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DEDICATION
 

 

George J. Simitses was born on 31 July 1932 in Athens, Greece. After receiving his high school
diploma, he came to the United States to study engineering. He first attended the University of Tampa
(1951–52) and then the Georgia Institute of Technology (1952–56), where he earned the degrees of
Bachelor of Aeronautical Engineering and Master of Science in Aerospace Engineering. After a few
years, he attended Stanford University (1963–65), where he earned a Ph.D. in Aeronautics and As-
tronautics. His academic career includes teaching and research at Georgia Tech (Instructor, Assistant
Professor, Associate Professor and Professor) in the Schools of Aerospace Engineering and Engineering
Science and Mechanics and at the University of Cincinnati (Professor and Department Head of Aerospace
Engineering and Engineering Mechanics and Interim Dean of Engineering). He retired in March 2000
from the University of Cincinnati and he is presently Professor Emeritus at both schools.

As a researcher, Professor Simitses has made pioneering and lasting contributions in the field of Solid
and Structural Mechanics. He has written three graduate level text-books and several book chapters. He
has authored or coauthored over 160 refereed journal articles in archival engineering journals. He has
advised 23 Ph.D. students to completion as well as dozens of M.Sc. students, and he has hosted ten post-
doctoral fellows, visiting scholars and faculty from throughout the world during the past three decades.
His research publications include works in structural stability, dynamic stability, structural optimization,
delamination buckling and growth, analysis of thick composite shells and structural similitude. In his
research, he has dealt with beams, bars, plates and shells of various constructions, metallic structures
with and without stiffeners, laminated composites, sandwich systems and simple mechanical models.

Professor Simitses has served and is still serving the scientific and engineering profession through jour-
nal editing, organization and participation in professional meetings, membership in professional societal
committees and chairing sessions at national and international conferences. He has been invited to deliver
Keynote Addresses and Plenary Lectures at several professional meetings. He has also participated in
many panels and workshops. He has been a frequent seminar lecturer to many universities and industrial
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companies and he has participated in numerous continuing education courses. Professor Simitses is
the recipient of many awards and honors. He is a Fellow of the AIAA, the ASME, and the American
Academy of Mechanics, and an Honorary Member of the Hellenic Society of Theoretical and Applied
Mechanics and Member of the International Union of Theoretical and Applied Mechanics. He has also
been elected Corresponding Member of the Academy of Athens (the Greek equivalent of the US National
Academy of Science). Professor Simitses has been married to Nena Athena Economy for 49 years. They
have three children, John, William and Alexandra, and six grandchildren, Michael, Christina, George
and Matthew Simitses, Athena and Marian Zaden, with one more on the way.

We, the guest editors of this volume, have been happy to enjoy collaboration and friendship with
Professor Simitses. Professor Simitses is renowned for his ability to quickly understand and assess
a scientific problem. His vision and readiness to share and discuss ideas are admirable. Both of us
immensely benefited from joint research and long conversations, in which we would solicit Professor
Simitses’s opinion and advice. Besides our collaboration, it is a real pleasure and honor to associate with
Professor Simitses. His wisdom, erudition, optimism and sincere personal interest have always been an
inspiration to us. We are happy to dedicate this volume to Professor Simitses as a modest token of our
appreciation, respect and recognition of his lifetime contributions.

GEORGE KARDOMATEAS: george.kardomateas@aerospace.gatech.edu
Department of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150, United States

VICTOR BIRMAN: vbirman@mst.edu
Engineering Education Center, Missouri University of Science and Technology, One University Boulevard,
St. Louis, MO 63121, United States

mailto:george.kardomateas@aerospace.gatech.edu
mailto:vbirman@mst.edu
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BUCKLING AND POSTBUCKLING BEHAVIOR OF LAMINATED COMPOSITE
STRINGER STIFFENED CURVED PANELS UNDER AXIAL COMPRESSION:

EXPERIMENTS AND DESIGN GUIDELINES

HAIM ABRAMOVICH AND TANCHUM WELLER

An extensive test series on circular cylindrical laminated composite stringer-stiffened panels subjected
to axial compression, shear loading introduced by shear and combined axial compression and shear was
carried out at the Technion, Israel. The test program was an essential part of an ongoing effort undertaken
by the POSICOSS project (improved postbuckling simulation for design of fibre composite stiffened
fuselage structures) aiming at design of low cost, low weight airborne structures that was initiated and
supported by the Fifth European Initiative Program.

The first part of this test series, dealing with panels PSC1–PSC9 (blade-stiffened), has already been
summarized and published. The results of the tests with panels BOX1–BOX4 (blade- and J-stiffened)
have also been reported and published. These tests dealt with two identical stiffened panels, combined
together by two flat nonstiffened aluminum webs, to form a torsion box, thus enabling application of
shear tractions, through introduction of torsion, and combined axial compression and shear. The present
manuscript aims at describing test results and relevant numerical studies on the buckling and postbuck-
ling behavior of another set of four panels, AXIAL1–AXIAL4, stiffened by J-type stringers. Based on
the experimental studies carried out within the framework of the POSICOSS project and reported in the
literature and on the present study design guidelines were formulated and presented. Accompanying
supporting calculations were presented as well; they were performed with a “fast” calculation tool de-
veloped at the Technion, and based on the effective width method modified to handle laminated circular
cylindrical stringer-stiffened composite panels.

1. Introduction

It is well recognized that non-closely stiffened panels can have considerable postbuckling reserve strength,
enabling them to carry loads significantly in excess of their initial local skin between stiffeners buckling
load [Hutchinson and Koiter 1970]. When appropriately designed, their load carrying capacity apprecia-
bly exceed the load corresponding to an equivalent weight unstiffened shell, that is, a shell of identical
radius and thicker skin, which is also more sensitive to geometrical imperfections.

The design of aerospace structures places great emphasis on exploiting the behavior under loading and
on mass minimization of such panels. An optimum (minimum mass) design approach based on initial
buckling, stress or strain, and stiffness constraints typically yields an idealized structural configuration
characterized by almost equal critical loads for local and overall buckling. This, of course, results in little

This work was partly supported by the European Commission, Competitive and Sustainable Growth Programme, Contract No.
G4RD-CT-1999-00103, project POSICOSS (http://www.posicoss.de). The information in this paper is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose. Users thereof use the information at their
sole risk and liability.
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postbuckling strength capacity and susceptibility to premature failure. However, an alternative optimum
design approach can be imposed to achieve lower mass designs for a given loading. This is obtained by
requiring the initial local buckling to occur considerably below the design load and allow for the existence
of the response characteristics known in postbuckled panels [Lilico et al. 2002], that is, capability to carry
loads higher than their initial buckling load. In parallel, to meet the requirements of low structure weight,
advanced lightweight laminated composite elements are increasingly being introduced into new designs
of modern aerospace structures to enhance both their structural efficiency and performance. In recogni-
tion of the numerous advantages that such composites offer, there is also a steady growth in replacement
of metallic components by composite ones in other fields of engineering like marine structures, ground
transportation, robotics, sports, and others.

Many theoretical and experimental studies have been performed on buckling and postbuckling behav-
ior of flat stiffened composite panels (see for example [Frostig et al. 1991; Segal et al. 1987; Starnes
et al. 1985; Vestergen and Knutsson 1978; Romeo 1986; Bucci and Mercuria 1992]). A wide body of
descriptions and detailed data on buckling and postbuckling tests was compiled in [Singer et al. 2002] (see
chapters 12–14). However, on the other hand studies on cylindrical, unstiffened, and stiffened composite
shells and curved unstiffened and stiffened composite panels were quite scarce (see for example [Lei
and Cheng 1969; Johnson 1978; Tennyson et al. 1972; Card 1966; Knight and Starnes 1988; Sobel and
Agarwal 1976]) at the starting time of the POSICOSS project [Zimmermann and Rolfes 2006] and later
its successor, the COCOMAT project [Degenhardt et al. 2006].

In light of the above discussion, in compliance with the demand of the Fifth European Initiative
Program to reduce weight without prejudice to cost and structural life in design of next generation
aircraft1, and in recognition of the advantages inherent to post buckled stiffened structures, it has been
suggested to asses the introduction of buckled structures and allow buckling in operation of fuselage
structures under ultimate load levels. This approach has been adopted and undertaken in the present
experimental study, the POSICOSS project. It was particularly aimed at supporting the development
of improved, fast and reliable procedures for analysis and simulation of postbuckling behavior of fiber
reinforced composite circular cylindrical stiffened panels of future generation fuselage structures and
their design.

Within the POSICOSS project, the Aerospace Structures Laboratory (ASL) at the Technion – Israel
Institute of Technology performed an extensive test series on the above mentioned type laminated compos-
ite stringer-stiffened panels under axial compression, shear loading introduced by torsion, and combined
axial compression and shear. The buckling and postbuckling behavior of these panels was recorded till
their final collapse and the test results were analyzed and compared with calculated predictions. The
first part of this test series, dealing with panels stiffened by blade type stringers (PSC1–PSC9), was
summarized in [Abramovich et al. 2003]. The results of the tests with panels stiffened by blade type
stringers or J-type stringers (BOX1–BOX4) were reported in [Abramovich et al. 2008]. These tests deal
with two identical panels, combined together by two flat nonstiffened aluminum webs, to form a torsion
box, thus enabling application of shear tractions through introduction of torsion, as well as combined
axial compression and shear. The present manuscript aims at describing and evaluating the buckling

1This design approach was summarized by the specialists of the European Community in the year 2000 under the name
Vision 2020. It can be found at the EU website http://cordis.europa.eu
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and postbuckling behavior of test results and relevant numerical studies of another set of four panels,
AXIAL1–AXIAL4, stiffened by J-type stringers. Based on the results of the experimental study carried
out within the framework of the POSICOSS project and reported in [Abramovich et al. 2003; 2008] and
the present manuscript, and employing the “fast” tool of [Pevzner et al. 2008] to calculate the collapse
loads of the axially compressed panels, design guidelines were formulated and presented.

2. Specimens and test setup

Within the framework of the POSICOSS effort, Israel Aircraft Industries (IAI) has designed and manufac-
tured 21 Hexcel IM7 (12 K) / 8552(33%) graphite-epoxy stringer-stiffened composite circular cylindrical
panels using a cocuring process. Adhering to the goal of POSICOSS, namely low weight low cost
structures, simple blade and J-type stringers were employed to stiffen the panels. The nominal radius of
each panel was R = 938 mm and its total length L = 720 mm (which included two end loading pieces
each 30 mm high). The nominal test length was Ln = 680 mm and the panel arc-length was Lal = 680 mm.
The skin lay-up was quasiisotropic (0◦,±45◦, 90◦)S . Each layer had a nominal thickness of 0.125 mm.
Eight of these panels were used to form 4 torsion boxes. Each box consisted of two curved panels that
were connected together by two flat nonstiffened aluminum side plates. Two of the boxes comprised
of panels with blade type stringers (Figure 1, top), one box had short-flange J-type stringers (Figure 1,
middle) and the fourth box had long-flange J-type stringers (Figure 1, bottom). The dimensions and
properties of the different configurations are shown in these figures. The results of the tests experienced
with these boxes and corresponding calculations were reported in [Abramovich et al. 2008]. Nine out
of these panels, PSC1–PSC9, stiffened by blade type stringers (Figure 1, top) were tested under axial
compression and the relevant test results and calculations were reported in [Abramovich et al. 2003].
The last four panels designated as AXIAL1–AXIAL4 with J-type stringers, which are presented in the
middle and bottom parts of Figure 1, were tested under axial compression. The test results and numerical
studies associated with them are presented in what follows.

It is seen on Table 1 that the two panels AXIAL1 and AXIAL2 were stiffened by five stringers, while
AXIAL3 and AXIAL4 had four stringers. The four panels were tested under axial compression only
using the 50 tons MTS loading machine at the Aerospace Structures Laboratory, Faculty of Aerospace
Engineering, Technion – Israel Institute of Technology, Haifa, Israel (Figure 2).

To visualize the development of displacements and buckling patterns, the Moiré technique has been
applied [Abramovich et al. 2003; 2008]. To monitor and record the panel response due to application of
axial compression, strain gages were bonded back-to-back, both on the skin and on the stringers. Lateral
and axial LVDTs were used to record the out-of-plane deflections and the end-shortening (Figures 3
and 8).

3. Experimental results

The first panel tested was AXIAL1. First buckling occurred at 85 kN near gage #24 close to the upper
loading end piece (Figure 3). Increase in axial compression caused the appearance of more buckling
waves (see typical behavior in the first three parts of Figure 4). Typical strain gage readings (gages
#27 and 28) at panel mid-height close to the panel supported unloaded edge (see Figure 3) are shown
in Figure 5, top, where buckling is apparent at about 87 kN. For comparison, readings for strain gages
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Figure 1. Dimensions, geometry and lay-ups of stiffeners. Top: Panels PSC1–PSC9
[Abramovich et al. 2003], BOX1 and BOX2 [Abramovich et al. 2008]. Middle: Panels
AXIAL1, AXIAL2, and BOX 3 [Degenhardt et al. 2006]. Bottom: Panels AXIAL3,
AXIAL4, and BOX4 [Abramovich et al. 2008].

#23 and 24 are displayed in Figure 5, bottom. The buckling is observed under slightly a lower load of
about 80 kN. A fully developed pattern of buckling waves was obtained under 173 kN. The axial loading
was increased till 229.88 kN, when a delamination occurred near strain gage #4 (Figure 3), between the
skin and the stringer. Following the occurrence of the delamination, the load dropped to 224.5 kN. The
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Stringer type
Short-flange J Long-flange J

Specimens AXIAL1, AXIAL2 AXIAL3, AXIAL4
Total panel length 720 mm 720 mm
Free panel length 660 mm 660 mm
Radius 938 mm 938 mm
Arc length 680 mm 680 mm
Number of stringers 5 4
Stringer spacing 136 mm 174 mm
Laminate lay-up of skin [0, 45,−45, 90]s [0, 45,−45, 90]s
Laminate lay-up of stringer [45,−45, 0]3s [45,−45, 02]3s

Ply thickness 0.125 mm 0.125 mm
Type of stringer J-stringer J-stringer
Stringer height 20.5 mm 20.5 mm
Stringer feet width 60 mm 60 mm
Stringer flange width 10 mm 20 mm
E11 147300 N/mm2 147300 N/mm2

E22 11800 N/mm2 11800 N/mm2

G12 6000 N/mm2 6000 N/mm2

ν12 0.3 0.3

Table 1. Dimensions, lay-ups and mechanical properties used in calculations of load
carrying capacity panels AXIAL1–AXIAL4 (present study).

��

Figure 2. Panel in loading machine setup used at the Aerospace Structures Laboratory (ASL).
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Figure 3. Locations of strain gages and axial and lateral LVDT’s for panels AXIAL1
and AXIAL2.

  

  

Figure 4. Panel AXIAL1: Development of the buckling pattern as function of axial
compression under 85 kN, 93.5 kN, and 115 kN, and after collapse at 235 kN.
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Figure 5. Panel AXIAL1: Strain gage readings versus axial compression.

load was again increased till the panel collapsed at 235.0 kN (Figure 4, bottom right). The collapse was
accompanied by breakage of the stringers at mid panel height (across the width of the panel), including
the skin.

The second panel tested was AXIAL2. First buckling occurred at 71 kN near gage #19 close to
the lower loading end piece (Figure 3). Increase of the axial compression was accompanied by the
appearance of more buckling waves (see typical behavior in the first three parts of Figure 6). Typical
strain gage readings (gages #15 and 16; see Figure 3) are shown in Figure 7, where the buckling is
observed at about 70 kN. The readings of strain gages #27 and 28, at panel mid-height close to the panel
supported unloaded edges (see Figure 3), presented in Figure 9, is apparently less definitive. However,
careful observation detects local buckling at about 70 kN, in very good agreement with gages 15 and
16. Nine fully developed buckling waves were obtained under 119 kN. The axial loading was increased
till 230.5 kN, when collapse occurred (Figure 6, bottom right). Again, collapse was accompanied by
breakage of the stringers at the middle of the panel (across the width of the panel), including the skin.
Four of the five stringers were broken.
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Figure 6. Panel AXIAL2: Development of the buckling pattern as a function of axial
compression under 70 kN, 106 kN, 150 kN, and after collapse at 230.5 kN (bottom right).
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Figure 7a. Panel AXIAL2: Strain gage readings versus axial compression.
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Figure 8. Locations of strain gages and the axial and lateral LVDT’s for panels AXIAL3
and AXIAL4.

The third panel tested in the present test series was AXIAL3. It was stiffened by 4 large J-stringers.
First buckling occurred at 60 kN with two local waves, one near gage #7, close to the lower loading ,and
the other near gage #13, close to the lower loading piece (see Figure 8) and in the bay adjacent to strain
gage #7 (Figure 8). Increasing the axial compression led to appearance of more buckling waves (see
typical behavior in the first three parts of Figure 9).
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Figure 7b. Panel AXIAL2: Strain gage readings versus axial compression (continued).
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Figure 9. Panel AXIAL3: Development of the buckling pattern as a function of axial
compression under 65 kN, 125 kN, 190 kN, and after collapse at 295.42 kN (bottom
right).
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Figure 10. Panel AXIAL3: Strain gages (#27 and 28) readings versus axial compression.
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Typical strain gage readings (gages #27 and 28) are shown in Figure 10, where the local buckling load
is seen at about 225 kN. Seven fully developed buckling waves were obtained under 164 kN. At a load
of 188 kN some noises were noticed, but without visible damage. Noises were also heard under 240 kN
and at 280 kN, with the appearance of another wave. The load was further increased till collapse at
295.42 kN (see Figure 9, bottom right) accompanied by a very loud noise. This might indicate a violent
failure as compared with a softer failure experienced with the previous panels where such noises were
unnoticeable. The collapse was associated with breakage of the stringers in the middle height of the
panel (across the width of the panel), separation between the stringers and the skin occurred and the load
dropped to 246.0 kN. The panel was held under this load for some time, and then suddenly the load fell
again, this time very significantly to 30.0 kN, followed by further damage of the skin.

The last panel tested within the present test series was AXIAL4, a twin of AXIAL3. First buckling
occurred at 92.6 kN with two local waves, one near gage #7 close to the lower loading plate and the
other near gage #15 at the middle of the panel (Figure 8). Increasing the axial compression caused the
appearance of more buckling waves (see typical behavior in the first three parts of Figure 11). Typical
strain gage readings (gages #3 and 4) are shown in Figure 12, where local buckling is apparent about

  

  

Figure 11. Panel AXIAL4: Development of the buckling pattern as a function of axial
compression under 92.6 kN, 124 kN, 174 kN, and after collapse at 298.67 kN.
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Figure 12. Panel AXIAL4: Strain gages (#3 and 4) readings versus axial compression.

220 kN. Eight fully developed buckling waves were obtained at 174 kN. The load was then increased till
collapse of the panel under 298.67 kN (Figure 11, bottom right), again accompanied by a loud noise. The
collapse was associated with breakage of the stringers at middle height of the panel (across the width of
the panel) including the skin, separation between the stringers and the skin occurred and the axial load
dropped to 94.8 kN.

4. Comparisons with calculations

The experimental results obtained in the tests are next compared with numerical analysis using the
nonlinear version finite element ABAQUS Explicit [ABAQUS 1998] and the fast tool developed at the
Technion, which is based on the effective width method adapted to deal with laminated composite circular
cylindrical stringer-stiffened panels [Pevzner et al. 2008].2 The results are summarized in Table 2 and
Figure 13. (ABAQUS/Explicit is a dynamic analysis program; in this case a quasistatic solution is desired,
so the prescribed displacement was increased slowly enough to eliminate any significant inertia effect.
The displacement was increased linearly using a smooth amplitude function over a time step period of
five to ten times longer than the natural period. The collapse load was found using the Riks method.)

The axial stiffness behavior is presented in Figure 13. It shows fair agreement with ABAQUS predic-
tions in the cases of panels AXIAL1 and AXIAL2 (top half of the figure). It is apparent from this figure
that the experimental stiffness of the panels observed in the tests is higher than the predicted one. Very
good comparison between the experimental results and the calculated stiffness is found in the bottom
half of the figure for panels AXIAL3 and AXIAL4.

Determination of the first experimental buckling load is not simple due to the fact that the appearance
of a first single buckle during conduct of a test is usually assumed as the first buckling load, as compared
with a fully developed pattern of buckles that is numerically predicted (see also detailed discussion in
[Abramovich et al. 2008]). Because of this reason the fast tool also overestimates the first experimental

2The experimental results of panels AXIAL1–AXIAL4 in Table 1 of [Abramovich et al. 2003] were wrongly reported.
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Experimental ABAQUS Effective width method
Panel FBL [kN] CL [kN] FBL [kN] CL [kN] FBL [kN] CL [kN]

AXIAL1 85.0 235.00 95.0 215.0 100.8 202.6
AXIAL2 71.0 230.50 95.0 215.0 100.8 202.6
AXIAL3 60.0 295.42 75.0 330.0 119.3 354.9
AXIAL4 92.6 298.67 75.0 330.0 119.3 354.9

Table 2. First buckling and collapse loads of panels AXIAL1–AXIAL4: numerical and
experimental results using the effective width method [Abramovich et al. 2003] and
ABAQUS code run under the assumption of quasistatic behavior. FBL = first buckling
load; CL = collapse load.

buckling load by 18.6%–42% in case of the first two panels and by 28.8%–98.8% in case of the last two
panels when compared with the experimental results in Table 2. The ABAQUS code overestimates the
first buckling load by 11.8%–33.8% in the cases of panels AXIAL1 and AXIAL2. In the cases of panels
AXIAL3 and AXIAL4 the code over predicts the first experimental buckling load of panel AXIAL3 by
25% and under predicts by 19% for panel AXIAL4. It appears from Table 2 that there is good agreement
between ABAQUS predictions and the fast tool ones in the cases AXIAL1 and AXIAL2 whereas very
significant differences exists between the predictions by ABAQUS and the fast tool in the cases AXIAL3
and AXIAL4. Furthermore, ABAQUS predictions are lower in all cases. It is also found from Table 2
that using the fast tool, the experimental collapse loads are under estimated by 12.1%–13.8% in the cases
of panels AXIAL1 and AXIAL2 and overestimated by 18.8%–20.0% for panels AXIAL3 and AXIAL4.
Employing the ABAQUS code, it is seen in Table 2 that the collapse loads are underestimated by 8.5%–
6.7% for panels AXIAL1 and AXIAL2, and overestimated by 11.7%–10.5% in the cases AXIAL3 and
AXIAL4.

Table 2 reveals good agreement between ABAQUS and the fast tool predictions of the collapse loads.
In the cases AXIAL1 and AXIAL2, stiffeners with smaller flange, both codes predict collapse loads that
are lower than those experienced in the tests. Also, ABAQUS predictions are higher than those yielded
by the fast tool. On the other hand, in the cases AXIAL3 and AXIAL4, stiffeners with larger flanges,
both codes predict higher collapse loads than those observed experimentally. However, in this case the
ABAQUS predictions are lower than those obtained by the fast tool.

5. Formulation of design rules

Based on the experimental effort carried out within the framework of the POSICOSS project and reported
in [Abramovich et al. 2003; 2008], as well as in the present study, and employing the fast tool [Pevzner
et al. 2008], design guidelines are next formulated and presented (Table 3).

Figures 14 and 15 present the skin buckling and collapse loads of the tested panels versus the parameter
b/
√

R · s, a nondimensional parameter commonly employed in shell analysis to describe the influence
of shell radius R, its thickness s, and the distance between the stringers b. It is evident from Figure 14
that as the distance b between two adjacent stringers increases, the first skin buckling load decreases.
Panels PSC7–PSC9 demonstrated the highest buckling loads (the panels have 6 blade stringers each),
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while as expected, panels AXIAL3 and AXIAL4, each with 4 J-type stringers, experienced the lowest
values. The decrease in first buckling is much emphasized in the blade-stiffened panels, whereas in the
case of the J-stiffened panels barely exists.

It appears from Figure 15 that either increasing the number of the stringers or their cross-section would
yield a higher collapse load of a panel under axial compression. This is apparent for panels AXIAL3 and
AXIAL4 (each having 4 J-type stringers with a wide flange) and panels PSC7–PSC9 (each having 6 blade
stringers). The parameter b/

√
R · s does not influence the collapse load in a consistent manner, since

there is more than one degree of freedom that can raise the collapse load. Nevertheless, it is observed that
in the case of blade-stiffened panels, collapse decreases with increase in b/

√
R · s, whereas the opposite

is found for the J-stiffened panels.
The ratio of the collapse load to the corresponding first buckling load, the skin buckling, versus

b/
√

R · s is presented in Figure 15, right. It is seen that the PSC panels, which are stiffened by blade type
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Figure 13. Axial compression versus end shortening: numerical and experimental re-
sults. Top: panels with with small J-stiffener; bottom: panels with large J-stiffener.
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Panel hs [mm] Stringers FBL [kN] CL [kN]
∑

mi [kg]
(∑

mi
)
/M

AXIAL1 20.5 5 Small J 85.0 235.00 0.7656 0.516014
AXIAL2 20.5 5 Small J 71.0 230.50 0.7656 0.516014
AXIAL3 20.5 4 Big J 60.0 295.48 0.9293 0.564103
AXIAL4 20.5 4 Big J 92.6 298.67 0.9293 0.564103
BOX1 (panel A) 20 5 Blade 120.3 – 0.8448 0.540541
BOX1 (panel B) 20 5 Blade 134.0 – 0.8448 0.540541
BOX2 (panel A) 20 5 Blade 115.5 – 0.8448 0.540541
BOX2 (panel B) 20 5 Blade – – 0.8448 0.540541
BOX3 (panel A) 20.5 5 Small J 79.0 – 0.7656 0.516014
BOX3 (panel B) 20.5 5 Small J 100.0 – 0.7656 0.516014
BOX4 (panel A) 20.5 4 Big J 57.5 – 0.9293 0.564103
BOX4 (panel B) 20.5 4 Big J 57.5 – 0.9293 0.564103
PSC1 20 5 Blade 131.0 212.7 0.8448 0.54054
PSC2 20 5 Blade 150.0 227.0 0.8448 0.54054
PSC4 20 5 Blade 158.5 229.2 0.8448 0.54054
PSC3 15 5 Blade 136.0 162.0 0.6336 0.46875
PSC5 15 5 Blade 113.0 152.6 0.6336 0.46875
PSC6 15 5 Blade 126.0 140.0 0.6336 0.46875
PSC7 20 6 Blade 228.5 228.5 1.0138 0.58537
PSC8 20 6 Blade 240.0 240.0 1.0138 0.58537
PSC9 20 6 Blade 244.0 244.0 1.0138 0.58537

Table 3. First buckling loads (FBL) and collapse loads (CL) found in experimental tests
reported in this article and in [Abramovich et al. 2003; 2008].

stringers, experience a consistent and almost constant ratio of 1.125–1.624, whereas the panels AXIAL1–
AXIAL4, stiffened by J-type stringers, exhibit significantly higher ratios, in the range of 3.225–4.925,
that increase significantly with increase in stiffener cross-section.
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Figure 14. Skin buckling loads of the tested panels versus b/
√

R · s. For all panels,
R = 938 mm and s = 1 mm.
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Figure 15. Collapse load (left) and ratio between collapse load and skin buckling load
(right) for the tested panels versus b/

√
R · s. Recall that R = 938 mm and s = 1 mm.

Considering from a design point of view the results presented in Figures 14 and 15 it may be concluded
that the simpler and cheaper blade-stiffened panels are superior to the J-type ones when design is based on
first skin buckling. However, this argument prevails provided these blade-stiffened panels exhibit a wide
enough range to withstand postbuckling. The condition imposed is that the collapse loads corresponding
to these type of panels meet the design requirement, namely an ultimate load equal at least to one and a
half times the limit load, which according to the present adopted design approach equals the first buckling
load. It appears from Table 3 and Figure 15, right, that only the blade stiffened panels PSC1, PSC2, and
PSC4 barely meet this condition. On the other hand, when considering the postbuckling capacity of
the J-stiffened panels it is apparent from the same table and figure that they possess a very wide range
of postbuckling carrying capacity that is associated with collapse loads equal to many times their first
skin buckling. It should be noted (see Table 3 and Figure 14), and as already mentioned, that their first
skin buckling is low, as a matter of fact the lowest experienced among the panels tested in the present
program. Obviously, these observations contradict the low weight low cost demands, the J-stiffened
panels are relatively heavy and their manufacturing is complex and more expensive.

In the preceding figures the mass of the panels has been ignored. Obviously, their specific load carrying
capacities are the appropriate measures to evaluate their performances. Hence, the panel mass is taken
into account and the corresponding results are presented in Figures 16 and 17 for the skin and the collapse
loads, respectively. Also in presenting the results, the stringer area is taken into account: instead of using
the parameter b/

√
R · s, we use b/

√
R · s1 , where s1 is defined as

s1 = s
(

1+
A

b · s

)
. (1)

Here A is the area of the stringer, b is the distance between stringers, and s is the skin thickness. This
modified parameter is commonly used when dealing with stringer-stiffened shells and it is therefore also
adopted for the present stringer-stiffened panels (it represents a shell/panel with an equivalent uniform
skin where the stiffeners are smeared).

Considering the specific first buckling, the behavior observed earlier for both stiffener types in Figure
14 is again exhibited in Figure 16, the highest specific first skin buckling loads are associated with the
minimum distance between stringers. As found in Figure 14, the blade stiffened panels (PSC7, PSC8,
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Figure 16. Specific skin buckling loads of the tested panels versus b/
√

R · s1, where s1

is given by Equation (1).
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 Figure 17. Specific collapse loads of the tested panels versus b/
√

R · s1.

and PSC9) yield the higher specific first buckling loads. The detailed observations and results shown in
Figure 16 are similar to those pertinent to Figure 14; thus the discussion of Figure 14 applies to Figure
16 as well.

Figure 17 shows that when considering specific collapse loads versus b/
√

R · s1, as in Figure 15, the
panels with either the larger stiffeners cross section (AXIAL3 and AXIAL4) or with the larger num-
ber of stringers (6 stringers, panels PSC7–PSC9) yield the higher specific collapse values. The worst
observation was experienced with panels PSC3, PSC5, and PSC6 (5 stringers with a height of 15 mm).
Increasing the blade stiffeners height to h = 20 mm (panel PSC1, PSC2, and PSC4) increased the panel
specific collapse load, almost to that corresponding to panels AXIAL1 and AXIAL2. It is observed
in Figure 17 that the specific collapse loads of panels AXIAL1 and AXIAL2 are almost identical with
those of panels PSC7–PSC9. Hence, the specific collapse loads of panels PSC1, PSC2, and PSC4 are
quite comparable with those of PSC7–PSC9. Consequently, from a design point of view the simpler
and cheaper blade-stiffened configuration presents and provides a much more attractive and favorable
configuration for sustaining a prescribed specific collapse load. However, as already discussed above,
this holds only when the design meets the required ratio between the limit and ultimate loads.

Next a parametric investigation was performed to calculate the collapse loads of various configurations
of panels stiffened by blade and small J-type stringers using the fast tool [Pevzner et al. 2008]. Two J-
types of stringers were used, one with 18 layers (thickness of 2.25 mm), and a small flange of 10 mm
long and the other having 24 layers (thickness of 3 mm) and a small flange of 10 mm. The height of the
stringers was 20.5 mm. The blade type stringers had 24 layers (thickness of 3.0 mm) and two heights 15
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Theoretical values : effective width method

 R=938 mm, s=1 mm, s1=s(1+A/b*s)
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Figure 18. Specific collapse loads predicted by the effective width method for the tested
panels, versus b/

√
R · s1.

and 20 mm. The distances between the stringers, b, were: 226.67, 170.0, 136.0, 113.3, and 97.1 mm,
corresponding to 3, 4, 5, 6, and 7 stringers per panel, respectively.

The calculated results are presented in Figure 18. It is observed in this figure that a relatively small
increase in J-stiffener dimensions increases significantly their specific collapse load. On the other hand, a
more noticeable change in blade stiffeners dimensions is required to achieve a noticeable increase in their
specific collapse load capacity. However, by introducing changes in the blades height the specific collapse
load capacities of the blade-stiffened panels become equal to those corresponding to the J-stiffened ones.
As already discussed above, this makes the blade-stiffened panels more attractive and preferable from a
design point of view.

6. Derivation of design guidelines

• Results of analyses show that the influence of panel length on skin buckling load can be neglected
within the design space (400 mm ≤ l ≤ 800 mm).3

• The influence of panel length on the collapse load is significant as long as local instability does
not coincide with general instability. Like in a column, the collapse load significantly decreases
with increase in panel length. There is a significant influence of the panel length on the ratio of its
collapse load to its skin buckling load.

• Assuming that the total length of the structure is fixed, an increase of the collapse load can be
achieved by introduction of additional frames. This results in a corresponding increase of the weight
of the structure.

• In general, decrease in the stringer spacing leads to increase of skin buckling as well as of the
collapse load. Assuming that the total arc-length of a structure is fixed, a decrease in the stringer
spacing means more stringers and increase of the collapse load. In this case the weight of the

3Not all of the design guidelines presented herein stem directly from the results presented in the present manuscript but were
derived to reflect all the partners’ results of the POSICOSS project to enable a wider use. See [Zimmermann and Rolfes 2006;
Bisagni and Cordisco 2006; Zimmermann et al. 2006; Lanzi and Giavotto 2006; Möcker and Reimerdes 2006; Rikards et al.
2006].
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structure is increased in proportion to the increase of the number of stiffeners but not the specific
collapse load. Regarding the influence of the stringer spacing on the ratio of collapse load to first
skin buckling load, no general tendency can be observed from the results of the experimental and
parametric studies. Based on the experimental observations reported in Figure 15, right, it appears
that almost no effect on the ratio was experienced with blade stiffened panels, whereas a very strong
effect was found in the case of J-stiffened panels.

• As a general result of analyses it can be pointed out that skin buckling load per unit length is
increased when the panel radius is reduced. Regarding the influence of the radius on the collapse
load, an increase of the collapse load was found when reducing the radius. However, in most designs
the radius will be fixed and thus the influences of this parameter cannot be exploited to improve the
design.

• As a common result of analyses one can summarize that the skin buckling load per unit length is
increased when the stringer geometry dimensions are increased. This holds till one reaches values
of dimensions of the stringer for which it represents a clamped boundary condition. Therefore, it
is not recommended to increase the dimensions of the stringer beyond this value. The collapse
load of blade-stiffened panels increases when the stringer height is increased from h = 14 mm to
h = 20 mm, but further increase from h = 20 mm to h = 30 mm leads to reduction of the collapse
load. This is caused by a change of the type of instability experienced when increasing the stringer
height. While buckling of the stringers in bending leads to the collapse of the h = 20 mm stringers,
collapse is caused by torsional buckling in case of the h = 30 mm stringers. Furthermore, it should
be remembered in design of blade-stiffened panels that an increase of stringer height may lead
to decrease of the local buckling load of the stringer. Therefore, it has to be ensured that local
buckling of the stringer is avoided before global buckling of the panel. Within the design space that
was defined for the present parametric studies this problem was not encountered, but it might be
crucial in the case of thin and long stringer blades. Regarding the panel weight, it can be pointed
out that increase of the stringer dimensions leads to a relatively small increase (proportional to the
additional weight) of the panel weight, provided that the type of the stringer is kept constant.

• Considering the specific collapse load (the ratio of the collapse load over the mass of the panel)
versus the modified parameter b/

√
R ∗ s1 presents a more realistic presentation, because it takes

into consideration the cross-section of the stringers, or rather the equivalent skin thickness of the
panel.

• There is no advantage in application of J-type stringers over the common practice blade types. There
is no gain in local buckling, whereas the significant increase in the collapse load of J-stiffened panels
cannot be exploited and thus there is a considerable weight penalty. Due to manufacturing and cost
constraints, the blade-stiffener would be the ideal and preferred stringer to stiffen a curved panel.

7. Conclusions

Test results on curved composite panels stiffened by J-stringers were presented and discussed. Test
results were compared with predictions yielded by an in-house developed code and the commercial FE
code ABAQUS, as well as with test results on blade-stiffened panels that were reported earlier. Design
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guidelines have been formulated based on the Technion experimental results and the fast in-house soft-
ware tool developed within the POSICOSS program. Test results and calculations have demonstrated
that from a design point of view, weight reduction, and cost, blade type stringers are more favorable.
The design guidelines would allow the designer to better choose a panel configuration to meet prescribed
design requirements with various optimisations leading to a higher specific load capacity.
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EFFECT OF ELASTIC OR SHAPE MEMORY ALLOY PARTICLES ON THE
PROPERTIES OF FIBER-REINFORCED COMPOSITES

VICTOR BIRMAN

The paper presents a comprehensive formulation for the analysis of the stiffness and strength of fiber-
reinforced composites with the matrix enhanced by adding elastic or shape memory alloy (SMA) spher-
oidal particles. The micromechanical model used to evaluate the stiffness tensor of the matrix with
embedded particles is based on the Benveniste version of the Mori–Tanaka theory. In the case of a super-
elastic shape memory alloy particulate matrix, the stiffness of the particles depends on the martensitic
fraction that is in turn affected by the state of stress within the particle. In this case an exact solution
for the stiffness tensor of the composite material with elastic fibers and matrix and embedded SMA
particles is developed combining the recent macromechanical solution for multi-phase composites with
the inverse method of the analysis of SMA. In the particular case, this solution results in explicit for-
mulae for the homogeneous material constants of a SMA particulate material subjected to axial loading.
Upon the completion of the stiffness analysis the strengths of a fiber-reinforced material with the matrix
containing elastic or SMA particles can be analyzed using the Eshelby solution for the stresses. As
follows from numerical examples, elastic spherical particles added to the matrix of a fiber-reinforced
composite significantly improve the transverse strength and stiffness of the material, even if the volume
fraction of such particles is relatively small. The effect of elastic particles on the longitudinal strength
and stiffness is less pronounced. It is also illustrated that the stress-induced transformation of superelastic
SMA particles results in significant changes of the properties of SMA particulate composites.

1. Introduction

The optimization of composite structures is usually concerned with either increasing their load-carrying
capacity without additional weight or reducing weight without sacrificing the load-carrying capacity. In
both situations it is necessary to enhance the stiffness and strength of the structure. The straightforward ap-
proach to achieving enhanced properties is using a stiffer high-strength material. An alternative approach
employs spatially tailored structures with a variable stiffness. Functionally graded structures where the
composition of the constituent phases varies in one direction only, that is, through the thickness, have also
been extensively studied [Birman and Byrd 2007]. The analysis in the present paper is concerned with
improving the performance of composite structures by embedding stiff high-strength elastic or SMA
inclusions (particles or fibers) within the matrix of the fiber-reinforced material. The benefits of this
approach for the stiffness of fibrous composite materials have recently been demonstrated by Genin and
Birman [2009], who considered the effect of spherical glass particles on static and dynamic response of
glass/epoxy composites.
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Embedding shape memory alloy fibers within a composite material can offer numerous advantages,
including improved strength and stiffness, higher buckling loads and desirable dynamic properties. Ex-
tensive research on SMA fiber-reinforced composites with fibers that are either bonded to the substrate
or embedded within resin sleeves has been reviewed in literature; see, for example, [Birman 1997]. The
advantages associated with using SMA are realized through their martensitic and reverse transforma-
tions that are triggered by variations of temperature or applied stresses. In particular, the stress-induced
transformation of a superelastic SMA represents an interest due to a large hysteresis loop. Accordingly,
SMA materials and composites are considered for vibration control in aerospace and civil engineering
applications, for example in [Lagoudas 2008; McCormick et al. 2006; Cardone et al. 2004].

The present paper illustrates a two-step micromechanical model for the stiffness and strength analysis
of a fiber-reinforced material with particulate elastic or SMA matrix. The properties of the particulate
matrix determined at the first step of the analysis are subsequently used to evaluate those of the fiber-
reinforced material with the homogeneous matrix. As follows from numerical examples, elastic particles
embedded in the matrix can significantly increase both the stiffness and the strength of fiber-reinforced
materials.

In addition to the analysis of composites with elastic particulate matrices, the paper presents an exact
solution for the strength and stiffness of a fiber-reinforced composite material incorporating superelastic
SMA inclusions. The exact solution for the stiffness tensor is obtained by the Genin–Birman general-
ization of the Benveniste method combined with the three-dimensional formulation for a superelastic
SMA. Contrary to available three-dimensional solutions, the present method does not involve assump-
tions on the law that relates the rate of change in the transformation strain to the rate of change of
the martensitic fraction. Instead, the analysis of the matrix with SMA inclusions utilizes the “inverse”
method. According to this method, the stresses in SMA inclusions, the applied stresses and the tensor of
stiffness of the homogeneous material are determined exactly for the assumed value of the martensitic
fraction. Although the inverse solution does not yield the transformation strain in SMA inclusions,
this information is not necessary to determine the composite stress-strain relationships and the stiffness
tensor. Once the strength and stiffness of a SMA-particulate matrix have been determined, the strength
of a fiber-reinforced, SMA-particulate matrix composite can be obtained using standard solutions shown
in the paper.

The analysis of SMA reinforced composites developed in the paper is applied to the case of a SMA
particulate material. The explicit closed-form solution developed for this case elucidates significant varia-
tions in the stiffness of the composite as a result of applied stresses that cause SMA phase transformation.

2. Micromechanics of a fiber-reinforced, particulate-matrix material with elastic constituents

Numerous methodologies of the micromechanical stiffness analysis of composites with inclusions of
an arbitrary shape include the Mori–Tanaka model, the double-inclusion method, the models of Ponte
Castaneda and Willis, the Kuster–Toksoz model, etc. The bounds for the stiffness tensor have been
suggested by Hashin and Shtrikman, Beran, Molyneux and McCoy, Gibiansky and Torquato, etc. A
comprehensive review of these techniques is outside the scope of this paper; see for example [Tucker
and Liang 1999; Hu and Weng 2000; Torquato 2001; Milton 2002].
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Kanaun and Jeulin [2001] and Genin and Birman [2009] proposed the solution for the stiffness tensor
of a multi-phase material that is applicable to fiber-reinforced particulate composites. In particular, the
latter team found that the stiffness of a cross ply glass/epoxy material evaluated using their approach
was within the strict three-point bounds as long as the volume fractions of spherical inclusions and
fibers remained relatively small. In the present paper the strength and stiffness analyses of a three-phase
reinforced material are conducted in two steps. We begin with the Benveniste version of the Mori–Tanaka
solution to specify the stiffness tensor of a particulate matrix that is subsequently applied to evaluate the
stiffness of a fiber-reinforced, particulate-matrix material. The strength of the matrix with inclusions
(particles) is determined using the heterogeneous matrix stiffness data. In turn, knowing the strength of
the matrix enables us to predict the strength of the fiber-reinforced material with a particulate matrix.
The principal reason for the two-step stiffness analysis, instead of using the solution for materials with
multiple inclusion classes [Kanaun and Jeulin 2001; Genin and Birman 2009], is that the stiffness of the
particulate matrix is needed for the subsequent strength analysis of the composite.

2.1. Two-step stiffness analysis. Consider a fiber-reinforced material where the matrix contains uni-
formly distributed and uniaxially aligned spheroidal inclusions (they are referred to as particles, though
the approach could be applied to the case where the inclusions represent short or continuous fibers as
long as we use the appropriate Eshelby tensor). It is assumed throughout the paper that the matrix is
perfectly bonded to both fibers and particles. The volume fraction of the particles within the matrix
remains below 30%, so that the Mori–Tanaka approach is accurate [Genin and Birman 2009]. Then the
tensor of stiffness of the particulate matrix can be obtained following [Benveniste 1987] in the form

Lpm = L1+ f ′2(L2− L1)T2( f ′1 I + f ′2T2)
−1, (1)

where the subscripts 1 and 2 identify the matrix and particles, respectively, Li is the stiffness tensor of
the corresponding phase, I is the fourth-order identity tensor, f ′i is the volume fraction of the i-th phase,
and the prime indicates that these volume fractions are evaluated within the particulate matrix, that is,
f ′1+ f ′2 = 1. Furthermore,

T2 =
[
I + S2 L−1

1 (L2− L1)
]−1 (2)

is the coefficient tensor in the relation between the strain tensors in the matrix and in the particles

ε2 = T2ε1. (3)

The elements of the Eshelby tensor S2 were obtained for spheroidal inclusions dependent on the aspect
ratio by Tandon and Weng [1986].

It is known that the Mori–Tanaka solution for the bulk, elasticity and shear moduli of particulate
composites coincides with the Hashin–Shtrikman lower bound. At a high volume fraction of particles the
Mori–Tanaka prediction deviates from numerical (FEA) and experimental results. However, the accuracy
of the analysis at high particle volume fractions can be improved using the incremental particle-addition
approach suggested in the Appendix.

Once the stiffness tensor of the particulate matrix has been evaluated, it is possible to treat the matrix
as a homogeneous medium that is isotropic if the particles are isotropic and spherical or if they are
randomly oriented. Subsequently, we can apply a similar homogenization procedure to a unidirectional
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fiber-reinforced material considering fibers as aligned inclusions with an infinite aspect ratio. Accord-
ingly, the stiffness tensor of such fiber-reinforced, particulate-matrix material is

L = Lpm+ f3(L3− Lpm)T3( fpm I + f3T3)
−1, (4)

where f3 and fpm are the volume fractions of fibers and particulate matrix, respectively, fpm+ f3 = 1,
and

T3 =
[
I + S3 L−1

pm(L3− Lpm).
]−1 (5)

The Eshelby tensor for a fiber-reinforced material with an isotropic homogenous matrix, S3, was obtained
by Luo and Weng [1989]. Alternative micromechanical methods that could be applied to the analysis
of a fiber-reinforced material with the isotropic particulate matrix properties determined as shown above
include the well-known Halpin–Tsai or mechanics of materials solutions.

2.2. Strength of a particulate matrix. The pioneering study of Eshelby [1957] provided expressions for
the stresses just outside a spheroidal inclusion. This work was further continued by Tandon and Weng
[1986] and Kakavas and Kontoni [2005] who also illustrated that the analytical results were in a good
agreement with the finite element analysis.

Micromechanical strength conditions can be determined by specifying the stress in the matrix, at the
particle-matrix interface, and in the particles, and subsequently applying strength criteria to the matrix
and particles and at the interface. In this paper, we assume a perfect bond between the matrix and
particles. Furthermore, the fracture analysis is not included, though it could be developed based on the
knowledge of local stresses and assuming that the crack originates at the particle-matrix interface. The
strength of the particles is assumed higher than that of the matrix (as is usually the case in applications),
so that failure initiates in the matrix, just outside the particles, where the stresses are elevated due to the
stress concentration. Among the strength criteria applicable to the analysis of the isotropic and ductile
matrix, we consider the maximum principal stress criterion and the von Mises criterion. In the case of a
brittle matrix, these criteria may be inaccurate and the Coulomb–Mohr criterion or the recently suggested
Christensen criterion [2007] becomes more appropriate.

Consider a particulate matrix subject to uniaxial tension σ̂11 (the in-plane coordinates referred to are
denoted by 1 and 2). The stresses in the matrix (in the 1-2 plane), just outside a spherical particle, are
[Tandon and Weng 1986]

σ11,m = σ̂11

(
1+

(1− f ′2)(b1 p1+ 2b2 p2)

(1+ ν1)(1− 2ν1)
+

p1 cos2 θ + p2(ν1+ sin2 θ)

1− ν2
1

cos2 θ

)
= F11(θ)σ̂11

σ22,m = σ̂11

(
(1− f ′2)(b3 p1+ (b4+ b5)p2)

(1+ ν1)(1− 2ν1)
+

p1 cos2 θ + p2(ν1+ sin2 θ)

1− ν2
1

sin2 θ

)
= F22(θ)σ̂11

σ33,m = σ̂11

(
(1− f ′2)(b3 p1+ (b4+ b5)p2)

(1+ ν1)(1− 2ν1)
+
ν1 p1 cos2 θ + p2(1+ ν1 sin2 θ)

1− ν2
1

)
= F33(θ)σ̂11

σ12,m =−σ̂11
p1 cos2 θ + p2(ν1+ sin2 θ)

1− ν2
1

sin θ cos θ = F12(θ)σ̂11

σ13,m = σ23,m = 0,

(6)
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where the coefficients b j and p j are specified according to [Tandon and Weng 1986] in terms of the
elements of Eshelby’s tensor, the particle volume fraction within the particulate matrix f ′2, and bulk and
shear moduli of the matrix and particles.

The principal stresses can now be determined from∣∣∣∣∣∣
σ11,m−σ σ12,m 0
σ12,m σ22,m−σ 0

0 0 σ33,m−σ

∣∣∣∣∣∣= 0. (7)

Accordingly,

σ1,2 = σ̂11

(
F11(θ)+ F22(θ)

2
±

√
(F11(θ)− F22(θ))2+ 4F2

12(θ)

)
= σ̂11 F1,2 (θ),

σ3 = σ̂11 F33(θ).

(8)

The maximum principal stress criterion yields the tensile strength of the particulate matrix:

spm,T = smT min{F−1
1 (θ), F−1

2 (θ), F−1
33 (θ)}, (9)

where smT is the tensile strength of the matrix material.
The von Mises strength criterion predicts the strength

spm,T =
√

2smT
(
[F1(θ)− F2(θ)]

2
+ [F1(θ)− F33(θ)]

2
+ [F2(θ)− F33(θ)]

2)−1
. (10)

Either one uses the strength criterion (9) or (10), it is necessary to check all values of 0≤ θ ≤ π/2 since
it is unpractical to analytically determine the angular coordinate corresponding to the onset of failure.
Therefore, the strength should be found as the smallest value of the stress given by (9) or (10) obtained
by varying the angular coordinate.

The analysis of the axial compressive strength is quite similar: we can use (9) or (10), where spm,T

is replaced with the compressive strength of the particulate matrix spm,C and smT is replaced with the
compressive strength of the matrix material smC .

Now consider the shear strength of the particulate matrix subject to the stress σ̂12. Let

R = (1− f ′2)(1− 2S1212)−
G2

G2−G1
and S =

(1− f ′2)(1− 2S1212)
(

1− 2G1
Gpm

)
−

G2
G2−G1

(1− f ′2)(1− 2S1212)−
G2

G2−G1

, (11)

where G1 and G2 are the shear moduli of the matrix and particles, respectively, and Gpm is the shear
modulus of the particulate matrix found using the solution in the previous section. Then the stresses in
the matrix adjacent to the particle can be obtained [Tandon and Weng 1986]:

σ11,m =−
4G1

(1− ν1)Gpm R
σ̂12 sin θ cos3 θ = F̃11(θ)σ̂12,

σ22,m =−
4G1

(1− ν1)Gpm R
σ̂12 sin3 θ cos θ = F̃22(θ)σ̂12, (12)
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σ33,m =−
4G1ν1

(1− ν1)Gpm R
σ̂12 sin θ cos θ = F̃33(θ)σ̂12,

σ12,m = σ̂12

(
S+

4G1

(1− ν1)Gpm R
sin2 θ cos2 θ

)
= F̃12(θ)σ̂12,

σ13,m = σ23,m = 0.

These expressions depend on the shear modulus of the particulate matrix, which is available from the
micromechanical solution.

The principal stresses found from (7) are

σ1,2 = σ̂12

(
F̃11(θ)+ F̃22(θ)

2
±

√
(F̃11(θ)− F̃22(θ))2+ 4F̃2

12(θ)

)
= σ̂12 F̃1,2 (θ),

σ3 = σ̂12 F̃33(θ).

(13)

Subsequently, the maximum principal stress criterion or the von Mises criterion yields the shear
strength of the particulate matrix in the form (9) and (10), respectively, where F1 is replaced by F̃1,
F2 by F̃2, F33 by F̃33, spm,T by spm,S (the particulate matrix shear strength) and smT by the matrix shear
strength smS . Similarly to the case for the tensile and compressive strengths, the shear strength of the
particulate matrix is found as the smallest stress obtained from the accordingly modified equations (9)
or (10) by varying the values of θ .

2.3. Strength of the fiber-reinforced material with a homogenized matrix. The outline of microme-
chanical solutions for the strengths of a fiber-reinforced material in the axial and transverse directions as
well as for the shear strength obtained by assumption that all constituents remain within the linear elastic
range and bonding between the fibers and matrix is not violated was given by Daniel and Ishai [2006].
These solutions are outlined here using the properties of fibers and those of the particulate matrix, for
completeness. The composite strengths depend on the strength of fibers that we assume known and on
the strength, ultimate strain and stiffness of the particulate matrix evaluated using the results shown in
the previous sections.

The longitudinal tensile strength s1T depends on the relationship between the ultimate longitudinal
tensile strain εu

f,l of the fibers and the ultimate tensile strain εu
pm = spm,T /Epm of the particulate matrix

(here Epm is the elastic modulus of the particulate matrix):

s1T = s f T

(
f3+ fpm

Epm

E3

)
if εu

f,l < ε
u
pm,

s1T = spm,T

(
f3

E3

Epm
+ fpm

)
if εu

f,l > ε
u
pm,

(14)

where s f T is the tensile strength of isotropic fibers and E3 is their modulus of elasticity.
The modes of failure of a unidirectional fiber-reinforced composite subject to longitudinal compression

include fiber microbuckling in either extensional or shear mode and shear failure. The microbuckling
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failure modes occur at the following value of the applied compressive stress

s ′1C =min
{

2 f3

√
Epm E3 f3

3 fpm
,

Gpm

fpm

}
, (15)

where Gpm is the shear modulus of the particulate matrix.
The shear failure mode of a longitudinally compressed fiber-reinforced material occurs at the stress

s ′′1C = 2sfs

(
f3+ fpm

Epm

E3

)
, (16)

where sfs is the shear strength of the fiber.
The longitudinal compressive strength is now found as s1C = min{s ′1C , s ′′1C}. The analysis can also

account for the effect of fiber misalignment, as discussed by Daniel and Ishai [2006].
The transverse tensile failure of fiber-reinforced composites can be predicted accounting for the stress

or strain concentration factor and for residual stresses. For example, the stress concentration factor for a
square array of fibers can be obtained in terms of the properties of the particulate matrix and fibers as

k =
1− f3(1− Epm/E3)

1−
√

4 f3/π(1− Epm/E3)
. (17)

Subsequently, the maximum principal stress criterion yields s2T = (spmT − σpm,res)/k, where σpm,res is the
maximum radial residual stress in the particulate matrix. The latter stress can be found using a concentric
cylinder model subject to a uniform temperature, the inner cylinder being the fiber, surrounded with a
cylindrical layer of the particulate matrix that is in turn surrounded with the fiber-reinforced medium.
A more accurate approach would be based on subdividing the cylindrical layer of the particulate matrix
into a thin cylinder of the matrix material encompassed with a cylinder of the particulate matrix material.
The radial coordinate of the interface between these two cylinders could be determined from geometric
considerations. An alternative formulation employing the maximum principal strain criterion is also
available using the properties of the particulate matrix and the maximum residual radial strain.

The compressive strength of a fiber-reinforced composite is the lesser failure stress corresponding
to a number of possible scenarios, including interfacial shear failure, debonding and fiber crushing.
The typical mode of failure being the compressive matrix failure, the strength is determined as s2C =

(spm,C + σpm,res)/k.
In-plane shear failure occurs as a result of the interfacial shear stress concentration. The stress con-

centration factor ksh is available from (17) by replacing the moduli of elasticity with the shear moduli of
the corresponding phases. Then the shear strength is s12 = spm,S/ksh.

The strengths of the fiber-reinforced material can be specified only upon the conclusion of the micro-
mechanical stiffness analysis presented above, since they depend on the stiffness of the particulate matrix.

3. Fiber-reinforced composite material with superelastic shape memory alloy inclusions
embedded within the matrix

The total strain in SMA is composed of elastic, transformation and thermal components. The latter
components are negligible in the material experiencing superelastic transformations. The increments of
the transformation strain are usually evaluated as functions of the increments of the martensitic volume
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fraction using an assumption regarding the incremental law; see for example, [Boyd and Lagoudas 1993;
Birman et al. 1996; Jonnalagadda et al. 1998; Jiang and Batra 2002]. An alternative theory [Lu and Weng
2000] treated the martensitic phase as a separate class of inclusions within the austenitic metal.

Contrary to the incremental approach referred to above, the present solution is exact, yielding the
stiffness and applied stress and strain tensors for a material with superelastic SMA inclusions (spheroidal
particles or fibers) corresponding to a prescribed martensitic fraction of SMA (other types of inclusions,
besides SMA, can also be present).

The solution follows this sequence:

(i) The Benveniste version of the Mori–Tanaka formulation for a composite material with multiple
classes of inclusions is outlined, following the solution by Genin and Birman [2009].

(ii) A three-dimensional formulation for the superelastic material is then presented, combining the ap-
proaches of [Boyd and Lagoudas 1993] and [Tanaka 1986; Sato and Tanaka 1988].

(iii) A combination of the micromechanical and superelastic SMA formulations above, together with
the inverse method suggested in this paper, is used to obtain the exact solution for the stress-strain
response and stiffness of a composite material with multiple inclusions, including superelastic SMA
particles or fibers.

The analysis is practical since the knowledge of the transformation strain is not needed in numerous
problems concerned with SMA composites. Using the present solution that provides the applied stresses,
stiffness and stress-strain relationships corresponding to a prescribed martensitic volume fraction in SMA
inclusions, one can also develop a complete hysteresis loop varying this volume fraction to predict the
damping capacity of superelastic SMA composites bypassing the evaluation of the transformation strain
(this study elucidating a remarkable damping potential of particulate SMA composites is the subject of
a separate paper).

3.1. Micromechanics of a composite material with numerous inclusion classes. Consider a represen-
tative volume element of a composite material with multiple inclusions of various shapes and properties
subject to a remote strain tensor ε̄0. The behavior of SMA undergoing martensitic or reverse transfor-
mation is physically nonlinear. However, if the martensitic fraction of SMA is known, we can employ a
tangent stiffness tensor of the corresponding inclusions. All inclusions are assumed perfectly bonded to
the matrix. The average stress tensor in the element is related to the tensor of the applied average strain
via the tangent stiffness tensor by

dσ0 = L dε0. (18)

Following the solution by Genin and Birman [2009], the stiffness tensor is expressed in terms of the
corresponding tensors of the matrix (i = 1) and inclusions (i > 1) by the following equation, which
represents an extrapolation of (1):

L = L1+

N∑
i=2

fi (Li − L1)Ti ( f1 I + f2T2+ · · ·+ fN TN )
−1, (19)

where the number of distinct inclusion classes is N−1 and the fi are the volume fractions of the matrix
(i = 1) and inclusions (i ≥ 2). In the following discussion, SMA inclusions are identified by i = 2.
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Tensors Ti are given by equations similar to (2). Note that the Eshelby tensor S2 for SMA inclusions
is not affected by the martensitic transformation as long as the stiffness of the matrix remains constant
[Boyd and Lagoudas 1993].

In the following solution, we employ relationships between the tensor of average applied strain and
the tensor of average strain within the inclusions

dεi = Ai (ξ) dε0, (20)

where the so-called tensors of concentration factors are given by

Ai = Ti ( f1 I + f2T2+ · · ·+ fN TN )
−1. (21)

Note that the Genin–Birman solution (19) differs from that using a two-step approach, that is, Equations
(1) and (4). A quantitative comparison of the accuracy of these two approaches is outside our scope here.

3.2. Three-dimensional formulation for a shape memory material. The following formulation em-
ploys the assumption that the tensor of stiffness of a SMA material during the martensitic or reverse
transformation can be represented by the rule of mixtures [Boyd and Lagoudas 1993]

L2 = L A
2 + ξ(L

M
2 − L A

2 ), (22)

where the superscripts A and M refer to the austenitic and martensitic phase of the material.
Note that the rule of mixtures can also be applied to the strength of the SMA material, so that

s2 = s A
2 + ξ(s

M
2 − s A

2 ). (23)

The three-dimensional constitutive relations for a superelastic shape memory material are

dσ2 = d
(
L2(ε

′

2− ε
t
2)
)
, (24)

where ε′2 and εt
2 are tensors of total and transformation strains, respectively. The rate of change of the

tensor εt
2 is related to the rate of change of the martensitic volume fraction, using an assumption for

the tensor of coefficients in the relationship (called the transformation tensor). This approach implies
the use of an incremental technique monitoring the changes in the tensors of strain and stress with the
changes in the martensitic volume fraction; see, for example, [Birman et al. 1996; Jonnalagadda et al.
1998; Jiang and Batra 2002].

In the present study we discard the assumption regarding the transformation tensor and operate with the
average elastic strain tensor within the SMA particle, that is, ε2= ε

′

2−ε
t
2. This enables us to directly apply

linear elastic micromechanical theories, such as the Mori–Tanaka theory and its extrapolation to multi-
phase composites outlined in the previous section. While the present approach does not provide tools
for a decomposition of the elastic strain and determining the transformation component, it is sufficient
in a number of applied problems.

Equation (24) can be replaced with the following incremental relationship utilizing the tangent SMA
stiffness tensor:

dσ2 = L2(ξ) dε2. (25)

The martensitic fraction can be related to the effective stress in SMA by extrapolating the solutions
for a number of available one-dimensional theories (such as Tanaka’s, Liang–Rogers’ and Brinson’s
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theories). As an example, we adopt the Tanaka model [Tanaka 1986; Sato and Tanaka 1988]:

ξ = 1− exp
[
bM(T M

S − T )+ cMσeff
]

(A→ M),

ξ = exp
[
bA(T A

S − T )+ cAσeff
]

(M→ A),
(26)

where T is the current temperature, T M
S and T A

S are the martensite and austenite phase start temperatures
at stress-free conditions, and bM , bA, cM , cA are constants [Birman et al. 1996].

The effective stress is defined in terms of the components of the deviatoric stress tensor, that is,

σeff =

√
3
2σ
′

i jσ
′

i j , σ ′i j = σi j −
1
3σnnδi j , (27)

where σi j = σ
(i j)
0 .

3.3. Stiffness of a composite material with SMA particles: exact inverse method. For a composite
material where several inclusion classes, including superelastic particles, are embedded within an elastic
matrix, we now develop an exact solution to relate the tensor of applied strain to the martensitic fraction
in SMA particles and to determine the stiffness tensor corresponding to this applied strain.

Consider the situation where the tensor of applied strain ε0 is prescribed, except for one component
ε
(mn)
0 that will be specified from the subsequent solution. We begin by assuming the average martensitic

volume fraction ξ in SMA particles (the average per the inclusion class approach to strains and stresses
adopted in the Mori–Tanaka micromechanics necessitates the use of the average martensitic volume
fraction). The corresponding value of the effective stress σeff in the particle is immediately available
from (26), dependent on the transformation being direct or reversed (temperature is assumed constant).
Subsequently, the SMA stiffness tensor L2 corresponding to ξ can be determined from (22), and the
composite stiffness tensor L is specified from (19). While these tensors are the ultimate goal of the
analysis, the solution cannot stop here since we need to specify the unknown component of the applied
strain tensor corresponding to the assumed martensitic volume fraction.

The tensors Ti for each class of inclusions can be determined from equations similar to (2), where the
Eshelby tensor is not affected by the transformation within SMA particles. Subsequently, (21) yields the
concentration tensors Ai .

We have a system of 13 equations obtained from (23), (20) and (27) with respect to twelve unknown
components of the SMA stress and strain tensor increments, and the component of applied strain in-
crement dε(mn)

0 . The solution is incremental, starting with the elastic case where SMA particles are in
the austenitic phase (in this case the solution is available using [Tandon and Weng 1986]). At each
subsequent increment of the martensitic fraction the corresponding effective stress is found from (26).
The SMA and composite material tangent stiffness tensors are specified from (22) and (19). Subsequently,
equations (20) are used to express all strain components in the SMA inclusions, i.e., ε2 = ε2(ε

(mn)
0 , ξ),

The final phase of the solution is finding the values of ε(mn)
0 and six components of the stress tensor in

SMA inclusions from (25) and (27).
The strength of SMA particles corresponding to the prescribed martensitic volume fraction is available

from (23). Using the strength and stiffness of the SMA particles corresponding to the applied strain tensor,
the strength analysis of a fiber-reinforced, SMA particulate matrix composite can be conducted using the
previously illustrated solution.
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3.4. Particular case: superelastic SMA particulate composite material. As an example illustrating an
application of the inverse method of analysis discussed in the previous section consider the case of
an isotropic matrix with spherical SMA particles subject to a uniaxial axial stress σ̂ (11)

0 . As shown in
[Tandon and Weng 1986], the stresses in a particle subject to a uniaxial loading are

dσ (11)
2 =

(
1+

1− f ′2
(1+ ν1)(1− 2ν1)

(b1 p1+ 2b2 p2)

)
dσ̂ (11)

0 ,

dσ (22)
2 = dσ (33)

2 =
1− f ′2

(1+ ν1)(1− 2ν1)

(
b3 p1+ (b4+ b5)p2

)
dσ̂ (11)

0 ,

dσ (mn)
2 = 0, m 6= n,

(28)

where b j and p j are coefficients specified in that reference. These coefficients depend on the stiffness
of SMA particles, that is, b j = b j (ξ) and p j = p j (ξ).

The increment of the effective stress in SMA particles can now be explicitly expressed in terms of the
increment of the applied stress

dσeff =
∣∣dσ (11)

2 − dσ (22)
2

∣∣= ∣∣∣∣1+ 1− f ′2
(1+ ν1)(1− 2ν1)

(
(b1− b3)p1+ (2b2− b4− b5)p2

)∣∣∣∣ dσ̂ (11)
0 . (29)

Explicit expressions for the shear and bulk moduli of a composite material consisting of the matrix with
embedded spherical particles, that is, Gpm and Kpm, are available [Vel and Batra 2004]

Gpm = G1+
f ′2(G2−G1)

1+ f ′1
G2−G1
G1+ρ

, Kpm = K1+
f ′2(K2− K1)

1+ f ′1
G2−G1

K1+4G1/3

, ρ =
G1(9K1+ 8G1)

6(K1+ 2G1)
. (30)

The elasticity modulus and the Poisson ratio of the SMA-particulate material can now be determined
from Epm = 9KpmGpm(3Kpm+Gpm)

−1 and νpm = Epm(2Gpm)
−1
− 1.

The computational procedure in this case is very simple. The initial step corresponds to the elastic
problem with austenitic SMA particles where the solution is available. Then the martensitic fraction is
increased incrementally. At each value of ξ one can find the corresponding stiffness characteristics of
SMA particles and composite material from (22) and (19), while the effective stress is specified from (26).
The coefficients b j = b j (ξ) and p j = p j (ξ) are also calculated at this step. Subsequently, (29) yields the
value of the applied stress, while (30) results in the stiffness of the particulate material corresponding to
this stress. The strain tensor in the composite material is determined using (18).

4. Numerical examples

The effectiveness of embedding stiff particles within the matrix of a fiber-reinforced composite is shown
on the example of a glass/epoxy material with spherical particles within the matrix. The properties of
the constituent materials are taken as in [Genin and Birman 2009]: E1 = 3.12 GPa, ν1 = 0.38, E2 =

E3 = 76.0 GPa, ν2 = ν3 = 0.25. The tensile stress ratio kpm = σ11,m(max)/σ̂11 as a result of uniaxial
tension is shown in Figure 1, left, where the maximum stress in the matrix is normalized with respect to
the stress applied to the particulate matrix. The case of f ′2 = 0 corresponds to a single particle embedded
within the matrix, while larger values of the particle volume fraction account for multiple inclusions.
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Figure 1. Tensile stress ratio (kpm) in (left) the particulate matrix subject to uniaxial
tension, and (right) fiber-reinforced particulate-matrix composite.

The stress ratio reaches a maximum in the case of a single particle as was also observed by Tandon and
Weng [1986]. In Figure 1, right, we see the tensile stress concentration ratio at the composite level, that
is, the ratio σ11,m(max)/σ 0

11 of the maximum stress in the matrix to the applied composite stress.
The beneficial effect of adding particles on the longitudinal and transverse stiffness of the fiber-

reinforced material is reflected in Figure 2. The longitudinal stiffness of the material with a homogeneous
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Figure 2. Effect of particle volume fraction in particulate matrix on longitudinal (top)
and transverse (bottom) stiffness of fiber-reinforced composite.
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Figure 3. Effect of particles on the tensile longitudinal (left) and transversal (right)
strength of fiber-reinforced particulate-matrix composite. (R = s1T /s f T )

particulate matrix was determined by the rule of mixtures. The transverse stiffness was determined by
the Halpin–Tsai model with the curve fitting parameter equal to ξ = 1 and ξ = 2 (typical range of this
parameter). As seen in Figure 2, even a modest amount of particles added to the matrix can significantly
enhance the transverse stiffness, although the effect on the longitudinal stiffness is less pronounced.

The effect of particles on the longitudinal tensile strength of the composite material is reflected in
Figure 3, left, for the case where εu

f,l < ε
u
pm. As is obvious from that figure, adding glass particles to the

matrix has a relatively small effect on the longitudinal strength of the material. Predictably, the situation
is different in the case of transverse strength since it is highly dependent on the strength of the particulate
matrix. As is shown in Figure 3, right, the effect of adding particles on the transverse strength of the
composite is much more pronounced than that on its longitudinal strength. This is expected since the
contribution of the matrix to the transverse strength is higher than that to the longitudinal strength.

Examples of the closed-form solution for composites including SMA Nitinol spherical particles embed-
ded within an epoxy matrix with the properties identical to those in the paper on fibrous SMA composites
by Birman et al. [1996] are presented below. Figure 4 shows the shear and elasticity moduli as functions
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Figure 4. Shear modulus and elasticity modulus of SMA particulate composite (relative
to those of epoxy), as functions of the martensitic fraction. The SMA volume fraction is
f2 = 0.20 (blue), f2 = 0.35 (red), and f2 = 0.50 (green).
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Figure 5. Bulk modulus of SMA particulate composite (relative to that of epoxy), as
a function of the martensitic fraction. The SMA volume fraction is f2 = 0.20 (blue),
f2 = 0.35 (red), and f2 = 0.50 (green).

of the martensitic volume fraction, for values of the SMA particle volume fraction equal to 20%, 35%,
and 50%, while Figure 5 does the same for the bulk modulus. As is evident from these figures, martensitic
and reverse phase transformations in SMA particles significantly affect the properties of SMA particulate
composites with a high SMA volume fraction. The changes in the case where the volume fraction is
relatively low (20%) are noticeable but small (between 10 and 20%).

The effect of applied axial stress on the variation of the martensitic volume fraction in SMA particulate
composites is illustrated in Figure 6 for an SMA volume fraction equal to 20% and 50%. Predictably, the
range of stresses needed for the transformation loop (from austenite to martensite and back to austenite)
is larger if the amount of SMA increases. This reflects a higher stiffness of SMA material, even in
the martensitic phase, as compared to the stiffness of the epoxy considered in examples. The results
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Figure 6. Axial stress that has to be applied to a superelastic shape memory alloy partic-
ulate composite to cause martensitic (blue curve) or reverse (red curve) transformation.
The SMA volume fraction f2 is 0.20 (left) and 0.50 (right); the temperature is 40 ◦C.
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illustrated in Figures 5 and 6 can further be employed to develop an exact solution for the hysteresis
loop of particulate SMA composites (here the word exact refers to the solution within the framework of
assumptions employed in the theories of Tanaka for SMA and Mori–Tanaka for composite).

5. Conclusions

The paper illustrates a two-step approach to the strength and stiffness analyses of fiber-reinforced, partic-
ulate-matrix composites. The solution is obtained by a generalization of available micromechanical
solutions to three-phase materials. The strength and stiffness of the particulate matrix are specified
first, followed with the analysis of the properties of a fiber-reinforced material incorporating the already
homogenized matrix.

The numerical analysis shows that adding stiff particles to the matrix results in a significant enhance-
ment of the transverse strength and stiffness, but the benefits are less obvious for the longitudinal strength
and stiffness. This reflects a relatively larger contribution of the matrix to the transverse properties of
the fiber-reinforced material.

The solution is further extrapolated to composites including shape memory alloy (SMA) inclusions.
The exact solution is obtained for the stiffness of such composites, eliminating the need to assume a
transformation law (a relationship between the increments of the martensitic fraction and the tensor of
the transformation strain) and the associated incremental procedure. As follows from numerical exam-
ples, the stiffness of particulate SMA composites is significantly influenced by the stress-induced phase
transformation.

Appendix: Incremental Mori–Tanaka approach to the homogenization of multi-phase materials

Consider a composite material with a relatively high volume fraction of inclusions fi (i = 2, . . . , N ). The
procedure utilizes an incremental homogenization that begins with embedding a low volume fraction of
inclusions into the matrix, so f (1)1 +

∑N
i=2 f (1)i = 1, where the superscript identifies the step number.

The stiffness of the material at this first step is evaluated using a counterpart of Equation (19):

L(1) = L1+

N∑
i=2

f (1)i (Li − L1)Ti
(

f (1)1 I + f (1)2 T2+ · · ·+ f (1)N TN
)−1
, (A1)

where

Ti =
[
I + Si L−1

1 (Li − L1)
]−1
. (A2)

The Eshelby tensor at the first step is calculated using the properties of the matrix material.
The incremental procedure at the following steps can easily be developed. For example, at the j -th step

a prescribed increment of inclusions is added to the matrix that already contains inclusions incorporated
at the previous steps, so that f ( j)

1 +
∑N

i=2 f ( j)
i = 1 and

L( j)
= L( j−1)

+

N∑
i=2

f ( j)
i

(
Li − L( j−1))T ( j)

i

(
f ( j)
1 I + f ( j)

2 T ( j−1)
2 + · · ·+ f ( j)

N T ( j−1)
N

)−1 (A3)

T j
i =

[
I + S( j)

i (L( j−1)
1 )−1(Li − L( j−1))

]−1
. (A4)
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The Eshelby tensor at the j-th step is calculated using the properties of the material evaluated at the
( j−1)-st step. The properties of inclusions do not change during the procedure, but the tensor of stiffness
of the matrix is continuously updated. The suggested procedure enables us to maintain the volume
fraction of additional inclusions at each step below the recommended accuracy limit of the Mori–Tanaka
approach. Accordingly, at each step,

∑N
i=2 f ( j)

i < r , where r is prescribed (it could be limited to 0.2 or
0.3, depending on the desirable accuracy).
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ON THE DETACHMENT OF PATCHED PANELS UNDER
THERMOMECHANICAL LOADING

WILLIAM J. BOTTEGA AND PAMELA M. CARABETTA

The problem of propagation of interfacial failure in patched panels subjected to temperature change
and transverse pressure is formulated from first principles as a propagating boundaries problem in the
calculus of variations. This is done for both cylindrical and flat structures simultaneously. An appro-
priate geometrically nonlinear thin structure theory is incorporated for each of the primitive structures
(base panel and patch) individually. The variational principle yields the constitutive equations of the
composite structure within the patched region and an adjacent contact zone, the corresponding equations
of motion within each region of the structure, and the associated matching and boundary conditions for
the structure. In addition, the transversality conditions associated with the propagating boundaries of
the contact zone and bond zone are obtained directly, the latter giving rise to the energy release rates in
self-consistent functional form for configurations in which a contact zone is present as well as when it
is absent. A structural scale decomposition of the energy release rates is established by advancing the
decomposition introduced in W. J. Bottega, Int. J. Fract. 122 (2003), 89–100, to include the effects of
temperature. The formulation is utilized to examine the behavior of several representative structures and
loadings. These include debonding of unfettered patched structures subjected to temperature change, the
effects of temperature on the detachment of beam-plates and arch-shells subjected to three-point loading,
and the influence of temperature on damage propagation in patched beam-plates, with both hinged-free
and clamped-free support conditions, subjected to transverse pressure. Numerical simulations based
on closed form analytical solutions reveal critical phenomena and features of the evolving composite
structure. It is shown that temperature change significantly influences critical behavior.

