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OF ACTIVE PIEZOELECTRIC PLATES

UNDER THERMOELECTROMECHANICAL LOADS

DIMITRIS VARELIS AND DIMITRIS SARAVANOS

A theoretical framework is presented for analyzing the coupled nonlinear dynamic behavior of lami-
nated piezoelectric composite plates subject to high thermoelectromechanical loadings. It incorporates
coupling between mechanical, electric, and thermal governing equations and encompass geometric non-
linearity effects due to large displacements and rotations. The mixed-field shear-layerwise plate laminate
theory formulation is considered, thus degenerating the 3D electromechanical field to 2D nodal variables,
and an eight-node coupled nonlinear plate element is developed. The discrete coupled nonlinear dynamic
equations of motion are formulated, linearized, and numerically solved at each time step using the im-
plicit Newmark scheme with a Newton–Raphson technique. Validation and evaluation cases on active
laminated beams demonstrate the accuracy of the method and its robust capability to effectively predict
the nonlinear dynamic response under time-dependent combined mechanical, thermal, and piezoelectric
actuator loads. The results illustrate the capability of the method to simulate large amplitude vibrations
and dynamic buckling phenomena in active piezocomposite plates. The influence of loading rates on
the nonlinear dynamic structural response is also quantified. Additional numerical cases demonstrate the
complex dynamic interactions between electrical, mechanical, and thermal buckling loads.

1. Introduction

In the last decade a substantial amount has been published addressing the nonlinear static response of lam-
inated beams, plates, and shells with attached piezoelectric devices subjected to thermoelectromechanical
loads. The reported works implement various types of external loads, kinematic assumptions, and numer-
ical methods to solve the resultant nonlinear equations. Tzou and Zhou [1997] reported theoretical work
on the dynamics, electromechanical coupling, and control of thermal buckling of a nonlinear piezoelectric
laminated circular plate with an initial large deformation, Bao et al. [1998] analyzed nonlinear piezother-
moelastic laminated beams, and Oh et al. [2001] studied thermopiezoelastic phenomena of active lami-
nated plates. Wang et al. [2004] analyzed adaptive structures involving large imposed deformation. Ah-
mad et al. [2004] formulated a nonlinear model of a smart beam using general electrothermoelastic rela-
tions. In [Varelis and Saravanos 2004] the present authors demonstrated the prebuckling and postbuckling
response of piezoelectric plates solving the static coupled nonlinear equations, and in [Varelis and Sara-
vanos 2008] we developed a coupled nonlinear shell element for the prediction of stable and unstable de-
flection paths of piezolaminated shells subject to thermoelectromechanical loads, and also demonstrated
the capability of piezoelectric shells to induce large deflections through active snap-through buckling.

Keywords: adaptive structures, composite, piezoelectric, actuators, sensors, finite element, nonlinear dynamics, vibration,
geometric nonlinearity, thermal, buckling.
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Additional reported works addressed the nonlinear dynamic behavior of piezolaminated plates and
beams limited, however, to small amplitude free vibrations. Lee and Lee [1997] investigated the lin-
earized vibration behavior of unstiffened and stiffened thermally postbuckled anisotropic plates, Singha
et al. [2006] predicted the vibration characteristics of thermally stressed skew plates, and Park and Kim
[2006] investigated small amplitude vibration behavior of simply supported FGM plates with temperature
dependent materials in prebuckling and postbuckling state. Oh et al. [2000] presented an uncoupled layer-
wise theory to quantify the influence of buckling and postbuckling on natural frequencies. In [Varelis and
Saravanos 2006] we reported on a coupled nonlinear finite element for the prediction of small amplitude
free vibrations of piezocomposite beams and plates subjected to large deflections and initial stresses and
quantified the advantages of the coupled formulation; a strong relation between modal frequencies and
the ongoing buckling prediction was also postulated.

