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BUCKLING OF STIFFENED COMPOSITE PANELS
WITH STRINGER TERMINATIONS

ENZO COSENTINO AND PAUL WEAVER

A meshless approach is developed and used to predict buckling of discretely assembled multibay com-
posite panels made from skin and stiffeners. The effect of eccentricity is included in the formulation.
Particular emphasis is given to stringer run-outs within a stiffened panel, where abrupt eccentricity
can trigger very large transverse displacements of the skin in front of the run-out tip. The model is
obtained by combining von Karman’s formulation for moderately large deflections in plates with an
extended Timoshenko approach for small initial perturbations. Solutions are calculated by means of a
Rayleigh–Ritz approach in conjunction with a Galerkin technique. Hilbert’s orthogonal eigenfunctions
are employed to obtain a generalized Fourier series expansion of the variables of interest. Limits of
applicability, convergence of results and further potential exploitations are discussed. Numerical results
obtained are compared with finite element analysis.

A list of symbols can be found on page 1532.

1. Introduction

It is becoming increasingly important to make further weight savings with composite cocured/cobonded
assemblies. With the new generation of integral composite assemblies, critical and sometimes unex-
pected failure modes are challenging the weight saving philosophy that is associated with the use of
carbon fibre reinforced composites. A major advantage of composites is their inherent ability to tailor
elastic properties for maximizing performance. A further advantage is that different components can be
assembled together without making use of fasteners, since the load transfer can be achieved through the
interlaminar shear stresses arising within the bond line of an adhesive. Unfortunately, laminated compos-
ites exhibit relatively poor response when the loads act perpendicular to the fibers’ plane. The weakest
areas are typically the bond lines. This weakness is sometimes exacerbated by the anisotropic response
of laminated composites, which could trigger out-of-plane displacements when panels undergo loads that
align with the fibers’ plane. Hence, premature failure is likely to happen in the bond line due to disbond
or delamination. This behavior is particularly critical in thick-sectioned composite laminates, where the
induced through-the-thickness stresses are comparable in magnitude to the main in-plane stresses. The
current level of confidence for the prediction of external loads that may cause delamination and/or disbond
often precludes those phenomena, such as buckling, which might trigger significant out-of-plane displace-
ments, leading to complex and potentially catastrophic failure modes. As a result, composite panels for
aerospace applications are often designed to minimize or eliminate such failure modes, and to allow for
redundant load paths, which are able to guarantee the fail safe requirements. “Chicken” fasteners are
extensively used in the majority of primary aerospace composite structure, thwarting potential weight

Keywords: stringer terminations, buckling, composite panels.
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Figure 1. Example of the skin/stringers/frame multibay assembly. Left: realized struc-
ture; right: in-plane projections.

saving associated with an “integral” design. Also, as a general design principle (commonly accepted by
many of the aerospace industries), the majority of thick-sectioned primary structures are designed not to
buckle, thus penalizing the final weight. It is evident that a precise calculation of the buckling loads is
vital in order to minimize the structural weight and reserve factors.

The present study is motivated by the need to develop a robust and reliable technique able to combine
acceptable accuracy with low computational expense. It is intended to provide aerospace designers with
a rapid method that can be used in the preliminary sizing phase, when the need for analyzing hundreds
of load cases within restricted time scales, requires very low computational expenses.

2. Field equations

The purpose of the present study is to establish a fast, robust, and sufficiently accurate methodology to
predict displacement and stress fields throughout the entire domain of composite skin/stiffeners assem-
blies in the prebuckling regime and then calculate buckling loads and mode shapes.

The buckling load calculation is done using the formulation developed in [Cosentino and Weaver 2008]
with modified eigenfunctions [Cosentino and Weaver 2009] to improve the accuracy of the solution. Two
different sets of eigenfunctions are employed to model the transverse displacement and the neutral plane,
so providing a more accurate description of the internal loads distribution, particularly near boundaries.
As a first approximation, a linear buckling analysis [Kollar and Springer 2003, Chapter 4], which neglects
the effect of in-plane loads eccentricities, is proposed.

The use of von Karman nonlinear field equations allows a single variable, that is, the transverse
deflection w, to be used. Following [Cosentino and Weaver 2008], the beam properties of the stiffen-
ers are locally homogenized over the plate as represented in Figure 1, right (calculations are shown in
Appendix A). The global domain is therefore partitioned into subdomains (fields).

The equivalent field properties are then smeared over the regions defined by the boundaries of the
stiffeners’ feet (areas in light gray in Figure 1). Abrupt discontinuities of the functions expressing the
neutral plane (loads eccentricity) and the structural properties (that is, A, B, and D matrices) occur at
the same boundaries.
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Membrane strains and the curvatures are expressed as functions of the transverse displacement as
follows:

ε0
x =

∂uo

∂x
+

1
2

(∂w
∂x

)2
, ε0

xy =
∂u0

∂y
+
∂v0

∂x
+
∂w

∂x
∂w

∂y
, ε0

y =
∂v0

∂y
+

1
2

(∂w
∂y

)2
(1)

kx =−
∂2w

∂x2 , kx =−
∂2w

∂y2 , kxy =−2
∂2w

∂x ∂y
. (2)

The constitutive equations of the laminate expressed in the partially inverted form are [Jones 1975;
Reddy 2004] [

ε0

M

]
=

[
A∗ B∗

−B∗T D∗

] [
N
k

]
, (3)

where

ε0
=

 ε0
x
ε0

y
ε0

xy

 , k =

 kx

ky

kxy

 , N =

 Nx

Ny

Nxy

 , M =

 Mx

My

Mxy

 . (4)

The rectangular panel sketched in Figure 1 is subjected to distributed external in-plane loads Nx0, Ny0,
and Nxy0 around the edges and to a transverse load q(x, y) defined over the rectangular domain. Follow-
ing, for example, [Mansfield 1989, pp. 85–90], the total strain energy U due to bending is

U = 1
2

∫ lx

0

∫ ly

0
kT M dx dy = 1

2

∫ lx

0

∫ ly

0
kT D∗kdx dy

=
1
2

∫ lx

0

∫ ly

0

[
D∗11

(∂2w

∂x2

)2
+ D∗22

(∂2w

∂y2

)2
+ 4D∗66

( ∂2w

∂x ∂y

)2
+ 2D∗12

∂2w

∂x2

∂2w

∂y2

+ 4D∗16
∂2w

∂x2

∂2w

∂x ∂y
+ 4D∗26

∂2w

∂y2

∂2w

∂x ∂y

]
dx dy. (5)

The potential �N of external in-plane forces is [Cosentino and Weaver 2008]

�N ,L =
1
2

∫ lx

0

∫ ly

0

[
Nx

(∂w
∂x
+
∂e
∂x

)2
+ Ny

(∂w
∂y
+
∂e
∂y

)2
+ 2Nxy

∂(w+ e)
∂x

∂(w+ e)
∂y

]
dx dy, (6)

where e(x, y) is the neutral plane function which is treated as a moderately large initial perturbation and
expanded in generalized Fourier series by means of a Galerkin technique [Cosentino and Weaver 2008;
2009].

Similarly, the potential �Q of the transverse load is [Cosentino and Weaver 2008]

�Q =−

∫ lx

0

∫ ly

0
qwdx dy. (7)

The total linear potential energy 5L of the system is therefore

5L =U +�N ,L +�Q . (8)

In order to properly utilize the Rayleigh–Ritz method, approximate expressions for the unknown
variables w and for the eccentricity e in generalized coordinates are required, which satisfy the geometric
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boundary conditions. The following series expansions satisfy the above conditions:

w =

Mw∑
m=1

Nw∑
n=1

wmn Xm(x)Yn(y), e =
Mw∑

m=1

Nw∑
n=1

emn Xm(x)Y n(y), (9)

where Xm(x), Yn(y), Xm(x), and Y n(y) are continuous and indefinitely differentiable functions. Wher-
ever possible, it is recommended to use beam eigenfunctions that satisfy the orthogonality relations
[Cosentino and Weaver 2008; 2009] for both the transverse displacement and the neutral plane function.

To simplify software implementation the following vectors use only one index:

ϕ =
[
X1Y1 X1Y2 · · · X1YNw X2Y1 X2Y2 · · · X2YNw · · · X Mw Y1 X Mw Y2 X M YN

]T
, (10)

ϕ =
[
X1Y 1 X1Y 2 · · · X1Y Nw X2Y 1 X2Y 2 · · · X2Y Nw · · · X Mw Y 1 X Mw Y 2 X Mw Y Nw

]T
,

W =
[
w1 w2 · · · wM×N

]T
, E =

[
e1 e2 · · · eMw×Nw

]T
. (11)

Equations (9) can, therefore, be rewritten, more simply, as

w =

M×N∑
i=1

wiϕi (x, y), e =
M×N∑
j=1

e jϕ j (x, y), (12)

where it is straightforward to show that the functions ϕi and ϕ j satisfy the two-dimensional orthogonality
relations∫ lx

0

∫ ly

0
ϕp(x, y)ϕq(x)dx dy

{
= 0 p 6= q

6= 0 p = p
,

∫ lx

0

∫ ly

0
ϕl(x, y)ϕm(x)dx dy

{
= 0 l 6= m

6= 0 l = m
. (13)

Equations (12), combined with the definition of beam eigenfunctions, guarantee that every function
defined inside the considered domain and fulfilling the same essential boundary conditions as the panel
and the neutral plane, can be expressed as a linear combination of such eigenfunctions.

If M and N are reasonably large integers, then the error induced when truncating the summation is
negligible. Yet, generic functions defined with different boundary conditions inside the domain can be
expressed as truncated linear combinations by means of a Galerkin technique. This technique is used in
[Cosentino and Weaver 2008; 2009] to calculate the e j in (12).

Expressing the neutral plane as a linear combination of basis functions allows differentiation of the
total potential energy in a closed form, obtaining a final compact formulation, which is derived and
expressed in (19) and that is also readily implemented in software.