1. Introduction

The role of patched structures has expanded in modern engineering, as uses range from large-scale
structural repair to sensors and actuators to small-scale electronic systems. Detachment of the constituent
structures is thus an issue of concern as it may influence the effectiveness and integrity of the composite
structure. By its nature, the structure possesses a geometrical discontinuity at the edge of the patch.
Stress concentrations within the base structure-patch interface at this location (see, for example, [Wang
and Rose 2000]) can lead to the initiation of debonding.1 As a result, a primary mode of failure of such
structures under various loading conditions is edge debonding and its propagation. The characterization
of edge debonding is thus of critical importance in preserving the useful life of this type of structure.

Keywords: catastrophic, debonding, delamination, doubler, fracture, growth, growth path, interfacial failure, panel, patch,
plate, propagation, shell, stable, structure, temperature, thermal, thermomechanical, unstable, variational.
1For composite repair of structures, the patch edge is often tapered to discourage debond initiation (see, for example, [Duong

and Wang 2007, Chapter 7]). The effect of layer-wise step-tapering on damage propagation was studied in [Bottega and Karlsson
1999] and [Karlsson and Bottega 1999a].
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The structures of interest are typically subjected to temperature variations from the reference state. Such
temperature changes can influence the onset and extent of damage in these structures. In this light, Duong
and Yu [2002] examined the thermal effects of curing on the stress intensity factor for an octahedral-
shaped composite repair patch bonded to a cracked rectangular plate. A general expression for the
stress distribution was calculated analytically by adopting an “equivalent inclusion method” attributed
to Rose [1981], assuming a second order polynomial distribution for the strains. The solution is used to
analyze a sample problem and is compared with results using FEM. Related work includes that of Wang
et al. [2000], who analyzed thermally-induced residual stresses due to curing in plates with circular
patches. Structures were restricted to those with identical coaxial circular patches on the upper and
lower faces of the plate so as to eliminate bending as an issue. Moore [2005], with an eye towards
avoiding detachment of layers due to uniform temperature change, developed an analytical beam type
model in the spirit of Timoshenko [1925] to describe peeling of a composite laminate under thermal
load. In this context, he calculated the peeling moment that arises from the peel stress at any interface of
the structure due to an applied uniform temperature change from the curing temperature. This was done
via a force balance approach, where a decomposition of the moments into thermal and mechanical parts
was utilized. The results were then applied to three- and four-layer beams. In a similar vein, Toya et al.
[2005] employed a force balance based on classical beam theory to evaluate the energy release rate for a
bilayer beam possessing an edge delamination when the structure is subjected to different temperatures
at the top surface, bottom surface, and interface. They characterized the mode mix using a small-scale
decomposition attributed to Toya [1992] which utilizes complex stress intensity factors and the crack
closure method to characterize the energy release rate.

In related work, Karlsson and Bottega [2000a; 2000b] studied the effects of a uniform temperature
field applied to a patched plate, where the base structure is fixed at both ends with regard to in-plane
translation. In that work, the authors uncovered and explained the instability phenomenon they refer to
as “slingshot buckling”, whereby, at a critical temperature, the structure “slings” dynamically from an
equilibrium configuration possessing deflections in one direction to another equilibrium configuration
with deflections in the opposite direction. Rutgerson and Bottega [2002] examined the thermo-elastic
buckling of multilayer shell segments. In that study, the layered shells are subjected to an applied
transverse pressure in addition to a uniform temperature field. The nonlinear analysis therein showed
“slingshot” buckling to occur for thermal loading of these types of structures as well, and at temperatures
well below the conventional “limit point” (see also [Rutgerson and Bottega 2004]). The findings on
slingshot buckling have since been unified [Bottega 2006]. It is concluded that this type of buckling is
inherent to many types of composite structures and occurs due to competing mechanical and thermal
elements of the loading. Most recently, Carabetta and Bottega [2008] studied the effects of geometric
nonlinearities on the debonding of patched beam-plates subjected to transverse pressure. Analyses using
both nonlinear and linearized models were conducted and compared. Significant discrepancies were
seen to occur between behaviors predicted by the two models, both with respect to the onset of damage
propagation and with regard to the stability of the process and to pre-growth behavior, demonstrating the
influence of geometric nonlinearities on the phenomena of interest.

In the present work, we examine debonding of both initially flat and initially curved patched structures
under uniform temperature alone and in consort with transverse pressure and three-point loading. Toward
this end, the problem of propagation of interfacial debonds in patched panels subjected to temperature
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change and transverse pressure is formulated from first principles as a propagating boundaries problem
in the calculus of variations, in the spirit of [Bottega 1995; Bottega and Loia 1996; 1997; Bottega and
Karlsson 1999; Karlsson and Bottega 1999a; 1999b], where various issues, configurations, and loading
conditions were studied. For the present study, temperature is accounted for. A region of sliding contact
adjacent to the intact region is also considered, and the boundary of the intact region as well as the bound-
ary between the contact zone and a region of separation of the patch and base panel are each allowed to
vary along with the displacements within each region. This is done for both cylindrical and flat structures
simultaneously. An appropriate geometrically nonlinear thin structure theory is incorporated for each of
the primitive structures (base panel and patch) individually. The variational principle then yields the
constitutive equations of the composite structure within the patched region and an adjacent contact zone,
the corresponding equations of motion within each region of the structure, and the associated matching
and boundary conditions for the structure. In addition, the transversality conditions associated with the
propagating boundaries of the contact zone and bond zone are obtained directly, the latter giving rise to
the energy release rates in self-consistent functional form for configurations in which a contact zone is
present as well as when it is not. A structural scale decomposition of the energy release rates is established
by advancing the decomposition of [Bottega 2003] to include the effects of temperature. The formulation
is then utilized to examine the behavior of several representative structures and loadings. These include
debonding of unfettered patched structures subjected to temperature change, the effects of temperature
on the detachment of beam-plates and arch-shells subjected to three-point loading, and the influence of
temperature on damage propagation in patched beam-plates, with both hinged-free and clamped-free
support conditions, subjected to transverse pressure. (The latter is shown in Figure 1.) Numerical
simulations based on exact analytical solutions to the aforementioned formulation are performed, the
results of which are presented in load-damage size space. Interpretation of the corresponding “growth
paths” admits characterization of the separation behavior of the evolving composite structure. It is shown
that temperature change significantly influences critical behavior.

2. Formulation

Consider a thin structure (flat or cylindrical) comprised of a base panel (plate or shell) of normalized
half-span L to which a patch of half-span Lp � L is adhered over the region S1 W s 2 Œ0; a� (shown
in Figure 2 for a flat panel). The coordinate s runs parallel to the reference surface and originates at
the centerspan of the structure, as shown. Further, let us consider the debonded portion of the patch to

Θ

P

Θ

P

Figure 1. Patched structures subjected to transverse pressure and uniform temperature
field. Left: cylindrical panel (arch-shell) with hinged-free supports. Right: flat panel
(beam-plate) with clamped-free supports.
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Figure 2. Dimensionless half-span of structure (shown for flat panel).

maintain sliding contact over the region S2 W s 2 Œa; b� adjacent to the bonded region, while a portion of
the patch defined on S3 W s 2 Œb; L� is lifted away from the base structure. These three regions will be
referred to as the “bond zone”, “contact zone”, and “lift zone”, respectively. The domain of definition
of the portion of the patch within the lift zone is S3p W s 2 Œb; Lp� such that S3p � S3. When referring to
the portion of the patch in region S3 it will be understood that the corresponding subregion is indicated.
At this point, let us also define the “conjugate bond zone” a� �L�a as indicated in the figure. We shall
be interested in examining the evolution and response of the composite structure when it is subjected to
a uniform temperature increase, ‚, above some reference temperature. In what follows, all length scales
are normalized with respect to the dimensional half-span NL (radius NR) of the undeformed plate (shell)
structure, and the common surface or interface between the patch and base panel, and its extension, will
be used as the reference surface. The temperature change, ‚, is normalized with respect to the reference
temperature (and the coefficient of thermal expansion of the base structure). The corresponding relations
for the normalized (centerline) membrane strains ei .s/ and epi .s/ and the normalized curvature changes
�i .s/ and �pi .s/ for the base structure and the patch in each region are thus given by

ei D u
0
i � kwi C

1
2
w0i
2
; �i D w

00
i C kwi ; .s 2 Si /

epi D u
0
pi � kwpi C

1
2
w0pi

2
; �pi D w

00
pi C kwpi ; .s 2 Sip/

(1)

where k D 0 corresponds to the plate and k D 1 corresponds to the shell, and the variables are defined as
follows: ui Dui .s/ (positive in the direction of increasing s) and wi Dwi .s/ (positive downward/inward),
respectively, correspond to the axial (circumferential) and transverse (radial) displacements of the cen-
terline of the base panel in region Si , and upi D upi .s/ and wpi D wpi .s/ correspond to the analogous
displacements of the centerline of the patch. The primes indicate total differentiation with respect to s.

The displacements ui .s/ and upi .s/, and the membrane strains ei .s/ and epi .s/ of the substructure
centerlines are related to their counterparts u�i .s/ and u�pi .s/, and e�i .s/ and e�pi .s/ at the reference
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surface, by the relations

u�i D ui C
1
2
hw0i ; u�pi D upi �

1
2
hpw

0
pi .i D 1; 2; 3/

e�i D ei C
1
2
h�i ; e�pi D epi �

1
2
hp�pi .i D 1; 2; 3/

where h� 1 is the normalized thickness of the base panel and hp� 1 is that of the patch. At this point
let us also introduce the normalized membrane stiffness, C , and bending stiffness, D, of the base panel
and the corresponding normalized membrane and bending stiffnesses, Cp and Dp, of the patch. The
normalization of the stiffnesses of the primitive structures is based on the bending stiffness of the base
panel and the half-span NL (radius NR) of the system in the undeformed configuration. Hence,

C D 12=h2; D D 1; Cp D CE0h0; Dp DE0h0
3; (2)

where h0 D hp=h; and

E0 D NEp= NE (plane stress) or E0 D
NEp=.1� �

2
p/

NE=.1� �2/
(plane strain),

where NE and NEp correspond to the (dimensional) elastic moduli of the base panel and patch, respectively,
and � and �p are the associated Poisson’s ratios.

The nondimensional coefficients of thermal expansion of the base structure and patch, ˛0 and ˛0p ,
respectively, are the products of the dimensional coefficients and the reference temperature. We corre-
spondingly define, for the present formulation, the augmented coefficients ˛ and p̨ such that

˛ D ˛0 and p̨ D ˛
0
p (plane stress),

˛ D .1C �/˛0 and p̨ D .1C �p/˛
0
p (plane strain):

(3)

We next introduce the normalized temperature scale, ‚, such that

Q‚D ˛‚D ˛
N‚� N‚0
N‚0

; (4)

where N‚ is the dimensional temperature and N‚0 is a reference temperature.
Paralleling the developments in [Bottega 1995], we next formulate an energy functional in terms of

(i) the strain energies of each of the individual segments of both the base panel and patch, independently,
and expressed in terms of the reference surface variables, (ii) the work done by the applied loading for
each case of interest, (iii) constraint functionals which match the transverse displacements in the contact
zone and both the transverse (radial) and in-plane (circumferential) displacements in the bond zone2, and
(iv) a delamination energy functional corresponding to the energy required to create a unit length of new
disbond. To complete the formulation, we include a thermal energy functional. We thus formulate the
energy functional … as follows:

…D

3X
iD1

�
U
.i/
B CU

.i/
Bp CU

.i/
M CU

.i/
MpCU

.i/
T CU

.i/
Tp

�
�ƒ�WC�; (5)

2The Lagrange multipliers in this case correspond to the interfacial normal and shear stresses, respectively.
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where
U
.i/
B D

Z
Si

1
2
D�2i ds; and U

.i/
Bp D

Z
Si

1
2
Dp�pi

2ds .i D 1; 2; 3/; (6)

correspond to the bending energies in the base panel and the patch in region Si , while

U
.i/
M D

Z
Si

1
2
C.ei �˛‚/

2ds and U
.i/
Mp D

Z
Si

1
2
Cp.epi � p̨‚/

2ds .i D 1; 2; 3/

are the corresponding stretching energies of the base panel and the patch. Further,

U
.i/
T D

Z
Si

�
c� � .1C‚/ce

�
‚ds; U

.i/
Tp D

Z
Si

�
c�p � .1C‚/cep

�
‚ds

represent the “thermal energies” of the base structure and the patch, respectively, such that the total
bracketed expression in (5) corresponds to the (Helmholtz) free energy of the structure, and ‚ is the
normalized temperature change. The quantities c� , ce .c�p, cep/ correspond to the normalized specific
heats of the base structure (patch) for constant stress and constant deformation, respectively. These
terms are included for completeness. We remark that since we shall consider the normalized temperature
change, ‚, as prescribed, the variation of these functionals will vanish identically. (The contribution of
the convective type terms of these particular functionals for a given region, associated with the propa-
gation of the interior boundaries s D a and s D b, will cancel and hence will have no contribution to
the overall variation of … as well.) Further, if the process is considered to be adiabatic, these terms will
vanish identically as the free energy goes to internal energy and may be interpreted as the adiabatic work
given by the first four functionals.

The functional ƒ appearing in (5) is a constraint functional given by

ƒD

2X
iD1

Z
Si

�i .wpi �wi / dsC

Z
Si

�.u�p1�u
�
1/ ds;

where �1, �2 and � are Lagrange multipliers (and �2 < 0). Further,

WD�

3X
iD1

Z
Si

pwi ds

is the work done by the applied pressure, and

� D 2.a�� a�0/

is the delamination energy3, where
a� D L� a

is the conjugate bond zone half-length as defined earlier, a�0 corresponds to some initial value of a�, and
 is the normalized bond energy (bond strength).

The normalized bond energy,  , is related to its dimensional counterpart, N , by the relations

 D N Ǹ2= ND;

3More generally,  may be considered to be an implicit function of a�. In this event, the functional � is defined in terms of
its first variation, ı� D 2ıa� (that is, the virtual work of the generalized force  ).
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where ND is the dimensional bending stiffness of the base panel and Ǹ D NL; NR (plate, shell). Likewise,
the normalized interfacial stresses �1;�2, and � (the Lagrange multipliers), and the normalized applied
pressure p, are related to their dimensional counterparts N�1; N�2; N�; and Np, respectively, by

�i D N�i Ǹ
3= ND .i D 1; 2/; � D N� Ǹ3= ND;p D Np Ǹ3= ND:

We next invoke the principle of stationary potential energy which, in the present context, is stated as

ı…D 0:

Taking the appropriate variations, allowing the interior boundaries a and b to vary along with the dis-
placements, we arrive at the corresponding differential equations, boundary and matching conditions, and
transversality conditions (the conditions that establish values of the “moveable” interior boundaries a and
b to be found as part of the solution, together with the associated displacement field, which correspond
to equilibrium conditions of the evolving structure). After eliminating the Lagrange multipliers from the
resulting equations, we arrive at a self-consistent set of equations and conditions (including the energy
release rates) for the evolving composite structure. We thus have

M �i
00
C k.M �i �N

�
i /� .N

�
i w
�
i
0/0 D�p; N �i

0
D 0 .s 2 Si I i D 1; 2/ (7)

M 003 C k.M3�N3/� .N3w
0
3/
0
D�p; N 03 D 0 .s 2 S3/ (8)

M 00p3C k.Mp3�Np3/� .Np3w
0
p3/
0
D 0; N 0p3 D 0 .s 2 S3p/ (9)

with
w�i .s/� wi .s/D wpi .s/ .s 2 Si I i D 1; 2/;

��i .s/� �i .s/D �pi .s/ .s 2 Si I i D 1; 2/;

u�1.s/D u
�
p1.s/ .s 2 S1/:

Here
Ni .s/D C Œei .s/�˛‚�; Npi .s/D CpŒepi .s/� p̨‚� .i D 1; 2; 3/

are the normalized resultant membrane forces acting on a cross section of the base panel and patch within
region Si .i D 1; 2; 3/;

N �1 .s/D C
�e�1 .s/CB

���1 .s/�n
�‚D C �Œe�1 .s/�˛

�‚�CB�Œ��1 .s/�ˇ
�‚�; (10)

M �1 .s/D A
���1 .s/CB

�e�1 .s/��
�‚D A�Œ��1 .s/�ˇ

�‚�CB�Œe�1 .s/�˛
�‚� (11)

DD�Œ��1 .s/�ˇ
�‚�C ��N �1 ;

respectively, correspond to the normalized membrane force and normalized bending moment acting on
a cross section of the bonded portion of the composite structure;

N �2 .s/DN2CNp2 and M �2 .s/DDc�
�
2 .s/C

1
2
.hpNp2� hN2/ (12)

correspond to the normalized resultant membrane force and bending moment for the debonded portion
of the composite structure within the contact zone; and

M3.s/DD�3.s/�
1
2
hN3 and Mp3.s/DDp�p3.s/C

1
2
hpN3;
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correspond to the normalized bending moments in the base panel and patch segments within the region
of separation (or lift zone).

The stiffnesses and thermal coefficients of the composite structure defined by (10), (11), and (12) are
found in terms of the stiffnesses and thicknesses of the primitive substructures as

A� DDCDpC .h=2/
2C C .hp=2/

2Cp; B� D .hp=2/Cp � .h=2/C;

C � D C CCp; D� D A�� ��B� DDc C .h
�=2/2Cs; (13)

˛� D ˛1� �
�ˇ�; ˇ� Dm�=D�;

where

�� D B�=C �; Dc DDCDp; h� D hC hp; Cs D CCp=C
�;

�� D 1
2
hpCp p̨ �

1
2
hC˛; n� D Cp p̨CC˛; m� D ��� ��n�; ˛1 D n

�=C �:
(14)

The quantity �� is seen to give the transverse (radial) location of the centroid of the composite struc-
ture with respect to the reference surface, Dc is the bending stiffness of the debonded segment of the
composite structure in the contact zone, h�� 1 is the normalized thickness of the composite structure,
and Cs is an effective (series) membrane stiffness. In addition, the parameters ˛� and ˇ� are seen
to correspond to the thermal expansion coefficients of the intact portion of the composite structure,
and correspond to the thermally-induced membrane strain at the reference surface and the associated
curvature change, respectively, per unit normalized temperature change for a free unloaded structure.
The thermal expansion coefficient ˛1 is seen to be the corresponding strain per unit temperature at the
centroid of the intact segment of an unloaded composite structure.

The associated boundary and matching conditions are obtained similarly:

u�1.0/D 0; w�1
0.0/D 0; ŒM �1

0
�N �1 w

�
1
0�sD0 D 0 (symmetric deformation) (15a)

u�0.0/� u
�
1.0/C �

�w�1
0.0/D 0; w�1 .0/D 0; ��1 .0/D 0 (antisymmetric deformation) (15b)

u�1.a/D u
�
2.a/D u

�
p2.a/; N �1 .a/DN

�
2 .a/ .aD aL;�aR/ (16)

w�1 .a/D w
�
2 .a/; w�1

0.a/D w�2
0.a/ .aD aL;�aR/ (17)

ŒM �1
0
�N �1 w

�
1
0�sDa D ŒM

�
2
0
�N �2 w

�
2
0�sDa; M �1 .a/DM

�
2 .a/ .aD aL;�aR/ (18)

u�2.b/D u
�
3.b/; N2.b/DN3.b/ .b D bL;�bR/ (19)

u�p2.b/D u
�
p3.b/; Np2.b/DNp3.b/ .b D bL;�bR/ (20)

w�2 .b/D w3.b/D wp3.b/; w�2
0
.b/D w03.b/D w

0
p3.b/ .b D bL;�bR/ (21)

M �2 .b/DM3.b/CMp3.b/ .b D bL;�bR/ (22)

ŒM �2
0
�N �2 w

�
2
0�sDb D ŒM

0
3�N3w

0
3�sDbC ŒM

0
p3�Np3w

0
p3�sDb .b D bL;�bR/ (23)

Np3.˙Lp/D �p3.˙Lp/D ŒM
0
p3�Np3w

0
p3�sD˙Lp

D 0 (24)

u3.˙L/D 0 or N3.˙L/D 0 (25)

w03.˙L/D 0 or �3.˙L/D 0 (26)

w3.˙L/D 0 (27)
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The transversality condition for the propagating bond zone boundaries, aD aL;�aR, with the asso-
ciated propagating contact zone boundaries, b D bL;�bR, take the following forms depending upon the
presence or absence of a contact zone:

G.2/fag D 2 .b > a/; G.3/fag D 2 .b D a/: (28)

In these expressions, the quantities

G.i/fag �G
.i/
MM CG

.i/
MT CG

.i/
TM CGT T .i D 2; 3/

are the energy release rates, whose components are given by

G
.2/
MM �

�
1
2
Dc�

�2
2 C

1
2C
N 2
2 C

1
2Cp

Np2
2
�
sDa
�
�
1
2
D�.��1 �ˇ

�‚/2C 1
2C�N

�2
1

�
sDa

; (29)

G
.3/
MM �

�
1
2
D�3

2
C
1
2
Dp�p3

2
C

1
2C
N 2
3 C

1
2Cp

Np3
2
�
sDa
�
�
1
2
D�.��1 �ˇ

�‚/2C 1
2C�N

�2
1

�
sDa

; (30)

G
.i/
MT �

�
1
2
NieT C

1
2
NpiepT

�
sDa
�
�
1
2
N �1 e

�
T C

1
2
M �1 �

�
T

�
sDa

.i D 2; 3/; (31)

G
.i/
TM �

�
1
2
NT e

ı
pi C

1
2
NpT e

ı
i

�
sDa
�
�
1
2
N �T e

�
0 C

1
2
M �T �

�
0

�
sDa

.i D 2; 3/; (32)

GT T �
�
1
2
NT eT C

1
2
NpT epT

�
sDa
�
�
1
2
N �T e

�
T C

1
2
M �T �

�
T

�
sDa

; (33)

where the following measures have been introduced:

eıi � ei �˛‚; eıpi � epi � p̨‚ .i D 2; 3/; (34)

eT � ˛‚; epT D p̨‚; NT D C˛‚; NpT D Cp p̨‚; (35)

e�0 � e
�
1 �˛

�‚; ��0 � �
�
1 �ˇ

�‚; e�T � ˛
�‚; ��T � ˇ

�‚; (36)

N �T � C
�˛1‚D C

�e�T CB
���T ; M �T � �

�‚DD���T C �
�N �T : (37)

The conditions established by those equations suggest the following delamination criterion:

If, for some initial value aD a0 of the bond zone boundary, the state of the structure is such
that G.i/fag � 2 , then delamination growth occurs and the system evolves (a decreases, a�

increases) in such a way that the corresponding equality in (28) is satisfied. If G.i/fag < 2 ,
delamination growth does not occur.

For a propagating contact zone .s D b/, the associated transversality condition reduces to the form

��2 .b/D �3.b/D �p3.b/ .b D bL <Lp;�bR > �Lp/; (38)

to which we add the qualification

�3.b
C/ > �p3.b

C/ (39)

in order to prohibit penetration of the base panel and patch for s 2 S3p. It is thus seen that such a
boundary is defined by the point where the curvature changes of the respective segments of the structure
are continuous.

The equations introduced so far define the class of problems of interest.
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The boundary conditions (24), together with (9), indicate that the “flap” (the segment of the debonded
portion of the patch that is lifted away from the base structure) is unloaded, and hence that

Np3.s/D �p3.s/DM
0
p3.s/D 0 .s 2 S3p/: (40)

Further, integration of (7)2 and (8)2, imposition of the associated matching conditions stated by (16)3,
(19)2, and (20)2, and incorporation of (40)1 yield the results that

N �1 DN2 DN3 DN0 D constant; Np2 D 0: (41)

The remaining equations are modified accordingly, with the transversality conditions stated in (28) and
(38) taking the forms

G.2/fag �!
�
1
2
Dc�

�
2
2
�
1
2
D���1

2
C
1
2
N 2
0 =CeCN0.˛�˛1/‚C

1
2
�‚2

�
sDa
D 2 .b > a/

G.3/fag �!
�
1
2
D�23 �

1
2
D���1

2
C

1
2
N 2
0 =Ce C N0.˛ � ˛1/‚ C

1
2
�‚2

�
sDa
D 2 .b D a/

�
(42)

and

��2 .b/D �3.b/D 0; �3.b
C/ > 0 .b < Lp/; (43)

where
1

Ce
�
Cp=C

C �
; �� ˛2C C˛2pCp �˛

2
1C
�: (44)

It may be seen from (43) that a propagating or intermediate contact zone boundary may occur only if
conditions are such that an inflection point or pseudo-inflection point occurs on the interval a < s < Lp .
If not, the system will possess either a full contact zone .b D Lp/, or no contact zone .b D a/. For the
former case, the lifted segment of the flap (region S3p) will not exist and the condition

�2.a
C/ < 0 .b D Lp/ (45)

must be satisfied.
Integrating the strain-displacement relations and imposing the boundary and matching conditions for

the axial (circumferential) displacements results in the following integrability condition:

u3.L/�u0DN0

�a�
C
C
a

C �

�
C.a�˛C a˛1/‚�

�h
2
C ��

�
w0.a/C

3X
iD1

Z
Si

�
k.1� ��ıi1/wi �

1
2
w0i
2�
ds;

(46)
where

u0 � Œu1
�
C ��w01�sD0 (47)

is the axial (circumferential) deflection of the neutral surface of the composite structure at the origin,
and ıij is Kronecker’s delta. The counterparts of (7)1 and (8)1 and the corresponding boundary and
matching conditions obtained upon substitution of (38)–(40), together with the transversality conditions
stated in (42) and (43), and the integrability condition, (46), transform the problem statement into a mixed
formulation in terms of the transverse displacements wi .s/ .i D 1; 2; 3/, the membrane force N0, and
the moving boundaries a and b.
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3. Delamination mode mix

The bond energy (that is, interfacial toughness) is generally dependent upon the mix of “delamination
modes”. To assess this influence for the system under consideration, we adopt the structural scale de-
composition of the energy release rate for long thin-layered structures established by Bottega [2003]
and extend it to include the thermal effects considered for the present study. In the aforementioned
reference, the decomposition is established for a general structure and is then applied to selected specific
structural configurations, including patched structures. The presence of a contact zone is taken to imply
pure mode-II delamination, while the absence of contact is considered to (generally) imply mixed mode-
I and mode-II delamination. The mixed mode decomposition is based on the energy release rates for
contact and no contact together with a “curvature of contact” defined therein. The decomposition for
the present problem follows directly from the aforementioned reference and the inclusion of the thermal
terms as follows. The last three terms of the energy release rates given by (42) are seen to constitute
the relative thermomechanical membrane energy at the bond zone boundary and thus contribute to the
mode-II delamination energy release rate. Incorporating the last two of these (the first is already included
in the original) into the resulting partitioning of the energy release rate for the class of patched structures
currently under consideration [Bottega 2003, Section 5.3] gives the following decomposition for the
present structure:

GI D
1
2
DI�

2
3.a/; GII D

1
2

�
DII�

2
3 �D

���1
2�
xDa
C
�
1
2
N 2
0 =CeCN0.˛�˛1/‚C

1
2
�‚2

�
; (48)

where GI and GII are, respectively, the mode-I (opening mode) and mode-II (sliding mode) energy
release rates, and

DI DDpD=Dc ; DII DD
2=Dc : (49)

The mode ratio GII=GI can be readily evaluated using (48) for any configuration determined by the
formulation established in this section.

4. Analysis

The mixed formulation presented in the previous section admits analytical solutions to within a numer-
ically determined membrane force parameter. (7)–(9) together with the matching conditions, (16)–(23),
and the pertinent boundary conditions of (15) and (24)–(27), can be readily solved to yield analytical
solutions for the transverse displacement in terms of the membrane force. For given material and geo-
metric properties, the membrane force can be evaluated numerically by substituting the corresponding
analytical solutions into the integrability condition, (46), and finding roots (values of N0) of the result-
ing transcendental equation using root solving techniques. Each root is associated with an equilibrium
configuration of the evolving structure for given values of the temperature, pressure, damage size, and
length of the contact zone. Once obtained, these values can be substituted back into the solution for the
transverse deflection and the result then substituted into the transversality conditions (42) to generate the
delamination growth paths for the evolving structure.4 The onset, stability, and extent of propagation can
be assessed from these paths. (As a special case, it may be noted from (25)2 and (41)1 that when the edges

4For computational purposes, it is often convenient to combine the equations of the integrability and transversality conditions
in a strategic manner, depending upon the circumstances.
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of the base structure are free to translate in the axial (circumferential) direction, the uniform membrane
force vanishes identically .N0 � 0/. For this case, the analytical solutions may be obtained by direct
integration, and substituted into the transversality condition. The corresponding integrability condition
will then simply yield the axial (circumferential) displacement of the edge of the base structure.) Finally,
the issue of a propagating contact zone may be examined by evaluating a solution for a given value of
b (associated with a given value of a) and checking to insure that the resulting displacements satisfy
the kinematic inequality (43)2. The energy release rates for configurations with valid contact zones may
then be plotted as a function of the contact zone boundary coordinate, b, for selected values of the bond
zone size, a. (It was shown in [Bottega 1995] that for a certain class of problems a propagating contact
zone is not possible. Rather, if contact of the detached segment of the patch with the base structure is
present it is either in the form of a full contact zone — that is, the entire debonded segment of the patch
maintains sliding contact with the base structure — or edge point contact, where only the “free” edge
of the patch maintains sliding contact [Karlsson and Bottega 1999b]. If, for this class, neither of these
configurations is possible then contact does not occur: a contact zone does not exist.)

For the case of no contact zone, a relatively simple growth path can be determined in the load-bond
zone boundary space and the deflection-bond zone boundary space, or equivalently in the load-deflection
space. Various scenarios can be predicted from examination of these paths as follows. Consider the
generic growth path shown in Figure 3, where � represents the generalized “load”, say the temperature
change or the applied transverse pressure, and a� corresponds to the size of the damaged region. For
a given initial damage size (say point A, C , or F on the horizontal axis), no growth occurs as the load
is increased until the load level is such that the growth path is intercepted. At that point growth ensues
and may proceed according to several scenarios, depending upon the initial value of a�. These scenarios
include stable growth (BEH), where an increment in load produces an increment in damage size; unstable
growth .D! E/ followed by stable growth (EH), where the damage propagates dynamically (that is,
“jumps”) to an alternate stable configuration and then proceeds in a stable manner thereafter; and unstable,
catastrophic growth .G!H 0/, where the damage propagates dynamically through the entire length of
the patch, resulting in complete detachment of the patch from the base structure.

λ

a*

Unstable Stable

A

B

C

D
E

F

G

H

H’

L

Figure 3. A generic debond growth path.
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The formulation discussed in Section 2 and the procedure outlined in the current section are applied
to examples of axially (circumferentially) unfettered structures in the next section.

5. Results for axially unfettered structures

In this section, we present results for structures that are completely unfettered and for those whose edges
are free to translate in the axial (circumferential) direction. Specifically, in Section 5.1 we consider
completely unfettered structures, flat or curved, subjected to temperature change alone. In Section 5.2
we consider the influence of temperature on edge debonding of both flat and curved structures subjected
to three-point loading, and in Section 5.3 we examine the effects of temperature on the detachment of
axially unfettered patched beam-plates subjected to transverse pressure.

5.1. Unfettered structures in a uniform temperature field. In this section, we examine the behavior of
structures, flat or curved, that are completely unfettered (that is, those whose edges are free). The results
discussed also hold for the case of pinned-free supports. That is, for structures for which the edges of the
base panel are free to translate with regard to axial (circumferential) translation and pinned with regard
to rotation.

For this case, a free-body diagram of segments of the structure in each of the regions shows that

�1
�
D ˇ�‚; �2

�
D �3 D 0: (50)

It follows from earlier discussions that for the present case passive contact occurs .�2� D 0/ for the
entire detached segment of the patch, regardless of the sign of the thermally-induced curvature in the
bond zone. In this case, the transversality conditions given by (42) reduce to the same form,

GD 1
2

�
�=ˇ�

2
�D�/.ˇ�‚/2 D 2: (51)

Since the bond zone boundary does not appear explicitly in the equation (51) for the growth path, the
energy release rate is independent of the location of the bond zone boundary. It follows that when
growth occurs it is catastrophic. That is, when the critical temperature change is achieved, the entire
patch detaches from the base structure in an unstable manner. Substitution of (44)2, (13), and (14) into
(51) renders the transversality condition for this case to the form

.ˇ�‚�/2 D
2Csh

�2

D�.4D��Csh�
2/
; (52)

where
‚� �‚=

p
2: (53)

It is seen from (52) that the critical renormed thermal curvature, ˇ�‚�, is independent of the coefficients
of thermal expansion of the constituent layers. The dependence of the critical thermal moment on the
modulus ratio, E0, is displayed in Figure 4 for the case hp D hD 0:05. The peak value of the critical
curvature occurs for E0 ' 0:25. (For later reference, we note that for E0 D 1, kˇ�‚�kcr D 0:8660.)
We remark that, during the thermal loading, deformation, and evolution processes, the entire debonded
segment of the patch maintains sliding contact with the base structure regardless of the sign of the
renormed thermal curvature, ˇ�‚�.
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Figure 4. Critical renormed thermal curvature as a function of modulus ratio for a com-
pletely unfettered structure subjected to temperature change. .hp D hD 0:05/.

5.2. Temperature change and three-point loading. We next consider structures, both flat .k D 0/ or
cylindrical .k D 1/, that are subjected to three-point loading and a uniform temperature field. For this
case, the upwardly directed (normalized) transverse load at the center of the span is taken to be 2Q0,
and the supports at the edges of the base panel are pinned-free. Equivalently, the edges of the base panel
may each be considered to be loaded with a downwardly directed (normalized) transverse load Q0 and
the center of the span considered to be sitting on a knife edge (Figure 5). The normalized load, Q0, is
related to its dimensional counterpart, Q0, as follows:

Q0 D NQ0 Ǹ
2=D; (54)

where, as defined earlier, `D L;R (plate, shell). Consideration of the equilibrium of regions 2 and 3 of
the structure shows that (43) is violated, and hence that no contact zone is present.

Patched plate. A region-wise moment balance for the patched beam-plate yields

�1
�.a/D ˇ�‚C

Q0

D�
.L� a/; �3.a/D

Q0

D
.L� a/: (55)

Θ
Q Q

Θ

Q Q

Figure 5. Three-point loading of patched structure. Left: patched beam-plate. Right:
patched arch-shell.



ON THE DETACHMENT OF PATCHED PANELS UNDER THERMOMECHANICAL LOADING 1241

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

a*

Q*

β∗Θ∗=0.7 

β∗Θ∗=0.5 

β∗Θ∗=0.1 

β∗Θ∗=0 

β∗Θ∗=0.3 

ˇ�‚� > 0

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

a*

Q*

β∗Θ∗=−0.1 

β∗Θ∗=0 

β∗Θ∗=−0.3 

β∗Θ∗=−0.5 

β∗Θ∗=−0.7 

ˇ�‚� < 0

Figure 6. Growth paths for a patched plate subjected to three-point loading for various
renormed temperatures (thermal curvatures). p̨=˛ D 0:5 or 2; E0 D 1; hD hp D 0:05.

It may be seen from these equations that a pseudo-inflection point may exist at x D a when ˇ�‚ < 0
and kˇ�‚k >Q0.L� a/=D�. Substitution of (55) into (42)2 reduces the transversality condition for
the present case to the form

Q�
2
a�
2
� 1
D
�

1

D�

�
� 2Q�a�.ˇ�‚�/C

� �

ˇ�2
�D�

�
.ˇ�‚�/2� 2D 0; (56)

where
Q� �Q=

p
2; and ‚� �‚=

p
2: (57)

The debond growth paths are easily generated from (56) for any structure of interest. Such paths are
displayed in Figure 6 for a structure with the properties E0 D 1, hp D h D 0:05, p̨=˛ D 0:5, and
p̨=˛ D 2:0. We note from Figure 4 that, for thermal loading alone, kˇ�‚�kcr D 0:8660 when E0 D 1.

Thus, propagation will occur due to temperature change alone for this condition. To examine the effects
of three-point loading we therefore consider temperature changes for which kˇ�‚�kcr < 0:8660.

It may be seen from Figure 6 that, for any initial conjugate bond zone size, once the critical value ofQ0
is achieved it is sufficient for all larger conjugate bond zone sizes. Therefore, growth is catastrophic for all
initial damage sizes. That is, once propagation ensues it continues unimpeded, with the patch ultimately
completely separated from the base structure. To interpret these results further, we note the following.
For the case p̨=˛D 2:0, ˇ� > 0. Thus, for this case, the results displayed in Figure 6, left, correspond to
positive temperature changes while those in Figure 6, right, correspond to negative temperature changes.
For the case p̨=˛ D 0:5, ˇ� < 0, the interpretation is the reverse of that for p̨=˛ D 2:0. That is,
for p̨=˛ D 0:5, the results shown on the left are associated with negative temperature changes while
those on the right correspond to positive temperature changes. For negative thermally-induced curvature
.ˇ�‚� < 0/, the intact segment of the composite structure is concave up, while the transverse load Q0
tends to bend the detached segment concave downward thus encouraging “opening”. In this way, the
temperature changes are seen to encourage detachment (Figure 6, right), lowering the critical level of the
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transverse load well below that for vanishing temperature, with increasing magnitude of the temperature
change. In contrast, for positive thermally-induced curvature .ˇ�‚� > 0/, the intact segment of the
composite structure is concave down in the same sense as the curvature change of the detached segment
as induced by Q0. The thermal effect here is to oppose “opening” and hence to resist detachment. In
this sense, the critical level of the transverse load is seen to increase with increasing thermally-induced
moment, as seen in Figure 6, left, though these effects are observed to be less dramatic than those
associated with negative thermal moments.

Patched shell. We next consider the analogous problem of a patched panel subjected to three-point
loading. Recall that for curved structures, length scales are normalized with respect to the radius of
the undeformed structure. Normalized arc lengths are then angles. Proceeding as for the beam-plate, a
region-wise moment balance for the patched panel yields

�1
�.a/D ˇ�‚C

Q0

D�
F.a/; �3.a/D

Q0

D
F.a/; (58)

where
F.a/D cosL.sinL� sin a/C sinL.cos a� cosL/: (59)

It is seen from the above equations that a pseudo-inflection point may exist at x D a when ˇ�‚< 0 and
kˇ�‚k> F.a/=D�. Substitution of (58) into the second line of (42) reduces the transversality condition
for the present case to the form

Q�
2
ŒF .a/�2

�
1

D
�

1

D�

�
� 2Q�F.a/.ˇ�‚�/C

�
�

ˇ�2
�D�

�
.ˇ�‚�/2� 2D 0; (60)

where Q� and ‚� are defined by (57).
For the purposes of comparison, we shall examine the behavior of a specific structure having the same

proportions as those of the beam-plate considered earlier. Toward this end we consider the structure
for which L D 0:4 radians, hp D h D 0:02 (same thickness to length ratio as the plate), E0 D 1 and
p̨=˛ D 0:5 and 2.0. Corresponding results for a patched shell segment subjected to three-point loading

(Figure 5, right) are displayed in Figure 7. It is seen that the behavior is very similar to that of the patched
plate. (Recall that the load is normalized via (54).)

5.3. Temperature change and transverse pressure. In this section, we examine symmetric edge debond-
ing of a patched beam-plate .k D 0/ for cases where the edges of the base plate are free to translate in
the axial direction. It follows from (25)2 and (41) that, for these support conditions, N0 D 0. This
renders the governing differential equations for the transverse displacement w.s/, resulting from (7)1,
(8)1, and (9)1, linear. The solutions may thus be obtained by direct integration, with the constants of
integration evaluated by imposing the boundary and matching conditions for transverse motion given by
(15a)2;3, (17), (18), (21)–(23), (24)2;3, (26) and (27). We consider two extreme support conditions at the
edges of the base plate: pinned-free and clamped-free. Based on these analytical solutions, numerical
simulations are performed for structures possessing the representative properties hp D hD 0:05, E0 D 1,
and 2 D 0:1. The first two properties render B� D ˇ� D 0 and thus eliminate mechanical material
bending-stretching coupling within the bonded region. We shall consider two complementary cases of
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Figure 7. Growth paths for a patched shell subjected to three-point loading for various
renormed temperatures (thermal curvatures). p̨=˛ D 0:5 or 2; E0 D 1; hD hp D 0:02;
LD 0:4.

thermal mismatch: p̨=˛ D 0:5 and p̨=˛ D 2:0. For the purposes of presentation and interpretation of
results, we introduce the characteristic deflection �0 ��w1.0/.

Hinged-free supports. We first examine the behavior of a structure with hinged-free supports. That is,
a beam-plate for which the edges of the base-plate are hinged with respect to rotation and free with
respect to in-plane translation (see Figure 1, left). For such support conditions, it may be anticipated that
the deformed structure will not exhibit an inflection point or pseudo-inflection point, under the loading
considered when deflections are upward. It follows, from the discussion preceding (45), that if a contact
zone is present it will be a full contact zone. Moreover, a contact zone may be present only if the
deflection of the structure is downward. However, for the supports and loading under consideration, the
curvature of the bonded region will be concave upward during negative deflection, but the curvature of
the base plate in the unpatched and detached regions will be concave downward regardless of the sign
of the deflection. Thus, there will be a pseudo-inflection point at the bond zone boundary for downward
deflections of the structure. Since the curvature of the patch in the detached region must be zero or
concave upward, a contact zone is not possible.

Debond growth paths for the ratio p̨=˛ D 0:5 are displayed in Figure 8 for various values of the
renormalized temperature Q‚ D ˛‚. The growth paths are presented in p � a� space (left half of the
figure) and in �0� a� space (right half).

For this ratio of thermal expansion coefficients, the influence of the temperature is greater for the base
plate than for the patch, which results in a “concave up” curvature (ˇ�‚< 0/ within the bond zone for
positive temperature changes. This opposes the concave down curvature induced by the pressure and
thus tends to “flatten” the structure within this region. In contrast, since the unbonded and debonded
regions of the base plate are bent by the pressure alone, with the temperature change simply extending
that segment of the structure, the curvature in these regions is concave downward. When the pressure
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Figure 8. Debond growth paths for structures possessing hinged-free supports, with
p̨=˛ D 0:5. Left: p versus a�. Right: �0 versus a�.

effect dominates over the thermal moment, the curvature of the bond zone is concave down resulting in
an upward deflection of the structure. For pressure-temperature combinations such that the deflection
of the structure is upward, the “flattening” of the bond zone (by the temperature change) increases the
relative bending of the unpatched segment of the base plate and hence the energy release rate for a
given pressure, resulting in a lowering of the threshold pressure with increasing temperature change,
as indicated. Moreover, when the temperature is sufficiently large such that the effects of the thermal
moments dominate over those due to the pressure, then the curvature within the bond zone will be concave
upward and the deflection of the structure will be downward. For these situations, the curvatures of the
structure within the bonded and unbonded/debonded regions are of opposite sign, further increasing
the relative bending between the detached and bonded segments at the bond zone boundary, and thus
increasing the energy release rate at a given pressure level. This, in turn, results in further decreasing of
the threshold pressure. Conversely, the threshold pressure increases with decreasing temperature. As the
temperature change becomes negative, the thermal moment becomes positive .ˇ�‚> 0/ and reinforces
the mechanical moment rendering the curvature of the structure within the bond zone concave down —
the same sense as within the detached/unbonded region. As a result, the relative bending at the bond zone
boundary is reduced for a given value of the applied pressure and, consequently, the energy release rate.
The threshold pressure, therefore, increases accordingly. In this sense, the effect of the thermal moment
may be viewed as a reduction of the effective stiffness of the composite structure within the bonded region.
At some point, the thermal effect reduces the “effective local stiffness” to the extent that the curvature
of the structure within the bond zone is comparable with that of the detached segment of the base plate.

The debond growth paths for a mechanically and geometrically identical structure with p̨=˛ D 2:0

are displayed in Figure 9 for various values of the normalized temperature change. For ratios of the
coefficients of thermal expansion greater than one, the thermal moment is positive .ˇ�‚> 0/ for positive
temperature changes. The scenarios for structures with this property are therefore the reverse of those
for p̨=˛ D 0:5 discussed previously.
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Figure 9. Debond growth paths for structures possessing hinged-free supports, with
p̨=˛ D 2:0. Left: p versus a�. Right: �0 versus a�.

Clamped-free supports. We next examine the behavior of a structure with clamped-free supports. That
is, a beam-plate for which the edges of the base-plate are clamped with respect to rotation and free with
respect to in-plane translation (see Figure 1, right). The arguments put forth when discussing the previous
case, regarding the effects of the competition between the thermal and mechanical moments within the
bond zone and their implications regarding curvature of the structure within that region, are paralleled
for the present case. However, the constraints imposed on the rotations at the supports for the present
case induce a pseudo-inflection point at the bond zone boundary and/or, at least, one inflection point
along the half-span Œ0; 1� for the type of loading considered. For the purposes of the present argument,
we consider one inflection or pseudo-inflection point to be present on the half-span. It follows that the
curvature of the segment of the structure nearest the support will be concave up when the deflection of
the structure is upward. In this light, we deduce the following possible configuration scenarios from (43)
and (45). When the deflection is upward, a pseudo-inflection point at the edge of the bonded region or
an inflection point within the bond zone will be accompanied by a full contact zone. However, if an
inflection point occurs within the unpatched/detached region then it will be accompanied by, at most,
contact of the free edge of the patch with the detached segment of the base plate (“edge-point contact”).
Conversely, when the deflection is downward, the curvature of the unpatched region will be concave
down. For this situation, no contact zone will be present when a pseudo-inflection point is present at
the bond zone boundary or an inflection point occurs within the bonded region. A partial propagating
contact zone will be present when an inflection point occurs within the detached region and �0 < 0.
Situations in which more than one critical point occurs along the span may be considered individually
using the criterion established in Section 2 and discussed further in Section 3.

Growth paths for vanishing temperature are presented in Figure 10. Growth paths for structures with
the property p̨=˛D 0:5 are presented in Figure 11, and those for which p̨=˛D 2:0 are shown in Figure
12, for selected values of the renormed temperature change. It is found, for the geometry and material
ratios considered, that a full contact zone is possible for structures for which Lp � 0:79, depending upon
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Figure 10. Contact zone (CZ) and no contact zone (NCZ) growth paths for structures
subjected to pressure loading only .‚D 0/ and possessing clamped-free supports.

the initial size of the damage. Structures possessing shorter patches have no contact zone regardless of
the size of the damage.

Growth paths for a structure possessing a patch of length Lp D 0:9 for vanishing temperature change
are presented in Figure 10, left. Those for a structure with a patch of length Lp D 0:8 are displayed in
Figure 10, right. In these figures, the path labeled ‘CZ’ indicates the presence of a contact zone, and paths
labeled ‘NCZ’ correspond to configurations with no contact zone. Invalid segments of the no contact
paths are shown as dashed lines. Both legs of the NCZ path approach an asymptote at a� D 0:216, while
the CZ path for Lp D 0:9 approaches an asymptote at a� D 0:230. It is seen that, when the contact
zone is present, debonding is stable and that growth arrests as the asymptote is approached. It is also
seen that the threshold values predicted with a contact zone present are lower than those predicted if it
were neglected, for a range of values of a�. For initial damage size to the right of the asymptote, growth
is seen to be catastrophic for relatively small initial conjugate bond zone lengths, unstable followed by
stable for intermediate initial damage sizes, and stable for relatively large initial conjugate bond zone
sizes and/or patch half-lengths.

The effects of temperature are examined in Figures 11 and 12. The growth paths corresponding to
selected temperature changes are displayed in p-a� space and in �0-a� space in Figure 11 for structures
where p̨=˛ D 0:5. In each case, dashed segments of the paths correspond to equilibrium configurations
for which a contact zone is present, .Lp D 0:9/, while solid lines indicate configurations with no con-
tact zone. Upon consideration of the figures, it is seen that the qualitative debonding behavior under
force-controlled loading for moderate to large flaw sizes is very similar to that previously discussed
for structures with hinged-free support conditions, but shows slight stabilization for very large debonds.
(This stabilization depends on the temperature, as stable debonding is recovered for smaller flaw sizes
as the temperature increases.) For this range, no contact zone is present, �0 > 0, and an inflection point
occurs in the unpatched/detached region. For long patches, a contact zone is present, reducing the relative
bending at the bond zone boundary and thus raising the threshold pressure, stabilizing the process, and
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Figure 11. Growth paths corresponding to selected temperatures, for structures with
clamped-free supports, with p̨=˛ D 0:5. Dashed lines indicate contact zone configura-
tions for Lp D 0:9. Solid lines indicate no contact zone.
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Figure 12. Growth paths corresponding to selected temperatures, for structures with
clamped-free supports, with p̨=˛ D 2:0. Dashed lines indicate contact zone configura-
tions for Lp D 0:9. Solid lines indicate no contact zone.

leading to eventual (asymptotic) arrest. The scenarios for deflection-controlled loading parallel those
discussed for the hinged-free case, for moderate to large disbonds as well. For long patches with small
initial debonds, stable growth and asymptotic arrest is indicated as for force-controlled loading. Similar
results are shown in Figure 12 for structures with p̨=˛ D 2:0, but the effects of temperature are reversed.

Mode mix. Lastly, we examine the ratio of the mode-II energy release rate to the mode-I energy release
rate using the structural scale decomposition presented in Section 3. Configurations for which a contact
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Hinged-free support conditions

p̨=˛ D 0:5 p̨=˛ D 2

Q‚ GII=GI Q‚ GII=GI

�0:03 0.0019 �0:015 2.9389
�0:01 0.3059 �0:010 4.7497

0 0.7500 0 0.7500
0.01 1.7409 0.010 0.0870
0.03 27.939 0.015 0.0019

Clamped-free support conditions

p̨=˛ D 0:5 p̨=˛ D 2

Q‚ GII=GI Q‚ GII=GI

�0:012 0.2488 �0:007 2.5102
�0:010 0.3059 �0:005 1.7409

0 0.7500 0 0.7500
0.010 1.7409 0.005 0.3059
0.012 2.0822 0.007 0.1991

Table 1. Dependence of delamination mode ratio on temperature change for structures
with hinged-free and clamped-free support conditions.

zone is present correspond to pure mode-II debonding .GII=GI !1/. For situations in which no
contact zone is present, results for both hinged-free and clamped-free support conditions show that the
mode partition ratio is independent of the debond size. Therefore, the qualitative debond scenarios for a
given temperature discussed earlier are not altered due to the dependence of bond strength on mode mix,
the exception being the comparison of contact zone and no contact zone configurations. The threshold
levels for contact zone configurations will be relatively higher than indicated for a given temperature,
since  will be higher for pure mode-II. For either support condition considered, it is seen that when
p̨=˛ D 0:5, the ratio increases with increasing temperature, and vice versa. The reverse is seen when
p̨=˛ D 2:0. The dependence of GII=GI on Q‚� ˛‚ is summarized in Table 1.

6. Concluding remarks

The problem of debonding of patched panels subjected to temperature change and transverse pressure
has been formulated from first principles as a propagating boundaries problem in the calculus of varia-
tions. This is done for both cylindrical and flat structures simultaneously. An appropriate geometrically
nonlinear thin structure theory is incorporated for each of the primitive structures (base panel and patch)
individually. The variational principle then yields the constitutive equations of the composite structure
within the patched region and an adjacent contact zone, the corresponding equations of motion within
each region of the structure, and the associated matching and boundary conditions for the structure. In
addition, the transversality conditions associated with the propagating boundaries of the contact zone
and bond zone are obtained directly, the latter giving rise to the energy release rates in self-consistent
functional form for configurations in which a contact zone is present, as well as when it is absent. Further,
a structural scale decomposition of the energy release rates is established by advancing earlier work of the
first author to include the effects of temperature. The formulation is utilized to examine the behavior of
several representative structures and loadings. These include debonding of completely unfettered patched
structures subjected to temperature change, the effects of temperature on the detachment of beam-plates
and arch-shells subjected to three-point loading, and the effects of temperature on damage propagation in
beam-plates, with both hinged-free and clamped-free support conditions, subjected to transverse pressure.
For the unfettered structures subjected to thermal load, the dependence of the critical thermal moment is
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found as a function of the ratio of elastic moduli, E0, for the patch and base structure. The critical moment
is found to increase rapidly as the modulus ratio is increased, to a peak value for a modulus ratio about
E0D 0:25, and then to decrease as the modulus ratio increases beyond this value. Damage propagation for
both plate and shell structures subjected to three-point loading is seen to occur in a catastrophic manner
once the critical load level is achieved. The critical load level is seen to be significantly influenced by
the temperature field, especially for the shell structures. Similar qualitative behavior was seen for force-
controlled loading of patched beam-plates subjected to transverse pressure and uniform temperature
for the case of hinged-free support conditions. However, for displacement-controlled loading, debond
propagation was seen to be stable, unstable followed by stable, or catastrophic, depending on the initial
damage size and the temperature. For the case of clamped-free supports, a contact zone is present for
very long patches for a limited range of damage sizes. For these situations, growth was seen to be stable,
with minor propagation of the damaged region, and to lead to asymptotic arrest. For shorter patches, and
for long patches with moderate to large initial damage, no contact zone was present. For these situations,
propagation was seen to be catastrophic for moderately small initial damage or moderately large patch
size, unstable followed by stable for still larger initial damage and stable for very large initial damage
or small patch lengths. The threshold levels of the applied pressure and the stability of debond growth
were seen to be strongly influenced by temperature for force-controlled loading. This behavior and its
dependence on temperature was accentuated for displacement-controlled loading.

To close, we remark that the membrane force vanishes identically for the axially unfettered structures
discussed in Section 5, thus nullifying the contributions of the geometric nonlinearities for these support
configurations. It was shown in [Carabetta and Bottega 2008], however, that retention of geometric
nonlinearities is essential to adequately model debonding phenomena in thin structures for configura-
tions in which the membrane force does not vanish identically. This is so regardless of whether or
not buckling is an issue. In this light, the formulation and analytical procedure developed in the present
work (Sections 2–4) is a geometrically nonlinear one, designed to study debonding behavior in structures
possessing such configurations. This includes the study of the interaction of thermally-induced buckling
and debond propagation as well. Extensive work in this area is currently in progress and will be presented
in a forthcoming article by the authors.

Dedication

It is with great pleasure and honor that we contribute this paper to this special issue of JoMMS dedicated
to Professor George J. Simitses, a true gentleman and scholar.
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EXPONENTIAL SOLUTIONS FOR A LONGITUDINALLY VIBRATING
INHOMOGENEOUS ROD

IVO CALIÒ AND ISAAC ELISHAKOFF

A special class of closed form solutions for inhomogeneous rods is investigated, arising from the follow-
ing problem: for a given distribution of the material density, find the axial rigidity of an inhomogeneous
rod so that the exponential mode shape serves as the vibration mode. Specifically, for a rod clamped at
one end and free at the other, the exponentially varying vibration mode is postulated and the associated
semi-inverse problem is solved. This yields distributions of axial rigidity which, together with a specific
law of material density, satisfy the governing eigenvalue problem. The results obtained can be used in
the context of functionally graded materials for vibration tailoring, that is, for the design of a rod with a
given natural frequency according to a postulated vibration mode.

1. Introduction

Recently, several closed-form solutions have been derived by the semi-inverse method [Elishakoff 2005]
for the problem of eigenvalues of inhomogeneous structures. In particular Candan and Elishakoff [2001]
solved the problem of construction of a bar with a specified mass density and a preselected polynomial
mode shape, while Ram and Elishakoff [2004] solved the analogous problem in the discrete setting. It
turns out that a bar with a tip mass [Elishakoff and Perez 2005] or with a translational spring [Elishakoff
and Yost ≥ 2009] can also possess a polynomial mode shape.

In a personal communication to the second author (2007), Dr. A. R. Khvoles posed the question
of whether or not an inhomogeneous rod may possess an exponential mode shape. This question is
elucidated in the present study. The solution can serve as a benchmark for the validation of various
approximate analyses and numerical techniques.

Formulation of problem. Let us consider an inhomogeneous rod of length L , cross-sectional area A(x),
varying modulus of elasticity E(x), and varying material density ρ(x). The governing differential equa-
tion of the dynamic behavior of such an inhomogeneous rod is given by

∂
∂x

[
E(x)A(x)∂u(x, t)

∂x

]
− ρ(x)A(x)

∂u2(x, t)
∂t2 = 0, (1)

where x is the axial coordinate, t the time, and u(x, t) the axial displacement.
For simplicity, the nondimensional coordinate ξ = x/L is introduced. Harmonic vibration is studied

so that the displacement u(x, t) is represented as

u(ξ, t)=U (ξ)eiωt , (2)

Keywords: closed form solutions, rod vibration, exponential solutions.
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where U (ξ) is the postulated mode shape and ω the corresponding natural frequency which has to be
determined. Upon substitution of Equation (2) into (1), the latter becomes

d
dξ

[
E(ξ)A(ξ)dU (ξ)

dξ

]
+ L2ρ(ξ)A(ξ)ω2U (ξ)= 0. (3)

The semi-inverse eigenvalue problem is posed as follows: Find an inhomogeneous rod that with
reference to a specified exponential mode, U (ξ), satisfies its boundary conditions and the governing
dynamic equation of motion. This semi-inverse problem requires the determination of the distribution
of axial rigidity, D(ξ) = E(ξ)A(ξ), that together with a prespecified law for the mass distribution,
m(ξ)= A(ξ)ρ(ξ), satisfies (3).

We postulate the following form for the mode shape:

U (ξ)= A0+ A1ξ exp(λξ). (4)

In this study, the differential equation (1) will be solved in a closed form for a rod that is clamped at
one end and free at the other.

2. Clamped-free rod

We consider an inhomogeneous rod for which the following boundary conditions must be satisfied:

U (0)= 0, U ′(0) 6= 0, (5)

U (1) 6= 0, N (1)= 0, (6)

where N (1) is the axial force at ξ = 1, namely N (1)= E(1)A(1)U ′(1)/L . Therefore in order to satisfy
the boundary condition the mode shape assumes the form

U (ξ)= A1ξ exp(−ξ), U ′(ξ)= A1(1− ξ) exp(−ξ), (7)

whose graph, for A1 = 1, is shown in Figure 1.
Assuming that the mode shape is known, by integrating (3) we obtain

E(ξ)A(ξ)
dU (ξ)

dξ
=−ω2L2

∫ ξ

0
ρ(η)A(η)U (η)dη+ N (0)L , (8)
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Figure 1. Postulated mode shape, (7).
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where N (0) is the amplitude of the axial loading at the cross-section ξ = 0. For the clamped-free bar the
boundary conditions (6) become

N (1)= E(1)A(1)
L

dU
dξ

∣∣∣∣
ξ=1
= 0. (9)

By evaluating (8) at ξ = 1 and employing the boundary condition (9) the following value of N (0) is
obtained:

N (0)= ω2L
∫ 1

0
ρ(α)A(α)U (α)dα. (10)

This condition coincides with [Elishakoff et al. 2001, equation 23]. Substitution of (10) into (8) yields

E(ξ)A(ξ)
dU
dξ
= ω2L2

∫ 1

ξ

ρ(α)A(α)U (α)dα. (11)

In the semi-inverse formulation, the mode shape U (ξ) is a postulated function, that is,

U (ξ)= ψ(ξ). (12)

Substitution into (11) yields the desired axial rigidity

D(ξ)= E(ξ)A(ξ)=
ω2L2

ψ ′(ξ)

∫ 1

ξ

ρ(α)A(α)ψ(α)dα. (13)

The candidate mode shape ought to satisfy the boundary conditions. Considering the candidate mode
shape ψ(ξ)= ξ exp(−ξ), the following particular cases arise:

Case 1: Constant cross-sectional area and constant material density. When

A(ξ)= const= A0, ρ(ξ)= const= ρ0, (14)

then (13) becomes

D(ξ)= A0ρ0ω
2L2 e− 2eξ + eξ

e(1− ξ)
. (15)

It is easy to verify that D(0) > 0 at ξ = 0. By applying L’Hospital’s rule at ξ = 1, we observe that
D(1) > 0. Therefore, assuming the distribution of axial rigidity reported in Figure 2a,

D(ξ)= D0
e− 2eξ + eξ

e(1− ξ)
(16)

in conjunction with the postulated mode shape in (7), shown in Figure 1, and the axial distribution

N (ξ)= D0
e− 2eξ + eξ

e(1− ξ)
ψ ′(ξ), (17)

represented in Figure 2b, the following eigenvalue parameter is obtained: ω2
= D0/A0ρ0L2.
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Figure 2. Variation in the axial modulus (a) and axial force (b) in an inhomogeneous
bar, corresponding to the mode shape in Figure 1.

Case 2: Variable cross-sectional area and constant material density. When

A(ξ) 6= const, ρ(ξ)= const= ρ0, (18)

then (13) gives

E(ξ)=
ω2L2

A(ξ)ψ ′(ξ)

∫ 1

ξ

ρ(η)A(η)U (η)dη. (19)

As an example we assume the following form for A(ξ):

A(ξ)= A0
(
1+αξ exp(−ξ)

)
, (20)

with A0 > 0 and α >−1. Integrating (19), we obtain for the Young’s modulus

E(ξ)= ω2L2ρ0
4e1+ξ

(
2eξ − e(1+ ξ)

)
+α

(
5e2ξ
− e2(1+ 2ξ + 2ξ 2)

)
4e2(ξ − 1)(eξ +αξ)

. (21)

In view of (20) and (21), the axial stiffness becomes

D(ξ)= A0ρ0ω
2L2 4− 8eξ−1

+ 4ξ +αe−ξ−2
(
−5e2ξ

+ e2(1+ 2ξ + 2ξ 2)
)

4(1− ξ)
. (22)

In Figure 3, the area variability A(ξ), the Young modulus E(ξ), the axial stiffness D(ξ), and the axial
force N (ξ) are reported for the case α = 1.

It is worth noticing that the solution that has been derived is not reducible to the case where the
variation of elastic modulus, density, and cross sectional area are constants.
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Figure 3. Variation of the cross-sectional area (a), modulus of elasticity (b), axial rigid-
ity (b) and axial force (d) versus a nondimensional coordinate.

3. Conclusion

Apparently for the first time in the literature, it is shown that an inhomogeneous rod can possess an expo-
nential mode shape. The derived closed-form solution can be utilized as a model solution for verification
purposes.
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STABILITY STUDIES FOR CURVED BEAMS

CHONG-SEOK CHANG AND DEWEY H. HODGES

The paper presents a concise framework investigating the stability of curved beams. The governing
equations used are both geometrically exact and fully intrinsic; that is, they have no displacement and
rotation variables, with a maximum degree of nonlinearity equal to two. The equations of motion are lin-
earized about either the reference state or an equilibrium state. A central difference spatial discretization
scheme is applied, and the resulting linearized ordinary differential equations are cast as an eigenvalue
problem. The scheme is validated by comparing predicted numerical results for prebuckling deformation
and buckling loads for high arches under uniform pressure with published analytical solutions. This is a
conservative system of forces despite their being modeled as distributed follower forces. The results show
that the stretch-bending coupling term must be included in order to accurately calculate the prebuckling
curvature and bending moment of high arches. In addition, the lateral-torsional buckling instability of
curved beams under tip moments is investigated. Finally, when a curved beam is loaded with nonconser-
vative forces, resulting dynamic instabilities may be found through the current framework.

1. Introduction

For decades, the vibration of curved beams, rings, and arches has been extensively investigated. About
400 references, which cover the in-plane (i.e., in the plane of the undeformed, initially curved beam), out-
of-plane (i.e., out of the plane of the undeformed, initially curved beam), coupled, linear and nonlinear
vibrations, have been summarized by in [Chidamparam and Leissa 1993]. While linear theory is adequate
for free-vibration analysis of initially curved beams, one must linearize the equations of nonlinear theory
about a static equilibrium state, if a beam is brought into a state of high curvature by the loads acting
on it. Because of this, the behavior of a beam curved under load may differ substantially from that of
an initially curved beam of identical geometry. The geometrically exact and fully intrinsic theory of
curved and twisted beams in [Hodges 2003] provides an excellent framework in which to elegantly study
the coupled vibration characteristics of curved beams, particularly those curved because they are loaded.
This is because of the simplicity of the equations — so simple that each term of every equation can be
easily interpreted intuitively. There are no displacement or rotation variables (this is what is meant by
“intrinsic” in this context); as a result there are no nonlinearities of degree greater than two. Both finite
element and finite difference discretization schemes are easily applied to these equations for numerical
computation, and the framework presented herein is simpler than that of other nonlinear beam theories.
Because of these observations, we have revisited the topic and broadened the base of cases studied.

This paper provides details of how to make use of the fully intrinsic formulation for calculating vibra-
tion frequencies and buckling loads of curved beams. One aspect of these calculations that is substantially
different from the usual approach involves the way boundary conditions are enforced. In [Chang and

Keywords: elastic stability, structural stability, buckling, elastica, fully intrinsic.
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Hodges 2009] results from free-vibration analysis of curved beams were compared with those from
published work. Chidamparam and Leissa [1995], Tarnopolskaya et al. [1996], and Fung [2004] focused
on in-plane vibration; and Irie et al. [1982] and Howson and Jemah [1999] on out-of-plane vibration.
The coupled free-vibration frequencies were also presented as part of an investigation of low-frequency
mode transition, also referred to as veering [Tarnopolskaya et al. 1999; Chen and Ginsberg 1992].

It was shown analytically by Hodges [1999] and Simitses and Hodges [2006] that initially curved
isotropic beams possess stretch-bending elastic coupling, that this coupling is proportional to initial
curvature when the beam reference line is along the locus of cross-sectional centroids, and that this
coupling cannot be ignored when calculating the equilibrium state of high circular arches. Although this
term does not affect the buckling load, it must be included to calculate the prebuckling state correctly. As
a validation exercise, the present formulation is applied to the prebuckling deformation of high arches.
Displacement, curvature, bending moment and bifurcation load are compared to the analytical solutions
with and without this coupling term.

As a more powerful alternative than analytical treatments for determining cross-sectional elastic con-
stants, one may use VABS (variational asymptotic beam sectional analysis) [Cesnik and Hodges 1997;
Yu et al. 2002; Hodges 2006] to numerically calculate all the cross-sectional elastic constants, including
the stretch-bending coupling term. Based on results obtained from VABS, it is easy to show that there
is another term that depends on initial curvature and reflects shear-twist coupling. This term becomes
zero if the beam reference axis is along the locus of sectional shear centers. The location of the sectional
shear center depends on the initial curvature, but an analytical expression for that dependence is unknown.
Therefore, without a cross-sectional analysis tool such as VABS, which provides accurate cross-sectional
elastic constants as a function of initial curvature, certain aspects of the analysis presented herein would
be impossible.

2. Intrinsic beam formulation

The geometrically exact, intrinsic governing equations of [Hodges 2003] for the dynamics of an initially
curved and twisted, generally anisotropic beam are

F ′B + K̃ B FB + fB = ṖB + �̃B PB,

M ′B + K̃ B MB + (ẽ1+ γ̃ )FB +m B = ḢB + �̃B HB + ṼB PB,

V ′B + K̃ B VB + (ẽ1+ γ̃ )�B = γ̇ ,

�′B + K̃ B�B = κ̇,

(1)

where FB and MB are the internal force and moment measures, PB and HB are the sectional linear and
angular momenta, VB and �B are the velocity and angular velocity measures, γ and κ are the force and
moment strain measures, k contains the initial twist and curvature measures of the beam, K B = k + κ
contains the total curvature measures, and fB and m B are external force and moment measures, where
loads such as gravitational, aerodynamic, and mechanical applied loads are taken into account. All
quantities are expressed in the basis of the deformed beam cross-sectional frame except k which is in the
basis of the undeformed beam cross-sectional frame. The tilde operator as in ãb reflects a matrix form
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of the cross product of vectors a× b when both vectors and their cross product are all expressed in a
common basis.

A central difference discretization scheme is applied to the intrinsic governing equations in space to
obtain a numerical solution. The scheme satisfies both of the space-time conservation laws derived in
[Hodges 2003]. This scheme can be viewed as equivalent to a particular finite element discretization,
and the intrinsic governing equations are expressed as element and nodal equations. The n-th element
equations, which are a spatially discretized form of (1), are

F̂n+1
l − F̂n

r

dl
+ (κ̃n

+ k̃n)Fn
+ f

n
−
˙P

n
− �̃

n
Pn
= 0,

M̂n+1
l − M̂n

r

dl
+ (κ̃n

+ k̃n)Mn
+ (ẽ1+ γ̃

n)Fn
+mn

−
˙H

n
− �̃

n
H n
− Ṽ n Pn

= 0,

V̂ n+1
l − V̂ n

r

dl
+ (κ̃n

+ k̃n)V n
+ (ẽ1+ γ̃

n)�
n
− γ̇

n
= 0,

�̂n+1
l − �̂n

r

dl
+ (κ̃n

+ k̃n)�
n
− κ̇

n
= 0,

(2)

where f
n

and mn include any external forces and moments applied to the n-th element and dl is the
length of an element.

The equations for node n need to include possible discontinuities caused by a nodal mass, a nodal
force, and a slope discontinuity, so that

F̂n
r − ĈnT

lr F̂n
l + f̂ n

−
˙̂Pn
r −

˜̂�n
r P̂n

r = 0,

M̂n
r − ĈnT

lr M̂n
l + m̂n

−
˙̂H n
r −

˜̂�n
r Ĥ n

r −
˜̂V n

r P̂n
r = 0,

(3)

where Ĉlr reflects the slope discontinuity, f̂ n and m̂n are external forces and moments applied at n-th
node, and

V̂ n
l = Ĉn

lr V̂ n
r and �̂n

l = Ĉn
lr �̂

n
r . (4)

One may also include gravitational force in the analysis. When this is done, the formulation needs
additional equations to keep track of the vertical direction expressed in the cross-sectional basis vectors
of the deformed beam; details may be found in [Patil and Hodges 2006]. This aspect of the analysis is
not needed for the problems addressed herein.

3. Boundary conditions

Boundary conditions are needed to complete the formulation. Here, we describe boundary conditions
for pinned–pinned and clamped–clamped beams. At each end, for the static case, either natural bound-
ary conditions in terms of F̂ and M̂ or geometric boundary conditions in terms of u and C i B may be
prescribed. Here u is a column matrix of displacement measures ui in the cross-sectional frame of the
undeformed beam. Although these geometric boundary conditions are in terms of displacement and
rotation variables, they are easily expressed in terms of other variables such as κ, γ , etc., given in (12),
keeping the formulation intrinsic.
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If displacement and rotation variables appear in the boundary conditions for the free-vibration case, a
numerical Jacobian becomes necessary since an analytical determination of it would become intractable.
Fortunately, when calculating free-vibration frequencies, one may for convenience replace boundary
conditions on displacement and rotation variables with boundary conditions in terms of generalized
velocities V̂ and �̂. With the velocity boundary conditions, rigid-body modes will not be eliminated
from results.

3.1. Pinned–pinned boundary conditions. A total of 12 boundary conditions is necessary to calculate
free-vibration frequencies, given by

V̂ 1
r = M̂1

l = 0, (5)

V̂ N+1
r = 0 or


eT

1 C i B N+1
F̂ N+1

r = 0,

eT
2 V̂ N+1

r = 0,

eT
3 C i B N+1

V̂ N+1
r = 0,

(6)

M̂ N+1
r = 0, (7)

where C i B N+1
is the rotation matrix of the beam cross-section at the right end. Equation (5) fixes the

left boundary in space but leaves it free to rotate about all three axes. One may either apply a geometric
boundary condition of zero displacement at left end or may take advantage of the intrinsic formulation
through applying the velocity boundary condition given in (5). The right boundary condition of (6) allows
free movement in the axial direction while holding velocity components in the transverse directions to
zero, as shown in the right part of Figure 1. When there are no applied loads, one may simply make use
of trivial values as reference states.

For a loaded case, however, the reference states should be obtained from a specific static equilibrium.
To determine the static equilibrium, six boundary conditions are necessary, given by

M̂1
l = 0, (8)

uN+1
1 = 0 or eT

1 C i B N+1
F̂ N+1

r = 0, uN+1
2 = uN+1

3 = 0. (9)

The right end can be chosen either to be fixed in space or free to move in the axial direction, which is
described in (9). For static equilibrium, one must apply displacement boundary conditions, which appear
in (9), instead of velocity boundary conditions.

i
1

3i

Figure 1. Schematics of initially curved beams with pinned–pinned boundary conditions.

i
1

3i

Figure 2. Initially curved beam with clamped–clamped boundary condition.
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3.2. Clamped–clamped boundary conditions. The clamped-clamped boundary conditions are

V̂ 1
r = �̂

1
r = 0 and V̂ N+1

r = �̂N+1
r = 0, (10)

describing boundaries fixed in space and with zero rotation about all three axes.
As in the case of the pinned–pinned boundary condition, the boundary conditions for static equilibrium

of a loaded case must be written in terms of displacement and rotation, given by

uN+1
def = 0 and Ĉ i B N+1T

undef Ĉ i B N+1

def =1, (11)

where udef is the column matrix of displacement measures at the right end of the beam, Ĉ i B N+1

def is the
rotation matrix of the beam cross-section at the right end after deformation, and Ĉ i B N+1

undef is the rotation
matrix of the beam cross-section at the right end in the undeformed state.

The boundary conditions associated with geometric conditions for static equilibrium require displace-
ment and/or rotation to be expressed. These are described by the generalized strain-displacement equa-
tions from [Hodges 2003], given by

(r + u)′ = C i B(γ + e1) and C Bi ′
=−(̃κ + k̃)C Bi , (12)

where r is the column matrix of position vector measures and u is the column matrix of displacement
measures, both in the undeformed beam cross-sectional basis, and C Bi is the rotation matrix of the beam
cross-sectional reference frame in the deformed configuration. Equation (12) can be discretized as

rn+1
+ un+1

= rn
+ un
+C i B n

(γ n
+ e1)dl,

Ĉ Bin+1
=

(
1

dl
+
κ̃ + k̃n

2

)−1 (
1

dl
−
κ̃ + k̃n

2

)
Ĉ Bin

.
(13)

4. Linearization

The governing equations in the previous section are linearized about a static equilibrium so that they
reduce to an eigenvalue problem to calculate the free-vibration frequencies. First,

X = Xeq + X∗(t), (14)

where X is a state, Xeq is a value of the state at a static equilibrium, and X∗ is small perturbation about
the static value of the state. The linearized element equations from the intrinsic beam formulation are
then

F̂∗n+1
l − F̂∗nr

dl
+ (κ̃n

eq + k̃n)F∗n + κ̃∗n Fn
eq +µ

ng∗n = ˙P
∗n
,

M̂∗n+1
l − M̂∗nr

dl
+ (κ̃n

eq + k̃n)M∗n + κ̃∗n Mn
eq + (ẽ1+ γ̃

n
eq)F

∗n
+ γ̃ ∗n Fn

eq +µ
n ξ̃ ng∗n = ˙H

∗n
,

V̂ ∗n+1
l − V̂ ∗nr

dl
+ (κ̃n

eq + k̃n)V ∗n + (ẽ1+ γ̃
n
eq)�

∗n
= γ̇

∗n
,

�̂∗n+1
l − �̂∗nr

dl
+ (κ̃n

eq + k̃n)�
∗n
= κ̇
∗n
.

