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ON THE DETACHMENT OF PATCHED PANELS UNDER
THERMOMECHANICAL LOADING

WILLIAM J. BOTTEGA AND PAMELA M. CARABETTA

The problem of propagation of interfacial failure in patched panels subjected to temperature change
and transverse pressure is formulated from first principles as a propagating boundaries problem in the
calculus of variations. This is done for both cylindrical and flat structures simultaneously. An appro-
priate geometrically nonlinear thin structure theory is incorporated for each of the primitive structures
(base panel and patch) individually. The variational principle yields the constitutive equations of the
composite structure within the patched region and an adjacent contact zone, the corresponding equations
of motion within each region of the structure, and the associated matching and boundary conditions for
the structure. In addition, the transversality conditions associated with the propagating boundaries of
the contact zone and bond zone are obtained directly, the latter giving rise to the energy release rates in
self-consistent functional form for configurations in which a contact zone is present as well as when it
is absent. A structural scale decomposition of the energy release rates is established by advancing the
decomposition introduced in W. J. Bottega, Int. J. Fract. 122 (2003), 89–100, to include the effects of
temperature. The formulation is utilized to examine the behavior of several representative structures and
loadings. These include debonding of unfettered patched structures subjected to temperature change, the
effects of temperature on the detachment of beam-plates and arch-shells subjected to three-point loading,
and the influence of temperature on damage propagation in patched beam-plates, with both hinged-free
and clamped-free support conditions, subjected to transverse pressure. Numerical simulations based
on closed form analytical solutions reveal critical phenomena and features of the evolving composite
structure. It is shown that temperature change significantly influences critical behavior.

1. Introduction

The role of patched structures has expanded in modern engineering, as uses range from large-scale
structural repair to sensors and actuators to small-scale electronic systems. Detachment of the constituent
structures is thus an issue of concern as it may influence the effectiveness and integrity of the composite
structure. By its nature, the structure possesses a geometrical discontinuity at the edge of the patch.
Stress concentrations within the base structure-patch interface at this location (see, for example, [Wang
and Rose 2000]) can lead to the initiation of debonding.1 As a result, a primary mode of failure of such
structures under various loading conditions is edge debonding and its propagation. The characterization
of edge debonding is thus of critical importance in preserving the useful life of this type of structure.

Keywords: catastrophic, debonding, delamination, doubler, fracture, growth, growth path, interfacial failure, panel, patch,
plate, propagation, shell, stable, structure, temperature, thermal, thermomechanical, unstable, variational.
1For composite repair of structures, the patch edge is often tapered to discourage debond initiation (see, for example, [Duong

and Wang 2007, Chapter 7]). The effect of layer-wise step-tapering on damage propagation was studied in [Bottega and Karlsson
1999] and [Karlsson and Bottega 1999a].
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The structures of interest are typically subjected to temperature variations from the reference state. Such
temperature changes can influence the onset and extent of damage in these structures. In this light, Duong
and Yu [2002] examined the thermal effects of curing on the stress intensity factor for an octahedral-
shaped composite repair patch bonded to a cracked rectangular plate. A general expression for the
stress distribution was calculated analytically by adopting an “equivalent inclusion method” attributed
to Rose [1981], assuming a second order polynomial distribution for the strains. The solution is used to
analyze a sample problem and is compared with results using FEM. Related work includes that of Wang
et al. [2000], who analyzed thermally-induced residual stresses due to curing in plates with circular
patches. Structures were restricted to those with identical coaxial circular patches on the upper and
lower faces of the plate so as to eliminate bending as an issue. Moore [2005], with an eye towards
avoiding detachment of layers due to uniform temperature change, developed an analytical beam type
model in the spirit of Timoshenko [1925] to describe peeling of a composite laminate under thermal
load. In this context, he calculated the peeling moment that arises from the peel stress at any interface of
the structure due to an applied uniform temperature change from the curing temperature. This was done
via a force balance approach, where a decomposition of the moments into thermal and mechanical parts
was utilized. The results were then applied to three- and four-layer beams. In a similar vein, Toya et al.
[2005] employed a force balance based on classical beam theory to evaluate the energy release rate for a
bilayer beam possessing an edge delamination when the structure is subjected to different temperatures
at the top surface, bottom surface, and interface. They characterized the mode mix using a small-scale
decomposition attributed to Toya [1992] which utilizes complex stress intensity factors and the crack
closure method to characterize the energy release rate.

In related work, Karlsson and Bottega [2000a; 2000b] studied the effects of a uniform temperature
field applied to a patched plate, where the base structure is fixed at both ends with regard to in-plane
translation. In that work, the authors uncovered and explained the instability phenomenon they refer to
as “slingshot buckling”, whereby, at a critical temperature, the structure “slings” dynamically from an
equilibrium configuration possessing deflections in one direction to another equilibrium configuration
with deflections in the opposite direction. Rutgerson and Bottega [2002] examined the thermo-elastic
buckling of multilayer shell segments. In that study, the layered shells are subjected to an applied
transverse pressure in addition to a uniform temperature field. The nonlinear analysis therein showed
“slingshot” buckling to occur for thermal loading of these types of structures as well, and at temperatures
well below the conventional “limit point” (see also [Rutgerson and Bottega 2004]). The findings on
slingshot buckling have since been unified [Bottega 2006]. It is concluded that this type of buckling is
inherent to many types of composite structures and occurs due to competing mechanical and thermal
elements of the loading. Most recently, Carabetta and Bottega [2008] studied the effects of geometric
nonlinearities on the debonding of patched beam-plates subjected to transverse pressure. Analyses using
both nonlinear and linearized models were conducted and compared. Significant discrepancies were
seen to occur between behaviors predicted by the two models, both with respect to the onset of damage
propagation and with regard to the stability of the process and to pre-growth behavior, demonstrating the
influence of geometric nonlinearities on the phenomena of interest.

In the present work, we examine debonding of both initially flat and initially curved patched structures
under uniform temperature alone and in consort with transverse pressure and three-point loading. Toward
this end, the problem of propagation of interfacial debonds in patched panels subjected to temperature
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change and transverse pressure is formulated from first principles as a propagating boundaries problem
in the calculus of variations, in the spirit of [Bottega 1995; Bottega and Loia 1996; 1997; Bottega and
Karlsson 1999; Karlsson and Bottega 1999a; 1999b], where various issues, configurations, and loading
conditions were studied. For the present study, temperature is accounted for. A region of sliding contact
adjacent to the intact region is also considered, and the boundary of the intact region as well as the bound-
ary between the contact zone and a region of separation of the patch and base panel are each allowed to
vary along with the displacements within each region. This is done for both cylindrical and flat structures
simultaneously. An appropriate geometrically nonlinear thin structure theory is incorporated for each of
the primitive structures (base panel and patch) individually. The variational principle then yields the
constitutive equations of the composite structure within the patched region and an adjacent contact zone,
the corresponding equations of motion within each region of the structure, and the associated matching
and boundary conditions for the structure. In addition, the transversality conditions associated with the
propagating boundaries of the contact zone and bond zone are obtained directly, the latter giving rise to
the energy release rates in self-consistent functional form for configurations in which a contact zone is
present as well as when it is not. A structural scale decomposition of the energy release rates is established
by advancing the decomposition of [Bottega 2003] to include the effects of temperature. The formulation
is then utilized to examine the behavior of several representative structures and loadings. These include
debonding of unfettered patched structures subjected to temperature change, the effects of temperature
on the detachment of beam-plates and arch-shells subjected to three-point loading, and the influence of
temperature on damage propagation in patched beam-plates, with both hinged-free and clamped-free
support conditions, subjected to transverse pressure. (The latter is shown in Figure 1.) Numerical
simulations based on exact analytical solutions to the aforementioned formulation are performed, the
results of which are presented in load-damage size space. Interpretation of the corresponding “growth
paths” admits characterization of the separation behavior of the evolving composite structure. It is shown
that temperature change significantly influences critical behavior.