Substituting (12) into (5), (6), and (7) the total potential is expressed as a second order polynomial of
the M × N unknown coefficients wi . The expressions for U , �N , and �Q are

U = 1
2

∫ lx

0

∫ ly

0

M×N∑
i=1

M×N∑
j=1

(
D∗11ϕ,xx,i ϕ,xx, j +D∗22ϕ,yy,i ϕ,yy, j +4D∗66ϕ,xy,i ϕ,xy, j

+2D∗12ϕ,xx,i ϕ,yy, j +4D∗16ϕ,xx,i ϕ,xy, j +4D∗26ϕ,yy,i ϕ,xy, j

)
wiw j dx dy, (14)
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�Q =−

∫ lx

0

∫ ly

0
q(x, y)

M×N∑
i=1

φiwi dx dy, (15)

�N ,L =
1
2

∫ lx

0

∫ ly

0

M×N∑
i=1

M×N∑
j=1

(
N xϕ,x,i ϕ,x, j +Nyϕ,y,i ϕ,y, j +2Nxyϕ,x,i ϕ,y, j

)
wiw j dx dy

+
1
2

∫ lx

0

∫ ly

0

M×N∑
i=1

M×N∑
j=1

(
2N xϕ,x,i ϕ,x, j +2Nyϕ,y,i ϕ,y, j +2Nxy(ϕ,x,i ϕ,y, j +ϕ,y,i ϕ,x, j )

)
wi e j dx dy

+
1
2

∫ lx

0

∫ ly

0

M×N∑
i=1

M×N∑
j=1

(
Nxϕ,x,i ϕ,x, j +Nyϕ,y,i ϕ,y, j +2Nxyϕ,x,i ϕ,y, j

)
ei e j dx dy. (16)

Using the principle of stationary potential energy [Cosentino and Weaver 2008; 2009], we have

∂5L

∂wi
= 0, ∀i = 1, . . . ,Mw× Nw. (17)

Equations (14), (15), and (16) are now substituted into (17) with the result differentiated with respect
to wi . Algebraic manipulations result in the following linear system of M × N equations in the M × N
unknowns wi , i = 1, . . . , N :

(G+ H)W =−H E+ Q, (18)

where the vectors Q, E and the matrices G, H , H are defined as

Qi =

∫ lx

0

∫ ly

0
qφi dx dy, (19)

E = [e1 e2 · · · eM×N ]
T , (20)

Gi j =
1
2

∫ lx

0

∫ ly

0

[
2D∗11ϕ,xx,i ϕ,xx, j +2D∗22ϕ,yy,i ϕ,yy, j +8D∗66ϕ,xy,i ϕ,xy, j +2D∗12(ϕ,xx,i ϕ,yy, j

+ϕ,xx, j ϕ,yy,i )+ 4D∗16(ϕ,xx,i ϕ,xy, j +ϕ,xx, j φ,xy,i )+ 4D∗26(ϕ,yy,i ϕ,xy, j +ϕ,yy, j ϕ,xy,i )
]
dx dy, (21)

Hi j =
1
2

∫ lx

0

∫ ly

0

[
2Nxϕ,x,i ϕ,x, j +2Nyϕ,y,i ϕ,y, j +2Nxy(ϕ,x,i ϕ,y, j +ϕ,x, j ϕ,y,i )

]
dx dy, (22)

Hi j =
1
2

∫ lx

0

∫ ly

0

[
2Nxϕ,x,i ϕ,x, j +2Nyϕ,y,i ϕ,y, j +2Nxy(ϕ,x,i ϕ,y, j +ϕ,x, j ϕ,y,i )

]
dx dy. (23)

For a linear buckling analysis, the external transverse load q(x, y) and the effect of the neutral plane
eccentricity are neglected. Only the magnitude of the in-plane loads is noteworthy for the onset of
buckling. It is assumed that the presence of transverse loads and/or eccentricity only influences the
deformed shape of the panel when the external load has reached the critical buckling level. The effect
of eccentricity is formally equivalent to a localized transverse bending moment, which does not affect
the membrane stretching in a linear calculation. The right-hand side of (18), the associated eigenvalues
problem is expressed by

(H−1G+ λI)W = 0, (24)



1510 ENZO COSENTINO AND PAUL WEAVER

Figure 2. Loads on reinforced panel. (A) Constant axial load at the free edge. (B) Gen-
eralized Fourier series components of loads. (C) Uniform loading. (D) Reinforcement
perturbation. The first component is shown for illustrative purposes only.

where I is the identity matrix. There are N ×M eigenvalues λi and associated eigenvectors Wcr,i . The
lowest eigenvalue λcr,min and its associated eigenvector Wcr,min are related to the buckling loads Ncr and
to the buckling mode shape wcr by

Ncr = λmin

 Nx0

Ny0

Nxy0

 , wcr =

Mw×Nw∑
j=1

ϕ j (Wcr,min) j . (25)

To solve the eigenvalues problem of (24), one must be able to integrate the expressions in (16), (22),
and (23). This can only be done if the internal in-plane loads distribution in known throughout the
domain. This load distribution is evaluated in the following section.

3. In-plane stress function

Consider the simple case, illustrated in Figure 2, of a composite assembly made of a skin (light gray
area) and a reinforcement patch (dark gray area).

The panel is loaded by a constant axial load Nx0,l acting upon the free edge (x = lx). If an axial
constraint acts on the opposite edge (x = 0), the axial load distribution (reaction) is not known a priori
on that edge. The curve depicted in Figure 2A shows a potential Nx0,0 distribution on the edge x = 0. A
peak in the region of the reinforced area is expected.

The magnitude of the peak load mostly depends on the axial stiffness ratio between the skin and the
patch, and on the dimensions of the patch. Typically, if the patch free tip is sufficiently far from the
constraint, we can assume that the local axial load transfer from the skin to the skin-patch region is
complete; therefore the load is introduced in the skin-patch section proportionally to the local-to-global
axial stiffness ratio. Assuming that the axial flow distribution Nx0 at the constrained edge is known, let
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us decompose the external edge loads by means of Fourier series:

Nxo
∣∣
x=0
∼=

N∑
n=1

An sin(αn y), Nxo
∣∣
x=lx
∼=

N∑
n=1

Bn sin(αn y). (26)

The two series expansions are generally different if compared term by term (Figure 2B), but since the
global equilibrium is satisfied

N∑
n=1

∫ ly

0
An sin(αn y)=

N∑
n=1

∫ ly

0
Bn sin(αn y). (27)

Using the principle of superposition, two stress fields are combined. These are:

(1) a constant axial stress field equal to the constant axial load Nx0,0 acting upon the free edge x = lx

(Figure 2C).

(2) a perturbation 1Nx = Nx0,l − Nx0,0 caused by the presence of the reinforcement (Figure 2C) and
acting as an external load on the constrained edge.

The first stress field is constant and represents a panel made of a skin only; therefore it is equilibrated
and compatible. The elastic problem is completely determined by introducing the stress function 9

9 = 0x Nx0,l +0xy Nxy0+0y Ny0, (28)

where 0x , 0xy , and 0y are the circulation functions [Jaunky et al. 1995] defined as

0x = (y− ly)
2, 0xy =−(x − lx)(y− ly), 0y = (x − lx)

2. (29)

The second stress field represents a perturbation introduced by the presence of the reinforcement. It
is equilibrated, according to (27), but, in general, is not compatible.

Introducing a perturbation stress function 19

1Nx =19,yy, 1Ny =19,xx , 1Nxy =−19,xy (30)

then if no body forces are acting, then overall equilibrium is represented by the biharmonic equation

∂419

∂y4 + 2
∂419

∂x2∂y2 +
∂419

∂x4 = 0 (31)

which is satisfied by

19n = sin
(

nπ
y
ly

)
fn(x). (32)

Substituting (31) into (30) and defining αn = nπy/ ly creates the following ordinary differential equa-
tion:

α4
n fn(x)− 2α2

n f I I
n (x)+ f I V

n (x)= 0 (33)

with the solution

fn(x)= c1n cosh(αnx)+ c2n sinh(αnx)+ c3nx cosh(αnx)+ c4nx sinh(αnx). (34)
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Hence, the stress function is

19n =
(
c1n cosh(αnx)+ c2n sinh(αnx)+ c3nx cosh(αnx)+ c4nx sinh(αnx)

)
sin(αnx). (35)

Constants cin are calculated by enforcing the boundary conditions. First, the distribution of 1Nx0

along the edge x = 0 must be determined. Rationales for calculation of piece-wise distribution of Nx0

are given in Appendix B. Knowing the axial flow piecewise distribution at the constrained edge (Figure
2A), and making use of a Galerkin technique [Cosentino and Weaver 2008], the external axial load
distributions can be expressed as a generalized Fourier series

1Nxo

∣∣∣
x=0x

∼=

N∑
n=1

(An − Bn) sin(αn y), 1Nxo

∣∣∣
x=lx

∼= 0. (36)

Using the principle of superposition, we assume that the solution, in terms of stress functions, is given
by the superposition of N basic stress functions 19n that are solutions of the elastic problem illustrated
in Figure 2D.

19 =

N∑
n=1

19n, (37)

where the 19n are given by (32) and the load amplitudes are given by (36). Following [Timoshenko and
Goodier 1982], the constants of integration in (35) are determined by enforcing the following boundary
conditions:

For x = 0:

1Nxy,n =−
∂219n

∂x ∂y
= 0, 1Nx,n =

∂219n

∂y2 = An − Bn. (38)

For x = lx :

1Nxy,n =−
∂219n

∂x ∂y
= 0, 1Nx,n =

∂219n

∂y2 = 0. (39)

After algebraic manipulations, coefficients of integration are obtained and expressed as

c1n = λ1n(An − Bn), c2n = λ2n(An − Bn), c3n = λ3n(An − Bn), c4n = λ4n(An − Bn),

where

λ1n =
1
α2

n
, λ2n =

1−ω1n sinh(αnlx)

lxα3
n

, λ3n =
1− (ω1n/ω21n) sinh(αnlx)

lxα2
n

, λ4n =−
sinh(αnlx)

lxαnω2n
(40)

and

ω1n =
cotαn

αn
+

1
lxα2

n
, ω2n =

(
sinαn − lxαn cosαn

)
ω1n + lx sinαn. (41)

It must be emphasized that solutions 19n do not identically satisfy term-by-term x-wise equilibrium
of the panels as, in general, An 6= Bn , but their summation does satisfy overall equilibrium. In fact,

N∑
n=1

(An − Bn) sin(αn y)∼= 0. (42)
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Also, these stress functions satisfy the natural boundary conditions, given in Figure 2A, that is, only
axial loads are acting. At the edges y = 0 and y = ly , Ny0 are zero and only shear forces Nxy are
present, arising from each term in (37), necessary to satisfy x-wise equilibrium. Note that (42) implies
that summation of shears due to its n components is zero [Timoshenko and Goodier 1982, pp. 53–56].

To account for the presence of external shears Nxy0 and y-wise loads Ny0, which were neglected so
far, the stress function 9 defined in (28) must be added. To this end, the resultant stress function 9e is

9e =9 +

N∑
n=1

19n. (43)

This function satisfies the biharmonic equilibrium equation

∂49e

∂y4 + 2
∂49e

∂x2∂y2 +
∂49e

∂x4 = 0. (44)

The resultant stress function 9e is determined once coefficients An and Bn are derived. It satisfies the
equilibrium equation (44) and the boundary conditions (38)–(39), but it does not satisfy the compatibility
condition. To enforce compatibility, a supplementary stress function 9c is superposed. This additional
stress function must satisfy the boundary conditions (38)–(39) and guarantee that the resultant stress
function �

�=9e+9c (45)

satisfies the compatibility equation.
The equilibrium and boundary conditions are fulfilled by choosing the supplementary stress function as

9c =

Mc×Nc∑
k=1

ηk(x, y)ξk, (46)

where ξk are unknown coefficients and ηk(x, y) are defined as

η =
[
Xc,1Yc,1 Xc,1Yc,2 · · · Xc,1Yc,Ncew

Xc,2Yc,1 Xc,2Yc,2 · · · Xc,2Yc,Ncw
· · · Xc,Mcw

Yc,1 · · · Xc,Mc Yc,Nc

]T
. (47)

If abrupt variations of cross section occur within the domain, the linearized compatibility condition is
expressed by [Ashton et al. 1969]

∂2

∂y2 (A
∗

11�,yy + A∗12�,xx − A∗16�,xy)+
∂2

∂x2 (A
∗

12�,yy + A∗22�,xx − A∗26�,xy)

+
∂2

∂x ∂y
(−A∗16�,yy − A∗26�,xx + A∗66�,xy)= 0. (48)

Differentiation and reordering gives

A∗11�,yyyy−2A∗26�,xyyy+(2A∗12+A∗66)�,xxyy−2A∗26�,xxxy+A∗22�,xxxx+(2A∗11,y−A∗16,x)�,yyy

+(2A∗12,x−3A∗16,y+A∗66,x)�,xyy+(2A∗12,y−3A∗26,x+A∗66,y)�,xxy+(2A∗22,x−A∗26,y)�,xxx