Very little work has been reported on the nonlinear dynamic response of adaptive piezoelectric struc-
tures for large loads and deflection amplitudes. Gao and Shen [2003] adopted first-order shear deforma-
tion theory for analyzing the geometrical nonlinear transient vibration response of plates and their control.
Yi et al. [2000] applied solid elements to perform geometrically nonlinear analysis of surface bonded
piezoelectric sensor wafers on plates and shells. Mukherjee and Chaudhuri [2005] developed a finite
element for piezolaminated beams using an uncoupled approach for the prediction of sensory voltage in
polyvinylidene fluoride (PVDF) bimorph cantilever beams vibrating at large amplitudes. Lentzen et al.
[2007] worked on the control of the nonlinear vibration of piezoelectric beams under transverse load.
Oh [2005] developed a finite plate element encompassing an uncoupled layerwise theory considering
snap-through piezoelastic behavior.

The current paper presents a nonlinear coupled thermopiezoelectric plate theory and a finite element for
laminated piezoelectric plates undergoing large displacements and rotations, for predicting the nonlinear
dynamic response of adaptive plates exposed to dynamic thermal, electrical, and mechanical loads. The
coupled nonlinear governing equations for piezolaminates are first formulated using the mixed-field shear-
layerwise kinematic assumptions [Varelis and Saravanos 2008]. Generalized governing equations are
formulated combining the Green–Lagrange nonlinear strains, with the kinematic assumptions of the
mixed-field shear-layerwise shell laminate theory and linear thermopiezoelectric constitutive equations,
including rotational inertia effects. Based on the previous generalized mechanics, a local finite element
approximation is formulated and an eight-node nonlinear thermopiezoelectric plate element is developed.
Finally, the discrete nonlinear coupled dynamic equations of motion are solved at each time step using the
Newmark time integration in combination with a Newton–Raphson technique. Validation cases verify the
present model, and various numerical examples evaluate the capability of the present method to predict
the oncoming dynamic instability of smart beams under various combinations of dynamic mechanical,
electric, and thermal loads.

2. Piezoelectric laminated shells

The case of a piezoelectric laminate plate is considered, consisting of an arbitrary configuration of linear
piezoelectric layers or composite plies. The material of each ply of the piezoelectric laminate is assumed
to remain within the range of linear piezoelectricity,

σi = C E,T
i j S j − eT

ik Ek − λ
E,T
im θm, Dl = eT

l j S j + ε
S,T
lk Ek + pT

lmθm, (1)
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where i , j = 1, . . . , 6 and k, l = 1, . . . , 3; σi and Si denote the mechanical stresses and Green’s engineer-
ing strains in extended vectorial notation, Ci j is the elastic stiffness tensor, eik is the piezoelectric tensor,
Ek is the electric field vector, λim is the thermal expansion tensor, θm =1T = T − To is the temperature
difference between the current temperature T and the thermally stress-free reference temperature To, Dl

is the electric displacement vector, εlk is the electric permittivity tensor, and plm is the pyroelectric tensor.
Superscript E , S, T represent constant voltage, strain, and temperature conditions, respectively.

The first shear deformation theory for the elastic displacements in combination with a layerwise linear
field assumption for the electric potential and temperature are implemented, in the context of the mixed-
field kinematic assumptions. Geometric nonlinear effects are usually realized in flexible structures which
do not exhibit significant shear deformable effects, and vice versa; therefore, the consideration of shear
deformation mainly aims to improve to the robustness of the linear part of the solution at plates of higher
thickness aspect ratios.

The mechanical strains, the electric and thermal field components through the thickness of the laminate
take the form

Si = So
i + zko

i + SLi (i = 1, 2, 6), Ss j = So
s j ( j = 4, 5), (2)

where So
i and So

s j are the midsurface in-plane and shear strains respectively, ko
i are the midsurface curva-

tures, and SLi the resultant nonlinear mechanical strains described with respect to midsurface parameters:

SL1 =
1
2w

o2

,x , SL2 =
1
2w

o2

,y , SL6 = w
o
,xw

o
,y . (3)

The generalized electric fields are

Ei (x, y, z, t)=
m∑

i=1

Em
i (x, y, t)9m(z) (i = 1, 2), E3(x, y, z, t)=

m∑
i=1

Em
3 (x, y, t)9m

,z (z). (4)

The generalized thermal field is

2(x, y, z, t)=
N∑

m=1

2m(x, y, t)9m(z), (5)

where N indicates the number of discrete layers which may subdivide the laminate, Em and 2m are the
generalized electric and thermal fields at the m discrete layer, 9m(ζ ) are linear interpolation functions,
and N is the number of discrete layers.