2. Formulation

Consider a thin structure (flat or cylindrical) comprised of a base panel (plate or shell) of normalized
half-span L to which a patch of half-span Lp � L is adhered over the region S1 W s 2 Œ0; a� (shown
in Figure 2 for a flat panel). The coordinate s runs parallel to the reference surface and originates at
the centerspan of the structure, as shown. Further, let us consider the debonded portion of the patch to

Θ

P

Θ

P

Figure 1. Patched structures subjected to transverse pressure and uniform temperature
field. Left: cylindrical panel (arch-shell) with hinged-free supports. Right: flat panel
(beam-plate) with clamped-free supports.
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Figure 2. Dimensionless half-span of structure (shown for flat panel).

maintain sliding contact over the region S2 W s 2 Œa; b� adjacent to the bonded region, while a portion of
the patch defined on S3 W s 2 Œb; L� is lifted away from the base structure. These three regions will be
referred to as the “bond zone”, “contact zone”, and “lift zone”, respectively. The domain of definition
of the portion of the patch within the lift zone is S3p W s 2 Œb; Lp� such that S3p � S3. When referring to
the portion of the patch in region S3 it will be understood that the corresponding subregion is indicated.
At this point, let us also define the “conjugate bond zone” a� �L�a as indicated in the figure. We shall
be interested in examining the evolution and response of the composite structure when it is subjected to
a uniform temperature increase, ‚, above some reference temperature. In what follows, all length scales
are normalized with respect to the dimensional half-span NL (radius NR) of the undeformed plate (shell)
structure, and the common surface or interface between the patch and base panel, and its extension, will
be used as the reference surface. The temperature change, ‚, is normalized with respect to the reference
temperature (and the coefficient of thermal expansion of the base structure). The corresponding relations
for the normalized (centerline) membrane strains ei .s/ and epi .s/ and the normalized curvature changes
�i .s/ and �pi .s/ for the base structure and the patch in each region are thus given by

ei D u
0
i � kwi C

1
2
w0i
2
; �i D w

00
i C kwi ; .s 2 Si /

epi D u
0
pi � kwpi C

1
2
w0pi

2
; �pi D w

00
pi C kwpi ; .s 2 Sip/

(1)

where k D 0 corresponds to the plate and k D 1 corresponds to the shell, and the variables are defined as
follows: ui Dui .s/ (positive in the direction of increasing s) and wi Dwi .s/ (positive downward/inward),
respectively, correspond to the axial (circumferential) and transverse (radial) displacements of the cen-
terline of the base panel in region Si , and upi D upi .s/ and wpi D wpi .s/ correspond to the analogous
displacements of the centerline of the patch. The primes indicate total differentiation with respect to s.

The displacements ui .s/ and upi .s/, and the membrane strains ei .s/ and epi .s/ of the substructure
centerlines are related to their counterparts u�i .s/ and u�pi .s/, and e�i .s/ and e�pi .s/ at the reference
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surface, by the relations

u�i D ui C
1
2
hw0i ; u�pi D upi �

1
2
hpw

0
pi .i D 1; 2; 3/

e�i D ei C
1
2
h�i ; e�pi D epi �

1
2
hp�pi .i D 1; 2; 3/

where h� 1 is the normalized thickness of the base panel and hp� 1 is that of the patch. At this point
let us also introduce the normalized membrane stiffness, C , and bending stiffness, D, of the base panel
and the corresponding normalized membrane and bending stiffnesses, Cp and Dp, of the patch. The
normalization of the stiffnesses of the primitive structures is based on the bending stiffness of the base
panel and the half-span NL (radius NR) of the system in the undeformed configuration. Hence,

C D 12=h2; D D 1; Cp D CE0h0; Dp DE0h0
3; (2)

where h0 D hp=h; and

E0 D NEp= NE (plane stress) or E0 D
NEp=.1� �

2
p/

NE=.1� �2/
(plane strain),

where NE and NEp correspond to the (dimensional) elastic moduli of the base panel and patch, respectively,
and � and �p are the associated Poisson’s ratios.

The nondimensional coefficients of thermal expansion of the base structure and patch, ˛0 and ˛0p ,
respectively, are the products of the dimensional coefficients and the reference temperature. We corre-
spondingly define, for the present formulation, the augmented coefficients ˛ and p̨ such that

˛ D ˛0 and p̨ D ˛
0
p (plane stress),

˛ D .1C �/˛0 and p̨ D .1C �p/˛
0
p (plane strain):

(3)

We next introduce the normalized temperature scale, ‚, such that

Q‚D ˛‚D ˛
N‚� N‚0
N‚0

; (4)

where N‚ is the dimensional temperature and N‚0 is a reference temperature.
Paralleling the developments in [Bottega 1995], we next formulate an energy functional in terms of

(i) the strain energies of each of the individual segments of both the base panel and patch, independently,
and expressed in terms of the reference surface variables, (ii) the work done by the applied loading for
each case of interest, (iii) constraint functionals which match the transverse displacements in the contact
zone and both the transverse (radial) and in-plane (circumferential) displacements in the bond zone2, and
(iv) a delamination energy functional corresponding to the energy required to create a unit length of new
disbond. To complete the formulation, we include a thermal energy functional. We thus formulate the
energy functional … as follows:

…D

3X
iD1

�
U
.i/
B CU

.i/
Bp CU

.i/
M CU

.i/
MpCU

.i/
T CU

.i/
Tp

�
�ƒ�WC�; (5)

2The Lagrange multipliers in this case correspond to the interfacial normal and shear stresses, respectively.
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where
U
.i/
B D

Z
Si

1
2
D�2i ds; and U

.i/
Bp D

Z
Si

1
2
Dp�pi

2ds .i D 1; 2; 3/; (6)

correspond to the bending energies in the base panel and the patch in region Si , while

U
.i/
M D

Z
Si

1
2
C.ei �˛‚/

2ds and U
.i/
Mp D

Z
Si

1
2
Cp.epi � p̨‚/

2ds .i D 1; 2; 3/

are the corresponding stretching energies of the base panel and the patch. Further,

U
.i/
T D

Z
Si

�
c� � .1C‚/ce

�
‚ds; U

.i/
Tp D

Z
Si

�
c�p � .1C‚/cep

�
‚ds

represent the “thermal energies” of the base structure and the patch, respectively, such that the total
bracketed expression in (5) corresponds to the (Helmholtz) free energy of the structure, and ‚ is the
normalized temperature change. The quantities c� , ce .c�p, cep/ correspond to the normalized specific
heats of the base structure (patch) for constant stress and constant deformation, respectively. These
terms are included for completeness. We remark that since we shall consider the normalized temperature
change, ‚, as prescribed, the variation of these functionals will vanish identically. (The contribution of
the convective type terms of these particular functionals for a given region, associated with the propa-
gation of the interior boundaries s D a and s D b, will cancel and hence will have no contribution to
the overall variation of … as well.) Further, if the process is considered to be adiabatic, these terms will
vanish identically as the free energy goes to internal energy and may be interpreted as the adiabatic work
given by the first four functionals.