+(A∗11,yy+A∗12,xx−A∗16,xy)�,yy−(A∗16,yy+A∗26,xx−A∗66,xy)�,xy+(A∗12,yy+A∗22,xx−A∗26,xy)�,xx

= 0. (49)
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The coefficients ξk are determined by solving (46) by means of a Galerkin technique [Cosentino and
Weaver 2008]. The weight functions employed are

φn(x, y)=9e(x, y)+ ηn(x, y). (50)

Substituting (45) into (49) and carrying out the differentiations, then after algebraic manipulations we
obtain the compact form

4ξ = L, (51)

where
ξ = [ξ1ξ2, . . . , ξNc×Mc ]

T , (52)

(4)i j =

∫ lx

0

∫ ly

0

(
A∗11

∂49c, j

∂y4 − 2A∗26
∂49c, j

∂x ∂y3 + (2A∗12+ A∗66)
∂49c, j

∂x2∂y2 − 2A∗26
∂49c, j

∂x3∂y

+ A∗22
∂49c, j

∂x4 + (2A∗11,y − A∗16,x)
∂39c, j

∂y3 + (2A∗12,x − 3A∗16,y + A∗66,x)
∂39c, j

∂x ∂y2

+ (2A∗12,y − 3A∗26,x + A∗66,y)
∂39c, j

∂x2∂y
+ (2A∗22,x − A∗26,y)

∂39c, j

∂x3

+ (A∗11,yy + A∗12,xx − A∗16,xy)
∂29c, j

∂y2 − (A
∗

16,yy + A∗26,xx − A∗66,xy)
∂29c, j

∂x ∂y

+ (A∗12,yy + A∗22,xx − A∗26,xy)
∂29c, j

∂x2

)
φi dy dx, (53)

and

Li =−

∫ lx

0

∫ ly

0

(
A∗11

∂49e

∂y4 − 2A∗16
∂49e

∂x ∂y3 + (2A∗12+ A∗66)
∂49e

∂x2∂y2 − 2A∗26
∂49e

∂x3∂y

+ A∗22
∂49e

∂x4 + (2A∗11,y − A∗16,x)
∂39e

∂y3 + (2A∗12,x − 3A∗16,y + A∗66,x)
∂39e

∂x ∂y2

+ (2A∗12,y − 3A∗26,x + A∗66,y)
∂39e

∂x2∂y
+ (2A∗22,x − A∗26,y)

∂39e

∂x3

+ (A∗11,yy + A∗12,xx − A∗16,xy)
∂29e

∂y2 − (A
∗

16,yy + A∗26,xx − A∗66,xy)
∂29e

∂x ∂y

+ (A∗12,yy + A∗22,xx − A∗26,xy)
∂29e

∂x2 − (A
∗

16,yy + A∗26,xx − A∗66,xy)
∂29e

∂x ∂y

+ (A∗12,yy + A∗22,xx − A∗26,xy)
∂29e

∂y2

)
φi dx dy. (54)

The components of vector L are computed once the equilibrium stress function (43) is derived. They
are functions of the external loads Nx,0, Ny,0, and Nxy,0, and act as load terms in (49).

To calculate partial derivatives of the components A∗i j of the in-plane compliance matrix, a Galerkin
technique [Cosentino and Weaver 2008] is employed to express such components as generalized Fourier
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series

A∗i j =

M×N∑
k=1

ωi j,kϕk, (55)

where the same basis functions ϕk already used for the eccentricity are employed.

4. Model validation: in-plane stress field

A composite assembled panel (Figure 3) consisting of a square skin and a rectangular reinforcement
(patch) was analyzed to compare and validate our analysis against finite element models (FEM). The
in-plane stress field calculated by means of the proposed analytical solution was first compared with the
finite element response. In-plane normal forces arising along the sections indicated in Figure 3, right,
were compared for two different load cases. The finite element simulation was done using ABAQUS. The
domain was discretized using quadratic quadrilateral elements (S8R) in a regular array. Each square has
a 2.5 mm edge length. An offset was assigned to all the elements that represent the skin-reinforcement
overlap region. The offset equals the difference of the two x-wise neutral planes, overlap and skin regions,
respectively. The material properties of the lamina (patch and skin) are given by

EL = 150000 MPa, ET = 8800 MPa, GLT = 4800 MPa, νLT = 0.35 , thickness= 0.2 mm.

The geometrical parameters are

lx = 100 mm, ly = 100 mm, lP = 40 mm, b = 20 mm.

The stacking sequences are

patch: [0/90/45/−45]S , skin: [0/90]S

The enforced boundary conditions are summarized in Table 1. The following sets of functions were
employed to model the compatibility stress function 9c and the eccentricity e2:

Xc,i = sin
iπx
lx
, Yc, j = sin

jπy
ly
, X i = 1− cos

iπ(lx−x)
2lx

, Y j = sin
jπy
ly
. (56)

The same set of eigenfunctions is used to model both the eccentricity and the components of the
in-plane flexibility A∗i j . A total of 10 eigenfunctions for each coordinate were employed to expand the
supplementary stress function and A∗i j . Similarly, 10 functions were used to calculate and express the
equilibrium stress function 9e.

�

� �

� �

�

�

�

�
�

� � � �

� � � �

� � � �

Figure 3. Reinforced panel: geometry (left) and plant view (right).
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Degrees of freedom
Edge ux u y ϕx ϕy w

Load case A

a restrained restrained free — restrained
b free free — free restrained
c free restrained free — restrained
d free free — free restrained

Load case B

a restrained restrained free — restrained
b free restrained — free restrained
c free restrained free — restrained
d free restrained — free restrained

Table 1. Boundary conditions for in-plane stress field experiments.

The first comparison was carried out by imposing a negative unitary axial displacement to the edge
c (Figure 4, left). Edges b and d are free to displace in the y-direction. Analytical and FEM results are
reported in Figure 5, top. Boundary conditions are indicated in Table 1. For the second load case, a
negative unit axial displacement was again enforced to edge b, but this time the y-wise displacements
were restrained along the edges b and d . Results are reported in Figure 5, bottom.

Correlation between FEM and the proposed analytical model is generally very good for both cases.
The overlap region is characterized by a considerable amount of in-plane axial load Nx , significantly
larger than the far field applied load. Conversely, a noteworthy decrease of the axial load is observed in
the portions of the skin that are adjacent to the reinforcement. This result is approximately predicted by
assuming that the axial strains and displacements do not vary y-wise Appendix A, and it is confirmed
by finite element results.

We stress that the predicted axial load transfer at the reinforcement tip is slightly smoother than the
transfer calculated by finite element analysis. This is mostly caused by the generalized Fourier series
expansion used to model both the compatibility stress function 9c and the components of the in-plane
flexibility A∗i j and their partial derivatives.

!

"

#

$

%

&

!

"

#

$

Figure 4. Load cases for in-plane stress field experiments: pure compression (left) and
biaxial compression (right).
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Figure 5. In-plane stress resultant correlation. Top, load case A; bottom, load case B.
Left: sections AA and BB; right, section CC.

5. Model validation: convergence study and buckling loads

In order to validate the analytical calculation of critical buckling loads, a series of comparisons with
finite element analysis were carried out for five different load cases. The reference structure is the same
composite assembly previously analyzed in Section 4. The load cases studied are shown in Figure 6, and
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Figure 6. Load cases for buckling load study. Top: pure compression (left); biaxial
compression (middle); combined shear-compression (right). Bottom: combined shear-
compression with reverted shear (left); pure shear (right).

can be described as follows:

A. axial compression;

B. biaxial compression;

C. combined shear and axial compression, shear/compression ratio equal to 1 ;

D. combined shear and axial compression, shear/compression ratio equal to −1;

E. pure shear.

For each load case analyzed, corresponding boundary conditions are reported in Table 2. The eigen-
functions used to model the compatibility stress function 9c are

Xc,i = sin
iπx
lx
, Yc, j = sin

jπy
ly
. (57)

Since the in-plane stress field cannot be assumed to be uniaxial, the same number of eigenfunctions
was used for both the x- and y-directions (M = N ).

Furthermore, to quantify the degree of accuracy provided by making use of the supplementary stress
function, two different buckling analyses were carried out and compared with finite element results. The
relative efficiencies of both solution techniques: the equilibrium solution (43) or the equilibrated and
compatible solution (45) were assessed. Two different analytical solutions were calculated and compared
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Degrees of freedom
Edge ux u y ϕx ϕy w

Load case A

a restrained restrained free — restrained
b free free — free restrained
c free restrained free — restrained
d free free — free restrained

Load case B

a restrained restrained free — restrained
b free restrained — free restrained
c free restrained free — restrained
d free restrained — free restrained

Load case C

a restrained restrained free — restrained
b free free — free restrained
c free free free — restrained
d free free — free restrained

Load case D

a restrained restrained free — restrained
b free free — free restrained
c free free free — restrained
d free free — free restrained

Load case E

a restrained restrained free — restrained
b free free — free restrained
c free free free — restrained
d free free — free restrained

Table 2. Boundary conditions for buckling load experiments.

with finite element response. It is noted that the use of solution (43) does not require the compatibility
equation (49) to be solved. Hence, it is significantly more efficient in terms of calculation time. Yet, the
resultant stress function (45) is expected to be appreciably more accurate.

The first buckling analysis is done by solving (24) and calculating the critical minimum eigenvalues.
Expressions for in-plane stress resultants are given by

Nx =�,yy, Ny =�,xx , Nxy =−�,xy . (58)

The second analytical calculation was carried out by neglecting the compatibility equation and arrest-
ing the in-plane stress field calculation to the determination of the equilibrium stress function only. In
this latter case, the in-plane stress resultants are

Nx =9e,yy, Ny =9e,xx , Nxy =−9e,xy . (59)

Both the equilibrated and the equilibrated and compatible solutions were compared with finite element
responses. The finite element model is the same as that employed in the previous section. The critical
minimum eigenvalues found analytically were divided by the critical eigenvalues calculated by means of
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Figure 7. Convergence study: equilibrated and compatible solution (left); equilibrated
solution (right).

FEM and results are reported in Figure 7. The sensitivity of both solutions to the total number of functions
used to expand the transverse displacement and the compatibility stress function was studied to verify the
convergence rate. Both solutions converge with five or more eigenfunctions, but the convergence rate and
the accuracy obtained by employing the combined equilibrated and compatible solution are improved.
However, the degree of accuracy is more than acceptable for both cases.

A further comparison between the two solutions is presented. The error discrepancy is plotted against
the total time required to complete the analysis and results are reported in Figure 8. The error is defined as

error=
λmin− λmin,FEM

λmin,FEM
× 100%. (60)

Despite guaranteeing better degree of accuracy and faster convergence rates, the use of the compatibil-
ity stress function implies calculation times that are between 80% and 90% greater than the calculation
times required by solving the buckling problem making use of the equilibrium equation (27) only to
determine the in-plane stress field. In the equilibrated and compatible case (Figure 8, left), the error
induced is between −2.5% and 1.5% after 10 seconds of computation. In contrast, for the equilibrated
case (Figure 8, right), the error is stably confined within a broader range (−4% to 2.5%), but after 4
seconds only. However, the computational effort required by either solution is negligible compared to
those required by FEM, which were of more than 80 seconds per load case. (Naturally, the computation
times reported do not include model set-up, which is also much larger in the case of FEM analysis.)
The use of either solution techniques is shown to perform better than FEM. Of course, the degree of
accuracy achievable is excellent if employed in a preliminary sizing phase of an aircraft design, when
hundreds of load cases need to be analyzed. In such cases, a relatively simple parametric model may be
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Figure 8. Calculation times: equilibrated and compatible solution (left); equilibrated
solution (right).

more suitable than highly detailed analyses. It must be noted that, for each solution, at least half of the
calculation time is utilized in computing the G matrix, as defined in (21). This matrix does not depend on
the in-plane stress function, but only on the boundary condition assumed for the transverse displacement
w. Therefore this calculation is only required once, and need not be repeated for different external loads.

