 0.1% 0.6876 2% 0.5753 14% 0.6875 2% 0.4029 40% 0.6822 1% 0.6735

Table 16. σ̄13(0, 0) (max) for different values of S, with three layers (0◦/90◦/0◦).
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σ̄11(L/2,−h/2)
S SinRef-7p error SinRef-6p error SinRef-c error exact

4 289.17 2.8% 288.10 2% 4.4627 98% 281.11
10 88.63 1.4% 88.19 1% 32.96 62% 87.41
50 45.83 2.5% 45.80 2% 43.0390 3% 44.70

100 44.44 2.6% 44.44 2% 43.3780 0.1% 43.31

Table 17. σ̄11(L/2,−h/2) for different values of S, with three layers (0◦/90◦/0◦).

Note that the SinRef-7p results are in excellent agreement with the exact solution. The error is less
than 3% regardless of the length to thickness ratio for both displacements and stresses, and even for the
transverse shear stress deduced from the constitutive relation. Figures 16–20 show that the distribution
of these quantities are similar to the reference solution, in particular for the thick beam.
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Figure 16. Distribution of σ̄13 along the thickness, S = 4 (left) and S = 20 (right), with
two layers (0◦/90◦), SinRef-7p model.
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Figure 17. Distribution of w̄ (left) and σ̄33 (right) along the thickness, S = 4, with two
layers (0◦/90◦).
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Figure 18. Distribution of σ̄13 along the thickness, S = 4 (left) and S = 10 (right), with
three layers (0◦/90◦/0◦), SinRef-7p model.
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Figure 19. Distribution of ū (left) and w̄ (right) along the thickness, S = 4, with three
layers (0◦/90◦/0◦).
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Figure 20. Distribution of σ̄11 (left) and σ̄33 (right) along the thickness, S = 4, with
three layers (0◦/90◦/0◦).
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Concerning the SinRef-6p model, the percentage error is close to the previous one except for the
transverse shear stress where it is more important. However, notice that only the quantity calculated
directly from the constitutive relation is involved. For the thick beam, the distribution of the transverse
normal stress is in good agreement with the reference solution for the two cases (Figures 17, right, and
20, right). However, the accuracy of this quantity calculated by the SinRef-7p model is improved (see
Figure 17, right). The same holds for the transverse displacement (see Figure 17, left).

5. Conclusion

In this article, two new numerical models, denoted SinRef-6p and SinRef-7p, have been presented and
evaluated through different benchmarks under mechanical and thermomechanical loading. Special atten-
tion is pointed towards the transverse normal stress effect, which plays an important role for thick beams
and coupled problems. Each of the two models consists in a three-node multilayered (sandwich and
laminated) beam finite element for static analysis with a parabolic distribution of transverse displacement.
Based on the sine equivalent single layer model, a third-order kinematic per layer is added, improving
the bending description for thick beams. There is no need for transverse shear correction factors and
all the interface and boundary conditions are exactly satisfied. So, this approach has a strong physical
meaning. Finally, the number of unknowns is independent of the number of layers.

Several numerical evaluations have proved that this model has very good properties in the field of
finite elements. Convergence velocity is high and accurate results are obtained for very thick and thin
cases. So, these finite elements are simple and efficient for a low cost, compared to layerwise approach
or plane elasticity model in commercial software. This study shows the necessity of taking into account
the transverse normal effect which cannot be neglected, in particular for coupled thermomechanical
problems. This approach allows us to calculate the transverse shear stress directly by the constitutive
relation with a very satisfactory accuracy.

Based on these promising results, an extension to plates, shells and piezoelastic coupling will be
investigated.
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