The functional ƒ appearing in (5) is a constraint functional given by

ƒD

2X
iD1

Z
Si

�i .wpi �wi / dsC

Z
Si

�.u�p1�u
�
1/ ds;

where �1, �2 and � are Lagrange multipliers (and �2 < 0). Further,

WD�

3X
iD1

Z
Si

pwi ds

is the work done by the applied pressure, and

� D 2.a�� a�0/

is the delamination energy3, where
a� D L� a

is the conjugate bond zone half-length as defined earlier, a�0 corresponds to some initial value of a�, and
 is the normalized bond energy (bond strength).

The normalized bond energy,  , is related to its dimensional counterpart, N , by the relations

 D N Ǹ2= ND;

3More generally,  may be considered to be an implicit function of a�. In this event, the functional � is defined in terms of
its first variation, ı� D 2ıa� (that is, the virtual work of the generalized force  ).
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where ND is the dimensional bending stiffness of the base panel and Ǹ D NL; NR (plate, shell). Likewise,
the normalized interfacial stresses �1;�2, and � (the Lagrange multipliers), and the normalized applied
pressure p, are related to their dimensional counterparts N�1; N�2; N�; and Np, respectively, by

�i D N�i Ǹ
3= ND .i D 1; 2/; � D N� Ǹ3= ND;p D Np Ǹ3= ND:

We next invoke the principle of stationary potential energy which, in the present context, is stated as

ı…D 0:

Taking the appropriate variations, allowing the interior boundaries a and b to vary along with the dis-
placements, we arrive at the corresponding differential equations, boundary and matching conditions, and
transversality conditions (the conditions that establish values of the “moveable” interior boundaries a and
b to be found as part of the solution, together with the associated displacement field, which correspond
to equilibrium conditions of the evolving structure). After eliminating the Lagrange multipliers from the
resulting equations, we arrive at a self-consistent set of equations and conditions (including the energy
release rates) for the evolving composite structure. We thus have

M �i
00
C k.M �i �N

�
i /� .N

�
i w
�
i
0/0 D�p; N �i

0
D 0 .s 2 Si I i D 1; 2/ (7)

M 003 C k.M3�N3/� .N3w
0
3/
0
D�p; N 03 D 0 .s 2 S3/ (8)

M 00p3C k.Mp3�Np3/� .Np3w
0
p3/
0
D 0; N 0p3 D 0 .s 2 S3p/ (9)

with
w�i .s/� wi .s/D wpi .s/ .s 2 Si I i D 1; 2/;

��i .s/� �i .s/D �pi .s/ .s 2 Si I i D 1; 2/;

u�1.s/D u
�
p1.s/ .s 2 S1/:

Here
Ni .s/D C Œei .s/�˛‚�; Npi .s/D CpŒepi .s/� p̨‚� .i D 1; 2; 3/

are the normalized resultant membrane forces acting on a cross section of the base panel and patch within
region Si .i D 1; 2; 3/;

N �1 .s/D C
�e�1 .s/CB

���1 .s/�n
�‚D C �Œe�1 .s/�˛

�‚�CB�Œ��1 .s/�ˇ
�‚�; (10)

M �1 .s/D A
���1 .s/CB

�e�1 .s/��
�‚D A�Œ��1 .s/�ˇ

�‚�CB�Œe�1 .s/�˛
�‚� (11)

DD�Œ��1 .s/�ˇ
�‚�C ��N �1 ;

respectively, correspond to the normalized membrane force and normalized bending moment acting on
a cross section of the bonded portion of the composite structure;

N �2 .s/DN2CNp2 and M �2 .s/DDc�
�
2 .s/C

1
2
.hpNp2� hN2/ (12)

correspond to the normalized resultant membrane force and bending moment for the debonded portion
of the composite structure within the contact zone; and

M3.s/DD�3.s/�
1
2
hN3 and Mp3.s/DDp�p3.s/C

1
2
hpN3;
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correspond to the normalized bending moments in the base panel and patch segments within the region
of separation (or lift zone).

The stiffnesses and thermal coefficients of the composite structure defined by (10), (11), and (12) are
found in terms of the stiffnesses and thicknesses of the primitive substructures as

A� DDCDpC .h=2/
2C C .hp=2/

2Cp; B� D .hp=2/Cp � .h=2/C;

C � D C CCp; D� D A�� ��B� DDc C .h
�=2/2Cs; (13)

˛� D ˛1� �
�ˇ�; ˇ� Dm�=D�;

where

�� D B�=C �; Dc DDCDp; h� D hC hp; Cs D CCp=C
�;

�� D 1
2
hpCp p̨ �

1
2
hC˛; n� D Cp p̨CC˛; m� D ��� ��n�; ˛1 D n

�=C �:
(14)

The quantity �� is seen to give the transverse (radial) location of the centroid of the composite struc-
ture with respect to the reference surface, Dc is the bending stiffness of the debonded segment of the
composite structure in the contact zone, h�� 1 is the normalized thickness of the composite structure,
and Cs is an effective (series) membrane stiffness. In addition, the parameters ˛� and ˇ� are seen
to correspond to the thermal expansion coefficients of the intact portion of the composite structure,
and correspond to the thermally-induced membrane strain at the reference surface and the associated
curvature change, respectively, per unit normalized temperature change for a free unloaded structure.
The thermal expansion coefficient ˛1 is seen to be the corresponding strain per unit temperature at the
centroid of the intact segment of an unloaded composite structure.