(15)
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The linearized nodal equations are

F̂∗nr − ĈnT

lr F̂∗nl + µ̂
n ĝ∗nr −

˙̂P
∗n
r = 0 and M̂∗nr − ĈnT

lr M̂∗nl + µ̂
n ˜̂ξ n ĝ∗nr −

˙̂H
∗n
r = 0. (16)

These linearized equations of motion can be expressed in a matrix form as AẊ∗ = B X∗, which is a
system of first-order ordinary differential equations. When X∗ = X̌ exp(λt) is assumed, the system is
easily cast as a generalized eigenvalue problem of the form B X̌ = AλX̌ . When B−1 exists, the equations
reduce to a standard eigenvalue problem, such that λ−1 X̌ = B−1 AX̌ . When the eigenvalues are pure
imaginary, the motion is simple harmonic.

5. Validation

A typical cross-sectional model for a beam has the form

γ11

2γ12

2γ13

κ1

κ2

κ3


=



R11 R12 R13 S11 S12 S13

R12 R22 R23 S21 S22 S23

R13 R23 R33 S31 S32 S33

S11 S21 S31 T11 T12 T13

S12 S22 S32 T12 T22 T23

S13 S23 S33 T13 T23 T33





F1

F2

F3

M1

M2

M3


(17)

or {
γ

κ

}
=

[
R3×3 S3×3

ST
3×3 T3×3

]{
F
M

}
, (18)

where the 3×3 submatrices R, S, and T , which make up the cross-sectional flexibility matrix, may be
computed by VABS for various initial curvatures [Cesnik and Hodges 1997; Yu et al. 2002; Hodges
2006]. When the reference line of the beam is chosen to be coincident with a cross-section shear center,
the shear-torsion elastic couplings S21 and S31 vanish for that section.

Results in this section are to be compared with the analytical solutions for high arches in [Hodges 1999]
and [Simitses and Hodges 2006]. Hydrostatic pressure is modeled as a distributed follower force with
constant magnitude per unit deformed length. When the equations are applied to buckling, the boundaries
are allowed (artificially) to move so as to maintain a circular arc in the deformed but prebuckled state.
For this case, only the radial displacement u2 and local stretching strain measure ε are nontrivial and
they are given as

u2 =
λρ2

1+ λρ2 and ε =−u2, (19)

where ρ2
= I3/AR2 and λ= f2 R3/E I3, where E I3 = 1/T33. (Subscript 2 indicates the radial direction

along b2 and subscript 3 indicates normal to the plane of the undeformed arch. For more details on
the definition of parameters see [Hodges 1999] and [Simitses and Hodges 2006].) Figure 3 shows the
excellent agreement between published analytical and present numerical solutions for ε versus λ.

Next, numerical results from the present analysis are compared with published analytical solutions for
pinned–pinned and clamped–clamped arches under hydrostatic pressure. When the boundary conditions
are not artificially adjusted, the problem is far more interesting. The geometry of the curved beam or arch



STABILITY STUDIES FOR CURVED BEAMS 1263

0 1 2 3 4 5 6 7 8 9
−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

−5

λ

ε

ε: analytical 
ε: numerical

Figure 3. Plot of ε versus λ for ρ2
= 8.3333× 10−6, α = 1.

used for the results is such that `= 20 m and hk2= h/Rr = 0.01, where h is the height of the cross-section,
Rr = 1/k2 is the initial radius of curvature, k2 is the initial curvature, and α is the half-angle (`= 2Rrα).

The prebuckling tangential and radial displacements u1 and u2, prebuckling curvature κ and bending
moment M for the pinned–pinned case are shown in Figures 4 and 5. All quantities are normalized
according to the scheme in [Hodges 1999]. The present results agree well with the analytical solutions
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Figure 4. Normalized displacements u1, u2 for the pinned-pinned case (ρ2
= 8.3333×

10−6, λ= 8, α = 1).
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Figure 5. Curvature κ and bending moment M for the pinned-pinned case (ρ2
=

8.3333× 10−6, λ= 8, α = 1).

for both ν = 1/3 and ν = −1; note that ν = −1 annihilates the stretch-bending coupling according to
both the analytical solution and the cross-sectional flexibility coefficients obtained from VABS. As is the
case with the analytical solutions, κ and M depend significantly on whether or not the coupling term is
included. Incidentally, there is a typographical error in the captions of Figures 2 and 3 in [Hodges 1999];
the results presented are for λ= 8, not λ= 5.

The results for the same beam and same loading but with clamped–clamped boundary conditions are
shown in Figure 6 and 7. Only the normalized prebuckling bending moments change with ν, as is the
case with the analytical solution in [Hodges 1999].
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Figure 6. Normalized displacements u1, u2 for the clamped-clamped case (ρ2
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Figure 8. λcr versus α for ρ2
= 8.3333× 10−6 (left for pinned–pinned and right for

clamped–clamped cases).

As the distributed follower force increases, the high arch will be buckled. For the pinned–pinned case,
the bifurcation load is λcr = π

2/α2
− 1 and for the clamped–clamped case, the characteristic equation

for the bifurcation load is
k tanα cot kα = 1,

where k =
√

1+ λ, as given in [Simitses and Hodges 2006]. For various half-angles, the bifurcation
loads are computed and shown in Figure 8. Thus, the present approach is seen to provide an excellent
numerical framework to study prebuckled deformation and buckling analysis without ad hoc modeling
approximations.
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6. Lateral-torsional buckling instability of curved beams under end moments

In this study the stability characteristics of curved beams are considered, including beams both with
curvature that is built-in and curvature that occurs because the beam is loaded with end moments. The
end moments are applied keeping its original orientation to the beam cross-section in deformation con-
figuration, which are nonconservative. The section properties vary according to the initial curvature.
Sample results are given in Table 1. In the general case we consider an curved beam with various initial
curvatures k2 loaded under various equal and opposite values of applied moments at the ends giving rise
to a constant value of bending moment M2. To facilitate this parametric study, the total static equilibrium
value of curvature K 2 is divided into two parts: the initial curvature k2 and the curvature caused by the
applied end moments M2/E I2. The total curvature can then be expressed as

K 2 = k2+
M2

E I2
, (20)

where E I2 is the in-plane bending stiffness for bending in the plane of the curved beam. A nondimen-
sional curvature ratio β is then introduced, where β is the ratio of the initial curvature to the final total
curvature and defined as

β =
k2

K 2
(K 2 6= 0). (21)

If β = 0, the beam has a zero initial curvature. If β = 1, the beam’s initial curvature is the total curvature,
which means that no end moments will be applied. If β =−1, the beam has an opposite initial curvature
to the final configuration. The first three parts of Figure 9 show the cases β =−1, 0, 1. End moments are
applied to deform the beam so that K 2 =−0.1, as shown in the last part of the same figure. A rectangular
cross-section is chosen to determine beam properties.

Table 2 and Figure 10 show the vibration frequencies for various β. It shows that the frequencies of
modes 2 and 6 change as β changes. The frequency of mode 2, in which the first out-of-plane bending
motion dominates, decreases as β decreases, becoming zero when β =−0.0117. This critical β is named

Rr 1/0.1 1/0.07 1/0.04 1/0.01

R11 1.4286 · 10−9 1.4286 · 10−9 1.4286 · 10−9 1.4286 · 10−9

R22 4.7292 · 10−9 4.7291 · 10−9 4.7291 · 10−9 4.7291 · 10−9

R33 4.7291 · 10−9 4.7291 · 10−9 4.7291 · 10−9 4.7291 · 10−9

S12 3.4133 · 10−10 2.3790 · 10−10 1.3619 · 10−10 3.4476 · 10−11

S21 −1.1431 · 10−12 8.6327 · 10−13 9.5232 · 10−14
−6.7113 · 10−13

T11 2.7802 · 10−6 2.7803 · 10−6 2.7803 · 10−6 2.7803 · 10−6

T22 1.7143 · 10−6 1.7143 · 10−6 1.7143 · 10−6 1.7143 · 10−6

T33 1.7143 · 10−6 1.7143 · 10−6 1.7143 · 10−6 1.7143 · 10−6

ξ3 8.7588 · 10−5 6.1310 · 10−5 3.5034 · 10−5 8.7585 · 10−6

Table 1. Nonzero cross-sectional constants used for calculation of coupled free-
vibration frequencies for initially curved beams: flexibility submatrices Ri j , Si j , Ti j ,
radius of curvature Rr , and shear center location ξ3.
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Figure 9. Initial configurations of beams with β =−1 (top left), β = 0 (top right), and
β = 1 (bottom left). Bottom right: Final deformed configuration (K 2 =−0.1) with end
moments.

βcr, indicating that this case is at the stability boundary and the lateral-torsional buckling instability will
occur if β < βcr =−0.0117.

The lateral-torsional buckling instability depends on the in- and out-of-plane bending stiffnesses and
the torsional stiffness, which convey how deep the beam is. For this example with a rectangular cross-
section, each stiffness will be determined by the ratio of cross-section r = h/b. So various cases for differ-
ent r and same cross-sectional area �area = bh/`2 are studied to determine βcr. βcr indicates that for the

β mode 1 mode 2 mode 3 mode 4 mode 5 mode 6

0 31.842 32.548 89.567 90.630 177.94 179.13
0.1 31.842 96.606 89.567 90.209 177.94 185.45
0.2 31.842 125.16 89.567 89.776 177.94 199.11
0.3 31.842 140.08 89.332 89.568 177.94 211.83
0.4 31.842 147.61 88.878 89.568 177.94 229.92
0.5 31.842 151.58 88.412 89.568 177.95 248.30

Table 2. Vibration frequencies (ωfreq) versus curvature ratio (β).
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given cross-section, the instability will occur if the initial curvature k2 is larger than −0.1βcr when the to-
tal static equilibrium curvature K 2=−0.1. Figure 11 shows the critical values βcr for �area= 0.01, ∼ 0.1,
and ∼ 0.2. The region above the lines are free of the lateral-torsional buckling instability and the buckling
will occur if a case is under the line. As the cross-sectional area gets small and the ratio r increases, that
is, the beam gets deeper, the example is prone to the lateral-torsional instability as shown in Figure 11.
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Figure 10. Vibration frequencies (ωfreq) versus curvature ratio (β).
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Figure 11. Critical curvature ratio βcr versus r = h/b for the lateral-torsional buckling instability.
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Figure 12. Frequencies and damping for different end moments (β = −0.02, r = 1.1,
�area = 0.2).

For deep beams loaded with nonconservative end moments, one may also encounter a lateral-torsional
flutter instability. The dynamic instability might occur before the lateral-torsional instability occurs. A
further study is done for the case with β = −0.02, r = 1.1, �area = 0.2, which is one case of the
lateral-torsional buckling instability boundary curves shown in Figure 11. For this case, the applied
tip moment is M2 = −E I2(0.1+ k2) = −0.1002E I2, which we denote as the reference value M2,ref.
Another instability can be found through lowering the ratio rM2 = M2/M2,ref. Then, the second torsional
and third out-of-plane bending modes shown in Figure 12 become oscillatory with increasing amplitude
if rM2 ≥ 0.765. For this case, the dynamic instability occurs prior to the lateral-torsional instability.

7. Conclusion

The paper describes a numerical procedure of intrinsic beam formulation to study the stability of curved
beams under certain types of loading. The linear analysis provides the vibration frequencies about the
equilibrium state for given arbitrary configurations undergoing given loads. Present results of prebuckled
in-plane deformation and buckling analysis agree well with those from the published paper of high arches.
Additional parametric study determines the stability boundaries for the system. For nonconservatively
loaded systems, as the example shows, the dynamic instability also can be identified.

The governing equations of the present approach do not require displacement and rotation variables.
Even though the displacement and rotation variables appear in the boundary conditions, those variables
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are easily recovered from the formulation (i.e. they are secondary variables and can be expressed in
terms of the primary variables). This makes the whole analysis quite concise, reducing computational
time. Thus, the present approach is an excellent numerical framework to study prebuckled deformation
and buckling analysis for curved beams with better understanding.
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INFLUENCE OF CORE PROPERTIES ON THE FAILURE
OF COMPOSITE SANDWICH BEAMS

ISAAC M. DANIEL

The initiation of failure in composite sandwich beams is heavily dependent on properties of the core
material. Several core materials, including PVC foams and balsa wood were characterized. The various
failure modes occurring in composite sandwich beams are described and their relationship to the relevant
core properties is explained and discussed. Under flexural loading of sandwich beams, plastic yielding
or cracking of the core occurs when the critical yield stress or strength (usually shear) of the core is
reached. Indentation under localized loading depends principally on the square root of the core yield
stress. The critical stress for facesheet wrinkling is related to the core Young’s and shear moduli in
the thickness direction. Experimental mechanics methods were used to illustrate the failure modes and
verify analytical predictions.

1. Introduction

The overall performance of sandwich structures depends in general on the properties of the facesheets, the
core, the adhesive bonding the core to the skins, and geometric dimensions. Sandwich beams under gen-
eral bending, shear and in-plane loading display various failure modes. Their initiation, propagation, and
interaction depend on the constituent material properties, geometry, and type of loading. Failure modes
and their initiation can be predicted by conducting a thorough stress analysis and applying appropriate
failure criteria in the critical regions of the beam. This analysis is difficult because of the nonlinear and
inelastic behavior of the constituent materials and the complex interactions of failure modes. Possible
failure modes include tensile or compressive failure of the facesheets, debonding at the core/facesheet
interface, indentation failure under localized loading, core failure, wrinkling of the compression facesheet,
and global buckling. Following initiation of a particular failure mode, this mode may trigger and interact
with other modes and final failure may follow a different failure path. A general review of failure modes
in composite sandwich beams was given in [Daniel et al. 2002]. Individual failure modes in sandwich
columns and beams are discussed in [Abot et al. 2002; Gdoutos et al. 2002b; 2003]. Of all the factors
influencing failure initiation and mode, the properties of the core material are the most predominant.

Commonly used materials for facesheets are composite laminates and metals, while cores are made
of metallic and nonmetallic honeycombs, cellular foams, balsa wood, or truss.

The facesheets carry almost all of the bending and in-plane loads while the core helps to stabilize
the facesheets and defines the flexural stiffness and out-of-plane shear and compressive behavior. A
number of core materials, including aluminum honeycomb, various types of closed-cell PVC foams,

Keywords: sandwich structures, core materials, experimental methods, characterization, failure modes, strength.
The work discussed in this paper was sponsored by the Office of Naval Research (ONR). The author is grateful to Dr. Y. D. S.
Rajapakse of ONR for his encouragement and cooperation.
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Figure 1. Material coordinate system for sandwich cores.

a polyurethane foam, foam-filled honeycomb and balsa wood, were characterized under uniaxial and
biaxial states of stress.

In the present work, failure modes were investigated experimentally in axially loaded composite
sandwich columns and sandwich beams under bending. Failure modes observed and studied include
indentation failure, core failures, and facesheet wrinkling. The transition from one failure mode to
another for varying loading or state of stress and beam dimensions was discussed. Experimental results
were compared with analytical predictions.

2. Characterization of core materials

The core materials characterized were four types of a closed-cell PVC foam (Divinycell H80, H100,
H160 and H250, with densities of 80, 100, 160 and 250kg/m3, respectively), an aluminum honeycomb
(PAMG 8.1-3/16 001-P-5052, Plascore Co.), a polyurethane foam, a foam-filled honeycomb, and balsa
wood. Of these, the low density foam cores are quasi-isotropic, while the high density foam cores, the
honeycombs, and balsa wood are orthotropic with the 1-2 plane parallel to the facesheets being a plane of
isotropy and the through-thickness direction (3-direction) a principal axis of higher stiffness, as shown in
Figure 1. All core materials were characterized in uniaxial tension, compression, and shear along the in-
plane and through-thickness directions. Typical stress-strain curves are shown in Figures 2 and 3. Some
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Figure 3. Shear stress-strain curves of PVC foam cores under through-thickness shear.

of their characteristic properties are tabulated in Table 1. The core materials (honeycomb or foam) were
provided in the form of 25.4 mm thick plates. The honeycomb core was bonded to the top and bottom
facesheets with FM73 M film adhesive and the assembly was cured under pressure in an oven following
the recommended curing cycle for the adhesive. The foam cores were bonded to the facesheets using
a commercially available epoxy adhesive (Hysol EA 9430) [Daniel and Abot 2000]. Beam specimens
25.4 mm wide and of various lengths were cut from the sandwich plates.

Two core materials, Divinycell H100 and H250 were fully characterized under multiaxial stress con-
ditions [Gdoutos et al. 2002a]. A series of biaxial tests were conducted including constrained strip
specimens in tension and compression with the strip axis along the through-thickness and in-plane di-
rections; constrained thin-wall ring specimens in compression and torsion; thin-wall tube specimens in
tension and torsion; and thin-wall tube specimens under axial tension, torsion and internal pressure. From
these tests and uniaxial results in tension, compression, and shear, failure envelopes were constructed. It

Sandwich core material ρ E1 E2 E3 G13 F1c F1t F2c F3c F5

Divinycell H80 80 77 77 110 18 1.0 2.3 1.0 1.4 1.1
Divinycell H100 100 95 95 117 25 1.4 2.7 1.4 1.6 1.4
Divinycell H160 160 140 140 250 26 2.5 3.7 2.5 3.6 2.8
Divinycell H250 250 255 245 360 73 4.5 7.2 4.5 5.6 4.9
Balsa Wood CK57 150 110 110 4600 60 0.8 1.2 0.8 9.7 3.7
Aluminum Honeycomb PAMG 5052 130 8.3 6.0 2200 580 0.2 1.2 0.2 11.8 3.5
Foam Filled Honeycomb Style 20 128 25 7.6 240 8.7 0.4 0.5 0.3 1.4 0.75
Polyurethane FR-3708 128 38 38 110 10 1.2 1.1 1.1 1.8 1.4

Table 1. Properties of sandwich core materials: the density, ρ (in units of kg/m3); and
the in-plane moduli, E1 and E2, the out of plane modulus, E3, the transverse shear
modulus, G13, the in-plane compressive strength, F1c, the in-plane tensile strength, F1t ,
the in-plane compressive strength, F2c, the out of plane compressive strength, F3c, and
the transverse shear strength, F5 (all in units of MPa).
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10 MPa 

-4.6 MPa 

Figure 4. Failure envelopes predicted by the Tsai–Wu failure criterion for PVC foam
(Divinycell H250) for k = 0, 0.8 and 1, and experimental results (k = τ13/F13 = τ5/F5).

was shown that the failure envelopes were described well by the Tsai–Wu criterion [1971], as shown in
Figure 4.

The Tsai–Wu criterion for a general two-dimensional state of stress on the 1-3 plane is expressed as

f1σ1+ f3σ3+ f11σ
2
1 + f33σ

2
3 + 2 f13σ1σ3+ f55τ

2
5 = 1, (1)

where

f1 =
1

F1t
−

1
F1c

, f3 =
1

F3t
−

1
F3c

, f11 =
1

F1t F1c
,

f33 =
1

F3t F3c
, f13 =−

1
2
( f11 f33)

1/2, f55 =
1

F2
5
.

Here F1t , F1c, F3t , and F3c are the tensile and compressive strengths in the in-plane (1, 2) and out-of-
plane (3) directions, and F5 is the shear strength on the 1-3 plane.

Setting τ5 = k F5, we can rewrite (1) as

f1σ1+ f3σ3+ f11σ
2
1 + f33σ

2
3 + 2 f13σ1σ3 = 1− k2. (2)

It was assumed that the failure behavior of all core materials can be described by the Tsai–Wu criterion.
Failure envelopes of all core materials constructed from the values of F1t , F1c and F5 are shown in
Figure 5. Note that the failure envelopes of all Divinycell foams are elongated along the σ1-axis, which
indicates that these materials are stronger under normal longitudinal stress than in-plane shear stress.
Aluminum honeycomb and balsa wood show the opposite behavior. For all materials, the most critical
combinations of shear and normal stress fall in the second and third quadrants (the failure envelopes are
symmetrical with respect to the σ1-axis).
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Figure 5. Failure envelopes for various core materials based on the Tsai–Wu failure
criterion for interaction of normal and shear stresses.

3. Core failures

The core is primarily selected to carry the shear loading. Core failure by shear is a common failure mode
in sandwich construction [Allen 1969; Hall and Robson 1984; Zenkert and Vikström 1992; Zenkert
1995; Daniel et al. 2001a; 2001b; Sha et al. 2006]. In short beams under three-point bending the core is
mainly subjected to shear, and failure occurs when the maximum shear stress reaches the critical value
(shear strength) of the core material. In long-span beams the normal stresses become of the same order
of magnitude as, or even higher than the shear stresses. In this case, the core in the beam is subjected
to a biaxial state of stress and fails according to an appropriate failure criterion. It was shown earlier
that failure of the PVC foam core Divinycell H250 can be described by the Tsai–Wu failure criterion
[Gdoutos et al. 2002a; Bezazi et al. 2007].

For a sandwich beam of rectangular cross section, with facesheets and core materials displaying linear
elastic behavior, subjected to a bending moment, M , and shear force, V , the in-plane maximum normal
stress, σ , and shear stress, τ , in the core, for a low stiffness core and thin facesheets are given by [Daniel
et al. 2001a]

σ =
P L

C1bd2

( Ec
E f

) hc
h f
, τ =

P
C2bhc

, (3)

where
M = P L

C1
, V = P

C2
, (4)

P being the applied concentrated load, L the length of beam, E f and Ec the Young’s moduli of the
facesheet and core material, h f and hc the thicknesses of the facesheets and core, d the distance between
the centroids of the facesheets, b the beam width, and C1 and C2 constants depending on the loading
configuration (C1 = 4, C2 = 2 for three-point bending; C1 = C2 = 1 for a cantilever beam).
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The maximum normal stress, σ , for a beam under three-point bending occurs under the load, while
for a cantilever beam under end loading it occurs at the support. The shear stress, τ , is constant along
the beam span and through the core thickness, as verified experimentally [Daniel and Abot 2000; Daniel
et al. 2002].

When the normal stress in the core is small relative to the shear stress, it can be assumed that core
failure occurs when the shear stress reaches a critical value. Furthermore, failure in the facesheets occurs
when the normal stress reaches its critical value, usually the facesheet compressive strength. Under such
circumstances we obtain from (3) that failure mode transition from shear core failure to compressive
facesheet failure occurs when

L
h f
= C

Ff

Fcs
, (5)

where Ff is the facesheet strength in compression or tension, Fcs is the core shear strength, and C is a
constant (C = 2 for a beam under three-point bending; C = 1 for a cantilever beam under an end load).

When the left-hand term of (5) is smaller than the right hand term, failure occurs by core shear, whereas
in the reverse case failure occurs by facesheet tension or compression.

The deformation and failure mechanisms in the core of sandwich beams have been studied experimen-
tally by means of moiré gratings and photoelastic coatings [Daniel and Abot 2000; Daniel et al. 2001a;
2001b; Gdoutos et al. 2001; 2002b; Abot and Daniel 2003]. Figure 6 shows moiré fringe patterns in
the core of a sandwich beam under three-point bending for an applied load that produces stresses in
the core within the linear elastic range. The moiré fringe patterns corresponding to the u (horizontal)
and w (through-the-thickness) displacements away from the applied load consist of nearly parallel and
equidistant fringes from which it follows that

εx =
∂u
∂x
∼= 0, εz =

∂w
∂z
∼= 0, γxz =

∂u
∂z
+
∂w
∂x
= constant . (6)

Thus, the core is under nearly uniform shear stress. This is true only in the linear range, as will be
illustrated below.

Figure 7 shows photoelastic coating fringe patterns for a beam under three-point bending. The fringe
pattern for a low applied load (2.3 kN) is nearly uniform, indicating that the shear strain (stress) in the

 

��

Figure 6. Moiré fringe patterns corresponding to horizontal and vertical displacements
in sandwich beam under three-point bending (12 lines/mm, Divinycell H250 core).
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Figure 7. Isochromatic fringe patterns in birefringent coating of sandwich beam under
three-point bending (Divinycell H250 core).

core is constant. This pattern remains uniform up to an applied load of 3.3 kN which corresponds to an
average shear stress in the core of 2.55 MPa. This is close to the proportional limit of the shear stress-
strain curve of the core material (Figure 3). For higher loads, the core begins to yield and the shear strain
becomes highly nonuniform peaking at the center and causing plastic flow. The onset of core failure in
beams is directly related to the core yield stress in the thickness direction. A critical condition for the
core occurs at points where shear stress is combined with compressive stress.

The deformation and failure of the core is obviously dependent on its properties and especially its
anisotropy. Honeycomb and balsa wood cores are highly anisotropic with much higher stiffness and
strength in the thickness direction, a desirable property. Figure 8 shows isochromatic fringe patterns
in the photoelastic coating and the corresponding load deflection curve for a composite sandwich beam
under three-point bending. The beam consists of glass/vinylester facesheets and balsa wood core. The
fringe patterns indicate that the shear deformation in the core is initially nearly uniform, but it becomes
nonuniform and concentrated in a region between the support and the load at a distance of approximately
one beam depth from the support. The pattern at the highest load shown is indicative of a vertical crack
along the cells of the balsa wood core. The loads corresponding to the fringe patterns are marked on
the load deflection curve. It is seen that the onset of nonlinear behavior corresponds to the beginning of
fringe concentration and failure initiation in the critical region of the core.

Figure 9 shows the damaged region of the beam. Although the fringe patterns did not show that, it
appears that a crack was initiated near the upper facesheet/core interface and propagated parallel to it.
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Figure 8. Isochromatic fringe patterns in photoelastic coating and load deflection curve
of a composite sandwich beam under three-point bending (glass/vinylester facesheets;
balsa wood core).

Figure 9. Cracking in balsa wood core of sandwich beam under three-point bending
near support.

The crack traveled for some distance and then turned downwards along the cell walls of the core until it
approached the lower interface. It then traveled parallel to the interface towards the support point.
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Figure 10. Isochromatic fringe patterns in birefringent coating of cantilever sandwich
beam under end loading.

Core failure is accelerated when compressive and shear stresses are combined. This critical combi-
nation is evident from the failure envelope of Figure 4. The criticality of the compression/shear stress
biaxiality was tested with a cantilever sandwich beam loaded at the free end. The isochromatic fringe
patterns of the birefringent coating in Figure 10 show how the peak birefringence moves towards the
fixed end of the beam at the bottom where the compressive strain is the highest and superimposed on the
shear strain. Plastic deformation of the core, whether due to shear alone or a combination of compression
and shear, degrades the supporting role of the core and precipitates other more catastrophic failure modes,
such as facesheet wrinkling.

4. Indentation failure

Indentation failure in composite sandwich beams occurs under concentrated loads, especially in the case
of soft cores. Under such conditions, significant local deformation takes place of the loaded facesheet
into the core, causing high local stress concentrations. The indentation response of sandwich panels
was first modeled by [Meyer-Piening 1989] who assumed linear elastic bending of the loaded facesheet
resting on a Winkler foundation (core). Soden [1996] modeled the core as a rigid-perfectly plastic
foundation, leading to a simple expression for the indentation failure load. Shuaeib and Soden [1997]
predicted indentation failure loads for sandwich beams with glass-fiber-reinforced plastic facesheets and
thermoplastic foam cores. The problem was modeled as an elastic beam, representing the facesheet,
resting on an elastic-plastic foundation representing the core. Thomsen and Frostig [1997] studied the
local bending effects in sandwich beams experimentally and analytically. The indentation failure of
composite sandwich beams was also studied by [Anderson and Madenci 2000; Petras and Sutcliffe 2000;
Gdoutos et al. 2002b].
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For linear elastic behavior, the core is modeled as a layer of linear tension/compression springs. The
stress at the core/facesheet interface is proportional to the local deflection w, σ = kw, where the founda-
tion modulus k is given by

k = 0.64 Ec
h f

3

√
Ec
E f
, (7)

and where E f and Ec are the facesheet and core moduli, respectively, and h f is the facesheet thickness.
Initiation of indentation failure occurs when the core under the load starts yielding. The load at core
yielding was calculated as

Pcy = 1.70σcybh f
3

√
E f

Ec
, (8)

where σcy is the yield stress of the core, and b is the beam width.
Core yielding causes local bending of the facesheet which, combined with global bending of the beam,

results in compression failure of the facesheet. The compressive failure stress in the facesheet is related
to the critical beam loading Pcr by

σ f = F f c =
9P2

cr

16b2h2
f Fcc
+

PcrL
4bh f (h f + hc)

, (9)

where hc is the core thickness, L the span length, b the beam width, and Fcc, F f c the compressive
strengths of the core (in the thickness direction) and facesheet materials, respectively. In the above equa-
tion, the first term on the right hand side is due to local bending following core yielding and indentation
and the second term is due to global bending.

The onset and progression of indentation failure is illustrated by the moiré pattern for a sandwich
beam under three-point bending (Figure 11).
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Figure 11. Moiré fringe patterns in sandwich beam with foam core corresponding to
vertical displacements at various applied loads (11.8 lines/mm grating; carbon/epoxy
facesheets; Divinycell H100 core).
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Figure 12. Load versus deflection under load of sandwich beam under three-point bend-
ing (carbon/epoxy facesheets, Divinycell cores).

Figure 12 shows load displacement curves for beams of the same dimensions but different cores. The
displacement in these curves represents the sum of the global beam deflection and the more dominant
local indentation. Therefore, the proportional limit of the load-displacement curves is a good indication
of initiation of indentation.

The measured critical indentation loads in Figure 12 were compared with predicted values using (9),
which can be approximated as [Soden 1996]

Pcr ∼=
4
3 bh f

√
F f cσcy . (10)

Thus, the critical indentation load is proportional to the square root of the core material yield stress. The
results obtained are compared in Table 2. The approximate theory with the assumption of rigid-perfectly
plastic behavior overestimates the indentation failure load for soft cores, but it underestimates it for stiff
cores.

5. Facesheet wrinkling failure

Wrinkling of sandwich beams subjected to compression or bending is defined as a localized short-wave
length buckling of the compression facesheet. Wrinkling may be viewed as buckling of the compression
facesheet supported on an elastic or elastoplastic continuum [Gdoutos et al. 2003]. It is a common failure
mode leading to loss of the beam stiffness. The wrinkling phenomenon is characterized by the interaction

Indentation Load (N) H80 H100 H160 H250

Measured 1050 1250 2150 2900
Calculated 1370 1500 2000 2380

Table 2. Critical indentation loads for sandwich beams with different cores under three-
point bending.
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between the core and the facesheet of the sandwich panel. Thus, the critical wrinkling load is a function
of the stiffnesses of the core and facesheet, the geometry of the structure, and the applied loading.

A large number of theoretical and experimental investigations has been reported on wrinkling of sand-
wich structures. Some of the early works were presented and compiled in [Plantema 1966; Allen 1969].
Hoff and Mautner [1945] tested sandwich panels in compression and gave an approximate formula for
the wrinkling stress, which depends only on the elastic moduli of the core and facesheet materials. Heath
[1960] extended the theory for end loaded plates and proposed a simple expression for facesheet wrinkling
in sandwich plates with isotropic components. The theory does not account for shear interaction between
the facesheets and the core and thus is more applicable to compressively loaded sandwich columns and to
beams under pure bending. Benson and Mayers [1967] developed a unified theory for the study of both
general instability and facesheet wrinkling simultaneously for sandwich plates with isotropic facesheets
and orthotropic cores. This theory was extended in [Hadi and Matthews 2000] to solve the problem of
wrinkling of anisotropic sandwich panels. More studies on the wrinkling of sandwich plates are found in
[Vonach and Rammerstorfer 2000; Fagerberg 2004; Birman and Bert 2004; Meyer-Piening 2006; Lopatin
and Morozov 2008]. The critical wrinkling stress given in [Hoff and Mautner 1945] is

σcr ∼= c 3
√

E f 1 Ec3Gc13, (11)

where E f 1 and Ec3 are the Young’s moduli of facesheet and core, in the axial and through-thickness
directions, respectively, Gc13 is the shear modulus of the core on the 1-3 plane, and c is a coefficient,
usually varying in the range of 0.5–0.9.

In the relation above, the core moduli are the initial ones while the material is in the linear range.
After the core yields and its stiffnesses degrade (E ′c,G ′c), it does not provide adequate support for the
facesheet, thereby precipitating facesheet wrinkling. The reduced critical stress after core degradation is

σcr ∼= c 3
√

E f E ′cG ′c. (12)

Heath’s original expression was modified here for a one-dimensional beam and by considering only
the facesheet modulus along the axis of the beam and the core modulus in the through-thickness direction.
The critical wrinkling stress can then be obtained by

σcr =

[
2
3

h f

hc
Ec3 E f

]1/2

. (13)

Sandwich columns were subjected to end compression and strains were measured on both faces. The
stress-strain curves for three columns with aluminum honeycomb, Divinycell H100 and Divinycell H250
cores are shown in Figure 13. Photographs of these columns after failure are shown in Figure 14. The
wrinkling stress is defined as the stress at which the strain on the convex side of the panel reaches a
maximum value. Note that the column with the honeycomb core failed by facesheet compression and
not by wrinkling. The measured failure stress of 1,550 MPa is much lower than the critical wrinkling
stresses of 2,850 MPa and 2,899 MPa predicted by (11) and (13), the former for c = 0.5. The columns
with Divinycell H100 and H250 foam cores failed by facesheet wrinkling, as seen in the stress-strain
curves of Figure 13. The measured wrinkling stresses at maximum strain for the Divinycell H100 and
H250 cores were 627 MPa and 1,034 MPa, respectively, and are close to the values of 667 MPa and
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Figure 13. Compressive stress-strain curves for sandwich columns with different cores.

 

Figure 14. Failure of sandwich columns with two different cores.

1170 MPa predicted by (13). Agreement with the [Hoff and Mautner 1945] prediction would require
coefficient values of c = 0.834 and c = 0.662 in (11).

Figure 15 shows moment versus strain results for two different tests of sandwich beams with Divinycell
H100 foam cores under four-point bending. Evidence of wrinkling is shown by the sharp change in
recorded strain on the compression facesheet, indicating inward and outward wrinkling in the two tests.
In both cases the critical wrinkling stress was σcr = 673 MPa. Heath’s relation (13) [Heath 1960] was
selected because of the lack of shear interaction due to the pure bending loading. The predicted critical
wrinkling stress of 667 MPa is very close to the experimental value.
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Figure 15. Facesheet wrinkling in sandwich beam under four-point bending (Divinycell
H100 foam core; dimensions are in cm).

Sandwich beams were also tested in three-point bending and as cantilever beams. The moment-strain
curves shown in Figure 16 illustrate the onset of facesheet wrinkling. Critical stresses obtained from the
figure for the maximum moment for specimens 1 and 2 are σcr= 860 MPa and 947 MPa, respectively. The
predicted value by (11) would agree with the average of the two measurements, 903 MPa, for c = 0.578.
In the case of the short beam (specimen 3), core failure preceded wrinkling. The measured wrinkling
stress was 517 MPa. The core shear stresses at wrinkling for specimens 2 and 3 are 3.2 MPa and 4.55 MPa,
respectively. Thus, the core material for specimen 2 is in the linear elastic region, whereas for specimen
3 it is close to the yield point. Equation (14) predicts the measured wrinkling stress with a reduced core
shear modulus of G ′c13 = 21.2 MPa for c = 0.5.
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Figure 16. Facesheet wrinkling failure in sandwich beams with Divinycell H250 cores.
Curve numbers correspond to specimen numbers on the right.
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6. Conclusions

The initiation of failure in composite sandwich beams is heavily dependent on properties of the core
material. Plastic yielding or cracking of the core occurs when the critical yield stress or strength (usually
shear) of the core is reached. Indentation under localized loading depends principally on the square root
of the core yield stress. Available theory predicts indentation failure approximately, overestimating it
for soft cores and underestimating it for stiffer ones. The critical facesheet wrinkling stress is predicted
fairly closely by Heath’s formula for cases not involving shear interaction between the facesheets and
the core, such as compressively loaded columns and beams under pure bending. In the case of cantilever
beams or beams under three-point bending, entailing shear interaction between the facesheets and core,
the Hoff and Mautner formula predicts a value for the critical wrinkling stress which is proportional to
the cubic root of the product of the core Young’s and shear moduli in the thickness direction. The ideal
core should be highly anisotropic with high stiffness and strength in the thickness direction.
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NONLINEAR BEHAVIOR OF THERMALLY LOADED CURVED SANDWICH
PANELS WITH A TRANSVESELY FLEXIBLE CORE

YEOSHUA FROSTIG AND OLE THOMSEN

The nonlinear analysis of a curved sandwich panel with a compliant core subjected to a thermal field and
mechanical load is presented. The mathematical formulation is developed first, along with the solution
of the stress and displacement fields for the case of a sandwich core with mechanical properties that are
independent of the temperature. The nonlinear analysis includes geometrical nonlinearities in the face
sheets caused by rotation of the face cross sections and high-order effects due to the transversely flexible
core. The mathematical formulation uses the variational principle of minimum energy along with HSAPT
(high-order sandwich panel theory) to derive the nonlinear field equations and the boundary conditions.
The full displacement and stress fields of the core with uniform temperature-independent mechanical
properties and the appropriate governing equations of the sandwich panel are given.

This is followed by the general solution of the core stress and displacement fields when the mechan-
ical core properties are dependent on the radial (through-the-thickness) coordinate. The displacement
fields of a core with temperature-dependent mechanical properties are determined explicitly using an
equivalent polynomial description of the varying properties.

A numerical study then describes the nonlinear response of curved sandwich panels subjected to con-
centrated and distributed mechanical loads, thermally induced deformations, and simultaneous thermal
and mechanical loads where the mechanical load is below the limit load level of the mechanical response
and the imposed temperature field is made to vary. The results reveal that the thermomechanical response
is linear when the sandwich panel is heated, but becomes nonlinear with limit point behavior when the
panel is cooled down.

Introduction

Curved sandwich structures are increasingly being used in the aerospace, naval and transportation indus-
tries, where weight savings combined with high strength and stiffness properties are always in demand.
Sandwich structures consist of two thin face sheets, usually metallic or laminated composites, bonded to
a core that is often made of honeycomb or a polymer foam with low strength properties. The core usually
provides the shear resistance/stiffness to the sandwich structure in the transverse (radial) direction, and
a transverse support to the face sheets that is associated to radial normal stresses. Polymer foam or low-
strength honeycomb cores are flexible in this (radial/thickness) direction, and this affects both the global
and the local response through changes of the core height (compressible core), and a core cross section
plane that deforms into a nonlinear pattern.

The manufacture of such sandwich structures often involves elevated temperatures that may be asso-
ciated with thermally induced deformations. During service, deformations may be induced by elevated

Keywords: sandwich strcutures, thermal effects, nonlinear geometry, s̈oftc̈ore, high-order models.
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temperatures, with or without large gradients, which may degrade the properties of the face sheets and
the core. In a traditional design process of such structures the thermally induced deformations and the de-
formations caused by external mechanical loads are considered separately. However, this approach is not
necessarily conservative, since the interaction between the external loads and the elevated temperatures,
especially when the deformations are large, may lead to unsafe behavior and loss of structural integrity.

The major goal of this work is to investigate under what circumstances the combination of simultane-
ous thermally induced deformations and mechanical loads applied to curved sandwich structures (panels)
may lead to an unstable and thereby potentially disastrous load response.

Outline. After a discussion of earlier work in Section 1 we introduce in Section 2 the mathematical for-
mulation leading to the field and governing equations, the appropriate boundary conditions, the thermal
fields within the core, along with the effects of the degradation of the mechanical core properties as a
result of elevated temperatures. The full nonlinear governing equations for the temperature-independent
(TI) case are derived and presented in Section 3. In Section 4 we turn to the general solution for the core
stress and displacement fields when the core properties are coordinate-dependent in the radial (through-
the-thickness) direction and display mechanical properties that are temperature-dependent (TD). This is
followed in Section 5 by a numerical investigation into the nonlinear response of sandwich panels; the
results are described in Section 5.1 for TI cores and in Section 5.2 for TD cores. Further discussion of
the numerical study and overall conclusions occupy Section 6.

1. Antecedents

The well known approach for sandwich plates/panels, due to Reissner and Mindlin, replaces the layered
sandwich panel by an equivalent single layer (ESL) and takes into the account the relaxed Kirchhoff–Love
hypothesis, which assumes that the section plane is not normal to the plate middle surface. This approach
has become the foundation for a large group of research works in the field of sandwich structures, in-
cluding [Whitney and Pagano 1970; Noor and Burton 1990; Noor et al. 1994; 1996], to name a few; see
also the references listed in this last paper. Kollár [1990] investigated buckling of generally anisotropic
shallow sandwich shells and Vaswani et al. [1988] performed vibration and damping analysis of curved
sandwich beams. These last two models used the Flügge shell theory while assuming that the face
sheets are membranes and the core is incompressible. A model for shallow cylindrical sandwich panels
with orthotropic surfaces suggested in [Wang and Wang 1989] follows the same relaxed Kirchhoff–Love
hypothesis for the core as in references quoted above, but in this work the face sheets are attributed with
both in-plane and flexural rigidities. Similarly, using the principle of virtual work along with the Reissner–
Mindlin hypothesis and Sanders’ nonlinear stress-displacement relations, a theory for thick shells has
been developed [di Sciuva 1987; di Sciuva and Carrera 1990] that takes into account the shear rotation but
assumes that the core is incompressible and linear. A stability analysis for cylindrical sandwich panels
with laminated composite faces based on the Reissner hypothesis has been derived [Rao 1985; Rao
and Meyer-Piening 1986; 1990]. These authors extended the Reissner–Mindlin theory to derive force-
displacement relations of anisotropic sandwich panels with membrane face sheets. As a consequence,
local effects, due to localized loads, point supports, presence of load or geometric discontinuities are
beyond the capability of these approaches. This well known approach is accurate as long as the core
can be considered to be incompressible, i.e., the height of the core remains unchanged so the radial
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displacements of the two face sheets are identical. However, compliant core materials such as relatively
soft polymer foams are used in many modern sandwich structures. Accordingly it is necessary to relax
the Reissner–Mindlin constraints to account for localized effects caused by the change of core height
during the deformation of the sandwich structure considered.

A class of high-order theories based on the assumption of cubic and quadratic or trigonometric through-
the-thickness distributions for the displacements have been suggested in [Lo et al. 1977; Librescu and
Hause 2000; Stein 1986; Reddy 1984a; 1984b]. The results usually include terms that have no phys-
ical meaning due to the integration through the thickness. Lo et al. [1977] assumed a cubic shape
for the in-plane deformations and a quadratic distribution for the vertical deformation. Stein [1986]
used trigonometric series for the displacement distributions. Reddy [1984a; 1984b] also assumed cubic
distributions for the in-plane displacements whereas the vertical displacement is assumed to be uniform
across the thickness. In addition, the condition of zero shear stresses at the outer fibers of the section
was also adopted. All the referenced high-order models use integration through the thickness along with
variational principle and in general they are valid for sandwich panels with an incompressible core.

Many investigators have performed numerical analyses of the overall behavior of curved sandwich
panels using FEA; see for example [Hildebrand 1991; Hentinen and Hildebrand 1991; Smidt 1995;
1993; Tolf 1983; Kant and Kommineni 1992]. The different analyses, linear or nonlinear, use various
types of finite elements along with the limiting Reissner–Mindlin hypothesis, thus ignoring localized
effects.

A different approach that includes the effect of the transverse (radial) normal stresses on the overall
behavior of sandwich shells has been considered by Kühhorn and Schoop [1992], who introduced geo-
metrically nonlinear kinematic relations along with pre-assumed polynomial deformation patterns for
plates and shells. In recent years, the effects of incorporating a vertical flexible core on the local and
overall behavior of the flat and curved sandwich panels have been implemented through the use of the
high-order theory (HSAPT); see [Frostig et al. 1992] for flat panels, [Bozhevolnaya and Frostig 1997] for
nonlinear behavior, [Bozhevolnaya 1998] on shallow sandwich panels, [Karayadi 1998] on cylindrical
shells, [Frostig 1999] on the linear behavior of curved sandwich panels, [Bozhevolnaya and Frostig 2001]
on the free vibration of curved panels, and [Thomsen and Vinson 2001] on composite sandwich aircraft
fuselage structures.

Thermal effects in curved sandwich panels have been considered in [Noor et al. 1997] using a first-
order shear deformation computation model with incompressible core. A thermomechanical FE analysis
was conducted by Ko [1999], who looked into the peeling stresses involved at the face-core interfaces
under cryogenic bending loading conditions. Librescu et al. [1994; 2000] investigated the thermomechan-
ical response of flat and curved panels using a high-order theory that includes transverse (radial) shear
flexibility but ignoring the transverse (radial) flexibility of the core. Fernlund [2005] used a simplified
sandwich model that ignores the radial stresses as well as the shear deformation in the core in order to
determine the spring-in effects of angled sandwich panels.

The thermal and the thermomechanical nonlinear response of a flat sandwich panel with a compressible
core has been considered in [Frostig and Thomsen 2008a; 2008b], along with the effect of the thermal
degradation of the mechanical properties of the core; see [Frostig and Thomsen 2007]. This series of pa-
pers reveals that the transverse flexibility of the core along with its extension and compression as a result
of the thermally induced deformation play a major role in the nonlinear response of sandwich panels.
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2. Mathematical formulation

The mathematical formulation presented in the paper uses high-order sandwich panel theory (HSAPT) to
model the nonlinear response of a curved sandwich panel when subjected to thermally induced deforma-
tion along with mechanical loads. The sandwich panel is modeled as two curved faces, with membrane
and flexural rigidities following the Euler–Bernoulli hypothesis, that are interconnected through com-
patibility and equilibrium with a two-dimensional compliant (compressible or extensible) elastic core
with shear and radial (through-the-thickness) normal stress resistance. The HSAPT model for the curved
panel adopts the following restrictive assumptions:

• The face sheets have in-plane (circumferential) and bending rigidities with small moderate defor-
mations class of kinematic relation [Brush and Almroth 1975; Simitses 1976] and negligible shear
deformations.

• The core is considered as a two-dimensional linear elastic continuum obeying small deformation
kinematic relations; the core height may change and the section planar does not remain plane after
deformation.

• The core is assumed to possess shear and radial normal stiffness only, and the in-plane (circumfer-
ential) normal stiffness is assumed negligible. Accordingly, the circumferential normal stresses are
assumed to be nil.

• Full bonding between the face sheets and the core is assumed and the interfacial layers can resist
shear as well as radial normal stresses.

• The loads are applied to the face sheets only.

Field equations and boundary conditions. The field equations and the boundary conditions are derived
following the steps of the HSAPT approach for the curved sandwich panel [Frostig 1999; Bozhevolnaya
and Frostig 1997]. The field equations are derived using the variational principle of extremum of the
total potential energy:

δ(U + V )= 0, (1)

where δ is the variational operator, U is in the internal potential strain energy and V is the external
potential energy.

The internal potential energy of a fully bonded panel in terms of polar coordinates reads

δU =
∫ α

0

∫ 1
2 d j

−
1
2 d j

∫ 1
2 bw

−
1
2 bw

σsst(φ, zt)δεsst(φ, zt)rt dy dzt dφ

+

∫ α

0

∫ 1
2 db

−
1
2 db

∫ 1
2 bw

−
1
2 bw

σssb(φ, zb)δεssb(φ, zb)rb dy dzb dφ

+

∫ α

0

∫ rtc

rbc

∫ 1
2 bw

−
1
2 bw
(τrs(φ, rc)δγrs(φ, rc)+ σrr (φ, rc)δεrr (φ, rc))rc dy drc dφ, (2)

where σss j (φ, r j ) and εss j (φ, r j ) ( j = t, b) are the stresses and strains, respectively, in the circumferen-
tial directions of the face sheets; τrs(φ, rc) and γrs(φ, rc) are the shear stresses and strains; σrr (φ, rc)

and εrr (φ, rc) are the radial normal stresses and strains; r and s refer to the radial and circumferential
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Figure 1. Dimensions, temperature distribution and sign conventions for a curved sand-
wich panel: (a) geometry; (b) loads at face sheets.

directions of the curved panel; α is the total angle of the curved panel; r j ( j = t, b, c) denote the radii of
the centroidal lines of the top and both face sheets and the core; rtc = rt − dt/2 and rbc = rb+ db/2 refer
to the radii of the upper and lower interface line; bw is the width and d j ( j = t, b) are the thicknesses of
the face sheets. For geometry, sign conventions, coordinates, deformations and internal resultants, see
Figure 1.

The variation of the external energy reads

δV =−
∫ L

s=0
(ntδuot + qtδwt −mtδβt)dst −

∫ L

s=0
(nbδuob+ qbδwbt −mbδβb)dsb

−

∑
j=t,b

NC j∑
i=1

∫ L

s=0
(Ni jδuoj + Pi jδw j −Mi jδβ j )δd(s j − si t) ds j , (3)

where n j , q j and m j ( j = t, b) are the external distributed loads in the circumferential and radial direc-
tions, respectively, and the distributed bending moment applied at the face sheets; uoj and w j ( j = t, b)
are the circumferential and radial displacements of the face sheets, respectively; β j is the slope of the
section of the face sheet; Nei j , Pei j and Mei j ( j = t, b) are the concentrated external loads in the cir-
cumferential and radial directions, respectively, and the concentrated bending moment applied at either
face sheet at s = si j ; NC j ( j = t, b) is the number of concentrated loads at the top and bottom faces,
and δd(s j − s j i ) is the Dirac function at the location of the concentrated loads. For sign conventions and
definition of loads see Figure 1.

The displacement pattern of the face sheets through their depth follows the Euler–Bernoulli assump-
tions with negligible shear strain and kinematic relations of small deformation and they read, for j = t, b,

u j (φ, z j )= uoj (φ)+ z jβ j (φ), β j (φ)=
1
r j

uoj (φ)−
1
r j

d
dφ
w j (φ), (4)

where z j is the radial coordinate measured upward from the centroid of each face sheet, r j is the radius
and s j = r jφ is the circumferential coordinate of the face sheets, which have identical radial center, and
φ is the angle measured from the origin; see Figure 1 for the geometry. Hence, the strain distribution is
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also assumed to be linear and it reads

εss j (φ)= εoss j (φ)+ z jχ j (φ), (5)

where the mid-plane strain and the curvature equal

εoss j (φ)=
d

dφ
uoj (φ)+

w j (φ)

r j (φ)
+

1
2β j (φ)

2, χ j (φ)=
1
r j

d
dφ
β j (φ)=

1
r2

j

d
dφ

uoj (φ)−
1
r2

j

d2

dφ2w j (φ). (6)

Notice that thermal strains do not appear in the terms of the strains of the face sheets.
The kinematic relations for the core, under the approximation of small deformations, read

εrrc(φ, r)=
∂

∂r
wc(φ, r), γc(φ, r)=

∂

∂r
uc(φ, r)−

uc(φ, r)
r
+

1
r
∂

∂φ
wc(φ, r), (7)

where wc(φ, r) and uc(φ, r) are the radial and circumferential displacements of the core, respectively.
The compatibility conditions corresponding to perfect bonding between the face sheets and the core

require that

uc(φ, r = r jc)= uoj (φ)−
λ

2r j
d j (uoj (φ)−w j (φ),φ), wc(φ, r = r jc)= w j (φ), (8)

where λ= 1,−1 for j = t, b, respectively; r jc ( j = t, b) are the radii of the upper and lower face-core
interfaces; and uc(r = r jc, φ), wc(r = r jc, φ) are the displacements of the core in the circumferential
and radial directions at the face-core interfaces.

The field equations and the boundary conditions are derived using the variational principle (1), the
variational expressions (2) and (3) of the energies, the kinematic relations (5)–(7) of the face sheets and
the core, the compatibility requirements (8), and the stress resultants. See Figure 2.

Figure 2. Internal stress resultants and stresses within a curved sandwich panel segment.
Left: stress resultants on the deformed shape of the panel. Right: stresses within the core.
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The field equations, after integration by parts and some algebraic manipulations, read as follows
(notice that since the strains in the core are linear, the field equations of the core coincide with those for
the geometrically linear case [Frostig 1999] and are presented here only for convenience):

Face sheets ( j = t, b):(
−

d j

2r j
+ λ

)
bwr jcτsr (φ, r = r jc)+

1
r j

(
uoj (φ)−

dw j (φ)

dφ

)
Nss j (φ)−

d Nss j (φ)

dφ

+m j (φ)−
1
r j

d Mss j (φ)

dφ
− r j n j = 0,(

1+
1
r j

(duoj (φ)

dφ
−

d2w j (φ)

dφ2

))
Nss j (φ)+

1
r j

(
uoj (φ)−

dw j (φ)

dφ

)d Nss j (φ)

dφ

+ λbwr jcσrr (φ, r = r jc)−
bwd jr jc

2r j

dτsr (φ, r = r jc)

dφ
−

1
r j

d2 Mss j (φ)

dφ2 +
dm j (φ)

dφ
− r j qt = 0.

(9)

Core:

rc
∂τsr (φ, rc)

∂rc
+ 2τsr (φ, rc)= 0, rc

∂σrr (φ, rc)
∂rc

+ σrr (φ, rc)+
∂τsr (φ, rc)

∂φ
= 0. (10)

Here Nss j and Mss j ( j = t, b) are the in-plane and bending moment stress resultants of each face sheet;
τsr (φ, r = r jc) and σrr (φ, r = r jc) (with j = t, b) are the shear and vertical normal stresses, respectively,
at the face-core interfaces; and λ= 1,−1 for j = t, b. Notice that here the nonlinear terms involve also
in-plane displacements, unlike the case of flat panels. Note also that, due to the geometrical nonlinearities
of the face sheets, the equilibrium conditions, which are described by the field equations, correspond to
the deformed shape of the face sheets and the undeformed shape of the core; see Figure 2.

Boundary conditions for the curved sandwich panel where the loads and constraints are defined in
the circumferential and radial directions of each face sheet and the core independently are called local
boundary conditions; see Figure 3(a) on the next page. These conditions at φe = 0, α read as follows:

Face sheets ( j = t, b):

λ

(
Mss j (φe)

r j
+ Nss j (φe)

)
− Nej +

Mej

r j
= 0 or uoj (φe)= ueoj ,

λ
Mss j (φe)

r j
+

Mej

r j
= 0 or w j,φ(φe)= Dwej ,

λ

(
D(w j )(φe)−uoj (φe)

r j
Nss j (φe)+

D(Mss j )(φe)

r j

−m j (φe)+
bwd jr jcτ j (φe)

2r j

)
− Pej = 0 or w j (φe)= wej ,

(11)

where λ = 1 for φe = α and λ = −1 for φe = 0, in all three equations; ueoj , wej are the prescribed
circumferential and radial displacements at the edges of the face sheets; Dwej is the rotation at the same
edges; and Nej , Pej , Mej are the imposed external loads. Notice that the circumferential force condition
(the first of the three equations above) is actually a combined stress resultant that results from a moment
equilibrium about the radial center of the face sheet.
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Figure 3. Edge conditions at the edge of a curved sandwich panel: (a) conventional
edge with isolated supports; (b) reinforced edge with an edge beam.

Core: The boundary conditions at φe = 0, α, through the depth of the core, at rbc ≤ rc ≤ rtc, read

τrs(φe, rc)= 0 or wc(φe, rc)−wec(rc)= 0, (12)

where wec(r) denotes the prescribed deformations at the ends of the sandwich panel.
For the case where an edge beam connects the two face sheets and the core, the two face sheets undergo

identical displacements and rotations; see Figure 3(b). Thus the distribution of the displacement through
the depth of the sandwich panel follows those of a face sheet, given in (4):

ug(φe, zg)= ugo(φe)+
zg

rg

(
ugo(φe)− D(wg)(φe)

)
, (13)

where ugo(φe) denotes the circumferential displacements and D(wg)(φe) the rotation of the centroid line
of the section with the edge beam; see again Figure 3(b). In order to use these displacements, denoted
as global displacements, in the variational terms of the boundary conditions that result form the partial
integration of the internal and external potential energy terms and the contribution of the loads at the
edges of the panel, the global in-plane displacements and rotations must be defined in terms of the
displacements and rotation of the face sheets. Hence, these unknowns are determined by imposing the
conditions that the global displacements ug(φe, zg) at the centroid of the upper and lower face sheets
must equal the in-plane displacements uoj (φe) of the face sheets. Thus they read

D(wg)(φe)=
rt uob(φe)+ rbuot(φe)

c+ 1
2 dt +

1
2 db

, ugo(φe)=
zgbuot(φe)+ zgt uob(φe)

c+ 1
2 dt +

1
2 db

. (14)

The existence of the edge beam also imposes relations between the displacements of the face sheets:

wt(φe)= wb(φe), βt(φe)= βb(φe), βt(φe)=
uot(φe)− uob(φe)

zeb+ zet
, (15)

where the last equality results from the requirement that the slope of the section of the face sheets and
that of the edge beam must be identical.

The global boundary conditions are derived by expressing the displacements and rotations of the face
sheets in terms of the global displacements using (14) and (15), and substituting them into the variational
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terms at the edges. Hence, by collecting terms with respect to the in-plane displacement and rotation of
the edge beam, one obtains for these global conditions

(16)
rt Nsst(φe)+Mssb(φe)+Msst(φe)+rb Nssb(φe)+Mge(φe)

rg
− Nge(φe)= 0 or ugo(φe)= ugeo,

−Nsst(φe)zgt −Mssb(φe)−Msst(φe)+ Nssb(φe)zgb−Mge(φe)= 0 or D(wg)(φe)= Dwge,

Vsr t(φe)+ Vsrb(φe)+
bwrtc(rtc−rbc)τt(φe)

rbc
− Pge = 0 or wg(φe)= wge,

where Vsr j (φ) ( j = t, b) is the radial shear stress resultant in each of the face sheets, which equals

Vsr j (φe)=
D(w j )(φe)− uoj (φe)

r j
Nss j (φe)+

D(Mss j )(φe)

r j
+

bwd jr jcτsr (φe, r = r jc)

2r j
−m j (φe). (17)

Under the assumption of a perfect bond between the edge beam and the core (through the full core
depth) the radial displacement field of the core must be uniform through its depth. This is possible only
when the upper and lower face sheets have identical displacements; see (15). This is equivalent to a
weaker version of the requirement (12)2, namely

wc(φe)≈
1
c

∫ rtc

rbc

wc(φe, rc) drc = wge(φe). (18)

3. Governing equations in the temperature-independent case

To determine the governing equations we must first define the stress and displacement fields of the core.

Core displacement and stress fields: uniform mechanical properties (TI). The explicit descriptions of
the stress and displacement fields of the core are determined through the compatibility conditions (8),
applied to the following constitutive relations of an isotropic core:

εrr (φ, rc)=
σrr (φ, rc)

Erc
+αT cTc(rc, φ), γsr (φ, rc)=

τsr (φ, rc)

Gsrc
, (19)

where Tc is the temperature function and Erc,Gsrc are the Young’s and shear moduli of the core in the
radial direction.

The stress fields within the core are derived through the solution of the field equations (10) of the core,
which reads

τsr (φ, rc)=
r2

tc

r2
c
τt(φ), σrr (φ, rc)=

r2
tc

r2
c

dτt(φ)

dφ
+

Cw1(φ)

rc
, τb(φ)=

r2
tc

r2
bc
τt(φ),

σrr j (φ)=
r2

tc

r2
jc

d
dφ
τt(φ)+

Cw1(φ)

r jc
( j = t, b),

(20)

where Cw1(φ) is a coefficient of integration to be determined through the compatibility conditions (8) at
the face-core interfaces; τ j (φ) and σrr j (φ) ( j = t, b) are the shear and radial normal stresses, respectively,
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at the face-core interfaces. The result for the radial stress field is

σrr (φ, rc)=
cErcαT c

2rc L

(
Tct(φ)+ Tcb(φ)

)
−

Erc

rc L

(
wt(φ)−wb(φ)

)
+

(
rtcc

rcrbc L
+

r2
tc

r2
c

)
dτt(φ)

dφ
, (21)

where we have introduced the temperature functions Tct and Tbt at the core-face interfaces, as well as
the abbreviation

L = ln rbc
rtc
.

Equation (21) specializes to the vertical normal stresses at the upper and the lower face-core interfaces:

σrr t(φ)=
cErcαT c

2rtc L

(
Tct(φ)+Tcb(φ)

)
−

Erc

rtc L

(
wt(φ)−wb(φ)

)
+

(
c

rbc L
+1
)

dτt(φ)

d(φ)
,

σrrb(φ)=
cErcαT c

2rbc L

(
Tct(φ)+Tcb(φ)

)
−

Erc

rbc L

(
wt(φ)−wb(φ)

)
+

(
rtcc
r2

bc L
+

r2
tc

r2
bc

)
dτt(φ)

d(φ)
.

(22)

The displacement fields of the core in the radial and circumferential directions are determined through
the constitutive relations (19) and the three compatibility conditions (8) at the upper face-core interface
and the radial compatibility condition at the lower interface. They read as follows:

wc(φ, rc)=−
αT c

2cL

(
(rtc− rc)

2L − c2 ln rc
rtc

)
Tct(φ)

+
αT c

2cL

(
(rbc− rc)

2L + c2 ln rc
rbc

)
Tcb(φ)

+
1
L

(
wb(φ) ln rc

rtc
−wt(φ) ln rc

rbc

)
+

rtc

Ecrbcrc L

(
rtcrc ln rc

rtc
− rbcrc ln rc

rbc
− rtcrbc L

)dτt(φ)

dφ
(23)

uc(φ, rc)= −
αT c

2rtccL

(
Lrtc

(
r2

c − r2
tc− 2rcrbc ln rc

rtc
+ 2c(rtc− rc)

)
− c2

(
rtc
(
1+ ln rc

rtc

)
− rc

))dTct(φ)

dφ

+
αT c

2rtccL

(
Lrtc

(
r2

c − r2
tc− 2rcrtc ln rc

rtc

)
+ c2

(
rtc− rc+ rtc ln rc

rtc

))dTcb(φ)

dφ

−
1

rtc L

(
rtc− rc+ rtc ln rc

rbc
+ rc L rtc

rt

)dwt(φ)

dφ

+
1

rtc L

(
rtc− rc+ rtc ln rc

rtc

)dwb(φ)

dφ
+

r2
c − r2

tc

2rcGc
τt(φ)+

rc

rt
uot(φ)

+
1

2Ec Lrbcrc

(
2crc

(
rtc− rc+ rtc ln rc

rbc

)
+
(
2r2

tcrc− (r2
tc+ r2

c )rbc
)
L
)d2τt(φ)

dφ2 (24)

Next we give the fifth of the field equations, which results from the compatibility condition at the
lower face-core interface in the circumferential direction, and it derived using (8) and (24) along with a
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nonuniform temperature field:

αT c

2crtc L

(
c3
+ 2rbcrtc L(c+ rbc L)

)dTct(φ)

dφ
+

αT c

2crtc L

(
c3
− 2rbcrtc L(c+ rtc L)

)dTcb(φ)

dφ

+
rbc

rt
uot(φ)−

rbc

rb
uob(φ)+

2c2
+ (r2

tc− r2
bc)L

2Ercrbc L
d2τt(φ)

dφ2 −
r2

tc− r2
bc

2rbcGsrc
τt(φ)

+

(
c

rtc L
+

rbc

rb

)
dwb(φ)

dφ
−

(
c

rtc L
+

rbc

rt

)
dwt(φ)

dφ
= 0. (25)

However, when the temperature distribution is uniform through the length of the panel and the elastic
constants are uniform, nothing is left of the first line and the compatibility equation becomes identical
to the one obtained for the linear case [Frostig 1999]:

rbc

rt
uot(φ)−

rbc

rb
uob(φ)+

2c2
+ (r2

tc− r2
bc)L

2Ercrbc L
d2τt(φ)

dφ2 −
r2

tc− r2
bc

2rbcGsrc
τt(φ)

+

(
c

rtc L
+

rbc

rb

)
dwb(φ)

dφ
−

(
c

rtc L
+

rbc

rt

)
dwt(φ)

dφ
= 0. (26)

The boundary condition of the core when an edge beam is attached to the end of the panel — see
Equation (23) — and the global displacements,

wge(φe)= wt(φe)= wb(φe)= 0,

require the use of the relaxed condition (18) within the core, which yields

rtc

Ecrbc L
(−c2
+rbcrtc L2)D(τt)(φe)

−
αT cc
6L

((
3c+(3rtc−c)L

)
Tct(φe)+

(
3c+(3rbc+c)L

)
Tcb(φe)

)
= 0. (27)

When the temperatures or coefficient of thermal expansion of the core is zero this condition yields
D(τt)(φe)= 0 for the slope of the stress, which coincides with the linear case of [Frostig 1999].

Governing equations: uniform core (TI). The governing equations assume that the face sheets are
isotropic. They are defined using the following load-displacement relations ( j = t, b):

Nss j (φ)= E A j

(
1
r j

(duoj (φ)

dφ
+w j (φ)

)
+

1
2r2

j

(
uoj (φ)−

dw j (φ)

dφ

)2
−
αT j

2

(
T j t(φ)+ T jb(φ)

))
,

Mss j (φ)= E I j

(
1
r2

j

(duoj (φ)

dφ
−

d2w j (φ)

dφ2

)
−
αT j

d j

(
T j t(φ)− T jb(φ)

))
.

(28)

The governing equations are derived upon substitution of these relations and the shear and radial
normal stresses of the core at the upper and lower interfaces, namely (20) and (22), into the equilibrium
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equations (9)–(10). This gives

1
rt

(
uot(φ) −

dwt(φ)

dφ

)
Nsst(φ)+

bwr2
tc

rt
τt(φ) − rt nt + mt(φ) −

1
rt

d Msst(φ)

dφ
−

d Nsst(φ)

dφ
= 0,

1
rb

(
uob(φ)−

dwb(φ)

dφ

)
Nssb(φ)−

bwr2
bc

rb
τt(φ)− rbnb+mb(φ)−

1
rb

d Mssb(φ)

dφ
−

d Nssb(φ)

dφ
= 0,

bwErc

L

(
wb(φ)−wt(φ)

)
+
αT cbwcErc

2L

(
Tct(φ)+ Tcb(φ)

)
+ bwrtc

(
rtc

rt
+

c
rbc L

)
dτt(φ)

dφ
+

1
rt

(
uot(φ)−

dwt(φ)

dφ

)
d Nsst(φ)

dφ

+

(
1+

1
rt

(duot(φ)

dφ
−

d2wt(φ)

dφ2

))
Nsst(φ)− rtqt +

d
dφ

mt(φ)−
1
rt

d2 Msst(φ)

dφ2 = 0,

bwErc

L

(
wt(φ)−wb(φ)

)
−
αT cbwcErc

2L

(
Tct(φ)+ Tcb(φ)

)
− bwrtc

(
rtc

rb
+

c
rbc L

)
dτt(φ)

dφ
+

1
rb

(
uob(φ)−

dwb(φ)

dφ

)
d Nssb(φ)

dφ

+

(
1+

1
rb

(duob(φ)

dφ
−

d2wb(φ)

dφ2

))
Nssb(φ)−rbqb+

d
dφ

mb(φ)−
1
rb

d2 Mssb(φ)

dφ2 = 0.

To these four equilibrium equations one must add (25) to obtain the full set of governing equations.

4. Temperature dependence: general solution for the core stress and displacement fields

We now take into account the possibility that the mechanical core properties vary with the radial coor-
dinate, as they must if these properties are temperature-dependent and there is a temperature gradient.
Specifically, we determine the general solution for the stress and displacement fields within the depth of
the core for an isotropic core with the constitutive relations (19), which we copy here adding an explicit
dependence of the Young’s and shear moduli of the core (Erc and Gsrc) on the radial coordinate rc:

εrr (φ, rc)=
σrr (φ, rc)

Erc(rc)
+αT cTc(rc, φ),

γsr (φ, rc)=
τsr (φ, rc)

Gsrc(rc)
,

(29)

The displacement fields are derived using these constitutive relations, the expressions (20) for the
stress fields, the kinematic relations (7), the compatibility conditions (8) at the upper face-core interface
(that is, with j = t), and the compatibility condition (8)2 in the vertical direction at the lower face-core
interface ( j = b). Hence, the general expression of these fields with the constants of integration where
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the temperature distribution through the depth of the core is linear (Figure 1) is

wc(φ, rc)=
αT crc

2c

(
(rc− 2rbc)Tct(φ)− (rc− 2rtc)Tcb(φ)

)
+

dτt(φ)

dφ
r2

tc

∫
1

r2
c Erc(rc)

drc+Cw1(φ)

∫
1

rc Erc(rc)
drc+Cw2(φ), (30)

uc(rc, φ)=
αT crc

2c

((
2rbc ln(rc)− rc

)dTct(φ)

dφ
−
(
2rtc ln(rc)− rc

)dTcb(φ)

dφ

)

+
dCw2(φ)

dφ
+ rcCu(φ)− rcr2

tc
d2τt(φ)

dφ2

∫ ∫
1

r2
c Erc(rc)

drc

r2
c

drc

−rc
dCw1(φ)

dφ

∫ ∫
1

rc Erc(rc)
drc

r2
c

drc+ rcτt(φ)r2
tc

∫
1

Gsrc(rc)r3
c

drc, (31)

where τt(φ) is the shear stress at the upper face-core interface and is used as an unknown, similar to
the shear stress unknown in the HSAPT model; Cw j (i = 1, 2) are the constants of integration to be
determined through the compatibility conditions (8) imposed in the radial directions; and Cu is a constant
of integration to be determined by the compatibility requirement (8)1 for the circumferential displacement
at the upper face-core interface.

Nonuniform core moduli. A core with nonuniform mechanical properties occurs when the properties
are temperature-dependent (TD), or when it is made of a functionally graded material. In such a case the
stress and displacement fields may be determined analytically only when the distribution of the moduli
is of the fourth order. However, in order to achieve a general closed-form description of the core fields
we describe the moduli, or more precisely their inverses, by a polynomial series:

Erc(rc)=
1

Ne∑
i=0

Eir i
c

, Gsrc(rc)=
1

Ne∑
i=0

Gir i
c

, (32)

where Ei and Gi are the coefficients of the polynomial description of the elastic moduli functions, and Ne

is the number of terms in the polynomial. This polynomial description can be determined through curve
fitting procedures or Taylor series. The number of terms depends on the required accuracy to describe
of the inverse moduli.

The displacement field of the core is derived through the substitution of the moduli functions (32) into
(30) and (31), which yields

wc(φ, rc)= r2
tc

(
−

E0

rc
+ E1 ln(rc)+ E2rc+

Ne∑
i=3

Eir i−1
c

i − 1

)
dτt(φ)

dφ

+

(
E0 ln(rc)+ E1rc+

E2

2
r2

c +

Ne∑
i=3

Eir i
c

i

)
Cw1(φ)

+
rc

2c

(
(rc− 2rbc)Tct(φ)+ (−rc+ 2rtc)Tcb(φ)

)
αT c+Cw2(φ), (33)
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uc(φ, rc)= r2
tcrc

(
−

E0

2r2
c
+

E1

rc

(
ln(rc)+ 1

)
− E2 ln(rc)−

Ne∑
i=3

Eir i−2
c

(i−1)(i−2)

)
d2τt(φ)

dφ2

+ rc

(
E0

rc

(
ln(rc)+ 1

)
− E1 ln(rc)−

E2

2
rc−

Ne∑
i=3

r i−1
c Ei
(i−1)i

)
dCw1(φ)

dφ

+
αT crc

2c

((
2rbc ln(rc)− rc

)dTct(φ)

dφ
−
(
2rtc ln(rc)− rc

)dTcb(φ)

dφ

)

+ r2
tcrc

(
−

G0

2r2
c
+G2 ln(rc)−

G1

rc
+G3rc+

Ne∑
i=4

Gir i−2
c

i − 2

)
τt(φ)+

d
dφ

Cw2(φ)+ rcCu(φ). (34)

Note that the first three or four terms in the polynomial description are not within the sum terms since
they involve integration of 1/rc terms.

The constants of integrations Cw1 and Cw2 are determined by applying the compatibility conditions
(8)2 in the vertical direction to the vertical displacement (33) of the core. The third constant of integration,
Cu , is determined by imposing the compatibility condition (8)1 at the upper face-core interface on the
displacement (34) in the circumferential direction. The vertical normal stresses within the core and are
determined by substitution of the vertical constant of integration in the vertical normal stress distribution,
see (20). The fifth governing equation, denoted also as the compatibility equation, which imposes the
compatibility condition (8)1 in the circumferential (in-plane) direction at the lower face-core interface,
is determined through substitution of the three constants of integration into the expression (34) for the
circumferential displacements of the core. The explicit description of the stress and displacement fields
is very lengthy and is not presented herein for brevity.

5. Numerical study

The numerical solution of the nonlinear differential equations can be achieved using numerical schemes
such as the multiple-shooting points method [Stoer and Bulirsch 1980] or the finite-difference (FD)
approach using trapezoid or mid-point methods with Richardson extrapolation or deferred corrections
[Ascher and Petzold 1998], as implemented in Maple, along with parametric or arc-length continuation
methods [Keller 1992]. The FD approach as implemented in Maple has been used in this study. It is
robust and includes error control along with an arc-length procedure built-in. These solution approaches
have been used by the authors in many cases and have been compared also recently with FE nonlinear
codes; see for example [Frostig and Thomsen 2008b].

We studied the thermomechanical nonlinear response of a simply supported and clamped shallow
curved sandwich panel subjected to a concentrated and distributed load, as shown in Figure 4. The
sandwich panel consists of two aluminum face sheets of a thickness of 1 mm and an H60 PVC foam
core made by Devinicell with Ec = 56.7 MPa and Gc = 22 MPa and with a thickness of 25 mm. The
geometry of the curved panel is that of an experimental set-up used in [Bozhevolnaya and Frostig 1997;
Bozhevolnaya 1998]; see Figure 4. The edges of the curved sandwich panel are reinforced by an edge
beam and assumed to be bonded to the adjacent core (Detail A in the figure). The supporting system
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Figure 4. Geometry, dimensions, mechanical properties, temperature distribution and
supporting systems of the shallow curved panel under investigation.

prevents circumferential displacement in addition to the other constraints. The simply supporting system
is denoted by ss1 and the clamped one by cl1.