6. Interaction curves and sensitivity analysis

To assess the sensitivity of buckling loads and mode shapes to the geometrical parameters and to the
boundary conditions, additional analyses were carried out and compared with FEM. A typical aeronau-
tical panel was taken as a baseline. A skin and a T-shaped stringer characterize the composite assembly.
The stringer is run out as illustrated in Figure 9.
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Figure 9. Panel geometry.
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Geometry Configuration a b c d

Baseline

B1 SS SS SS SS
B2 C C C C
B3 SS C SS C
B4 C SS C SS

Table 3. Boundary conditions: SS = simply supported, C = clamped. (See Figure 9 for
the edge labels a–d .)

The geometrical parameters of the baseline are

lx = 300 mm, ly = 200 mm, lfoot = 200 mm, wfoot = 40 mm, hweb = 20 mm.

The stacking sequences are as follows (ply thickness = 0.2 mm in all cases):

skin: [0/45/90/0/−45/0/90]2S; foot: [0/45/0/90/0/−45/0]S; web: [0/45/0/90/0/−45/0]2S .

For convenience, the same material properties as the ones were assumed as in Section 4; we list them
again for convenience:

EL = 150000 MPa, ET = 8800 MPa, GLT = 4800 MPa, νLT = 0.35 , thickness= 0.2 mm.

The first series of comparisons were carried out in order to assess the effect of several different bound-
ary conditions. Several edge support configurations were studied, are listed in Table 3.

To assess the effect of flexural/twist anisotropy on buckling loads, the nondimensional parameters

δ =
D26

4
√

D11 D3
22

, γ =
D16

4
√

D3
11 D22

, β =
D12+ 2D66
√

D11 D22
(61)

(see [Weaver and Nemeth 2007]) were calculated for each subdomain, with results shown in Table 4.
The values of δ and γ are much less than 0.1, indicating that flexural/twist anisotropy effects are small
[Weaver and Nemeth 2007]. Furthermore, a value of β < 1 indicates relatively poor buckling performance
compared with the quasiisotropic lay-up. As such, the lay-ups used are not highly efficient with respect
to buckling resistance but do have relatively good axial strength characteristics (due to the relatively large
percentage of 0◦ plies).

Subdomain δ γ β

skin 0.03 0.0247 0.616
skin/foot 0.0153 0.0112 0.623

skin/foot/web 0.00063 0.00034 0.28

mean value 0.0283 0.0232 0.612

Table 4. Nondimensional parameters.
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For each configuration, the smallest buckling loads were analytically calculated for a variety of
shear/compression ratios and interaction curves were calculated and compared with finite element re-
sponses. Results are reported in Figure 10. Superposed are the values obtained from the interaction
formula Rx + R1.9+0.1β

s ≤ 1, derived in [Weaver and Nemeth 2008] for long orthotropic plates under
combined loading. Here x and s refer to the axial and shear load, respectively, and R represents the ratio
of critical load for the combined-loading state to critical value of the corresponding load acting alone.
Although this formula was not derived for buckling of panels with stringer run-outs under combined
loading, the close match with the present analysis is notable.
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Figure 10. Interaction curves for configurations B1–B4 (top left to bottom right).
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Comparisons show excellent correlation with FEM. However, a decrease of accuracy is noted with
respect to the first simple configuration analyzed in Section 5. The analytical calculation shows an overall
conservatism if compared with FEM, in the buckling loads prediction for configuration B1 (Figure 10,
top left), where the induced error in the calculation of the buckling load under pure compression is
negligible, while the shear buckling load is underestimated. In contrast, configurations B2 and B4 (right
column in 10) show excellent correlation for the buckling loads under pure compression, but increasingly
overpredict as the shear/compression ratio tends to zero. Finally, configuration B3 (Figure 10, bottom
left) shows overestimated compression-buckling loads and slightly underestimated shear-buckling loads.
However, it must be emphasized that the induced error is constant within the range −8% to +10% for
all of the examined configurations and for all of the shear/compression rations. Calculation times were
negligible and also possess the advantage provided by a fully parametric model. Finally, it is noted that
the use of different sets of functions to model the out-of-plane displacement may reduce the induced
error, but this analysis is beyond the scope of the present research.

Examples of analytically calculated mode shapes are provided in Figures 11 and 12 for there different
loading and boundary conditions. Comparisons with FEM show that the shapes are adequately captured
by the analytical model.

To assess the sensitivity of the panel’s buckling loads to the geometrical parameters, additional sensi-
tivity analyses were performed. In the first set of analyses, the effect of the panel length lx was studied.
Configurations B1 and B2 were analyzed and buckling loads were calculated under pure compression
loading condition. Results are reported in Figure 13.

Comparisons show that the average trend is reasonably captured by the analytical approach. However,
the effect of the panel x-wise length appears to be smoother in the analytical predictions than in FEM.
For configuration B1, in the range of lx between 300 mm and 250 mm, the buckling loads decrease as the
total length decreases. The trend is then reversed in the lower range (lx between 250 mm and 200 mm).
With reference to Figure 9, mode shapes are plotted x-wise along the central Section AA. Results are
reported in Figure 14. A noticeable change in the mode shapes occurs when the length varies from
300 mm to 260 mm (first three parts of Figure 14). While for long panels a buckling mode could occur
which is localized in the skin in front of the run-out tip (Figure 14, top left), as the length decreases
the buckling of the panel alters from a more localized mode involving part of the panel only (the skin
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Figure 12. First buckling mode for configuration B2 under pure compression (top) and
under combined shear and compression, ratio = 1 (bottom). Left: model; right: FEM.
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beyond the stiffener tip), to a more global phenomenon involving the stiffener. In this phase, the effective
free x-wise length panel increases, hence a reduction of the buckling loads is observed. As the length
continues to decrease, the buckling modes remain self-similar (that is, a global buckling mode with a
single x-wise half wave) and the buckling loads increase (last three parts of Figure 14.) The buckling
localisation for larger length is also believed to cause the interaction curve to significantly deviate from
the formula proposed in [Weaver and Nemeth 2008], as seen in Figure 10, top left.
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Figure 14. Mode I shapes (section AA) for panel B1 of x-wise lengths equal to 300,
280, 260, 240, 220 and 200 mm.
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For configuration B2, the buckling loads increase almost linearly as the panel length decrease; the
deformations are shown in Figure 15. When the length varies from an initial value of 300 mm to 260 mm,
the buckling modes appear to be self-similar; therefore the buckling loads increase as the length decreases.
As the length continues to decrease, a change in the mode shape occurs. Again, the buckling of the panel
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Figure 16. Buckling load sensitivity to web height.

alters from a two x-wise half waves phenomenon (more accentuated in the skin beyond the stiffener tip),
to a more global phenomenon also involving the stiffener. The buckling loads then increase as the length
decreases. The increase takes place at a smaller rate (Figure 13) as the amount of energy required to
include the effects of the stiffener in the global deformation increases.

In the second set of analyses, the effect of the web height hweb was studied. Configurations B1
was analyzed in a first step and buckling loads were calculated under pure compression and pure shear
loadings. Results are reported in Figure 16, left. A second set of analyses was carried out. The effect
of hweb was assessed in configuration B2 under pure compression and with two different panel lengths:
lx = 300 mm (baseline geometry) and lx = 200 mm. Results are reported in Figure 16, right. Comparison
with FE analyses show that the trend is well captured by the analytical approach. It must be emphasized
that, for configuration B2, short panels are significantly more sensitive to the web height than long panels
(Figure 16, right). In fact, as already seen in Figure 15, the buckling modes of panels with lengths between
300 mm and 250 mm are characterized by two half waves with an accentuated transverse displacement
that is localized in the free skin region in front of the stringer termination. For lengths that are below
250 mm, the panel buckles in to mode shapes, which are more global, that is, the web is characterized
by increased transverse displacements. Therefore short panels are more sensitive to the web height than
corresponding long configurations.

7. Discussion

The results presented in Section 6 generally show more than acceptable agreement between analysis
and FEM. As shown in Figures 10–12, the present analysis guarantees good level of accuracy both in
terms of buckling interaction curves and mode shape calculation. Although the method is in some cases
slightly nonconservative (if compared to FEM) with regards to the calculation of buckling loads in pure
compression, there is significant merit for the method in comparison with FEM.
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(1) In preliminary phases of aircraft design, there is an objective need for simple analytical solutions that
guarantee considerable reduction of computational effort. There are often many (often extending to
hundreds) of load cases to consider as well as optimisation studies to be done. Currently, FEM is
too computationally expensive to be employed for all load cases and optimisation studies, except
for particular exemplar cases. The slight nonconservative nature of some of the results does not
pose a significant problem for practical use by industry because predictions that are slightly non-
conservative are factored by subsequent introduction of statistical and environmental knockdown
factors.

(2) Despite the fact that FEM is able to provide realistic predictions, the large computational times
associated in conjunction with the rather significant sensitivity of the results to the mesh size dis-
courage its use as main tool for at least preliminary phases of aircraft design. In the present study no
sensitivity analyses were undertaken to show that FEM predictions had converged and the mesh size
was chosen based on the authors’ engineering judgment (ref. to Figures 11 and 12). The employed
mesh appears to be sufficiently refined to offer reasonably acceptable results within computational
times, which are suitable for the purpose of this study. It is realistic to expect the use of more
refined meshes for industrial purposes, which lead to much larger computational effort and time.
The present analysis shows that computational times are already more than 10 times smaller than
the ones associated with the use of coarse, two-dimensional FEM. This difference in analysis speed
would be exacerbated if a more refined mesh were used, especially in conjunction with a fully
three-dimensional model.

For the reasons described above, the present analysis is suitable for preliminary design calculations.
To the best of our knowledge there are no analytical methods available in the literature, which predict the
in-plane loads redistribution due to the presence of an incomplete stiffener terminated mid-bay along the
bay length—a problem of significant interest to aircraft designers. It is recognized that further potential
exploitations of the present analysis are also possible. For example, in cobonded and cocured composite
assemblies, interlaminar shear stresses arising within the bond-line enable in-plane load transfer from the
skin to the skin/stringer section. An extended model that also includes transverse shear stresses could
be implemented and employed in conjunction with the present approach in order to provide fast and
accurate calculation of interlaminar stresses.