The associated boundary and matching conditions are obtained similarly:

u�1.0/D 0; w�1
0.0/D 0; ŒM �1

0
�N �1 w

�
1
0�sD0 D 0 (symmetric deformation) (15a)

u�0.0/� u
�
1.0/C �

�w�1
0.0/D 0; w�1 .0/D 0; ��1 .0/D 0 (antisymmetric deformation) (15b)

u�1.a/D u
�
2.a/D u

�
p2.a/; N �1 .a/DN

�
2 .a/ .aD aL;�aR/ (16)

w�1 .a/D w
�
2 .a/; w�1

0.a/D w�2
0.a/ .aD aL;�aR/ (17)

ŒM �1
0
�N �1 w

�
1
0�sDa D ŒM

�
2
0
�N �2 w

�
2
0�sDa; M �1 .a/DM

�
2 .a/ .aD aL;�aR/ (18)

u�2.b/D u
�
3.b/; N2.b/DN3.b/ .b D bL;�bR/ (19)

u�p2.b/D u
�
p3.b/; Np2.b/DNp3.b/ .b D bL;�bR/ (20)

w�2 .b/D w3.b/D wp3.b/; w�2
0
.b/D w03.b/D w

0
p3.b/ .b D bL;�bR/ (21)

M �2 .b/DM3.b/CMp3.b/ .b D bL;�bR/ (22)

ŒM �2
0
�N �2 w

�
2
0�sDb D ŒM

0
3�N3w

0
3�sDbC ŒM

0
p3�Np3w

0
p3�sDb .b D bL;�bR/ (23)

Np3.˙Lp/D �p3.˙Lp/D ŒM
0
p3�Np3w

0
p3�sD˙Lp

D 0 (24)

u3.˙L/D 0 or N3.˙L/D 0 (25)

w03.˙L/D 0 or �3.˙L/D 0 (26)

w3.˙L/D 0 (27)
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The transversality condition for the propagating bond zone boundaries, aD aL;�aR, with the asso-
ciated propagating contact zone boundaries, b D bL;�bR, take the following forms depending upon the
presence or absence of a contact zone:

G.2/fag D 2 .b > a/; G.3/fag D 2 .b D a/: (28)

In these expressions, the quantities

G.i/fag �G
.i/
MM CG

.i/
MT CG

.i/
TM CGT T .i D 2; 3/

are the energy release rates, whose components are given by

G
.2/
MM �

�
1
2
Dc�

�2
2 C

1
2C
N 2
2 C

1
2Cp

Np2
2
�
sDa
�
�
1
2
D�.��1 �ˇ

�‚/2C 1
2C�N

�2
1

�
sDa

; (29)

G
.3/
MM �

�
1
2
D�3

2
C
1
2
Dp�p3

2
C

1
2C
N 2
3 C

1
2Cp

Np3
2
�
sDa
�
�
1
2
D�.��1 �ˇ

�‚/2C 1
2C�N

�2
1

�
sDa

; (30)

G
.i/
MT �

�
1
2
NieT C

1
2
NpiepT

�
sDa
�
�
1
2
N �1 e

�
T C

1
2
M �1 �

�
T

�
sDa

.i D 2; 3/; (31)

G
.i/
TM �

�
1
2
NT e

ı
pi C

1
2
NpT e

ı
i

�
sDa
�
�
1
2
N �T e

�
0 C

1
2
M �T �

�
0

�
sDa

.i D 2; 3/; (32)

GT T �
�
1
2
NT eT C

1
2
NpT epT

�
sDa
�
�
1
2
N �T e

�
T C

1
2
M �T �

�
T

�
sDa

; (33)

where the following measures have been introduced:

eıi � ei �˛‚; eıpi � epi � p̨‚ .i D 2; 3/; (34)

eT � ˛‚; epT D p̨‚; NT D C˛‚; NpT D Cp p̨‚; (35)

e�0 � e
�
1 �˛

�‚; ��0 � �
�
1 �ˇ

�‚; e�T � ˛
�‚; ��T � ˇ

�‚; (36)

N �T � C
�˛1‚D C

�e�T CB
���T ; M �T � �

�‚DD���T C �
�N �T : (37)

The conditions established by those equations suggest the following delamination criterion:

If, for some initial value aD a0 of the bond zone boundary, the state of the structure is such
that G.i/fag � 2 , then delamination growth occurs and the system evolves (a decreases, a�

increases) in such a way that the corresponding equality in (28) is satisfied. If G.i/fag < 2 ,
delamination growth does not occur.

For a propagating contact zone .s D b/, the associated transversality condition reduces to the form

��2 .b/D �3.b/D �p3.b/ .b D bL <Lp;�bR > �Lp/; (38)

to which we add the qualification

�3.b
C/ > �p3.b

C/ (39)

in order to prohibit penetration of the base panel and patch for s 2 S3p. It is thus seen that such a
boundary is defined by the point where the curvature changes of the respective segments of the structure
are continuous.

The equations introduced so far define the class of problems of interest.
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The boundary conditions (24), together with (9), indicate that the “flap” (the segment of the debonded
portion of the patch that is lifted away from the base structure) is unloaded, and hence that

Np3.s/D �p3.s/DM
0
p3.s/D 0 .s 2 S3p/: (40)

Further, integration of (7)2 and (8)2, imposition of the associated matching conditions stated by (16)3,
(19)2, and (20)2, and incorporation of (40)1 yield the results that

N �1 DN2 DN3 DN0 D constant; Np2 D 0: (41)

The remaining equations are modified accordingly, with the transversality conditions stated in (28) and
(38) taking the forms

G.2/fag �!
�
1
2
Dc�

�
2
2
�
1
2
D���1

2
C
1
2
N 2
0 =CeCN0.˛�˛1/‚C

1
2
�‚2

�
sDa
D 2 .b > a/

G.3/fag �!
�
1
2
D�23 �

1
2
D���1

2
C

1
2
N 2
0 =Ce C N0.˛ � ˛1/‚ C

1
2
�‚2

�
sDa
D 2 .b D a/

�
(42)

and

��2 .b/D �3.b/D 0; �3.b
C/ > 0 .b < Lp/; (43)

where
1

Ce
�
Cp=C

C �
; �� ˛2C C˛2pCp �˛

2
1C
�: (44)

It may be seen from (43) that a propagating or intermediate contact zone boundary may occur only if
conditions are such that an inflection point or pseudo-inflection point occurs on the interval a < s < Lp .
If not, the system will possess either a full contact zone .b D Lp/, or no contact zone .b D a/. For the
former case, the lifted segment of the flap (region S3p) will not exist and the condition

�2.a
C/ < 0 .b D Lp/ (45)

must be satisfied.
Integrating the strain-displacement relations and imposing the boundary and matching conditions for

the axial (circumferential) displacements results in the following integrability condition:

u3.L/�u0DN0

�a�
C
C
a

C �

�
C.a�˛C a˛1/‚�

�h
2
C ��

�
w0.a/C

3X
iD1

Z
Si

�
k.1� ��ıi1/wi �

1
2
w0i
2�
ds;

(46)
where

u0 � Œu1
�
C ��w01�sD0 (47)

is the axial (circumferential) deflection of the neutral surface of the composite structure at the origin,
and ıij is Kronecker’s delta. The counterparts of (7)1 and (8)1 and the corresponding boundary and
matching conditions obtained upon substitution of (38)–(40), together with the transversality conditions
stated in (42) and (43), and the integrability condition, (46), transform the problem statement into a mixed
formulation in terms of the transverse displacements wi .s/ .i D 1; 2; 3/, the membrane force N0, and
the moving boundaries a and b.
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3. Delamination mode mix