Under the assumption of TI core properties, the mechanical response of the curved sandwich panel
subjected to a concentrated load at mid-span and a distributed load, and without the response induced by
thermal loading, is described first. This is followed by a description of the thermal response without the
mechanical loads, and a presentation of the case of simultaneous mechanical and thermal loading.

Finally the effects of the thermal degradation of the core properties with elevated temperature (TD
setting) are studied first for thermal loading only, then for combined thermal and mechanical loading.

A symmetric analysis has been considered using symmetry conditions at mid-span.

5.1. Temperature-independent mechanical properties.

Mechanical loading only. The nonlinear mechanical response of a sandwich panel when subjected to
a concentrated load that is applied at mid-span to the upper face sheet appears in Figures 5 and 6, with
two types of supporting systems. The results include the deformed shape and equilibrium curves of load
versus extreme values of selected structural quantities.

The deformed shapes of a simply supported curved sandwich panel appear in Figure 5, left, from
which is it seen that prior to the limit point, indicated in Figure 6(a), the panel exhibits indentation at
the upper face sheet, which becomes significant as the mid-span displacement increases. In the clamped
case, shown in Figure 5, right, the same trends at mid-span as for the first supporting system are observed,
while in the vicinity of the clamped support local buckling occurs for large mid-span displacements far
beyond the limit point.
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to concentrated mechanical loading at mid-span of upper face sheet. Thin black lines
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The equilibrium curves of load versus extreme values of structural quantities of the two supporting
systems appear in Figure 6. In part (a) we see the load versus the extreme vertical displacement along
the sandwich panel. It reveals that the nonlinear response is characterized by a limit point behavior for
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both supporting systems. The limit point load for the simply supporting system is lower then that of the
clamped case, and it occurs also at a lower displacement as compared with the clamped case. In the ss1
case there is a decrease in the vertical displacement beyond the limit point value which changes into an
increasing branch as the displacement reaches larger values. The trends are different in the clamped case,
and they consist of a plateau beyond the limit point displacement followed by and increasing branch. The
trends are similar for the upper and lower faces. The plot of load versus extreme bending moments in
the face sheets, shown in Figure 6(b), exhibits similar trends for the upper face sheet (thin black curves
marked “t”) but quite erratic behavior for the lower one (thicker pink curves marked “b”). Notice that
the curves describe the extreme values for each load level which do not necessarily occur at the same
section. The interfacial shear stresses at the upper face-core interface appear on Figure 6(c), and they
exhibit a limit point behavior but with a reduction in their values on the increasing branch for the simply
supporting case and an increase for the clamped case. The interfacial radial normal stresses at the upper
and lower face-core interfaces appear in Figure 6(d), which reveals trends similar to those observed for
the vertical displacements.

The nonlinear mechanical response of the curved sandwich panel due to a fully distributed load exerted
at the upper face sheet appears in Figure 7 and 8. The deformed shapes here reveal that at the limit point
and beyond it a nonsinusoidal localized local buckling of the mid-span of the upper face sheet occurs.
In the clamped case, there is an additional local buckling in the vicinity of the support at the lower face
sheet similar to the case with the concentrated load.

The equilibrium curves for this loading scheme appears in Figure 8. The curves of distributed load
versus extreme vertical displacement of the face sheets, shown in part (a), reveal a limit point behavior
for both supporting systems, where the load at the limit point of the clamped case is a little bit larger
then that of the simply supported case, and occurring at similar displacements values. In both cases a
very steep descending branch is observed beyond the limit point. The bending moment curves, shown in
part (b), exhibit similar trends but with very steep slopes of branches prior to and beyond the limit point.
The plot versus upper interfacial shear stresses, in Figure 8(c), exhibits a limit point behavior similar to
that of the vertical displacements. The interfacial normal stress curves follow the trends of the bending
moments diagram with an abrupt change at the limit point. At the end of the descending branch of the
simply supported case the interfacial shear and vertical normal stresses at the upper face-core interface
decrease as the vertical displacements increases, as seen in parts (c) and (d) of the figure. Note also that
the differences between the simply supporting and the clamped cases are minor.
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Figure 7. Deformed shapes of the curved panel when loaded by a fully distributed me-
chanical load for the two supporting systems. Left: simply supported; right: clamped.
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Figure 8. Equilibrium curves of load versus extreme values of (a) vertical displacements
of face sheets, (b) bending moments in faces, (c) shear stress in core, and (d) interfacial
radial normal stresses at face-core interfaces, all for curved sandwich panel subjected
to a distributed mechanical load only, applied at the upper face sheet. Thin black lines
(marked t) refer to the upper face sheet; thicker pink lines (marked b) to the lower one.

Thermal loading only. The thermal response of a curved sandwich panel subjected to a uniformly dis-
tributed temperature through its length and thickness is displayed in Figures 9 and 10. This response is
linear throughout the range of temperatures investigated. The deformed shapes for temperatures from 0
to 200◦C (heating) appear on the left in Figure 9, and those for temperatures from 0 to −200◦C (cooling)
on the right. In the case of heating, the two faces move upward around mid-span while in the vicinity
of the supports the expansion of the core involves localized changes in the curvature of the two face
sheets. By contrast, under cooling the two face sheets move downwards around mid-span while near the
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Figure 9. Deformed shapes of the curved sandwich panel subjected to thermal loading
(left: heating; right: cooling) with no mechanical load.
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Figure 10. Cooling thermal loading results for face sheets along the panel circumfer-
ence for simply supported (top) and clamped (bottom) systems. The horizontal coordi-
nate is φ in all cases; all temperatures in degrees Celsius. Left column: vertical displace-
ments. Middle column: bending moments. Right column: In-plane stress resultant (in
core). Thinner black lines marked “t” stand for the upper face or interface; thicker, pink
lines marked “b”, for the lower.

supports the core contracts, along with localized bending moments in the face sheets. Notice also that
the pattern of displacements is in the opposite direction to that of the external loads (Figures 5 and 7)
when heating is considered.

The vertical displacements, the bending moments and the circumferential stress resultants in the faces,
along half of the sandwich panel, for the two supporting systems under a cooling temperature pattern
appear in Figure 10. The displacement curves for the various temperatures (left column) and the bending
moment diagrams (middle column) are almost the same for the two supporting systems. Notice that
bending moments occur only in the vicinity of the supports, as a result of the contraction of the core that
causes changes in the curvatures of the face sheets. The circumferential forces (normal stress resultants)
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in the face sheets (rightmost column of Figure 10) reveal that in the case of a simply supported panel the
stress resultants at the edges in the two face sheets are in tension, and around mid-span the upper face
sheet is in compression whereas the lower face sheet is in tension. In the case of a clamped support the
circumferential stress resultants differs from that of the simply supported case, and the resultants in the
upper face sheets are in compression while those of the lower face are in tension. It should be noticed that
in the case of elevated temperatures the displacements and the stress resultant patterns in the face sheets
and the core are opposite to those observed for the cooling case, which yields that the upper face sheets is
in tension while the lower one is in compression, Thus, the heating temperature pattern yields stress resul-
tants that cancel out the stress resultants of the external mechanical loads that appear in Figures 5 and 7.
The response is similar when the temperature distribution has a gradient between the two face sheets.

Thermomechanical loading. The thermomechanical response of the curved sandwich panel subjected to
a concentrated load applied at mid-span of the upper face sheet along with a circumferentially uniform
temperature with a gradient of 40◦C between the upper and lower face sheet is considered next; see
Figure 11. The study reveals that the combined response is linear when the applied mechanical loads are
up to 80% of the load at the limit point. The thermomechanical response when elevated temperatures
are considered exhibits a linear behavior since the thermal and mechanical responses act in opposite
directions.

A nonlinear thermomechanical response is observed only when cooling temperatures are considered,
and the external loads are in the range of 80–90% of the limit point load levels, as shown in Figures 12
and 13. The equilibrium curve of temperature versus the extreme vertical displacement of the face sheets
appear in Figure 12a. It reveals that a limit point behavior is observed at about −150 C◦, when a simply
supported panel is considered while in the case of a clamped panel the response is linear within the range
of temperatures considered. Note that there is an initial displacement due to the existence of the external
load prior to the application of the thermal lading. The bending moment diagrams, the upper interfacial
shear stress and the interfacial normal stresses at the two face sheets (Figures 12b, 12c and 12d) exhibit
similar trends. Note that the larger vertical normal stresses are in compression (Figure 12d).

The deformed shapes of the combined response for the two supporting systems at different temper-
ature levels appear in Figure 11. The deformed shapes reveal a large indentation at mid-span for both
supporting systems which deepens beyond the limit point (Figure 11, left) for the simply supported case
and remain linear for the clamped case. Note that the deformed shapes corresponding to the limit point
resemble those of the concentrated load only, shown in Figure 5.
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Figure 11. Deformed shapes of curved sandwich panel subjected simultaneously to a
concentrated mechanical load and thermal loading. Left: simply supported; right:
clamped.
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Figure 12. Equilibrium curves of load versus extreme values of (a) vertical displace-
ments of faces sheets, (b) bending moments in faces, (c) shear stress in core, and (d)
interfacial radial normal stresses at face-core interfaces, all for curved sandwich panel
subjected to a concentrated mechanical load applied at mid-span of upper face sheet
and thermal loading with a temperature gradient of 40◦C at the lower face sheet. Thin
black lines (marked t) refer to the upper face sheet; thicker pink lines (marked b) to the
lower one.

The results along half the panel circumference of the combined thermomechanical response for a sim-
ply supported sandwich panel at different temperatures appear in Figure 13. The vertical displacements
of the upper face sheets (Figure 13a) reveal a deepening indentation as the temperature level drops and
the limit point is reached. It is observed that at temperatures above zero (before and beyond the limit
point) the two face sheets move upwards in the vicinity of the support as a result of the core expansion,
and the indentation disappears as the temperatures are lowered. Significant bending moments in the face
sheets are observed in the vicinity of the external load and at the supports (Figure 13b). The magnitude
increases as the temperatures are lowered and approach the limit point temperature level. The upper
interfacial shear stress diagram reveals high values in the vicinity of the load and the support as well as
shear stresses throughout the length of the panel (Figure 13c). The vertical interfacial stresses at both
face sheets (Figure 13d), yield compressive as well as tensile stresses in the vicinity of the concentrated



1308 YEOSHUA FROSTIG AND OLE THOMSEN

w[mm]

f

f f

f

t

t

t

t

t

b

b

b

b

b

M kNmm]ss[

t[MPa] srr[MPa]

T=--141.4C
o

T=--73.9C
o

T=--150.4C
o

T=--150.4C
o

T=--150.4C
o

T=--150.4C
o

T=--49.3C
o

T=105.8 C
o

T=105.8 C
o

T=105.8 C
o

T=105.8 C
o

T=105.8 C
o

T=105.8 C
o

T=105.8 C
o

T=105.8 C
o

T=20 C
o

T=20 C
o

T=20 C
o

(a)

(d)

(b)

(c)

Figure 13. Thermomechanical response results for face sheets along the panel circum-
ference for simply supported system when subjected to a concentrated mechanical load
applied at mid-span of upper face sheet and thermal loading as in the previous figure.
Shown are (a) vertical displacements, (b) bending moments, (c) shear stresses in face-
core interfaces, and (d) radial normal stresses in same. Thinner black lines marked “t”
stand for the upper face or interface; thicker, pink lines marked “b”, for the lower.

load that increase as the temperature approaches low levels. In addition, there is some accumulation of
stresses in the vicinity of the support.

The combined thermomechanical response when a distributed load is applied at the upper face sheet
and the temperature pattern is uniformly in the circumferential direction and with a gradient through the
depth of the panel (Figure 14) is studied next. The combined response is linear as long as the distributed
load is below 90% of the level corresponding to the limit point load as well as when the temperatures
are above zero. The nonlinear response is presented in Figures 15 and 16 for a distributed load of a
1.7 kN/mm for the simply supported system and 1.741 kN/mm for the clamped case. For both supporting
systems the distributed loads are applied at the upper face of the sandwich panel. Note that the applied
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Figure 14. Deformed shapes of curved sandwich panel loaded simultaneously by a dis-
tributed load and thermal loading. Left: simply supported; right: clamped.
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Figure 16. Thermomechanical response results for face sheets along the panel circum-
ference for simply supported system when loaded by a distributed mechanical load
on the upper face sheet and thermal loading as in the figures on the previous page.
Shown are (a) vertical displacements, (b) bending moments, (c) shear stresses in face-
core interfaces, and (d) radial normal stresses in same. Thinner black lines marked “t”
stand for the upper face or interface; thicker, pink lines marked “b”, for the lower.

distributed loads represent 90.5% of the appropriate limit load level with no thermal loading; see Figure 8.
For details see Figure 14.

The equilibrium curves of temperature versus extreme values of selected structural quantities reveal
a limit point behavior for the two supporting systems with similar trends. The temperature versus the
extreme vertical displacement of the face sheets (see Figure 15a) exhibits a limit point for both supporting
systems. In the simply supported case the limit point occurs at −184.5◦C, while in the clamped case
the limit point is reached at a temperature of −229.47◦C. In both cases the descending branches, prior
to the limit point, are almost linear while the ascending branch, beyond the limit point, are nonlinear in
general. The bending moment curves follow the same trends but with abrupt changes at the limit point
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almost like that of a bifurcation behavior (Figure 15b). Note that the lower face sheet exhibits linear
branches before and after the limit point, while the second branch, beyond the limit point descends. The
upper interfacial shear stresses appear in Figure 15c and follow the trends of the bending moment curves.
Similarly, the interfacial normal stresses exhibit a linear behavior prior to the limit point and a nonlinear
one beyond that, following the trends of the bending moments.

The deformed shapes of the combined response for the two supporting systems appear in Figure
14. The two supporting systems exhibits a linear response up to the limit point and then they both
yield a localized local buckling region around mid-span at temperatures in the vicinity of the limit point
temperature level and beyond it. In addition local buckling of the lower face sheet occurs in the vicinity
of the support in the case of a clamped panel. The characteristics of the deformed shape at the limit
point and above resemble those found for the case of a distributed load and no thermal loading, shown
in Figure 7.

The results along half of the panel circumference at different temperatures appear in Figure 16. The
vertical displacements of the face sheets (Figure 16a) reveal that at the limit-point displacement local
buckling waves appear which deepens on the ascending branch of the equilibrium curve (Figure 15a).
This local buckling phenomenon is explicitly observed in the bending moment figure (Figure 16b) and
the vertical normal interfacial stresses (Figure 16d). The local buckling affects also the interfacial shear
stresses (Figure 16c). In general, the ripple characterization of the local buckling of the upper face sheet
affects the response both globally and locally.

5.2. Temperature-dependent mechanical properties. This part of the investigation deals with the re-
sponse of a curved sandwich panel subjected only to thermal loading, followed by a study of the same
panel when subjected to combined thermal and mechanical loading. Both concentrated and distributed
mechanical loads are considered, and again both simple support and clamped supporting systems are
included in the study. The temperature-dependent core material properties adopted here follow those
given by Burmann [2005a; 2005b] for cross-linked PVC Divinycell foams (from DIAB AB, Sweden) for
a working range of temperatures between 20◦C to 80◦C.

The mechanical properties of the Divinycell foams degrade with increasing temperatures. For this
study the temperature-dependent mechanical core material properties are defined through curve fitting
of the data that appears in the manufacturer’s data sheet [DIAB 2003] as follows:

Ec(φ, rc)= Eco fT (Tc(φ, rc)), Gc(φ, rc)= Gco fT (Tc(φ, rc)),

where Eco and Gco refer to the Young’s and shear moduli of the core at T = 20◦C, and

fT (T )= 1.1903+ 0.03070734934T − 0.009541812399T 2
+ 0.0008705288588T 3

− 0.00003952259514T 4
+ 9.70315767110−7T 5

− 1.32513499810−8T 6

+ 9.52831997110−11T 7
− 2.82196349610−13T 8, (35)

where T is expressed in degrees Celsius. Note that when a thermal gradient is applied to the core the
mechanical properties will also be dependent on the radial (through-the-thickness) coordinate. For more
details see [Frostig and Thomsen 2008b]. In order to use the polynomial expansion (32) of the inverse
of the moduli, the coefficients must be found using Taylor series or curve-fitting tools.
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Figure 17. Deformed shapes of curved sandwich panel subjected to uniform thermal
loading and with temperature-dependent core properties. Left: simply supported; right:
clamped.

Thermal loading only. The deformed shapes of the curved sandwich panel subjected to thermal loading
only appears in Figure 17, and the predicted response in Figures 18 and 19. Figure 17 shows that, for
both supporting systems, the panel moves upward as the temperature is increased and the core properties
degrade.
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Figure 18. Uniform thermal loading results for face sheets along the panel circum-
ference for simply supported (top) and clamped (bottom) systems with temperature-
dependent core properties. The horizontal coordinate is φ; temperatures in degrees
Celsius. Left column: vertical displacements. Middle column: bending moments. Right
column: In-plane stress resultant (in core). Thinner black lines marked “t” stand for the
upper face or interface; thicker, pink lines marked “b”, for the lower.
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The predictions for the face sheets along half of the panel circumference at different temperature
levels for the two supporting systems appear in Figure 18. The vertical displacements (Figure 18a) and
the bending moments (Figure 18b) of the two supporting systems are almost identical. Also here (see
Figure 10 for comparison) the bending moments exist only in the vicinity of the support as a result of
the existence of the edge beam. The in-plane stress resultants (Figure 18c) reveal different patterns for
the two supporting systems. In the simply supported case the stress resultants of the two face sheets
are in compression at near and at the support, and this changes into tension in the upper face sheet and
compression in the bottom face sheet away from the supporting region. In the clamped case the upper face
sheet is in tension while the lower face sheet is in compression throughout of the length/circumference of
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Figure 19. Equilibrium curves of load versus extreme values of (a) vertical displace-
ments of faces sheets, (b) bending moments in faces, (c) shear stress in core, and (d) in-
terfacial radial normal stresses at face-core interfaces, all for curved sandwich panel with
temperature-dependent core properties, subjected to uniform thermal loading. Thin
black lines refer to the upper face sheet; thicker pink lines to the lower one.
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the panel. The results are very similar to the results obtained for the curved sandwich panel temperature-
independent mechanical properties, shown in Figure 10, except for the opposites signs due to the cooling
temperatures considered for this example.

The equilibrium curves of temperatures versus extreme values of selected structural quantities for
the two supporting systems appear in Figure 19. They reveal a nonlinear behavior which is due to the
nonlinearities in the mechanical properties as a result of their temperature dependence. In addition, there
are only minor differences between the results of the two supporting systems. The vertical displacement
curves (Figure 19a) are almost linear, but they become nonlinear at the upper range of temperatures. The
bending moment results (Figure 19b) reveal a nonlinear response in both positive and negative bending
moments. The interfacial shear stress results at the upper face core interface (Figure 19c) also reveal a
nonlinear response through the range of temperatures. The interfacial radial normal stresses curves, at
the upper and lower face core interfaces (Figure 19d) reveal a linear response for the simply supported
case and a nonlinear for the clamped case. In both cases the maximum compressive stresses occur in the
edge of the panel. However, for the simply supported case there are tensile stresses in the vicinity of the
support that do not exist in the clamped system.

Thermomechanical loading. The combined thermal and mechanical loading response study outlines
the behavior of the curved sandwich panel when subjected to a concentrated or distributed load below
the limit point load levels (see Figures 6 and 8). Again two supporting systems are considered, and the
imposed heating temperatures profile change from 20◦C to 78◦C with and without a gradient between
the two face sheets.

We first consider the effects of the thermal degradation of core properties on the response of the simply
supported uniformly heated panel with a concentrated load applied at mid-span. The concentrated load
is taken as 2.1 kN, which is about 80% of the limit point load without thermal loading (see Figure 6).

The deformed shapes of the panel appear in Figure 20, which reveals an indentation that grows as the
temperature is raised. Note here that the thermal loading causes upwards displacements (compare Figure
17), and that the combined thermal and mechanical response yields large indentations as a result of the
degrading mechanical core properties.

The vertical displacements along half the circumference of the sandwich panel appear in Figure 21a,
where it is observed that quite large values are obtained as the limit point temperature level is reached
around T = 27◦C (see Figure 22a). Due to the concentrated load the initial displacement is quite
large. The bending moment diagrams (Figure 21b) follow the same trends as obtained when temperature-
independent core properties are assumed (see Figure 13), namely, large bending stresses are accumulated
in the vicinity of the supports and the load application point. The interfacial shear stresses at the upper
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core properties.
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and lower face-core interfaces appear in Figure 21c and reveal an attenuation of stresses in the vicinity
of the load and the support is observed. The interfacial normal stresses at the top and bottom face-core
interfaces (Figure 21d) follow the same trends as found for the bending moments.

The equilibrium curves of temperature versus extreme structural quantities for three loads that lie
below the limit point load level when no thermal loading is applied (see Figure 6) appear in Figure 22
for a simply supported curved sandwich panel. In all cases a limit point behavior is observed, and great
numerical difficulties that prevent convergence of the solution are encountered.
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Figure 21. Thermomechanical response results for face sheets along the panel circum-
ference for simply supported panel with temperature-dependent core properties when
subjected to concentrated mechanical loading at mid-span of upper face sheet: (a) ver-
tical displacements, (b) bending moments, (c) shear stresses in face-core interfaces, and
(d) radial normal stresses in same. Thinner black lines marked “t” stand for the upper
face or interface; thicker, pink lines marked “b”, for the lower.
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The temperature versus the vertical displacements curves appear in Figure 22a and they reveal that for
the low load level of Pt = 1.1 kN the temperature limit point occurs at a temperature of 45.4◦C, while
for the second load of Pt = 1.6 kN the temperature limit point occurs at 37.5◦C, and at the higher load
of 2.1 kN the critical temperature occurs at 27.86◦C. At all load levels the temperature limit point is
associated with a zero slope. The bending moment curves (Figure 22b) follow similar trends, but the
slope is not zero at the temperature limit point levels. Similar trends are observed in the interfacial shear
stresses at the upper face-core interface (Figure 22c) and the interfacial radial (through-the-thickness)
normal stresses (Figure 22d).
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Figure 22. Equilibrium curves of load versus extreme values of (a) vertical displace-
ments of faces sheets, (b) bending moments in faces, (c) shear stress in core, and (d)
interfacial radial normal stresses at face-core interfaces, all for simply supported curved
sandwich panel with temperature-dependent core properties, subjected to various con-
centrated mechanical loads. Thin black lines refer to the upper face sheet; thicker pink
lines to the lower one.
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Figure 23. Deformed shapes of the simply supported curved panel when loaded by a
fully distributed mechanical load, assuming temperature-dependent core properties.

The combined thermomechanical response of a simply supported curved sandwich panel with a
1.7 kN/mm distributed load, which is about 90% of the corresponding limit point load level (with no
thermal loading), and thermal loadings, at different temperature levels is discussed next. The deformed
shapes appear in Figure 23, and reveal quite small deformations (in comparison with the case of a
concentrated load) with smooth displacements patterns and no signs of local buckling as observed in the
case of temperature-independent properties (see Figure 7).

The vertical displacements of the face sheets along half the circumference of the panel appear in Figure
24a, where a significant growth of the displacements at the limit point temperature level of 27.72◦C is
observed. The bending moment diagrams reveal a ripple type patterns in the vicinity of the supports
(Figure 24b). The interfacial shear stresses at the upper and lower face-core interfaces (Figure 24c) yield
significant values in the vicinity of the edge as well at the quarter of the circumference/span. The trends
of the interfacial radial normal stresses (Figure 24d) follow the same trends as those of the bending
moments.

The effects of the magnitude of the distributed load level on the equilibrium curves of the combined
thermomechanical response of a simply supported curved panel are described in Figure 25. The temper-
ature versus the extreme values of the vertical displacements of the face sheet curves for the different
load levels appear in Figure 25a. At all load levels a limit point behavior is detected, and the temperature
at which the limit point is reached is lowered as the magnitude of the distributed load is increased Also,
here, the slope of the curves at the limit point approaches zero. Note here that up to the limit point
temperature the displacements almost do not change with respect to the intial level (zero temperature),
while in the near vicinity of the limit point temperature there is a significant change (increase) of the
displacements. With respect to the bending moment curves for the face sheets (Figure 25b) and the
curved of the interfacial radial normal stresses at the face-core interfaces (Figure 25d) there is a gradual
change between the initial values (no thermal loading) and those at the limit point. Wit hrespect to the
interfacial shear stresses at the upper face-core interface (Figure 25c) the values prior to the limit point
reduce and they are significantly increased at the limit point temperature level.

The effects of a gradient in temperature between the upper and lower face sheets appear in Figures 26
and 27, where the high temperature is at the lower face sheet. The combined thermomechanical response
of the simply supported and clamped curved sandwich panels includes, in addition to the thermal loading,
a concentrated and a distributed load.

The equilibrium curves of the combined thermomechanical response of a concentrated load that is
applied at the mid-span of the upper face sheet appear in Figure 26. The results include curves for
temperature versus some extreme values of selected structural quantities for the two supporting systems
and with a radial thermal gradient across the core thickness between zero to 40◦C. The applied loads are
1.1 kN for the simply supported and 1.4 kN for the clamped panel. Both loads are far below the limit
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load level with no thermal loading (see Figure 6). The vertical displacement curves of the face sheets
appear in Figure 26, top. For the case of a simply supported sandwich panel the response is described by
a limit point with almost zero slope at the limit point (Figure 26, top left), which represents an unstable
behavior. However, for the clamped case (Figure 26, top right) the curves represent a stable behavior for
the low gradients and less stable for the higher gradients (possibly converging towards unstable behavior
for very large thermal gradients). The differences between the results of the two supporting systems
are much more significant when studying the bending moments curves (see middle row in Figure 26).
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Figure 24. Thermomechanical response results for face sheets along the panel circum-
ference for simply supported panel with temperature-dependent core properties when
subjected to a fully distributed mechanical load applied on upper face sheet and uni-
form temperature loading. Temperatures are in degrees Celsius. Shown are (a) vertical
displacements, (b) bending moments, (c) shear stresses in face-core interfaces, and (d)
radial normal stresses in same. Thinner black lines marked “t” stand for the upper face
or interface; thicker, pink lines marked “b”, for the lower.
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The interfacial radial normal stresses (Figure 26, bottom) follow the same trends as those of the bending
moments. It should be noticed that in all cases the clamped support conditions yields a more stable
behavior as compared with the simply supported sandwich panel.

The combined thermomechanical response for the case of distributed mechanical loads with a thermal
gradient between the lower and the upper face sheets appears in Figure 27. Here, the distributed load
equals 1.7 kN/mm for the both supporting systems. The equilibrium curves reveal, in all figures, that
the differences between the simply supported panel and clamped are minor. Moreover, the equilibrium
curves show that responses are generally unstable for any value of the thermal gradient value. The
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Figure 26. Equilibrium curves of load versus extreme values of vertical displacements
of face sheets (top), bending moments in faces (middle), and interfacial radial normal
stresses at face-core interfaces (bottom), all for simply supported (left, Pa = 1.1 kN)
and clamped (right, Pa = 1.4 kN) curved sandwich panels with temperature-dependent
core properties, subjected to a concentrated mechanical load Pa applied at mid-span
of upper face sheet and thermal loading with different through-the-thickness gradients.
Thin black lines refer to the upper face sheet; thicker pink lines to the lower one.



NONLINEARITY IN THERMALLY LOADED CURVED SANDWICH PANELS 1321

b

b

b b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b
b

b

b

DT=30 C
o

DT=30 C
o

DT=30 C
o

DT=30 C
o

DT=30 C
o

DT=30 C
o

DT=30 C
o

DT=30 C
o

DT=30 C
o

DT=30 C
o

DT=20 C
o

DT=20 C
o

DT=20 C
o

DT=20 C
o

DT=20 C
o

DT=20 C
o

DT=20 C
o

DT=20 C
o

DT=20 C
o

DT=20 C
o

DT=20 C
o

DT=10 C
o

DT=10 C
o

DT=10 C
o

DT=10 C
o

DT=10 C
o

DT=10 C
o

DT=10 C
o

DT=10 C
o

DT=10 C
o

DT=10 C
o

DT=10 C
o

DT=0 C
o

DT=0 C
o

DT=0 C
o

DT=0 C
o

DT=0 C
o

DT=0 C
o

DT=0 C
o

DT=0 C
o

DT=0 C
o

DT=0 C
o

DT=0 C
o

t

t

t t

t
t

t
t

t
t

t

t

t t

t

tt

t t

t

t

t t

t

t

t

tt

t t

t

t

t

t

t

tt

t t

t

t

t

w [mm]ext
w [mm]ext

T [C]
o

T [C]
o

T [C]
oT [C]

o

T [C]
o

T [C]
o

M kNmm]ss,ext[ M kNmm]ss,ext[

srr,ext[MPa]srr,ext[MPa]

Figure 27. Equilibrium curves of load versus extreme values of vertical displacements
of face sheets (top), bending moments in faces (middle), and interfacial radial normal
stresses at face-core interfaces (bottom), all for simply supported (left) and clamped
(right) curved sandwich panels with temperature-dependent core properties, subjected
to a distributed mechanical load of 0.85 kN/mm applied to upper face sheet and thermal
loading with different through-the-thickness gradients. Thin black lines refer to the
upper face sheet; thicker pink lines to the lower one.
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curves of extreme values of the vertical displacements of the face sheets versus temperature (Figure 27,
top) yield a limit point behavior with a slope of almost zero for both supporting systems. Here it should
be noticed that for both cases significant changes of the displacements occur only in the near vicinity of
the limit point temperature level. The bending moment curves (Figure 27, middle row) reveal similar
trends, with the exception that there is a gradual change between the initial values (corresponding to
no thermal loading) and moment values at the limit point. Notice that the negative bending moments
of the clamped case are smaller then those of the simply supported case and vice versa with respect to
the positive bending moments. The relationship between the radial interfacial normal stresses and the
temperature (Figure 27, bottom) is almost linear for the extreme values of the compressive stresses at
the upper interface and nonlinear at the lower interface for both supporting systems.

6. Summary and conclusions

The geometrically nonlinear behavior of curved sandwich panels subjected to thermal and mechanical
loading was studied, under both temperature-independent (TI) and temperature-dependent (TD) assump-
tions for the core material properties.

The first half of the paper gives a mathematical formulation for the TI case, based on a variational ap-
proach along with high-order sandwich panel theory (HSAPT). The analysis considers the thermal strains
of the core along with the effects of its flexibility in the radial (through-the-thickness) direction. The
nonlinear field equations of the curved sandwich panel are derived along with the appropriate boundary
conditions. The effects of a solid edge beam at the edge of the curved sandwich panel on the boundary
conditions are considered. The stress and displacement fields of the core are derived and solved explicitly
for the case of a core with uniform mechanical properties. The full nonlinear governing equations are
derived and presented.

The second half models thermally induced deformations of curved sandwich panels using the equations
previously obtained via HSAPT. The stress and displacement fields of the core are derived and solved
explicitly for cores with both TI and TD mechanical properties. The solution for a core with mechanical
properties dependent on the radial coordinate is derived and is used to handle the TD case. A polynomial
solution is adopted, and a general solution is presented for the stress and displacement fields. The
nonlinear response is determined through the solution of the nonlinear equations using a finite-difference
scheme along with a natural parametric continuation or a pseudo-arclength or similar procedure.

A numerical study then investigates the response of a shallow curved sandwich panel with a geometry
that has been used previously in an experimental study conducted at Aalborg University. The shallow
curved sandwich panel is assumed to be subjected to a concentrated or fully distributed load in addition to
thermal loading. The panel consists of two aluminum face sheets and a cross-linked PVC H60 Divinicell
foam core with mechanical properties that degrade with increasing temperature. The loading system
consists of an edge beam at the edges of the curved sandwich panel, resting on a simply supported
or clamped system with immovable conditions in the radial direction. The thermal loading consists
of heating and cooling temperatures that are uniformly distributed circumferentially, with or without a
gradient through the depth of the panel.

The numerical study covers all the combinations of the mechanical-thermal response with TI core
properties. The response due to purely mechanical loading is presented first and reveals a typical limit
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point behavior for both supporting systems and both types of loads. The study further reveals that
under a concentrated load, there is an ascending branch beyond the limit point for the case of a simply
supported system. For the case of a distributed load the nonlinear responses are almost identical for the
two supporting systems, with insignificant differences in the limit-point load level. For this case local
buckling of the upper face sheet is observed for both supporting systems, in addition to local buckling
of the lower face sheet in the vicinity of the support when the sandwich panel is clamped at the edges.

Thermal loading with temperature-independent core properties reveals that the response is linear
through the entire range from (subzero) cooling to (elevated) heating temperatures, with either uniform
or gradient-type distributions through the depth of the sandwich panel. For case of heating the panel
expands and changes its circumferential length rather then causing compression, as observed with flat
panels. Hence, heating improves the performance of the loaded sandwich panel, since it cancels part
of the induced deformations and stresses due to mechanical loading. In the case of cooling the panel
contracts, yielding displacements and stress fields similar to those of the mechanical loads.

The thermomechanical response is determined for a mechanical load that is below the limit-point load
level where the thermal loading changes from heating to cooling temperatures. For the case of heating,
or loads below 85% of the mechanical limit point load, the response is linear for all loading cases and
supporting systems. For loads in the range of 90% of the mechanical limit load, the thermomechanical
response is nonlinear for the simply supported system for both types of loads. For the case of the clamped
supporting system the concentrated load does not yield a limit point within the range of temperatures
considered, while for the case of the distributed load a limit point is observed.

The combined response of a distributed load along with cooling temperatures yields a limit point
response that is associated with local buckling ripples around mid-span of the upper face sheet and local
buckling at the lower face at the support when it is clamped.

The characteristics of the combined response under TI mechanical properties of the core resemble
those of the case with mechanical loads only when a limit point behavior is observed. Thus, the ther-
momechanical response for a curved sandwich panel subjected to both concentrated mechanical load
and a thermal load yields similar characteristics to those of case when only a concentrated mechanical
load is applied. Hence, the combined mode is actually a nonlinear combination of the mechanical and
the thermal loads, and any combination of the two, in terms of magnitude, can yield a response that
resembles that obtained for the case when only a mechanical load is applied.

The thermal loading case when the core properties are assumed to be TD follows the same trends as
those encountered for the TI case. However, the equilibrium curves of temperature versus extreme values
of selected structural quantities are generally nonlinear, due to the nonlinear change of the mechanical
core properties with increasing temperature. The effect of the supporting system is minor.

The combined thermomechanical response with TD properties is quite different from that of the TI
case and is associated with a limit point behavior at low temperature values. For the TI case only thermal
loading in the form of cooling yields a nonlinear responses that are associated with limit point behavior.
However, for the TD case the degradation of the core properties governs and yields nonlinear responses
with unstable limit point behavior, even though the stress and displacement fields induced by the thermal
loads act opposite to those induced by the mechanical loads.

The effects of the load level on the combined thermomechanical response have been investigated for
loads below the limit point level for pure mechanical loading case. For the case of a concentrated load,
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the response of a simply supported curved sandwich panel is associated with a limit point behavior which
is unstable, while that obtained for the clamped case yields a stable behavior that resembles that of a
plate sandwich panel structure. Generally, as the load is increased the limit point temperature reduces.
For the case of a fully distributed load both the simply supported and the clamped sandwich panels yield
unstable limit point responses with very similar limit point temperature values as a result of initiation of
local buckling in the compressed face sheet.

For the case where the highest (heated) temperature is on the lower tensile face sheet an unstable
limit point behavior of the simply supported panel is observed as the gradient increases, whereas a
stable response is obtained for the clamped panel when a concentrated load is considered. For the case
of a uniform distributed load an unstable limit point response is observed for both supporting systems
with almost identical limit point temperature values. In all cases, an increase of the thermal gradient is
associated with a reduction of the limit point temperature.
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DETERMINATION OF OFFSHORE SPAR STOCHASTIC
STRUCTURAL RESPONSE ACCOUNTING FOR NONLINEAR STIFFNESS

AND RADIATION DAMPING EFFECTS

RUPAK GHOSH AND POL D. SPANOS

A study of the dynamic behavior of a combined dynamic system comprising a spar structure, a mooring
line system, and top tensioned risers (TTR) by buoyancy can is presented. Not only the nonlinear restor-
ing force of the mooring lines, the Coulomb friction at the compliant guides and the spar keel, and the
hydrodynamic damping forces are considered, but also the effect of the frequency-dependent radiation
damping is readily incorporated in this formulation. The dynamic model is subjected to input force and
moment time histories that are compatible with a spectral representation (Jonswap spectrum) of a 100-
year hurricane in the Gulf of Mexico. The response of the system is first determined by direct numerical
integration of the equations of motion. In this regard, particular caution is exercised to treat properly
the frequency-dependent terms which involve convolution transforms in the time domain. Next, a novel
approach for determining the system responses is proposed. It is based on the technique of statistical
linearization which can accommodate readily and efficiently the frequency-dependent elements of the
dynamic system. This is achieved by appropriate modification of the system transfer function and by
proper accounting for the system nonlinearities. The time domain analysis results are used to demonstrate
the reliability of the statistical linearization solution. Further, the effect of the radiation damping, and the
effect of the hydrodynamic forces are investigated.

A list of symbols can be found starting on page 1338.

1. Introduction

Proper concept selection for an oil/gas production facility from various options like spar, semisub-
mersible, and tension-leg platform (TLP) during the preliminary design phase of a project, is a daunting
task since the particular choice affects the overall cost quite significantly. Among the various concepts,
the spar structure is often chosen as a deep-water solution, particularly in the Gulf of Mexico. The spar
appeal in the Gulf of Mexico is primarily due to its favorable motion performance under hurricane loads.
The advantages of a spar structure are also manifested in the use of the dry tree riser systems and the
speedy process of its delivery. Operational advantages not withstanding, the dynamic behavior of a spar
structure is a quite complex problem as it has been established by several diverse studies [Agarwal and
Jain 2003a; 2003b; Fischer et al. 2004; Koo et al. 2004a; 2004b; Liang et al. 2004; Tao et al. 2004; Low
and Langley 2006]. An optimized spar design requires several dynamic analyses [Ran et al. 1996; 1997;
1999] involving a sufficient number of simulations of the expected load cases. These load cases reflect
various environmental conditions and operational/functional criteria. In this context, it is also noted that

Keywords: spar offshore structure, sea wave spectrum, nonlinear dynamic analysis, radiation damping, statistical linearization.
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the ordinary time domain approach for the analysis of a coupled spar/risers/mooring lines system cannot
incorporate conveniently a number of factors in the overall dynamic behavior.

Recognizing these limitations of the time domain analysis in capturing the system response statistics,
Spanos et al. [2005] have suggested a computationally efficient approach for obtaining the spar responses
based on a frequency domain representation. In this approach, the nonlinearities of a coupled system
consisting of spar, top tensioned risers, and mooring lines are treated by using the concept of statistical
linearization. Note that the statistical linearization method has already been established as a versatile tool
for dynamic analysis of a nonlinear system via an auxiliary linear system, and is discussed in standard
references such as [Spanos 1981a; 1981b; Roberts and Spanos 2001]. Further, based on this lineariza-
tion concept, the studies by Spanos et al. have reported a reasonable agreement between the linearized
responses and the nonlinear responses of an associated five-degree-of-freedom (5-DOF) dynamic model.
However, these studies did not include the interaction of the hydrodynamic forces in the surge and pitch
directions, and the effect of frequency-dependent damping terms. In this paper, the aforementioned
linearization approach is extended to account for the interaction of the quadratic damping terms in the
surge and pitch directions, and the effect of the frequency-dependent damping terms in the dynamic
behavior. The theoretical developments are supplemented by appropriate numerical studies pertaining to
a particular spar structure (Figure 1).

2. Spar model

The model considered here is a simplified 5-DOF coupled spar model (Figure 2) representing a truss
spar (Figure 1) including fifteen top tensioned risers (TTR), and fifteen mooring lines. The spar consists
of a cylindrical hard tank, of three heave plates, and of a soft tank at the bottom. The buoyancy can and
stem are in contact with the spar at several preloaded guides in the center well, the heave plates, and the
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Figure 1. Typical truss spar.
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Figure 2. Simplified coupled 5-DOF model.

keel. The reliability of the aforementioned simplified model in capturing the predominant features of the
system dynamic behavior has been previously established by comparing its responses to specific loads
to those of a full-scale detailed model [Spanos et al. 2003].

Besides the three degrees of freedom in the surge, heave and pitch directions, the riser kinematics in
the surge and heave directions is also represented in the coupled model (Figure 2). In the surge direction,
the mass of the spar lumped at the center of the gravity is connected to the center of gravity of the
buoyancy cans/risers by a linear spring which represents a simplified account of the contact stiffness of
the lateral guide. In the vertical direction, the Coulomb friction/traction force acts at the interface of the
spar guide and of the buoyancy can, When sliding occurs this force depends on the relative velocity of
the spar and of the buoyancy can/riser as shown in (1) and (2). Specifically, for the magnitude

F f = µy N , (1)

where “N” is the force normal to the interface, and the coefficient of friction (µy) is represented by the
equation

µy = µ sgn(ẏs − ẏr ); (2)

the symbols ẏs and ẏr denote the velocities in the vertical direction of the spar and of the risers/buoyancy
can, respectively determining the direction of friction when sliding occurs.

The equation of motion in the surge direction (Figure 2) including both the frequency-dependent and
hydrodynamic dampings is expressed by

M s
x ẍs+M s

xθ θ̈s+Csx |ẋs +αθ̇s |(ẋs +αθ̇s)+Fmx(t)+Kxθθs+Krs(xs−xr )+

∫ t

0
Cr x(τ )ẋs(t−τ) dτ

= Ph(t), (3)

where the horizontal component of the mooring lines restoring force Fm(t)is given by the equation

Fmx(t)= α1(xs)
3
+α2(xs)

2
+α3xs +β1 ys +C1. (4)
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In (3), M s
x is the mass of the spar, including the added mass in the surge direction; the symbol Kxθ denotes

the force in the horizontal direction for unit pitch, and Krs is the linear contact spring between the spar
and the buoyancy can; the symbol Csx is the quadratic damping coefficient; the symbols xs , xr and θs

denote the spar displacement in the surge direction, the riser/buoyancy can displacement in the surge
direction and the spar pitch, respectively; α introduces a factor to account for the hydrodynamic force in
the horizontal direction due to the pitch motion of spar; the symbol Ph(t) denotes the excitation in the
surge direction; the coefficients α1 , α2, α3, β1 and the constant C1 in the polynomial in (4) have been
derived by a regression analysis of the load displacement industrial data for a mooring line. Further, the
coefficient Cr x is represented using the cosine transform of the frequency-dependent radiation damping
functionλr x(ω). That is,

Cr x(τ )=
2
π

∫
∞

0
λr x(ω) cosωτdω, (5)

Similarly, the heave motion of the spar (Figure 2) is governed by the equation

M s
y ÿs + Fmy(t)+ Kh ys +µy N +Csy|ẏs |ẏs +W − B+

∫ t

0
Cr y(τ )ẏs(t − τ) dτ = Pv(t), (6)

where the restoring force from the mooring lines in the vertical direction is given by the equation

Fmy(t)= α4(xs)
3
+α5(xs)

2
+α6xs +β2 ys +C2, (7)

with the symbol M s
y denoting the mass of the spar including the added mass in the vertical direction.

Further, Kh is the hydrodynamic stiffness of the spar in the vertical direction. The symbols W and B
denote the weight and buoyancy terms of the spar. The term Csy is the quadratic damping coefficient.
As mentioned before the symbol N stands for the total contact preload, ys is the heave displacement
of the spar, and Pv(t) is the excitation in the heave direction. The symbols α4, α5, α6, and β2 are the
coefficients in the polynomial (7) and C2 is a constant. The damping coefficient Cr y is represented using
the cosine transform of the frequency-dependent radiation damping function λr y(ω). That is,

Cr y(τ )=
2
π

∫
∞

0
λr y(ω) cosωτdω. (8)

The pitch motion of the spar (Figure 2) is governed by the equation

Jθ θ̈+s M s
xθ ẍs+(T GB+ Kθ )θs+Kxθ xs+Csθ |β ẋs + θ̇s |(β ẋs + θ̇s)+

∫ t

0
Crθ (τ )θ̇s(t−τ) dτ = Pθ (t), (9)

where Jθ is the mass moment of inertia term, and Kθ is the rotational hydrodynamic stiffness. The
symbol T denotes the total top tension accounting for all the risers, and GB is the distance between the
center of buoyancy and the center of gravity of the spar structure. The symbol θs denotes the pitch of the
spar, and Pθ (t) represents the excitation in the pitch direction. The symbol Csθ is the quadratic damping
coefficient. The damping coefficient Crθ (τ ) is represented by the cosine form of the frequency-dependent
radiation damping function λrθ (ω). That is,

Crθ (τ )=
2
π

∫
∞

0
λrθ (ω) cosωτdω. (10)
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The equations of motion for the buoyancy can including the risers in the surge and heave directions
(Figure 2) are

Mr
x ẍr + Kr x xr − Krs(xs − xr )+ ζ

r
x 2
√

Kr x Mr
x ẋr = 0, (11)

and

Mr
y ÿr + Kr y yr + ζ

r
y 2
√

Kr y Mr
y ẏr −µy N = T . (12)

In (11) and (12), Mr
x and Mr

y are the effective mass of the risers including the buoyancy can in the
horizontal and vertical directions, respectively. The symbols ζ r

x and ζ r
y denote the damping ratios for the

risers/buoyancy can in the horizontal and the vertical directions, respectively; they are set equal to 0.05;
The terms Kr x , and Kr y are the horizontal and vertical components of the riser stiffness Kr , respectively.
The symbols xr and yr are the riser displacements in the surge and heave directions, respectively.

Note that the preceding equations of motion involve nonlinear terms, and terms represented via integral
transforms. Therefore, the solution of these equations can only be obtained numerically. In this context,
a standard algorithm of integrating ordinary differential equation numerically will be required. Further,
the convolution integrals in equations (3), (6) and (9) must be treated by a numerical scheme.

3. Equivalent system

Alternatively to the aforementioned approach of direct numerical simulation of the equations of motion,
the responses of the system can be determined by resorting to the concept of statistical linearization and
pursuing a frequency domain approach.

Specifically, following [Roberts and Spanos 2001], the equivalent linear system is derived from equa-
tions (3)–(12) by replacing the nonlinear terms with equivalent linear terms. In matrix form, the equation
of motion of this system can be cast in the form

M s
x 0 M s

xθ 0 0
0 M s

y 0 0 0
M s

xθ 0 Jθ 0 0
0 0 0 Mr

x 0
0 0 0 0 Mr

y




¨̂xs

ÿs

θ̈s

ẍr

ÿr

+


Clex+Cxω 0 0 0 0
0 Cley+Cyω+Cey 0 0 −Cey

0 0 Cleθ+Cθω 0 0
0 0 0 Cdx 0
0 −Cey 0 0 Cdy+Cey




˙̂xs

ẏs

θ̇s

ẋr

ẏr



+


Kex+Krs 0 Kxθ −Krs 0

0 Key+Kh 0 0 0
Kxθ 0 T GB+Kθ 0 0
−Krs 0 0 Krex+Krs 0

0 0 0 0 Krey




x̂s

ys

θs

xr

yr

=


Px(t)
Py(t)
Pθ (t)

0
0

 . (13)

In (13), the coefficients of the frequency-dependent radiation damping are represented by the symbolsCxω,
Cyω and Cθω in the surge, heave and pitch directions. The effect of the static offset (xo) representing the
offset due to a steady current, is included in the analysis by introducing a time-dependent component in
the system response denoted by x̂s(t). That is

xs = xo+ x̂s . (14)
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Further, it is required that xs satisfies the equilibrium of (3) on the average. This leads to the equation

〈α1(xo+ x̂s)
3
+α2(xo+ x̂s)

2
+α3xo+C1〉 = Pmh, (15)

with the symbol 〈〉 denoting the operator of the mathematical expectation and the symbol Pmh being the
mean horizontal force.

Note that the linearized terms in (13) comprise an equivalent damping term to account for the energy
dissipated through friction at the interface of the spar and the buoyancy can, an equivalent damping term
to represent the quadratic damping, and an equivalent stiffness term to account for the nonlinearity of
the mooring lines.

The spar equivalent linear stiffnesses in the horizontal and vertical directions are determined by the
equations

Kex =

〈
∂Fmx

∂ x̂s

〉
= 3α1σ

2
x̂s
+ 3α1x2

o + 2α2xo, (16)

and

Key =

〈
∂Fmy

∂ ys

〉
, (17)

Furthermore, the linearized component of the riser stiffness in the horizontal and vertical directions are
determined by the equations

Krex = Kr

( 8
π

)1/2 σxr + 2xo

h
(18)

and

Krey = Kr

(
1−

0.5σ 2
yr
+ 0.5x2

o

h2

)
, (19)

where Kr represents the axial stiffness of fifteen TTRs, h represents the height of the spar center of
gravity from the seabed, and σ 2

xr
, σ 2

yr
denote the variances of the riser response in the horizontal and

vertical directions, respectively.
Similarly, the nonlinear term of the friction at the compliant guide is approximated by an equivalent

dashpot of value

Cey = (µy N )
( 2
π

)1/2 1
σẏ
, (20)

where
σẏ = (σ

2
ẏs
+ σ 2

ẏr
)1/2 (21)

with σ 2
ẏs

and σ 2
ẏr

denoting the variances of the spar and the riser/buoyancy can velocities in the vertical
direction. Equations (22)–(24) refer to the quadratic damping in the surge, heave, and pitch directions.
The corresponding terms in the surge, heave and pitch directions are expressed in the form

Clex =

( 8
π

)1/2
Csx

(
(σ ˙̂xs

)2+α2(σθ̇s
)2
)1/2

, (22)

Cley =

( 8
π

)1/2
Csyσẏs , (23)

Cleθ =

( 8
π

)1/2
Csθ

(
β2(σ ˙̂xs

)2+ (σθ̇s
)2
)1/2

. (24)
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Obviously, the implementation of this formulation requires an iterative procedure, since the equivalent
linear parameters depend on the system response, which in turn depends on the parameters. Specifically,
equation (13) is recast in the form

Mü+ (C +Ce)u̇+ (K + Ke)u = f (t), (25)

where the vector u(t) is defined as

uT
= (x̂s, ys, θs, xr , yr ) (26)

and M , C , Ce, K and Ke represent the mass matrix, damping matrix, equivalent damping matrix, stiffness
matrix, and equivalent stiffness matrix, respectively. The symbol f represents the excitation vector.

Further, the spectral matrix of the response of the equivalent system is determined from the equation

Sr (ω)= H( jω)S f (ω)H ′c( jω), (27)

where Sr (ω) is the power spectral density matrix of the response; H( jω) and H ′c( jω) are the transfer
functions of responses and its complex conjugate transposed, respectively. The transfer function H( jω)
is given by the equation

H(ω)=
[
−ω2 M + iω(C +Ce)+ (K + Ke)

]−1
. (28)

The symbol S f (ω) represents the power spectral density of the excitations. Note that in each iteration
step, the variances of various response components are determined by using the “generic” equations

σ 2
r =

∫
∞

−∞

Sr (ω) dω and σ 2
r =

∫
∞

−∞

ω2Sr (ω) dω, (29)

where σ 2
r and σ 2

ṙ are generic response displacement and response velocity variances, and Sr (ω) is the
associated spectral density of displacement.

A set of new responses statistics is obtained based on the response from (27) and the iteration continues
until convergence in the response statistics is achieved.

4. Numerical results

The preceding two approaches — numerical integration of the governing equation in the time domain
and frequency domain solution based on the statistical linearization — are used to study the responses
of a coupled system consisting of truss spar, mooring lines, and riser. The total weight of the truss spar
is approximately 163,960 t. The radius of hull and draft are 23.8 m and 198.1 m, respectively. Each top
tensioned riser is tensioned by using a buoyancy can which transfers tension to the riser at top. The
diameter and the height of each buoyancy can are 3.65 m and 73 m, respectively. In this context, the
comparison of the nonlinear responses with the responses from the equivalent model is presented for
two different load cases. The difference in two load cases is that one of the two load cases includes the
effect of the current associated with the 100-year hurricane wave whereas the other load case accounts
for the effect due to the 100-year hurricane wave only. As a result of the steady current, the spar in one
case will have a static offset from the neutral position. The significant wave height and peak period of
the 100-year event are considered as 12.5 m and 14.0 sec. The input excitations for the simplified model
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(Figure 2) analysis are specified in the form of force and moment time histories at the center of gravity
of the spar. The excitations Ph(t), Pv(t) and Pθ (t) are obtained from a detailed model analysis [Spanos
et al. 2003] by using the motion analysis program MLTSIM [Pauling 1995].

The nonlinear responses are obtained by numerically integrating the equations of motion (3)–(12),
which also accounts for the effect of the frequency-dependent radiation damping specified from an in-
dustrial data set and plotted in Figure 3.

Step-by-step (0.1 sec) numerical integration is carried out by using the fourth order Runge–Kutta
scheme. The linearized responses are determined from the equivalent model by iterations using equations
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Figure 3. Frequency-dependent damping in the surge direction (top left), in the heave
direction (top right), and in the pitch direction (bottom). 1 kips equals 4.447 kN and
1 kips sec/ft equals 14.59 kN sec/m.
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Wave forces only Wave forces + Current
Displacement Nonlinear analysis Stat. linearization Nonlinear analysis Stat. linearization

Surge (m) 1.60 1.64 1.49 1.58
Heave (m) 0.06 0.05 0.05 0.04
Pitch (rad) 0.01 0.01 0.01 0.01

Table 1. Comparison of root mean square responses: nonlinear analysis vs. statistical linearization.

(13)–(29). The root mean square responses in the surge, heave and pitch directions from both analyses
are presented in Table 1. The agreement in the response statistics determined by the two approaches is
quite reasonable. Clearly, response variances alone do not provide complete insight of the responses in
various frequencies ranges. Hence, the power spectral densities of the linear and nonlinear responses are
compared to examine the agreement of the responses in the low and wave frequency regions. Figure 4
shows comparisons of the surge, heave and pitch responses for the wave-induced forces only (that is,
the effect of currents is not included). It reveals that the linearized surge response is conservative at the
natural frequency and peak wave frequency which explains the higher rms surge from the equivalent
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Figure 4. Comparison of the surge (top left), heave (top right) and pitch (bottom) re-
sponses for wave-induced forces only (no current).
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model analysis. The linearization of Coulomb damping in the equivalent system underpredicts the heave
response to an acceptable limit (Figure 4, top right). The pitch response (Figure 4, bottom) exhibits an
acceptable agreement at all frequencies.

Next, a comparison of the surge, heave and pitch responses (Figure 5) for the wave-induced forces
and current exhibits a trend similar to the one observed in the wave-induced case. The surge and the
heave responses (top row in this figure) at the offset position are less than the surge and the heave
responses (top row in Figure 4) at the mean position. This trend is persistent irrespective of the analysis
methods. The natural frequency of the system in the surge direction is increased due to higher stiffness
contribution by the TTRs and mooring lines at the offset position. The heave response comparison
(Figure 5, top right) shows that the linearized response is under-predicted at all frequencies to a small
extent, and shows similar effect of the Coulomb damping as observed in the previous case. Besides the
linearized Coulomb damping, another contributing factor in the reduction of the heave response (top
right panels in Figures 4 and 5) at the offset position is the increased stiffness of the mooring lines.
Finally, excellent agreement of the pitch responses is obtained in the wave frequency region whereas the
equivalent response is conservative in the low frequency region.
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Figure 5. Comparison of the surge (top left), heave (top right) and pitch (bottom) re-
sponses for wave- and current-induced forces.
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Figure 6. Comparison of the surge (top left), heave (top right) and pitch (bottom) re-
sponses, showing effect of hydrodynamic interaction and frequency-dependent damping.

The effect of hydrodynamic interaction and frequency-dependent damping is examined by comparing
the linearized responses only. The responses without the effect of frequency-dependent damping and
hydrodynamic interaction were earlier reported [Spanos et al. 2005] and included in this paper for com-
parison study only. This comparison is discussed for the load case consisting of the wave and current
only. Figure 6, top left, shows the response comparison in the surge direction. It is apparent that the
hydrodynamic interaction and frequency-dependent damping affects the surge response at the natural
frequency only. Similarly, the effect on the heave response (Figure 6, top right) is also reflected close to
the spar natural period. The spar natural period at the offset position is approximately 18.2 sec assuming
the buoyancy can sticks to the hull. The effect in the pitch direction (Figure 6, bottom) is not significant.

5. Concluding remarks

A frequency domain analysis approach for a coupled spar/risers/mooring lines system has been presented.
This approach has been used to study the spar dynamic behavior, as well as to assess the effect of the
spar/riser/mooring lines interaction on the spar response characteristics. The approach offers the desirable
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features of incorporating in the analysis various effects such as that of the nonlinearities of the mooring
lines, that of the hydrodynamic damping, and that of frequency-dependent parameters associated with
radiation damping. Note that frequency-dependent parameters are ordinarily accounted for in offshore
structural dynamics by using elaborate convolution techniques in time domain analyses. However, these
parameters have been dealt readily in the frequency domain solution approach presented herein by using
the concept of transfer function. Furthermore, the transfer function, appropriately modified, has ac-
counted readily for various nonlinearities of the spar/mooring lines/riser system by using the technique
of statistical linearization.

In the studies reported herein it has been found out that the hydrodynamic interaction in the surge
and pitch directions and the radiation damping affect considerably the spar responses in the surge and
the heave directions; indeed the spectral values at the vicinity of natural frequencies in the surge and
the heave directions have been reduced when these parameters were included. Note, however, that this
conclusion relates to the particular system and sea-states considered in the present study. Obviously, a
qualitatively different conclusion may be derived for other design scenarios.

Clearly a convenient assessment tool can be quite useful for sizing of spar structures as well as for
the selection of the number, orientation, and kind of mooring lines (steel wire vs. polyester), in the
early stage of any offshore field development. This is also true for the selection of a proper riser system
with respect to a spar. This is due to the fact that the characteristics of the spar motion influence the
spar-riser interface design. The design options are that of top tensioned riser supported by the buoyancy
can (considered herein), and that of a steel catenary riser system; obviously even the latter design option
can be readily treated by the herein proposed approach. Note that for a high pressure riser system, the
interface load can be significant due to increased wall thickness and associated hull size increases to
accommodate higher payloads. In this case the large spar hull size will, of course, influence the riser
dynamic responses/fatigue life as well as the hull fabrication and installation cost, and will have a major
impact on the total cost of a project. In this regard, a convenient approach like the one presented herein
may be used as a reliable tool for a rapid assessment of the merits of the various riser/spar interface
scenarios.

Index of notation

α: A factor to capture the hydrodynamic force in the surge direction due to unit pitch
α1, α2, α3, β1 : Coefficients in the polynomial giving the mooring line load-displacement relation; surge direction
α4, α5, α6, β2: Coefficients in the polynomial giving the mooring line load-displacement relation; heave direction
B: Total buoyancy of the spar
β: A factor to capture the hydrodynamic force in the pitch direction due to unit surge
C : Linear damping matrix for the multi-degree-of-freedom system
C1/C2: Constant in the polynomial representing mooring line load-displacement relation; surge/heave direction
Cdx/Cdy : Damping of the risers/buoyancy can in the surge/heave direction
Csx/Csy/Csθ : Quadratic damping coefficient in the surge/heave/pitch direction
Cxω/Cyω/Cθω: Frequency-dependent radiation damping in the surge/heave/pitch direction
Ce: Equivalent damping matrix for the multi-degree-of-freedom system
Clex/Cley/Cleθ : Equivalent linear damping of the spar in the surge/heave/pitch direction
Cey : Equivalent Coulomb damping in the heave direction
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Cr x (τ )/Cr y(τ )/Crθ (τ ): Damping impulse function in the surge/heave/pitch direction
f (t): Force vector representing all excitations
F f : Friction force at the spar and buoyancy can contact surface
Fm(t): Restoring force in the mooring lines
Fmx (t)/Fmy(t): Restoring force in the mooring lines in the surge/heave direction
GB: Distance between center of buoyancy and center of gravity of the spar
h: Height of the center of gravity of the spar from the seabed
H( jω) and H ′c( jω): Frequency response function of the spar and its transpose conjugate
Jθ : Mass moment inertia in the pitch direction
K : Linear stiffness matrix for the multi-degree-of-freedom system
Ke: Equivalent stiffness matrix for the multi-degree-of-freedom system
Kex/Key : Equivalent stiffness of the spar in the surge/heave direction
Kh/Kθ : Hydrodynamic stiffness of the spar in the heave/pitch direction
Kxθ : Force in the surge direction due to unit pitch
Krs : Contact stiffness of the guide between the buoyancy can and the spar
Kr : Total axial stiffness of riser system
Kr x/Kr y : Riser stiffness in the surge/heave direction
Krex/Krey : Equivalent riser stiffness in the surge/heave direction
λr x (ω)/λr y(ω)/λrθ (ω): Frequency-dependent radiation damping function; surge/heave/pitch direction
M : Mass matrix for the multi-degree-of-freedom system
M s

x ,M s
y : Mass of the spar including the added mass in the surge/heave direction

Mr
x ,Mr

y : Mass of the risers/buoyancy can including the added mass in the surge/heave direction
M s

xθ : Coupling mass term between surge and pitch direction
µ: Coefficient of the Coulomb friction at the spar and buoyancy can contact surface
N : Total preload at the spar/buoyancy can contact guide
Ph(t)/Pv(t)/Pθ (t): Excitation in the surge/heave/pitch direction
Pmh : Mean force in the surge direction
Sr (ω)/S f (ω): Spectral density matrix of the responses/excitations
σ 2

xr
/σ 2

yr
: Variance of the riser response in the surge/heave direction

σ 2
˙̂xs
/σ 2

ẏs
/σ 2

θs
: Variance of the spar response in the surge/heave/pitch direction

σ 2
r : Generic response displacement variance
σ 2

ṙ : Generic response velocity variance
T : Total top tension in the risers
θsr/θ̇s/θ̈s : Spar rotation/velocity/acceleration in the pitch direction
u: Displacement vector
W : Total weight of the spar
xo: Static offset of the spar in the surge direction
xr/yr : Risers/buoyancy can displacement in the surge/heave direction
ẋr/ẏr : Risers/buoyancy can velocity in the surge/heave direction
ẍr/ÿr : Risers/buoyancy can acceleration in the surge/heave direction
xs/ys : Total spar displacement in the surge/heave direction
ẋs/ẏs : Spar velocity in the surge/heave direction
ẍs/ÿs : Spar acceleration in the surge/heave direction
x̂s : Time-dependent component of the surge of the spar
ζ r

x /ζ
r
y : Damping coefficient for the risers/buoyancy can in the surge/heave direction
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THE ELUSIVE AND FICKLE VISCOELASTIC POISSON’S RATIO AND ITS
RELATION TO THE ELASTIC-VISCOELASTIC CORRESPONDENCE PRINCIPLE

HARRY H. HILTON

This paper is dedicated to my good friend and colleague Professor Emeritus Georges J. Simitsis.

The conditions for the applicability of the elastic-viscoelastic correspondence principle (analogy) in
the presence of any of the five distinct classes of viscoelastic Poisson’s ratios (PR) are investigated in
detail. It is shown that if Poisson’s ratios are time-dependent, no analogy in terms of PRs is possible,
except for two of the classes under specifically prescribed highly limited conditions. Separately, the
severely restrictive conditions involving time-independent PRs are discussed in detail. Failure to observe
all such restrictions leads to ill posed overdeterminate problem formulations. Similarities associated
with viscoelastic Timoshenko shear coefficients are also investigated and it is shown that no analogy
to equivalent elastic problems can be constructed if these coefficients are time functions. In the final
analysis, the PR analogy difficulties can be entirely avoided by characterizing viscoelastic materials in
terms of relaxation moduli or creep compliances or creep and relaxation functions without any appeal
to PRs.

Introduction

Unlike stress and deformation analyses where approximate solutions are permissible, material character-
ization must be performed with the highest available degree of precision since thusly defined constitutive
relations pervasively impact all subsequent analyses. Consequently, great care must be exercised in
modeling material and experimental data and no unnecessary approximations should be introduced1. A
major case in point is the convenient, but fictitious, introduction of the approximation of time-independent
viscoelastic PRs to “simplify” material characterization, but which as will be demonstrated results in
overdeterminate ill posed problem formulations and thus leads to unreliable material characterizations
as well as stress-strain solutions.

Historically, in elasticity Poisson’s ratio [Poisson 1829] has found much justifiable favor in analysis
and material characterization. When normal strains can be readily measured in two directions, elastic
PRs become a most useful universal cornerstone of elastic property description along with shear, bulk and
Young’s moduli. Much of the PRs’ success is due to their simple concept in elasticity, where constitutive
relations between stresses and strains are algebraic, with neither energy dissipation nor time-dependent
memory.

Keywords: Bernoulli–Euler beams, correspondence principle, material characterization, Poissonś ratio, Timoshenko shear
coefficients, viscoelasticity.
1“Nothing is less real than realism. Details are confusing. It is only by selection, by elimination, by emphasis, that we get

at the real meaning of things.” —Georgia O’Keeffe

1341

http://www.jomms.org
http://dx.doi.org/10.2140/jomms.2009.4-7-8


1342 HARRY H. HILTON

While linear elastic materials have been successfully characterized in terms of moduli and Poisson’s
ratios (PRs) for almost two centuries [Poisson 1829], the transition to viscoelastic PRs is far less simple
than the well established equivalence between elastic moduli and viscoelastic relaxation functions/moduli
[Hilton 1996; 2001; 2003; Hilton and Yi 1998; Tschoegl 1997; Tschoegl et al. 2002; Lakes and Wineman
2006; Hilton and El Fouly 2007; Shtark et al. 2007]. There are two overriding issues that need to be pre-
cisely and properly addressed when using viscoelastic PRs, namely (i) the time and stress dependencies
of PRs and (ii) the inapplicability of the elastic-viscoelastic correspondence principle in terms of PRs. In
question is the fundamental nature of PRs as a derived quantity in terms of ratios of perpendicular normal
strains as opposed to “pure” material properties such as relaxation moduli, creep compliances, relaxation
functions, etc. As such viscoelastic PRs are not universal and are specific to loading, deformation and
temperature histories for each viscoelastic material.

On the other hand, in viscoelasticity with its time integral constitutive relations PRs become more com-
plex functions dependent on time and stress histories [Hilton 1996; 2001; Hilton and Yi 1998; Tschoegl
1997; Tschoegl et al. 2002, Hilton and El Fouly 2007, Shtark et al. 2007] behaviorally similar to that of the
time-dependent viscoelastic shear center [Hilton and Piechocki 1962]. Even in linear viscoelastic theory,
PRs are process dependent nonlinear functions of strains and time and non-universal material properties,
whereas linear relaxation and creep functions remain invariant with respect to loading histories. The
viscoelastic time dependence has been demonstrated analytically [Hilton 1996; 2001; 2003; Hilton and
Yi 1998; Tschoegl 1997; Tschoegl et al. 2002; Lakes and Wineman 2006; Hilton and El Fouly 2007]
as well as experimentally [Shtark et al. 2007; Lakes 1991]. Auxetic viscoelastic materials, which have
negative elastic PRs, have been treated in [Hilton and El Fouly 2007] where it shown that viscoelastic
PRs do not follow the negative elastic patterns.

Consequently, time-independent classical PRs require states of stress and strain where each are defined
as distinct temporally and spatially separable functions under inertialess conditions with no mixed bound-
ary conditions. Under these conditions the uniquely admissible PR value is one half, the latter condition
being restricted solely to incompressible and isotropic viscoelastic materials. Additionally, material
characterization in terms of PRs excludes the applicability of any elastic-viscoelastic correspondence
principle. The latter analogy can only be derived in terms of relaxation moduli and/or creep compliances
and some very limited PR forms. Therefore, material characterization in terms of relaxation moduli
(functions) and/or creep compliances, rather than PRs, remains the method of choice.

It must be remembered that isotropic viscoelastic material properties can only be properly determined
through experiments involving simultaneous measurements of two-dimensional strains as summarized
in [Hilton 2001] with some additional examples described in [Ravi-Chandar 1998; 2000; Lakes et al.
1979; Qvale and Ravi-Chandar 2004; Giovagnoni 1994; Mead and Joannides 1991; Sim and Kim 1990]
or through x-ray evaluations [Hoke et al. 2001].

The original separation of variable analogy was formulated in [Alfrey 1944] and [Alfrey 1948] and the
more general and inclusive Fourier transform formulation may be found in [Read 1950]. Viscoelasticity
theory including the correspondence principle were place on a rational basis in [Lee 1955]. In [Hilton
and Russell 1961] and [Hilton and Clements 1964] the analogy was extended to cover temperature de-
pendent viscoelastic material properties, while in [Hilton and Dong 1965] the correspondence principle
was derived for anisotropic materials.
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In a number of instances [Gottenberg and Christensen 1963; Olesiak 1966; Paulino and Jin 2001a;
2001b; Jin and Paulino 2002; Jin 2006; Ko et al. 2003; Hilton 1964; Freudenthal and Henry 1960;
Bieniek et al. 1981; Librescu and Chandiramani 1989b; 1989a; O’Brien et al. 2001; Zhu 2000; Shrotriya
2000; Shrotriya and Sottos 1998; Zhu et al. 2003; Andrianov et al. 2004; di Bernedetto et al. 2007;
Noh and Whitcomb 2003; Klasztorny 2004; Bert 1973; Cowper 1966; Hilton 2009; Therriault 2003],
time-independent PR assumptions lead to overdetermined ill-posed problems and cause use of the elastic-
viscoelastic correspondence principle to become unjustified. In other analyses [Jin and Paulino 2002; Jin
2006; Ko et al. 2003; Hilton 1964; Freudenthal and Henry 1960; Bieniek et al. 1981; Librescu and
Chandiramani 1989b; 1989a; O’Brien et al. 2001; Zhu 2000; Shrotriya 2000; Shrotriya and Sottos
1998; Zhu et al. 2003; Andrianov et al. 2004; di Bernedetto et al. 2007; Noh and Whitcomb 2003;
Klasztorny 2004; Bert 1973; Cowper 1966; Hilton 2009; Therriault 2003; Nakao et al. 1985; Singh and
Abdelnaser 1993; Chen 1995; Hilton and Vail 1993], the elastic-viscoelastic correspondence principle
(analogy) has been applied improperly by extending it to viscoelastic time-dependent PRs. In this paper
the applicability and predominent inapplicability of this analogy as it relates to Poisson’s ratio in elastic
and viscoelastic expressions involving bulk, shear and Young’s moduli is examined.

Several illustrative examples consider the effects of viscoelastic PRs, namely one-dimensional relax-
ation loading, simple bending and Timoshenko beams. The Timoshenko beam in particular brings into
play an additional parameter, the shear coefficient, which depends on stresses, material properties, load-
ing histories and paths, cross sectional geometry, and boundary and initial conditions. Its characteristics
bear some resemblance to those of the PRs and it also does not generally submit to an elastic-viscoelastic
analogy, despite a number of publications to the contrary [Therriault 2003; Nakao et al. 1985; Singh and
Abdelnaser 1993; Chen 1995], including one by the present author [Hilton and Vail 1993].

Note that all the viscoelastic Timoshenko beam publications [Nakao et al. 1985; Singh and Abdelnaser
1993; Chen 1995; Hilton and Vail 1993] except [Therriault 2003] preceded [Hilton 1996; 2001; 2003;
Hilton and Yi 1998; Tschoegl 1997; Tschoegl et al. 2002] where the viscoelastic PR inconsistencies
were derived. On the other hand, [Jin and Paulino 2002] were published after [Hilton 1996; 2001; 2003;
Hilton and Yi 1998; Tschoegl 1997; Tschoegl et al. 2002].

1. General concepts

The correspondence principle. The elastic-viscoelastic correspondence principle or analogy comes in
two flavors, namely (a) separation of variables and (b) integral transforms. The pertinent references
are listed in the introduction. Consider a Cartesian coordinate system x = {x1, x2, x3} with Einstein’s
summation notation and where underlined indices indicate no summation.

The separation of variables analogy states that under proper conditions viscoelastic variables are re-
lated to equivalent elastic ones by

σi j (x, t) = g(t) σ e
i j (x) εi j (x, t) = h(t) εe

i j (x) (1)

where the superscripts e denote equivalent elastic variables or solutions. The severe restrictions associated
with these forms are discussed in Section 3. In particular, it is required that the material be incompressible
with PRs νe(x)= ν(x, t)= 1

2 .
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For isotropic materials the integral transform analogy one requires that the Fourier transforms (FT) be

elastic H⇒


σ

e
i j (x, ω) = σ

e
i j (x, ω,Ge, K e, αT , X ,U )

or
σ

e
i j (x, ω) = σ

e
i j (x, ω,Ge, νe, αT , X ,U )

(2)

and

viscoelastic H⇒


σ i j (x, ω) = σ

e
i j (x, ω,G, K , q αT , X ,U )

σ i j (x, ω) 6= σ
e
i j (x, ω,G, ν, q αT , X ,U )

(3)

(see Table 2), where X (x, t) and U (x, t) are respectively boundary stresses and displacements. The
generic symbols Ge and G refer respectively to Ge, K e or Ee and G, K or E . The integral transform
analogy or correspondence principle then consists of one to one replacements in elastic FT solutions of
elastic moduli with corresponding viscoelastic complex moduli, i.e.,

G
for
−→ Ge, K

for
−→K e, E

for
−→ Ee, but not ν

for
−→ νe, except when ν = νe

=
1
2 . (4)

The viscoelastic stresses, strains and displacements are the FT inverses of these modified elastic FTs.

Constitutive relations. Isotropic isothermal nonhomogeneous elastic constitutive relations (Hooke’s law)
at constant temperature are then written as

σ e
ii (x, t) =

3∑
j=1

Ee
ii j j (x) ε

e
j j (x, t), (5)

σ e
i j (x, t) = 2 Ge(x) εe

i j (x, t), i 6= j, (6)

and with the classical (original) definition of Poisson’s ratio [Poisson 1829] given by

νe
i j (x, t) = −

εe
j j (x, t)

εe
ii (x, t)

, i 6= j, (7)

Thus the elastic PR will be time-dependent whenever the strain components are non-separable functions
of space and time or distinct time functions regardless whether the elastic moduli Ee

i jkl or Ge are time-
dependent.