2.1. Generalized dynamic equations of motion in variational form. Since the present formulation refers
to dynamic generalized equations, the estimation of the latter from a known equilibrium configuration at
discrete time t to the next equilibrium state in discrete time t +1t is required. Through the use of the
divergence theorem and neglecting the damping effects, the generalized imbalances between external and
internal mechanical forces and electric charges, away from the equilibrium denoted by the vectors 9u

and 9e, can be expressed at time t over the volume of the piezoelectric laminated plate, in an equivalent
variational form:

δuT t9u =−

∫
V
δ tST tσ dV +

∫
V
δuT tbdV −

∫
V
δuTρ tü dV +

∫
0τ

δuT tτ̄ d0,

δφT t9e =−

∫
V
δ tET tDdV +

∫
0q

δφT tq̄ d0,
(6)
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where tS and tσ are the total Green–Lagrange strain tensor and second Piola–Kirchoff stress tensor
respectively, tb are the body forces, ρ tü indicate the inertia body forces, tτ are the surface tractions on
the bounding surface 0τ , tq is the electrical charge applied on the terminal bounding surface 0q , an
overbar indicates surface quantities, and V represents the whole laminated plate volume including all
passive and active piezoelectric layers.

Substituting Equations (1)–(5) into (6), integrating over the thickness coordinate ζ and collecting the
mechanical, electric, and thermal field state variables, the following generalized equations of motion
result, which express the electromechanical equilibrium of the laminate at time step t :

δ tuT t9u =−

∫
Ao

(
δ tSoT
[A] tSo

+ δ tSoT
[B] tko

+ δ tkoT
[B] tSo

+ δ tkoT
[D] tko

+ δ tSoT

s [As]
tSo

s

+δ tSLT
[A] tSo

+ δ tSLT
[A] tSL

+ δ tSLT
[B] tko

+ δ tSoT
[A] tSL

+ δ tkoT
[B] tSL

+

∑
m

δ tSoT
[Ēm
]

tEm

+

∑
m

δ tkoT
[Êm
]

tEm
+

∑
m

δ tSLT
[Ēm
]

tEm
+

∑
m

δ tSoT
[2̄m
]

t2m
+

∑
m

δ tkoT
[2̂m
]

t2m

+

∑
m

δ tSLT
[2̄m
]

t2m
)

d A+
∫

Ao

(δ tuT bA
+ δ tβT bB)d A+

∫
0τ

δ tūT tτ̄ d0,

δ tφT t9e =−

∫
Ao

(∑
m

δ tEmT
[Ēm
]

tSo
+

∑
m

δ tEmT
[Ēm
]

tko
+

∑
m

δ tEmT
[Ēm
]

tSL

+

∑
mn

δ tEmT
[Gmn
]

tEn
+

∑
mn

δ tEmT
[T mn
]

t2n
)

d A+
∫
0q

δ tφ tq d0, m, n = 1, . . . , N ,

(7)

where [A], [B], [D], and [As] are the extensional, coupling, flexural, and shear stiffness matrices; Em

overbar and overhat are the equivalent extensional and flexural piezoelectric coefficients; [2̄m
] and [2̂m

]

are the in-plane and out-of-plane laminate thermal expansion matrices; and Gmn are the generalized
electric permittivity matrices.

3. Finite element methodology

In order to solve the above generalized nonlinear variational equation (7), the finite element methodology
is adopted. The multifield state variables are approximated on the reference midplane Ao with local
interpolation functions, taking the form

uo
j (x, y, t)=

M∑
i=1

uoi
j (t)P

i (x, y) ( j = 1, 2, 3), βo
j (x, y, t)=

M∑
i=1

β i
j (t)P

i (x, y) ( j = 1, 2),

φm(x, y, t)=
M∑

i=1

φmi (t)P i (x, y) and θm(x, y, t)=
M∑

i=1

θmi (t)P i (x, y) (m = 1, . . . , N ),

(8)

where N indicates the number of discrete layers which subdivide the laminate, M the number of element
nodes, and P denotes local Co continuous interpolation functions.