The bond energy (that is, interfacial toughness) is generally dependent upon the mix of “delamination
modes”. To assess this influence for the system under consideration, we adopt the structural scale de-
composition of the energy release rate for long thin-layered structures established by Bottega [2003]
and extend it to include the thermal effects considered for the present study. In the aforementioned
reference, the decomposition is established for a general structure and is then applied to selected specific
structural configurations, including patched structures. The presence of a contact zone is taken to imply
pure mode-II delamination, while the absence of contact is considered to (generally) imply mixed mode-
I and mode-II delamination. The mixed mode decomposition is based on the energy release rates for
contact and no contact together with a “curvature of contact” defined therein. The decomposition for
the present problem follows directly from the aforementioned reference and the inclusion of the thermal
terms as follows. The last three terms of the energy release rates given by (42) are seen to constitute
the relative thermomechanical membrane energy at the bond zone boundary and thus contribute to the
mode-II delamination energy release rate. Incorporating the last two of these (the first is already included
in the original) into the resulting partitioning of the energy release rate for the class of patched structures
currently under consideration [Bottega 2003, Section 5.3] gives the following decomposition for the
present structure:

GI D
1
2
DI�

2
3.a/; GII D

1
2

�
DII�

2
3 �D

���1
2�
xDa
C
�
1
2
N 2
0 =CeCN0.˛�˛1/‚C

1
2
�‚2

�
; (48)

where GI and GII are, respectively, the mode-I (opening mode) and mode-II (sliding mode) energy
release rates, and

DI DDpD=Dc ; DII DD
2=Dc : (49)

The mode ratio GII=GI can be readily evaluated using (48) for any configuration determined by the
formulation established in this section.

4. Analysis

The mixed formulation presented in the previous section admits analytical solutions to within a numer-
ically determined membrane force parameter. (7)–(9) together with the matching conditions, (16)–(23),
and the pertinent boundary conditions of (15) and (24)–(27), can be readily solved to yield analytical
solutions for the transverse displacement in terms of the membrane force. For given material and geo-
metric properties, the membrane force can be evaluated numerically by substituting the corresponding
analytical solutions into the integrability condition, (46), and finding roots (values of N0) of the result-
ing transcendental equation using root solving techniques. Each root is associated with an equilibrium
configuration of the evolving structure for given values of the temperature, pressure, damage size, and
length of the contact zone. Once obtained, these values can be substituted back into the solution for the
transverse deflection and the result then substituted into the transversality conditions (42) to generate the
delamination growth paths for the evolving structure.4 The onset, stability, and extent of propagation can
be assessed from these paths. (As a special case, it may be noted from (25)2 and (41)1 that when the edges

4For computational purposes, it is often convenient to combine the equations of the integrability and transversality conditions
in a strategic manner, depending upon the circumstances.
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of the base structure are free to translate in the axial (circumferential) direction, the uniform membrane
force vanishes identically .N0 � 0/. For this case, the analytical solutions may be obtained by direct
integration, and substituted into the transversality condition. The corresponding integrability condition
will then simply yield the axial (circumferential) displacement of the edge of the base structure.) Finally,
the issue of a propagating contact zone may be examined by evaluating a solution for a given value of
b (associated with a given value of a) and checking to insure that the resulting displacements satisfy
the kinematic inequality (43)2. The energy release rates for configurations with valid contact zones may
then be plotted as a function of the contact zone boundary coordinate, b, for selected values of the bond
zone size, a. (It was shown in [Bottega 1995] that for a certain class of problems a propagating contact
zone is not possible. Rather, if contact of the detached segment of the patch with the base structure is
present it is either in the form of a full contact zone — that is, the entire debonded segment of the patch
maintains sliding contact with the base structure — or edge point contact, where only the “free” edge
of the patch maintains sliding contact [Karlsson and Bottega 1999b]. If, for this class, neither of these
configurations is possible then contact does not occur: a contact zone does not exist.)

For the case of no contact zone, a relatively simple growth path can be determined in the load-bond
zone boundary space and the deflection-bond zone boundary space, or equivalently in the load-deflection
space. Various scenarios can be predicted from examination of these paths as follows. Consider the
generic growth path shown in Figure 3, where � represents the generalized “load”, say the temperature
change or the applied transverse pressure, and a� corresponds to the size of the damaged region. For
a given initial damage size (say point A, C , or F on the horizontal axis), no growth occurs as the load
is increased until the load level is such that the growth path is intercepted. At that point growth ensues
and may proceed according to several scenarios, depending upon the initial value of a�. These scenarios
include stable growth (BEH), where an increment in load produces an increment in damage size; unstable
growth .D! E/ followed by stable growth (EH), where the damage propagates dynamically (that is,
“jumps”) to an alternate stable configuration and then proceeds in a stable manner thereafter; and unstable,
catastrophic growth .G!H 0/, where the damage propagates dynamically through the entire length of
the patch, resulting in complete detachment of the patch from the base structure.

λ

a*

Unstable Stable

A

B

C

D
E

F

G

H

H’

L

Figure 3. A generic debond growth path.
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The formulation discussed in Section 2 and the procedure outlined in the current section are applied
to examples of axially (circumferentially) unfettered structures in the next section.

5. Results for axially unfettered structures

In this section, we present results for structures that are completely unfettered and for those whose edges
are free to translate in the axial (circumferential) direction. Specifically, in Section 5.1 we consider
completely unfettered structures, flat or curved, subjected to temperature change alone. In Section 5.2
we consider the influence of temperature on edge debonding of both flat and curved structures subjected
to three-point loading, and in Section 5.3 we examine the effects of temperature on the detachment of
axially unfettered patched beam-plates subjected to transverse pressure.

5.1. Unfettered structures in a uniform temperature field. In this section, we examine the behavior of
structures, flat or curved, that are completely unfettered (that is, those whose edges are free). The results
discussed also hold for the case of pinned-free supports. That is, for structures for which the edges of the
base panel are free to translate with regard to axial (circumferential) translation and pinned with regard
to rotation.

For this case, a free-body diagram of segments of the structure in each of the regions shows that

�1
�
D ˇ�‚; �2

�
D �3 D 0: (50)

It follows from earlier discussions that for the present case passive contact occurs .�2� D 0/ for the
entire detached segment of the patch, regardless of the sign of the thermally-induced curvature in the
bond zone. In this case, the transversality conditions given by (42) reduce to the same form,

GD 1
2

�
�=ˇ�

2
�D�/.ˇ�‚/2 D 2: (51)

Since the bond zone boundary does not appear explicitly in the equation (51) for the growth path, the
energy release rate is independent of the location of the bond zone boundary. It follows that when
growth occurs it is catastrophic. That is, when the critical temperature change is achieved, the entire
patch detaches from the base structure in an unstable manner. Substitution of (44)2, (13), and (14) into
(51) renders the transversality condition for this case to the form

.ˇ�‚�/2 D
2Csh

�2

D�.4D��Csh�
2/
; (52)

where
‚� �‚=

p
2: (53)

It is seen from (52) that the critical renormed thermal curvature, ˇ�‚�, is independent of the coefficients
of thermal expansion of the constituent layers. The dependence of the critical thermal moment on the
modulus ratio, E0, is displayed in Figure 4 for the case hp D hD 0:05. The peak value of the critical
curvature occurs for E0 ' 0:25. (For later reference, we note that for E0 D 1, kˇ�‚�kcr D 0:8660.)
We remark that, during the thermal loading, deformation, and evolution processes, the entire debonded
segment of the patch maintains sliding contact with the base structure regardless of the sign of the
renormed thermal curvature, ˇ�‚�.
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Figure 4. Critical renormed thermal curvature as a function of modulus ratio for a com-
pletely unfettered structure subjected to temperature change. .hp D hD 0:05/.