For a case of one-dimensional stress, where

σ11 6= 0 and all other σi j are 0, (8)

substitution of (7) into (5) in order to eliminate ε22 = ε33 in favor of ε11 yields

σ e
11(x, t) =

(
Ee

1111(x)− 2 νe
12(x, t) Ee

1122(x)
)
εe

11(x, t) = E0(x, t) εe
11(x, t), (9)

since Ee
1122 = Ee

1133 and where E0 is the Young’s modulus.
Alternately, consider the isotropic constitutive relations in terms of shear and bulk moduli (K e and Ge):

Se
i j (x, t) = 2 Ge(x) Ee

i j (x .t), σ e(x, t) = K e(x) εe(x, t), (10)
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where the stress Si j and strain Ei j deviators and mean stresses σ and strains ε are

Si j = σi j − δi j σ, σ =
σi i

3
, Ei j = εi j − δi j ε, ε =

εi i

3
, (11)

resulting in

σ e
11(x, t) =

4 Ge
+ K e

3︸ ︷︷ ︸
= Ee

1111

εe
11(x, t) +

K e
− 2 Ge

3︸ ︷︷ ︸
= Ee

1122

(
εe

22(x, t) + εe
33(x, t)

)
, K e <∞, (12)

and

εe
11(x, t) =

1+Ge/K e

3 Ge︸ ︷︷ ︸
= 1/Ee

0 = Ce
0

σ e
11(x, t), εe

22(x, t) =
2 Ge/K e

− 1
6 Ge︸ ︷︷ ︸

=1/Ee
2211=Ce

2211=−ν
e
12/Ee

0

σ e
11(x, t), (13)

since ε22 = ε33. Therefore, for any isotropic linear elastic material the PR becomes

νe
12 = νe

=
1− 2 Ge/K e

2 (1+Ge/K e)
, (14)

with an upper limit of 0.5 for incompressible materials when K e
→∞.

The corresponding isotropic nonhomogeneous viscoelastic stress-strain relations at constant tempera-
ture are expressable in the form

σi i (x, t) =
3∑

j=1

∫ t

−∞

Ei i j j (x, t − t ′) ε j j (x, t ′) dt ′, (15)

σi j (x, t) = 2
∫ t

−∞

G(x, t − t ′) εi j (x, t ′) dt ′, i 6= j. (16)

The initial conditions of any viscoelastic problem are

σ(x, 0) = σ e(x, 0) and εi j (x, 0) = εe
i j (x, 0), (17)

with material properties

E(x, 0) = Ee(x) G(x, 0) = Ge(x) νi j (x, 0) = νe
i j (x), (18)

and where the superscript e refers to elastic quantities of the corresponding elastic problem (same bound-
ary conditions, geometry, and so on).

In [Hilton 2001] five distinct classes of PR definitions are catalogued:

Class I
[Poisson 1829]

νi j (x, t) def
= −

εj j (x, t)

εi i (x, t)
, i 6= j; (19)

Class II
[Christensen 1982; Pipkin 1972] νC

i j (x, t) def
= −

εj j (x, t)

ε11(x)
, j 6= 1; ε11 = const.; (20)

Class III
[Hilton and Yi 1998]

ν
A
i j (x, ω)

def
= −

ε j j (x, ω)

εi i (x, ω)
, i 6= j; (21)



1346 HARRY H. HILTON

Class IV
[Vinogradov and Malkin 1980] νH

i j (x, t) def
= −

log
(
1+ εj j (x, t)

)
log
(
1+ εi i (x, t)

) ,, i 6= j; (22)

Class V
[Bertilsson et al. 1993]

∂νV
i j (x, t)

∂t
def
= −

∂εj j (x, t)/∂t

∂εi i (x, t)/∂t
, i 6= j. (23)

Consider for instance the original classical Class I definition for isothermal viscoelastic materials,
resulting in

νi j (x, t) = −
εj j (x, t)

εi i (x, t)
= −

∫ t
−∞

C j jkl(x, t − t ′) σkl(x, t ′) dt ′∫ t
−∞

Ci imn(x, t − t ′) σmn(x, t ′) dt ′
, i 6= j, (24)

with similar expressions for the other PR classes. It can be readily seen that even in linear viscoelasticity
the PRs by any definitions are

(I) nonlinear functions of strains, stresses and their time histories (loading path) and hence process-
dependent and not universal material property parameters such as moduli and compliances;

(II) derived or defined quantities and not fundamental ones such as relaxation moduli or creep compli-
ances;

(III) material properties determined from one-dimensional normal loading experiments and PRs may not
be exportable to other stress fields, unless proper expressions are used to represent these viscoelastic
PRs.

Elimination of ε22 from (15) now results in

σ11(x, t) =
∫ t

−∞

(
E1111(x, t − t ′)− 2 ν12(x, t ′) E1122(x, t − t ′)

)
ε11(x, t ′) dt ′. (25)

This isotropic constitutive relation form can be achieved in temporal space only through the use of the
Class I PR definition of (19), i.e., Poisson’s original definition [1829], since the strain substitutions must
be based on the actual instantaneous strains. Indeed, this viscoelastic protocol is identical to what is
employed in the theory of elasticity when Hooke’s law is extended to three dimensions and is the proper
approach for formulating general relations between dynamic moduli.

Taking Fourier transforms (FT) of (9) and (25) yields respectively

elastic H⇒ σ
e
11(x, ω) = E

e
1111(x, ω) ε

e
11(x, ω) − 2 E

e
1122(x, ω) ν

e
12 ε

e
11(x, ω), (26)

viscoelastic H⇒ σ 11(x, ω) = E1111(x, ω) ε11(x, ω) − 2 E1122(x, ω) ν12 ε11(x, ω). (27)

It can be readily seen that (26) and (27) are not in the proper form for the correspondence principle to
be applicable, since they contain the transforms of the Class I PR and strain as opposed to the necessary
product of the transforms, i.e. ν12 ε11 6= ν12 ε11. This inequality can be removed if and only if either
the PR or the strain or both are time-independent or if and only if the strains are separable functions as
described in (1). Time independent strains are the degenerate case of relations (1). Additional examples
are analyzed in detail in the next section.
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The relationship between relaxation moduli G(t), compliances C(t) and relaxation and creep functions
8(t) and 9(t) in the Fourier transform space is

C(x, ω) =
1

G(x, ω)
= ı ω 9(x, ω) =

1

ı ω 8(x, ω)
; (28)

see [Christensen 1982; Hilton 1964]. The Laplace transform can be obtained from the FT as

LT{ f (x, t)} = f (x, p) = f (x, ω)
∣∣
ı ω=1/p (29)

These proper definitions then lead to shear viscoelastic constitutive relations

εS(x, t) =
∫ t

−∞

C(t− t ′) σS(x, t ′) dt ′ =
∫ t

−∞

9(t− t ′)
∂σS(x, t ′)

∂t ′
dt ′ =

∫ t

−∞

∂9(t − t ′)
∂t ′

σS(x, t ′) dt ′

(30)and

σS(x, t) =
∫ t

−∞

G(t− t ′) εS(x, t ′) dt ′ =
∫ t

−∞

8(t− t ′)
∂εS(x, t ′)
∂t ′

dt ′ =
∫ t

−∞

∂8(t − t ′)
∂t ′

εS(x, t ′) dt ′.

(31)
With similar expressions for the normal stresses and strains given by

εi i (x, t) =
3∑

k=1

∫ t

−∞

C N
iikk(x, t − t ′) σkk(x, t ′) dt ′

=

3∑
k=1

∫ t

−∞

9N
iikk(x, t − t ′)

∂σkk(x, t ′)
∂t ′

dt ′ =
3∑

k=1

∫ t

−∞

∂9N
iikk(x, t − t ′)

∂t ′
σkk(x, t ′) dt ′ (32)

and

σi i (x, t) =
3∑

k=1

∫ t

−∞

Ei ikk(x, t − t ′) εkk(x, t ′) dt ′

=

3∑
k=1

∫ t

−∞

8N
iikk(x, t − t ′)

∂εkk(x, t ′)
∂t ′

dt ′=
3∑

k=1

∫ t

−∞

∂8N
iikk(x, t − t ′)

∂t ′
εkk(x, t ′) dt ′. (33)

The shear constitutive equations are

σi j (x, t) = 2
∫ t

−∞

G(x, t − t ′) εi j (x, t ′) dt ′, i 6= j. (34)

Application of Fourier transforms leads to

σ i i (x, ω) =
3∑

k=1

E i ikk(x, ω) εkk(x, ω), (35)

σ i j (x, ω) = 2 G(x, ω) εi j (x, ω), i 6= j, (36)

which leads to the proper elastic-viscoelastic correspondence principle in terms of relaxation moduli.
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2. The elastic-viscoelastic correspondence principle or analogy

Class I Poisson ratios: original definition. The elastic-viscoelastic analogy cannot be expressed in terms
of PRs with classical definitions of (7) and (19) when these elastic or viscoelastic PRs are functions of
time, since

ε22(x, ω) = ν12 ε11(x, ω) =
∫
∞

−∞

ν12(x, t) ε11(x, t) exp (−ı ω t) dt

6= ν12(x, ω) ε11(x, ω) =
∫
∞

−∞

ν12(x, t) exp (−ı ω t) dt
∫
∞

−∞

ε11(x, t) exp (−ı ω t) dt; (37)

the inequality arises because the quantity on the first line of (37) is the transform of the ν and ε11 product,
while the one on the second line is a product of their individual transforms. Either elastic and viscoelastic
PR will be time independent if and only if all the strains are time-independent or separable functions of
space and time with identical time functions [Hilton and Yi 1998; Hilton 2001].

Similarly, the elastic PR relation (14) is not receptive to the application of the elastic-viscoelastic
correspondence principle, since, by virtue of (27),

ν12(x, ω) 6=
1− 2 G(x, ω)/K (x, ω)

2
(
1+G(x, ω)/K (x, ω)

) (38)

except for incompressible materials when K (x, t)→∞ and ν12→ 0.5.
If classical (Class I) Poisson ratios are introduced into the isotropic constitutive relations, then from

(19) one obtains their FT as the transform of the products and not the product of the transforms as is
required for the correspondence principle [Hilton 1996; 2001; Hilton and Yi 1998]. This can be readily
seen by substituting (27) into (36), resulting in

σ i i (x, ω) = E i i i i (x, ω) εi i (x, ω) − 2 E i ikk(x, ω) νikεi i (x, ω)︸ ︷︷ ︸
=− εkk(x,ω)

, i 6= k. (39)

This is not the proper form of the elastic-viscoelastic correspondence principle and the analogy, therefore,
fails to materialize. Upon inversion one obtains

σi i (x, t) =
∫ t

−∞

(
Ei i i i (x, t − t ′) εi i (x, t ′) − 2 Ei ikk(x, t − t ′) νik(x, t ′) εi i (x, t ′)︸ ︷︷ ︸

= − εkk(x,t ′)

)
dt ′, i 6= k. (40)

Consequently, the conventional isotropic elastic material property relations

Ge
=

Ee

2(1+ νe)
and K e

=
Ee

1− 2 νe , (41)

involving the Young’s (Ee), shear (Ge) and bulk (K e) moduli together with PRs, have no counterpart in
viscoelasticity except, when PRs are time-independent, because of the inability to arrive at corresponding
Laplace or Fourier transforms of νe and ν. Therefore

G 6=
E

2
(
1+ ν

) and K 6=
E

1− 2 ν
and ν 6=

1− 2 G/K

2
(
1+G/K

) , (42)



THE ELUSIVE AND FICKLE VISCOELASTIC POISSON’S RATIO 1349

due to (37). Unfortunately, these inequalities prevent conversion by the correspondence principle of the
extensive elastic formulas developed in [Hahn 1980] and further amplified in [Whitney and McCullough
1990]. However, relations involving only moduli, such as

Ee
=

3 Ge

1+Ge/K e , (43)

possess an equivalent viscoelastic integral transform expression of the type

E(x, ω) =
3 G(x, ω)

1+G(x, ω)/K (x, ω)
. (44)

Hence, the integral transform elastic-viscoelastic analogy cannot involve Poisson’s ratios, except when
the viscoelastic PRs are time-independent, with all the attendant severe restrictions outlined above and
developed in detail in [Hilton 1996; 2001; Hilton and Yi 1998].

Class II Poisson ratios: one strain component, time-independent. Class II is a special degenerate case
of Class I with a time-independent loaded direction strain ε11(x). Taking the FT of (20) leads to

ν
C
1 j (x, ω) ε11(x) = ε j j (x, ω), j 6= 1, (45)

with corresponding constitutive FT relations

σ i i (x, ω) =
(
E i i11(x, ω) − 2 E i ikk(x, ω) ν

C
1k(x, ω)

)
ε11(x), k 6= i, k 6= 1. (46)

which inverts to

σi i (x, t) = Ei i11(x, t) ε11(x) − 2
∫ t

−∞

Ei ikk(x, t − t ′) νC
1k(x, t ′) ε11(x)︸ ︷︷ ︸
= − εkk(x,t ′)

dt ′, k 6= i, k 6= 1. (47)

This indicates that for this special case, the elastic-viscoelastic analogy is applicable in the FT space
even though the PR is time-dependent, but one of the normal strains, ε11(x), must be time-independent.
However, (46) cannot be generalized to and are inapplicable for time-dependent strains ε11(x, t), which
have to be treated as Class I PRs. (See (25) and (27).)

Class III Poisson ratios: alternate definition based on Fourier transforms. The alternate or transform
Poisson ratio [Hilton and Yi 1998] defined by (21) will change the FT of (39) to

σ i i (x, ω) =
(
E i i i i (x, ω) − 2 E i ikk(x, ω) ν

A
ik(x, ω)︸ ︷︷ ︸

= E
A
i ikk(x,ω)

)
εi i (x, ω), k 6= i, (48)

with an inverse relation

σi i (x, t) =
∫ t

−∞

(
Ei i i i (x, t − t ′) − 2 EA

i ikk(x, t − t ′)
)
εi i (x, t ′) dt ′, (49)

where

EA
i ikk(x, t) =

∫ t

−∞

Ei ikk(x, t − t ′) νA
ik(x, t ′) dt ′ =

∫ t

−∞

Ei ikk(x, t) νA
ik(x, t − t ′) dt ′. (50)



1350 HARRY H. HILTON

The form (49) restores a format for the correspondence principle in terms of a pseudo relaxation
modulus EA

i ikk . It must be remembered, however, that neither νA
i j nor νA

i j is a physical quantity.
These inherent difficulties associated with viscoelastic PRs stem from the fact that unlike moduli,

compliances, relaxation and creep functions, etc., PRs are “derived” rather than fundamental material
properties, as seen from (19) and (20)–(23) and discussed in detail in [Hilton 2001] All but one of these
five do not accommodate the elastic-viscoelastic correspondence principle. However, the alternate PR
definition based on Fourier transforms [Hilton and Yi 1998], namely

ν
A
i j (x, ω) = −

ε j j (x, ω)

εi i (x, ω)
and εj j (x, t) = −

∫ t

−∞

νA
i j (x, t − t ′) εi i (x, t ′) dt ′, i 6= j, (51)

lends itself to an elastic-viscoelastic analogy in terms of νA
i j , but this alternate or transform PR has no

physical counter part nor relation to the the classical PR as given by (7) and (37). Furthermore, the Class
III PR bears no relation to its classical Class I counterpart

νA
i j (x, t) = −

∫
∞

−∞

ε j j (x, ω)

εi i (x, ω)
exp (ı ω t) dω 6= νi j (x, t), i 6= j. (52)

The viscoelastic PR situation is further aggravated since under many conditions classical (19) and
alternate PRs (51) become stress as a well as time-dependent for linear viscoelastic materials [Hilton and
Yi 1998; Hilton 2001]. Therefore, unlike relaxation moduli and creep compliances which in the linear
case are stress independent, viscoelastic PRs in any form are not global material properties which can
be used interchangeably among different loading conditions without re-computation to fit each specific
set of conditions and time histories.

Class IV Poisson ratios: Hencky definition. The Hencky definition of (22) does not lend itself to any
form of the elastic-viscoelastic analogy because of its inherent presence of the logarithmic terms.

Class V Poisson ratios: strain velocity ratios. For this PR class one can use the relaxation form of (33)
and substitute the PR from (23) to yield

σi i (x, t) =
∫ t

−∞

(
8N

iiii (x, t − t ′) − 28N
iikk(x, t − t ′)

∂νV
ik(x, t ′)

∂t ′

)
∂εi i (x, t ′)

∂t ′
dt ′ k 6= i (53)

There are visible similarities between Class I and V definitions and, hence, it is not surprising that the
velocity based PR suffers from the same limitations as the Class I representation since

∂νV
ik

∂t
∂εi i

∂t
(x, ω) =

∫
∞

−∞

∂νV
ik(x, t)

∂t
∂εi i (x, t)

∂t
exp (−ı ω t) dt =

∂εkk

∂t
(x, ω) k 6= 1 (54)

This leads to constitutive relations in the FT domain

σ i i (x, ω) = ı ω 8
N
iiii (x, ω) εi i (x, ω) − 28

N
iikk(x, ω)

∂νV
ik

∂t
∂εi i

∂t
(x, ω), k 6= i, (55)

and, therefore, is not suited for any form of the elastic-viscoelastic analogy.
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3. The seldom time-independent viscoelastic Poisson ratio

In elasticity time-independent strains can be achieved only under time-independent stresses and dis-
placements regardless of boundary conditions. In viscoelasticity time free strains are attainable under
considerably more restrictive conditions. (15) can be inverted in order to express strains in terms stress as

εi i (x, t) =
3∑

j=1

∫ t

−∞

Ci i j j (x, t − t ′) σ j j (x, t ′) dt ′, (56)

with compliances defined by (28).
As has been pointed out in [Hilton and Yi 1998; Hilton 2001] and as can be seen from (19), the

viscoelastic PRs are time-independent if and only if the corresponding viscoelastic solution is separable
into products of temporal and spatial parts, such that

Ei jkl(x, t) = F(t) E∗i jkl(x), Ci jkl(x, t) = Fc(t) C∗i jkl(x), (57)

εi j (x, t) = h(t) εe
i j (x), σi j (x, t) = g(t) σ e

i j (x), (58)

with

g(t) =
∫ t

−∞

F(t − t ′) h(t ′) dt ′ or h(t) =
∫ t

−∞

Fc(t − t ′) g(t ′) dt ′ (59)

depending on whether g(t) or h(t) is defined a priori on the boundary. It must be emphasized that the
requirement that the Ei jkl and Ci jkl all have the same time functions has serious implications. In isotropic
viscoelasticity it means that the shear and bulk relaxation moduli all must have identical time functions,
which is not the case in real materials. It is not uncommon to witness bulk moduli with relaxation times
three to six orders of magnitude larger than those of shear moduli. Therefore, the requirements on the
F(t) and Fc(t) functions of (57) are unrealistic means to simply achieve the desired time-independent
PRs.

These severe restrictions necessary for the existence of separable variable solutions are discussed
in [Hilton 1996; 1964; Alfrey 1944; 1948; Christensen 1982]. Each and every one of the following
conditions must be enforced for separation of variable formulations to exist:

• Elastic and viscoelastic materials must be isotropic, homogeneous and incompressible with νe(t)=
ν(t)= 1

2 .

• No dynamic effects and no body forces can be included.

• No moving boundaries, i.e., no penetration or ablation problems, and boundary surface 0 = 0(x)
only.

• No mixed boundary conditions; only separable stress or separable displacement BCs may be pre-
scribed, i.e.,

σi j (x, t) = g(t) σ ∗i j (x) = g(t) ni (x) X∗j (x) on 0(x) (60)

or
ui (x, t) = h(t) U∗i (x) on 0(x). (61)

• No thermal expansions, i.e. αT = 0, except for special cases of stress free boundaries [Hilton and
Russell 1961].
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• Only separable functions for material properties are permissible (relaxation moduli, compliances,
etc.; see (57)).

• Viscoelastic materials must be isotropic [Hilton 1996].

• Relaxation moduli in all directions must have the same separable time function as defined by (57),
but K (x, t)→∞. An exception occurs when E(t), G(t) and K (t) all obey the same time functions:

E(t)
E0
=

G(t)
G0
=

K (t)
K0
= F(t), (62)

and then −1 ≤ ν0 ≤ 0.5. The equal relaxation time function concept was was first introduced in
[Tsien 1950] and its implications and limitations are discussed in detail in [Hilton 1996]. A time-
independent PR other than 0.5 must satisfy the conditions

the special case H⇒
E

G
=

E0

G0
= 2 (1+ ν0) =

3
1+G0/K0

(63)

Having E(t)∼G(t) is physically achievable, but bulk relaxation moduli generally have relaxation
times 3 to 5 orders of magnitude larger than those for E(t) [Hilton 1996; 2001; Hilton and Yi 1998;
[Qvale and Ravi-Chandar 2004]]. (See Figure 1.)
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Figure 1. Elastic and viscoelastic relaxation moduli.

One can next ask whether it is possible to obtain a time-independent Class II PR. An examination of
(45) indicates that this can only occur if all normal strains are time-independent, i.e., εj j = εj j (x).

Consider an isothermal isotropic material with a special 1-D loading in the x1 direction, such that

ε11(x) =
∫ t

−∞

= C(x,t−t ′)︷ ︸︸ ︷
C1111(x, t − t ′) σ11(x, t ′) dt ′ (64)
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and

σ11(x, t) =
∫ t

−∞

= E(x,t−t ′)︷ ︸︸ ︷
E1111(x, t − t ′) ε11(x) dt ′, (65)

indicating that the one-dimensional relaxation stress σ11(x, t) necessary to maintain a time-independent
strain ε11(x) in the loaded direction must be time-dependent. Similarly, the strains in the other two
normal directions are

ε22(x, t) = ε33(x, t) =
∫ t

−∞

(
C2211(x, t − t ′)

∫ t ′

−∞

E1111(x, t − s) ε11(x) ds︸ ︷︷ ︸
= σ11(x,t ′)

)
dt ′. (66)

Consequently, these two strains cannot be time-independent in this one-dimensional configuration and
a time-independent PR is impossible under this loading. On the other hand, a special three-dimensional
loading with all σi i (x, t) necessary to maintain time-independent strains can be imposed. Such a special
stress field is material dependent and in a sense is specifically contrived to produce the desired time-
independent strains leading to time independent Class II PRs.

4. Error analysis

Consider realistic simulations of a one-dimensional experiment consisting of a prismatic isotopic vis-
coelastic bar as described above where σ11 6= 0 and all other σi j = 0. One generally measures ε11(t) and
σ11(t) and determines C(t) or E(t) from (64) or (65). This can be accomplished in either the time or FT
or LT spaces by a least square fit of the the coefficients En and by using the approximation [Schapery
1962]

τn = 10n (67)

such that

FT H⇒
σ 11(ω)

ε11(ω)
= E(ω) =

E∞
ı ω
+

N∑
n=1

En

ı ω+ 1/τn
; LT H⇒ E(p) = E(ω)

∣∣
ı ω=p. (68)

If one does not assume values of relaxation times as indicated in (67), then nonlinear algebraic solvers
can be used to determine sets of En and τn from the experimental data. The number of terms N is
selected to meet a prescribed accuracy of fit.

The experimental difficulties arise from attempts to simultaneously measure normal strains in the
other directions, i.e., ε22(t). Instead, a number of authors have assumed time-independent PRs νAS =

constant 6= 0.5, obtaining approximate shear and bulk relaxation moduli from

E =
3 G

1+G/K
=

1

C
and G AS ≈

E
2 (1+ νAS)

, (69)

and thereby creating an ill posed overdetermined problem, resulting in nonuniversal shear and bulk
relaxation moduli G AS and K AS . The correct protocol for one-dimensional experiments is formulated in
[Shtark et al. 2007].

An error analysis will be undertaken next to evaluate the effects of this PR assumption as part of a
computational simulation. Consider a state of one-dimensional stress where σ11 and ε11 produce creep
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compliances with C0 < C∞ and of the forms

C(t) = C∞ − (C∞ − C0) exp
(
−

t
τc

)
, (70)

C2211(t) = −C2211∞ + (C2211∞ − C22110) exp
(
−

t
τ2211

)
. (71)

This is equivalent to determining any other two moduli such as E(t), G(t) and the bulk relaxation
modulus K (t). Note that as discussed in a previous section τK > τG , it follows from (69) and (72) that
τC 6= τ2211.

The exact strains for this illustrative example are obtained from the constitutive relations as

ε11 =
σ 11

E
=

1+G/K

3 G
σ 11 = C σ 11, (72)

ε22 =
2 G/K − 1

2 E
(

1+G/K
) σ 11 =

2 G/K − 1

6 G
σ 11 = C2211 σ 11, (73)

and the shear and bulk moduli can be determined from (69) and (72) to be

G =
1

2 (C −C2211)
and K =

1

C + 2 C2211

, (74)

with C(t)≥ 0 and C2211(t)≤ 0. Note that for K (ω)→∞ the compliance C2211(ω) tends to −C(ω)/2.
As seen from (72) the simulation can also be formulated in terms of G and K instead of the Cs above,
but the latter approach renders the moduli/compliance relations considerably more involved.

The previously discussed exception of time-independent PRs with ν 6= .5 is evident from (69) and (72)
when G(t)∼ K (t) and G/K → G0/K0. Then

ν12(t) = −
ε22(t)
ε11(t)

→ −
2 G0/K0− 1

2 (G0/K0+ 1)
. (75)

On the other hand, it is quite evident from (72) that when G(t) and K (t) respond with different time
functions, the isotropic compliances C(t) and C2211(t) obey another set of two distinct time functions.

One can now compare exact G(ω) with approximate G AS(ω) and obtain the error resulting from the
introduction of νAS

Gerr =
G−G AS

G
, (76)

where the variables without subscripts AS are exact quantities. Similarly, the error between approximate
strains ε22AS and correct strains is determined by

ε22AS(t) = − νAS ε11(t) or ε22AS(ω) = − νAS ε11(ω), (77)

and for a one-dimensional loading from (72) one obtains

ε22(ω) =
C2211(ω)

C(ω)
ε11(ω) with εerr (ω) =

ε22(ω) − ε22AS(ω)

ε22(ω)
. (78)



THE ELUSIVE AND FICKLE VISCOELASTIC POISSON’S RATIO 1355

Typical compliance values and the corresponding viscoelastic PR are displayed in Figure 2.
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Figure 2. Compliances and PRs.

Note the pattern of initially decreasing from 0.3 and then rising PRs to a long time value of 0.48 for this
configuration. Consequently, lower and upper limit estimations based on time-independent initial νAS

and maximum values of 0.5 as was reported in [Therriault 2003] are erroneous and misleading, because
they disregard the time history as exemplified by the the constitutive relation convolution time integrals.
Furthermore, such arbitrarily assumed time-independent PRs νAS do not even lead to upper and lower
bounds which could replace and bracket the experimentally unrecorded relaxation moduli, strains, etc.
This fact is further amplified by next examining the experimentally unmeasured shear relaxation moduli
and strains in the direction normal to the one-dimensional loading.

Figure 3 depicts the per cent error between the exact LT shear modulus of (74) and the one based on
assumed values of the PR νAS of (69). For this configuration, the estimates for shear moduli based on
constant PR values of .3 and .5 lead to maximum errors in shear moduli of 43% and 56% respectively.
Errors of such magnitude render the constant PR approach totally unsatisfactory and unacceptable for
shear relaxation modulus determination from uniaxial experimental data with only single directional
stress and strain measurements.

The errors between the LT of the unmeasured and exact strains ε22 for 0≤ p ≤∞ or conversely for
∞≥ t ≥ 0 are shown in Figure 4 based on (72).

It is patent from these graphs that the arbitrary selection of constant Poisson ratios — in the present
examples PR values between 0.3 and 0.5 — produces errors in predicted unmeasured strains ε22 varying
from 130% to 270% from the exact values. These errors are so excessive as to make the constant PR
approach meaningless. These conclusions should come as no surprise, since earlier (and different) time-
independent PR error analyses in [Hilton and Yi 1998] and [Hilton 2001] showed similar undesirable
results.
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Figure 3. Percent shear modulus error.
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Figure 4. Percent Laplace transform transverse strain errors.

Furthermore, it can be readily seen from (77) and (69) that calculations based solely on the erroneous
time-independent PR νas with values between 0.3 and 0.5 produce unmeasured strains ε22AS which differ
by 66.7% and corresponding changes in shear moduli G AS of 76.9%. These errors are smaller than the
true errors described in the preceding paragraph, but they are much too large to be acceptable in their
own right. The generally accepted standard in deviations of elastic moduli is ±3%. Although no firm
equivalent standards has been established for viscoelastic relaxation moduli, material property character-
ization protocols based on arbitrarily defined time-independent PRs which yield different relaxation time
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histories and maximum errors ranging from 43% to 67% must definitively be rejected as indefensible.
(Note that the corresponding maximum strain errors are in excess of 250%.)

Different viscoelastic materials and other temperature conditions would change the specific numeri-
cal results, but would not alter the general large discrepancies between exact viscoelastic compliances,
strains, PRs, etc. and those based on assumed time-independent values νAS . While the comparison were
conducted in the LT space, the transforms can be inverted analytically or in the presence of complicated
transforms by fast Fourier transform (FFT) protocols [van Loan 1992]. In the present simulations the
LT results were not inverted into the time plane in order to avoid any additional possible errors resulting
from the approximate IFFT.

In summary, the arguments advanced in [O’Brien et al. 2001; Zhu 2000; Shrotriya 2000; Shrotriya and
Sottos 1998; Zhu et al. 2003; Andrianov et al. 2004; di Bernedetto et al. 2007; Noh and Whitcomb 2003]
to mention a few, that analyses based on time-independent PRs are reasonable approximations to exact
solutions — particularly for material characterizations — are disproved by the present simple simulations
of exact conditions and their comparison with assumed time-independent PR responses.

5. Some illustrative examples

One-dimensional relaxation loading. The foregoing analysis has direct implications in a number of
“simple” problems. Consider a prismatic viscoelastic bar subjected to a one-dimensional loading in the
x1-direction with ε11(x) only and a relaxation stress σ11(x, t) with all other σi j = 0. Clearly from (66)
the other two normal strains are time-dependent and so is the classical PR, as well as the other PRs of
Classes II through V.

Euler–Bernoulli viscoelastic beams. Another case in point is that of a prismatic, isotropic and isother-
mal Euler-Bernoulli viscoelastic beam of length L , moment of inertia I , height 2c and h(x2) < c the beam
thickness or width with static loads q(x1) and statically determinate boundary conditions (Figure 5).

x1 

q(x1,t) 

x2 

RL 

ML RR MR 

Figure 5. Viscoelastic beam.

Here the self-equilibrating bending and shear stresses are time-independent, but the strains and deflec-
tions are not since ∫ t

−∞

E(t − t ′) I
∂4w(x1, t ′)

∂x4
1

dt ′ = q(x1), 0≤ x1 ≤ L , (79)

or, taking the FT,

I
∂4w(x1, ω)

∂x4
1

= C(ω)
q(x1)

ı ω
, 0≤ x1 ≤ L , (80)
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which upon inversion leads to

I
∂4w(x1, t)
∂x4

1
= q(x1)

∫ t

−∞

C(t − t ′) dt ′ = h(t) q(x1), 0≤ x1 ≤ L , (81)

with

σ11(x1, x2) =
M(x1) x2

I
and σ12(x1, x2) =

1
b(x2)

∫ c

x2

∂σ11(x1, x ′2)
∂x1

b(x ′2) dx ′2 (82)

for 0≤ x1 ≤ L and −c ≤ x2 ≤ c.
In this special one-dimensional case, the strains are also separable functions by virtue of the consti-

tutive relations (56) and (81), resulting in a time-independent PR with the required value of 0.5 and the
mandatory incompressible material (K →∞). However, for an anisotropic beam made of say composite
materials, no such separation of variables solution is admissible [Hilton 1996] and the corresponding PR
for such beams must be time-dependent.

Furthermore, if the applied loads are time-dependent then (79) changes to

m
∂2w(x1, t)

∂t2 +

∫ t

−∞

E(t − t ′) I
∂4w(x1, t ′)

∂x4
1

dt ′ = q(x1, t), 0≤ x1 ≤ L , (83)

and its solution is no longer separable even if the inertia term is neglected, unless the load is limited to
the special expression q(x1, t)= g(t) f (x1). In general the load can be represented by a Fourier series
whose summands are of this form:

q(x1, t) =
∞∑

n=1

gn(t) fn(x1), 0≤ x1 ≤ L , (84)

and the deflection w(x1, t) will also be a sum of separable functions

w(x, t) =
∞∑

n=1

hn(t) Wn(x), (85)

where each of the the functions Wn(x) individually satisfy all boundary conditions for all n ≥ 1.
In this case the PRs will be time-dependent regardless of whether or not the inertia term is included.

Table 1 summarizes these effects.

Load Inertia E Deflection PR

q(x1) Yes or No F(t) E∗i jkl(x1) h(t) w∗(x1) ν(x1)= 0.5
q(x1) Yes or No Ei jkl(x1, t) w(x1, t) ν(x1, t)

g(t) q∗(x1) No F(t) E∗i jkl(x1) h(t) w∗(x1) ν(x1)= 0.5
g(t) q∗(x1) Yes F(t) E∗i jkl(x1) w(x1, t) ν(x1, t)
g(t) q∗(x1) No Ei jkl(x1, t) w(x1, t) ν(x1, t)

q(x1, t) Yes or No F(t) E∗i jkl(x1) w(x1, t) ν(x1, t)
q(x1, t) Yes or No Ei jkl(x1, t) w(x1, t) ν(x1, t)

Table 1. Euler–Bernoulli bending effects on class I PR.
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Viscoelastic Timoshenko beams. Although the definition of the elastic Timoshenko shear coefficient is
somewhat arbitrary, in that it is based on equalities of strain energies [Bert 1973] or deformations [Cowper
1966] between exact and approximate solutions to mention a few examples, the concept leads to relatively
simple expressions depending only on beam cross sectional geometry and its elastic material properties.
However, under either definitions the shear coefficient is dependent on the elastic PR, thus making it
impossible to construct an elastic-viscoelastic analogy for this problem [Hilton 2009]. Unfortunately,
a number of authors [Therriault 2003; Nakao et al. 1985; Singh and Abdelnaser 1993; Chen 1995]
including the present one [Hilton and Vail 1993], have misinterpreted the possibility of the KSC analogy
and used it in inappropriate and incorrect settings. Space limitations do not allow to present the correct
solution for the viscoelastic Timoshenko beam here; for a complete treatment see [Hilton 2009].

6. Concluding remarks

Poisson ratios are defined quantities and not fundamental material properties such as relaxation moduli
and creep compliances which can be derived from first principles through the latter’s dependence on
thermodynamic derivatives. In linear viscoelasticity PRs are functions of time and stresses as well as
their time histories and, therefore, are not universal universal property parameters such as moduli and
compliances. It is, therefore, best to formulate viscoelastic analyses in terms of relaxation moduli or
creep compliances without involving Poisson ratios.

The following points emerge from the above analyses:

(1) The fundamental problem with viscoelastic Poisson’s ratios is not so much the diversity of their
definitions, i.e. five classes, as it is with their proper use in constructing constitutive relations and
correspondence principles involving PRs.

(2) In general, viscoelastic Poisson ratios can be time-independent if and only if displacements, strains
and stresses as well as relaxation moduli and creep compliances are all separable unequal functions
in time and space, and then PRs are limited to a single value of 0.5 for incompressible materials.

(3) A specific exception to the above exists if bulk, shear and Young’s relaxation moduli obey identical
time functions and stresses, displacements and moduli are separable spatial and temporal functions,
then PRs are time-independent and in the elastic range −1≤ ν ≤ 0.5. However, such a phenomenon
where changes in shape and in volume exhibit the same time response remain unobserved in nature.

(4) Linear viscoelastic PRs are not limited to the elastic value range and may exceed it considerably
in either direction, because of their dependence on stresses and stress time histories [Shtark et al.
2007; Lakes 1991].

(5) An assumption of time-independent viscoelastic Poisson ratios 6= 0.5 and without enforcement of the
above enumerated conditions is not an admissible approximation, because ill posed overdeterminate
problems result.

(6) The conventional elastic-viscoelastic analogy does not apply to expressions involving elastic or
viscoelastic PRs based on the classical Poisson and other definitions (Classes I, IV and V), as seen
in Table 2.

(7) Additionally, when the correspondence principle is inapplicable then no relations exist between
complex PRs and complex moduli.
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(8) Class II PRs based on one time-independent normal strain are always time-dependent, unless con-
stant volume deformations are maintained.

(9) An elastic-viscoelastic correspondence principle based on the alternate Fourier transform PR defi-
nition (Class III) may be constructed, but these PRs have no physical counterparts.

(10) Viscoelastic PRs are derived material properties and unlike relaxation moduli are neither universal
nor path-independent of loading conditions, since they depend on stress (loading) conditions and
relaxation/creep properties as well their time histories.

(11) In the time space, it is possible to formulate viscoelastic constitutive relations in terms of PRs which
bear resemblances to their elastic counterparts (Table 3). However, their forms do not lend them-
selves to the elastic-viscoelastic correspondence principle, except under very restrictive conditions;
see Table 2.

(12) Simulation study results displayed in Figures 2, 3, and 4 clearly demonstrate that even for a simple
time independent loading shear relaxation modulus, PRs and strains based on time-independent
PRs are no measure of the exact values of these variables as the former lead to excessively large
errors (ranging from 130% to 270% for the strain error in the examples considered), and constitute
extremely poor approximations. Furthermore, any such arbitrarily assumed time-independent PRs
νAS values do not lead to upper and lower bounds which could replace and bracket the experimentally
unrecorded relaxation moduli, strains, etc.

(13) The time dependence of viscoelastic PRs makes them unsuitable to be characterized from experimen-
tal data and measurements in two normal directions must be employed. Alternately, simultaneous
loadings, such as tractions and twisting for instance, may be employed on the same specimen.

Class Name
Viscoelastic Poisson’s Ratio

i 6= j Eq. Analogy Eq.

I Classical νi j (x, t) def
= −

εj j (x, t)

εi i (x, t)
(19) NO (39)

II Constant
strain

νC
i j (x, t) def

= −
εj j (x, t)

εi i (x)
(20)

YES, but limited to
ε11(x) only (47)

III Transform ν
A
i j (x, ω)

def
= −

ε j j (x, ω)

εi i (x, ω)
(21) YES, but νA

i j has
no physical meaning

(48)

IV Hencky νH
i j (x, t) def

= −
log
(
1+ εj j (x, t)

)
log
(
1+ εi i (x, t)

) (22) NO –

V Velocity
∂νV

i j (x, t)

∂t
def
= −

∂εj j (x, t)/∂t

∂εi i (x, t)/∂t
(23) NO (54)

Table 2. Poisson ratio elastic-viscoelastic correspondence principle (analogy). See
equations (19)–(23) for the bibliographical references for each class.
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Class Constitutive relations

I σ i i (x, ω)= E i i i i (x, ω) εi i (x, ω)− 2 E i ikk(x, ω)

= − εkk(x,ω)︷ ︸︸ ︷
νikεi i (x, ω), i 6= k

I σi i (x, t)=
∫ t

−∞

(
Ei i i i (x, t − t ′) εi i (x, t ′)− 2 Ei ikk(x, t − t ′) νik(x, t ′) εi i (x, t ′)︸ ︷︷ ︸

= − εkk(x,t ′)

)
dt ′, i 6= k

II σ i i (x, ω)= E i i11(x, ω) ε11(x) − 2 E i ikk(x, ω)

= − εkk(x,ω)︷ ︸︸ ︷
ν

C
1k(x, ω) ε11(x), k 6= i, k 6= 1

II σi i (x, t)= Ei i11(x, t) ε11(x) − 2
∫ t

−∞

Ei ikk(x, t − t ′) νC
1k(x, t ′) ε11(x)︸ ︷︷ ︸
= − εkk(x,t ′)

dt ′, k 6= i, k 6= 1

III σ i i (x, ω) =
(
E i i i i (x, ω) − 2

= E
A
i ikk(x,ω)︷ ︸︸ ︷

E i ikk(x, ω) ν
A
ik(x, ω)

)
εi i (x, ω), k 6= i

III σi i (x, t) =
∫ t

−∞

(
Ei i i i (x, t − t ′) − 2 EA

i ikk(x, t − t ′)
)
εi i (x, t ′) dt ′, k 6= i

V σ i i (x, ω)= ı ω 8
N
iiii (x, ω) εi i (x, ω) − 28

N
iikk(x, ω)

∂νV
ik

∂t
∂εi i

∂t
(x, ω), k 6= i

V σi i (x, t)=
∫ t

−∞

(
8N

ii11(x, t − t ′) − 28N
iikk(x, t − t ′)

∂νV
ik(x, t ′)

∂t ′

)
∂εi i (x, t ′)

∂t ′
dt ′, k 6= i

Table 3. Linear isotropic constitutive relations with Poisson’s ratios.

(14) In the final analysis, relaxation moduli, compliances, and creep and relaxation functions should be
the characterizations of choice since they do not suffer the severe limitations of PRs, such as —
even for linear materials — dependence on stress, strain and displacement time histories. Further-
more, they properly allow use of the elastic-viscoelastic correspondence principle without additional
constraints.
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DYNAMIC BUCKLING OF A BEAM ON A NONLINEAR ELASTIC FOUNDATION
UNDER STEP LOADING

MAHMOOD JABAREEN AND IZHAK SHEINMAN

An analytical model is presented for the nonlinear behavior of a beam on a nonlinear elastic foundation,
subjected to sudden axial compression. Two dynamic buckling criteria, one based on full dynamic
analysis (Budiansky–Roth) and the other on static analysis only (Hoff–Simitses), were applied. The
effectiveness of the Hoff–Simitses criterion for structures characterized by a limit point was shown.

1. Introduction

Structures on a nonlinear elastic foundation are commonly used in engineering applications. Specifically,
beams on such a foundation occupy a prominent place in structural mechanics, and can serve as a sim-
plified model for complex nonlinear systems. The foundation can be characterized as either hardening
or softening, the latter type being associated with a limit point behavior instead of bifurcation one.

Most research works on this subject were devoted to static stability, and much less (to the best of
the authors’ knowledge) to dynamic buckling, in spite of its practical importance. Specifically, Weits-
man [1969] and Kamiya [1977] studied beams on a bimodulus and no-tension elastic foundation. The
bifurcation-type behavior and the initial postbuckling one were addressed in [Fraser and Budiansky 1969;
Amazigo et al. 1970; Keener 1974; Lee and Wass 1996; Kounadis et al. 2006]. Sheinman and Adan
[1991] investigated the imperfection sensitivity of a beam on a nonlinear elastic foundation under static
loading, including the effect of transverse shear deformation.

The term “dynamic buckling” refers to stability of a structure under time-dependent loads. It can also
be used in a broader sense, covering stability analysis via the equations of motion, irrespective of the type
of load. Accordingly, different dynamic buckling/stability criteria have been suggested [Budiansky and
Roth 1962; Hsu 1966; 1967; Hoff and Bruce 1954; Simitses 1967; 1990], mainly based on the concept
of bounded motion as proof of dynamic buckling/stability.

The theory of dynamic buckling of systems with a single degree of freedom subjected to step loading
was developed in [Budiansky and Hutchinson 1966; Hutchinson and Budiansky 1966; Budiansky 1967;
Elishakoff 1980]. These authors derived the relationships between the critical step load and the amplitude
of the initial imperfection for structures with quadratic, cubic and quadratic-cubic nonlinearities. The
effect of Rayleigh’s dissipative forces was included in [Kounadis and Raftoyiannis 1990]. The extension
of the aforementioned studies to potential and nonpotential systems with multiple degrees of freedom
was developed in [Kounadis et al. 1991; Kounadis 1997; Kounadis et al. 1997; 1999; Raftoyiannis and
Kounadis 2000; Gantes et al. 2001; Kounadis et al. 2001]. A comprehensive review on the dynamic

Keywords: dynamic buckling, Hoff–Simitses, Budiansky–Roth, imperfection sensitivity, nonlinear elastic foundation.
The authors are indebted to Ing. E. Goldberg for editorial assistance.
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buckling of elastic structures such as frames, arches, and shells can be found in [Simitses 1990]. Specifi-
cally, Birman [1989] studied the dynamic buckling of antisymmetrically laminated angle-ply rectangular
plates due to axial step loads. Dube et al. [2000] studied the dynamic buckling of laminated thick shallow
spherical cap.

The present study deals jointly with dynamic buckling and imperfection sensitivity. The dynamic
buckling load was obtained and examined using the Budiansky–Roth criterion [1962], for which a com-
plex full dynamic analysis is needed, and also for the total potential energy criterion [Hoff and Bruce
1954; Simitses 1967], where static nonlinear analysis suffices. The purpose of the comparison is to show
the advantage in treating dynamic stability problems via the second, purely static, criterion.

The dynamic nonlinear partial differential equations are derived for a general beam on a nonlinear
elastic foundation. These partial differential equation were reduced to ordinary nonlinear equations
by introducing the Bathe composite method [Bathe and Baig 2005; Bathe 2007]. Then, the Newton–
Raphson linearization, and finite difference scheme were used for solving the resulting nonlinear system
of ordinary equations. An example of a beam on a softening foundation was considered to study the
dynamic buckling and imperfection sensitivity under static and dynamic step loading.

2. Dynamic stability criteria

In the Budiansky and Roth criterion, the dynamic buckling load is defined as the level at which a large
increase occurs in the displacement amplitude. In the Hoff–Simitses criterion, the critical load is defined
as the static postlimit load level at which the modified total potential energy is zero. The latter is obtained
by subtracting the total potential energy of the unbuckled state from the total potential energy, thus
eliminating all trajectories nested in the total potential energy but not leading to buckling. This criterion
corresponds to the lower bound of the critical conditions; for example, for an external applied step load,
and for autonomous mechanical systems in general.

3. Problem formulation and solution procedure

Figure 1 illustrates a beam on a nonlinear elastic foundation subjected to axial step loading. By Bernoulli–
Euler beam theory, the equations of motion (with rotary inertia neglected) read

−ρAü+ Nxx,x + qu = 0,

−ρAẅ+Mxx,xx +
(
Nxx(w,x +w,x)

)
,x − R(w)+ qw = 0,

(3-1)

P(t)

Step load

t

P(t)

L

Elastic foundation

P(t)

Step load

t

P(t)

L

Elastic foundation

Figure 1. Beam on elastic foundation subjected to axial step load.
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where u = u(x, t) and w = w(x, t) are the axial and normal displacements of the beam, respectively; wx

is the initial geometrical imperfection; A and I are the cross-section area and moment of inertia; Nxx

and Mxx the resultant axial force and bending moment; qu and qw the external applied loads in the axial
and normal directions, respectively. The superior dot (˙), denotes the derivative with respect to time, and
( ),x the derivative with respect to the axial coordinate. The response of the foundation is characterized
by two parameters {K1, K3} (see [Sheinman and Adan 1991]) and described by the function

R(w)= K1w+ K3w
3. (3-2)

The nonlinear kinematic relations for the beam entail the assumption of large displacements, moderate
rotations, and small strains. Thus the constitutive relations (resultant axial force and bending moment)
and the kinematic relations (axial strain and change of curvature) read:{

Nxx

Mxx

}
=

[
A11 0
0 D11

]{
εxx

κxx

}
,

{
εxx

κxx

}
=

{
u,x + 1

2(w,x + 2w,x)w,x
−w,xx

}
, (3-3)

A11 and D11 being the axial and flexural rigidities. Specifically, for isotropic materials the rigidities are
given by A11 = E A, and D11 = E I .

This sixth-order set of nonlinear partial differential equations is converted into an equivalent set of six
first-order ones by recourse to the following variables:

z = {u, w, φx , Nxx , Qxz, Mxx}
T (3-4)

The equivalent set, ψ = {ψ1, ψ2, ψ3, ψ4, ψ5, ψ6}
T , reads

ψ =



ψ1

ψ2

ψ3

ψ4

ψ5

ψ6


=



−ρAü+ Nxx,x + qu

−ρAẅ+ Qxz,x − R(w)+ qw
Mxx,x − Qxz − Nxx(φx −w,x)

Nxx − A11u,x − 1
2 A11(φx − 2w,x)φx

φx +w,x

Mxx − D11φx,x


= 0, (3-5)

with the following boundary conditions at x = 0 and x = L:

Nxx = N xx or u = u,

Qxz = Qxz or u = w,

Mxx = M xx or φx = φx ,

(3-6)

where the bar denotes an applied force or displacement at the boundaries.
No unconditionally stable time integration procedure exists for the dynamic solution of nonlinear

equations. Here, the composite implicit time integration procedure [Bathe and Baig 2005; Bathe 2007]
was chosen for solving (3-5) in the time space. Assuming that the dynamic solution at time t (i.e. zt , żt

and z̈t ) is completely known, the solution at time t +1t is computed by introducing the substep at time
t + θ1t , where θ ∈ {0, 1} (for instance, θ = 1/2). Specifically, using Newmark’s scheme [1959], the
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velocity and acceleration fields are explicitly given in terms of the displacement field at time t + θ1t ,
and the displacement, velocity and acceleration fields at t :

żt+θ1t
=

γ

β(θ1t)
(zt+θ1t

− zt)+
(

1−
γ

β

)
żt
+

(
1−

γ

2β

)
(θ1t) z̈t

z̈t+θ1t
=

1
β(θ1t)2

(zt+θ1t
− zt)−

1
β(θ1t)

żt
−

( 1
2β
− 1

)
z̈t

(3-7)

The solution of z at t+θ1t , (i.e., zt+θ1t ), was obtained, after substitution of (3-7) in (3-5), by linearizing
the latter via the Newton–Raphson method:

ψ t+θ1t
= ψ t+θ1t(zt+θ1t , zt+θ1t

,x ; zt , żt , z̈t)= 0,

∂ψ t+θ1t

∂ zt+θ1t 1zt+θ1t
+
∂ψ t+θ1t

∂ zt+θ1t
,x

1zt+θ1t
,x +ψ t+θ1t

= 0.
(3-8)

Finally, equations (3-8) were solved by means of a finite-difference scheme. Once convergence was
reached, the complete dynamic solution (of the first substep) was obtained using (3-7). Then in the
second substep, the velocity and acceleration fields were approximated according to [Collatz 1966] by

żt+1t
= c1zt

+ c2zt+θ1t
+ c3zt+1t ,

z̈t+1t
= c1 żt

+ c2 żt+θ1t
+ c3 żt+1t ,

(3-9)

where the constant coefficients are given by

c1 =
1− θ
θ1t

, c2 =
−1

(1− θ)θ1t
, c3 =

2− θ
(1− θ)1t

(3-10)

Substitution of (3-9) in (3-5) yielded the equations needed to obtain the solution for z at time t +1t (i.e.,
zt+1t ), which were treated in the same manner as above:

ψ t+1t
= ψ t+1t(zt+1t , zt+1t

,x ; zt , żt , z̈t , zt+θ1t , żt+θ1t , z̈t+θ1t)= 0,

∂ψ t+1t

∂ zt+1t 1zt+1t
+
∂ψ t+1t

∂ zt+1t
,x

1zt+1t
,x +ψ t+1t

= 0.
(3-11)

Once convergence of the solution (zt+1t) was achieved, the complete dynamic solution could be obtained
using (3-9).

4. Results and discussion

The beam and the softening foundation used as an example in demonstrating the effectiveness of the Hoff–
Simitses criterion had the following properties [Sheinman and Adan 1991]: Beam-length L = 4.0 m;
rectangular cross-section with width b = 0.04 m and depth h = 0.08 m; mass density ρ = 7850 kg/m3;
modulus of elasticity E = 2.1× 1011 Nm−2. The elastic foundation parameters are: K1 = 1000 kNm−2

and K3 =−100 MNm−4. The imperfection shape was taken as

w(x)= ξh sin(πx/L), ξ = 0.01. (4-1)
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-log( t)D

E
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0
.0

0
1
 s
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)

T
D

E
T

Figure 2. Convergence curve; normalized total energy versus time step 1t .

Of the examined criteria for convergence of the time-history solution with respect to the time step 1t
(in seconds), the one of vanishing (beam at rest at t = 0) the total energy, ET = kinetic energy + total
potential energy, was found to be the most representative. An example of this convergence is illustrated
in Figure 2. The small time step was chosen on view of the high frequency of the characteristic behavior
in the axial direction.

Figure 3 shows the time history of the vertical midspan displacement of the beam, w(x = L/2), under
three levels of axial-load (N xx = 0.80 Nxx,bif, N xx = 0.85 Nxx,bif and N xx = 0.85125 Nxx,bif, where
Nxx,bif = 222.7 kN is the buckling load of the perfect beam). It is seen that under the first two load levels
the beam undergoes simple oscillations about the near static stable equilibrium position. By contrast,
the third level is associated with large oscillations and a jump to postbuckling. Since the postbuckling
equilibrium solution is unstable (see Figure 6), the dynamic solution is unbounded. Figure 4 shows the
phase-plane curves of the vertical midspan displacement. It is seen that the two stable dynamic solutions
form closed curves, while for the unstable one the curve diverges. It should be emphasized that the
fluctuations in the phase-plane curves (Figure 4) are due to the high axial frequencies.

Figure 5 illustrates the Budiansky–Roth criterion showing the maximum vertical midspan displace-
ment versus the applied load. Again, the equations of motion were solved for several values of the

t  [sec]

w
 (

x
=

L
/2

) 
 [

m
] 0.85125Nxx,bif

0.85Nxx,bif

0.80Nxx,bif

Figure 3. Vertical displacement versus time for three different load levels.
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w (x=L/2)  [m]

w
 (

x
=

L
/2

) 
 [

m
]

0.85125Nxx,bif

0.85Nxx,bif0.80Nxx,bif

Figure 4. Phase-plane curves for three different load levels.

applied axial-load, starting from a small value and increasing it. The maximum displacement is seen to
increase smoothly with the load, and culminates in a large jump (unbounded motion) at the highest level.
Trail and error locates the dynamic buckling load at Nxx,d = 0.85123 Nxx,bif.

Figure 6 shows the nonlinear static equilibrium path used for the Hoff–Simitses criterion [Simitses
1990]. Specifically, the total potential energy, UT , defined by

UT =
1
2

∫ L

0

(
Nxxεxx +Mxxκxx

)
dx +

∫ L

0

∫
R(w)dw dx

−

∫ L

0

(
quu+ qww

)
dx −

[
N xx u+ Qxzw+M xxφx

]L

0
, (4-2)

was modified by introducing a constant C that eliminates all trajectories that are represented in UT but
that do not lead to a buckling mode:

UT,mod =UT −C. (4-3)

For the case of an axially loaded beam at x = L the constant C reads

C =−
N 2

xx(L) L
2A11

. (4-4)
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Figure 5. Maximum vertical midspan displacement versus applied load.
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N
x

x
x

x
,b

if
/
N

w (x=L/2)

* (Hoff - Simitses)

0.84945Nxx,bif

Figure 6. Applied load versus vertical midspan displacement.

Here, once the static solution is obtained (by solving (3-5) with neglecting the inertia terms), the modi-
fied total potential energy — see (4-3) — was calculated at every point of the path. The solid stretch in
Figure 6 representing the path with negative modified total potential energy (bounded motion), and the
dotted stretch with positive one (unbounded). It was found that this criterion (whereby the modified total
potential energy is zero) yields a slightly lower dynamic buckling load (Nxx,d = 0.84945 Nxx,bif) than
its Budiansky–Roth counterpart.

Figure 7 summarizes The dynamic sensitivity to imperfection according to the different criteria. The
results are seen to be quite close (less than 1% divergence). The curve for the static buckling load
(limit-point) is also plotted in this figure, and serves as an upper bound for the dynamic buckling load.

x

(N
o

r
x

x
,s

N
) 

/ 
N

x
x

,d
x

x
,b

if

(Nxx,s)

(Nxx,d)

(Nxx,d)

Figure 7. Imperfection sensitivity under static and dynamic step loads.

5. Summary and conclusions

A solution procedure for dynamic buckling of a beam on a nonlinear elastic foundation under dynamic
step loading is presented. Two criteria (Hoff–Simitses and Budiansky–Roth) were applied and studied. It
was found that the Hoff–Simitses criterion, for which static analysis suffices, is fully adequate and most
effective for structures characterized by limit-point behavior. Its generalization for any dynamic loading
is still a challenge.
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DIRECT DAMAGE-CONTROLLED DESIGN OF PLANE STEEL
MOMENT-RESISTING FRAMES USING STATIC INELASTIC ANALYSIS

GEORGE S. KAMARIS, GEORGE D. HATZIGEORGIOU AND DIMITRI E. BESKOS

A new direct damage-controlled design method for plane steel frames under static loading is presented.
Seismic loading can be handled statically in the framework of a push-over analysis. This method, in
contrast to existing steel design methods, is capable of directly controlling damage, both local and global,
by incorporating continuum damage mechanics for ductile materials in the analysis. The design process
is accomplished with the aid of a two-dimensional finite element program, which takes into account
material and geometric nonlinearities by using a nonlinear stress-strain relation through the beam-column
fiber modeling and including P-δ and P-1 effects, respectively. Simple expressions relating damage to
the plastic hinge rotation of member sections and the interstorey drift ratio for three performance limit
states are derived by conducting extensive parametric studies involving plane steel moment-resisting
frames under static loading. Thus, a quantitative damage scale for design purposes is established. Using
the proposed design method one can either determine damage for a given structure and loading, or
dimension a structure for a target damage and given loading, or determine the maximum loading for a
given structure and a target damage level. Several numerical examples serve to illustrate the proposed
design method and demonstrate its advantages in practical applications.

1. Introduction

Current steel design codes, such as AISC [1998] and EC3 [2005], are based on ultimate strength and
the associated failure load. In both codes, member design loads are usually determined by global elastic
analysis and inelasticity is taken into account indirectly through the interaction equations involving design
loads and resistances defined for every kind of member deformation. Instability effects are also taken
in an indirect and approximate manner through the use of the effective length buckling factor, while
displacements are checked for serviceability at the end of the design process. Seismic design loads
are obtained with the aid of seismic codes, such as AISC [2005] and EC8 [2004]. In this case the
global analysis can be elastostastic as before, spectral dynamic, static inelastic (push-over) or nonlinear
dynamic.

Damage of materials, members, and structures is defined as their mechanical degradation under load-
ing. Control of damage is always desirable by design engineers. Even though current methods of design
[AISC 1998; EC3 2005; AISC 2005; EC8 2004] are associated with ultimate strength and consider
inelastic material behavior indirectly or directly, they are force-based and cannot achieve an effective
control of damage, which is much better related to displacements than forces. For example, the per-
centage of the interstorey drift ratio (IDR) of seismically excited buildings is considered a solid basic

Keywords: continuum damage mechanics, damage control, steel structures, design methods, beam-column, finite element
method, second order effects, elastoplastic behavior.
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indicator of the level of damage, as suggested by the HAZUS99-SR2 User’s Manual [FEMA 2001]. Even
the displacement-based seismic design method [Priestley et al. 2007], in which displacements play the
fundamental role in design and are held at a permissible level (target displacements), does not lead into
a direct and transparent control of damage.

To be sure, there are many works in the literature dealing with the determination of damage in members
and structures, especially in connection with the seismic design of reinforced concrete structures. More
specifically, damage determination of framed buildings at the local and global level can be done with
the aid of damage indices computed on the basis of deformation and/or energy dissipation, as shown
by Park and Ang [1985] and Powell and Allahabadi [1988], for example. On the other hand, the finite
element method has been employed in the analysis of steel and reinforced concrete structures in con-
junction with a concentrated inelasticity (plasticity and damage) beam element in [Florez-Lopez 1998].
Damage determination in reinforced concrete and masonry structures has also been done by employing
continuum theories of distributed damage in the framework of the finite element method [Cervera et al.
1995; Hatzigeorgiou et al. 2001; Hanganu et al. 2002]. Note that in all these references, the approach is
to determine damage as additional structural design information, and cannot lead to a structural design
with controlled damage.

Here we extend the direct damage-controlled design (DDCD) method, first proposed in Hatzigeorgiou
and Beskos [2007] for concrete structures, to structural steel design. The basic advantage of DDCD is the
dimensioning of structures with damage directly controlled at both local and global levels. In other words,
the designer can select a priori the desired level of damage in a structural member or a whole structure
and direct his design in order to achieve this preselected level of damage. Thus, while the DDCD deals
directly with damage, inelastic design approaches, such as [AISC 1998; EC3 2005; AISC 2005; EC8
2004; Priestley et al. 2007] are concerned indirectly with damage. Furthermore, the a priori knowledge
of damage, as it is the case with DDCD, ensures a controlled safety level, not only in strength but also
in deflection terms. Thus, the present work, unlike all previous works on damage of steel structures,
develops for the first time a direct damage-controlled steel design method, which is not just restricted to
damage determination as an additional structural design information.

More specifically, the present work develops a design method for plane steel moment-resisting frames
under static monotonic loading capable of directly controlling damage, both at local and global level.
Seismic loading can be handled statically in the framework of a push-over analysis. Local damage is de-
fined pointwise and expressed as a function of deformation on the basis of continuum damage mechanics
theory for ductile materials [Lemaitre 1992]. On the other hand, global damage definition is based on
the demand-and-capacity-factor design format as well as on various member damage combination rules.
The method is carried out with the aid of the two-dimensional finite element program DRAIN–2DX
[Prakash et al. 1993], which takes into account material and geometric nonlinearities, modified by the
authors to employ damage as a design criterion in conjunction with appropriate damage levels. Material
nonlinearities are implemented in the program by combining a nonlinear stress-strain relation for steel
with the beam-column fibered plastic hinge modeling. Geometric nonlinearities involve P-δ and P-1
effects. Thus, the proposed method belongs to the category of design methods using advanced methods
of analysis [Chen and Kim 1997; Kappos and Manafpour 2001; Vasilopoulos and Beskos 2006; 2009],
which presents significant advantages over the code-based methods. Local buckling can be avoided by
using only class 1 European steel sections, something which is compatible with the inelastic analysis
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employed herein. Furthermore, all structural members are assumed enough laterally braced in order to
avoid lateral-torsional buckling phenomena. Using the proposed design method one can either determine
damage for a given structure and loading, or dimension a structure for a target damage and given loading,
or determine the maximum loading for a given structure and a target damage level.

2. Stress-strain relations for steel

Essential features of a steel constitutive model applicable to practical problems should be, on the one hand
the accurate simulation of the actual steel behavior and on the other hand the simplicity in formulation
and efficiency in implementation in a robust and stable nonlinear algorithmic manner. In this work, a
multilinear stress-strain relation for steel characterized by a good compromise between simplicity and
accuracy and a compatibility with experimental results, is adopted. The stress-strain (σ, ε) relation in
tension for this steel model is of the form

σ = Eε for ε ≤ εy, σ = σy + Eh(ε− εy) for εy < ε ≤ εu, σ = σu for εu < ε. (1)

Equation (1) describes a trilinear stress-strain relation representing elastoplastic behavior with harden-
ing, as shown in Figure 1, with E and Eh being the elastic and the inelastic moduli, respectively, εy and
εu the yield and the ultimate strains, respectively and σy and σu the yield and ultimate stress, respectively.
The negative counterpart to (1) can be adopted for the compression stress state, as shown in Figure 1.
Similar stress-strain curves have been proposed earlier by, for example, [Gioncu and Mazzolani 2002];
European and American steels exhibit a stress-strain behavior similar to that of Figure 1. Thus, the model
(1) can effectively depict the true behavior of structural steel.

-Hu -Hy

Hu H

Vu

-Vy

1

Eh1

E

Hy

Vu
Vy

Figure 1. Stress-strain relation for steel.

3. Local damage

Local damage is usually referred to a point or a part of a structure and is one of the most appropriate indi-
cators about their loading capacity. In the framework of continuum damage mechanics, the term “local”
is associated with damage indices describing the state of the material at particular points of the structure,
and the term “global” with damage indices describing the state of any finite material volume of the
structure. Thus, global damage indices can be referred to any individual section, member, substructure,
or the whole structure. This categorization of damage in agreement with continuum mechanics principles
stipulating that constitutive models are defined at point level and all other quantities are obtained by
integrating pointwise information.
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Figure 

Figure 2. Cross section of a damaged material.

Continuum damage mechanics has been established for materials with brittle or ductile behavior and
attempts to model macroscopically the progressive mechanical degradation of materials under different
stages of loading. For structural steel, damage results from the nucleation of cavities due to decohesions
between inclusions and the matrix followed by their growth and their coalescence through the phenom-
enon of plastic instability. The theory assumes that the material degradation process is governed by a
damage variable d , the local damage index, which is defined pointwise, following Lemaitre [1992], as

d = lim
Sn→0

Sn − S̄n

Sn
, (2)

where Sn stands for the overall section in a damage material volume, S̄n for the effective or undamaged
area, while (Sn − S̄n) denotes the inactive area of defects, cracks, and voids (Figure 2). This index
corresponds to the density of material defects and voids and has a zero value when the material is in the
undamaged state and a value of unity at material rupture or failure.

The main goal of continuum damage mechanics is the determination of initiation and evolution of the
damage index d during the deformation process. Lemaitre [1992], by assuming that damage evolution
takes place only during plastic loading (plasticity induced damage) was able to propose a simple damage
evolution law, as shown in Figure 3, which can successfully simulate the behavior of steel or other ductile
materials. Damage index d is represented by a straight line in damage-strain space, with end points at
d = 0 for ε = εy , and d = 1 for ε = εu , where strain values are assumed to be absolute. This damage
evolution law can be expressed as

d = 0 for ε ≤ εy, d =
ε− εy

εu − εy
for εy < ε ≤ εu . (3)

H

d

Hy

1.0

Hu
0.0

Figure 3. Damage-strain curve for steel.
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A similar linear damage evolution law was proposed in [Florez-Lopez 1998]. Both laws are supported
by experiments. One can observe that while the damage evolution law for concrete [Hatzigeorgiou
and Beskos 2007] was derived by appropriately combining basic concepts of damage mechanics and
a nonlinear stress-strain equation for plain concrete, the damage evolution law (3) for steel was taken
directly from the literature [Lemaitre 1992].

4. Global damage

Global damage is referred to a section of a member, a member, a substructure, or a whole structure
and constitutes one of the most suitable indicators about their loading capacity. Several methods to
determine an indicator of damage at the global level have been presented in the literature. In general,
these methods can be divided into four categories involving the following structural demand parameters:
stiffness degradation, ductility demands, energy dissipation, and strength demands. According to the first
approach, one of the most popular ways is to relate damage to stiffness degradation indirectly, that is, to
the variation of the fundamental frequency of the structure during deformation [DiPasquale and Cakmak
1990]. However, this approach is inappropriate for the evaluation of the global damage of a substructure
or its impact on the overall behavior. Furthermore, in order to evaluate the complete evolution of global
damage with loading, a vast computational effort is needed due to the required eigenvalue analysis at
every loading step. An alternative way to determine global damage is by computing the variation of
the structural stiffness during deformation, as in [Ghobarah et al. 1999]; but again, evaluation of the
global damage evolution requires heavy computations at every loading step. Many researchers determine
damage in terms of the IDR. Whereas macroscopic quantities such as IDRs are good indicators of global
damage in regular structures, this is not generally the case in more complex and/or irregular structures.
Damage determination has also been done with the aid of damage indices computed on the basis of
ductility (defined in terms of displacements, rotations or curvatures) and/or energy dissipation, as is
evident in the method of [Park and Ang 1985] for framed concrete buildings or in the review article
[Powell and Allahabadi 1988]. For the computation of damage in steel structures under seismic loading,
one can mention [Vasilopoulos and Beskos 2006; Benavent-Climent 2007]. Note that all these indices
are appropriate for seismic analyses only. They are not applicable to other types of problems, such as
static ones; see [Hanganu et al. 2002].

In this work, for the section damage index Ds of a steel member, the following expression is proposed

DS =
c
d
=

√
(MS −MA)2+ (NS − NA)2√
(MB −MA)2+ (NB − NA)2

. (4)

In the above, the bending moments MA, MS , and MB and the axial forces NA, NS , and NB as well as the
distances c and d are those shown in the moment M – axial force N interaction diagram of Figure 4 for a
plane beam-column element. The bending moment MS and axial force NS are design loads incorporating
the appropriate load factors in agreement with EC3 [2005].

Figure 4 includes a lower bound damage curve, the limit between elastic and inelastic material be-
havior and an upper bound damage curve, the limit between inelastic behavior and complete failure.
Thus, damage at the former curve is zero, while at the latter curve is one. Equation (4) is based on
the assumption that damage evolution varies linearly between the above two damage bounds. These
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Figure 4. Section damage definition.

lower and upper bound curves can be determined accurately with the aid of the beam-column fibered
plastic hinge modeling described in the next section. For their determination, the resistance safety factors
are taken into account in agreement with EC3. The bound curves of Figure 4 can also be determined
approximately by code type of formulae. Thus, the lower bound curve can be expressed as

M
My
+

N
Ny
= 1, (5)

where Ny and My are the minimum axial force and bending moment, respectively, which cause yielding,
while the upper bound curve can be expressed as

M
Mu
+

( N
Nu

)2
= 1, (6)

where Nu and Mu are the ultimate axial force and bending moment, respectively, which cause failure of
the section. Equations (5) and (6) can be used for the construction of the bounding curves of Figure 4.
The provisions in EC3 give a M-N interaction formula similar to (6), with the hardening effect not taken
into account, that is, with σu = σy or equivalently, Nu = Ny . Furthermore, since EC3 allows inelastic
analysis only for section class 1, the proposed method is limited to sections of that class.

The section damage index proposed in (4) represents an extension of (3) from strains (or stresses) to
forces and moments, i.e., stress resultants. Expressions for damage in terms of stress resultants are also
mentioned in [Lemaitre 1992]. By contrast, Florez-Lopez [1998] uses generalized effective stress, which
corresponds to bending moment, by analogy with the definition of effective stress, which corresponds to
inelastic stress. His formulation, however, includes only bending moments, without any interaction with
axial forces.

It should be noted that the proposed section damage index corresponds to the aforementioned fourth
type of damage indicators, which are related to the strength demand approach. More specifically, this
index is based on the demand-and-capacity-factor design format. There is an analogy or correspondence
between the capacity ratio of interaction equations of EC3 and the proposed damage index; see Figure
4. This format is similar to the one implemented for performance evaluation of new and existing steel
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moment-resisting structures in the FEMA standards 350 and 351, respectively [FEMA 2000a; 2000b].
The member damage index DM is taken as the largest section damage index, along the member. This is
a traditional and effective assumption in structural design; see [Kappos and Manafpour 2001].

Therefore,
DM =max(DS). (7)

To provide an overall damage index that is representative of the damage state of a complex struc-
ture, the member damage indices must be combined in a rational manner to reflect both the severity
of the member damage and the geometric distribution of damage within the overall structure. Various
weighted-average procedures have been proposed for combining the member damage indices into an
overall damage index. Thus, for a structure composed of m members, the overall damage index, DO ,
has the form

DO =

(∑m
i=1 D2

M,i Wi∑m
i=1 Wi

)1/2

, (8)

where DM,i and Wi denote the damage and weighting factor of the i-th member. This expression is
in agreement with the fact that the most damaged members affect the overall damage much more than
the undamaged (elastic) members. Park and Ang [1985], assuming that the distribution of damage is
correlated with the distribution of plastic strain energy dissipation, applied (8) with the weighting factors
to correspond to the amount of plastic strain energy dissipation. Similar assumptions have been proposed
elsewhere; e.g., in [Powell and Allahabadi 1988]. However, all these approaches are exclusively applied
to seismic problems where the external loads have a cyclic form. It is evident that the amount of plastic
strain energy dissipation is an inappropriate measure for static monotonic problems. For this reason, the
overall damage index DO is assumed here to be of the form [Cervera et al. 1995]

DO =

(∑m
i=1 D2

M,i�i∑m
i=1�i

)1/2

, (9)

where �i denotes the volume of the i-th member. This relation reflects both the severity of the member
damage and the geometric distribution of damage within the structure.

5. Global damage levels

5.1. Introduction. Damage is used here as a design criterion. Thus, the designer, in addition to a method
for determining damage, also needs a scale of damage in order to decide which level of damage is
acceptable for his design. Many damage scales can be proposed in order to select desired damage
levels associated with the strength degradation and capacity of a structure to resist further loadings.
Table 1 provides the three performance levels, immediate occupancy (IO), life safety (LS), and collapse
prevention (CP), associated with modern performance-based seismic design with the corresponding limit
response values (performance objectives) in terms of interstorey drift ratio (IDR), θpl (plastic rotation at
member end), µθ (local ductility), and d (damage) as well as the relevant references. The selection of the
appropriate damage level depends on various factors, such as the importance factor or the “weak beams
– strong columns” rule in seismic design of structures. Thus, for example, nuclear power plants should
be designed with zero damage and plane frames with 60% and 30% maximum damage in beams and
columns, respectively. The proposed design method uses the damage level scale that has been derived
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Performance level
Index Source IO LS CP

IDR [Leelataviwat et al. 1999] 1–2% 2–3% 3–4%
[SEAOC 1999] 1.5% 3.2% 3.8%
[Vasilopoulos and Beskos 2006] 0.5% 1.5% 3%

(transient) [FEMA 1997] 0.7% 2.5% 5%
(permanent) [FEMA 1997] negligible 1% 5%

θpl/θy [FEMA 1997] ≤ 1 ≤ 6 ≤ 8

µθ [FEMA 1997] 2 7 9

damage [Vasilopoulos and Beskos 2006] ≤ 5% ≤ 20% ≤ 50%
[ATC 1985] 0.1–10% 10–30% 30–60%

Table 1. Performance levels and corresponding limit response values given by several sources.

with the aid of extensive parametric studies on plane frames and corresponds to the three performance
levels of the FEMA 273 code [FEMA 1997]. It should be noted that damage characterizations (such as
minor and major) given by modern seismic codes are qualitative and very general, and hence inappropri-
ate for use in practical design. In contrast to them, the proposed values of damage indices can be easily
used in practical design.

The following subsections provide details concerning the parametric studies conducted herein for the
derivation of simple expressions relating damage to the plastic hinge rotation of the member sections and
the IDR of the plane steel frames considered to be used for the construction of a practical quantitative
damage scale.

5.2. Frame geometry and loading. A set of 36 plane steel moment-resisting frames was employed for
the parametric studies. These frames are regular and orthogonal with storey heights and bay widths equal
to 3 m and 5 m, respectively. Furthermore, they are characterized by a number of storeys ns with values
3, 6, 9, 12, 15, and 20 and a number of bays nb with values 3 and 6. The frames were subjected to
constant uniform vertical loads 1.35G+ 1.5Q = 30 kN/m and horizontal variable loads 1.35W , where
G, Q, and W correspond to dead, live, and wind loads, respectively. The material properties taken from
structural steel grade S235, were divided by a factor of 1.10 for compatibility with EC3 provisions. The
frames were designed in accordance with EC3 [2005] and EC8 [2004].

Data for the frames, including values for ns , nb, beam and column sections, and first and second
natural periods, are presented in the table on the next two pages, taken from [Karavasilis et al. 2007].