8. Conclusions

A meshless approach was developed and used to predict local and global buckling of discretely assembled
multibay composite panels made from skin and stiffeners. Numerical results obtained are compared with
finite element analysis and show very good correlation in terms of in-plane loads distribution and buckling
loads calculation. The use of either solution (equilibrated, and equilibrated and compatible) found for
in-plane linear equilibrium appears to offer noteworthy level of accuracy and remarkable efficiency and
flexibility compared with complementary finite element calculations. A robust and efficient method for
quick evaluation of buckling loads of composite panels with stringer run-outs is presented. If used for
industrial purposes, the accuracy could be further improved by defining knockdown factors in order to
render conservative predictions.
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Appendix A. Condensation of stringer properties

Consider a composite I-beam is used as stiffener on a composite skin, as shown in the figure:
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As before, the width of the panel field equals the foot width. We need to assign an equivalent thickness
and an equivalent local lamina stiffness matrix Qeq to the equivalent layer that represents the stiffener.
Therefore, we need to properly assess five quantities: the equivalent thickness teq, the equivalent stiff-
nesses Eeq

x and Eeq
y in the x- and y-directions, the equivalent shear modulus Geq

xy in the y-direction, and
the equivalent Poisson’s ratio νeq

xy .
If x is the direction of the main stiffener dimension, Eeq

x and teqare calculated by deriving the global
axial (EAtot) and bending (E Itot) of the T-beam formed by the web and upper flange, and then imposing
the conditions

EAtot = Eeq
x bfootteq, E Itot = Eeq

x
1
12 bfoott3

eq. (A.1)

The equivalent elastic modulus in the y-direction, orthogonally to the direction of the main stiffener
dimension, can be set equal to zero. In fact, it is straightforward to demonstrate that, apart from the
lower flange, the remaining part of the stringer does not contribute significantly if in-plane y-loads or
transverse y bending moments are applied

Eeq
y
∼= 0. (A.2)

The equivalent shear modulus is calculated as

Geq
xy =

1
bfootteq

nflanges∑
k=1

Gxy,k Ak, (A.3)

where nflanges is the total number of flanges, Gxy,k is the shear modulus of the k-th flange, and Ak is the
area of k-th flange.

Note that formula (A.3) neglects the contribution of the vertical webs. Therefore the formula is appro-
priate if thin walled beams are used as stiffeners. The Poisson’s ratios are derived from the assumption
that the portion of the stiffener that lies on top of the skin but not directly in contact with it (namely the
web and upper flange, see figure) does not affect the effective structural Poisson’s ratio when axial loads
in x-direction are applied. Hence, the Poisson’s ratio νeq

xy equals the Poisson’s ratio of the lower flange.
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Appendix B. Derivation of the edge loads

To determine the expansion coefficients An and Bn , the in-plane unit width loads Nxi are assumed to
be constant within each subdomain, which may be represented as a spring with a concentrated stiffness.
The whole domain is schematized as a system of springs in series and in parallel (Figure A.1, right),
which can be reduced to a single equivalent spring constant:

keq =
k1(k2+ k3+ k4)

k1+ k2+ k3+ k4
. (B.1)

The axial flows Nxi are calculated throughout the domain under the assumption that every straight
line parallel to the y-axis remains straight after the deformation. This assumption does not represent the
real strain field throughout the panel’s domain. Nonetheless, since only the stress field at the boundary
is of interest at this stage, the assumption of discrete variation of Nx is not restrictive if stringer length
is sufficiently large. In such a case, the skin-to-stiffener load transfer is already completed far from
the boundary, and we can assume that the uniform axial (x-wise) strain condition is reestablished. An
example calculation is provided here.

For convenience, we consider a geometry formally identical to the skin-patch composite assembly of
Sections 4 and 5. We apply a constant axial flow Nx,1 on the free edge of the panel (Figure A.1, left).
The total force acting is therefore Ftot = Nx1ly . The total axial displacement is calculated as

δtot =
Ftot

keq
, (B.2)

where keq is as in (B.1), with spring constants given by

k1 =
ly

A′11,1

1
lx−lP

, k2 =
l2

A′11,2

1
lP
, k3 =

l3

A′11,3

1
lP
, k4 =

l4

A′11,4

1
lP
. (B.3)

To calculate how the total force distributes into the springs 1, 2, and 3, the axial displacement δ234

calculated at x = lP is first derived; it equals δ234 = δtot F1/k1, where F1 = Ftot. The force distribution is
now given by Fi = kiδP , for i = 2, 3, 4. The x-wise axial flows are given by

Nxi = Fi/li .
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Figure A.1. Domain schematisation and system reduction scheme.
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List of symbols

u0, v0 in-plane displacement of neutral plane in x and y directions
w out-of-plane displacement
εx , εy , εxy in-plane strains
ε0

x , ε0
y , ε0

xy in-plane strains at neutral plane level
e neutral plane function
lx , ly length and width of panel
N , M unit width stresses and bending moments vectors
A, D laminate in-plane and transverse stiffness matrices
B laminate coupling stiffness matrix
9 equilibrium stress function for uniform loading
19 equilibrium stress function for perturbation loading
9e equilibrium stress function
9c compatibility stress function for perturbation loading
� stress function
X , Y , X , Y beam eigenfunctions
ϕ j transverse displacement eigenfunctions
ϕ j transverse displacement eigenfunctions
9 j stress function eigenfunctions
Nx,o, Ny,o, Nxy,o external in-plane loads per unit width
Nx , Ny , Nxy internal in-plane loads per unit width
wi generalized coordinates of the displacement function
ei generalized coordinates of the neutral plane function
ξ j generalized coordinates of the Airy stress function
u generalized coordinates vector
U internal elastic potential energy
�N ,L linear component of the total potential of internal in-plane loads
�N ,N L nonlinear component of the total potential of internal in-plane loads
�N total potential of internal in-plane loads
5L linear component of total potential
5N L nonlinear component of total potential
5 total potential
�Q potential of external transverse loads
A∗, D∗ matrices of in-plane and flexural flexibility in partially inverted laminate

constitutive equations
B∗ coupling matrix in partially inverted laminate constitutive equations
Q vector defined in (19)
G, H , H matrices defined in (21), (22), and (23)
0x , 0y , 0xy circulation functions
φn weight functions
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AN ASYMPTOTIC ANALYSIS OF ANISOTROPIC HETEROGENEOUS PLATES
WITH CONSIDERATION OF END EFFECTS

JUN-SIK KIM

A finite element-based asymptotic analysis tool is developed for general anisotropic plates. The formu-
lation begins with three-dimensional equilibrium equations in which the thickness coordinate is scaled
by the characteristic length of the plate. This allows us to split the equations into two parts, such as the
one-dimensional microscopic equations and the two-dimensional macroscopic equations, via the virtual
work concept. The one-dimensional microscopic analysis yields the through-the-thickness warping func-
tion at each level, which does not require two-dimensional macroscopic analysis. The two-dimensional
macroscopic equations provide the governing equations of the plate at each level in a recursive form.
These can be solved in an orderly manner, in which proper macroscopic boundary conditions should be
incorporated. The displacement prescribed boundary condition is obtained by introducing the orthog-
onality condition of asymptotic displacements to the plate fundamental solutions. In this way, the end
effects of the plate are kinematically corrected without applying the sophisticated decay analysis method.
The developed asymptotic analysis method is applied to semiinfinite plates with simply supported and
clamped-free boundary conditions. The results obtained are compared to those of three-dimensional
FEM, three-dimensional elasticity, and Reissner–Mindlin plate theory. The usefulness of the present
method is also discussed.

1. Introduction

Analysis of anisotropic plates has been extensively carried out since the Kirchhoff–Love and Reissner–
Mindlin plate theories were developed. It has been a challenging class of problems, involving the
prediction of the behavior of anisotropic elastic bodies, including plates made of emerging composite
materials, with sufficient accuracy while maintaining a low number of degrees of freedom. Accordingly
many higher-order plate theories have been developed beyond the classical Kirchhoff–Love and Reissner–
Mindlin plate theories. One can categorize them into three classes: smeared theories, zig-zag theories,
and layerwise theories. Comprehensive reviews and assessments can be found in the surveys [Kapania
and Raciti 1989; Noor and Burton 1989; Reddy and Jr. 1994; Carrera 2003].

Most theories reported in the literature are based on an a priori kinematic assumption which describes
the higher-order behavior of plates especially for transverse shear deformation. This kinematic assump-
tion leads to the improved prediction of transverse shear stresses that is crucial for stress analysis of
laminated composite plates. Some of the higher-order theories are quite successful at describing such
composite plates by increasing the number of degrees of freedom. For example, the higher-order theory
developed by Lo et al. [1977] provides the accurate through-the-thickness distribution of transverse shear
stresses for the plates made of isotropic materials. However the accuracy of this theory is degraded when

Keywords: composite plate, sandwich plate, formal asymptotic method, end effect, boundary condition, FAMPA.
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a plate made of highly anisotropic materials is considered, especially one weak in shear. This triggered
the development of various higher order plate theories in the last two decades.

One of the major drawbacks of these higher-order theories is that we do not know how accurate they
are. These theories strongly depend on a priori assumed warping functions that are generally functions of
the material properties and loading conditions. Thus it is crucial to find and/or assume the proper warping
functions and desirable to obtain these from the three-dimensional (3D) elasticity if possible. One can
derive them from the 3D elasticity by applying asymptotic methods which are mathematically rigor-
ous. There are three types of asymptotic methods: the formal asymptotic method [Niordson 1979], the
variational-asymptotic method (VAM) [Berdichevskii 1979; Berg 1991], and the asymptotic integration
method [Novotny 1970; Wang and Tarn 1994; Tarn et al. 1996]. There is however a critical bottleneck
associated with these asymptotic methods, and that is a proper set of boundary conditions. It is not trivial
to exactly satisfy 3D boundary conditions especially for a displacement prescribed boundary condition
[Duva and Simmonds 1992]. One can obtain asymptotically correct boundary conditions without solving
the boundary layer problems by applying the decay analysis method [Gregory and Wan 1984]. Fan
and Widera [1994] demonstrated that the displacement prescribed boundary conditions obtained via this
method are different from those derived by variational principles. It is however too difficult to obtain these
boundary conditions via the decay analysis method for engineering applications. For this very reason,
an asymptotic analysis is often limited to the classical approximation for clamped plates and plates with
simply supported boundary conditions. Another way to avoid the problem associated with boundary
conditions is to derive a Reissner–Mindlin-like (RM-like) plate theory. Recently, Yu et al. [2002] and
Yu [2005] have developed the RM-like plate models by applying the VAM and using the through-the-
thickness finite element analysis. These models are not claimed to be asymptotically correct. And the
asymptotically correct solutions up to O(ε2), which are comparable to those of the Reissner–Mindlin
theory, have not been known for general anisotropic heterogeneous plates with clamped boundaries.

In this paper, a formal asymptotic expansion method is employed to derive a set of recursive equilib-
rium equations and boundary conditions from the 3D linear elasticity. We first split the 3D equilibrium
equations into two sets of one-dimensional (1D) microscopic and two-dimensional (2D) macroscopic
problems by introducing the virtual work concept. A conventional finite element discretization is then
applied to solve the problems. The 1D microscopic analysis, which is the through-the-thickness analysis,
yields the warping functions corresponding to the classical strain measure at each level. These functions
are smeared into the stiffness models used for the 2D macroscopic formulation. Once the microscopic
and macroscopic equations are derived, one has to determine a proper set of boundary conditions. We
recast the strong forms of the equilibrium equations obtained in their corresponding weak forms. During
this process, the displacement boundary conditions are treated as constraints in the weak form. In this
way, the asymptotic displacement can be correlated to the boundary condition, and the asymptotically
correct boundary condition up to O(ε2) can be derived. Thus one can obtain the asymptotically correct
solution immediately next to the classical solution for general boundary conditions.

The results obtained are compared to those of the 3D FEM, 3D elasticity, and RM plate theory.
Through numerical examples, this paper demonstrates how the edge zone affects the interior solution via a
proper set of boundary conditions. This defines the term “end effects” used in this paper. The microscopic
solutions, which can be obtained without solving the macroscopic problems, are also discussed to convey
the usefulness of the proposed approach.
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Figure 1. Geometry and coordinates of laminated plates.