5.2. Temperature change and three-point loading. We next consider structures, both flat .k D 0/ or
cylindrical .k D 1/, that are subjected to three-point loading and a uniform temperature field. For this
case, the upwardly directed (normalized) transverse load at the center of the span is taken to be 2Q0,
and the supports at the edges of the base panel are pinned-free. Equivalently, the edges of the base panel
may each be considered to be loaded with a downwardly directed (normalized) transverse load Q0 and
the center of the span considered to be sitting on a knife edge (Figure 5). The normalized load, Q0, is
related to its dimensional counterpart, Q0, as follows:

Q0 D NQ0 Ǹ
2=D; (54)

where, as defined earlier, `D L;R (plate, shell). Consideration of the equilibrium of regions 2 and 3 of
the structure shows that (43) is violated, and hence that no contact zone is present.

Patched plate. A region-wise moment balance for the patched beam-plate yields

�1
�.a/D ˇ�‚C

Q0

D�
.L� a/; �3.a/D

Q0

D
.L� a/: (55)

Θ
Q Q

Θ

Q Q

Figure 5. Three-point loading of patched structure. Left: patched beam-plate. Right:
patched arch-shell.
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Figure 6. Growth paths for a patched plate subjected to three-point loading for various
renormed temperatures (thermal curvatures). p̨=˛ D 0:5 or 2; E0 D 1; hD hp D 0:05.

It may be seen from these equations that a pseudo-inflection point may exist at x D a when ˇ�‚ < 0
and kˇ�‚k >Q0.L� a/=D�. Substitution of (55) into (42)2 reduces the transversality condition for
the present case to the form

Q�
2
a�
2
� 1
D
�

1

D�

�
� 2Q�a�.ˇ�‚�/C

� �

ˇ�2
�D�

�
.ˇ�‚�/2� 2D 0; (56)

where
Q� �Q=

p
2; and ‚� �‚=

p
2: (57)

The debond growth paths are easily generated from (56) for any structure of interest. Such paths are
displayed in Figure 6 for a structure with the properties E0 D 1, hp D h D 0:05, p̨=˛ D 0:5, and
p̨=˛ D 2:0. We note from Figure 4 that, for thermal loading alone, kˇ�‚�kcr D 0:8660 when E0 D 1.

Thus, propagation will occur due to temperature change alone for this condition. To examine the effects
of three-point loading we therefore consider temperature changes for which kˇ�‚�kcr < 0:8660.

It may be seen from Figure 6 that, for any initial conjugate bond zone size, once the critical value ofQ0
is achieved it is sufficient for all larger conjugate bond zone sizes. Therefore, growth is catastrophic for all
initial damage sizes. That is, once propagation ensues it continues unimpeded, with the patch ultimately
completely separated from the base structure. To interpret these results further, we note the following.
For the case p̨=˛D 2:0, ˇ� > 0. Thus, for this case, the results displayed in Figure 6, left, correspond to
positive temperature changes while those in Figure 6, right, correspond to negative temperature changes.
For the case p̨=˛ D 0:5, ˇ� < 0, the interpretation is the reverse of that for p̨=˛ D 2:0. That is,
for p̨=˛ D 0:5, the results shown on the left are associated with negative temperature changes while
those on the right correspond to positive temperature changes. For negative thermally-induced curvature
.ˇ�‚� < 0/, the intact segment of the composite structure is concave up, while the transverse load Q0
tends to bend the detached segment concave downward thus encouraging “opening”. In this way, the
temperature changes are seen to encourage detachment (Figure 6, right), lowering the critical level of the



1242 WILLIAM J. BOTTEGA AND PAMELA M. CARABETTA

transverse load well below that for vanishing temperature, with increasing magnitude of the temperature
change. In contrast, for positive thermally-induced curvature .ˇ�‚� > 0/, the intact segment of the
composite structure is concave down in the same sense as the curvature change of the detached segment
as induced by Q0. The thermal effect here is to oppose “opening” and hence to resist detachment. In
this sense, the critical level of the transverse load is seen to increase with increasing thermally-induced
moment, as seen in Figure 6, left, though these effects are observed to be less dramatic than those
associated with negative thermal moments.

Patched shell. We next consider the analogous problem of a patched panel subjected to three-point
loading. Recall that for curved structures, length scales are normalized with respect to the radius of
the undeformed structure. Normalized arc lengths are then angles. Proceeding as for the beam-plate, a
region-wise moment balance for the patched panel yields

�1
�.a/D ˇ�‚C

Q0

D�
F.a/; �3.a/D

Q0

D
F.a/; (58)

where
F.a/D cosL.sinL� sin a/C sinL.cos a� cosL/: (59)

It is seen from the above equations that a pseudo-inflection point may exist at x D a when ˇ�‚< 0 and
kˇ�‚k> F.a/=D�. Substitution of (58) into the second line of (42) reduces the transversality condition
for the present case to the form

Q�
2
ŒF .a/�2

�
1

D
�

1

D�

�
� 2Q�F.a/.ˇ�‚�/C

�
�

ˇ�2
�D�

�
.ˇ�‚�/2� 2D 0; (60)

where Q� and ‚� are defined by (57).
For the purposes of comparison, we shall examine the behavior of a specific structure having the same

proportions as those of the beam-plate considered earlier. Toward this end we consider the structure
for which L D 0:4 radians, hp D h D 0:02 (same thickness to length ratio as the plate), E0 D 1 and
p̨=˛ D 0:5 and 2.0. Corresponding results for a patched shell segment subjected to three-point loading

(Figure 5, right) are displayed in Figure 7. It is seen that the behavior is very similar to that of the patched
plate. (Recall that the load is normalized via (54).)

5.3. Temperature change and transverse pressure. In this section, we examine symmetric edge debond-
ing of a patched beam-plate .k D 0/ for cases where the edges of the base plate are free to translate in
the axial direction. It follows from (25)2 and (41) that, for these support conditions, N0 D 0. This
renders the governing differential equations for the transverse displacement w.s/, resulting from (7)1,
(8)1, and (9)1, linear. The solutions may thus be obtained by direct integration, with the constants of
integration evaluated by imposing the boundary and matching conditions for transverse motion given by
(15a)2;3, (17), (18), (21)–(23), (24)2;3, (26) and (27). We consider two extreme support conditions at the
edges of the base plate: pinned-free and clamped-free. Based on these analytical solutions, numerical
simulations are performed for structures possessing the representative properties hp D hD 0:05, E0 D 1,
and 2 D 0:1. The first two properties render B� D ˇ� D 0 and thus eliminate mechanical material
bending-stretching coupling within the bonded region. We shall consider two complementary cases of
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Figure 7. Growth paths for a patched shell subjected to three-point loading for various
renormed temperatures (thermal curvatures). p̨=˛ D 0:5 or 2; E0 D 1; hD hp D 0:02;
LD 0:4.

thermal mismatch: p̨=˛ D 0:5 and p̨=˛ D 2:0. For the purposes of presentation and interpretation of
results, we introduce the characteristic deflection �0 ��w1.0/.