5.3. Proposed global damage level values. The previously described plane steel frames were analyzed
by the computer program DRAIN–2DX [Prakash et al. 1993]. Use was made of its beam-column element
with two possible plastic hinges at its ends modeled by fibers. During the analyses, the vertical loads of
the frames remained constant, while the horizontal ones were progressively increased in order to identify
the damage corresponding to each performance level of Table 1. Damage was calculated at section and
structural levels by using expressions (4), (7), and (9). In addition, the interstorey drift ratio and the
plastic hinge rotation at the end of each member were computed. The latter was computed in the form
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# ns nb columns and beams (see caption on next page) T1/sec T2/sec

1 3 3 240-330(1-3) 0.73 0.26
2 3 3 260-330(1-3) 0.69 0.21
3 3 3 280-330(1-3) 0.65 0.19
4 3 6 240-330(1-3) 0.75 0.23
5 3 6 260-330(1-3) 0.70 0.21
6 3 6 280-330(1-3) 0.66 0.20
7 6 3 280-360(1-4) 260-330(5-6) 1.22 0.41
8 6 3 300-360(1-4) 280-330(5-6) 1.17 0.38
9 6 3 320-360(1-4) 300-330(5-6) 1.13 0.37

10 6 6 280-360(1-4) 260-330(5-6) 1.25 0.42
11 6 6 300-360(1-4) 280-330(5-6) 1.19 0.40
12 6 6 320-360(1-4) 300-330(5-6) 1.15 0.38
13 9 3 340-360(1) 340-400(2-5) 320-360(6-7) 300-330(8-9) 1.55 0.54
14 9 3 360-360(1) 360-400(2-5) 340-360(6-7) 320-330(8-9) 1.52 0.53
15 9 3 400-360(1) 400-400(2-5) 360-360(6-7) 340-330(8-9) 1.46 0.51
16 9 6 340-360(1) 340-400(2-5) 320-360(6-7) 300-330(8-9) 1.57 0.55
17 9 6 360-360(1) 360-400(2-5) 340-360(6-7) 320-330(8-9) 1.53 0.53
18 9 6 400-360(1) 400-400(2-5) 360-360(6-7) 340-330(8-9) 1.47 0.51

19 12 3 400-360(1) 400-400(2-3) 400-450(4-5) 360-400(6-7)
340-400(8-9) 340-360(10) 340-330(11-12)

1.90 0.66

20 12 3 450-360(1) 450-400(2-3) 450-450(4-5) 400-450(6-7)
360-400(8-9) 360-360(10) 360-330(11-12)

1.78 0.62

21 12 3 500-360(1) 500-400(2-3) 500-450(4-5) 450-450(6-7)
400-400(8-9) 400-360(10-11) 400-330(12)

1.72 0.60

22 12 6 400-360(1) 400-400(2-3) 400-450(4-5) 360-400(6-7)
340-400(8-9) 340-360(10) 340-330(11-12)

1.90 0.67

23 12 6 450-360(1) 450-400(2-3) 450-450(4-5) 400-450(6-7)
360-400(8-9) 360-360(10) 360-330(11-12)

1.78 0.63

24 12 6 500-360(1) 500-400(2-3) 500-450(4-5) 450-450(6-7)
400-400(8-9) 400-360(10-11) 400-330(12)

1.72 0.61

25 15 3 500-300(1) 500-400(2-3) 500-450(4-5) 450-400(6-7)
400-400(8-12) 400-360(13-14) 400-330(15)

2.29 0.78

26 15 3 550-300(1) 550-400(2-3) 550-450(4-5) 500-400(6-7)
450-400(8-12) 450-360(13-14) 450-330(15)

2.22 0.75

27 15 3 600-300(1) 600-400(2-3) 600-450(4-5) 550-450(6-7)
500-450(8-9) 500-400(10-12) 500-360(13-14) 500-330(15)

2.10 0.72

28 15 6 500-300(1) 500-400(2-3) 500-450(4-5) 450-400(6-7)
400-400(8-12) 400-360(13-14) 400-330(15)

2.30 0.78

29 15 6 550-300(1) 550-400(2-3) 550-450(4-5) 500-400(6-7)
450-400(8-12) 450-360(13-14) 450-330(15)

2.21 0.75

30 15 6 600-300(1) 600-400(2-3) 600-450(4-5) 550-450(6-7)
500-450(8-9) 500-400(10-12) 500-360(13-14) 500-330(15)

2.10 0.72
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# ns nb columns and beams (see caption) T1/s T2/s

31 20 3 600-300(1) 600-400(2-3) 600-450(4-5) 550-450(6-10) 500-450(11-13)
500-400(14-16) 450-400(17) 450-360(18-19) 450-330(20)

2.82 0.97

32 20 3 650-300(1) 650-400(2-3) 650-450(4-5) 600-450(6-10) 550-450(11-13)
550-400(14-16) 500-400(17) 500-360(18-19) 500-330(20)

2.76 0.94

33 20 3 700-300(1) 700-360(2) 700-400(3) 700-450(4-5) 650-450(6-10)
600-450(11-13) 600-400(14-16) 550-400(17) 550-360(18-19) 550-330(20)

2.73 0.93

34 20 6 600-300(1) 600-400(2-3) 600-450(4-5) 550-450(6-10) 500-450(11-13)
500-400(14-16) 450-400(17) 450-360(18-19) 450-330(20)

2.75 0.96

35 20 6 650-300(1) 650-400(2-3) 650-450(4-5) 600-450(6-10) 550-450(11-13)
550-400(14-16) 500-400(17) 500-360(18-19) 500-330(20)

2.70 0.93

36 20 6 700-300(1) 700-360(2) 700-400(3) 700-450(4-5) 650-450(6-10)
600-450(11-13) 600-400(14-16) 550-400(17) 550-360(18-19) 550-330(20)

2.67 0.92

Table 2. Steel moment-resisting frames considered in parametric studies. In the central
column, the expression 240-330(1-3) means that the first three storeys have columns
with HEB240 sections and beams with IPE330 sections. The numbers in parentheses
always refer to a range of storeys or single storey.

θpl/θy , where θy is the rotation at yielding expressed in FEMA [1997] as

θy =
Mpl L
6E I

, (10)

where L is the member length, E is the modulus of elasticity of the material and I is the moment of
inertia of the section. When members, such as columns, are subjected to an axial compressive force P ,
the right-hand side of (10) is multiplied by the factor 1− (P/Py), where Py is the axial yield force of
the member.

This subsection presents the results of the parametric studies. Figure 5 shows the variation of the
section damage index DS versus the ratio θpl/θy for low-rise (3 and 6 storeys) and high-rise (9, 12, 15
and 20 storeys) frames, respectively. Figure 6 shows the variation of the overall damage index DO versus
IDR for low- and high-rise frames respectively. Using the method of least squares the mean values of
these variations were determined and plotted as straight line segments in Figures 5–6. The analytical
expressions of these lines are of the following form

For the low rise frames:

Ds = 12.526 ·
(θpl

θy

)
for

θpl

θy
≤ 2.2 and Ds = 3.54 ·

(θpl

θy

)
+ 20.14 for

θpl

θy
> 2.2 (11)

DO = 4.67 · IDR. (12)

For the high rise frames:

Ds = 2.42 ·
(θpl

θy

)
(13)

DO = 0.94 · IDR. (14)
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Figure 5. Ds versus θpl/θy curves for low- and high-rise frames.

The coefficient of determination R2 in (11) and (13) is 0.96 and 0.79 respectively, showing that there
is good correlation between the section damage and the plastic hinge rotation. On the contrary, the
correlation between structure damage and the IDR is not so good as the coefficient of determination is
0.53 and 0.72 for (12) and (14), respectively.

Using the values of θpl and IDR given in FEMA [1997] for the three performance levels of Table
1 into (11)–(14), a section and overall damage scale is constructed for low- and high-rise frames and
given in Table 4. The low values of damage in the high rise frames in that table can be explained by the
instabilities caused in the analyses due to the concentration of damage in one or two sections and the
P-δ and P-1 effects. In the case of structural damage, this concentration combined with the definition
of DO in (9) explains these very small values. It is apparent from (9) that even if one has large values of
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Figure 6. DO versus IDR curves for low- and high-rise frames.
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section damage in a few sections, the overall damage will have a small value because of the small or zero
values in other sections. For this reason, the overall damage index is not considered as a representative
one, and the section damage index is used in the applications.

6. Direct damage-controlled steel design

The application of the proposed DDCD method to plane steel members and framed steel structures is
done with the aid of the DRAIN–2DX [Prakash et al. 1993] computer program, modified properly by
the authors to perform both analysis and design. This program can statically analyze with the aid of the
finite element method plane beam structures taking into account material and geometric nonlinearities.
Material nonlinearities are accounted for through fiber modeling of plastic hinges in a concentrated plas-
ticity theory (element 15 of DRAIN–2DX). Geometric nonlinearities include the P-δ effect (influence of
axial force acting through displacements associated with member bending) and the P-1 effect (influence
of vertical load acting through lateral structural displacements), which are accounted for by utilizing the
geometric stiffness matrix.

The beam-column section is subdivided in a user-defined number of steel fibers (Figure 7). Sensitivity
studies have been undertaken to define the appropriate number of fibers for various types of sections.
For example, for an I-section under axial force and uniaxial bending moment one can have satisfactory
accuracy by dividing that section into 30 fibers (layers). Thus, for every structural steel member, selected
sections are divided into steel fibers and the stress–strain relationship of (1) is used for tension and
compression.

In the analysis, every member of the structure needs to be subdivided into several elements (usually
three or four) along its length to model the inelastic behavior more accurately. The analysis leads to
highly accurate results, but is, in general, computationally intensive for large and complex structures.
Figure 8 shows the flow chart of the modified DRAIN–2DX for damage-controlled steel design.

Using this modified DRAIN–2DX, the user has three design options at his disposal in connection with
damage-controlled steel design:

(i) determine damage for a given structure under given loading,

(ii) dimension a structure for given loading and given target damage, or

(iii) determine the maximum loading a given structure can sustain for a given target damage.

Y
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Figure 7. Fiber modeling of a general section.
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Figure 8. Flowchart of the modified program DRAIN–2DX [Prakash et al. 1993].
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The first option is the one usually chosen in current practice. The other two options are the ones which
actually make the proposed design method a direct damage-controlled one.

7. Examples of application

This section describes two numerical examples to illustrate the use of the proposed design method and
demonstrate its advantages.

7.1. Static design of a plane steel frame. A plane two bay – two storey steel frame is examined in
this example. Figure 9 shows the geometry and loading of the frame. Columns consist of standard
HEB sections, while beams of standard IPE sections. The beams are subjected to uniform vertical
loads G = 15.0 kN/m and Q = 20.0 kN/m, where G and Q correspond to permanent and live loads,
respectively. Additionally, the frame is subjected to horizontal wind loads W = 12.6 kN at the first floor
level and W = 22.2 kN/m at the second. Steel is assumed to follow the material properties of steel grade
S235 with trilinear stress-strain curve. Without loss of generality, only one loading combination of EC3
is examined here, that corresponding to 1.35(G+ Q+W ).

In the following, the frame is studied for the three design options of the proposed design method.
Initially, the first design option, related to the determination of damage for a given structure and known
loading, is examined. In this case, the structure is designed according to the EC3 method. In order to
design this frame, four different member sections are determined, as shown in Figure 9: (a) columns of
the first floor, (b) columns of the second floor, (c) beams of the first floor, and (d) beams of the second
floor.

The most appropriate standard sections have been found to be those in Table 3. These sections have
been obtained on the basis of a first order elastic analysis according to EC3. In order to determine
the damage level, the structure is analyzed by the modified DRAIN–2DX program [Prakash et al. 1993],
taking into account inelasticity and second order phenomena. The damage determined in all the members
was found equal to zero (Table 3) indicating linear elastic behavior of the structure.

3.0 m

4.0 m

5.0 m 5.0 m

(a) (a)(a)

(b) (b) (b)

(c)(c)

(d) (d)

W=22.2 kN

W=12.6 kN

G=15 kN/m, Q=20 kN/m

G=15 kN/m, Q=20 kN/m

Figure 9. Geometry and loads for the frame of Section 7.1.
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EC3 Proposed method – DDCD
Member Sections Capacity ratio Damage Sections Damage

columns (a) HEB-180 0.742 0.0% HEB-160 0.0%
(b) HEB-140 0.821 0.0% HEB-140 24.3%

beams (c) IPE-360 0.686 0.0% IPE-240 73.7%
(d) IPE-330 0.842 0.0% IPE-270 20.0%

Table 3. Design of two-dimensional frame for the structure of Figure 9.

The second design option has to do with member dimensioning for a preselected target damage level
and known loading. Thus, using the modified DRAIN–2DX program, one can determine the most ap-
propriate sections in order to have the selected target (maximum) damage at members, for the same
loading combination as above. Two different damage levels are considered by setting the maximum
member damage equal to 25% and 75% for columns and beams, respectively. The sections found appear
in Table 3. For those sections, the computed values of maximum member damage DS become 24.2%
and 73.7% for columns and beams, very close from below to the preselected (target) values of 25% and
75%. It is evident that the acceptance of greater damage levels decreases the sizes of the sections.

Finally, the third design option associated with the determination of maximum loading for a given
structure and preselected target damage is examined. Use is made again of the modified DRAIN–2DX
program. The examined structure is assumed to consist of the standard sections obtained in the second
design option (see Table 3). In this case, vertical (permanent and live) loads are assumed to remain
the same. Thus, allowing maximum values of damage DS = 30% and 0% for beams and columns,
respectively, one can determine the maximum wind load. The allowable maximum wind load is found
to be 11.5 and 20.2 kN for the first and second floor, respectively.

7.2. Seismic design of a plane steel frame by push-over. Consider an S235 plane steel moment-resisting
frame of three bays and three storeys. The bay width is assumed to be 5 m and the storey height 3 m. The
load combination G+ 0.3Q on beams is equal to 27.5 KN/m. HEB profiles are used for the columns and
IPE profiles for the beams. The frame was designed according to EC3 [2005] and EC8 [2004] for a peak
ground acceleration equal to 0.4 g, a soil class D and a behaviour factor q = 4 with the aid of the SAP2000
program [2005] in conjunction with the capacity design requirements of EC8. Thus, for a design base
shear of 355 kN, the following column and beam sections were obtained for the three storeys: (HEB280-
IPE360) + (HEB260-IPE330) + (HEB240-IPE300). The maximum elastic top floor displacement was
found equal to 0.0465 m. Thus, according to EC8, the corresponding inelastic displacement will be
0.0465q = 0.186 m, following the well known equal displacement rule.

The frame is subsequently analyzed using static inelastic push-over analysis with an inverted triangle
type of profile of horizontal forces. The forces are progressively increased until the maximum inelastic
displacement of the frame reaches the previously computed one of 0.186 m.

The damage distribution in the frame is shown in Figure 10. It is observed that plastic hinges are
formed both in beams and columns, which implies that in reality the capacity design requirement is not
satisfied. Damage values are up to about 47% in the beams and up to 26% in columns (44% at their
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Figure 10. Damage distribution in the frame of Section 7.2 designed according to EC3
and EC8.

bases). The DDCD can overcome this drawback of formation of plastic hinges in the columns, because
it can directly control damage and plastic hinge formation in the frame. Indeed, this frame is designed
for the CP performance level of Table 4 by assuming target damage of 45% in the beams and 0% in all
columns except those of the first floor where the target damage at their bases is 40%. For this target
damage distribution and design base shear computed with the aid of the EC8 spectrum, the sections
of the frame are obtained. For the resulting frame the push-over curve is used to determine the elastic
displacement for the aforementioned base shear. This displacement is multiplied by q in order to find
the maximum inelastic one and hence the corresponding base shear from the push-over curve. For this
base shear the distribution of damage is obtained. If this distribution is in accordance with the target one,
the selected sections are acceptable. Otherwise, the sections are changed and the previous procedure is
repeated. Thus, for the damage distribution of Figure 11 with damage values up to about 44% in the
beams and up to 37% in column bases, the column and beam sections for the three storeys of the frame
were found to be (HEB300-IPE330) + (HEB300-IPE330) + (HEB280-IPE300). This selection results in
a global collapse mechanism satisfying completely the capacity design requirement.

Performance Low rise frames High rise frames
level Ds DO Ds DO

IO ≤ 13% ≤ 3% ≤ 3% ≤ 1%
LS ≤ 40% ≤ 12% ≤ 15% ≤ 2%
CP ≤ 50% ≤ 24% ≤ 20% ≤ 5%

Table 4. Performance levels and corresponding section and structural damage.
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Figure 11. Damage distribution in the frame of Section 7.2 designed according to DDCD.

8. Conclusions

This paper introduced the direct damage-controlled design (DDCD) method for structural steel design.
The method

• works with the aid of the finite element method incorporating material and geometric nonlinearities,
a continuum mechanics definition of damage and a damage scale derived on the basis of extensive
parametric studies;

• allows the designer to either determine the damage level for a given structure and known loading,
or dimension a structure for a target damage level and known loading, or determine the maximum
loading for a given structure and a target damage level;

• can also be used for the case of seismic loading in the framework of the static inelastic (push-over)
analysis providing a reliable way for achieving seismic capacity design.
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NONLINEAR FLUTTER INSTABILITY OF THIN DAMPED PLATES:
A SOLUTION BY THE ANALOG EQUATION METHOD

JOHN T. KATSIKADELIS AND NICK G. BABOUSKOS

We investigate the nonlinear flutter instability of thin elastic plates of arbitrary geometry subjected to a
combined action of conservative and nonconservative loads in the presence of both internal and external
damping and for any type of boundary conditions. The response of the plate is described in terms of
the displacement field by three coupled nonlinear partial differential equations (PDEs) derived from
Hamilton’s principle. Solution of these PDEs is achieved by the analog equation method (AEM), which
uncouples the original equations into linear, quasistatic PDEs. Specifically, these are a biharmonic equa-
tion for the transverse deflection of the plate, that is, the bending action, plus two linear Poisson’s equa-
tions for the accompanying in-plane deformation, that is, the membrane action, under time-dependent
fictitious loads. The fictitious loads themselves are established using the domain boundary element
method (D/BEM). The resulting system for the semidiscretized nonlinear equations of motion is first
transformed into a reduced problem using the aeroelastic modes as Ritz vectors and then solved by a
new AEM employing a time-integration algorithm. A series of numerical examples is subsequently
presented so as to demonstrate the efficiency of the proposed methodology and to validate the accuracy
of the results. In sum, the AEM developed herein provides an efficient computational tool for realistic
analysis of the admittedly complex phenomenon of flutter instability of thin plates, leading to better
understanding of the underlying physical problem.

1. Introduction

The stability of thin plates subjected to conservative as well as nonconservative loads is of great impor-
tance in many fields of engineering such as aircrafts, space structures, mechanical, and civil engineering
applications. The combined action of conservative and nonconservative loads, such as follower forces and
aerodynamic pressure, initiate flutter instability in the plate that manifests itself in the form of vibrations
with ever-increasing amplitude as time goes. Basically, flutter is a self-excited oscillation which occurs
in systems which are not subjected to periodic forces. Linear plate theory indicates that there is a critical
value of load above which the plate becomes unstable and the displacements grow exponentially with
time. However, as the deflection of the plate increases, the membrane stresses pick up considerably in
magnitude and limit the motion to a bounded value with increasing amplitude as the load level increases.
Hence, we have to consider the nonlinear plate problem in order to have a better insight to this type of
instability. In presence of damping, be it internal or external, the plate becomes unstable at the critical
value of the nonconservative forces and reaches a periodic motion, known as limit cycle oscillation,
which is independent of the initial displacements.

Keywords: nonlinear flutter, plates, aeroelasticity, instability, follower forces, boundary elements, analog equation method,
aerodynamic loads.
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The linear flutter of plates has been examined by many authors who used analytic and approximate
techniques. Leipholz and Pfendt [1983] studied the flutter instability of rectangular plates with various
types of boundary conditions under uniformly distributed follower forces. Adali [1982] investigated the
flutter and divergence instability of a rectangular plate on an elastic foundation where he found that
the type of instability depends on the combination of the conservative and nonconservative loads, the
Poisson’s ratio, the foundation moduli and the plate aspect ratio. Higuchi and Dowell [1992] were among
the first researchers to investigate the destabilizing effect of structural damping on flutter instability
of plates. Zuo and Schreyer [1996] studied the flutter and divergence instability of beams and thin
rectangular plates under the combined action of conservative and nonconservative loads. Kim and Kim
[2000] used the finite element method (FEM) to analyze Kirchhoff and Mindlin type of plates under
follower forces.

The linear and nonlinear flutter of plates subjected to aerodynamic pressure has been also the subject
of many investigators due to the importance of this type of instability in flight vehicles traveling at
supersonic Mach numbers. For instance, Dowell [1966] studied the nonlinear oscillations of a plate that
is subjected to in-plane loads and aerodynamic pressure according to quasisteady supersonic flow theory.
Next, Mei [1977] also studied this problem using the FEM, while Shiau and Lu [1990] investigated the
nonlinear flutter of composite laminated plates. The limit cycle oscillations of a thin isotropic rectangular
plate exposed to supersonic air flow has been also investigated by many authors [Weiliang and Dowell
1991; Guo and Mei 2003; Chen et al. 2008]. Due to the complexity of the governing equations, only
approximate and numerical techniques such as the Rayleigh–Ritz method and the FEM have been used,
which however treat plates with relatively simple geometry (rectangular, triangular) under simple load
distributions and boundary (support) conditions. Finally, the linear flutter and divergence instability of
a plate of arbitrary geometry with any type of boundary conditions has been investigated recently by
Babouskos and Katsikadelis [2009].

In this paper the problem of nonlinear flutter instability of plates of any type of geometry subjected to
arbitrary boundary conditions under interior and edge conservative and nonconservative loads of follower
type is solved in presence of internal (structural) and external (viscous) damping. The equations of the
plate are derived by using Hamilton’s principle and considering nonlinear kinematic relations resulting
from the von Kármán assumption. The resulting initial-boundary value problem consisting of three
coupled nonlinear hyperbolic PDEs in terms of displacements with nonlinear boundary conditions is
solved using the AEM developed in [Katsikadelis 1994; 2002], which converts the original equations into
three linear uncoupled quasistatic PDEs, namely a linear plate (biharmonic) equation for the transverse
deflection and two linear (Poisson) membrane equations for the membrane (in-plane) deformation. The
new problem employs time-dependent fictitious loads that are established using the D/BEM, under the
original boundary conditions. This procedure results in an initial value problem of nonlinear equations of
motion for the discretized fictitious sources, whose solution is achieved by transformation to a reduced
problem using Ritz vectors. The aeroelastic modes, namely the eigenmodes of the linear flutter plate
problem near the critical point and in absence of damping, are selected as Ritz vectors [Guo and Mei
2003]. The reduced initial value problem is solved using a new AEM time step integration algorithm
[Katsikadelis 2009]. Finally, the response of the plate is established from the integral representation of
the substitute problems. In terms of examples, the vibration of plates under a given initial disturbance
plus the action of the conservative and nonconservative forces and the ensuing postcritical behavior
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is examined. These numerical examples demonstrate the efficiency and validate the accuracy of the
methodology. Useful conclusions are drawn, which validate also the findings of earlier investigators. In
sum, the present method provides a computational tool for a realistic analysis and better understanding of
the complex phenomenon of nonlinear flutter instability of plates in the presence of damping. Although
the membrane inertia forces were ignored here, the solution procedure permits their inclusion and their
influence will be the subject of a forthcoming paper.

2. Governing equations

2.1. The nonlinear plate problem. Consider a thin elastic plate of uniform thickness h occupying the
two dimensional multiply connected domain � of the xy plane with boundary 0 =

⋃K
i=0 0i (Figure 1).

The curves 0i (i = 0, 1, 2, . . . , K ) may be piecewise smooth. The boundary may be simply supported,
clamped, free, or elastically supported with transverse stiffness kT (x) and rotational stiffness kR(x)x :
(x, y) ∈ 0, respectively. The plate is subjected to in-plane conservative nx , ny , and/or nonconservative
loads px , py (body forces) as well as to aerodynamic pressure 1p due to air flow. Moreover, along
the movable edges conservative N ∗n , N ∗t and nonconservative P∗n , P∗t forces may be applied. The von
Kármán assumption for the kinematic relation is adopted:

εx = u,x + 1
2w

2
,x , εy = v,y +

1
2w

2
,y, γxy = u,y + v,x +w,xw,y, (2-1)

where u= u(x, y, t) and v= v(x, y, t) are the membrane displacements and w=w(x, y, t) the transverse
displacement.

Quasisteady supersonic first-order piston theory is employed for the aerodynamic pressure; it gives a
good approximation for high supersonic Mach numbers [Dowell 1966; Mei 1977; Guo and Mei 2003].
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Figure 1. Plate geometry and supports (c = clamped, ss = simply supported, f = free).
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In this case the pressure is

1p =−(qxw,x + qyw,y + cẇ), (2-2)

where qx , qy , and c are parameters depending on the density, the velocity and the direction of the air flow
and are given in [Guo and Mei 2003]. Neglecting in-plane inertia and damping forces, the governing
equations and the boundary conditions of the problem are obtained from Hamilton’s principle, which in
this case reads ∫ t2

t1
(δT − δU + δV + δWnc)dt = 0, (2-3)

where T , U are the kinetic and elastic energy and V the potential of the external forces:

T = 1
2

∫
�

ρhẇ2 d�, (2-4)

U =
D
2

∫
�

(
w2
,xx +w

2
,yy + 2νw,xxw,yy + 2(1− ν)w2

,xy
)
d�+ 1

2

∫
0

(kTw
2
+ kRw

2
,n)ds

+
C
2

∫
�

((
u,x+1

2w
2
,x
)2
+
(
v,y+

1
2w

2
,y
)2
+2ν

(
u,x+ 1

2w
2
,x
)(
v,y+

1
2w

2
,y
)
+

1−ν
2
(
u,y+v,x+w,xw,y

)2
)

d�,

(2-5)

V =−
∫
�

[
(nx + px)u+ (ny + py)v

]
d�−

∫
0

(
(N ∗n + P∗n )un + (N ∗t + P∗t )ut

)
ds. (2-6)

Here δWnc is the virtual work of the nonconservative loads and the external and internal damping forces,
written as

δWnc =

∫
�

(
(px − qx)w,x + (py − qy)w,y

)
δwd�+

∫
0

(P∗nw,n + P∗t w,t)δwds−
∫
�

cẇδwd�

−

∫
�

ηD
(
(ẇ,xx + νẇ,yy)δw,xx + (ẇ,yy + νẇ,xx)δw,yy + 2(1− ν)ẇ,xy δw,xy

)
d�, (2-7)

where c= c(x, y) and η= η(x, y) are the external damping and internal damping coefficients, ρ=ρ(x, y)
is the material density of the plate, D= Eh3/12(1−ν2) is the flexural rigidity with E, ν being the Young’s
modulus and Poisson’s ratio, respectively, and C = Eh/(1− ν2) is the membrane stiffness of the plate.

Introducing (2-4)–(2-7) into (2-3), using the calculus of variations, performing the necessary integra-
tions by parts, and ignoring the time-dependent terms in the boundary conditions, we obtain the following
initial and boundary value problems:

(i) For the transverse deflection,

D∇4w−(Nxw,xx+2Nxyw,xy+Nyw,yy)+(qx+nx)w,x+(qy+ny)w,y+ρhẅ+cẇ+ηD∇4ẇ=0

in �, (2-8)

w(x, 0)= g1(x), ẇ(x, 0)= g2(x) in �, (2-9)



NONLINEAR FLUTTER INSTABILITY OF THIN DAMPED PLATES 1399

Vw+ N ∗nw,n + N ∗t w,t + kTw = 0 or w = 0 on 0, (2-10a)

Mw− kRw,n = 0 or w,n = 0 on 0, (2-10b)

k(k)T w(k)− [[Tw]]k = 0 or w(k) = 0 at corner point k, (2-10c)

(ii) For the in-plane deformation,

∇
2u+ 1+ν

1−ν
(u,x+v,y),x+w,x

(
2

1−ν
w,xx+w,yy

)
+

1+ν
1−ν

w,xyw,y+
nx+ px

Gh
= 0

∇
2v+

1+ν
1−ν

(u,x+v,y),y+w,y

(
2

1−ν
w,yy+w,xx

)
+

1+ν
1−ν

w,xyw,x+
ny+ py

Gh
= 0

 in �, (2-11)

Nn = N ∗n + P∗n or un = u∗n
Nt = N ∗t + P∗t or ut = u∗t

}
on 0, (2-12)

where G = E/2(1+ν) is the shear modulus, Vw is the equivalent shear force, Mw is the normal bending
moment, Tw is the twisting moment along the boundary, while [[Tw]]k is its discontinuity jump at corner
k. The operators producing these quantities are given as

V =−D
(
∂
∂n
∇

2
+ (1− ν) ∂

∂s

(
∂2

∂s ∂n
− κ

∂
∂s

))
, (2-13a)

M =−D
(
∇

2
− (1− ν)

(
∂2

∂s2 + κ
∂
∂n

))
, (2-13b)

T = D(1− ν)
(
∂2

∂s ∂n
− κ

∂
∂s

)
, (2-13c)

where κ = κ(s) is the curvature of the boundary and n, s are the intrinsic boundary coordinates. Finally,
the quantities Nx , Ny , Nxy represent the in-plane membrane forces given as

Nx = C(εx + νεy), Ny = C(εy + νεx), Nxy = C
1− ν

2
γxy . (2-14)

2.2. The linear plate problem. The plate problem is linearized if the stretching of the middle surface
due to bending is neglected, that is if it is set w4

,x = w
4
,y = w

2
,xw

2
,y ' 0 in (2-5). This implies that

although the in-plane forces contribute to bending they are not influenced by it. Thus the nonlinear
terms in (2-11) vanish. The boundary conditions are the same for both problems. Apparently, in this
case the two problems are uncoupled. Therefore, the in-plane forces Nx , Ny , Nxy are obtained from
the linearized equations (2-11), which are solved independently. The solution of the linear problem is
required because the eigenmodes of the resulting eigenvalue problem are employed for the solution of
the nonlinear equations of motion (Section 3.4).

3. The AEM solution

3.1. The plate problem. The initial boundary value problem (2-8)–(2-10) for the dynamic response of
the plate is solved using the AEM [Katsikadelis 1994]. The analog equation for the problem at hand is

∇
4w = b(x, t), x = {x, y} ∈�, (3-1)
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where b(x, t) represents the time-dependent fictitious load. Equation (3-1) is a quasistatic equation, that
is, the time appears as a parameter, and it can be solved with the boundary conditions (2-10) at any
instant t using the BEM. Thus, the solution at a point x ∈� is obtained in integral form as

w(x, t)=∫
�

w∗bd�+
∫
0

(
w∗Vw+w,n Mw∗−w∗,n Mw−wVw∗

)
ds−

∑
k

(
w∗[[Tw]] −w[[Tw∗]]

)
k, (3-2)

which for x ∈ 0 yields the following two boundary integral equations for points where the boundary is
smooth:

1
2w(x, t)=∫

�

w∗bd�+
∫
0

(
w∗Vw+w,n Mw∗−w∗,n Mw−wVw∗

)
ds−

∑
k

(
w∗[[Tw]] −w[[Tw∗]]

)
k, (3-3)

1
2w,ν(x, t)=∫

�

ω∗bd�+
∫
0

(
ω∗Vw+w,n Mω∗−ω∗,n Mw−wVω∗

)
ds−

∑
k

(
ω∗[[Tw]] −w[[Tω∗]]

)
k, (3-4)

in which w∗ = w∗(x, y), for x, y ∈ 0, is the fundamental solution and ω∗ its normal derivative at point
x ∈ 0:

w∗ =
1

8π
r2 ln r, ω∗ =

( 1
8π

r2 ln r
)
,ν
=

1
8π

rr,ν(2 ln r + 1). (3-5)

ν being the unit normal vector to the boundary at point x, whereas n is the unit normal vector to the
boundary at the integration point y, and r = ‖x− y‖ (Figure 2, left).

Equations (3-3) and (3-4) can be used to establish the boundary quantities not specified. They are
solved numerically using the BEM. The boundary integrals are approximated using N constant boundary
elements, whereas the domain integrals are approximated using M linear triangular elements. The domain
discretization is performed automatically using the Delaunay triangulation. Since the fictitious source
is not defined on the boundary, the nodal points of the triangles adjacent to the boundary are placed on
their sides (Figure 2, right).
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Figure 2. Left: BEM notation. Right: Boundary and domain discretization.
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Thus, after discretization and application of the boundary integral equations (3-3) and (3-4) at the N
boundary nodal points and (3-3) at the Nc corner points we obtain

H


w

wc

w,n

= G


V
R
M

+ Ab, (3-6)

where H, G are N×N known coefficient matrices originating from the integration of the kernel functions
on the boundary elements, A is an N ×M coefficient matrix originating from the integration of the kernel
function on the domain elements, w,wc,w,n are the vectors of the N boundary nodal displacements, Nc

corner displacements and N boundary nodal normal slopes, respectively, V , R, M are the vectors of the
N nodal values of effective shear force, Nc concentrated corner forces, and N nodal values of the normal
bending moment, and b is the vector of the M nodal values of the fictitious source.

Equation (3-6) constitutes a system of 2N + Nc equations for 4N + 2Nc+M unknowns. Additional
2N + Nc equations are obtained from the boundary conditions. Thus, the boundary conditions (2-10),
when applied at the N boundary nodal points and the Nc corner points yield the equations

α1w+α2w,n +α3V = 0, β1w,n +β2 M = 0, c1wc+ c2 R = 0, (3-7)

where α1, α2, α3, β1, β2, c1, c2 are known coefficient matrices. Note that the first equation in (3-7) has
resulted after approximating the derivative w,t in (2-10a) with a finite difference scheme.

Equations (3-6) and (3-7) can be combined and solved for the boundary quantities w, wc, w,n , V , R,
M in terms of the fictitious load b. Subsequently, these expressions are used to eliminate the boundary
quantities from the discretized counterpart of (3-2). Thus we obtain the following representation for the
deflection

w(x, t)=
M∑

k=1

bk(t)Wk(x), x ∈�. (3-8)

The derivatives of w(x) at points x inside � are obtained by direct differentiation of (3-2). Thus, we
obtain after elimination of the boundary quantities

w,pqr (x, t)=
M∑

k=1

bk(t)Wk,pqr (x), p, q, r ∈ {0, x, y}, x ∈�, (3-9)

3.2. The plane stress problem. Noting that Equations (2-11) are of the second order their analog equa-
tions are obtained using the Laplace operator. This yields

∇
2u = b1(x, t), ∇

2v = b2(x, t). (3-10)

Setting q = u,n , the integral representation of the solution of the first of these equations is

εu(x, t)=
∫
�

v∗b1 d�−
∫
0

(v∗q − q∗u)ds x ∈�∪0 (3-11)

in which v∗ = `nr/2π is the fundamental solution to ∇2u = b1(x, t) and q∗ = v∗,n its derivative normal
to the boundary, r = ‖ y− x‖x ∈�∪0 and y ∈ 0, ε is the free term coefficient (ε = 1 if x ∈�, ε = 1

2
if x ∈ 0 and ε = 0 if x /∈�∪0).
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Using the BEM with constant boundary elements and linear triangular domain elements and following
the same procedure applied for the plate equation, we obtain the following representation for the in-plane
displacement u and its derivatives:

u,pq(x, t)=
M∑

k=1

b(1)k (t)U (1)
k,pq(x)+

M∑
k=1

b(2)k (t)U (2)
k,pq(x)+U0,pq(x), p, q ∈ {0, x, y}, x ∈�. (3-12)

Similarly, we obtain for the displacement v

v,pq(x, t)=
M∑

k=1

b(1)k (t)V (1)
k,pq(x)+

M∑
k=1

b(2)k (t)V (2)
k,pq(x)+ V0,pq(x), p, q ∈ {0, x, y}, x ∈�. (3-13)

where U (1)
k , U (2)

k , V (1)
k , V (2)

k , U0, V0 are known functions. Note that U0, V0 result from the nonhomoge-
neous boundary conditions.

3.3. The final step of the AEM. Equations (3-9), (3-12) and (3-13) give the displacements w(x, t),
u(x, t), v(x, t) and their derivatives provided that the three fictitious sources b(t), b(1)(t), b(2)(t) are first
established. This is achieved by working as following.

Collocating the PDEs (2-8) and (2-11) at the M internal nodal points and substituting the expressions
(3-9) for the transverse deflection and the values (3-12), (3-13) for the membrane displacements, we
obtain the following system of 3M nonlinear equations for bk(t), b(1)k (t), b(2)k (t), (k = 1, . . . ,M)

Mb̈+Cḃ+ H(b, b(1), b(2))= 0, (3-14a)

A1b(1)+ B1b(2)+ H1(b)= G1, (3-14b)

A2b(1)+ B2b(2)+ H2(b)= G2, (3-14c)

where M,C are M × M known generalized mass and damping matrices, H is a generalized stiff-
ness vector depending nonlinearly on the b, b(1), b(2) and originates from the nonlinear terms of (2-8),
H1(b), H2(b) are generalized stiffness vectors depending nonlinearly on b and originate from the non-
linear terms of (2-11), A1, A2, B1, B2 are M ×M known matrices and originate from the linear terms
of (2-11), and G1, G2 are vectors containing the in-plane loads. The expressions of these quantities are
given in the Appendix.

Equation (3-14a) represents the semidiscretized equation of motion of the plate. The associated initial
conditions are obtained by substituting (3-8) into (2-9):

b(0)=W−1 g1, ḃ(0)=W−1 g2, (3-15)

where W is M ×M known matrix and g1, g2 are vectors originating from (2-9).

3.4. The solution of the nonlinear equations of motion. Equations (3-14b) and (3-14c) are quasistatic
and linear with respect to b(1) and b(2). Thus solving for these vectors and substituting in (3-14a) yields
the equation of motion

Mb̈+Cḃ+ S(b)= 0. (3-16)

A time step integration for nonlinear equations can be employed to solve (3-16) with the initial conditions
(3-15). The use however, of all the degrees of freedom may be computationally costly and in some
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cases be inefficient due to the large number of coefficients bk(t). To overcome this difficulty in this
investigation, the number of degrees of freedom is reduced using the Ritz transformation

b=9 z, (3-17)

where zi (t) (i = 1, . . . , L < M) are new time-dependent parameters and 9 is the M × L transformation
matrix. Using this transformation, (3-16) and (3-15) are transformed into the reduced nonlinear initial
value problem

M̃ z̈+ C̃ ż+ S̃(z)= 0, (3-18a)

z(0)= (9T9)−19T W−1 g1, ż(0)= (9T9)−19T W−1 g2, (3-18b)

where M̃ =9T M9, C̃ =9T C9, and S̃(z)=9T S(b).
In this investigation the eigenmodes of the linear flutter plate problem near the critical load in absence

of damping are selected as Ritz vectors [Guo and Mei 2003]. Equation (3-18a) under any specified
initial conditions, say g1(x) 6= 0, g2(x) = 0, is solved and the postcritical response of the plate is
studied by increasing the conservative and nonconservative loads. It is convenient to take the first mode
of the linear problem as g1(x). The new AEM time step integration method developed for multiterm
fractional differential equations [Katsikadelis 2009] has been employed to solve (3-18), because the
modified Newton–Raphson method was not successful in all cases.

For the linear problem the nonlinear terms H1(b), H2(b) vanish and Equations (3-14b), (3-14c) can
be solved independently to obtain the fictitious sources b1, b2. Moreover, (3-14a) becomes linear:

Mb̈+Cḃ+ (K + F)b= 0, (3-19)

where K and F are linear generalized stiffness matrices given as

Kik = Dδik, (3-20)

Fik = (q i
x + ni

x)Wik,x + (q i
y + ni

y)Wik,y − N i
x Wik,xx − 2N i

xy Wik,xy − N i
y Wik,yy, (3-21)

where i, k = 1, . . . ,M and δik the Kronecker delta.
This problem is solved by assuming a time harmonic solution

bk(t)= βkeiλt , (3-22)

where βk are parameters which do not depend on time and λ is the frequency of the vibration.
Substituting (3-22) into (3-19) we obtain the quadratic eigenvalue problem

(−λ2 M + λi C + K + F)β = 0, (3-23)

where β is the vector containing the elements βk . By increasing the conservative and nonconservative
loads the imaginary part of frequency λ becomes negative and the plate becomes unstable. The obtained
eigenmodes from the eigenvalue problem (3-23) in absence of damping and near the critical value are
employed as Ritz vectors in (3-17).
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4. Examples

On the base of the previously described procedure a FORTRAN code has been written for solving the
nonlinear flutter instability problem for plates. The efficiency and accuracy of the method is demonstrated
by the following examples.

Example 1. We study the stability of the square plate of Figure 3. The plate is subjected to a follower
uniform in-plane line load along the free edge. The boundary conditions are also shown in the figure.
Two types of in-plane boundary conditions, designated as case (i) and case (ii), are considered along the
edges x = 0 and y = 0, 4. Case (i), though not realistic, has been studied because there are results in the
literature for comparison. It should be noted that in this case the distribution of the membrane forces is
uniform (Nx = P, Ny = Nxy = 0). In case (ii) the distribution of the membrane forces is nonuniform and
it results from the simultaneous solution of the nonlinear plane stress problem. This is an advantage of
the presented solution method, since it permits the investigation of the influence of the in-plane boundary
conditions on the nonlinear flutter instability. The parameters used are

E = 30 GPa, h = 0.1 m, ν = 0.3, ρ = 104 kg/m3.

The results were obtained with N = 276 boundary elements and M = 133 internal collocation points
(Figure 4, left).

Figure 4, right, shows the first two eigenfrequencies of the linear plate problem without damping as
the follower load increases. Flutter instability occurs when two real frequencies coalesce and become
complex conjugate. The linear flutter loads are for case (i) Pcr = 8917 kN (8868 kN [Adali 1982]) and
for case (ii) Pcr = 10400 kN. The modes of the linear eigenproblem obtained at (i) P = 8800 kN and
(ii) P = 10000 kN were employed as Ritz vectors. Figure 5 shows the dependence of the maximum
deflection at point A of the undamped plate on the follower force using different number of the linear
modes. The use of more than 10 modes does not change the results considerably. Figure 6 shows the
amplitude of the oscillations when external and internal damping is considered. Figure 7, left, shows the
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Figure 3. Geometry and boundary conditions of the plate in Example 1.
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Figure 5. Maximum deflection at point A with different number of the linear modes
employed for reduction of the degrees of freedom in the undamped plate in Example 1.

time history of the deflection at A on the free edge in case (ii) without (c= 0) and with external damping
(c = 2). In the presence of damping (external or internal) the plate reaches a limit cycle oscillation. It
is observed that viscous damping has a stabilizing effect while the structural damping destabilizes the
plate. This result is in accordance with that reported by other researchers [Higuchi and Dowell 1992;
Mei 1977]. Finally, Figure 7, right, shows the limit cycle of the deflection at point (3.2, 2); note that it
is a Lamé curve with n = 2.1.

Example 2. The stability of the simply supported plate of Figure 8 is investigated. The plate is subjected
to aerodynamic pressure due to steady supersonic air flow qx = 0.307µ, qy = 0 and aerodynamic damping
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(b) Figure 6. Amplitude of the limit cycle oscillation at point A for case (ii) (10 Ritz
modes), with viscous damping (left) and with structural damping (right).

0 1 2 3 4
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time (s) 

w
m

ax
/h

c=0
c=2

(a) 

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
-4

-3

-2

-1

0

1

2

3

4

 w  

 d
w

/d
t ( ) ( )

2.1 2.1

1
0.055 3.49

w w

+ =
�

Figure 7. Left: Time history of the deflection at point (3.2, 2) with and without external
damping. Right: Phase plane plot at point (3.2, 2) for external damping c = 2 for t >
7 sec (P = 11500 kN/m, 10 Ritz modes, case (ii)).
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Figure 8. Simply supported immovable plate of Example 2.
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(b) Figure 10. Left: Time history of the deflection at point A for two values of µ. Right:
The effect of the initial conditions on limit cycle oscillations, for µ= 600.

c = 0.00857
√
µ, where µ is a nondimensional parameter which depends on the air flow velocity [Guo

and Mei 2003]. The other parameters are

E = 210 GPa, h = 0.01 m, ν = 0.33, ρ = 104 kg/m3.

For the linear problem the critical value was found µcr = 519 (µcr = 512 in [Guo and Mei 2003]). Figure
9 shows the amplitude of the limit cycle oscillation at point A(3, 2) with increasing parameter µ using
4 and 10 Ritz modes and a FEM solution [Guo and Mei 2003]. Figure 10 shows the time history of the
deflection at point A for two values of µ, and then for two different initial conditions; from the graph on
the right it is clear that the limit cycle oscillation is independent of the initial displacements. Figure 11
depicts the time history of the bending moment mx and the membrane force Nx at point A for µ= 890.
Finally, in Figure 12 we see the phase plane plot at point A for µ= 890, and the limit cycle, which is
again a Lamé curve with n = 2.8.
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t > 4 (right).

Example 3. The rectangular plate of Figure 13 is subjected to the combined action of aerodynamic
pressure due to steady supersonic air flow qx = µ, qy = 0 and a conservative in-plane line load along
two opposite edges. The aerodynamic damping is c = 0.1. The other parameters used are

E = 210 GPa, h = 0.01 m, ν = 0.3, ρ = 7550 kg/m3.

The results were obtained with N = 300 boundary elements and M = 253 internal collocation points and
20 eigenmodes as Ritz vectors for reduction of the degrees of freedom. Figure 14 presents the stability
regions with increasing aerodynamic pressure (nonconservative) and in-plane load (conservative). Figure
15 presents the time history of the deflection at the center of the plate in the case of divergence type of
instability. In this case the plate buckles but remains in dynamic stable situation. Figure 16 shows the
time history of the deflection of point A(1.5, 2) in the case of flutter instability.
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Figure 13. Geometry and boundary conditions of the plate in Example 3.
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and µ= 700, N ∗ = 100 (right).

Example 4. The cantilever plate of Figure 17, left, is subjected to aerodynamic pressure due to steady
supersonic air flow qx = 0, qy = 0.031v2, where v is the air velocity. The other parameters used are
E = 210 GPa, h = 0.01 m, ν = 0.3, ρ = 7550 kg/m3. The results were obtained with N = 385 boundary
elements and M = 125 internal collocation points and 20 eigenmodes as Ritz vectors for reduction of
the degrees of freedom. Figure 18 on the preceding page presents the frequencies of the linear plate
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Figure 17. Left: Cantilever plate of Example 4. Right: Boundary and domain nodal points.
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structural damping η = 0.01 (middle), and viscous damping c = 0.2, 0.4 (right).
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problem as the air velocity increases in absence of damping and for various values of external (viscous)
and internal (structural) damping. The linear flutter velocity is vcr = 38.9 m/s in absence of damping,
vcr = 40.5 m/s with external damping c = 0.2, vcr = 42.3 m/s with external damping c = 0.4 and
vcr = 26.7 m/s with internal damping η = 0.01. Figure 19 presents the maximum deflection at point A in
absence of damping and the amplitude of the limit cycles in presence of internal or external damping for
various values of the flow velocity. Figures 20 and 21 show the phase plot at points A and B respectively
when v = 43 m/s and c = 0.2. At point A the limit cycle is a Lamé curve with n = 2 (ellipse).

5. Conclusions

Nonlinear flutter instability of thin plates of arbitrary geometry subjected to general types of boundary
conditions, under both interior as well as edge conservative and nonconservative loads, and in the pres-
ence of external and internal damping, has been investigated in this work. Solution of this problem is
achieved by the AEM, an integral equation method that converts coupled nonlinear PDEs describing the
response of the plate into uncoupled, linear PDEs that are subsequently treated by the D/BEM. More
specifically, the semidiscretized nonlinear equations of motion give rise to an initial-value problem that
is efficiently solved using a small set of modes near the critical point as Ritz vectors in conjunction with
a novel time stepping algorithm.

As far as numerical implementation was concerned, the influence of in-plane boundary conditions that
appears in realistic formulations of plate aeroelasticity problems on flutter instability was investigated.
Certain findings on the nonlinear flutter instability reported earlier by other researchers that were based
on simple engineering models were validated. Among them is the stabilizing effect of external (viscous)
damping in contrast to the destabilizing effect of internal (structural) damping. Also, the combined
action of conservative and nonconservative loads was studied, which may lead to divergence or flutter
instability in the plate. In closing, the methodology presented herein yields an efficient computational tool
for studying complex problems stemming from the nonlinear dynamic response of thin plates subjected
to conservative and nonconservative loads.

Appendix: Expressions for the matrices (3-14)

The indices i and k range from 1 to M .

Mik = ρi hWik, Cik = ci Wik,

H i
=−N i

x

M∑
k=1

Wik,xx bk − 2N i
xy

M∑
k=1

Wik,xybk − N i
y

M∑
k=1

Wik,yybk

+ (q i
x + ni

x)

M∑
k=1

Wik,x bk + (q i
y + ni

y)

M∑
k=1

Wik,ybk,

A1ik = δik +
1+ ν
1− ν

(
U (1)

ik,xx + V (1)
ik,xy

)
, B1ik =

1+ ν
1− ν

(
U (2)

ik,xx + V (2)
ik,xy

)
,

A2ik =
1+ ν
1− ν

(
U (1)

ik,xy + V (1)
ik,yy

)
, B2ik = δik +

1+ ν
1− ν

(
U (2)

ik,xy + V (2)
ik,yy

)
,
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Gi
1 =−

ni
x + pi

x

Gh
−

1+ ν
1− ν

(U0i,xx + V0i,xy), Gi
2 =−

ni
y + pi

y

Gh
−

1+ ν
1− ν

(U0i,xy + V0i,yy),

H i
1 =

(
2

1− ν

M∑
k=1

Wik,xx bk +

M∑
k=1

Wik,yybk

) M∑
k=1

Wik,x bk +
1+ ν
1− ν

M∑
k=1

Wik,xybk

M∑
k=1

Wik,ybk,

H i
2 =

(
2

1− ν

M∑
k=1

Wik,yybk +

M∑
k=1

Wik,xx bk

) M∑
k=1

Wik,ybk +
1+ ν
1− ν

M∑
k=1

Wik,xybk

M∑
k=1

Wik,x bk,

where

N i
x = C

(
M∑

k=1
(U (1)

ik,x + νV (1)
ik,y)b

(1)
k +

M∑
k=1

(U (2)
ik,x + νV (2)

ik,y)b
(2)
k +U0i,x + νV0i,y

+
1
2

( M∑
k=1

Wik,x bk

)2
+

1
2ν
( M∑

k=1
Wik,ybk

)2
)
,

N i
y = C

(
M∑

k=1
(νU (1)

ik,x + V (1)
ik,y)b

(1)
k +

M∑
k=1

(νU (2)
ik,x + V (2)

ik,y)b
(2)
k + νU0i,x + V0i,y

+
1
2ν
( M∑

k=1
Wik,x bk

)2
+

1
2

( M∑
k=1

Wik,ybk

)2
)
,

N i
xy=C 1−ν

2

(
M∑

k=1
(U (1)

ik,y + V (1)
ik,x)b

(1)
k +

M∑
k=1

(U (2)
ik,y + V (2)

ik,x)b
(2)
k +U0i,y+V0i,x+

M∑
k=1

Wik,x bk

M∑
k=1

Wik,ybk

)
.
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THE EFFECT OF INFINITESIMAL DAMPING ON NONCONSERVATIVE
DIVERGENCE INSTABILITY SYSTEMS

ANTHONY N. KOUNADIS

The present work discuss the local dynamic asymptotic stability of 2-DOF weakly damped nonconser-
vative systems under follower compressive loading in regions of divergence, using the Liénard–Chipart
stability criterion. Individual and coupling effects of the mass and stiffness distributions on the local
dynamic asymptotic stability in the case of infinitesimal damping are examined. These autonomous
systems may either be subjected to compressive loading of constant magnitude and varying direction
(follower) with infinite duration or be completely unloaded. Attention is focused on regions of diver-
gence (static) instability of systems with positive definite damping matrices. The aforementioned mass
and stiffness parameters combined with the algebraic structure of positive definite damping matrices may
have under certain conditions a tremendous effect on the Jacobian eigenvalues and thereafter on the local
dynamic asymptotic stability of these autonomous systems. It is also found that contrary to conservative
systems local dynamic asymptotic instability may occur, strangely enough, for positive definite damping
matrices before divergence instability, even in the case of infinitesimal damping (failure of Ziegler’s
kinetic criterion).

1. Introduction

The importance of damping on the local dynamic asymptotic stability of nonconservative systems was
recognized long ago [Ziegler 1952; Nemat-Nasser and Herrmann 1966; Crandall 1970]. Particular atten-
tion was given to nonconservative discrete systems under follower load (autonomous systems) which may
lose their stability either via flutter (vibrations of continuously increasing amplitude) or via divergence
(static) instability depending on the region of variation of the nonconservativeness loading parameter.

The local dynamic stability of such autonomous nonconservative damped systems is governed by the
matrix-vector differential equation [Kounadis 2006; 2007]

Mq̈ +Cq̇ + Vq = 0, (1)

where the dot denotes differentiation with respect to time t , q(t) is an n-dimensional state vector with
coordinates qi (t) (i =1, . . . , n), and M and C are n×n real symmetric matrices, while V is an asymmetric
matrix if the nonconservativeness loading parameter η is different from one (η = 1 corresponds to a
conservative load). Specifically, the matrix M , associated with the total kinetic energy of the system, is a
function of the concentrated masses mi (i = 1, . . . , n), and is always positive definite; C , whose elements
are the damping coefficients ci j (i, j = 1, . . . , n), may be positive definite, positive semidefinite, as in
the case of pervasive damping [Zajac 1964; 1965], or indefinite [Laneville and Mazouzi 1996; Sygulski

Keywords: nonconservative divergence, follower load, infinitesimal damping mass, Liénard–Chipart criterion, asymptotic
instability.
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1996]; V is a generalized stiffness matrix with coefficients ki j (i, j = 1, . . . , n), whose elements Vi j

are also linear functions of η and of a suddenly applied external load λ of constant magnitude with
varying direction (partial follower load defined by η) and infinite duration [Kounadis 1999], that is,
Vi j = Vi j (λ; ki j , η). Apparently, due to this type of loading the system under discussion is autonomous.
The static instability or buckling loads λc

i (i = 1, . . . , n) are obtained by setting to zero the determinant
of the stiffness asymmetric (η 6= 1) matrix V (λ; ki j , η):

V = |V (λ; ki j , η)| = 0. (2)

This clearly yields an n-th degree algebraic equation in λ for given values of ki j and η. Assuming
distinct critical states the determinant of the matrix V (λ; ki j , η) is positive for λ < λc

1, zero for λ= λc
1,

and negative for λ > λc
1.

The boundary between flutter and divergence instability is obtained by solving with respect to λ and
η the system of algebraic equations [Kounadis 1997]

V = ∂V
∂λ
= 0 (3)

for given stiffness parameters ki j (i, j = 1, . . . , n).
We established in [Kounadis 2006; 2007] the conditions under which the above autonomous dissi-

pative systems under step loading of constant magnitude and direction (conservative load) with infinite
duration may exhibit dynamic bifurcation modes of instability before divergence, that is, for λ < λc

1,
when infinitesimal damping is included. These dynamic bifurcational modes may occur through either
a degenerate Hopf bifurcation (leading to periodic motion around centers) or a generic Hopf bifurcation
(leading to periodic attractors or to flutter). These unexpected findings (implying failure of Ziegler’s
kinetic criterion and other singularity phenomena) may occur for a certain combination of values of the
mass (primarily) and stiffness distributions of the system in connection with a positive semidefinite or
an indefinite damping matrix [Kounadis 2006; 2007].

The question now arises whether there are combinations of values of these parameters (the mass and
stiffness distributions) which, in connection with positive definite damping matrices, may lead to dynamic
bifurcational modes of instability when the system is nonconservative due to a partial follower compres-
sive load associated with the nonconservativeness parameter η. Only cases of divergence instability
occurring for suitable values of η are considered. Namely, pseudoconservative systems are considered
which are subjected to nonconservative circulatory forces, being therefore essentially nonconservative
systems [Huseyin 1978]. Systems exhibiting flutter are called Ziegler circulatory, although in this termi-
nology pseudoconservative systems are not distinguished [Ziegler 1952]. Attention is focused mainly on
infinitesimal damping which may have a tremendous effect on the system’s divergence instability. Such
local dynamic instability will be sought through Liénard–Chipart’s set of asymptotic stability criteria
[Gantmacher 1959; 1970] which are elegant and more readily employed than the well known Routh–
Hurwitz stability criteria. The local dynamic asymptotic stability of these systems using the above criteria
is also discussed if there is no loading (λ= 0).

In addition to the above main objective of this work, some new cases when the above autonomous
systems are loaded by the aforementioned type of step follower compressive load will be also discussed by
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analyzing 2-degree of freedom (DOF) systems for which a lot of numerical results are available. Finally,
the conditions for the existence of a double purely imaginary root (eigenvalue) are properly discussed.

2. Basic equations

The solution of (1) can be sought in the form

q = reρt , (4)

where ρ is in general a complex number (eigenvalue) and r is a complex vector independent of time t .
Introducing q from (4) into (1) we get

(ρ2 M + ρC + V )r = 0. (5)

For given matrices M , C , and V solutions of (5) are related to the Jacobian eigenvalues ρ= ρ(λ) obtained
by setting the determinant to zero, so

|ρ2 M + ρC + V | = 0; (6)

expansion of the determinant gives the characteristic (secular) equation for an n-DOF system

ρ2n
+α1ρ

2n−1
+ · · ·+α2n−1ρ+α2n = 0, (7)

where the real coefficients αi (i = 1, . . . , 2n) are determined by means of the Bôcher formula [Pipes
and Harvill 1970]. The eigenvalues ρ j ( j = 1, . . . , 2n) of (7) are, in general, complex conjugate pairs
ρ j = ν j ±µ j i (where ν j and µ j are real numbers and i =

√
−1), with corresponding complex conjugate

eigenvectors r j and r̄ j ( j = 1, . . . , n). Since ρ j = ρ j (λ), clearly ν j = ν j (λ), µ j = µ j (λ), r j = r j (λ),
and r̄ j = r̄ j (λ). Thus, the solutions of (1) are of the form

Aeν j t cosµ j t, Beν j t sinµ j t, (8)

where constants A and B are determined from the initial conditions. Solutions (7) are bounded, tending
to zero as t→∞, if all eigenvalues of (7) have negative real parts, that is, when ν j < 0 for all j . In this
case the algebraic polynomial (7) is called a Hurwitz polynomial (since all its roots have negative real
parts) and the origin (q = q̇ = 0) of the system is asymptotically stable.

Regarding the criteria for asymptotic stability it is worth mentioning the following. Consider the more
general case of a polynomial in z with real coefficients αi (i = 0, 1, . . . , n)

f (z)= α0zn
+α1zn−1

+ · · ·+αn−1z+αn = 0 (α0 > 0), (9)

for which we will seek the necessary and sufficient conditions so that all its roots have negative real parts.
Denoting by zκ (κ = 1, . . . ,m) the real and by r j ± is j ( j = 1, . . . , (n−m)/2; i =

√
−1 ) the complex

roots of (9) we can arrange for all these complex roots to lie to the left of the imaginary axis:

zκ < 0, r j < 0 (κ = 1, . . . ,m; j = 1, . . . , n−m
2

). (10)

Then one can write

f (z)= α0

m∏
κ=1

(z− zκ)
n−m∏
j=1

(z2
− 2r z+ r2

j + s2
j ). (11)
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Since due to inequality (10) each term in the last part of (11) has positive coefficients, it is deduced
that all coefficients of (9) are also positive. However, this (meaning αi > 0 for all i with α0 > 0) is a
necessary but by no means sufficient condition for all roots of (9) to lie in the left half-plane (Re(z) < 0).

The Routh–Hurwitz criterion [Gantmacher 1959; 1970] gives necessary and sufficient conditions for
asymptotic stability, that is, for all roots of (9) to have negative real parts; the conditions are

11 > 0, 12 > 0, . . . , 1n > 0, (12)

where

11 = α1, 12 =

[
α1 α3

α0 α2

]
, 13 =

α1 α3 0
α0 α2 α4

0 α1 α3

 , . . . , 1n =



α1 α3 α5 · · ·

α0 α2 α4 · · ·

0 α1 α3 · · ·

0 α0 α2 α4 · · ·
...

...
...

...
. . .
αi

 (13)

with ακ = 0 for κ > n. The last equality yields 1n = αn1n−1.
Note that when the necessary conditions αi > 0 (for all i) hold, the inequalities (17) are not independent.

For instance, for n = 4 the Routh–Hurwitz conditions reduce to the single inequality 13 > 0, for n = 5
they reduce to 12 > 0 and 14 > 0, while for n = 6 they reduce again to two inequalities, 13 > 0 and
15 > 0. This case was discussed by Liénard and Chipart who established the following elegant criterion
for asymptotic stability [Gantmacher 1970].

The Liénard–Chipart stability criterion. Necessary and sufficient conditions for all roots of the real
polynomial f (z) = α0zn

+ α1zn−1
+ · · · + αn−1z + αn = 0 (α0 > 0) to have negative real parts can be

given in any one of the following forms:

αn > 0, αn−2 > 0, . . . , with

{
either 11 > 0, 13 > 0, . . . ,

or 12 > 0, 14 > 0, . . . ,
(14)

or

αn > 0, αn−1 > 0, αn−3 > 0, . . . , with

{
either 11 > 0, 13 > 0, . . . ,

or 12 > 0, 14 > 0, . . . .
(15)

This stability criterion was rediscovered by Fuller [1968].
In this study attention is focused on 2-DOF nonconservative (due to partial follower compressive

loading) dissipative systems, whose characteristic equation (7) is written as follows:

ρ4
+α1ρ

3
+α2ρ

2
+α3ρ+α4 = 0 (α0 = 1). (16)

According to the last criterion all roots of (16) have negative real parts provided that α4 > 0, α2 > 0,
and 13 = α3(α1α2−α3)−α

2
1α4 > 0. Clearly, from the last inequality it follows that α3 > 0. Hence, the

positivity of α1 and α3 was assured via the above conditions (α4 > 0, α2 > 0, 11 > 0, and 13 > 0).
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3. Mathematical analysis

Consider the cantilevered dissipative spring model with 2 DOFs under a partial follower compressive
tip load which is shown on the next page. Subsequently we will examine in detail the effect of a viola-
tion of one or more of the conditions of the Liénard–Chipart criterion on its local dynamic asymptotic
stability. The response of this dynamic model carrying two concentrated masses is studied when it is
either loaded under a suddenly applied load of constant magnitude and
varying direction with infinite duration or completely unloaded. Such
autonomous dissipative systems with positive definite damping matrices
and particularly with infinitesimal damping are properly investigated.
If at least one root of the secular equation (16) has a positive real part
the corresponding solution — see (8) — will contain an exponentially
increasing function with time, and the system will become dynamically
asymptotically unstable.

The seeking of an imaginary root of the secular equation (16) which
represents a borderline between dynamic stability and instability is a
first, important step in our discussion. Clearly, an imaginary root gives
rise to an oscillatory motion of the form eiµt (i =

√
−1, µ real number)

around the trivial state. However, the existence of at least one multiple
imaginary root of the κ-th order of multiplicity leads to a solution con-
taining functions of the form eiµt , teiµt , . . . , tκ−1eiµt , which increase
with time. Hence, the multiple imaginary root on the imaginary axis
denotes local dynamic instability. The discussion of such a situation is
also another objective of this study.

A

B
m1

m2 C

θ1

θ2

k1

k2

load λ

|AB| = |BC | = `

ηθ2

The nonlinear equations of motion for the 2-DOF nonconservative model of the figure with rigid links
of equal length ` are given by [Kounadis 1997]

(1+m)θ̈1+ θ̈2 cos(θ1+ θ2)− θ̇
2
2 sin(θ1− θ2)+ c11θ̇1+ c12θ̇2+ V1 = 0,

θ̈2+ θ̈1 cos(θ1− θ2)− θ̇
2
1 sin(θ1− θ2)+ c22θ̇2+ c12θ̇1+ V2 = 0,

(17)

where

V1 = (1+ k)θ1− θ2− λ sin
(
θ1+ (η− 1)θ2

)
, V2 = θ2− θ1− λ sin ηθ2,

η is the nonconservativeness loading parameter, and

m = m1
m2
, k = k1

k2
, λ=

P`
k2
.

Linearization of Equation (17) after setting

2=

[
θ1

θ2

]
= eρt

[
ϕ1

ϕ2

]
= eρtφ
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gives (ρ2 M + ρC + V )φ = 0, where

M =
[

m11 m12

m12 m22

]
=

[
1+m 1

1 1

]
, C =

[
c11 c12

c12 c22

]
,

V =
[

V11 V12

V21 V22

]
=

[
k+ 1− λ −1− λ(η− 1)
−1 1− λη

]
.

(18)

In the case of a positive definite damping matrix of Rayleigh viscous type c11 = c1+ c2, c12 =−c2, and
c22 = c2, where ci (i = 1, 2) is the damping coefficient of the i-th bar.

The static buckling equation, det V = 0, leads to

ηλ2
− η(k+ 2)λ+ k = 0, (19)

whose lowest root is the first buckling load λc
1 equal to

λc
1 =

1
2

(
k+ 2−

√
(k+ 2)2− 4k/η

)
(η 6= 0). (20)

For real roots the discriminant 1 of (19) must be greater or equal to zero (1≥ 0) which yields

η ≥
4k

(k+ 2)2
. (21)

For instance, for k = 1 it follows that static instability occurs for η≥ 4/9 and flutter instability for η < 4/9.
The coefficients of the characteristic equation (16) are given by

α1 =
1
m
[(1+m)c22+ c11− 2c12],

α2 =
1
m
[(1+m)(1− λη)+ 3+ k− λ+ λ(η− 1)+ |c|],

α3 =
1
m
{
c11(1− λη)+ c22(1+ k− λ)+ [2+ λ(η− 1)]c12

}
,

α4 =
1
m
[ηλ2
− η(k+ 2)λ+ k] = 1

m
det V,

(22)

where |c| = det C .
The region of existence of adjacent equilibria (region of divergence instability) is related to static

bifurcations with two distinct critical loads obtained via α4 = 0 or (19). The boundary between the
region of existence and nonexistence of adjacent equilibria is defined by

α4 =
dα4
dλ
= 0, (23)

which due to relations (22) gives

η0 =
4k

(k+ 2)2
, λ0 =

k+ 2
2

. (24)

This is a double (compound) branching point related to a double root of (19) with respect to λ. Consider-
ing the function η = η(λ, k) the necessary condition for an extremum ∂η/∂λ= ∂η/∂k = 0 yields λ0 = 2
and k0 = 2 implying η0 =

1
2 . Note that η0 is the maximum distance of the double branching point from

the λc-axis (curve η versus λc). Two characteristic curves are considered, k < 2 and k > 2. It is clear that
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λc
0→ 1 and η0→ 0 as k→ 0, whereas for k > 2λc

0→∞, η0→ 0 as k→∞. It is easy now to establish
the locus of the double branching points in the plane of η− λc (see Figure 1), being independent of m.
Note that for k→ 0 or k→∞ the region of flutter instability disappears.

Subsequently, the Liénard–Chipart criterion for asymptotic stability is used, which is more simple and
efficient than that of Routh–Hurwitz. Clearly, if one of the conditions (15α, b) is violated there is no
asymptotic stability. We will apply this criterion for the above 2-DOF cantilevered model (n = 4, α0 = 1)
in the case of a positive definite damping matrix for which one can show that m > 0 always implies
α1 > 0. Now consider the case of the Rayleigh positive definite viscous damping matrix in the region of
divergence stability, that is, for η ≥ η0 = 4k(k+ 2)2. Then c11 = c1+ c2, c12 = c21 =−c2, and c22 = c2

Figure 1. Locus of double branching points (λc
0, η0).
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(ci > 0, i = 1, 2), and relations (22) become

α1 =
1
m
[c1+ (4+m)c2], α2 =

1
m
[m+ k+ 4+ c1c2− λ(ηm+ 2)]

α3 =
1
m
[c1(1− λη)+ c2(k− 2λη)], α4 =

1
m
[ηλ2
− η(k+ 2)λ+ k].

(25)

According to the first set of conditions (14) we have

α4 > 0, α2 > 0, 11 = α1 > 0, 13 > 0, (26)

where

13 =

∣∣∣∣∣∣
α1 α3 0
1 α2 α4

0 α1 α3

∣∣∣∣∣∣= α3(α1α2−α3)−α
2
1α4. (27)

From (25) it follows that α1 > 0. Since α4 = det(V/m) (m > 0) one may consider the following cases
regarding the interval of variation of λ:

For λ < λc
1 ⇒ det V > 0 and hence α4 > 0,

For λc
1 < λ < λ

c
2 ⇒ det V < 0 and hence α4 < 0,

For λ≥ λc
2 ⇒ det V > 0 and hence α4 > 0.

 (28)

Considering always the region of divergence instability, η≥ 4k/(k+2)2, and keeping in mind the interval
of values of λ the following cases of violation of conditions (26) are discussed:

First case: α4 > 0 (for λ < λc
1), α2 < 0, and 13 > 0. In view of (27), clearly 13 > 0 implies α3 < 0

(since always α1 > 0) or due to relation (25)

c1(1− λη)+ c2(k− 2λη) < 0. (29)

Since c1, c2 > 0 the quantities 1− λη and k− 2λη must be of opposite sign. Inequality (29) can always
be satisfied for suitable values of ci > 0 (i = 1, 2). Subsequently one can find suitable values for k, η,
and m for which

λ < λc
1 =

1
2

(
k+ 2−

√
(k+ 2)2− 4k/η

)
is also consistent with α2 < 0. The important conclusion which then can be drawn is that a local dynamic
asymptotic instability in regions of divergence (for λ less than the first buckling load) may occur in the
case of a positive definite damping matrix. This is excluded in the case of conservative loading (η = 1),
as shown in [Kounadis 2006; 2007].

More specifically one can establish to the following proof: In view of (25), the condition α2 < 0
implies

λ >
m+ k+ 4+ c1c2

ηm+ 2
, (30)

which must be consistent with (20),

λ < 1
2

(
k+ 2−

√
(k+ 2)2− 4k/η

)
. (31)
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One can show that there are values of λ for which both inequalities (30) and (31) are satisfied for
η ≥ 4k/(k+ 2)2, m > 0, k > 0, and ci > 0 (i = 1, 2). For example for k = 5, m = 8, c1 = 0.001,
and c2 = 0.00013 we get η ≥ 4k/(k + 2)2 = 20/49 = 0.408163265. Choosing η = 0.41 we obtain
λc

1 = 3.26574, as well as

λ >
m+ k+ 4+ c1c2

ηm+ 2
= 3.219697.

For λ= 3.26<λc
1= 3.26574, we find: α1= 0.00032, α2=−0.0266, α3=−4.26×10−6, α4= 0.0001395,

and m313 = 1.96× 10−9
≈ 0. Figure 2 shows, for these values of parameters αi (i = 1, . . . , 4), a large

amplitude chaotic-like response in the (θ2, θ̇2) phase plane. Hence, for 3.26≤ λ≤ 3.26574, the damped
autonomous system exhibits local asymptotic instability before divergence for a positive definite damping
matrix (with coefficients practically zero) of the Rayleigh viscous type. This is an unexpected finding
which does not occur for the same system under conservative (η = 1) tip load [Kounadis 2006; 2007].

Second case: α4 < 0 (for λc
1 < λ < λc

2), α2 > 0, and 13 > 0. In view of (25), the condition α2 > 0
implies

λ <
m+k+4+c1c2

ηm+2
, and hence λc

1 <
m+k+4+c1c2

ηm+2
< λc

2, (32)

or, due to (19),

1
2

(
k+ 2−

√
(k+ 2)2− 4k/η

)
<

m+k+4+c1c2
ηm+2

< 1
2

(
k+ 2+

√
(k+ 2)2− 4k/η

)
. (33)

 

Figure 2. Phase-plane response
(
θ2(τ ) versus θ̇2(τ )

)
for a cantilever with parameters

k = 5, η = 0.41, m = 8, c1 = 0.001, c2 = 0.00013, and λ= 3.26< λc
1 = 3.26574. The

model is locally dynamically unstable exhibiting large amplitude chaotic motion.
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Fig 4 

Figure 3. Phase-plane response
(
θ2(τ ) versus θ̇2(τ )

)
for a cantilever with parameters

k = 10, η = 0.41, m = 7.5, c1 = c2 = 0.001, and λc
1 = 2.59269< λ= 3< λc

2 = 9.40731.
The model exhibits large amplitude chaotic motion which is finally captured by the left
stable equilibrium point acting as an attractor.

Figure 4. Phase-plane response
(
θi (τ ) versus θ̇i (τ ), i = 1, 2

)
for a cantilever with

parameters k = 1, η = 0.45, m = 4, c1 = 0.001, c2 = 0.003, and λ = 2.37 >

(k +m + 4+ c1c2)/(ηm + 2) = 2.36842. The model is locally dynamically unstable
exhibiting large amplitude chaotic motion.
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For instance, if k = 10 then η ≥ 4k/(k + 2)2 = 0.2777777. Choosing η = 0.41, c1 = c2 = 0.001,
and m = 7.5 inequality (33) yields 2.59269 < 4.23645 < 9.40731. For λ = 3 we get: α1 = 0.001667,
α2 = 0.83667, α3 = 0.00097467, α4 =−0.142667, and m313

= 3.39795× 10−4.
As was anticipated the system is locally dynamically asymptotically unstable. However, a nonlinear

dynamic analysis will show that the system is globally stable. This is so, because the cantilever under
statically applied load exhibits postbuckling strength and hence the postbuckling stable equilibria act as
point attractors. Figure 3 shows, corresponding to the given parameters αi (i = 1, . . . , 4), the motion
in the (θ2, θ̇2) phase plane, which after large amplitude vibrations is finally captured by the left stable
equilibrium point (of the cantilever) acting as point attractor.

Third case: α4> 0 (for λ>λc
2), α2< 0, and13> 0. Clearly α2< 0 and13> 0 imply α3< 0. Inequality

α2 < 0 due to relations (25) yields

λ >
k+m+4+c1c2

ηm+2
. (34)

We must also have

λ > λc
2 =

1
2

(
k+ 2+

√
(k+ 2)2− 4k/η

)
. (35)

One can readily show that both (34) and (35) can be satisfied for various values of λ and of the parameters
m > 0, k > 0, ci > 0 (i = 1, 2), and η ≥ 4k/(k+ 2)2.

For instance, for m = 4, c1 = 0.001, c2 = 0.003, and k = 1 implying η = 4/9, after choosing η = 0.45
we obtain λ≥ (k+m+ 4+ c1c2)/(ηm+ 2)= 2.36842 and λc

2 = 1.66666. Hence, for λ= 2.375 we have
local asymptotic instability. Figure 4 shows, corresponding to these values of the parameters, the (θ1, θ̇1)

and (θ2, θ̇2) phase plane responses similar to those presented by Sophianopoulos et al. [2002] using the
same cantilever model.

Fourth case. α4 > 0 for λ < λc
1, α2 > 0, and 13 ≤ 0. The condition 13 = 0 (being necessary for a Hopf

bifurcation) yields

α3(α1α2−α3)−α
2
1α4 = 0, (36)

which due to α1 > 0 implies also α3 > 0. For instance, if k = 1 then η= 4k/(k+2)2 = 4/9. Subsequently
choosing η = 0.45 we obtain λc

1 =
1
2(k+ 2−

√
(k+ 2)2− 4k/η) = 1.3333. Take λ = 1.2, m = 1,

c1 = 0.001, and c2 = 0.0036, which yield α1 = 0.019, α2 = 3.06, α3 = 0.000172, α4 = 0.028, and
13 = −1.3749× 10−7. Figure 5, on the basis of these values of parameters αi (i = 1, . . . , 4), shows
periodic motion around centers in the (θ1, θ̇1), whose final amplitude depends on the initial conditions.