3.1. Generalized dynamic equations of motion in variational form. Substituting (8) into (7) and col-
lecting the common nodal displacement, electric potential, and temperature terms, the following coupled
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system of nonlinear equations of motion is ultimately derived for time t :

t9u(u, ϕ)= [M] tü+ [Kuu(u, ϕ)] tu+ [Kue(u, ϕ)] tϕ+ [Kuθ (u, ϕ)] tθ − tR = 0,
t9e(u, ϕ)= [Keu(u, ϕ)] tu+ [Kee(u, ϕ)] tϕ+ [Keθ (u, ϕ)] tθ − tQ = 0,

(9)

where tu and tφ are the nodal displacement and electric potential vectors, respectively, and tθ is the
applied nodal temperature vector tθ = { tθ A

}; tR and tQ are the externally applied mechanical loads and
charge vectors at time t , respectively. The electric potential vector tφ encompasses both applied and free
electric potential terms, that is

tφ =

[ tφA

tφS

]
,

where tφA is the externally applied nodal electric potential at the actuators and tφS is the induced un-
known electric potential at nodes with prescribed electric displacement. In a smart piezoelectric plate, the
electric potential vectors φA and φS correspond to actuators and sensors respectively, moreover, in case
of an adaptive structure they may be further connected through a proper controller; however, in this study
no feedback from sensors to actuators is considered. At mechanical and electrical equilibrium, where
t9u = 0 and t9e = 0, equations (9) represent the discrete system of nonlinear equilibrium equations
and the electric potential φS together with the free displacement nodal vector u represents the unknowns
of the nonlinear system. The availability of active and sensory electric potential in combination with
the nonlinear system (9), reflects the capability of the present model to be interfaced in future studies
through a nonlinear controller. The matrices [K ] with subscripts uu, ue, ee, uθ , and eθ indicate the actual
stiffness, piezoelectric, electric permittivity, thermal expansion, and pyroelectric matrices respectively,
including linear and nonlinear terms:

[Kuu(u, φ)] = [K o
uu] + [K

L
uu] = [K

o
uu] + [P1(u)] + [P2(u2)],

[Kue(u, φ)] = [K o
ue] + [K

L
ue] = [K

o
ue] + [P3(u)],

[Keu(u, φ)] = [K o
eu] + [K

L
eu] = [K

o
eu] + [P4(u)],

[Kee(u, φ)] = [K o
ee].

(10)

3.2. Solution scheme for coupled nonlinear equations. Let us assume that an equilibrium between
internal and external mechanical forces and electric charges has been predicted for the configuration
at time t , yielding t9u = 0 and t9e = 0. Assuming also that external forces and charges are applied
incrementally at discrete time steps, such that t+1tR = tR+1R and t+1tQ = tQ+1Q, we are looking to
predict the next equilibrium state at time t +1t , which will satisfy the equilibrium equations t+1t9u = 0
and t+1t9e = 0. The resulting global set of generalized equations of motion are solved in time, using
Newmark’s time integration method.

Since the imbalance forces and charges t+1t9u(u, φ) and t+1t9e(u, φ) depend nonlinearly on the
nodal point displacements and electric potentials, convergence can’t be directly achieved at each time
step. Thus, the Newton–Raphson iterative technique is adopted in order to solve the generalized nonlinear
dynamic equations at each iteration, shown analytically below for the k-th iteration into the configuration
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time t +1t :
t+1tK̄ uu(uk−1, φk−1)1uk

+
t+1tK̄ ue(uk−1, φk−1)1φk

=−
t+1t9u(uk−1, φk−1),

t+1tK̄ eu(uk−1, φk−1)1uk
+

t+1tK̄ ee(uk−1, φk−1)1φk
=−

t+1t9e(uk−1, φk−1).
(11)

In the above system of equations, the overbar indicates tangential structural, piezoelectric, and permit-
tivity matrices which encompass the following matrix terms:

[K̄uu(u, φ)] =
4
1t2 [M] + [K̄

o
uu] + [K̄

σ
uu] + [P̄1(u)] + [P̄2(u2)],

[K̄ue(u, φ)] = [K̄ o
ue] + [K̄

L
ue] = [K̄

o
ue] + [P̄3(u)],

[K̄eu(u, φ)] = [K̄ o
eu] + [K̄

L
eu] = [K̄

o
eu] + [P̄4(u)],

[K̄ee(u, φ)] = [K̄ o
ee].