Hinged-free supports. We first examine the behavior of a structure with hinged-free supports. That is,
a beam-plate for which the edges of the base-plate are hinged with respect to rotation and free with
respect to in-plane translation (see Figure 1, left). For such support conditions, it may be anticipated that
the deformed structure will not exhibit an inflection point or pseudo-inflection point, under the loading
considered when deflections are upward. It follows, from the discussion preceding (45), that if a contact
zone is present it will be a full contact zone. Moreover, a contact zone may be present only if the
deflection of the structure is downward. However, for the supports and loading under consideration, the
curvature of the bonded region will be concave upward during negative deflection, but the curvature of
the base plate in the unpatched and detached regions will be concave downward regardless of the sign
of the deflection. Thus, there will be a pseudo-inflection point at the bond zone boundary for downward
deflections of the structure. Since the curvature of the patch in the detached region must be zero or
concave upward, a contact zone is not possible.

Debond growth paths for the ratio p̨=˛ D 0:5 are displayed in Figure 8 for various values of the
renormalized temperature Q‚ D ˛‚. The growth paths are presented in p � a� space (left half of the
figure) and in �0� a� space (right half).

For this ratio of thermal expansion coefficients, the influence of the temperature is greater for the base
plate than for the patch, which results in a “concave up” curvature (ˇ�‚< 0/ within the bond zone for
positive temperature changes. This opposes the concave down curvature induced by the pressure and
thus tends to “flatten” the structure within this region. In contrast, since the unbonded and debonded
regions of the base plate are bent by the pressure alone, with the temperature change simply extending
that segment of the structure, the curvature in these regions is concave downward. When the pressure
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Figure 8. Debond growth paths for structures possessing hinged-free supports, with
p̨=˛ D 0:5. Left: p versus a�. Right: �0 versus a�.

effect dominates over the thermal moment, the curvature of the bond zone is concave down resulting in
an upward deflection of the structure. For pressure-temperature combinations such that the deflection
of the structure is upward, the “flattening” of the bond zone (by the temperature change) increases the
relative bending of the unpatched segment of the base plate and hence the energy release rate for a
given pressure, resulting in a lowering of the threshold pressure with increasing temperature change,
as indicated. Moreover, when the temperature is sufficiently large such that the effects of the thermal
moments dominate over those due to the pressure, then the curvature within the bond zone will be concave
upward and the deflection of the structure will be downward. For these situations, the curvatures of the
structure within the bonded and unbonded/debonded regions are of opposite sign, further increasing
the relative bending between the detached and bonded segments at the bond zone boundary, and thus
increasing the energy release rate at a given pressure level. This, in turn, results in further decreasing of
the threshold pressure. Conversely, the threshold pressure increases with decreasing temperature. As the
temperature change becomes negative, the thermal moment becomes positive .ˇ�‚> 0/ and reinforces
the mechanical moment rendering the curvature of the structure within the bond zone concave down —
the same sense as within the detached/unbonded region. As a result, the relative bending at the bond zone
boundary is reduced for a given value of the applied pressure and, consequently, the energy release rate.
The threshold pressure, therefore, increases accordingly. In this sense, the effect of the thermal moment
may be viewed as a reduction of the effective stiffness of the composite structure within the bonded region.
At some point, the thermal effect reduces the “effective local stiffness” to the extent that the curvature
of the structure within the bond zone is comparable with that of the detached segment of the base plate.

The debond growth paths for a mechanically and geometrically identical structure with p̨=˛ D 2:0

are displayed in Figure 9 for various values of the normalized temperature change. For ratios of the
coefficients of thermal expansion greater than one, the thermal moment is positive .ˇ�‚> 0/ for positive
temperature changes. The scenarios for structures with this property are therefore the reverse of those
for p̨=˛ D 0:5 discussed previously.
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Figure 9. Debond growth paths for structures possessing hinged-free supports, with
p̨=˛ D 2:0. Left: p versus a�. Right: �0 versus a�.

Clamped-free supports. We next examine the behavior of a structure with clamped-free supports. That
is, a beam-plate for which the edges of the base-plate are clamped with respect to rotation and free with
respect to in-plane translation (see Figure 1, right). The arguments put forth when discussing the previous
case, regarding the effects of the competition between the thermal and mechanical moments within the
bond zone and their implications regarding curvature of the structure within that region, are paralleled
for the present case. However, the constraints imposed on the rotations at the supports for the present
case induce a pseudo-inflection point at the bond zone boundary and/or, at least, one inflection point
along the half-span Œ0; 1� for the type of loading considered. For the purposes of the present argument,
we consider one inflection or pseudo-inflection point to be present on the half-span. It follows that the
curvature of the segment of the structure nearest the support will be concave up when the deflection of
the structure is upward. In this light, we deduce the following possible configuration scenarios from (43)
and (45). When the deflection is upward, a pseudo-inflection point at the edge of the bonded region or
an inflection point within the bond zone will be accompanied by a full contact zone. However, if an
inflection point occurs within the unpatched/detached region then it will be accompanied by, at most,
contact of the free edge of the patch with the detached segment of the base plate (“edge-point contact”).
Conversely, when the deflection is downward, the curvature of the unpatched region will be concave
down. For this situation, no contact zone will be present when a pseudo-inflection point is present at
the bond zone boundary or an inflection point occurs within the bonded region. A partial propagating
contact zone will be present when an inflection point occurs within the detached region and �0 < 0.
Situations in which more than one critical point occurs along the span may be considered individually
using the criterion established in Section 2 and discussed further in Section 3.

Growth paths for vanishing temperature are presented in Figure 10. Growth paths for structures with
the property p̨=˛D 0:5 are presented in Figure 11, and those for which p̨=˛D 2:0 are shown in Figure
12, for selected values of the renormed temperature change. It is found, for the geometry and material
ratios considered, that a full contact zone is possible for structures for which Lp � 0:79, depending upon
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Figure 10. Contact zone (CZ) and no contact zone (NCZ) growth paths for structures
subjected to pressure loading only .‚D 0/ and possessing clamped-free supports.

the initial size of the damage. Structures possessing shorter patches have no contact zone regardless of
the size of the damage.

Growth paths for a structure possessing a patch of length Lp D 0:9 for vanishing temperature change
are presented in Figure 10, left. Those for a structure with a patch of length Lp D 0:8 are displayed in
Figure 10, right. In these figures, the path labeled ‘CZ’ indicates the presence of a contact zone, and paths
labeled ‘NCZ’ correspond to configurations with no contact zone. Invalid segments of the no contact
paths are shown as dashed lines. Both legs of the NCZ path approach an asymptote at a� D 0:216, while
the CZ path for Lp D 0:9 approaches an asymptote at a� D 0:230. It is seen that, when the contact
zone is present, debonding is stable and that growth arrests as the asymptote is approached. It is also
seen that the threshold values predicted with a contact zone present are lower than those predicted if it
were neglected, for a range of values of a�. For initial damage size to the right of the asymptote, growth
is seen to be catastrophic for relatively small initial conjugate bond zone lengths, unstable followed by
stable for intermediate initial damage sizes, and stable for relatively large initial conjugate bond zone
sizes and/or patch half-lengths.