Equation (36) is the necessary condition for the existence of a pair of purely imaginary roots of the
characteristic equation (16). This case is associated either with a degenerate Hopf bifurcation or with a
generic Hopf bifurcation [Kounadis 2006; 2007].

Using (22), we reduce (36) to a second-degree algebraic equation in λ:

Aλ2
+ Bλ+0 = 0, (37)



1426 ANTHONY N. KOUNADIS

where

A = m[ηc11+ c22− c12(η− 1)]2+ η[(1+m)c22+ c11− 2c12]
2

− (ηm+ 2)[(1+m)c22+ c11− 2c12][ηc11+ c22− c12(η− 1)],

(38)

B = [(1+m)c22+c11−2c12]
{
(ηm+2)[c11+c22(1+k)+2c12]+(4m+k+|c|)[ηc11+c22−c12(η−1)]

}
− 2m[c11+ c12(1+ k)+ 2c12][ηc11+ c22− c12(η− 1)] − η(k+ 2)[(1+m)c22+ c11− 2c12]

2,

0 = m[c11+ c22(1+ k)+ 2c12]
2
+ k[(1+m)c22+ c11− 2c12]

2

− [(1+m)c22+ c11− 2c12](4+m+ k+ |c|)[c11+ c22(1+ k)+ 2c12].

Unlike A and B, the coefficient 0 is independent of η.
For λ to be real the discriminant D= B2

− 4A0 of (37) must be nonnegative. If D> 0, the quadratic
equation has two unequal roots; if D= 0, it has a double root, equal to λH =−B/2A. Note also that the
intersection between the curve of (37) and the curve of the first static load λc

1, corresponds to a dynamic
coupled flutter-divergence bifurcation.

The case λ = 0. The most important particular case is when λ= 0, implying 0 = 0(k,m, ci j )= 0; then
all the coefficients of the characteristic equation (16) given in relations (22) or (25) are independent of

Fig. 6 

Figure 5. Phase-plane response
(
θ1(τ ) versus θ̇1(τ )

)
for a cantilever with parameters

k = 1, η = 0.45, m = 1, c1 = 0.001, c2 = 0.0036, and λ = 1.2 < λc
1 = 1.33333. The

model is locally dynamically unstable exhibiting periodic motion around centers, whose
final amplitude depends on the initial conditions.
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η. Thus 0 is the same as for a conservative load (η = 1). Strangely enough, the unloaded cantilever,
although statically stable, is dynamically locally unstable under any small disturbances!

Conditions for a double imaginary root. For a double imaginary root the first derivative of the secular
equation (16) must also be zero, which yields 4ρ3

+ 3α1ρ
2
+ 2α2ρ+α3 = 0. Inserting ρ = µi into this

equation, where µ is real, yields µ2
=

1
2α2 = α3/3α1 and thus α3 =

3
2α1α2. Since ρ = µi must also be

a root of (16) we obtain µ2
= α3/α1, which implies α3 =

1
2α1α2. This is consistent with the previous

expression α3 =
3
2α1α2 only when α3 = 0 due to either α1 = 0 (which is excluded for a positive definite

damping matrix) or α2 = 0 (which is also excluded since it implies µ= 0). Hence, if the damping matrix
C is positive definite and of Rayleigh viscous type (c11 = c1+ c2, c12 = c21 =−c2 and c22 = c2 with c1

and c2 both positive) then the case of a double imaginary root is excluded [Sophianopoulos et al. 2008].
Note also that in this case the expressions of A, B, and 0 are simplified as follows:

A = η[mη(c1+ 2c2)]
2
+ [c1+ (m+ 4)c2]

2
− (c1+ 2c2)(2+ ηm)[c1+ (m+ 4)c2],

B = [c1+ (m+ 4)c2]
{
(ηm+ 2)(c1+ c2k)+ η(4+m+ k+ c1c2)(c1+ 2c2)

}
− 2mη(c1+ c2k)(c1+ 2c2)− η(k+ 2)[c1+ (m+ 4)c2]

2,
(39)

0 = m(c1+ c2k)2+ k[c1+ (m+ 4)c2]
2
− [c1+ (m+ 4)c2](4+m+ k+ c1c2)(c1+ kc2).

4. Conclusions

The coupling effect of the mass and stiffness distributions of a 2-DOF cantilevered model under partial
follower compressive load at its tip in connection with (mainly) infinitesimal positive definite damping is
discussed in detail in regions of divergence stability. For the local dynamic asymptotic stability of such
autonomous systems attention is focused on the violation of the Liénard–Chipart asymptotic stability
criterion. The most important findings of this study are:

• The geometric locus of the double branching points (η0, λc
0) corresponding to various values of k is

established via the relations η versus λc. The locus is independent of the mass m, whose effect on
dynamic instability is of paramount importance. Note that for k→ 0 or k→∞ the region of flutter
tends to zero. The intersection between the curve (37) and curve λc

1 corresponds with a coupled
fluttered-divergence instability bifurcation.

• The Liénard–Chipart, a more elegant and readily employed stability criterion than that of Routh–
Hurwitz, brought into light new types of dynamic bifurcations.

• The mass and stiffness distributions combined with a positive definite negligibly small damping
matrix, strangely enough, may have a considerable effect on the local dynamic asymptotic stability
prior to divergence. Similar phenomena may occur in conservative systems, but only in the cases
of positive semidefinite or indefinite damping matrices [Kounadis 2006; 2007].

• The model under partial follower tip load (step load of constant-magnitude and varying direction
with infinite duration) under certain conditions may exhibit a divergent (unbounded) motion before
divergence in the case of a positive definite negligibly small damping matrix at a certain value of
the external load. This is a completely unexpected result.
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• The cantilevered model when unloaded (although being statically stable) under certain conditions
becomes dynamically locally unstable to any small disturbance which is also an unexpected finding.

• The case of a double imaginary root in the case of a positive definite damping matrix is excluded.
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PROPERTY ESTIMATION IN FGM PLATES
SUBJECT TO LOW-VELOCITY IMPACT LOADING

REID A. LARSON AND ANTHONY N. PALAZOTTO

A property estimation sequence is presented for determining local elastic properties of a two-phased, two-
constituent functionally graded material (FGM) plate subject to impact loading. The property estimation
sequence combines the use of experimentally determined strain histories, finite element simulations
of the experimental impact events, and an analytical model of the impact tests. The experimental,
computational, and analytical models are incorporated into a parameter estimation framework, based
on optimization theory, to solve for material properties of individual graded layers in the FGM plate
specimens. The property estimation sequence was demonstrated using impact tests performed on a
titanium-titanium boride (Ti-TiB) FGM plate system. The estimated material properties of the Ti-TiB
FGM from the sequence were shown to correlate well with published material properties for the titanium-
titanium boride FGM system. The estimated properties were further input into a finite element model of
the impact events and were shown to approximate the experimental strain histories well. This property
estimation framework is formulated to apply to virtually any two-phase FGM system and is thus an
invaluable tool for research engineers studying the response of FGMs under load.

1. Introduction

Functionally graded materials (FGMs) are advanced composites with mechanical properties that vary
continuously through a given dimension. The property variation, in the context of this article, is ac-
complished by varying the volume fraction ratio of two constituents along a given dimension. FGMs
have generated a great deal of interest in recent years due to their flexibility for use in a wide variety
of environments, including those structural applications where extreme thermal and corrosion resistance
are required.

Most research into FGMs has occurred over the previous two decades. Suresh and Mortensen [1998]
provided a comprehensive literature review of the state of the art in FGMs then prevalent, and Birman
and Byrd [2007] compiled another extensive literature review covering FGM research from 1997 to 2007.
Selected works pertinent to this investigation, specifically those of FGM plate statics and dynamics, will
be highlighted here. J. N. Reddy and his colleagues [Reddy et al. 1999; Loy et al. 1999; Reddy 2000;
Pradhan et al. 2000; Reddy and Cheng 2001; 2002] have studied the behavior of a wide variety of FGM
plate configurations under static and dynamic loading, as have others in the field [Woo and Meguid 2001;
Yang and Shen 2001; Yang and Shen 2002; Vel and Batra 2002; Prakash and Ganapathi 2006]. To date,
only a few researchers have given consideration to studying impact response and wave propagation in
functionally graded composites. Gong et al. [1999] studied low-velocity impact of FGM cylinders with
various grading configurations. Bruck [2000] developed a technique to manage stress waves in discrete
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and continuously graded FGMs in one-dimension. Li et al. [2001] first studied FGM circular plates
under dynamic pressures simulating an impact load with a specific metal-ceramic system and using a
rate-dependent constitutive relation they developed. Banks-Sills et al. [2002] also studied an FGM system
under dynamic pressures of various temporal application. Larson et al. [2009] performed impact tests
on titanium-titanium boride monolithic and functionally graded specimens and further developed finite
element simulations that approximated the impact tests with a strong degree of correlation. With the
exception of the last reference, all of these works were performed using analytical and computational
techniques, but none of them were compared to physical or experimental data given the fact that very
little test data of any kind associated with functionally graded composites can be found in the literature.
This is due to (a) the difficulty to manufacture FGMs, (b) the limited availability of such materials in
industry and academia, and (c) the high cost associated with producing them.

Local property estimation and accurate material models for use in FGMs present another set of unique
challenges with multiphased functionally graded composites for many of the same reasons that little test
data is available in the literature. To date, most investigators assume that common material models
used to estimate properties in polymer-matrix fibrous composites apply in general to functionally graded
materials, including those where metal and ceramic constituents are used. In this work, local elastic
properties will be estimated in two-phase metal-ceramic functionally graded plates subject to impact
loading using three common material models applied in a novel parameter estimation sequence. The
estimation sequence combines the use of experimentally determined strain histories, finite element simu-
lations of the experimental impact events, and an analytical model of the impact tests. The experimental,
computational, and analytical models are incorporated into a parameter estimation framework, based
on optimization theory, to solve for material properties of individual graded layers in the FGM plate
specimens. The estimates of the local material properties can be used to study the dynamic behavior of
FGM plates.

The major contribution of this work is a property estimation sequence that can be applied to virtu-
ally any two-phase FGM plate system under impact loading where strain data has been experimentally
collected over the course of an impact event. The key objectives necessary to construct and validate
the property estimation sequence are: (a) obtain an analytical model that reasonably approximates the
conditions and results of a series of FGM plate impact tests; (b) construct a finite element model that
can be used to study the FGM plate impact experiments; (c) outline the parameter estimation framework
that determines FGM properties from impact data using the analytical and finite element models of the
tests; and (d) correlate the FEM and experimental results using the estimated FGM properties in the finite
element models for the plate specimens.

This article is organized as follows. First, an overview of FGM plate impact experiments conducted
and documented in previous work by the authors is presented. Next, an analytical treatment of the
impact tests is discussed based on development from previous work in the field. A finite element model
of the impact tests was developed using two material models. Next, the analytical treatment and finite
element model of the impact tests are used directly in a parameter estimation sequence that simultaneously
determines FGM properties while matching FEM and experimental strain histories from the impact tests.
Lastly, the parameter estimation sequence is demonstrated by comparing estimated material properties
from an FGM system to those published in the field and comparing FEM and experimental strain histories.
The article concludes with a discussion to aid future investigators in this field.
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2. FGM plate impact experiments

A series of FGM plate impact tests were conducted in [Larson et al. 2009]. The results of these tests
play a central role in this study, and a brief summary of the tests is presented here. The FGM system
used in the tests was a titanium-titanium boride (Ti-TiB) system developed by BAE Systems – Advanced
Ceramics in Vista, California. BAE Systems uses a proprietary “reaction sintering” process to produce
Ti-TiB FGMs. Commercially pure titanium (Ti) and titanium diboride (TiB2) are combined in powder
form in a graphite die according to prescribed volume fractions through the plate thickness. A catalyzing
agent is applied to the construction, and the powders are subjected to extreme temperature (near the
melting point of titanium) and pressure in a vacuum or inert gas environment. The catalyzing agent
reacts with the titanium and titanium diboride powders to form titanium boride (TiB) that crystallizes in
a needle morphology. In the reaction process, almost no residual TiB2 remains in the FGM. Through
the sintering process, the powders adhere together and the Ti-TiB FGM is the final product. The change
in composition of the constituents along a dimension is discrete and not truly continuous, although the
distance over which a discrete change occurs can be very small and can closely approximate a continuous
function over a larger distance. The FGM plates used in testing were graded over seven discrete layers
of equal thickness with Ti/TiB compositions ranging from 15%/85% to 100%/0% as shown in Figure 1.

layer % Ti % TiB

1 15 85
2 25 75
3 40 60
4 55 45
5 70 30
6 85 15
7 100 0

Figure 1. BAE Systems Ti-TiB FGM through-the-thickness configuration of the plate
specimens. The thickness of each layer is 0.181 cm.

The impact tests were conducted using the Dynatup apparatus owned by the Air Force Research
Laboratory, Wright-Patterson AFB, OH. The Dynatup apparatus delivers a controlled impact load to a
specimen by storing a known potential energy and converting that energy to kinetic energy prior to impact.
Here, a known mass was raised above each plate specimen to a specified height and released from rest.
The velocity at impact is measured by the system and can be compared to the velocity that would occur
under frictionless conditions. These were the conditions for each of the four tests performed:

test sample
crosshead/tup velocity, impact

mass (kg) height (m) actual (m/s) energy (J)

1 7-Layer Ti-TiB FGM 13.06 0.508 3.040 60.35
2 7-Layer Ti-TiB FGM 13.06 0.635 3.412 76.02
3 7-Layer Ti-TiB FGM 13.06 0.762 3.765 92.56
4 7-Layer Ti-TiB FGM 13.06 0.889 4.078 108.6
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Figure 2. Specimen plate with location of three strain gages in FGM impact tests. The
gages are installed on the bottom surface of the plate, opposite the surface impacted by
the Dynatup. All dimensions are in centimeters.

Each of the four plates was 7.62 cm� 7.62 cm and 1.27 cm thick. The specimen plates were placed
in a specially designed fixture that configured the plates so that they behaved very closely to a circular
plate 6.99 cm in diameter with a simply supported boundary condition. Each of the four FGM specimen
plates in the Dynatup were impacted on the TiB-rich surface (layer 1 in Figure 1) directly in the center
of the plate with a 2.54 cm diameter tup with hemispherical tip. The opposite surface of the plate was
instrumented with three strain gages as shown in Figure 2. The strain gages collected strain histories
over the course of the impact events. The strain histories from each gage can be used to trace the local
and global deflection of the plate using analytical and computational techniques. Strain histories from
gages 2 and 3 are plotted for each of the tests in Figure 5 and will be discussed later in this article.
The maximum strains from each gage and each test are shown in the table below. The FGM plate in
test 4 failed midway through the test, and it is not certain whether it failed at the maximum strain level
attainable had the plate not failed.

test sample
maximum strain

gage 1 gage 2 gage 3

1 7-Layer Ti-TiB FGM 0.0014595 0.0013910 0.0006638
2 7-Layer Ti-TiB FGM 0.0017830 0.0014677 0.0007573
3 7-Layer Ti-TiB FGM 0.0018890 0.0017203 0.0007016
4 7-Layer Ti-TiB FGM Failed Failed Failed

3. Analytical treatment of plate impacts

The first objective in constructing the property estimation sequence was to obtain an analytical model
that reasonably approximates the conditions and results of the FGM plate impact tests. This section will
describe the analytical model chosen for this very task. Larson [2008] demonstrated through extensive
analysis of the test results that the period of impact loading in each of the FGM plate impact tests
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was significantly larger than the period of the specimen plate-fixture’s first natural mode. Under these
conditions, the global response of the FGM plates subject to impact can be approximated by applying
quasistatic analytical theory [Zukas et al. 1982; Goldsmith 1960]. Reddy et al. [1999] developed a theory
for axisymmetric circular FGM plates relating classic plate theory to first-order shear deformable theory
under quasistatic conditions. The mid-surface deflection of a homogeneous, axisymmetric circular plate
with simply supported boundary and concentrated central load P from classical plate theory is given by
(see [Ugural 1999]):

wC0 .r/D
P

16�D

�
2r2 ln

r

a
C
3C �

1C �
.a2� r2/

�
(3-1)

where r is the radial coordinate, a is the radius of the plate, and D is the flexural rigidity. The mid-
surface deflection of a functionally graded plate that is first-order shear deformable is given by [Reddy
et al. 1999] as
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The radial strain at a radial coordinate r and thickness coordinate z (note z = 0 is the plate mid-surface)
in the FGM plate can be determined from the theory of elasticity:
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The moment sum MC in (3-2) is given by
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where the radial and angular moment loads M within the plate from classical plate theory are
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The constants in (3-2) and (3-3) from application of the boundary conditions are
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where the �i are constants defined by
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in terms of material properties: Aij , Bij , and Dij , the in-plane, bending-extension coupling, and bending
stiffnesses from classic composite laminate theory (see [Daniel and Ishai 2006]); and A55, the transverse
shear stiffness, also from classic composite laminate theory. For brevity, the equations for the stiffnesses
are not reproduced but note that the stiffnesses are direct functions of the elastic material properties
(elastic modulus and Poisson’s ratio) assumed for the FGM layers. Models for the elastic properties will
be the focus of the next subsection.

The relation for strain in the FGM plates in (3-3) can be used to tie the test results to analytical theory.
Knowing the radial location of the strain gages in each test from Figure 2 and the maximum strain values
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for each gage in each test (see table on page 1432), the maximum contact force P can be solved for in
(3-3) using known material properties. The value for the contact force P is then substituted into (3-2)
to solve for the transverse deflection of the FGM plate’s midsurface. This is a key aspect of estimating
material properties in the FGM and will be discussed again subsequently.

A very important note on the displacement and strain of the plate is in order before proceeding. For
a concentrated load, at or very near r = 0 the displacement and strains are unbounded. Westergaard
[1926] proposed that the problem can be alleviated by using an equivalent radius re in place of r in these
equations at the center of the plate, meaning the concentrated load is assumed to be applied over a very
small area given by

re D

q
1:6 r2c C h

2� 0:675 h; rc � 0:5 h: (3-8)

Here rc is a small radius that defines a small circular area over which the concentrated load is assumed
to be distributed and h is the thickness of the plate. One can set rc to zero for a concentrated load, if
desired, in which case re is equal to 0.325h. For r less than or equal to re, re is substituted for r as a
constant in the equations for displacement and strain, (3-2) and (3-3) respectively. This has the effect of
bounding the solutions near the plate center, although it is only an approximation to the exact solution.

3A. Material models. Material properties such as elastic modulus, Poisson’s ratio, and density must be
assumed for local mixtures of Ti-TiB. In the case of the seven-layer FGM, the material properties vary
in discrete jumps; in a truly continuous FGM, the material properties vary in a continuous fashion as
a function of the distribution of constituents. Here, three material models that estimate properties of
local mixtures of constituents are presented where the “average” properties of the composite are based
on functions of the volume fractions and individual properties of the constituents.

First, the classical rule-of-mixtures (ROM) directly relates the net material properties of multiphase
materials to the ratio of volume fractions (Vf ) of the constituents. If P is an arbitrary property of a
two-phase mixture and P1 and P2 are arbitrary properties of the two constituents, then the relation

PD V
f
1 P1CV

f
2 P2 (3-9)

is assumed to describe the local properties of the FGM under the classical rule-of-mixtures. Equation
(3-9) is based on the Voigt model for determining longitudinal stiffnesses if both FGM phases are in a
state of equal strain [Suresh and Mortensen 1998; Daniel and Ishai 2006]. The assumption that the two
phases in the FGM are in a state of equal strain can be thought of as analogous to (two) springs acting
in parallel to resist a longitudinal force. A force extends or compresses two springs in parallel an equal
distance (i.e., equal strain) and the springs exert forces based on their appropriate spring constants (i.e.,
elastic moduli adjusted by volume fractions). For this reason, the Voigt model is often referred to as a
“parallel” model in composite theory.

The second material model was developed by Hill [1965]. His so-called self-consistent (SC) material
model was developed specifically for two-phase composite materials. The model is general enough to be
assumed applicable to FGMs. Hill showed that if a series of randomly dispersed isotropic spheres served
as inclusions in a homogeneous matrix and if the matrix-inclusion composite bulk material displayed
statistical isotropy (that is, a significant percentage of the composite behaves isotropically and can be
reasonably assumed to behave as such), then the net bulk modulus K and shear modulus G for the
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composite are given by the relations
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where ı D 3� 5�DK=.KC 4G=3/, and the subscripts 1 and 2 refer to the individual phases. Equations
(3-10) must be solved for K and G simultaneously. The bulk and shear moduli are related to the elastic
modulus E and Poisson ratio � by
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The third model was formulated by Mori and Tanaka [1973]. They demonstrated that in two-phase
composites, i.e., a matrix with randomly distributed misfitting inclusions, the average internal stress in
the matrix is uniform throughout the material and independent of the position of the domain where the
average is obtained. They also showed that the actual stress in the matrix is the average stress in the
composite plus a locally varying stress, the average of which is zero in the matrix phase. Benveniste
[1987] used their analysis as the basis for developing equations that can be used to determine bulk and
shear moduli for the composite material as a whole:
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‰1 and ‰2 are constants, based on the geometry of the inclusions. Berryman [1980a; 1980b] provides
a formulation for inclusions with (1) spherical and (2) ellipsoid geometries. General ellipsoids can be
complicated, but spherical inclusions are special cases with simple formulas for ‰1 and ‰2:
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Another special case of ellipsoid inclusions is that of needle-shaped inclusions; the constants ‰1 and ‰2
are given by

‰1 D
K1CG1CG2=3

K2CG1CG2=3
; ‰2 D

1

5

�
4G1

G1CG2
C 2

G1Cf
0
1

G2Cf
0
1

C
K2C4G1=3

K2CG1CG2=3

�
; (3-14)

with f 01 DG1.3K1CG1/=.3K1C 7G1/. The Mori–Tanaka (MT) material model will be used for both
cases of spherical (MT-S) and needle-shaped (MT-N) inclusions in this study.

Each of the three material models (rule-of-mixtures, self-consistent, and Mori–Tanaka) are important
because the elastic modulus and Poisson’s ratio for local mixtures of the constituents must be used to
determine the Aij , Bij , and Dij stiffnesses for the FGM plates necessary to evaluate the displacement
and strains associated with the impact tests. Note that for a given set of elastic properties and set of
volume fractions of the constituents in a mixture, each of the three material models will yield different
properties for the mixture. This fact will be important later in the article as the property estimation
sequence is applied in practice.
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4. Finite element model

The second objective necessary to implement the property estimation sequence is constructing a finite
element model that can be used to study the FGM plate impact experiments. A finite element model
(FEM) of the plate impact tests was developed extensively [Larson et al. 2009] to study the plate impact
tests in and is discussed in this section. The commercial code ABAQUS was used for this study. The
model is composed of two major components: (a) the FGM specimen plate and (b) the Dynatup fixture
and tup. Each of these portions has interesting features that will be briefly discussed in the following
paragraphs.

4A. FGM plates FEM. Two plate finite element models were constructed to study the FGM impact
tests. The first model is a two-phase representation of the FGM where elements containing only Ti
or TiB properties are randomly distributed according to local volume fraction constraints in the FGM.
The two-phase finite element representation of the FGM plates is shown in Figure 3. In the figure,
black elements represent TiB and white elements are Ti. The material properties for commercially pure
titanium [Oberg et al. 2000] are

elastic modulus E D 110GPa; Poisson ratio � D 0:340; density �D 4510 kg/m3:

The material properties for titanium boride [BAE 2007] are

elastic modulus E D 370GPa; Poisson ratio � D 0:140; density �D 4630 kg/m3:

The second model of the FGM plates is the homogenized-layers model, also shown in Figure 3. In this
model, homogenized material properties are assigned to elements based on the properties of Ti and TiB
and their local volume fraction ratio using one of the three material models outlined in the previous
section. The material properties in each layer of the FGM are constant. In the figure, the layers of the
FGM are shaded based on the local volume fractions of the constituents; darker layers are TiB-rich and
lighter areas are Ti-rich.

Figure 3. Schematic of specimen plate FEMs: left, homogenized-layers FEM; right,
two-phase FEM.

The plates were meshed with eight-noded linear brick elements in a 42�42�14-element mesh (27735
nodes and 24696 elements). The nodal grid and mesh were built using a separate mathematical script
and this grid and mesh was exported to ABAQUS. The script was designed to quickly and efficiently
build each grid and mesh for both the two-phase and homogenized-layers FEM of each plate.



PROPERTY ESTIMATION IN FGM PLATES SUBJECT TO LOW-VELOCITY IMPACT LOADING 1437

'��""%�
���
""��������

#����������

����������������������������$"

(��
��������$"

Figure 4. Finite element mesh and model for the plate impact experiments.

4B. Dynatup, fixture FEM. The second major portion of the finite element model is the Dynatup and
plate fixture FEM. The plate fixture and tup FEM is shown with a specimen plate installed in Figure 4.
The fixture essentially provides a boundary condition for the specimen plates very close to the actual tests
(despite the fact the fixture was shown to configure the plate specimens as circular plates with simply
supported boundary conditions [Larson 2008]). The specific details surrounding the plate fixture can be
found in [Larson 2008; 2009]. The fixture and attachment screws were composed of 18-8 grade stainless
steel and were assigned properties (1) elastic modulus, E = 193 GPa; (2) Poisson ratio, � = 0.290; and
(3) density, � = 8030 kg/m3. The same linear eight-noded brick elements as used to model the plate
specimens.

The tup delivers the impact load to the plate specimens. In the FEM, the tup model stores the entire
mass of the crosshead-tup assembly and a velocity field is applied to the model with the same magnitude
as the impact velocity in the FGM plate tests (see table at the bottom of page 1431). The tup is meshed
with eight-noded linear brick elements.

The FGM plate, fixture, and Dynatup assembly employ contact algorithms in ABAQUS to ensure
the boundary conditions of the system are properly enforced. The FGM plate is in contact with the
fixture components, the fixture components are in contact with each other, and the tup and FGM plate
are in contact for the duration of the impact event. Additional constraints and boundary conditions were
applied throughout the model as necessary to ensure the FEM reached a solution that closely emulated
the conditions of the Dynatup impact tests.

5. Parameter estimation sequence

This section presents the theory and implementation of the parameter estimation sequence used to esti-
mate FGM properties from the impact test data. This is the third objective of this work and the estimation
sequence is the major contribution of this study. The section begins with an overview of general parameter
estimation theory, followed by a mathematical model used to predict the plate deflection from an impact
load, and then concludes with a formulated estimation sequence and its implementation.
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5A. Overview of parameter estimation theory. The parameter estimation theory presented in this sec-
tion is taken from standard textbooks [Arora 1989; Haftka et al. 1990; Dennis Jr. and Schnabel 1983].
The parameter estimation sequence is posed as a constrained minimization problem, generally defined as

min f .x/D f .x1; : : : ; xn/

subject to h.x/D 0

and g.x/ � 0: (5-1)

The objective function f , the equality constraint functions hD .h1; : : : ; hp/ and the inequality constraint
functions g D .g1; : : : ; gm/ all depend on the design variable x D .x1; : : : ; xn/. These functions can be
combined into the Lagrange function L, defined as

L.x;�;�/D f .x/C�Th.x/C�Tg.x/ (5-2)

in terms of two vectors of Lagrange multipliers: a vector � for the p equality constraints and a vector �
for the m inequality constraints. (The Lagrange multipliers are not functions of the design variable x.)

Now recall from multivariate calculus that a necessary condition for a differentiable function F.x/ to
have a local extremum (maximum or minimum) at x� is that the gradient of F be zero at x�:

rF.x�/ D 0: (5-3)

If that condition is satisfied, a necessary condition for x� to be a local minimum of F is that the Hessian
matrix

H D

�
@2F

@xi@xj

�
i;jD1;:::;n

(5-4)

evaluated at x� be positive semidefinite. The stronger condition that the Hessian be positive definite at
x� is also sufficient for x� to be a local minimum. Replacing “positive” by “negative” gives conditions
for maximization. An indefinite Hessian implies neither a maximum nor a minimum of F .

William Karush, in his 1939 master’s thesis, gave necessary conditions for a point x� to satisfy the
constrained minimization problem (5-1). These conditions, often called the Kuhn–Tucker conditions,
are obtained by applying the gradient criterion (5-3) to the Lagrange function (5-2) and dualizing the
inequality constraints. (In the absence of inequality constraints, of course, the problem had been solved
by Lagrange.) The Kuhn–Tucker necessary conditions are

@L

@xj
�
@f

@xj
C

pX
iD1

��

i

@hi

@xj
C

mX
iD1

��

i

@gi

@xj
D 0 for j D 1; : : : ; n;

hi .x
�/D 0 for i D 1; : : : ; p;

gi .x
�/ � 0 for i D 1; : : : ; m;

��

i gi .x
�/D 0 for i D 1; : : : ; m;

��

i � 0 for i D 1; : : : ; m: (5-5)

We will apply them directly to the FGM property estimation problem in Section 5C.
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5B. Mathematical model for plate deflection. A series of simulations with the two-phase FGM plate
FEM were run in order to estimate the maximum center deflection of the plate from impact by fitting
a second-order polynomial to the FEM results using the method of least squares (such techniques are
well documented in the literature; see for example [Myers and Montgomery 1995; Lawson and Erjavec
2001]). The second-order polynomial has the form

Oy D b0C

kX
iD1

bixi C

kX
iD1

kX
jDi

bijxixj ; (5-6)

where Oy is the dependent variable being estimated, xi (i = 1, . . . , k) are the independent variables, or
“factors,” of the second-order polynomial, and b0, bi i , and bij are the coefficients of the terms containing
independent variables.

The math model is constructed by determining the b-coefficients. The equations for doing so can be
posed in matrix and vector form by setting

X D
�
1 x1 x2 x3 x4 x

2
1 x22 x23 x24 x1x2 x1x3 x1x4 x2x3 x2x4 x3x4

�
; (5-7)

for a response variable with four independent variables xi , i D 1; : : : ; 4. Each of the column-vector
elements of X contains the values or cross-multiplied values of the independent variables for each
simulation where an individual Oy was determined. The response variable Oy results of each simulation
are assembled into a vector and denoted Y . The response variable Oy in this case corresponds to the
mid-surface transverse center deflection of the FGM plate from impact, wFEM

0 , collected in each FEM
simulation. The mid-surface transverse center deflection is a function of four independent variables
(discussed momentarily). The vector of coefficients b for the second-order model in (5-6) is given by

bD .XTX/�1XTY : (5-8)

The transverse deflection of the FGM plates subject to impact is dependent on the material properties
and the impact velocity of the tup (understanding that the plate geometry, configuration, and boundary
condition do not change). The relevant material properties are three: elastic modulus, Poisson’s ratio,
and density. As discussed earlier, the FGM plates behaved elastically in impact tests at room temperature,
so restricting the study to these three parameters is valid.

The material properties and behavior of the titanium constituent are well documented in the literature
and are assumed to be accurate. The TiB constituent, on the other hand, is not well understood and
the limited available literature shows a wide range of estimated properties [Sahay et al. 1999; Atri et al.
1999; Panda and Ravichandran 2003; 2006; Ravichandran et al. 2004]. These properties with uncertain
values are variables over which to optimize. It is convenient to let the design variables be ratios rather
than the property values themselves. That is, we write

x1 D C1 �
ETiB

ETi
; x2 D C2 �

�TiB

�Ti
; x3 D C3 �

�TiB

�Ti
:

These coefficients Ci are allowed to take values over a given range of magnitudes, corresponding to
the minimum and maximum predicted values for these properties. Table 1 shows each coefficient and
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values: maximum midrange minimum

variable meaning (coded C1) (coded 0) (coded �1)

x1 D C1 elastic modulus coefficient 4.20 3.40 2.60
x2 D C2 Poisson’s ratio coefficient 0.50 0.40 0.30
x3 D C3 density coefficient 1.10 1.00 0.90
x4 D vtup tup velocity 4.128 m/s 3.493 m/s 2.858 m/s

Table 1. Factors used in Box–Behnken designed experiment.

the range of values it can assume, based on data from [Sahay et al. 1999; Atri et al. 1999; Panda and
Ravichandran 2003; Ravichandran et al. 2004; Panda and Ravichandran 2006; Hill and Lin 2002]. The
fourth design variable, the tup impact velocity, is also assumed to be limited to certain magnitudes based
on the settings for the impact tests. These four independent variables can then be coded to range from
values �1 to C1, indicating minimum value and maximum value, respectively, and a midpoint value 0.

An efficient method for generating the b-coefficients in (5-6) has been developed by Box and Behnken
[1960]. The series of tests necessary to determine the b-coefficients (15 b-coefficients in all for the four
factors xi ) in (5-6) are shown in Table 2. According to the Box–Behnken designed experiments, 27 tests
must be conducted where Oy is measured (again, Oy is the maximum center deflection of the FGM plate
denoted wFEM

0 ) using the combination of variables and associated levels shown in Table 2. The results
from the two-phase FGM plate FEM according to the prescribed simulation parameters are shown in the
Table 2.

Assembling the 27 � 1 vector Y with the results from the tests and the 27 � 15 array X in (5-7)
and applying the vector and array to (5-8), the b-coefficients for this set of tests is determined. The
b-coefficients are then used in (5-6) and the resulting mathematical model for predicting the mid-surface
transverse deflection of the FGM plate at the center (r = 0) is

wFEM
0 D Oy D�258:34� 10�6

C 22:57� 10�6x1C 1:21� 10
�6x2C 9:25� 10

�9x3� 37:77� 10
�6x4

� 3:39� 10�6x21 C 420:46� 10
�9x22 � 42:04� 10

�9x23 � 4:26� 10
�6x24

C 142:00� 10�9x1x2� 148:50� 10
�9x1x3C 3:60� 10

�6x1x4

� 55:50� 10�9x2x3� 90:75� 10
�9x2x4� 45:25� 10

�9x3x4 (5-9)

where �1 � xi � C1. The units of wFEM
0 are meters. Since the coded variables for the TiB property

coefficients and tup velocity are unitless, all the b-coefficients in (5-9) are in units of meters as well.
The mathematical model was then used to predict the plate deflection at each of the 27 simulations

using the coded xi values and the results are shown in Table 2. It is easily seen that the mathematical
model predicts the results from the FEM simulations very closely. This mathematical model is a key
component of the parameter estimation sequence described in the following paragraphs.

The two-phase FEM was used to develop the math model (5-9) to harness effects of the random
distribution of constituents. In the homogenized-layers model, localized effects from adjacent phases
of materials are averaged out through the use of material models that specify constant properties for
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test
coded variable wFEM

0 , mm
x1 x2 x3 x4 result predicted

1 �1 �1 0 0 0.2849 0.2849
2 C1 �1 0 0 0.2401 0.2401
3 �1 C1 0 0 0.2827 0.2828
4 C1 C1 0 0 0.2374 0.2374
5 0 0 �1 �1 0.2250 0.2249
6 0 0 C1 �1 0.2248 0.2248
7 0 0 �1 C1 0.3003 0.3004
8 0 0 C1 C1 0.3003 0.3004
9 0 0 0 0 0.2583 0.2583

10 �1 0 0 �1 0.2466 0.2472
11 C1 0 0 �1 0.2084 0.2093
12 �1 0 0 C1 0.3310 0.3299
13 C1 0 0 C1 0.2784 0.2776
14 0 �1 �1 0 0.2592 0.2592
15 0 C1 �1 0 0.2564 0.2567
16 0 �1 C1 0 0.2597 0.2591
17 0 C1 C1 0 0.2570 0.2568
18 0 0 0 0 0.2583 0.2583

19 0 �1 0 �1 0.2262 0.2257
20 0 C1 0 �1 0.2240 0.2231
21 0 �1 0 C1 0.3001 0.3011
22 0 C1 0 C1 0.2981 0.2988
23 �1 0 �1 0 0.2845 0.2845
24 C1 0 �1 0 0.2393 0.2391
25 �1 0 C1 0 0.2838 0.2842
26 C1 0 C1 0 0.2391 0.2393
27 0 0 0 0 0.2583 0.2583

Table 2. Box–Behnken designed experiment for four factors (see Table 1), with results
from FEM (maximum transverse displacement at center of plate wFEM

0 ) and predicted
values from mathematical model.

the mixture. Thus, the transverse deflection of an FGM plate under the conditions of the impact tests
discussed is much easier to predict using conventional techniques—such as through the analytical model
of the FGM plate impacts discussed previously. Most FGMs tend to exhibit statistical distributions of
constituents that can produce localized effects that are nearly impossible to predict without simulation
tools or over-simplified assumptions. In this case, the statistical effects to the transverse deflection of the
plate in a two-phase mixture are generally accounted for through the use of the least squares fit to the
simulation data in (5-9).
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5C. Material property estimation. The property estimation sequence is posed as the following mini-
mization problem: minimize the error between the analytical prediction for the transverse deflection of
the FGM plate mid-surface (wFST

0 ) and the prediction for the same transverse deflection of the mid-surface
predicted by the math model from the FEM simulations (wFEM

0 ) by adjusting the material properties for
the TiB constituent (adjust the vector of property coefficients C ) subject to bounds on the values the TiB
properties can assume. Mathematically, the minimization problem from (5-1) is thus formulated as

min f .C /D
�
wFST
0 .C1; C2/�w

FEM
0 .C1; C2; C3/

�2
subject to g1.C /D Cmin

1 � C1 � 0;

g2.C /D C1�C
max
1 � 0;

g3.C /D C
min
2 � C2 � 0;

g4.C /D C2�C
max
2 � 0;

g5.C /D C
min
3 � C3 � 0;

g6.C /D C3�C
max
3 � 0: (5-10)

f .C / is the objective function and the equations gi .C / in (5-10) are the inequality constraint equations.
Essentially, by minimizing the error between wFEM

0 and wFST
0 , the error is being minimized between

a model that accounts for a statistical distribution of constituents and one that homogenizes material
properties in each FGM layer. This process incorporates the test data (necessary to determine wFST

0 ),
an analytical model describing wFST

0 , and the results of FEM simulations under the same conditions
(through wFEM

0 ). This problem can be posed for each of the FGM impact tests individually. Note that
wFEM
0 is really a function of the TiB coefficients C and the velocity of the tup. In the wFEM

0 term
from (5-10), the velocity of the tup at impact for an individual test is already known and is therefore a
constant. Thus, only the TiB properties C need to be adjusted to evaluate wFEM

0 . Similarly, the velocity
of the tup in the wFST

0 analytical term is accounted for through the strain data in the tests by solving for
the maximum force applied during the impact event. The analytical model does not require the density
term to evaluate wFST

0 because of the quasistatic assumptions. Thus, wFST
0 is evaluated by adjusting

only the TiB coefficients associated with the elastic modulus and Poisson’s ratio (C1 and C2). Given
this information, it is therefore intuitive why wFEM

0 is a function of only C1, C2, and C3 and wFST
0 is a

function of only C1, C2 in the minimization problem (5-10).
The objective function and the constraint equations are combined into the Lagrange equation,

LD f .C /C�Tg.C / (5-11)

where � is the vector of Lagrange multipliers, one for each of the six inequality constraints. The min-
imum point of L.C / occurs at [C �, ��], subject to the Kuhn–Tucker necessary conditions in (5-5). If
the point [C �, ��] is truly a minimizer of L, then the Hessian of L will be at least positive semidefinite
and at best positive definite to satisfy the necessary and sufficient conditions for a minimum point.

The minimization problem is solved numerically. The mathematical model (5-9) for the two-phase
FEM is rather straightforward; however the analytical prediction for wFST

0 is very difficult to evaluate
into a simple closed-form relationship because of the dependence of the stiffness terms on (potentially)
complicated material models. All partial derivatives were evaluated numerically and the solution to find
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the minimizer of L was conducted using modified Newton’s method [Dennis Jr. and Schnabel 1983].
The choice of numerical solver is not unique; any appropriate numerical technique for solving for zeros
to a series of equations could be used.

5D. Implementation. The following is a summary of the steps to implement the parameter estimation
sequence. This sequence is demonstrated using the Ti-TiB FGM, but the steps to carry out the estimation
can be used with any two-constituent material system evaluated in the manner the Ti-TiB FGM plates
have been. It is assumed that a mathematical model for the finite element response of the FGM such as
that in (5-9) has already been determined.

(1) Set the material properties of one constituent to be held constant, named constituent 1 here (Ti for
this study). The properties of constituent 2 (TiB) will be a set of constants multiplied by the set of
material properties for the first constituent:

FGM Constituent 1: P1;P2; : : : ;Pn

FGM Constituent 2: C1P1; C2P2; : : : ; CnPn

(2) Determine limits for the constants as constraints on the solution.

(3) Assemble the objective function and constraints into a minimization problem (5-10). Form the
Lagrange function by augmenting the objective function with the constraint relations multiplied by
the set of Lagrange multipliers.

(4) Choose a set of constants C1; : : : ; Cn as an initial estimate for the properties of constituent 2 within
the constraints of the set. Set the vectors of Lagrange multipliers to zero. Assemble the vector
xCk D ŒCk;�k�. At this initial estimate, k D 0. Choose a numerical step-size (fixed or variable)
appropriate for the numerical algorithm used to solve the equations.

(5) Evaluate the gradient and Hessian of L at xCk .

(6) Use the current properties for constituents 1 and 2 to solve for the transverse displacement of the
FGM plate at the center with the mathematical model for the finite element tests, wFEM

0 .

(7) Using the strain gage test data (maximum radial strains) from the nominal radial plate locations
and the current estimate for the material properties of constituents 1 and 2, solve for the maximum
impact load P from the impact event using (3-3).

(8) The P load and the current estimate for the material properties of constituents 1 and 2 are used to
solve for the maximum transverse displacement wFST

0 at the center of the plate using (3-2).

(9) Solve for the current estimate of L using the solutions of wFST
0 , wFEM

0 , and the current estimate for
xCk .

(10) Perform an iteration of the numerical solver (modified Newton’s method was used in this work) to
solve for xCkC1.

(11) Evaluate the gradient and Hessian of L at the updated xCkC1.

(12) Compare the norm of rL( xCk) to the norm of rL( xCkC1). If the absolute value of the difference
of the two norms is less than a predefined tolerance, terminate solution and go to the next step.
(Another appropriate termination criterion may be used in place of that used in this work.) Else, set
kC 1D k and go to step (6).
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(13) If the Hessian of L at the updated xCkC1 is positive definite and the gradient rL at the updated xCkC1
is sufficiently close to zero (determined by a user-defined metric), terminate solution and analyze
minimum point. If minimum point is determined to be not acceptable, adjust initial choice of xC0
and repeat process.

6. Results

The final objective of this study is to correlate the FEM and experimental results using the estimated
FGM properties in the finite element models for the plate specimens. To accomplish this, the property
estimation sequence must be implemented and the outputs analyzed. These tasks will be the focus of
this section.

The parameter estimation sequence was conducted as described in this paper using the three material
models to estimate the analytical prediction of wFST

0 . These models were the classic rule-of-mixtures
(ROM), the self-consistent model (SC), the Mori–Tanaka estimates (needles, MT-N, and spheres, MT-S).
The initial estimates for the material parameters published in this section were C1 = 3.40, C2 = 0.40,
and C3 = 1.00; essentially the center points from the Box–Behnken tests in Table 1. The choice of these
initial values here was merely for conceptual convenience only and the choice of initial values is more or
less arbitrary in the region of interest. The minimum and maximum constraints on the parameters are the
minimum and maximum levels for each parameter shown in Table 1 relaxed by 20% in each direction.
Given the high degree of correlation in the second-order math model for the two-phase FEM, it was
felt that this range would be accurate to the two-phase FEM without running further simulations in the
Box–Behnken FEM tests. Note that while the results published in this section may not represent global
minimums of L (the convexity of the objective function was not evaluated because of the complex nature
of the objective function) for the region of interest here, various initial estimates were taken throughout
the region, including points on the boundary from the inequality constraints, and in all cases the algorithm
converged to the same solution for the material parameters. The solutions found for these parameters are
shown in Table 3 as tested for the three primary material models and experimental tests 1-3 (the FGM
plate in Test 4 failed so data was not used in the estimation sequence from that test). When the FEM
mathematical model was used to estimate wFEM

0 for iterations of the parameter estimation sequence,
the velocity from the Dynatup experiment was used for vtup and held constant. Thus, wFEM

0 for each
estimation sequence was reduced to a function of C1, C2, and C3.

The estimates for the coefficients C1, C2, and C3 in Table 3 show that in general all models estimated
similar results for the three parameters. The difference in results is associated directly with the material
models themselves and their estimates for material properties in each layer of the FGM. To illustrate this,
consider the transverse displacements at the center of the plates at the minimization of L summarized in
Table 4. In all cases the parameter estimation sequence virtually estimated the same plate deflections at
the center regardless of material model. Recall the estimation sequence was tied directly to the results
of the plate experiments for all material models. Since the Ti-TiB plates should ideally have the same
composition through the thickness and the plates should have the same average behavior in each layer
regardless of the material model chosen, it should be expected that the parameter estimation sequence
would converge to very similar material properties for each layer and adjust Ci so that the material model
reflects this. In Table 6, it is evident that this is indeed the case. The material property estimates (E
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test coeff.
material model

ROM SC MT-S MT-N

C1 2.549 2.468 2.494 2.486
1 C2 0.3478 0.3583 0.3594 0.3602

C3 0.9458 0.9414 0.9409 0.9408

C1 2.309 2.239 2.256 2.250
2 C2 0.3468 0.3551 0.3573 0.3572

C3 0.9325 0.9298 0.9277 0.9281

C1 2.442 2.367 2.389 2.381
3 C2 0.3355 0.3424 0.3439 0.3441

C3 0.9540 0.9508 0.9501 0.9501

Table 3. Comparison of predicted coefficients for TiB material properties using the pa-
rameter estimation technique and three material models. The initial estimates for the
material parameters were C1 D 3:40, C2 D 0:40, C3 D 1:00.

test method
material model

ROM SC MT-S MT-N

1
plate theory, wFST

0 0.25926 0.26197 0.26107 0.26136
math model, wFEM

0 0.25927 0.26198 0.26108 0.26137

2
plate theory, wFST

0 0.29064 0.29336 0.29268 0.29291
math model, wFEM

0 0.29065 0.29337 0.29269 0.29292

3
plate theory, wFST

0 0.30959 0.31261 0.31170 0.31199
math model, wFEM

0 0.30960 0.31262 0.31171 0.31200

Table 4. Predicted maximum center displacement of plate at center of bottom surface
using the predicted TiB coefficients in Table 3. All units in millimeters.

coeff.
material model

ROM SC MT-S MT-N

C1 2.433 2.358 2.380 2.372
C2 0.3434 0.3519 0.3535 0.3538
C3 0.9441 0.9407 0.9396 0.9397

Table 5. Comparison of predicted coefficients for TiB material properties based on an
average of the results shown in Table 3.

and � only) in each layer, based on the average results for Ci in Table 5, show a very strong degree of
correlation between the layers. Further, the estimates for these layers based on Ci correlate well with the
published results determined experimentally. The correlation between the published results is strongest
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%Ti / %TiB
elastic modulus E, GPa Poisson ratio �

Literature ROM SC MT-S MT-N Literature ROM SC MT-S MT-N

15 / 85 274.3 244.0 231.7 234.3 232.7 0.170 0.150 0.161 0.160 0.161
25 / 75 247.6 228.2 213.9 217.0 215.2 0.182 0.173 0.187 0.185 0.187
40 / 60 193.7 204.6 188.4 192.6 190.8 0.216 0.206 0.225 0.220 0.222
55 / 45 162.2 180.9 165.1 169.9 168.2 0.246 0.240 0.259 0.253 0.255
70 / 30 139.4 157.3 144.1 148.6 147.4 0.276 0.273 0.290 0.284 0.286
85 / 15 120.1 133.6 125.8 128.7 128.0 0.310 0.307 0.317 0.313 0.314

100 / 0 106.9 110.0 110.0 110.0 110.0 0.340 0.340 0.340 0.340 0.340

Table 6. Elastic property data from parameter estimation scheme for Ti-TiB volume ra-
tios using the (averaged) predicted values from the four material models in the estimation
sequence, compared to experimental values reported in [Hill and Lin 2002].

at low to medium volume fractions of TiB and weakest (but still pretty good) at higher volume fractions
of TiB. This is likely a consequence of residual titanium diboride known to be present at higher volume
fractions of TiB affecting the predictions from the estimation sequence.

The maximum impact force P in each test was related to the maximum radial strains at points on
the plate. Since the force data was not collected during the tests, the strain histories from the plates
were used to estimate P . The predictions of load P are affected by the material properties through
the FGM plates. In Table 7, the estimated force P based on the strain histories in each test at each
location are compared with the different material models used to predict Ci . The average predicted load

test method
material model

ROM SC MT-S MT-N

strain gage 1 96.24 92.57 93.61 93.22

1
strain gage 2 131.75 126.82 128.16 127.61
strain gage 3 96.35 92.88 93.73 93.32

Average Load 108.11 104.09 105.16 104.72

strain gage 1 111.15 107.91 108.81 108.46

2
strain gage 2 130.31 126.58 127.58 127.16
strain gage 3 101.52 98.72 99.42 99.09

Average Load 114.33 111.07 111.94 111.57

strain gage 1 121.29 117.18 118.36 117.91

3
strain gage 2 157.87 152.63 154.07 153.47
strain gage 3 97.924 94.78 95.57 95.19

Average Load 125.70 121.53 122.67 122.19

Table 7. Predicted maximum force (kN) applied to the plate at instant of maximum
center displacement using the predicted TiB coefficients in Table 3.
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was calculated at each iteration of the parameter estimation sequence. The data in Table 7 yields some
interesting results. First, the average P for each test matches well regardless of material model. This is
another verification of the statement that the estimation sequence attempts to match the properties in each
layer to the actual FGM within the framework of the material model used in the sequence. Secondly, the
results show the trend that the force increases as the velocity/energy increases for each test. Lastly, the P
loads individually calculated at each position vary somewhat in each test, implying variability occurred
in strain gage placement on each plate.

Figure 5 show the strain histories from the homogenized-layers FEMs using the Mori–Tanaka needles
(MT-N) material model results compared to the experimental strain histories for FGM plate tests 1-4
(Ci per Table 5). The other models were not plotted simply because the results were virtually the same
(as demonstrated through the correlation of layer-by-layer material properties). The FEM results match
the test data very well for the most part. Some of the peculiarities observed in the experimental strain
histories are not captured with the optimized FEMs. These minor discrepancies can be attributed to any
number of causes, including but not limited to FEM boundary conditions, strain gage-adhesive-plate
interactions, and tup impacts slightly off center. The FEM determined through this process, however,
correlates well with published results and was developed through a process directly tied to the physics
and results of the Dynatup impact tests.

Lastly, a comment on the ability of the three material models to accurately represent the physical prop-
erties of the Ti-TiB mixtures is in order. The three material models were specifically chosen for use in the
parameter estimation sequence for several important reasons. First, these models have been commonly
used in the literature to analytically predict properties for a wide variety of composite materials. Second,
the models are relatively easy to implement in mathematical equations and simulation computer code
while simultaneously providing a reasonable estimate of property variation as the volume-fraction ratio of
a two-phase mixture varies. Third, each of the models was formulated under different assumptions with
respect to the geometry, configurations, and behavior of the mixtures under loading conditions. Using
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Figure 5. Experimental strain histories and FEM comparison using optimized Mori–
Tanaka needles plate models, for test 1. (Continued on next page.)
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each of the three models in the parameter estimation sequence then provides a means of comparison
with the assumption that each of the models may be better suited to accurately predicting the physical
properties of the FGM under certain conditions. The three models for the property variations and the
estimates for the actual volume fraction ratios of Ti to TiB reduced the number of variables the parameter
estimation sequence needed to determine. It is possible that a more robust estimation sequence could
be formulated that would directly estimate material properties in individual layers of the FGMs. For
example, if the sequence were to directly determine the elastic modulus, Poisson’s ratio, and density of
each of the seven layers of the FGM, the sequence would need to determine 21 variables (three individual
properties for each of the seven layers). If such a formulation could be successfully implemented, it would
likely predict physical properties more accurately than those predicted using models that may or may
not accurately represent physical properties under certain conditions. However, the increased fidelity of
such a formulation would come at a significant increase in computational cost.

7. Conclusions

The major contribution of this work is a property estimation sequence that can be applied to virtually
any two-phase FGM plate system under impact loading where strain data has been experimentally col-
lected over the course of an impact event. Each of the four key objectives necessary to construct and
validate the property estimation sequence were realized and discussed at length: (a) obtain an analytical
model that reasonably approximates the conditions and results of a series of FGM plate impact tests;
(b) construct a finite element model that can be used to study the FGM plate impact experiments; (c)
outline the parameter estimation framework that determines FGM properties from impact data using the
analytical and finite element models of the tests; and (d) correlate the FEM and experimental results
using the estimated FGM properties in the finite element models for the plate specimens. The sequence
ties experimental, analytical, and computational data from FGM plate impact events together and poses
the estimation sequence as a sophisticated minimization problem. The property estimation sequence was
effectively demonstrated using a Ti-TiB FGM system and would be, in theory, extendable to practically
any two-phased FGM system.

As a final note, the material properties determined in this study were assumed to be rate-independent.
Given the relatively low-velocity impacts in the FGM plate tests and the fact that the plates behaved
elastic to failure, the rate-independent assumption used here is likely sufficient. In high-velocity impact
tests, generally rate effects become very important to the constitutive models of the system of interest.
The property estimation sequence discussed here could be modified to study such problems, however the
objective function and material property parameters would have to take a different form.
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A HIGH-ORDER THEORY FOR CYLINDRICAL SANDWICH SHELLS WITH
FLEXIBLE CORES

RENFU LI AND GEORGE KARDOMATEAS

This paper presents a nonlinear high-order theory for cylindrical sandwich shells with flexible cores,
extending a previously presented high-order theory for sandwich plates. The outer and inner faces are
assumed to be relatively thin compared to the core and the effects from the core compressibility are ad-
dressed in the solution by incorporating the extended nonlinear core theory into the constitutive relations
of the cylindrical shells. The governing equations and boundary conditions for the cylindrical shells are
derived using a variational principle. Numerical results are presented for the cases where the two faces
and the core are made of orthotropic materials. These results show that this model could capture the
nonlinearity in the transverse stress distribution in the core of the cylindrical sandwich shell. Numerical
results are presented on the details of the stress and displacement profiles for a cylindrical sandwich shell
under localized external pressure. This study could have significance for the optimal design of advanced
cylindrical sandwich shells.

1. Introduction

Unique properties such as high stiffness/weight and strength/weight ratios present increasing promise for
applications of cylindrical sandwich shells in aerospace and marine vehicles, such as aircraft fuselage
sections, rockets and submarine hulls. A cylindrical sandwich shell consists of outer and inner stiff thin
faces made either from homogeneous metallic materials or composite laminates, separated by a thick
core of soft foam or honeycomb. In the analysis of the sandwich construction, it is routinely assumed
that the face sheets carry the in-plane and bending loadings and the core transmits the transverse normal
and shear loads [Plantema 1966; Vinson 1999]. These classical theories also consider the transverse
displacement of the core to be the same as the displacements of the middle surface of the two face sheets.
The variation in thickness (compressibility) of the core is often neglected.

However, recent studies show that the core could experience significant changes in thickness [Liang
et al. 2007; Nemat-Nasser et al. 2007; Li et al. 2008]. As a consequence, there is an increasing concern
on the influence of core compressibility on the behavior of sandwich structures. Efforts to address this
issue are demonstrated through the formulation of various advanced high-order sandwich models in the
literature [Frostig et al. 1992; Pai and Palazotto 2001; Hohe and Librescu 2003; Li and Kardomateas
2008]. Models considering the core compressibility may not only give a more accurate solution to simpler
problems, but may also help to analytically address some otherwise difficult problems such as debond
behavior [Li et al. 2001], shock wave propagation and energy absorption in sandwich structures.

In previous work, we derived a high-order sandwich plate theory [Li and Kardomateas 2008], in which
the transverse displacement of the core is no longer assumed a constant, but it is a fourth order function

Keywords: composite sandwich shells, compressibility, high-order theory, external pressure.
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of the transverse coordinate. The in-plane displacements vary as fifth order functions of the transverse
coordinate. The current paper presents an adaptation of this nonlinear high-order core model to the
configuration of cylindrical sandwich shells. The derivation procedure of this theory is similar to the
one in [Li and Kardomateas 2008] but accommodated to the specific geometry of cylindrical sandwich
shells. In the development of the advanced cylindrical sandwich shell model, the following assumptions
have been made:

(1) The face sheets satisfy the Kirchhoff–Love assumptions and their thicknesses are small compared
with the overall thickness of the sandwich section. The transverse displacements in the faces do not
vary through the thickness. In the current paper, the two face sheets are considered to have identical
thickness.

(2) The core is compressible in the transverse direction, that is, its thickness may change.

(3) The bonding between the face sheets and the core is assumed perfect.

The paper is organized as follows: We first extend the high-order sandwich plate compressible core
theory to the cylindrical sandwich shell. In the derivation, the cylindrical coordinate system (x, s, z) is
introduced and located at the middle plane of the core or the face sheets. The transverse displacement
of the initial mid-plane is considered as an unknown function of the coordinates (x, s). The axial, cir-
cumferencial and transverse displacements in the core are then expressed as functions in terms of the
displacements of the two face sheets and the displacement of the core initial mid-plane. The displacement
continuity conditions along the interface between the face sheet and the core are employed. We then
formulate the governing equations, boundary conditions, and solution procedure for cylindrical sandwich
shells. As a representative, the equations for an orthotropic sandwich shell are studied in detail. Next, the
numerical results for a typical cylindrical sandwich shell with three orthotropic phases (two face sheets
and a core) are presented. Finally, we draw some conclusions and suggestions on future work.

2. Extension of high-order sandwich plate theory to shells

Let a coordinate system (x, s, z) be located at the middle plane of the face sheets or the core with x in
the axial direction, s in the circumferential direction, and z in the outward normal direction (Figure 1),
and (u, v, w) be the corresponding displacements. Ri and Ro are the radii of the middle surface of the
inner and outer face, respectively; L is the shell length; the outer and inner faces are assumed to have an
identical thickness, h f , and the core thickness is hc. Also set R = (Ro+ Ri )/2.

2A. Displacement field representation. In the classical sandwich model, the compressibility of the core
in the thickness direction is ignored. This may give a good approximation in simple and preliminary
studies. However, in many more demanding cases, such as a sandwich structure subject to blast/impact
loading, consideration of the transverse compressibility of the core may be needed. In the high-order core
theory proposed in [Li and Kardomateas 2008], the transverse displacement in the core (-hc/2≤ z ≤ hc/2)
is in the form

wc(x, s, z)=
(

1−
2z2

h2
c
−

8z4

h4
c

)
wc

0(x, s)+
(

2z2

h2
c
+

8z4

h4
c

)
w(x, s)−

(
z

hc
+

4z3

h3
c

)
w̄(x, s), (1)
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Figure 1. A cylindrical sandwich shell.

and the in-plane displacements in the core are in the form

uc(x, s, z)= u(x, s)−
z

hc/2
ū(x, s)+ z

h f

hc
wc
,x(x, s, z),

vc(x, s, z)= v(x, s)−
z

hc/2
v̄(x, s)+ z

h f

hc
wc
,y(x, s, z),

(2)

In these equations, wc
0(x, s) is the transverse displacement of the middle surface of the core; w(x, s) is

the average of the displacements of top face sheet, wt(x, s) and bottom face sheet, wb(x, s); and w̄(x, s)
is half of the difference of these displacements. Similar definitions hold for the corresponding in-plane
displacements.

This high-order core theory could be extended to other geometric configurations such as shapes with
curvature, provided the thickness of the face sheets is small compared to the total thickness of the
sandwich structure. In this work, it will be extended to cylindrical sandwich shells with orthotropic
phases. The thin face sheets of the shell satisfy the Kirchhoff–Love assumptions. Therefore, setting
h = (hc + h f )/2, one has for the displacements in the outer face, −(hc/2 + h f ) ≤ z ≤ −hc/2, the
expressions

ut(x, s, z)= ut
0(x, s)− (z+ h)wt

,x(x, s),

vt(x, s, z)= vt
0(x, s)− (z+ h)wt

,s(x, s),

wt(x, s, z)= wt(x, s),

(3)

and for the and displacements in the inner face, hc/2≤ z ≤ hc/2+ h f ,

ub(x, s, z)= ub
0(x, s)− (z− h)wb

,x(x, s),

vb(x, s, z)= vb
0(x, s)− (z− h)wb

,s(x, s),

wb(x, s, z)= wb(x, s).

(4)
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In order to take the core compressibility into account, nonlinear models can be proposed. The one
proposed here satisfies all the displacement continuity conditions along the interface between the core
and the face sheets, as shown in [Li and Kardomateas 2008].

2B. Strain-displacement relation. For thin face sheets, one can obtain the strain tensor at a point in the
outer face sheet of the cylindric sandwich shell as

[εt
] =

 εt
x

εt
s

γ t
xs

=
 εt

0x

εt
0s

γ t
0xs

+ (z+ h)[κ t
] =

 ut
0,x

vt
0,s +w

t/Ro

ut
0,s + v

t
0,x

+ (z+ h)[κ t
]. (5)

A similar expression holds for the strain tensor in the inner face,

[εb
] =

 εb
x

εb
s

γ b
xs

=
 εb

0x

εb
0s

γ b
0xs

+ (z− h)[κb
] =

 ub
0,x

vb
0,s +w

b/Ri

ub
0,s + v

b
0,x

+ (z− h)[κb
]. (6)

In these equations,

[κ t,b
] =

κ t,b
x

κ t,b
s

κ t,b
xs

=
−wt,b

,xx

−wt,b
,ss

−2wt,b
,xs

 . (7)

The core is considered undergoing large rotation with small displacements and its in-plane strains
could be neglected. Therefore, one can derive the strain-displacement relations of the core from equations
(1) and (2) as follows:

εc
z =

(
−

1
2hc
+

2z
h2

c
−

6z2

h3
c
+

16z3

h4
c

)
wt(x,s)−

(
4z
h2

c
+

32z3

h4
c

)
wc

0(x,s)+
(

1
2hc
+

2z
h2

c
+

6z2

h3
c
+

16z3

h4
c

)
wb(x,s),

γ c
xz =−

2
hc

ū(x, s)+ η1(z)wt
,x(x, s)+ η2(z)wc

0,x(x, s)+ η3(z)wb
,x(x, s),

γ c
sz =−

2
hc
v̄(x, s)+ η1(z)wt

,s(x, s)+ η2(z)wc
0,s(x, s)+ η3(z)wb

,s(x, s)−
vc

r
,

(8)

in which R− hc/2≤ r ≤ R+ hc/2 and

η1(z)=−
(

1
2
+

h f

hc

)
z

hc
+

(
1+ 3

h f

hc

)
z2

h2
c
− 2

(
1+ 4

h f

hc

)
z3

h3
c
+ 4

(
1+ 5

h f

hc

)
z4

h4
c
,

η2(z)=
(

1+
h f

hc

)
− 2

(
1+

3h f

hc

)
z2

h2
c
− 8

(
1+

5h f

hc

)
z4

h4
c
,

η3(z)=
(

1
2
+

h f

hc

)
z

hc
+

(
1+ 3

h f

hc

)
z2

h2
c
+ 2

(
1+ 4

h f

hc

)
z3

h3
c
+ 4

(
1+ 5

h f

hc

)
z4

h4
c
.

(9)
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2C. Constitutive relation. The face sheets of the shell are made of orthotropic laminated composites
and the core is also orthotropic. The stress-strain relationship for any layer of the faces reads asσx

σs

τxs

=
Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66


 εx

εs

γxs

 , or [σ ] = [Q][ε], (10)

where the Qi j , for i, j = 1, 2, 6, are the reduced stiffness coefficients. The stress-strain relations for the
orthotropic core are written as

σ c
z = Ecεc

z , τxz = Gc
xzγ

c
xz, τ c

sz = Gc
szγ

c
sz. (11)

Here, we define the resultants for the outer face sheet of the sandwich shell by

[N t
] =

 N t
x

N t
s

N t
xs

= ∫ −hc/2

−(hc/2+h f )

[σ t
] dz =

∫
−hc/2

−(hc/2+h f )

[Qt
][εt
] dz = [A][εt

0] + [B][κ
t
],

[M t
] =

M t
x

M t
s

M t
xs

= ∫ −hc/2

−(hc/2+h f )

[σ t
]z dz = [B][εt

0] + [D][κ
t
],

(12)

in which the stiffness coefficients are defined as

[ Ât
i j , B̂ t

i j , D̂t
i j ] =

∫
−hc/2

−(hc/2+h f )

Qt
i j [1, (z+ h), (z+ h)2]dz. (13)

Applying a similar procedure, one can obtain the expressions for the resultants in the inner face sheet.

3. Equilibrium equations and boundary conditions

The cylindrical sandwich shell is assumed subject to external and internal pressure q t,b(x, s). Let U
denote the strain energy and W the work of external forces. The variational principle (equivalent to a
virtual displacement approach) states that

δ(U −W )= 0, (14)

in which

δU =
∫ L

0

∮ (∫
−hc/2

−hc/2−h f

(σ t
xδε

t
x + σ

t
s δε

t
s + τ

t
xsδγ

t
xs)(Ro+ z) dz

+

∫ hc/2

−hc/2
(σ c

z δε
c
z + τ

c
xzδγ

c
xz + τ

c
szδγ

c
sz)(R+ z) dz

+

∫ hc/2+h f

hc/2
(σ b

x δε
b
x + σ

b
s δε

b
s + τ

b
xsδγ

b
xs)(Ri + z) dz

)
dθ dx,

δW =
∫ L

0

∮
q t,b(x, s)δwt,b dsdx +

∫ L

0

∮
Nx(x, s)δu ds dx .

(15)
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We now introduce the notation

α =
h f

hc
and β =

hc

R
.

For the thin face sheets of Ri + z ∼= Ri , Ro+ z ∼= Ro and β� 1, one can obtain the equilibrium equations
and boundary conditions by substituting the stress strain relations (10)–(11) strain-displacement relations
(5)–(9) and the displacement representation equations (1)–(4) into (15), then into (14) and employing
integration by parts. For the outer face sheet this results in the governing equations

δut
0 : −N t

x,x −
1
Ro

N t
xθ,θ +Gc

xz

(
4
β
(ut

0− ub
0)−

ζ1

β
R wt

,x −
22
15

R wc
o,x −

ζ̄1

β
R wb

,x

)
= 0,

δvt
0 : −N t

xθ,x −
1
Ro

N t
θ,θ +Gc

sz
(
ζ6v

t
0− ζ7v

b
0 + ζ8w

t
,θ + ζ9w

c
0,θ + ζ10w

b
,θ

)
= 0,

δwt
0 : −

(
M t

x,xx +
2
Ro

M t
xθ,xθ +

1
R2

o
M t
θ,θθ −

1
Ro

N t
x

)
+ Ec

z

(
61+ 23β

21β
wt
+

358+ 115β
105β

wc
0+

53
105β

wb
)

+ ζ1 RGc
xz(u

t
0,x − ub

0,x)+Gc
sz(ζ

t
11v

t
0,θ − ζ̄

t
11v

b
0,θ )− ζ2 R2Gc

xzw
t
,xx − ζ

t
12Gc

szw
t
,θθ

− ζ3 R2Gc
xzw

c
0,xx − ζ

t
13Gc

szw
c
0,θθ − ζ4 R2Gc

xzw
b
,xx − ζ

t
14Gc

szw
b
,θθ − Qo(x, θ, t)= 0.

For the compressive core:

δwc
0 : Ec

z

(
358+ 115β

105β
wt
+

716
105β

wc
0+

358− 115β
105β

wb
)

+
22
15 Gc

xz(u
t
0,x − ub

0,x)+Gc
sz(ζ

c
11v

t
0,θ − ζ̄

c
11v

b
0,θ )− ζ3 R2Gc

xzw
t
,xx − ζ

c
12Gc

szw
t
,θθ

− ζ5 R2Gc
xzw

c
0,xx − ζ

c
13Gc

szw
c
0,θθ − ζ̄3 R2Gc

xzw
b
,xx − ζ

c
14Gc

szw
b
,θθ = 0.

For the inner face sheet:

δub
0 : −N b

x,x −
1
Ri

N b
θ,θ −Gc

xz

(
4
β
(ut

0− ub
0)−

ζ1

β
R wt

,x −
22
15

R wc
0,x −

ζ̄1

β
R wb

,x

)
= 0,

δvb
0 : −N b

xθ,x −
1
Ri

N b
θ,θ −Gc

sz
(
ζ7v

t
0− ζ̄6v

b
0 − ζ̄8w

t
,θ − ζ̄9w

c
0,θ − ζ̄10w

b
,θ

)
= 0,

δwb
0 : −

(
Mb

x,xx +
2
Ri

Mb
xθ,xθ +

1
R2

i
Mb
θ,θθ −

1
Ri

N b
x

)
+ Ec

z

(
53

105β
wt
+

358− 115β
105β

wc
0+

61− 23β
21β

wb
)

+ ζ̄1 RGc
xz(u

t
0,x − ub

0,x)+Gc
sz(ζ

b
11v

t
0,θ − ζ̄

b
11v

b
0,θ )− ζ4 R2Gc

xzw
t
,xx − ζ

b
12Gc

szw
t
,θθ

− ζ̄3 R2Gc
xzw

c
0,xx − ζ

b
13Gc

szw
c
0,θθ − ζ̄2 R2Gc

xzw
b
,xx − ζ

b
14Gc

szw
b
,θθ − Qi (x, θ, t)= 0.

The constants ζi and ζ t,c,b
i , for i = 1, 2, . . . , 14, in these equations are functions of β and α and are

listed in the Appendix.
The corresponding boundary conditions at x = 0, L are
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ut
0 = ũt or N t

x = Ñ t
x ,

wt
= w̃t or

N t
xw

t
,x+M t

x,x+N t
xθw

t
,y+2M t

xθ,x+Gc
xz(ζ1 R(ub

0−ut
0)+ζ2 R2wt

,x+ζ2 R2wc
0,x+ζ4 R2wb

,x)= Q̃t
x ,

wt
,x = w̃

t
,x or M t

x = M̃ t
x ,

wc
0 = w̃

c
0 or 22

15 R(ub
0− ut

0)+ ζ3 R2wt
,x + ζ5 R2wc

0,x + ζ̄3 R2wb
,x = Q̃c,

ub
0 = ũb or N b

x = Ñ b
x ,

wb
= w̃b or

N b
xw

b
,x+Mb

x,x+N b
xyw

b
,y+2Mb

xθ,x+Gc
xz(ζ̄1 R(ub

0−ut
0)+ζ4 R2wt

,x+ζ̄3 R2wc
0,x+ζ̄2 R2wb

,x)= Q̃t
x ,

wb
,x = w̃

b
,x or Mb

x = M̃b
x ,

where the superscript ˜ denotes the known external boundary values. At θ = 0 and 2π , continuity
conditions hold.

For the sandwich shell made out of orthotropic materials, the governing equations for the outer face
sheet can be rewritten as(

At
11
∂2

∂x2 +
At

66

R2
o

∂2

∂θ2 −
4Gc

xz

β

)
ut

0+
At

12+ At
66

Ro

∂2vt
0

∂x∂θ
+

(
ζ1

β
RGc

xz +
At

12

Ro

)
wt
,x

+
22
15

RGc
xzw

c
0,x +

4Gc
xz

β
ub

0+
ζ̄1

β
Gc

xz Rwb
,x = 0, (16)

At
21+ At

66

Ro

∂2ut
0

∂x∂θ
+

(
At

66
∂2

∂x2 +
At

22

R2
o

∂2

∂θ2 − ζ6Gc
sz

)
vt

0+

(
At

22

R2
o
− ζ8Gc

sz

)
wt
,θ

− ζ9Gc
szw

c
0,θ + ζ7Gc

szv
b
0 − ζ10Gc

szw
b
,θ = 0, (17)(

Dt
11
∂4

∂x4+2
Dt

12+ 2Dt
66

R2
o

∂4

∂x2θ2+
Dt

22

R4
o

∂4

∂θ4+
(61+23β)Ec

z

21β
−ζ2 R2Gc

xz
∂2

∂x2−ζ
t
12Gc

sz
∂2

∂θ2+
At

12

R2
o

)
wt

+
At

11

Ro

∂ut
0

∂x
+ ζ1 RGc

xz
∂

∂x
(ut

0− ub
0)+

(
(358+ 115β)Ec

z

105β
− ζ3 R2Gc

xz
∂2

∂x2 − ζ
t
13Gc

sz
∂2

∂θ2

)
wc

0

+
At

12

R2
o

∂vt
0

∂θ
+Gc

sz
∂

∂θ
(ζ t

11v
t
0− ζ̄

t
11v

b
0)+

(
53Ec

z

105β
− ζ4 R2Gc

xz
∂2

∂x2 − ζ
t
14Gc

sz
∂2

∂θ2

)
wb
= Qo(x, θ). (18)

Similarly, the equation for the core can be recast as

22
15

Gc
xzut

0,x +Gc
szζ

c
11v

t
0,θ +

(
(358+ 115β)Ec

z

105β
− ζ3 R2Gc

xz
∂2

∂x2 − ζ
c
12Gc

sz
∂2

∂θ2

)
wt

+

(
716Ec

z

105β
− ζ5 R2Gc

xz
∂2

∂x2 − ζ
c
13Gc

sz
∂2

∂θ2

)
wc

0−
22
15

Gc
xzub

0,x − ζ̄
c
11Gc

szv
b
0,θ

+

(
(358− 115β)Ec

z

105β
− ζ̄3 R2Gc

xz
∂2

∂x2 − ζ
c
14Gc

sz
∂2

∂θ2

)
wb
= 0. (19)
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Finally, for the inner face sheet:

(
Ab

11
∂2

∂x2 +
Âb

66

R2
i

∂2

∂θ2 −
4Gc

xz

β

)
ub

0+
Ab

12+ Ab
66

Ri

∂2vb
0

∂x∂θ
+

(
ζ̄1

β
RGc

xz +
Ab

12

Ri

)
wb
,x

+
22
15

RGc
xzw

c
0,x +

4Gc
xz

β
ut

0+Gc
xz
ζ1

β
Rwt

,x = 0, (20)

Ab
21+ Ab

66

Ri

∂2ub
0

∂x∂θ
+

(
Ab

66
∂2

∂x2 +
Ab

22

R2
i

∂2

∂θ2 − ζ̄6Gc
sz

)
vb

0 −

(
β̄10Gc

sz −
Ab

22

R2
i

)
wb
,θ

− ζ̄9Gc
szw

c
0,θ + ζ7Gc

szv
t
0− ζ̄8Gc

szw
t
,θ = 0, (21)[

Db
11
∂4

∂x4+2
Db

12+ 2Db
66

R2
i

∂4

∂x2∂θ2+
Db

22

R4
i

∂4

∂θ4+
(61−23β)Ec

z

21β
−

(
ζ̄2 R2Gc

xz
∂2

∂x2+ζ
b
14Gc

sz
∂2

∂θ2

)
+

Ab
12

R2
i

]
wb

+ ζ̄1 RGc
xz
∂

∂x
(ut

0− ub
0)+

Ab
11

Ro

∂ub
0

∂x
+

(
(358− 115β)Ec

z

105β
− β̄3 R2Gc

xz
∂2

∂x2 − ζ
b
13Gc

sz
∂2

∂θ2

)
wc

0

+
Ab

12

R2
i

∂vb
0

∂θ
+Gc

sz
∂

∂θ
(ζ b

11v
t
0−ζ̄

b
11v

b
0)+

(
53Ec

z

105β
−ζ4 R2Gc

xz
∂2

∂x2 −ζ
b
12Gc

sz
∂2

∂θ2

)
wt
= Qi (x, θ, t). (22)

It should be noted that since this new core theory is a three-dimensional approximation model for the
core (but more efficient than a complete three-dimensional elasticity approach), none of the existing shell
theories could produce identical governing equations.