(12)

The updated displacement, velocity, acceleration, and electric potential vectors are expressed below:

t+1tu(k) = t+1tu(k−1)
+1u(k),

t+1tü(k) =
4
1t2 (

t+1tu(k−1)
−

tu)−
4
1t

tu̇− tü,

t+1tφ(k) = t+1tφ(k−1)
+1φ(k),

(13)

where tu, tu̇, and tü are the converged values at time step t related to the respective values at step t +1t
as follows: tu = t+1tu(0), tu̇ = t+1tu̇(0), and tü = t+1tü(0).

4. Numerical results

Validation and novel evaluation cases of the developed FE model are presented, for various active
piezoelectric laminated beams and plates under combined thermoelectromechanical dynamic loading
conditions. The considered materials were aluminum, graphite-epoxy, PVDF piezopolymer, and PZT5
piezoceramic, the properties of which are shown in Table 1.

5. Validation cases

5.1. Mechanical buckling of a cantilever bimorph beam under ramp loading. In the present numerical
case the lateral nonlinear dynamic response of a PVDF [p/p] bimorph cantilever beam was examined.
The beam was 100 mm long and 5 mm wide and the thickness of the PVDF layer was 0.5 mm. A ramp
point load of 0.005 N was applied in the transverse direction at the middle of the tip along with a constant
uniform axial mechanical load. Closed circuit electric conditions were considered at each piezoelectric
layer. Figure 1 shows the transverse deflection amplitude on the tip versus time, when a compressive
axial load is applied. Obviously the displacement amplitude increases as the axial compressive load
approaches the critical value Fcr = 0.204 N, due to softening effects. Also the curves corresponding
to higher compressive loads exhibit a higher vibration period due again to the reduction of stiffness.
Conversely, Figure 2 illustrates the tip vibration of the beam subject to a tensile axial load and shows an
amplitude reduction with a simultaneous vibration period reduction due to stiffening effects produced by
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Property Gr/epoxy Al PZT-5 PVDF Property Gr/epoxy Al PZT-5 PVDF

Elastic properties (109 Pa) Electric permittivity (10−9 F/m)
E11 132.4 66 62 2 ε11 0.031 0.026 23 0.1
E22 10.8 66 62 2 ε22 0.026 0.026 23 0.1
E33 10.8 66 62 2 ε33 0.026 0.026 24 0.1
G23 3.6 27 23.6 0.77
G13 5.6 27 23.6 0.77 Thermal expansion coefficient (10−6 /◦C)
G12 5.6 27 18 0.77 α11 −0.9 24 1.1 42
ν12 0.24 0.3 0.31 0.29 α22 27 24 1.1 42
ν13 0.24 0.3 0.31 0.29
ν23 0.49 0.3 0.31 0.29

Piezoelectric coefficients (10−12 m/V) Pyroelectric constant (10−3 /m2◦C)
d31 0 0 −220 −16 p11 0 0 −0.2 0.05
d32 0 0 −220 −16 p22 0 0 −0.2 0.05
d24 0 0 670 33 p33 0 0 −0.2 0.05
d15 0 0 670 33

Table 1. Material properties. All E and G values in units of GPa.

Figure 1. Tip dynamic displacement of a bimorph [PVDF/PVDF] cantilever beam in-
duced by a combined step in-plane compressive and ramp transverse load applied at the
tip of the beam.
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Figure 2. Tip dynamic displacement of a bimorph [PVDF/PVDF] cantilever beam in-
duced by a combined ramp transverse and step in-plane tensile mechanical load applied
at the tip of the beam.

the axial tensile load. Finally, the results are in excellent agreement with those reported by Mukherjee
and Chaudhuri [2005] who used a beam finite element based on uncoupled laminate theory.

5.2. Fully simply-supported square plate under pulse loading. In the second validation case, the dy-
namic response of a fully simply supported square 2.438 m× 2.438 m aluminum plate, with thickness
6.35 mm was investigated. A uniform pressure pulse load P = 47.84 Pa was applied on the plate. An 8×8
element mesh model was used. Figure 3 shows the dynamic response of the plate under various pulse
load values. The results reveal the nonlinear dependence between applied load and vibration amplitude
and period due to membrane effects. The predicted results are in excellent agreement with those reported
by Gao and Shen [2003], who used an uncoupled piezoelectric laminate theory and a four node plate
finite element. Overall, the current method has accurately predicted the nonlinear dynamic response of
flexible structures including the onset of dynamic mechanical buckling, as well as the stiffening effects
due to tensile axial loads.