2. Formal asymptotic formulation

A 3D composite plate with material anisotropy is considered in this study (see Figure 1). In order to apply
the asymptotic expansion method, one needs to define a small parameter (ε) in terms of the thickness
dimension which is much less than the in-plane dimension. To this end, the coordinates are scaled as

yα = xα, y3 =
x3
ε
, (1)

in which ε is defined to be ε = h/lc, where h and lc represent the thickness and characteristic length of
the plate, respectively.

2.1. 3D equilibrium equations and boundary conditions. In the scaled coordinates from (1), the 3D
static problem of linear elasticity, which consists of equilibrium equations, strain-displacement relation-
ships, and constitutive equations, can be expressed as

σi j, j + b̃i = 0 →
1
ε

Lt
3σ ,3+Lt

ασ ,α + b̃= 0,

εi j =
1
2
(ui, j + u j,i ) → ε =

1
ε

L3u,3+Lαu,α,

σi j = ci jklεkl → σ =
1
ε

CL3u,3+CLαu,α,

(2)

where a subscript ( ),i indicates the partial derivative with respect to the coordinate yi , a superscript t
denotes the transpose of a matrix or vector, ci jkl represent components of the 3D elasticity tensor, a body
force vector b̃, and a displacement vector u. Stress and strain tensors are expressed in the vector form

ε = [ε11 ε22 ε33 2ε23 2ε13 2ε12]
t , σ = [σ11 σ22 σ33 σ23 σ13 σ12]

t . (3)

The linear operators Li are defined by

L1 =



1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0


, L2 =



0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0


, L3 =



0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0


. (4)



1538 JUN-SIK KIM

The boundary conditions considered herein are summarized as

u= ū on Su, σν = p̃ on Sσ , σν = g̃ on �±, (5)

where Su and Sσ represent the edge boundaries with prescribed displacements ū(xi ) and prescribed
traction p̃(xi ), respectively. �± denotes the top and bottom surfaces of the plate, and ν is the direction
cosine of the outward normal to the boundaries Sσ and �±.

2.2. Asymptotic expansion and scaling. The displacement is expanded in terms of the small parameter

u= u(0)+ εu(1)+ ε2u(2)+ ε3u(3)+ · · · , (6)

where the 0th order displacement needs special attention, because it is related to the asymptotic conver-
gence [Buannic and Cartraud 2001; Kim et al. 2008]. Each order displacement is given by

u(0)(yα)= [0 0 u(0)3 ]
t , u(k)(yi )= [u(k)1 u(k)2 u(k)3 ]

t , k ≥ 1, (7)

where u(0)3 (yi )≡ v
(0)
3 (yα). The variables vi represent functions of the in-plane coordinates yα only.

The components of body force and surface traction, which are regarded as prescribed quantities, are
also scaled as follows:

b̃α = εbα, b̃3 = ε
2b3, p̃α = εpα, p̃3 = ε

2 p3, g̃α = ε2gα, g̃3 = ε
3g3, (8)

and the prescribed displacement is presupposed by

ū3 ∼ O(1), ūα ∼ O(ε). (9)

Substituting (6) and (8) into (2) yields the recursive forms

Lt
3σ

(k+1)
,3 =−Lt

ασ
(k)
,α −b(k), ε(k+1)

= L3u(k+2)
,3 +Lαu(k+1)

,α , σ (k+1)
= Cε(k+1), k ≥−1, (10)

where σ (k+1) and ε(k+1) are expanded based on the displacement expansions, (6), and the coordinate
scale, (1).

The associated boundary conditions at the edge boundaries are

u(k+1)
= ū(k+1) on Su, σ (k+1)ν = p(k+1) on Sσ , (11)

and at the top and bottom surfaces of the plate

σ (k+1)ν = g(k+1) on �±, (12)

where ū(k) = 0 if k 6= 0 or 1, b(k) = 0 and p(k) = 0 if k 6= 1 or 2, and g(k) = 0 if k 6= 2 or 3. Notice here
that the negative powers of the quantities vanish.

2.3. Fundamental solution. The very first equation (k =−1) from (10) can be obtained as

Lt
3σ

(0)
,3 = 0. (13)

Its solution can be easily found by σ (0) = ε(0) = 0 since it is well posed [Buannic and Cartraud 2001;
Kim et al. 2008]. From ε(0) = 0 the particular solution is obtained by

u(1)p = [−y3v
(0)
3,1 −y3v

(0)
3,2 0]t . (14)
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The solution is defined up to a rigid body displacement (uR = {v1, v2, v3}). This forms the fundamental
solutions such that

u(1) = ũ(1) ≡ u(1)p +u(1)R =2(y3)ṽ(1)(yα), (15)

where

2(y3)=

1 0 0 −y3 0
0 1 0 0 −y3

0 0 1 0 0

 , ṽ(1)(yα)=

{
v
(1)
i

v
(0)
3,α

}
. (16)

This fundamental solution appears repeatedly in each order problem.

2.4. Virtual displacement concept to recursive equations. It is more convenient to rewrite the recursive
equilibrium equation, (10), in terms of virtual displacements in order to find the solutions of microscopic
and macroscopic problems as well as to handle the surface traction on �±. To this end, one can mul-
tiply by the virtual displacement δu(k+2)t in (10) and (12). By applying integration by parts for the y3

coordinate, it takes the form∫
�

[∫
hε
δu(k+2)t
,3 Lt

3σ
(k+1)dy3−

∫
hε
δu(k+2)t Lt

ασ
(k)
,α dy3

−

∫
hε
δu(k+2)t b(k)dy3− δu(k+2)t g(k+1)

∣∣∣
y3=�±

]
d�= 0, (17)

where hε denotes the scaled thickness of a plate. The edge boundary conditions on Su and Sσ will be
considered and discussed in Section 4.

Furthermore the asymptotic displacement u(k) can be decomposed into two terms such that

u(k)(yi )= ũ(k)(yi )+u(k)w (yi ), k ≥ 2, (18)

where the first term is the fundamental solution and the second the warping solution. By substituting this
into (17), one can obtain two equations corresponding to δũ(k+2) and δu(k+2)

w . They are referred to as the
macroscopic problem (or the plate analysis) and the microscopic problem (or the through-the-thickness
analysis), respectively.

3. Microscopic and macroscopic problems

In this section, we seek the solutions of the microscopic problems and the macroscopic 2D plate equations
from (17). The through-the-thickness 1D finite analysis for the microscopic problems is described first.
Then the macroscopic 2D plate equilibrium equations, which are built upon the results of microscopic
analysis, are derived.

3.1. Microscopic problems. The microscopic problems can be obtained from (17) by collecting the
terms associated with the virtual displacement form of the warping solution, δu(k)w . These can be solved by
applying the through-the-thickness 1D finite element discretization. Subsequently the warping solution
is generalized for each level of the problems.
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The second microscopic problem and finite element discretization. The first nontrivial microscopic prob-
lem (k = 0), which is associated with δu(2)w in (17), is given by∫

hε
δ
(
L3u(2)w,3

)t C
(
8e(1)+L3u(2)w,3

)
dy3 = 0, (19)

where

8(y3)=



1 0 0 −y3 0 0
0 1 0 0 −y3 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 −y3


, e(1) = [v(1)1,1 v

(1)
2,2 v

(1)
1,2+ v

(1)
2,1 v

(0)
3,11 v

(0)
3,22 2v(0)3,12]

t . (20)

In order to solve (19), the finite element discretization is employed by using the standard 1D La-
grangian interpolation function. The warping solution is then expressed by

uw(yi )= Nu(y3)ūw(yα), (21)

where Nu is the shape function matrix and ūw is the nodal vector. Plugging (21) into (19) yields

Kū(2)w +F3E e(1) = 0, (22)

where
K≡ 〈B t

3 C B3〉, F3E ≡ 〈B t
3 C 8〉, B3 ≡ L3Nu,3, (23)

in which
〈•〉 =

∫
hε
• dy3. (24)

One can solve (22) by applying the orthogonality condition to a rigid body displacement [Cesnik et al.
1996; Kim et al. 2008]. Consequently its solution is represented by

ū(2)w = 0
(1)e(1), 0(1) ≡KI F3E , (25)

where the matrix KI is related to the inverse matrix of K and the orthogonality condition to a rigid body
displacement [Kim et al. 2008]. Note that each column of 0(1) represents the warping distribution through
the thickness of a plate, which corresponds to six warping functions due to two in-plane extensions, one
in-plane shear, two bending curvatures, and one twisting curvature. These functions explain the 3D
Poisson effect.

The third and higher microscopic problems. The third microscopic problem (k = 1) from (17) can be
summarized as follows:∫

hε
δu(3)tw,3Lt

3σ
(2)dy3 =

∫
hε
δu(3)tw Lt

ασ
(1)
,α dy3+

∫
hε
δu(3)tw b(1)dy3+ δu(3)tw g(2)

∣∣∣
y3=�±

, (26)

where the last term represents the prescribed surface shear traction on �±, which is explicitly expressed
by

σ
(2)±
α3 = g±α at y3 =±

hε
2
. (27)
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After applying the finite element discretization and carrying out tedious but straightforward manipu-
lation, one can obtain

Kū(3)w =−F3E e(2)+
[
Vα+(Wα−W t

α) 0(1)
]

e(1),α +F(2)g +F(1)b , (28)

where
Vα ≡ 〈B t

αC8〉, Wα ≡ 〈B t
αCB3〉, Bα ≡ LαNu, (29)

and the last two terms on the right side are force vectors that represent the prescribed traction and the
body force, respectively. Once we solve (28), the warping solution has the form

ū(3)w = 0
(1)e(2)+0(2)α e(1),α + ū(3)f , (30)

where
0(2)α ≡KI

[
Vα+(Wα−W t

α) 0(1)
]
, ū(3)f ≡KI

(
F(2)g +F(1)b

)
. (31)

By following the same procedure described in the previous microscopic problems, the solution of the
fourth microscopic problem (k = 2) can be obtained by

ū(4)w = 0
(1)e(3)+0(2)α e(2),α +0

(3)
αβ e(1),βα + ū(4)f , (32)

where
0
(3)
αβ ≡KI

[
Wαβ0

(1)
+(Wα−W t

α) 0
(2)
β

]
, Wαβ ≡ 〈B t

αCBβ〉,

ū(4)f ≡KI
[
(Wα −W t

α)ū
(3)
f,α +F(3)g +F(2)b

]
.

(33)

Similarly, the solutions of the higher than fourth microscopic problems can be now generalized as
follows:

ū(k)w = 0
(1)e(k−1)

+0(2)α e(k−2)
,α + · · ·+0

(k−2)
αβ...ψe(2),ψ...βα +0

(k−1)
αβ...ψωe(1),ωψ...βα + ū(k)f , (34)

where k ≥ 5, and

ū(m+1)
f ≡KI

[
Wαβ ū(m−1)

f,βα + (Wα −W t
α)ū

(m)
f,α

]
, (35)

0
(m)
αβγ ...ψω ≡KI

[
Wαβ0

(m−2)
γ ...ψω+ (Wα −W t

α)0
(m−1)
ωψ...γβ

]
, (36)

in which m ≥ 4.

3.2. Macroscopic problems. One can also derive the macroscopic 2D equilibrium equations from (17)
by collecting the terms associated with δũ(k). In this subsection, the equations at each level are derived
and the macroscopic 2D constitutive equations are set up, in which the warping solutions obtained in
Section 2 are smeared into the macroscopic 2D stiffness.