4. A cylindrical sandwich shell under external pressure

In this section the solution procedure for the response of sandwich shells will be demonstrated through
the study of simply supported cylindrical shell under external pressure. The boundary conditions are

wt
= 0, wc

= 0, wb
= 0; M t

x = 0, Mb
x = 0, for x = 0, L .

and vt
0, wt , wc, vb

0 , wb, M t
yy and Mb

yy are continuous at θ = 0, 2π . As such, the displacements can be
set in the form

ut
0 =

M,N∑
m=0
n=0

U t
mn cos

mπx
L

cos nθ, ub
0 =

M,N∑
m=0
n=0

U b
mn cos

mπx
L

cos nθ,

vt
0 =

M,N∑
m=0
n=0

V t
mn sin

mπx
L

sin nθ, vb
0 =

M,N∑
m=0
n=0

V b
mn sin

mπx
L

sin nθ,

wt
=

M,N∑
m=0
n=0

W t
mn sin

mπx
L

cos nθ, wb
=

M,N∑
m=0
n=0

W b
mn sin

mπx
L

cos nθ, wc
=

M,N∑
m=0
n=0

W c
mn sin

mπx
L

cos nθ,

(23)



A HIGH-ORDER THEORY FOR CYLINDRICAL SANDWICH SHELLS WITH FLEXIBLE CORES 1461

where U t
mn , V t

mn , W t
mn , W c

mn , U b
mn , V b

mn and W b
mn are constants to be determined. The applied external

and internal loading Qo(x, θ) and Qi (x, θ) can be, respectively, expressed in the form

Qo(x, θ)=
M,N∑
m=0
n=0

Q̂o
mn sin

mπx
L

cos nθ, Qi (x, θ)=
M,N∑
m=0
n=0

Q̂i
mn sin

mπx
L

cos nθ, (24)

where 0≤ θ ≤ 2π and the coefficients are defined for m = 0, . . . ,M and n = 0, . . . , N as

Q̂o
mn =

2
aπ

∫ L

0

∫ 2

0
Qo(x, θ) dx dθ, Q̂i

mn =
2

aπ

∫ L

0

∫ 2

0
Qi (x, θ) dx dθ. (25)

Substituting equations (23)–(25) into the governing equations (16)–(22), one can obtain a set of equa-
tions in matrix form:

[K M N
]Umn = Fmn, (26)

where the displacement vector Umn is defined as Umn = [U t
mn , V t

mn , W t
mn , W c

mn , U b
mn , V b

mn , W b
mn]

T and
the loading vector Fmn as [0.0, 0.0, Q̂o

mn , 0.0, 0.0, 0.0, Q̂i
mn]

T . The [K M N
] is a 7× 7 matrix, whose

entries are given on the next page. Once the applied loading is given, the displacements can be found by
solving (26) for each pair (m, n) until the solutions in form of (23) converge as m and n increase.

Results for a cylindrical sandwich shell under localized external pressure. Assume that a constant
pressure loading is applied on a portion of the outer face sheet:

p(x, θ)= p0, 0≤ x ≤ a, −
π

4
≤ θ ≤

π

4
.

From equations (24) and (25) one can obtain the following loading in the transformed space for
m = 1, 2, 3, . . . :

Qm0 =
2

mπ
p0 sin2 mπ

2
, Qmn =

8
mnπ2 p0 sin2 mπ

2
sin

nπ
4

n = 1, 2, 3, . . .

The relationship for the Poisson’s ratio, νi j = ν j i Ei/E j , will be applied since the sandwich structure
consists of orthotropic phases. In the following study, we set the radius of the core middle plane, R =
0.8 m. Its core thickness is hc=βR with β= 1/10. The thickness of two face sheets is the same, h f =αhc,
with α = 1/20. The length of the sandwich shell is set as L = 1.5 m. The face sheets of this cylindrical
sandwich shell have the following elastic constants (in GPa): E f

1 = 40.0, E f
2 = 10.0, E f

3 = 10.0,
G f

12 = 4.50, G f
23 = 3.50, G f

31 = 4.50; Poisson’s ratios: ν f
12 = 0.065, ν f

31 = 0.26, ν f
23 = 0.40. The core is

made of orthotropic honeycomb material with elastic constants reading as (in GPa): Ec
1 = Ec

2 = 0.032,
Ec

3 = Ec
z = 0.30, Gc

12 = 0.013, Gc
31 = 0.048, Gc

23 = 0.048; Poisson’s ratios: νc
12 = ν

c
31 = ν

c
32 = 0.25.

In the computation of results, M = 16 and N= 10 in equations (23) is required for the numerical
convergence. The displacements are normalized by p0htot/(E f ), where htot is the total thickness of
the shell; the stress normalized by p0 in the following study. Figure 2 plots the normalized mid-plane
displacements in the outer face sheet, core and inner face sheet as a function of x at θ = 0. One can readily
see that the displacements in the three phases of the cylindrical shell are not identical, implying that the
current theory can capture the compressibility of the core in the cylindrical sandwich shells. It can also
be seen that the displacement difference in magnitude between the outer face and the core mid-plane is
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11 − Ât
11

(mπ
a

)2
− Ât

66

( n
Ro

)2
−Gc

xz/α 12 −( Ât
12+ Ât

66)
mπ
a

n
Ro

13 −( Ât
12/Ro+β0 RGc

xz)
mπ
a

14 −
11
15

Gc
xz

mπ
a

15 Gc
xz/α 16 0 17 −β1Gc

xz R mπ
a

21 −( Ât
21+ Ât

66)
mπ
a

n
Ro

22 − Ât
66

(mπ
a

)2
− Ât

22

( n
Ro

)2
+β2Gc

sz 23 ( Ât
22/R2

o +
2+α
2−α

β4Gc
sz)n 24 (2+α)β5Gc

szn

25 0 26 −β3Gc
sz 27 β4Gc

szn 31 −Rβ6Gc
xz

mπ
a

32 β4
2+α
2−α

Gc
szn

33 D̂t
111

(mπ
a

)4
+ 2

D̂t
112+ 2D̂t

166

R2
o

(mπ
a

)2
n2
+

D̂t
122

R4
o

n4
+
(61−23α)Ec

z
21α

+β7Gc
xz

(mπ
a

)2
+β8Gc

szn2

34 D̂t
211

(mπ
a

)4
+ 2

D̂t
212+ 2D̂t

266

R2
o

(mπ
a

)2
n2
+

D̂t
222

R4
o

n4
−
(358−115α)Ec

z
105α

+

(
β9Gc

xz
mπ
a

)2
+β10Gc

szn2

35 Rβ6Gc
xz

mπ
a

36 −β4
2+α
2−α

Gc
szn

37 D̂t
311

(mπ
a

)4
+ 2

D̂t
312+2D̂t

366
R2

o

(mπ
a

)2
n2
+

D̂t
322

R4
o

n4
+
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( Âb

22

R2
i
−

2−α
2+α

β4Gc
sz

)
n

71 −Rβ1Gc
xz

mπ
a

72 −β4Gc
szn

73 D̂b
111

(mπ
a

)4
+ 2

D̂b
112+ 2D̂b

166

R2
i

(mπ
a

)2
n2
+

D̂b
122

R4
i

n4
+

53Ec
z

105
−β11Gc

xz

(mπ
a

)2
−β12Gc

szn2

74 D̂b
211

(mπ
a

)4
+ 2

D̂b
212+ 2D̂b

266

R2
i

(mπ
a

)2
n2
+

D̂b
222

R4
i

n4
−
(358+115α)Ec

z
105α

+β15Gc
xz

(mπ
a

)2
+β16Gc

szn2

75 Rβ1Gc
xz

mπ
a

76 −β4
2−α
2+α

Gc
szn

77 D̂b
311

(mπ
a

)4
+ 2

D̂b
312+ 2D̂b

366

R2
i

(mπ
a

)2
n2
+

D̂b
322

R4
i

n4
+
(61+23α)Ec

z
21α

+β17Gc
xz

(mπ
a

)2
+β18Gc

szn2

Table 1. Matrix [K M N
] in (26). The number 12 introduces the entry M = 1, N = 2, etc.
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Figure 2. Mid-plane transverse displacement in the outer face sheet, core and inner face
sheet as a function of x at θ = 0.

larger than that between the core mid-plane and the inner face sheet. This observation demonstrates that
the radial displacement in the core is a nonlinear function with respect to the radial coordinate.

Figure 3 presents the cross-sectional shapes of the outer face sheet mid-plane cut through x = L/6,
L/4 and L/2. The undeformed shape is also plotted as a reference. It can be seen that the cross-section
deforms the most from its original shape at the middle of the cylindrical shell in the axial direction
(x = L/2), in particular within the region −π/4 ≤ θ ≤ π/4 of each cross section where the loading is
applied.
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X = L/4
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Figure 3. The deformed cross-sectional shape of the mid-plane in the outer face sheet
at x = L/6, L/4 and L/2, along with the undeformed cross-sectional shape.
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Figure 4. Variation of transverse stress through the core of the shell for various θ .

We also investigated the transverse (radial) stress distribution in the core of the sandwich shell, one
of the most interesting issues in sandwich structural studies. The results are plotted in Figures 4 and
5 (where + denotes expansion pressure and − compressive pressure). Figure 4 shows the transverse
stress for the cross-section x = L/2 at different θ . We see that the stress varies with θ from completely
compressive (at θ = 0) to completely expansive pressure (at θ = π ). The maximum stress in magnitude
happens along the interface between the core and the outer face sheet on which the loading is applied.
This maximum stress is compressive. The maximum expansion stress happens at θ = π/2, also at the
interface between the core the outer face sheet. This suggests that these could be the possible positions
for damage initiation — useful knowledge for the optimal design of cylindrical sandwich shells.

The variation of the transverse stresses at θ = 0 for different cross-sections is presented in Figure 5.
The results show that the maximum compressive stress for each cross-section occurs along the interface

0.90 0.92 0.94 0.96 0.98

2.0

1.5

1.0

0.5
= 0

Figure 5. Cross-sectional shape of the mid-plane of the outer face sheet for various x .
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between the outer face sheet and the core. Another interesting observation in this study is that the global
maximum compressive stress (of 2.2662) is found around (x = 0.2L , θ = 0), not at (x = 0.5L , θ = 0),
where the transverse compressive stress is 1.98787. If one uses the value at (x = 0.5L , θ = 0) as the
design criterion, it could yield 12% error. This approximation may be acceptable in some preliminary
designs. For an accurate design, one may have to find out the exact global maximum compressive and
expansion stresses. Therefore, the study in this work can provide useful guidelines for the design of
advanced cylindrical sandwich shells.

5. Conclusions

We have developed an analytical solution for a cylindrical sandwich shell with flexible core. A nonlinear
high order model for cylindrical sandwich shells is formulated by extending our previous work on sand-
wich plates. The governing equations and boundary conditions thus derived have the compressibility
of the core included. The solution procedure for an orthotropic sandwich cylindrical shell is studied in
detail. Numerical results for external pressure loading exerted on a portion of the outer face sheet are
presented. The observations from the numerical results suggest the following conclusions:

(1) The mid-plane displacements of the outer face sheet, the core and the inner face sheet are not
identical.

(2) The transverse displacement distribution in the core through its thickness is a nonlinear function of
the radial coordinate.

(3) The maximum stress in magnitude occurs at the interface between the core and the face sheets on
which the loading is applied.

(4) The present nonlinear model is able to capture the nonlinear stress and displacement profiles and
predict the global maximum stress and its location. Therefore, this study can have significance for
the design of advanced cylindrical sandwich shells.
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Appendix: Constants appearing in the governing equations (page 1458)

When constants are given together, separated by commas, the upper signs correspond to the symbol(s)
before the comma and the lower signs to the symbol(s) after the comma.

ζ1, ζ̄1 = (8β + 30αβ ± 4β2
± 11αβ2)/30,

ζ2, ζ̄2 = (116β + 746αβ + 1235α2β ± 47β2
± 315αβ2

± 517α2β2)/1260,

ζ3, ζ̄3 = (74β + 74αβ − 766α2β ± 37β2
∓ 286α2β2)/1260,

ζ4 = (−22β − 22αβ + 161α2β)/1260, ζ5 = (776β + 776αβ + 1532α2β)/1260,

ζ6, ζ̄6 =
1

4β2

[
± 16β2

+ (4∓β)2 log 2+β
2−β

]
, ζ7 =

1
4β2

[
(16−β2) log 2+β

2−β

]
,
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ζ8, ζ
t
11 =∓

1
60(2+β)β5

[
2β
[
2(240−60β+20β2

−5β3
−4β4

+13β5)

+α(9120−1080β+220β2
+180β3

−216β4
+137β5)

]
−15

[
64−16β−4β4

+β5
+2α(608−72β−36β2

+18β3
−23β4

+3β5)
]

log 2+β
2−β

]
,

ζ̄8 = ζ̄
t
11 =

1
60(2+β)β5

[
2β
[
2(240+60β+20β2

+5β3
−4β4

+3β5)

+α(9120+2520β+580β2
+300β3

−96β4
+47β5)

]
+15(2+β)

[
−32+8β−4β2

+2β3
+β4
+2α(−304+68β−28β2

+11β3
+3β4)

]
log 2+β

2−β

]
,

ζ9, ζ
c
11 =±

1
30β5

[
8β
[
60−15β+20β2

−5β3
−11β4

+α(720−150β+180β2
−35β3

−11β4)
]

−15
[
32−8β+8β2

−2β3
−4β4

+β5
+2α(192−40β+32β2

−6β3
−8β4

+β5)
]

log 2+β
2−β

]
,

ζ̄9 = ζ̄
c
11 =

1
30β5

[
8β
[
−60−15β−20β2

−5β3
+11β4

+α(−720−150β−180β2
−35β3

+11β4)
]

+15
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+2α(192+40β+32β2
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log 2+β
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,

ζ10, ζ
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+5β3
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+3β5)
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+300β3

+96β4
+47β5)

]
+15

[
64−16β−4β4

+β5
+2α(608−168β−12β2
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,

ζ̄10 = ζ̄
b
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60(2−β)β5
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2(−240−60β−20β2
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+4β4
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+α(−9120−1080β−220β2
+180β3

+216β4
+137β5)

]
+15(2−β)

[
32+24β+12β2

+6β3
+β4
+2α(304+188β+76β2

+29β3
+3β4)

]
log 2+β

2−β

]
,

ζ t
12, ζ

b
14 =

1
420(2±β)2β8

[
4β
[
−6720−560β2

+756β4
+55β6

+20β8
±23β9

+7α2(−369600∓73920β+160β2
∓18640β3

+17700β4
±1576β5

−188β6
±484β7

−97β8
±91β9)

+α(−309120∓33600β−8960β2
∓11200β3

+23576β4
±980β5

+640β6
±520β7

−30β8
±243β9)

]
+105(2±β)2

[
(8∓4β+2β2

∓β3)2+4α(736∓656β+432β2
∓248β3

+78β4
∓21β5

+4β6)

+4α2(6160∓4928β+2872β2
∓1432β3

+385β4
∓86β5

+13β6)
]

log 2+β
2−β

]
,

ζ b
12, ζ

t
14 =

−1
420(4−β2)β8

[
4β
[
6720+560β2

−756β4
−55β6

+26β8

+7α2(369600−4480β2
−20220β4

−316β6
+89β8)

+ α(309120+ 8960β2
− 23576β4

− 640β6
+ 286β8)

]
−105(β2

−4)
[
(β2
−4)(4+β2)2+8α(−368−72β2

+13β4
+2β6)

+4α2(−6160− 952β2
+ 127β4

+ 13β6)
]

log 2+β
2−β

]
,
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ζ c
12, ζ

t
13

ζ b
13, ζ

c
14

}
=

1
210(2±β)β8

[
2β
[
6720+2240β2

−1036β4
−174β6

+47β8

+α2(1680000±154560β+318080β2
±73360β3

−87640β4
±3192β5

−6624β6
∓684β7

+103β8)

+α(248640±13440β+62720β2
±7840β3

−23212β4
∓112β5

−2350β6

∓376β7
+235β8)

]
−105

[
(4−β2)2(8+6β2

+β4)

+4α2(8000±736β+848β2
±288β3

−588β4
∓18β5

−11β6
∓7β7

+4β8)

+α(4736±256β+800β2
±128β3

−568β4
∓16β5

−18β6
∓8β7

+9β8)
]

log 2+β
2−β

]
,

ζ c
13 =

1
105β8

[
4β
[
−1680−980β2

+224β4
+117β6

+14α(−3360−1600β2
+208β4

+81β6)

+α2(−268800−105560β2
+5040β4

+1843β6)
]

+105
[
(−8−2β2

+β4)2+4α2(2560+792β2
−146β4

−21β6
+β8)

+4α(448+176β2
−48β4

−10β6
+β8)

]
log 2+β

2−β

]
,
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FAILURE INVESTIGATION OF DEBONDED SANDWICH COLUMNS:
AN EXPERIMENTAL AND NUMERICAL STUDY

RAMIN MOSLEMIAN, CHRISTIAN BERGGREEN, LEIF A. CARLSSON AND FRANCIS AVILES

Failure of compression loaded sandwich columns with an implanted through-width face/core debond is
examined. Compression tests were conducted on sandwich columns containing implemented face/core
debonds. The strains and out-of-plane displacements of the debonded region were monitored using the
digital image correlation technique. Finite element analysis and linear elastic fracture mechanics were
employed to predict the critical instability load and compression strength of the columns. Energy release
rate and mode mixity were determined and compared to fracture toughness data obtained from TSD
(tilted sandwich debond) tests, predicting propagation loads. Instability loads of the columns were de-
termined from the out-of-plane displacements using the Southwell method. The finite element estimates
of debond propagation and instability loads are in overall agreement with experimental results. The
proximity of the debond propagation loads and the instability loads shows the importance of instability
in connection with the debond propagation of sandwich columns.

1. Introduction

A sandwich panel consists of two strong and stiff face sheets bonded to a core of low density. The
face sheets in the sandwich resist in-plane and bending loads. The core separates the face sheets to
increase the bending rigidity and strength of the panel and transfers shear forces between the face
sheets [Zenkert 1997]. It is recognized that the bond between the face sheets and core is a potential
weak link in a sandwich structure [Shivakumar et al. 2005; Xie and Vizzini 2005; Chen and Bai 2002;
Avery and Sankar 2000; Veedu and Carlsson 2005]. A crucial problem arises when bonding between
the face sheets and core is not adequate or absent (debonding) as a result of manufacturing flaws or
damage inflicted during service, such as impact or blast situations. The behavior of sandwich structures
containing imperfections or interfacial cracks subjected to in-plane loading has been investigated to a
certain extent. Hohe and Becker [2001] conducted an analytical investigation to study the effect of
intrinsic microscopic face-core debonds. Kardomateas and Huang [2003] studied buckling and post-
buckling behavior of debonded sandwich beams through a perturbation procedure based on nonlinear
beam equations. Sankar and Narayan [2001] studied the compressive behavior of debonded sandwich
columns by testing and numerical analysis. Most of their columns failed by buckling of the debonded
face sheet. Vadakke and Carlsson [2004] similarly studied the compression failure of sandwich columns
with a face/core debond. They investigated the effect of core density and debond length on compressive
strength of sandwich columns. Results of their experiments showed that failure occurred by buckling of
the debonded face sheet, followed by rapid debond growth towards the ends of the specimen. They also
showed that the compression strength of the sandwich columns decreases significantly with increasing

Keywords: sandwich structures, columns, debond damages, buckling, fracture mechanics, compressive strength.
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debond size. Furthermore, columns with high-density cores experienced less strength reduction at any
given debond size. Østergaard [2008] used a cohesive zone model for debonded columns and investigated
the relation between global buckling behavior and cohesive layer properties. The study showed that the
compression strength reduction caused by a debond can be explained by two mechanisms: First from the
interaction of local debond and global column buckling and secondly from the development of a damage
zone at the debond crack tip. Only a few works have in detail assessed determination of fracture param-
eters like energy release rate, phase angle and debond propagation in composite and sandwich structures
subjected to in-plane loading [Sallam and Simitses 1985; Avilés and Carlsson 2007; Nøkkentved et al.
2005; Berggreen and Simonsen 2005]. The first of these papers presented a one dimensional model to
estimate the delamination buckling load and ultimate load-carrying capacity of axially loaded composite
plates, while the other three focused on sandwich panels containing two-dimensional embedded debonds.
Important insight can be gained from detailed fracture analysis of a column with a through-width debond
which has not been thoroughly examined in the literature. The failure analysis of such columns is the
objective of the present paper.

2. Column test specimen and test set-up

Sandwich panels consisting of 2 mm thick plain weave E-glass/epoxy face sheets over 50 mm thick Di-
vinycell H45, H100, and H200 PVC foam cores were manufactured using vacuum assisted resin transfer
molding and cured at room temperature. A face/core debond was defined by inserting strips of Teflon
film, 30µm thick, between face and core at desired locations in the panels. The widths of the Teflon
strip were 25.4, 38.1, and 50.8 mm. The width defines the length of the debond in the column specimens
subsequently cut from the panels. It was observed that the single Teflon layer insert used to define the
face/core debond did not perfectly release the bond between the face and core. To achieve a nonsticking,
traction-free debond in the specimens, the debond was mechanically released by wedging knives with
very thin blades (0.35 and 0.43 mm thick). The width and length of the columns were 38 and 153 mm
respectively.

Figure 1 shows a column specimen cut from a panel. A test rig was designed and manufactured for
axial compression testing of the columns; see Figure 2, left. The test rig includes four 25 mm diameter

Figure 1. A column test specimen with H100 core and 38.1 mm debond.
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Figure 2. Left: Schematic representation of the compression test fixture. Right: View
of actual test set-up.

solid steel rods to maintain alignment of the upper and lower plates of the test rig during compressive
loading. Linear bearings were attached to the upper plate to minimize friction. Steel clamps of 80 mm
width were attached to the upper and lower plates of the fixture to clamp the columns. The test rig was
inserted into an MTS 810 100 kN capacity servo-hydraulic universal testing machine; see Figure 2, right.
A 2-megapixel digital image correlation measurement system (ARAMIS 2M) was used to monitor three-
dimensional surface displacements and surface strains during the experiments. Testing of the columns
was conducted using ramp displacement control with a piston loading rate of 0.5 mm/min. A sample rate
of one image per second was used in the DIC (digital image correlation) measurements. Three replicate
tests were conducted for each specimen configuration.

Material properties are listed in Table 1. Those of the face sheets, assumed in-plane isotropic, were
determined by tensile tests based on the ASTM standard D3039. The compression strength of the face
sheets was measured on laminate specimens cut from the actual sandwich face sheet using the ASTM
standard IITRI (D3410) test fixture. Three replicate specimens were used. Core material properties were
obtained from the manufacturer [DIAB].

σmax (MPa)
Material E (MPa) G (MPa) ν tensile compression G I C (J/m2)

Face: E-glass/epoxy 10360 3816 0.31 168 95.4 N/A
Core: H45 50 15 0.33 0.6 150
Core: H100 135 35 0.33 2 310
Core: H200 240 85 0.33 4.8 625

Table 1. Face and core material properties and fracture toughness [DIAB; Viana and
Carlsson 2002]. E = Young’s modulus; G = shear modulus; ν = Poisson’s ratio; σmax =

material strength; G I C =mode I fracture toughness.
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3. Column specimen test results

Figure 3 shows typical load versus axial displacement and load versus out-of-plane displacement curves
for columns with a 50.8 mm debond and H45, H100, and H200 cores. The out-of-plane deflection refers
to the center of the debond. The plot on the left shows that the columns respond in a fairly linear fashion
after the initial stiffening region until collapse. The one on the right shows that the out-of-plane deflection
increases slowly with increasing load until the maximum load. It will later be shown that the point of
maximum load corresponds to the onset of debond propagation. It is also seen in Figure 3, right, that the
critical load at propagation increases as the core density is increased.

Figure 4 shows DIC images of out-of-plane displacement in a column with H45 core and a 50.8 mm
debond just before and after debond propagation. During the compression tests the DIC measurements
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Figure 3. Load versus axial displacement (left) and out-of-plane deflection at the
debond center versus load (right) for columns with 50.8 mm debond length.

Figure 4. Debond opening prior to propagation (left) and after propagation (right) for a
column with H100 core and 50.8 mm debond length from DIC measurements.
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Figure 5. Initial imperfections in columns with H100 core and 50.8 mm debond length,
where the debond was released using a thin blade (0.35 mm; left) and a thicker one
(0.43 mm; right).

revealed that opening of the debond was not perfectly symmetric, as seen in Figure 4. This can be
attributed to a slight misalignment of the fibers in the face sheets and lack of perfectly uniform load
introduction at the ends of the columns.

Figure 5 shows DIC images of initial out-of-plane imperfection of two columns with H100 core and a
50.8 mm debond, released using the thin (0.35 mm) and thicker (0.43 mm) blades respectively. The initial
imperfection amplitudes are approximately 0.25 and 0.51 mm. A Photron APX-RS high-speed camera
was used to track the debond propagation at a frame rate of 1000 images per second. Figure 6, left,

Figure 6. Left: High speed images showing the debond in a column with H45 core and
50.8 mm debond length 1 ms before propagation (1) and right after propagation has taken
place (2). Right: Crack kinking into the core in a column with H100 core and 25.4 mm
debond length.



1474 RAMIN MOSLEMIAN, CHRISTIAN BERGGREEN, LEIF A. CARLSSON AND FRANCIS AVILES

Figure 7. Face compression failure in a column specimen with H200 core and 25.4 mm debond.

shows the debond 1 ms before and right after the debond propagation. A slight opening of the debond
can be seen before propagation. Slight crack kinking into the core, resulting in the crack propagating
just beneath the interface on the core side, was observed in most of the column specimens with an H45
core. Some specimens with an H100 core displayed this failure mode as well; see Figure 6, right.

The fracture toughness of the H45 core (150 J/m2; see Table 2 on page 1476) is likely less than that
of the face/core interface, which could explain the observed crack propagation path. A detailed kinking
analysis, similar to what is presented in [Li and Carlsson 1999; Berggreen et al. 2007], must be carried
out to investigate this further. This is however out of the scope of this paper.

All columns with H200 core and 25.4 mm debond length failed by compression failure of the face sheet
above the debond location; see Figure 7. This can be explained by the proximity between the debond
propagation load of the debonded face sheet and the compression failure load of the face sheet which
can be calculated from the compressive strength (see Table 1) and cross section area of the face sheet.
Face compression failure was also observed for one of the columns with H100 core and 25.4 mm debond
length. The H200 column specimens with 38.1 and 50.8 mm debond failed by debond propagation. No
kinking was observed in these speciments, resulting in crack propagation directly in the face/core glue
interface. Additionally the observed crack propagation rate was less for the H200 specimens, indicating
a tough interface. The average failure loads are listed in Table 5 on page 1484.

4. Characterization of face/core interface fracture resistance

The aim of this section is to determine the fracture toughness of the interface at a phase angle identical to
the one in the column specimens at the onset of crack propagation. The fracture toughness will be used
later to determine the crack propagation load in the column specimens using the finite element method.
A modified version of the tilted sandwich debond specimen [Li and Carlsson 1999; 2001; Berggreen
and Carlsson 2008], shown in Figure 8, was used to determine the fracture toughness of the interface.
Berggreen and Carlsson [2008] showed that reinforcing the top face by a stiff metal plate considerably
increases the shear loading and thus the range of phase angles. Finite element analysis of the modified
TSD specimen was carried out to determine the appropriate tilt angle to match the phase angles for the
tested columns.

A two-dimensional finite element model with a highly refined mesh in the crack tip region, element
size of 3.33µm, was developed in ANSYS version 11 [ANSYS], using 8 node isoparametric elements
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Figure 8. Schematic representation of the modified TSD specimen.

Figure 9. Finite element mesh used in analysis of the modified TSD specimen with near
tip mesh refinement. The smallest element size is 3.33µm.

(PLANE82), see Figure 9. Energy release rate (G) and phase angle (ψ) were determined from relative
nodal pair displacements along the crack flanks obtained from the finite element analysis using the CSDE
method outlined in [Berggreen and Simonsen 2005; Berggreen et al. 2007]. The energy release rate and
the phase angle are given by (see [Hutchinson and Suo 1992])

G =
π(1+ 4ε2)

8H11x

(
H11

H22
δ2

y + δ
2
x

)
, ψK = tan−1

√
H22

H11

δx

δy
− ε ln

x
h
+ tan−1(2ε), (1)

where δy and δx are the opening and sliding relative displacement of the crack flanks, while H11, H22

and the oscillatory index ε are bimaterial constants determined from the elastic stiffnesses of the face
and core (see sidebar on next page). Moreover, h is the characteristic length of the crack problem; it has
no direct physical meaning; it is chosen here arbitrarily as the thickness of the face sheet. Further details
concerning the FE model can be found in [Berggreen and Carlsson 2008].

The phase angle of each column specimen was extracted at a load corresponding to the onset of
debond propagation using finite element modeling (to be presented below). The extracted phase angles
were exploited in finite element models of the TSD specimens to determine the matching tilt angle at a
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Core H45 H100 H200

Initial crack length 50 mm 63.5 mm 63.5 mm
Phase angle −24 deg −29 deg −37 deg

Tilt angle (θ) 55 deg 60 deg 70 deg

Table 2. Dimensions and tilt angle of TSD specimens.

crack length of 50 mm for specimens with H45 core and 63.5 mm for specimens with H100 and H200
cores. The face sheets were 1.5 mm thick, and the core thickness was 25 mm. A 12.7 mm thick steel bar
of the same width (25.4 mm) and length (180 mm) as the sandwich specimen was used to reinforce the
loaded face sheet. Material properties of the face sheets and cores in the TSD-specimens are identical
to those of the columns specimens. The resulting specifications for the TSD specimen including the
calibrated tilt angle are given in Table 2.

TSD specimens 180 mm long and 25.4 mm wide were cut from panels prepared with one face sheet
only. Figure 10 shows the TSD test set-up with an H100 sandwich specimen tilted 60◦. The bottom
core surface of the specimen was bonded to a steel plate bolt connected to the test rig. Prior to bonding,
the bonding surfaces were thoroughly sanded and cleaned with acetone to promote adhesion. Hysol
EA-9309 aerospace epoxy paste adhesive was used for bonding. The steel bar contained a through-width
hole near the end to allow pin load application. All tests were conducted at a rate of 1 mm/min, and three
replicate specimens were tested.

Figure 11 shows typical load versus displacement curves for TSD specimens with H45, H100, and
H200 foam cores. The load-displacement plots are fairly linear until the point of crack propagation,
where the load suddenly drops. The load required to propagate the crack significantly increases as the
core density is increased. Compared to conventional TSD specimens without steel reinforcement [Li and
Carlsson 2001], substantially larger loads are required to generate crack growth in the steel reinforced

Oscillatory index ε and bimaterial constants

Equations (1) use bimaterial constants H11 and H22 defined in terms of the material compliances by

H11=
[
2nλ1/4√S11S22

]
1+
[
2nλ1/4√S11S22

]
2, H22=

[
2nλ−1/4√S11S22

]
1+
[
2nλ−1/4√S11S22

]
2,

where λ= S11/S22 and n =
√
(1+ρ)/2, ρ = 1

2(2S12+S66)/
√

S11S22 , are nondimensional orthotropic
constants given in terms of the elements S11 and S22 of the compliance matrix. The compliance
elements for plane stress conditions are given by S11 = 1/E1, S12 = S21 = −υ12/E1 = −υ21/E2,
S22 = 1/E2, S66 = 1/G12. For plane strain conditions, S∗i j = Si j − (Si3S j3/S33).

Equations (1) also contain the oscillatory index

ε =
1

2π
ln 1−β

1+β
,

where β =

[
S12+

√
S11S22

]
2−

[
S12+

√
S11S22

]
1

√
H11 H22

. For details, see [Berggreen et al. 2007].
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Figure 10. Modified TSD test set-up.
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Figure 12. Crack propagation behavior in TSD specimens: (a) H45; (b) H100; (c) H200.

specimens as a result of the large bending and shear stiffnesses of the steel reinforced upper face sheet.
The crack propagation behavior for the H45 specimens was rather unstable with the crack suddenly
growing 25–50 mm at each crack increment which allowed only about three crack increments before
the crack reached more than 70% of the total specimen length at which point the test was stopped.
For the specimens with an H45 foam core, the crack propagated on the core side beneath the face/core
interface, see Figure 12(a). This is consistent with the observations from the column tests and the previous
observations of crack path behavior for low density foam cores [Li and Carlsson 1999]. For specimens
with an H100 core, unstable crack growth was more pronounced with the crack growing about 50 mm at
each increment which allowed only two crack increments before the crack reached 70% of the specimen
length. For the H100 specimens the crack location was again beneath the face/core interface, but now
slightly closer to the face sheet just below the resin rich layer on the core side, see Figure 12(b). The
H200 specimens failed at considerably higher loads (> 4 kN) by sudden delamination between the plies
of the upper face sheet causing a large unstable crack which reached almost to the end of the specimen
in one crack increment, see Figure 12(c).

Given such an unstable crack growth behavior with a few crack increments per specimen, the use
of standard data reduction methods such as compliance calibration or modified beam theory becomes
questionable for this test. Thus, fracture toughness of the face/core interface was determined from finite
element analysis of the TSD specimen with the critical load as input. The calculated fracture toughness
values and phase angles are listed in Table 3.

TSD specimen Phase angle Fracture toughness

H45 −24 deg 176± 35 J/m2

H100 −29 deg 672± 69 J/m2

H200 −37 deg —

Table 3. Calculated phase angle and fracture toughness at measured fracture load.
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For the H200 specimens kinking of the crack into the face sheet occurred and the fracture toughness
of the face/core interface could thus not be determined. Consequently, it was not possible to predict the
face/core debond propagation load for the columns with an H200 core.

5. Finite element model of column specimens

Finite element modeling of the column specimen employed the commercial finite element code, ANSYS
version 11 [ANSYS]. Because of material, geometrical and loading symmetries, only the upper half
symmetry section of the column geometry was modeled; see Figure 13. The columns were assumed
to contain an initial imperfection in the form of a one half wave eigen-mode shape, determined from
eigen-buckling analysis. Overlapping of crack flanks was avoided by use of contact elements (CON-
TACT173 and TARGET170), and displacement controlled geometrical nonlinear analysis was conducted.
To simulate the boundary conditions in the experimental set-up, nodes at the top side of the columns, in
contact with the top ending platen of the test rig, were displaced uniformly in the direction of loading.
Furthermore the nodes in contact with the lateral clamp surfaces were constrained to have zero lateral
displacement. Symmetry boundary conditions were applied at the symmetry plane. Hence, displacements
of the nodes on the symmetry plane were assumed to be zero in the loading direction; see again Figure
13. Due to the need of a high mesh density at the crack front when performing the fracture mechanics
analysis, a submodeling technique was developed, where displacements calculated on the cut bound-
aries of the global model with a coarse mesh were specified as boundary conditions for the submodel.
Submodeling is based on Saint-Venant’s principle, which states that if an actual distribution of forces is
replaced by a statically equivalent system, the distributions of stresses and strains are altered only near
the regions of load application. The approach assumes that stress concentration around the crack tip is
highly localized. Therefore, if the boundaries of the submodel are sufficiently far away from the crack
tip, reasonably accurate results can be obtained in the submodel. Interpolated displacement results at the

Figure 13. Applied boundary conditions on the finite element model of the columns.
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debond −→

                                                                                

debond −→

Figure 14. Finite element models. Left: half-model showing the mesh in the global
model. The smallest element size is 0.2 mm. Right: submodel showing the refined mesh.
Element size close to the crack tip is 10µm.

cut boundaries in the global model were used as boundary conditions in the submodel at different load
steps. Twenty-node isoparametric elements (solid 95) were used in the finite element model. The finite
element model and submodel are shown in Figure 14. In the global model and submodel, the size of
elements along the crack flanks near the crack tip are 0.2 and 0.01 mm, respectively. Energy release rate
(given by the expression for G on page 1475) and mode-mixity are determined based on relative nodal
pair displacements along the crack flanks obtained from the finite element analysis. The CSDE method
[Berggreen and Simonsen 2005] and the mode-mixity formulation (expression for ψK on on page 1475)
were used.

6. Comparison of numerical and experimental results

Results from the experimental testing and numerical modeling presented above are compared. Three
issues are addressed: the effect of imperfections on the instability behavior, the through-width variation
of energy release rate and mode-mixity, and the influence of imperfections on debond propagation.

To examine the effect of initial imperfection on the instability behavior of the specimens, columns with
initial imperfection amplitudes of 0.1, 0.2, and 0.4 mm were analyzed numerically and compared with
test results. The columns tested had on average an imperfection magnitude of 0.2 mm. Figure 15 shows
the deformed shape of a debonded sandwich column with H100 core containing a 50.8 mm face/core
debond and 0.2 mm initial imperfection amplitude. The imperfection resembles a half-sine wave with the
maximum deflection at the center consistent with DIC measurements described above. Figure 16 shows
load versus out-of-plane deflection for columns with H100 core and 25.4, 38.1, and 50.8 mm debonds
determined from numerical analysis at imperfection amplitudes of 0.1, 0.2, and 0.4 mm and testing (two
or three replicates are shown). The numerical and test results show that the debond opening initially
increases slowly with increasing load, but then increases rapidly as the maximum load is approached.
At the maximum load, which corresponds to the onset of propagation, the load decreases due to the
displacement controlled loading and debond propagation resulting in increased compliance, while the
out-of-plane displacement of the debonded face rapidly increases. The load reduction is shown only
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Figure 15. Deformed shape of a column with H100 core containing a 50.8 mm face/core
debond after local buckling of the debonded face sheet.
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Figure 16. Finite element and experimental results for out-of-plane versus load diagram
for columns with H100 core and (a) 25.4 mm debond, (b) 38.1 mm debond, (c) 50.8 mm
debond. The average initial imperfection magnitude in the tested columns is 0.2 mm.
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Experiment FE Analysis

Debond length Debond length
Core 25.4 mm 38.1 mm 50.8 mm 25.4 mm 38.1 mm 50.8 mm

H45 12.9± 1.5 10.1± 1.1 6.1± 0.9 14.1 8.5 5.6
H100 14.8± 0.8 10.5± 1.7 8.7± 0.6 15.2 11.6 8.8
H200 – 13.0± 1.2 8.5± 0.3 – 13.8 9.0

Table 4. Instability loads, in kN, determined from Southwell plots applied to experimen-
tal and finite element results, using a 0.2 mm initial imperfection.

for the experimental results, as only initiation of debond propagation is modeled numerically (no crack
propagation algorithms are implemented in the finite element model). It can be seen that the initial
imperfection magnitude does not influence the out-of-plane deflection of the columns very much.

A bifurcation instability of the debonded face sheet is not observed before the propagation point.
Evidently the presence of initial imperfection transforms the behavior of the debonded face sheet into
compression loading of a curved column. The failure load is found from fracture mechanics analysis,
when the crack tip loading reaches the fracture toughness.

Because of the imperfection present in the debonded face sheet, the critical instability load was ex-
tracted from both experimental and finite element results applying the Southwell method. This is a
graphical method which estimates the instability load of imperfect structural columns. Southwell [1932]
showed that the deflection, δ, at the center of an imperfect column, loaded by a load P , is given by

δ− Pcr
δ

P
+α = 0, (2)

where Pcr is the buckling load and α is proportional to the initial imperfection (δ◦). By plotting δ versus
δ/P , the instability load Pcr can be determined by the slope of the line (designated the Southwell-plot
method).

Numerical and experimental results are compared in terms of instability load values listed in Table 4.
For the finite element analysis results, a 0.2 mm initial imperfection was selected which is consistent with
experimental values. From the results listed in Table 4, it can be seen that experimental and numerical
instability loads are in good agreement. Further, it can be seen that the instability load drops significantly
as the debond length increases which is well-known for any buckling problem.

Energy release rate and mode-mixity were determined across the width of the columns. Generally it
is assumed that the edges of the columns are under plane stress and the interior is in plane strain. Thus,
in the analysis of energy release rate and phase angle a plane stress formulation was adopted for nodes
on the specimen edges and a plane strain formulation for the interior points.

Figure 17 depicts the distributions of energy release rate normalized with the interface fracture tough-
ness, Gc, and phase angle across the width of a column with H45 core and 50.8 mm debond. Similar
results were obtained for columns with other core materials and debond lengths. The graphs shows the
classical thumb-nail distribution of the energy release rate, normalized with fracture toughness of the
interface, increasing from the edges towards the center of the specimen. The phase angle also displays a
maximum in the interior. The magnitude of the phase angle, however, is minimum in the interior meaning
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Figure 17. Distribution of energy release rate (left) and phase angle (right) across the
column width for a column with H100 core and 50.8 mm debond.

that the loading in the center is more mode I dominated than the edges. Based on the results shown in
Figure 17 the debond propagation is expected to initiate in the interior. Thus, in the debond propagation
analysis, the plane strain formulation in the center of the specimen was employed.

Figure 18 shows energy release rate and mode-mixity in terms of phase angle versus load for columns
with a 50.8 mm debond and H45, H100, and H200 cores. The first graph shows that G increases signif-
icantly at a certain load regime which can be associated with the opening of the debond. The fracture
toughness values shown in the graph were determined with the TSD tests described in Section 4. The
reduction of phase angle as the load increases, displayed in the second graph, shows that the crack tip
loading becomes more shear dominated at high loads.

To investigate the influence of the initial imperfection on G and ψ , columns with H100 core and
38.1 mm debond with initial imperfection magnitudes of 0.1, 0.2, and 0.5 mm were analyzed. Figure 19
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Figure 18. Energy release rate (left) and phase angle (right) versus load for columns
with a 50.8 mm debond and H45, H100 and H200 cores.
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Figure 19. Energy release rate (left) and phase angle (right) versus load for a column
with H100 core and 38.1 mm debond with different initial imperfection magnitudes.

shows G and ψ versus load for these columns. In the first graph it can be seen that G is not highly
sensitive to the initial imperfection magnitude. The phase angle, shown in the second graph, is sensitive
to the initial imperfection at small loads, but appears to converge to a value about −30◦ at higher loads
indicating that the mode-mixity is less influenced by initial imperfection at higher loads.

The crack propagation load was estimated using fracture toughness data from the TSD tests. Energy
release rate and mode-mixity in terms of phase angle were determined in the interior (center) of the
columns. Table 5 lists numerically predicted and experimentally determined propagation loads (the
maximum load in the load versus axial displacement diagrams of Figure 3, left) for the debonded columns.

The FEA predictions of debond propagation loads agree reasonably with the experimentally measured
ones. It is clearly observed that the debond propagation load in the debonded columns decreases as the
debond length increases. Furthermore the propagation load increases with increased core density as a
result of the increasing fracture resistance with core density. However, some inconsistencies can be seen
in experimental results. For example the measured debond propagation loads for columns with H100 and
H200 cores, and 50.8 mm debond length are almost identical. These inconsistencies could be attributed
to the local material distortions at the crack tip caused by the use of a blade to release the face/core
debond and the resin rich area at the tip of the insert film. The proximity of the debond propagation
loads and the instability loads in Tables 4 and 5 show that the local instability load could be used as

Experiment FE Analysis

Debond length Debond length
Core 25.4 mm 38.1 mm 50.8 mm 25.4 mm 38.1 mm 50.8 mm

H45 13.5± 1 9.8± 1.4 6.3± 1.1 10.6 7.1 5.4
H100 13.8± 0.9 10± 1.2 8± 0.9 16.8 11.2 9.1
H200 – 12.3± 1.7 8.1± 1.2 – – –

Table 5. Debond propagation loads, in kN: numerical predictions and experimental values.



FAILURE INVESTIGATION OF DEBONDED SANDWICH COLUMNS 1485

a measure of debonded column strength for this particular column case. This is however not a general
conclusion valid for all debonded column cases where other failure mechanisms, such as compression
failure, occur prior to local buckling instability.

7. Conclusions

The compressive failure mechanism of foam cored sandwich columns containing a face-to-core debond
was experimentally and numerically investigated. Sandwich columns with glass/epoxy face sheets and
H45, H100, and H200 PVC foam cores were tested in a specially designed test rig. Most of the columns
with H200 core and some columns with H100 failed by debond propagation at the face/core interface
towards the column ends. Bifurcation type buckling instability of the debonded face sheet was not
observed before the debond propagation initiated. It is believed that the initial imperfections are mostly
responsible for this behavior which is similar to compression loading of a curved beam.

Slight kinking of the debond into the core was another failure mechanism which occurred in columns
with a low density H45 core. Compression failure of the face sheet occurred in all specimens with H200
cores and a 25.4 mm debond which can be explained by the proximity between the debond propagation
and the compression failure load of the face sheet.

Instability and crack propagation loads of the columns were predicted based on geometrically non-
linear finite element analysis and linear elastic fracture mechanics. Testing of modified TSD specimens
was conducted to measure the fracture toughness of the interface at the calculated phase angles for
the column specimens associated with the debond propagation. Comparison of the measured out-of-
plane deflection, instability, and debond propagation loads from experiments and finite element analyses
showed fair agreement. For most of the investigated column specimens, it was shown that the instability
and debond propagation loads are very reasonable estimates of the ultimate failure load, unless the other
failure mechanisms occur prior to buckling instability.
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COUPLED FINITE ELEMENT FOR THE NONLINEAR DYNAMIC RESPONSE
OF ACTIVE PIEZOELECTRIC PLATES

UNDER THERMOELECTROMECHANICAL LOADS

DIMITRIS VARELIS AND DIMITRIS SARAVANOS

A theoretical framework is presented for analyzing the coupled nonlinear dynamic behavior of lami-
nated piezoelectric composite plates subject to high thermoelectromechanical loadings. It incorporates
coupling between mechanical, electric, and thermal governing equations and encompass geometric non-
linearity effects due to large displacements and rotations. The mixed-field shear-layerwise plate laminate
theory formulation is considered, thus degenerating the 3D electromechanical field to 2D nodal variables,
and an eight-node coupled nonlinear plate element is developed. The discrete coupled nonlinear dynamic
equations of motion are formulated, linearized, and numerically solved at each time step using the im-
plicit Newmark scheme with a Newton–Raphson technique. Validation and evaluation cases on active
laminated beams demonstrate the accuracy of the method and its robust capability to effectively predict
the nonlinear dynamic response under time-dependent combined mechanical, thermal, and piezoelectric
actuator loads. The results illustrate the capability of the method to simulate large amplitude vibrations
and dynamic buckling phenomena in active piezocomposite plates. The influence of loading rates on
the nonlinear dynamic structural response is also quantified. Additional numerical cases demonstrate the
complex dynamic interactions between electrical, mechanical, and thermal buckling loads.

1. Introduction

In the last decade a substantial amount has been published addressing the nonlinear static response of lam-
inated beams, plates, and shells with attached piezoelectric devices subjected to thermoelectromechanical
loads. The reported works implement various types of external loads, kinematic assumptions, and numer-
ical methods to solve the resultant nonlinear equations. Tzou and Zhou [1997] reported theoretical work
on the dynamics, electromechanical coupling, and control of thermal buckling of a nonlinear piezoelectric
laminated circular plate with an initial large deformation, Bao et al. [1998] analyzed nonlinear piezother-
moelastic laminated beams, and Oh et al. [2001] studied thermopiezoelastic phenomena of active lami-
nated plates. Wang et al. [2004] analyzed adaptive structures involving large imposed deformation. Ah-
mad et al. [2004] formulated a nonlinear model of a smart beam using general electrothermoelastic rela-
tions. In [Varelis and Saravanos 2004] the present authors demonstrated the prebuckling and postbuckling
response of piezoelectric plates solving the static coupled nonlinear equations, and in [Varelis and Sara-
vanos 2008] we developed a coupled nonlinear shell element for the prediction of stable and unstable de-
flection paths of piezolaminated shells subject to thermoelectromechanical loads, and also demonstrated
the capability of piezoelectric shells to induce large deflections through active snap-through buckling.

Keywords: adaptive structures, composite, piezoelectric, actuators, sensors, finite element, nonlinear dynamics, vibration,
geometric nonlinearity, thermal, buckling.
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Additional reported works addressed the nonlinear dynamic behavior of piezolaminated plates and
beams limited, however, to small amplitude free vibrations. Lee and Lee [1997] investigated the lin-
earized vibration behavior of unstiffened and stiffened thermally postbuckled anisotropic plates, Singha
et al. [2006] predicted the vibration characteristics of thermally stressed skew plates, and Park and Kim
[2006] investigated small amplitude vibration behavior of simply supported FGM plates with temperature
dependent materials in prebuckling and postbuckling state. Oh et al. [2000] presented an uncoupled layer-
wise theory to quantify the influence of buckling and postbuckling on natural frequencies. In [Varelis and
Saravanos 2006] we reported on a coupled nonlinear finite element for the prediction of small amplitude
free vibrations of piezocomposite beams and plates subjected to large deflections and initial stresses and
quantified the advantages of the coupled formulation; a strong relation between modal frequencies and
the ongoing buckling prediction was also postulated.

Very little work has been reported on the nonlinear dynamic response of adaptive piezoelectric struc-
tures for large loads and deflection amplitudes. Gao and Shen [2003] adopted first-order shear deforma-
tion theory for analyzing the geometrical nonlinear transient vibration response of plates and their control.
Yi et al. [2000] applied solid elements to perform geometrically nonlinear analysis of surface bonded
piezoelectric sensor wafers on plates and shells. Mukherjee and Chaudhuri [2005] developed a finite
element for piezolaminated beams using an uncoupled approach for the prediction of sensory voltage in
polyvinylidene fluoride (PVDF) bimorph cantilever beams vibrating at large amplitudes. Lentzen et al.
[2007] worked on the control of the nonlinear vibration of piezoelectric beams under transverse load.
Oh [2005] developed a finite plate element encompassing an uncoupled layerwise theory considering
snap-through piezoelastic behavior.

The current paper presents a nonlinear coupled thermopiezoelectric plate theory and a finite element for
laminated piezoelectric plates undergoing large displacements and rotations, for predicting the nonlinear
dynamic response of adaptive plates exposed to dynamic thermal, electrical, and mechanical loads. The
coupled nonlinear governing equations for piezolaminates are first formulated using the mixed-field shear-
layerwise kinematic assumptions [Varelis and Saravanos 2008]. Generalized governing equations are
formulated combining the Green–Lagrange nonlinear strains, with the kinematic assumptions of the
mixed-field shear-layerwise shell laminate theory and linear thermopiezoelectric constitutive equations,
including rotational inertia effects. Based on the previous generalized mechanics, a local finite element
approximation is formulated and an eight-node nonlinear thermopiezoelectric plate element is developed.
Finally, the discrete nonlinear coupled dynamic equations of motion are solved at each time step using the
Newmark time integration in combination with a Newton–Raphson technique. Validation cases verify the
present model, and various numerical examples evaluate the capability of the present method to predict
the oncoming dynamic instability of smart beams under various combinations of dynamic mechanical,
electric, and thermal loads.

2. Piezoelectric laminated shells

The case of a piezoelectric laminate plate is considered, consisting of an arbitrary configuration of linear
piezoelectric layers or composite plies. The material of each ply of the piezoelectric laminate is assumed
to remain within the range of linear piezoelectricity,

σi = C E,T
i j S j − eT

ik Ek − λ
E,T
im θm, Dl = eT

l j S j + ε
S,T
lk Ek + pT

lmθm, (1)
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where i , j = 1, . . . , 6 and k, l = 1, . . . , 3; σi and Si denote the mechanical stresses and Green’s engineer-
ing strains in extended vectorial notation, Ci j is the elastic stiffness tensor, eik is the piezoelectric tensor,
Ek is the electric field vector, λim is the thermal expansion tensor, θm =1T = T − To is the temperature
difference between the current temperature T and the thermally stress-free reference temperature To, Dl

is the electric displacement vector, εlk is the electric permittivity tensor, and plm is the pyroelectric tensor.
Superscript E , S, T represent constant voltage, strain, and temperature conditions, respectively.

The first shear deformation theory for the elastic displacements in combination with a layerwise linear
field assumption for the electric potential and temperature are implemented, in the context of the mixed-
field kinematic assumptions. Geometric nonlinear effects are usually realized in flexible structures which
do not exhibit significant shear deformable effects, and vice versa; therefore, the consideration of shear
deformation mainly aims to improve to the robustness of the linear part of the solution at plates of higher
thickness aspect ratios.

The mechanical strains, the electric and thermal field components through the thickness of the laminate
take the form

Si = So
i + zko

i + SLi (i = 1, 2, 6), Ss j = So
s j ( j = 4, 5), (2)

where So
i and So

s j are the midsurface in-plane and shear strains respectively, ko
i are the midsurface curva-

tures, and SLi the resultant nonlinear mechanical strains described with respect to midsurface parameters:

SL1 =
1
2w

o2

,x , SL2 =
1
2w

o2

,y , SL6 = w
o
,xw

o
,y . (3)

The generalized electric fields are

Ei (x, y, z, t)=
m∑

i=1

Em
i (x, y, t)9m(z) (i = 1, 2), E3(x, y, z, t)=

m∑
i=1

Em
3 (x, y, t)9m

,z (z). (4)

The generalized thermal field is

2(x, y, z, t)=
N∑

m=1

2m(x, y, t)9m(z), (5)

where N indicates the number of discrete layers which may subdivide the laminate, Em and 2m are the
generalized electric and thermal fields at the m discrete layer, 9m(ζ ) are linear interpolation functions,
and N is the number of discrete layers.

2.1. Generalized dynamic equations of motion in variational form. Since the present formulation refers
to dynamic generalized equations, the estimation of the latter from a known equilibrium configuration at
discrete time t to the next equilibrium state in discrete time t +1t is required. Through the use of the
divergence theorem and neglecting the damping effects, the generalized imbalances between external and
internal mechanical forces and electric charges, away from the equilibrium denoted by the vectors 9u

and 9e, can be expressed at time t over the volume of the piezoelectric laminated plate, in an equivalent
variational form:

δuT t9u =−

∫
V
δ tST tσ dV +

∫
V
δuT tbdV −

∫
V
δuTρ tü dV +

∫
0τ

δuT tτ̄ d0,

δφT t9e =−

∫
V
δ tET tDdV +

∫
0q

δφT tq̄ d0,
(6)
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where tS and tσ are the total Green–Lagrange strain tensor and second Piola–Kirchoff stress tensor
respectively, tb are the body forces, ρ tü indicate the inertia body forces, tτ are the surface tractions on
the bounding surface 0τ , tq is the electrical charge applied on the terminal bounding surface 0q , an
overbar indicates surface quantities, and V represents the whole laminated plate volume including all
passive and active piezoelectric layers.

Substituting Equations (1)–(5) into (6), integrating over the thickness coordinate ζ and collecting the
mechanical, electric, and thermal field state variables, the following generalized equations of motion
result, which express the electromechanical equilibrium of the laminate at time step t :

δ tuT t9u =−

∫
Ao

(
δ tSoT
[A] tSo

+ δ tSoT
[B] tko

+ δ tkoT
[B] tSo

+ δ tkoT
[D] tko

+ δ tSoT

s [As]
tSo

s

+δ tSLT
[A] tSo

+ δ tSLT
[A] tSL

+ δ tSLT
[B] tko

+ δ tSoT
[A] tSL

+ δ tkoT
[B] tSL

+

∑
m

δ tSoT
[Ēm
]

tEm

+

∑
m

δ tkoT
[Êm
]

tEm
+

∑
m

δ tSLT
[Ēm
]

tEm
+

∑
m

δ tSoT
[2̄m
]

t2m
+

∑
m

δ tkoT
[2̂m
]

t2m

+

∑
m

δ tSLT
[2̄m
]

t2m
)

d A+
∫

Ao

(δ tuT bA
+ δ tβT bB)d A+

∫
0τ

δ tūT tτ̄ d0,

δ tφT t9e =−

∫
Ao

(∑
m

δ tEmT
[Ēm
]

tSo
+

∑
m

δ tEmT
[Ēm
]

tko
+

∑
m

δ tEmT
[Ēm
]

tSL

+

∑
mn

δ tEmT
[Gmn
]

tEn
+

∑
mn

δ tEmT
[T mn
]

t2n
)

d A+
∫
0q

δ tφ tq d0, m, n = 1, . . . , N ,

(7)

where [A], [B], [D], and [As] are the extensional, coupling, flexural, and shear stiffness matrices; Em

overbar and overhat are the equivalent extensional and flexural piezoelectric coefficients; [2̄m
] and [2̂m

]

are the in-plane and out-of-plane laminate thermal expansion matrices; and Gmn are the generalized
electric permittivity matrices.

3. Finite element methodology

In order to solve the above generalized nonlinear variational equation (7), the finite element methodology
is adopted. The multifield state variables are approximated on the reference midplane Ao with local
interpolation functions, taking the form

uo
j (x, y, t)=

M∑
i=1

uoi
j (t)P

i (x, y) ( j = 1, 2, 3), βo
j (x, y, t)=

M∑
i=1

β i
j (t)P

i (x, y) ( j = 1, 2),

φm(x, y, t)=
M∑

i=1

φmi (t)P i (x, y) and θm(x, y, t)=
M∑

i=1

θmi (t)P i (x, y) (m = 1, . . . , N ),

(8)

where N indicates the number of discrete layers which subdivide the laminate, M the number of element
nodes, and P denotes local Co continuous interpolation functions.

3.1. Generalized dynamic equations of motion in variational form. Substituting (8) into (7) and col-
lecting the common nodal displacement, electric potential, and temperature terms, the following coupled
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system of nonlinear equations of motion is ultimately derived for time t :

t9u(u, ϕ)= [M] tü+ [Kuu(u, ϕ)] tu+ [Kue(u, ϕ)] tϕ+ [Kuθ (u, ϕ)] tθ − tR = 0,
t9e(u, ϕ)= [Keu(u, ϕ)] tu+ [Kee(u, ϕ)] tϕ+ [Keθ (u, ϕ)] tθ − tQ = 0,

(9)

where tu and tφ are the nodal displacement and electric potential vectors, respectively, and tθ is the
applied nodal temperature vector tθ = { tθ A

}; tR and tQ are the externally applied mechanical loads and
charge vectors at time t , respectively. The electric potential vector tφ encompasses both applied and free
electric potential terms, that is

tφ =

[ tφA

tφS

]
,

where tφA is the externally applied nodal electric potential at the actuators and tφS is the induced un-
known electric potential at nodes with prescribed electric displacement. In a smart piezoelectric plate, the
electric potential vectors φA and φS correspond to actuators and sensors respectively, moreover, in case
of an adaptive structure they may be further connected through a proper controller; however, in this study
no feedback from sensors to actuators is considered. At mechanical and electrical equilibrium, where
t9u = 0 and t9e = 0, equations (9) represent the discrete system of nonlinear equilibrium equations
and the electric potential φS together with the free displacement nodal vector u represents the unknowns
of the nonlinear system. The availability of active and sensory electric potential in combination with
the nonlinear system (9), reflects the capability of the present model to be interfaced in future studies
through a nonlinear controller. The matrices [K ] with subscripts uu, ue, ee, uθ , and eθ indicate the actual
stiffness, piezoelectric, electric permittivity, thermal expansion, and pyroelectric matrices respectively,
including linear and nonlinear terms:

[Kuu(u, φ)] = [K o
uu] + [K

L
uu] = [K

o
uu] + [P1(u)] + [P2(u2)],

[Kue(u, φ)] = [K o
ue] + [K

L
ue] = [K

o
ue] + [P3(u)],

[Keu(u, φ)] = [K o
eu] + [K

L
eu] = [K

o
eu] + [P4(u)],

[Kee(u, φ)] = [K o
ee].

(10)

3.2. Solution scheme for coupled nonlinear equations. Let us assume that an equilibrium between
internal and external mechanical forces and electric charges has been predicted for the configuration
at time t , yielding t9u = 0 and t9e = 0. Assuming also that external forces and charges are applied
incrementally at discrete time steps, such that t+1tR = tR+1R and t+1tQ = tQ+1Q, we are looking to
predict the next equilibrium state at time t +1t , which will satisfy the equilibrium equations t+1t9u = 0
and t+1t9e = 0. The resulting global set of generalized equations of motion are solved in time, using
Newmark’s time integration method.

Since the imbalance forces and charges t+1t9u(u, φ) and t+1t9e(u, φ) depend nonlinearly on the
nodal point displacements and electric potentials, convergence can’t be directly achieved at each time
step. Thus, the Newton–Raphson iterative technique is adopted in order to solve the generalized nonlinear
dynamic equations at each iteration, shown analytically below for the k-th iteration into the configuration
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time t +1t :
t+1tK̄ uu(uk−1, φk−1)1uk

+
t+1tK̄ ue(uk−1, φk−1)1φk

=−
t+1t9u(uk−1, φk−1),

t+1tK̄ eu(uk−1, φk−1)1uk
+

t+1tK̄ ee(uk−1, φk−1)1φk
=−

t+1t9e(uk−1, φk−1).
(11)

In the above system of equations, the overbar indicates tangential structural, piezoelectric, and permit-
tivity matrices which encompass the following matrix terms:

[K̄uu(u, φ)] =
4
1t2 [M] + [K̄

o
uu] + [K̄

σ
uu] + [P̄1(u)] + [P̄2(u2)],

[K̄ue(u, φ)] = [K̄ o
ue] + [K̄

L
ue] = [K̄

o
ue] + [P̄3(u)],

[K̄eu(u, φ)] = [K̄ o
eu] + [K̄

L
eu] = [K̄

o
eu] + [P̄4(u)],

[K̄ee(u, φ)] = [K̄ o
ee].

(12)

The updated displacement, velocity, acceleration, and electric potential vectors are expressed below:

t+1tu(k) = t+1tu(k−1)
+1u(k),

t+1tü(k) =
4
1t2 (

t+1tu(k−1)
−

tu)−
4
1t

tu̇− tü,

t+1tφ(k) = t+1tφ(k−1)
+1φ(k),

(13)

where tu, tu̇, and tü are the converged values at time step t related to the respective values at step t +1t
as follows: tu = t+1tu(0), tu̇ = t+1tu̇(0), and tü = t+1tü(0).

4. Numerical results

Validation and novel evaluation cases of the developed FE model are presented, for various active
piezoelectric laminated beams and plates under combined thermoelectromechanical dynamic loading
conditions. The considered materials were aluminum, graphite-epoxy, PVDF piezopolymer, and PZT5
piezoceramic, the properties of which are shown in Table 1.

5. Validation cases

5.1. Mechanical buckling of a cantilever bimorph beam under ramp loading. In the present numerical
case the lateral nonlinear dynamic response of a PVDF [p/p] bimorph cantilever beam was examined.
The beam was 100 mm long and 5 mm wide and the thickness of the PVDF layer was 0.5 mm. A ramp
point load of 0.005 N was applied in the transverse direction at the middle of the tip along with a constant
uniform axial mechanical load. Closed circuit electric conditions were considered at each piezoelectric
layer. Figure 1 shows the transverse deflection amplitude on the tip versus time, when a compressive
axial load is applied. Obviously the displacement amplitude increases as the axial compressive load
approaches the critical value Fcr = 0.204 N, due to softening effects. Also the curves corresponding
to higher compressive loads exhibit a higher vibration period due again to the reduction of stiffness.
Conversely, Figure 2 illustrates the tip vibration of the beam subject to a tensile axial load and shows an
amplitude reduction with a simultaneous vibration period reduction due to stiffening effects produced by



NONLINEAR DYNAMIC RESPONSE OF ACTIVE PIEZOELECTRIC PLATES 1495

Property Gr/epoxy Al PZT-5 PVDF Property Gr/epoxy Al PZT-5 PVDF

Elastic properties (109 Pa) Electric permittivity (10−9 F/m)
E11 132.4 66 62 2 ε11 0.031 0.026 23 0.1
E22 10.8 66 62 2 ε22 0.026 0.026 23 0.1
E33 10.8 66 62 2 ε33 0.026 0.026 24 0.1
G23 3.6 27 23.6 0.77
G13 5.6 27 23.6 0.77 Thermal expansion coefficient (10−6 /◦C)
G12 5.6 27 18 0.77 α11 −0.9 24 1.1 42
ν12 0.24 0.3 0.31 0.29 α22 27 24 1.1 42
ν13 0.24 0.3 0.31 0.29
ν23 0.49 0.3 0.31 0.29

Piezoelectric coefficients (10−12 m/V) Pyroelectric constant (10−3 /m2◦C)
d31 0 0 −220 −16 p11 0 0 −0.2 0.05
d32 0 0 −220 −16 p22 0 0 −0.2 0.05
d24 0 0 670 33 p33 0 0 −0.2 0.05
d15 0 0 670 33

Table 1. Material properties. All E and G values in units of GPa.

Figure 1. Tip dynamic displacement of a bimorph [PVDF/PVDF] cantilever beam in-
duced by a combined step in-plane compressive and ramp transverse load applied at the
tip of the beam.
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Figure 2. Tip dynamic displacement of a bimorph [PVDF/PVDF] cantilever beam in-
duced by a combined ramp transverse and step in-plane tensile mechanical load applied
at the tip of the beam.

the axial tensile load. Finally, the results are in excellent agreement with those reported by Mukherjee
and Chaudhuri [2005] who used a beam finite element based on uncoupled laminate theory.

5.2. Fully simply-supported square plate under pulse loading. In the second validation case, the dy-
namic response of a fully simply supported square 2.438 m× 2.438 m aluminum plate, with thickness
6.35 mm was investigated. A uniform pressure pulse load P = 47.84 Pa was applied on the plate. An 8×8
element mesh model was used. Figure 3 shows the dynamic response of the plate under various pulse
load values. The results reveal the nonlinear dependence between applied load and vibration amplitude
and period due to membrane effects. The predicted results are in excellent agreement with those reported
by Gao and Shen [2003], who used an uncoupled piezoelectric laminate theory and a four node plate
finite element. Overall, the current method has accurately predicted the nonlinear dynamic response of
flexible structures including the onset of dynamic mechanical buckling, as well as the stiffening effects
due to tensile axial loads.

6. Numerical examples

6.1. Mechanical buckling of a cantilever bimorph beam under various ramp loads. The nonlinear
dynamic response of a cantilever [PVDF/PVDF] beam, having the same geometric dimensions with that
of the first validation case is further studied. Three compressive ramp loads with identical maximum
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Figure 3. Central dynamic transverse deflection of a square simply-supported alu-
minum plate loaded under various uniform step pressures.

values Fmax = 1.1Fcr (Fcr = 0.204 N), were progressively applied at the tip of the beam however, at
different rates (see Figure 4a). A step of low uniform pressure (0.5 Pa) was applied on the beam at
t = 0 sec in order to induce an eccentricity and a stable buckling path (see Figure 4a). Figure 4b shows
the transverse displacement at the tip of the beam versus the time for the various ramp load rates. Clearly
all three curves show a rapid increase of the dynamic tip deflection near the corresponding buckling load
step, which however occurs at different times for each loading rate, with the high-rate ramp load reaching
the critical buckling load faster, and so forth. Yet, the rate of loading is predicted to have a drastic effect
on the resultant maximum dynamic tip deflection. Apparently, in the high-rate ramp load inertial forces
also play a dominant role in the dynamic buckling of the beam, and vice versa. The predicted results
show the capability of the method to predict the onset of dynamic buckling under various dynamic loads.

6.2. Active thermopiezoelectric buckling of a simply-supported composite beam. The nonlinear dy-
namic response of a simply-supported [p/0/90/45/−45]s graphite/epoxy beam with continuous piezoelec-
tric layers attached on the upper and lower surface is predicted. The length and the width of the beam
were 200 mm and 20 mm, respectively; the thicknesses of the composite plies and piezoelectric layers
were hl = h p = 0.1 mm. The beam is loaded by a time step of uniform temperature load 1T applied at
t = 0 sec, and a ramp piezoelectric load with rate dV/dt = 600 V/sec, induced by unidirectional electric
fields imposed by equal but opposite in polarity electric potential values applied on the outer terminals of
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(a)

(b)

Figure 4. Effect of the rate of an in-plane compressive ramp force on the onset of dy-
namic buckling of a bimorph [PVDF/PVDF] cantilever beam. (a) Time dependence of
applied loads and (b) predicted transverse tip displacement.

the piezoactuators (see Figure 5a). An imperfection induced by a time step of very low constant uniform
pressure (1 Pa) was considered to stimulate the onset of a stable buckling path (see Figure 5a). Figure
5b shows the predicted center transverse displacement of the beam versus time. Both thermal load and
electric fields induce in-plane compressive stresses in the beam. The beam buckles under the piezoelectric
load alone (1T = 0◦C), but the simultaneous application of the thermal load effectively causes the shifting
of the stable equilibrium trajectory. The underlying vibration on the buckling trajectory is caused by the
lateral force and near and beyond the critical electric potential the vibration amplitude reaches higher
values due to the initiation of dynamic buckling. The results show the inherent capability of the present
method to simulate the combined dynamic thermoelectric buckling of flexible piezocomposite structures.
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(a)

(b)

Figure 5. Dynamic buckling response of a simply-supported active [p/0/90/45/−45]s

beam under combined uniform in-plane piezoelectric, in-plane thermal, and off-plane
pressure loads. (a) Time dependence of applied electric field, temperature, and uniform
pressure; and (b) predicted transverse deflection at center.

6.3. Laminated active beam under electromechanical bending load. In the present case, the bending
response of a simply-supported active [p/0/90/45/−45]s gr-epoxy beam subject to combination of dy-
namic electromechanical loads is simulated. The geometric dimensions of the beam are the same as
those of the previous example. A time step of uniform pressure (200 Pa) was applied on the beam
at t = 0 sec (see Figure 6a). A uniform and equal in value and polarity ramp electric potential was
also imposed on the outer terminals at each piezoelectric layer at t = 0 sec, while their inner terminals
remained grounded, such that distributed piezoelectric bending moment was progressively induced on
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(a)

(b)

Figure 6. Bending of a simply-supported active [p/0/90/45/−45]s beam under a com-
bined bending piezoelectric load with a uniform pressure. (a) Time dependence of
applied loads, and (b) transverse deflection at center.

the beam (see Figure 6a). Figure 6b shows the predicted transverse displacement at midspan versus time
for three cases of ramp electric loads: Vmax = 0 V, dV/dt = 0 V/sec; Vmax = 400 V, dV/dt = 2000 V/sec;
and Vmax = −400 V, dV/dt = −2000 V/sec. The free vibration is caused mainly by the applied time
step of uniform pressure. The curves corresponding to positive and negative electric potential, show
great differences in the vibratory response and the underlying average displacement, indicating strong
nonlinearity in the respective response.

6.4. Active buckling of simply-supported composite beam under combined thermopiezoelectric load-
ing. The dynamic response of a simply-supported [p/0/90/45/−45]s gr-epoxy beam with continuous
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piezoelectric actuators attached on the upper and lower surface is predicted. The length and the width of
the beam were 200 mm and 20 mm, respectively; the thicknesses of the composite plies and piezoelectric
layers were hl = h p = 0.1 mm. The beam is loaded by a step of uniform temperature thermal load 1T ,
a ramp piezoelectric load (Vmax = 2Vcr, dV/dt = 110 V/sec), inducing unidirectional electric fields in
the piezoactuators through the application of equal but opposite electric potential values on their outer
terminals, and a time step of very low constant uniform pressure (3 Pa), all applied at t = 0 sec (see
Figure 7a). Both the thermal and the piezoelectric loading induce in-plane compressive stresses in the
beam. The predicted thermal and electric potential critical values were 1Tcr = 18◦C and Vcr = 54 V
respectively. Figures 7b and 7c show the predicted dynamic center transverse displacement of the beam
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Figure 7. Dynamic thermopiezoelectric buckling of a simply-supported active
[p/0/90/45/−45]s beam under combined compressive in-plane piezoelectric and thermal
loading and small uniform pressure (a) time dependence of applied loads; (b) and (c)
predicted center deflection for various thermal load values.
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versus time for thermal load values. Without thermal buckling load (1T = 0◦C) the beam enters in
the pure piezoelectric buckling under compressive stresses caused by the piezoelectric actuators. All
other trajectories are the result of combined application of various temperature loads 1T and approach
earlier the onset of buckling due to additional compressive thermal stresses. Obviously, for 1T = Tcr

and 1.5Tcr, the beam buckles first thermally and due to the loss of its out-of-plane stiffness vibrates
under much higher amplitudes. Again, the results show the inherent capability of the present method to
simulate the combined dynamic thermoelectric buckling of flexible piezocomposite structures.

7. Summary and conclusions

A theoretical framework and a finite element methodology were presented, to predict the coupled non-
linear dynamic response of active laminated piezoelectric beams and plates exposed to dynamic ther-
moelectromechanical fields. The mechanics uses the mixed-field shear-layerwise laminate kinematic
assumptions and encompasses the geometric nonlinearity due to large displacements and rotations. An
eight-node nonlinear coupled plate element was developed. The coupled generalized nonlinear dynamic
equations of motion were formulated, linearized, and solved using the Newton–Raphson technique in
combination with the Newmark time integration method.

Validations and evaluation cases of laminated beams and plates subject to high in-plane and out-of-
plane dynamic loads demonstrated the capability of the present method to accurately and robustly predict
their nonlinear dynamic response. Moreover they quantified the complex and highly nonlinear dynamic
response of active structures.

The obtained numerical results illustrate the tendency of active plate beams to exhibit substantially
different behavior under dynamic loads than static buckling. In this context, the rates of applied loads dras-
tically affect the dynamic buckling trajectory, and vibrations may coexist which change the amplitude and
frequency near critical loads. Thermal loads may significantly influence the highly nonlinear response
of piezocomposite beams shifting the stable equilibrium trajectory due to additional compressive/tensile
thermal stresses. The possibility of actively inducing large vibration amplitudes by combining steady
external mechanical or thermal loads with proper dynamic electric potential input on the actuators was
also quantified.
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