6. Numerical examples

6.1. Mechanical buckling of a cantilever bimorph beam under various ramp loads. The nonlinear
dynamic response of a cantilever [PVDF/PVDF] beam, having the same geometric dimensions with that
of the first validation case is further studied. Three compressive ramp loads with identical maximum
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Figure 3. Central dynamic transverse deflection of a square simply-supported alu-
minum plate loaded under various uniform step pressures.

values Fmax = 1.1Fcr (Fcr = 0.204 N), were progressively applied at the tip of the beam however, at
different rates (see Figure 4a). A step of low uniform pressure (0.5 Pa) was applied on the beam at
t = 0 sec in order to induce an eccentricity and a stable buckling path (see Figure 4a). Figure 4b shows
the transverse displacement at the tip of the beam versus the time for the various ramp load rates. Clearly
all three curves show a rapid increase of the dynamic tip deflection near the corresponding buckling load
step, which however occurs at different times for each loading rate, with the high-rate ramp load reaching
the critical buckling load faster, and so forth. Yet, the rate of loading is predicted to have a drastic effect
on the resultant maximum dynamic tip deflection. Apparently, in the high-rate ramp load inertial forces
also play a dominant role in the dynamic buckling of the beam, and vice versa. The predicted results
show the capability of the method to predict the onset of dynamic buckling under various dynamic loads.

6.2. Active thermopiezoelectric buckling of a simply-supported composite beam. The nonlinear dy-
namic response of a simply-supported [p/0/90/45/−45]s graphite/epoxy beam with continuous piezoelec-
tric layers attached on the upper and lower surface is predicted. The length and the width of the beam
were 200 mm and 20 mm, respectively; the thicknesses of the composite plies and piezoelectric layers
were hl = h p = 0.1 mm. The beam is loaded by a time step of uniform temperature load 1T applied at
t = 0 sec, and a ramp piezoelectric load with rate dV/dt = 600 V/sec, induced by unidirectional electric
fields imposed by equal but opposite in polarity electric potential values applied on the outer terminals of
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(a)

(b)

Figure 4. Effect of the rate of an in-plane compressive ramp force on the onset of dy-
namic buckling of a bimorph [PVDF/PVDF] cantilever beam. (a) Time dependence of
applied loads and (b) predicted transverse tip displacement.

the piezoactuators (see Figure 5a). An imperfection induced by a time step of very low constant uniform
pressure (1 Pa) was considered to stimulate the onset of a stable buckling path (see Figure 5a). Figure
5b shows the predicted center transverse displacement of the beam versus time. Both thermal load and
electric fields induce in-plane compressive stresses in the beam. The beam buckles under the piezoelectric
load alone (1T = 0◦C), but the simultaneous application of the thermal load effectively causes the shifting
of the stable equilibrium trajectory. The underlying vibration on the buckling trajectory is caused by the
lateral force and near and beyond the critical electric potential the vibration amplitude reaches higher
values due to the initiation of dynamic buckling. The results show the inherent capability of the present
method to simulate the combined dynamic thermoelectric buckling of flexible piezocomposite structures.
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(a)

(b)

Figure 5. Dynamic buckling response of a simply-supported active [p/0/90/45/−45]s

beam under combined uniform in-plane piezoelectric, in-plane thermal, and off-plane
pressure loads. (a) Time dependence of applied electric field, temperature, and uniform
pressure; and (b) predicted transverse deflection at center.