The effects of temperature are examined in Figures 11 and 12. The growth paths corresponding to
selected temperature changes are displayed in p-a� space and in �0-a� space in Figure 11 for structures
where p̨=˛ D 0:5. In each case, dashed segments of the paths correspond to equilibrium configurations
for which a contact zone is present, .Lp D 0:9/, while solid lines indicate configurations with no con-
tact zone. Upon consideration of the figures, it is seen that the qualitative debonding behavior under
force-controlled loading for moderate to large flaw sizes is very similar to that previously discussed
for structures with hinged-free support conditions, but shows slight stabilization for very large debonds.
(This stabilization depends on the temperature, as stable debonding is recovered for smaller flaw sizes
as the temperature increases.) For this range, no contact zone is present, �0 > 0, and an inflection point
occurs in the unpatched/detached region. For long patches, a contact zone is present, reducing the relative
bending at the bond zone boundary and thus raising the threshold pressure, stabilizing the process, and
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Figure 11. Growth paths corresponding to selected temperatures, for structures with
clamped-free supports, with p̨=˛ D 0:5. Dashed lines indicate contact zone configura-
tions for Lp D 0:9. Solid lines indicate no contact zone.
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Figure 12. Growth paths corresponding to selected temperatures, for structures with
clamped-free supports, with p̨=˛ D 2:0. Dashed lines indicate contact zone configura-
tions for Lp D 0:9. Solid lines indicate no contact zone.

leading to eventual (asymptotic) arrest. The scenarios for deflection-controlled loading parallel those
discussed for the hinged-free case, for moderate to large disbonds as well. For long patches with small
initial debonds, stable growth and asymptotic arrest is indicated as for force-controlled loading. Similar
results are shown in Figure 12 for structures with p̨=˛ D 2:0, but the effects of temperature are reversed.

Mode mix. Lastly, we examine the ratio of the mode-II energy release rate to the mode-I energy release
rate using the structural scale decomposition presented in Section 3. Configurations for which a contact
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Hinged-free support conditions

p̨=˛ D 0:5 p̨=˛ D 2

Q‚ GII=GI Q‚ GII=GI

�0:03 0.0019 �0:015 2.9389
�0:01 0.3059 �0:010 4.7497

0 0.7500 0 0.7500
0.01 1.7409 0.010 0.0870
0.03 27.939 0.015 0.0019

Clamped-free support conditions

p̨=˛ D 0:5 p̨=˛ D 2

Q‚ GII=GI Q‚ GII=GI

�0:012 0.2488 �0:007 2.5102
�0:010 0.3059 �0:005 1.7409

0 0.7500 0 0.7500
0.010 1.7409 0.005 0.3059
0.012 2.0822 0.007 0.1991

Table 1. Dependence of delamination mode ratio on temperature change for structures
with hinged-free and clamped-free support conditions.

zone is present correspond to pure mode-II debonding .GII=GI !1/. For situations in which no
contact zone is present, results for both hinged-free and clamped-free support conditions show that the
mode partition ratio is independent of the debond size. Therefore, the qualitative debond scenarios for a
given temperature discussed earlier are not altered due to the dependence of bond strength on mode mix,
the exception being the comparison of contact zone and no contact zone configurations. The threshold
levels for contact zone configurations will be relatively higher than indicated for a given temperature,
since  will be higher for pure mode-II. For either support condition considered, it is seen that when
p̨=˛ D 0:5, the ratio increases with increasing temperature, and vice versa. The reverse is seen when
p̨=˛ D 2:0. The dependence of GII=GI on Q‚� ˛‚ is summarized in Table 1.

6. Concluding remarks

The problem of debonding of patched panels subjected to temperature change and transverse pressure
has been formulated from first principles as a propagating boundaries problem in the calculus of varia-
tions. This is done for both cylindrical and flat structures simultaneously. An appropriate geometrically
nonlinear thin structure theory is incorporated for each of the primitive structures (base panel and patch)
individually. The variational principle then yields the constitutive equations of the composite structure
within the patched region and an adjacent contact zone, the corresponding equations of motion within
each region of the structure, and the associated matching and boundary conditions for the structure. In
addition, the transversality conditions associated with the propagating boundaries of the contact zone
and bond zone are obtained directly, the latter giving rise to the energy release rates in self-consistent
functional form for configurations in which a contact zone is present, as well as when it is absent. Further,
a structural scale decomposition of the energy release rates is established by advancing earlier work of the
first author to include the effects of temperature. The formulation is utilized to examine the behavior of
several representative structures and loadings. These include debonding of completely unfettered patched
structures subjected to temperature change, the effects of temperature on the detachment of beam-plates
and arch-shells subjected to three-point loading, and the effects of temperature on damage propagation in
beam-plates, with both hinged-free and clamped-free support conditions, subjected to transverse pressure.
For the unfettered structures subjected to thermal load, the dependence of the critical thermal moment is
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found as a function of the ratio of elastic moduli, E0, for the patch and base structure. The critical moment
is found to increase rapidly as the modulus ratio is increased, to a peak value for a modulus ratio about
E0D 0:25, and then to decrease as the modulus ratio increases beyond this value. Damage propagation for
both plate and shell structures subjected to three-point loading is seen to occur in a catastrophic manner
once the critical load level is achieved. The critical load level is seen to be significantly influenced by
the temperature field, especially for the shell structures. Similar qualitative behavior was seen for force-
controlled loading of patched beam-plates subjected to transverse pressure and uniform temperature
for the case of hinged-free support conditions. However, for displacement-controlled loading, debond
propagation was seen to be stable, unstable followed by stable, or catastrophic, depending on the initial
damage size and the temperature. For the case of clamped-free supports, a contact zone is present for
very long patches for a limited range of damage sizes. For these situations, growth was seen to be stable,
with minor propagation of the damaged region, and to lead to asymptotic arrest. For shorter patches, and
for long patches with moderate to large initial damage, no contact zone was present. For these situations,
propagation was seen to be catastrophic for moderately small initial damage or moderately large patch
size, unstable followed by stable for still larger initial damage and stable for very large initial damage
or small patch lengths. The threshold levels of the applied pressure and the stability of debond growth
were seen to be strongly influenced by temperature for force-controlled loading. This behavior and its
dependence on temperature was accentuated for displacement-controlled loading.

To close, we remark that the membrane force vanishes identically for the axially unfettered structures
discussed in Section 5, thus nullifying the contributions of the geometric nonlinearities for these support
configurations. It was shown in [Carabetta and Bottega 2008], however, that retention of geometric
nonlinearities is essential to adequately model debonding phenomena in thin structures for configura-
tions in which the membrane force does not vanish identically. This is so regardless of whether or
not buckling is an issue. In this light, the formulation and analytical procedure developed in the present
work (Sections 2–4) is a geometrically nonlinear one, designed to study debonding behavior in structures
possessing such configurations. This includes the study of the interaction of thermally-induced buckling
and debond propagation as well. Extensive work in this area is currently in progress and will be presented
in a forthcoming article by the authors.

Dedication

It is with great pleasure and honor that we contribute this paper to this special issue of JoMMS dedicated
to Professor George J. Simitses, a true gentleman and scholar.
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