Equilibrium equations. From (17), the k-th macroscopic problem that is associated with δũ(k+2) can be
summarized as follows:

δv(k+2)
α : N (k)

αβ,β + n(k)α = 0,

δv
(k+1)
3,α : M (k)

αβ,β + Q(k+1)
α −m(k)

α = 0, k ≥ 0,

δv
(k+2)
3 : Q(k)

α,α + q(k) = 0,

(37)
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where
N (k)
αβ ≡

〈
σ
(k)
αβ

〉
, M (k)

αβ ≡
〈
−y3σ

(k)
αβ

〉
, Q(k)

α ≡
〈
σ
(k)
α3

〉
, (38)

and the other terms are the contributions of the body force and prescribed traction, which are

n(k)α ≡
{
〈bα〉+ g+α + g−α

}
δ(k− 1),

m(k)
α ≡

{
〈y3bα〉+

hε
2
(g+α − g−α )

}
δ(k− 1),

q(k) ≡
{
〈b3〉+ g+3 + g−3

}
δ(k− 2),

(39)

where δ(k− n) indicates the Kronecker delta function.
The very first macroscopic problem, which corresponds to k = 0 in (37), yields the classical assumption

of zero shear force such that Q(1)
α = 0. The second macroscopic problem (k = 1) forms the classical plate

theory, which contains the trivial terms related to the first-order shear forces Q(1)
α = 0 from the previous

macroscopic problem. This problem also includes the second-order shear forces Q(2)
α that are presented

in the third macroscopic problem. From these one obtains the first set of equilibrium equations,

N (1)
αβ,β + n(1)α = 0, M (1)

αβ,βα +m(1)
α,α = q(2). (40)

Similarly the second and higher sets of equilibrium equations are now generalized by

N (k)
αβ,β = 0, M (k)

αβ,βα = 0, k ≥ 2. (41)

It is worth noting that there are no external loadings in the equations with k ≥ 2 but the solutions of the
equations of the preceding level form the fictive volume force acting like the external loading.

Constitutive equations. The k-th order stress resultants (k ≥ 1) can be defined by

Ñ
(k)
≡ 〈8tσ (k)〉 =A(1)e(k−1)

+A(2)
α e(k−2)

,α + · · ·+A(k−1)
αβ...ψωe(1),ωψ...βα + Ñ

(k)
f , (42)

where
Ñ
(k)
≡ [N (k)

11 N (k)
22 N (k)

12 M (k)
11 M (k)

22 M (k)
12 ]

t , Ñ
(k)
f ≡ V t

αū(k)f,α +Ft
3E ū(k+1)

f , (43)

and
A(1)
≡ 〈8t C8〉+Ft

3E0
(1),

A(2)
α ≡ V t

α0
(1)
+Ft

3E0
(2)
α ,

. . .

A(n)
αβ...ω ≡ V t

α0
(n−1)
β...ω +Ft

3E0
(n)
αβ...ω, n ≥ 3.

(44)

The macroscopic constitutive equations include the terms related to the prescribed surface traction on
�±, Ñ

(k)
f , which are not considered in a conventional way to derive the constitutive equations.

4. Weak form of macroscopic 2D equations

A finite element formulation for the macroscopic 2D equilibrium equations presented in Section 3 is
described. To this end, we first apply a Galerkin method to the 2D equilibrium equations with edge
boundary conditions as constraints, and then transform them to a weak form through integrating by parts
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with respect to the in-plane coordinates yα. This process allows us to have boundary conditions for the
problem.

4.1. 2D plate finite element formulation. To convert the sets of macroscopic equilibrium equations in
(40) and (41) to the corresponding weak formulations, it is essential to consider the edge boundary
conditions given in (11). These edge boundary conditions can be rewritten in the weak forms∫

Sσ
δu(k+2)t(σ (k+1)ν−p(k+1))d S+

∫
Su

δu(k+2)t(σ (k+1)ν+λ(k+1))d S = 0, (45)

which are subject to the constraint∫
Su

δλ(k+1)t(u(k+2)
− ū(k+2))d S = 0, (46)

where k ≥ 0, and λ is a Lagrange multiplier which is introduced to enforce the displacement boundary
condition on Su .

The sets of macroscopic equilibrium equations in (40) and (41) can be recast by applying a Galerkin
method, where the weighting function is chosen to be a displacement vector such that

v(k) = [v
(k)
1 v

(k)
2 v

(k−1)
3 ]

t , k ≥ 1, (47)

combining (45). Subsequently integrating by parts yields the following weak formulation for the problem:∫
�

{(
δe(k)

)t
Ñ
(k)
−
(
δv̂(k)

)t
B̃
(k)
}
δ�=

(
δv̂(k)

)t
∫

Sσ
F̃
(k)d S, k ≥ 1, (48)

where

v̂(k) = [v(k)α v
(k−1)
3 v

(k−1)
3,α ]

t , B̃
(k)
= [n(k)α q(k+1) m(k)

α ]
t , F̃

(1)
=2t
[p1 p2 p3]

t , (49)

where F̃
(k)
= 0 if k ≥ 2. Notice here that there are remaining boundary conditions associated with δu(k+2)

w

which will be discussed in Section 4.2.
Applying a standard finite element discretization procedure to (48) yields the following recursive linear

equations:
K(1)

2DV̂(k)
= P(k)F −P(k)N

(
K(n)

2D, V̂(n))
n=2,3,...,k, (50)

where k ≥ 1, V̂(k) is the k-th order nodal degrees of freedom vector, and P(k)F indicates the forcing vector
coming from F̃

(k) and B̃
(k). The calculation of the 2D stiffness matrices K(k)

2D is associated with the k-th
order stress resultant vector Ñ

(k) that includes higher order derivatives with respect to the coordinates
yα. The fictive volume force vector P(k)N is computed from the preceding nodal vectors and 2D stiffness
matrices. Their explicit forms are omitted for brevity, since they are lengthy but straightforward.

4.2. Boundary conditions. In the process of integrating by parts in Section 4.1, there are remaining
boundary conditions associated with δu(k+2)

w and the displacement boundary Su . These are summarized
as follows:∫

Sσ
δu(k+2)t
w

(
σ (k+1)ν−p(k+1))d S+

∫
Su

δu(k+2)t
w

(
σ (k+1)ν+λ(k+1))d S+

∫
Su

δũ(k+2)tλ(k+1)d S = 0, (51)
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with the constraint given in (46). These boundary conditions carry physical significance, which implies
that one cannot exactly satisfy the 3D edge boundary conditions even for stress edge data unless the
boundary layer problem is solved. The first term, which is the edge traction, is dismissed in the weighted
average sense. The second and third terms are also dismissed if one can properly prescribe the funda-
mental and warping displacements at the edge on Su .

A clue to this displacement boundary condition can be sought by examining the displacement con-
straint. From (51), a Lagrange multiplier can be found. Substituting this into the constraint in (46)
yields ∫

Su

δ
(
σ (k+1)ν

)t(u(k+2)
− ū(k+2))d S = 0, (52)

which leads to the so-called averaged displacement boundary condition. For example, this can be sim-
plified for the straight edge perpendicular to the y1 coordinate by∫

Su

δσ
(k+1)
i1

(
u(k+2)

i − ū(k+2)
i

)
d S = 0. (53)

Furthermore if one assumes linear variations of in-plane stresses and a constant transverse shear stress,
the stress edge data is expressed by σα1 = τα + y3ωα and σ31 = τ3. Plugging this into (53) yields five
equations such that

δτα :
〈
u(k+2)
α − ū(k+2)

α

〉
= 0,

δωα :
〈
y3
(
u(k+2)
α − ū(k+2)

α

)〉
= 0,

δτ3 :
〈
u(k+2)

3 − ū(k+2)
3

〉
= 0,

(54)

which in matrix form is

δτ t 〈2t(u(k+2)
− ū(k+2))〉

= 0. (55)

This actually yields the same form as the orthogonality condition of asymptotic displacements to the
fundamental displacement [Kim et al. 2008]. The displacement condition given in (55) was proven to be
asymptotically correct up to O(ε2) for a transversely isotropic semiinfinite beam [Horgan and Simmonds
1991]. In this way, one can avoid the overwhelming complexity of using the decay analysis method
[Gregory and Wan 1984] to find the asymptotically correct boundary conditions up to any desired order.
It is however limited to asymptotic analysis up to O(ε2) when the displacement prescribed boundary is
considered (for example, for clamped boundaries) [Horgan and Simmonds 1991; Duva and Simmonds
1992].

The orthogonality condition of asymptotic displacements [Kim et al. 2008], which generalizes the
averaged displacement boundary condition, is given by∫

Su

(
δũ(k)

)t(u(k)− ū(k)
)
d S = 0, (56)

in which ū(k) is the scaled displacement edge data. Plugging (15) into this yields(
δṽ(k)

)t U(k)
= 0, U(k)

≡

∫
Su

2t(y3)
(
u(k)− ū(k)

)
d S, (57)
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where U(k) is a 6× 1 residual displacement vector. This yields five kinematic boundary conditions. For
instance, the clamped boundary condition (that is, ū(k) = 0∀k) can be realized as follows:

ṽ(1) = 0, ṽ(2) =−H−1
θ 〈2

t Nu〉0
(1)e(1), . . . , ṽ(k) =−H−1

θ 〈2
t Nu〉

(
ū(k)w + ū(k)f

)
, k ≥ 3, (58)

where Hθ ≡ 〈2
t2〉. This however should be rearranged for each macroscopic problem so that

v̂(k) = [ṽ(k)1 ṽ(k)2 ṽ(k−1)
3 ṽ(k)4 ṽ(k)5 ]

t . (59)

5. Numerical examples and discussion

Laminated and sandwich plates are considered as illustrative examples for the present asymptotic formu-
lation. In order to investigate the edge effects, semiinfinite plates (that is, the 3D plane strain problem)
with simply supported or clamped-free boundary conditions are analyzed (see Figure 2). The present
results are compared to those obtained by 3D elasticity and Reissner–Mindlin plate theory, also known
as first-order shear deformation theory (FSDT). The shear correction factor is assumed to be 5/6 for
FSDT. For convenience, the present approach is referred to as a formal asymptotic method-based plate
analysis (FAMPA) throughout the numerical examples.

The ply material properties of all the laminated plates are taken from [Pagano 1970], and are

EL = 172.4 GPa, ET = 6.9 GPa, GLT = 3.45 GPa, GT T = 1.38 GPa, νLT = νT T = 0.25, (60)

where L denotes the direction of the fiber and T denotes the direction perpendicular to the fiber. For
sandwich plates, the material properties of the face sheets are the same as those in (60), and the core
material properties are given by

E1 = 0.1 GPa, G12 = 0.04 GPa, ν12 = 0.25,

E2 = E3 = E1, G23 = G13 = G12, ν23 = ν13 = ν12.
(61)

Four cases including a sandwich plate are considered for two sets of boundary conditions, which are
listed in Table 1. The elastic constants ci jkl can be then calculated by using the moduli given in (60) and
(61) and the fiber angle given in Table 1. Their explicit form can be found in [Reddy 2004].

q q

Figure 2. Loading and boundary conditions of semiinfinite plates: simply supported
plate under sinusoidal pressure (left) and clamped-free plate under uniform pressure
(right).
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In all figures and tables, the k-th order solutions of the FAMPA are represented by

u<k>
=

k∑
i=0

[εi+1u(i+1)
α εi u(i)3 ]

t , σ<k>
=

k+1∑
i=1

εiσ (i), k ≥ 0, (62)

so that the zeroth-order solution represents that of classical lamination theory (CLT) with σi3 = 0 and the
second-order solution represents that of the FSDT-like theory. Unlike in FSDT, the present second-order
solution produces all the stress states including the transverse normal stress via the constitutive law. In
the figures, the transverse stresses of the FSDT are calculated by using 3D equilibrium equations.