6.3. Laminated active beam under electromechanical bending load. In the present case, the bending
response of a simply-supported active [p/0/90/45/−45]s gr-epoxy beam subject to combination of dy-
namic electromechanical loads is simulated. The geometric dimensions of the beam are the same as
those of the previous example. A time step of uniform pressure (200 Pa) was applied on the beam
at t = 0 sec (see Figure 6a). A uniform and equal in value and polarity ramp electric potential was
also imposed on the outer terminals at each piezoelectric layer at t = 0 sec, while their inner terminals
remained grounded, such that distributed piezoelectric bending moment was progressively induced on
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(a)

(b)

Figure 6. Bending of a simply-supported active [p/0/90/45/−45]s beam under a com-
bined bending piezoelectric load with a uniform pressure. (a) Time dependence of
applied loads, and (b) transverse deflection at center.

the beam (see Figure 6a). Figure 6b shows the predicted transverse displacement at midspan versus time
for three cases of ramp electric loads: Vmax = 0 V, dV/dt = 0 V/sec; Vmax = 400 V, dV/dt = 2000 V/sec;
and Vmax = −400 V, dV/dt = −2000 V/sec. The free vibration is caused mainly by the applied time
step of uniform pressure. The curves corresponding to positive and negative electric potential, show
great differences in the vibratory response and the underlying average displacement, indicating strong
nonlinearity in the respective response.

6.4. Active buckling of simply-supported composite beam under combined thermopiezoelectric load-
ing. The dynamic response of a simply-supported [p/0/90/45/−45]s gr-epoxy beam with continuous
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piezoelectric actuators attached on the upper and lower surface is predicted. The length and the width of
the beam were 200 mm and 20 mm, respectively; the thicknesses of the composite plies and piezoelectric
layers were hl = h p = 0.1 mm. The beam is loaded by a step of uniform temperature thermal load 1T ,
a ramp piezoelectric load (Vmax = 2Vcr, dV/dt = 110 V/sec), inducing unidirectional electric fields in
the piezoactuators through the application of equal but opposite electric potential values on their outer
terminals, and a time step of very low constant uniform pressure (3 Pa), all applied at t = 0 sec (see
Figure 7a). Both the thermal and the piezoelectric loading induce in-plane compressive stresses in the
beam. The predicted thermal and electric potential critical values were 1Tcr = 18◦C and Vcr = 54 V
respectively. Figures 7b and 7c show the predicted dynamic center transverse displacement of the beam

(a)
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Figure 7. Dynamic thermopiezoelectric buckling of a simply-supported active
[p/0/90/45/−45]s beam under combined compressive in-plane piezoelectric and thermal
loading and small uniform pressure (a) time dependence of applied loads; (b) and (c)
predicted center deflection for various thermal load values.
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versus time for thermal load values. Without thermal buckling load (1T = 0◦C) the beam enters in
the pure piezoelectric buckling under compressive stresses caused by the piezoelectric actuators. All
other trajectories are the result of combined application of various temperature loads 1T and approach
earlier the onset of buckling due to additional compressive thermal stresses. Obviously, for 1T = Tcr

and 1.5Tcr, the beam buckles first thermally and due to the loss of its out-of-plane stiffness vibrates
under much higher amplitudes. Again, the results show the inherent capability of the present method to
simulate the combined dynamic thermoelectric buckling of flexible piezocomposite structures.

7. Summary and conclusions

A theoretical framework and a finite element methodology were presented, to predict the coupled non-
linear dynamic response of active laminated piezoelectric beams and plates exposed to dynamic ther-
moelectromechanical fields. The mechanics uses the mixed-field shear-layerwise laminate kinematic
assumptions and encompasses the geometric nonlinearity due to large displacements and rotations. An
eight-node nonlinear coupled plate element was developed. The coupled generalized nonlinear dynamic
equations of motion were formulated, linearized, and solved using the Newton–Raphson technique in
combination with the Newmark time integration method.

Validations and evaluation cases of laminated beams and plates subject to high in-plane and out-of-
plane dynamic loads demonstrated the capability of the present method to accurately and robustly predict
their nonlinear dynamic response. Moreover they quantified the complex and highly nonlinear dynamic
response of active structures.

The obtained numerical results illustrate the tendency of active plate beams to exhibit substantially
different behavior under dynamic loads than static buckling. In this context, the rates of applied loads dras-
tically affect the dynamic buckling trajectory, and vibrations may coexist which change the amplitude and
frequency near critical loads. Thermal loads may significantly influence the highly nonlinear response
of piezocomposite beams shifting the stable equilibrium trajectory due to additional compressive/tensile
thermal stresses. The possibility of actively inducing large vibration amplitudes by combining steady
external mechanical or thermal loads with proper dynamic electric potential input on the actuators was
also quantified.
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