The displacement and stresses reported herein are normalized as follows [Pagano 1970]:

u∗α = 100ET
uα
qo

hS3, u∗3 = 100ET
u3

qo
hS4, σ ∗αβ =

σαβ

qo
S2, σ ∗α3 =

σα3

qo
S, σ ∗33 =

σ33

qo
, (63)

where S = L1/h is the length-to-thickness ratio and qo is the maximum of the applied pressure q .

5.1. Simply supported plates. For the problem of simply supported laminated and sandwich plates under
sinusoidal pressure, the elasticity solution is available from [Pagano 1970], and has been used as the
benchmark problem. In this case, problematic displacement prescribed boundary conditions are not
involved. It is therefore possible to find the asymptotic solutions up to any desired order. For the purpose
of comparison, the solutions of 3D elasticity and FSDT are also reproduced.

Case Layup x3/h

1 [0.5 / 90.5 / 90.5 / 0.5] {−1/2,−1/4, 0, 1/4, 1/2}
2 [90.5 / 0.5 / 90.5 / 0.5] {−1/2,−1/4, 0, 1/4, 1/2}
3 [−30 / 30 /−30 / 30] {−1/2,−1/4, 0, 1/4, 1/2}
4 [0.05 /Core / 0.05] {−1/2,−2/5, 0, 2/5, 1/2}

Table 1. Lamination sequences for laminated and sandwich plates.

0 0.5 1 1.5 2
−0.5

−0.25

0

0.25

0.5

σ
13

*

x
3
/h

(a)

0 0.5 1
−0.5

−0.25

0

0.25

0.5

σ
33

*

x
3
/h

(b)

Figure 3. Transverse stresses of a simply supported plate, case 3, S = 4: σ ∗13 (a) and
σ ∗33 (b). Exact (•), FSDT (4), FAMPA 0th (−−), FAMPA 2nd (− ·−), FAMPA 4th (· · ·),
and FAMPA 6th (—).
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S Models Case 1 e% Case 2 e% Case 3 e% Case 4 e%

4 Exact 3.3364 0 4.1812 0 3.2915 0 75.58 0
FSDT 2.7299 –18 3.2964 –21 2.7868 –15 8.27 –89
FAMPA 0th 0.5586 –83 1.1251 –73 0.9988 –70 1.01 –99
FAMPA 2nd 3.5912 8 4.5380 9 3.4428 5 108.07 43
FAMPA 4th 3.2689 –2 4.0805 –2 3.2655 –1 61.00 –19
FAMPA 6th 3.3553 1 4.2121 1 3.2963 0 82.15 9

10 Exact 1.0359 0 1.6600 0 1.3854 0 17.01 0
FSDT 0.9061 –13 1.4726 –11 1.2849 –7 2.17 –87
FAMPA 0th 0.5586 –46 1.1251 –32 0.9988 –28 1.01 –94
FAMPA 2nd 1.0438 1 1.6712 1 1.3899 0 18.14 7
FAMPA 4th 1.0356 –0 1.6595 –0 1.3853 –0 16.93 –0

20 Exact 0.6794 0 1.2609 0 1.0963 0 5.22 0
FSDT 0.6455 –5 1.2120 –4 1.0703 –2 1.30 –75
FAMPA 0th 0.5586 –18 1.1251 –11 0.9988 –9 1.01 –81
FAMPA 2nd 0.6799 0 1.2617 0 1.0966 0 5.29 1

Table 2. Comparison of center deflections of simply supported plates under sinusoidal loads.

Normalized center deflections of simply supported plates are listed and compared to the 3D elasticity
solution in Table 2. FSDT shows significant improvement compared to the FAMPA-0th or CLT for
laminated plates, cases 1–3. It however does not yield accurate predictions for the case of a sandwich
plate. In fact, FSDT just produces comparable results to CLT even for S ≥ 20. In contrast, the FAMPA-
2nd results are practically identical to the 3D elasticity solution. Although the FAMPA-6th is necessary
for accurate prediction in the case of very thick plates, S = 4, the FAMPA-2nd produces reasonable
accuracy when S ≥ 10 for both laminated and sandwich plates. Local through-the-thickness distributions
of stresses are also important in analysis of composite plates. Transverse stresses for an antisymmetric
laminated plate are presented in Figure 3 and those for a sandwich plate in Figure 4. It is seen that
the FAMPA asymptotically converges to the 3D elasticity with increasing ε-order level. The transverse
shear stress of the FAMPA-2nd is identical to that of FSDT, whereas the transverse normal stress of FSDT
significantly deviates from the FAMPA-2nd and the 3D elasticity, which is clearly shown in Figure 4b.

5.2. Clamped-free plates. We now consider clamped-free plates, investigating displacement-prescribed
and traction-free boundary conditions. Unlike the simply supported plate with sinusoidal loadings, our
analysis is restricted to the FAMPA-2nd because the asymptotically correct displacement boundary con-
dition is only available up to the second order, which is given in (59). In addition, there is difficulty in
calculating higher-order derivatives with respect to yα in the framework of a finite element method.

Normalized tip deflections of clamped-free laminated and sandwich plates with a function of the
length-to-thickness ratio S are shown in Figure 5 for cases 3 and 4. The FAMPA-2nd performs similarly
to FSDT for case 3. For a sandwich plate, FSDT significantly deviates from the 3D FEM, whereas the
FAMPA-2nd is very close to it. This clearly indicates that it is of great importance to apply a proper
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Figure 4. Transverse stresses of a simply supported plate, case 4, S = 4: σ ∗13 (a) and
σ ∗33 (b). Exact (•), FSDT (4), FAMPA 0th(−−), FAMPA 2nd (− ·−), FAMPA 4th (· · ·),
and FAMPA 6th (—).

set of edge boundary conditions especially for a plate weak in shear. To more clearly demonstrate this,
the bending deflection and slope along the normalized in-plane coordinate are illustrated in Figure 6
for a sandwich plate with S = 10. The error of the FSDT is more than 400% in terms of tip deflection,
whereas the FAMPA-2nd shows reasonable accuracy. This is achieved by improving a clamped boundary
condition in which the bending slope is not zero, as shown in Figure 6b, where the interior solution is ap-
proximately valid for 30% to 80% from the clamped end. Local stress distributions are also investigated,
and stresses of a thick antisymmetric cross-ply plate at the midspan of the plate are illustrated in Figure 7.
The transverse shear stress of the FAMPA-2nd coincides with that of FSDT, since σ13 is calculated by
using the 3D equilibrium equation for FSDT. In-plane and transverse normal stresses calculated by the
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Figure 5. Tip deflections of clamped-free laminated and sandwich plates: antisym-
metric angle-ply (a), case 3, and sandwich (b), case 4. 3D FEM (•), FSDT (− ·−),
FAMPA 0th (−−), and FAMPA 2nd (—).
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Figure 6. A clamped-free sandwich plate, case 4, S = 10: bending deflection (a), and
bending slope (b). 3D FEM (•), FSDT (− ·−), FAMPA 0th (−−), and FAMPA 2nd (—).
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Figure 7. Stresses of a clamped-free antisymmetric cross-ply laminated plate, case 2,
S = 4: σ ∗11 (a), σ ∗13 (b), and σ ∗33 (c). 3D FEM (◦), FSDT (4), FAMPA 0th (−−), and
FAMPA 2nd (—).

FAMPA-2nd are well correlated with the 3D FEM, whereas FSDT yields erroneous results qualitatively
as well as quantitatively.

To investigate the edge layer effects, the in-plane normal stresses calculated at near the clamped-end,
midspan, and near the free-end, which are located at the 12%, 49%, and 87% axial positions from
the clamped end, respectively, are plotted in Figure 8 for a thick symmetric cross-ply plate. The best
approximation of the FAMPA-2nd to the 3D FEM can be seen in the midspan where the interior solution is
valid. Near the clamped end, the FAMPA-2nd tends to produce a through-the-thickness stress distribution
similar to that in the interior region because we applied the asymptotically correct boundary condition
up to the second order only. It can however accurately capture the stress-free edge layer effect, as shown
in Figure 8c where the FAMPA-2nd drastically improves the prediction of the in-plane stress compared
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Figure 8. In-plane normal stress of a clamped-free symmetric cross-ply laminated plate,
case 1, S = 4: near the clamped-end (a), midspan (b), and near the free-end (c).
3D FEM (◦), FSDT (4), FAMPA 0th (−−), and FAMPA 2nd (—).

to FSDT and the FAMPA-0th. It is of interest that the in-plane normal stress is not that small even if the
in-plane stress is zero at the free-end.

5.3. Usefulness of the FAMPA. Through-the-thickness warping functions are discussed in this subsec-
tion. An antisymmetric angle-ply laminated plate, case 3, is considered as an example. The proposed
asymptotic analysis method may be limited to second-order analysis because higher-order analysis re-
quires both higher-order asymptotically correct displacement boundary conditions as well as higher-order
derivatives. The requirement of higher-order derivatives of the macroscopic strain measure e(k) makes it
difficult to realize the FAMPA with a finite element method. Although the FAMPA-2nd yields reasonable
accuracy for most engineering applications, one may want to look at higher-order effects. In this case, the
warping functions 0(k)αβ...ψω can provide useful information without solving the macroscopic problems.

The first-order through-the-thickness deformation mode of case 3 is shown in Figure 9. This mode
mainly illustrates the 3D Poisson effect that represents the deformation along the thickness direction.
Figure 9 implies that the out-of-plane displacements consist of linear and quadratic variations, in which
the linear variation accounts for the in-plane tension induced deformation and the quadratic variation
explains the bending induced deformation. In general these variations are smeared into the reduced
stiffness models that are often derived by applying the plane stress assumption of σ33 = 0. The first
nonclassical through-the-thickness mode, such as a transverse shear deformation effect, can be found in
0
(2)
α . For example, 0(2)1 are plotted in Figures 10 and 11. Unlike the first deformation mode 0(1), the in-

plane displacements uα play a major role in this mode. Figure 10 depicts the displacement component u1,
which clearly shows a transverse shear deformation effect due to the bending deformations corresponding
to κ11,1 and κ22,1. The contribution of κ22,1 to u1 is obvious because of the antisymmetric configuration.
For this reason, the higher-order bending curvature κ11,1 also contributes to the displacement component
u2 as shown in Figure 11. The through-the-thickness warping functions presented in Figure 11 have an
unique pattern depending on the lamination configurations, which could be very difficult to presuppose.
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Figure 9. The first-order through-the-thickness deformation mode (u3) of an antisym-
metric angle-ply laminated plate, case 3, 0(1).
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Figure 11. The second-order through-the-thickness deformation mode (u2) of an anti-
symmetric angle-ply laminated plate, case 3, 0(2)1 .

6. Conclusions

A formal asymptotic method-based plate analysis (FAMPA) is developed to analyze general anisotropic
plates. To assess the FAMPA capability for various sets of boundary conditions, simply supported and
clamped-free boundary conditions are considered. For a simply supported boundary condition, it is
demonstrated that the FAMPA can provide the exact solutions by increasing the order up to the sixth order
for very thick plates. The orthogonality condition of asymptotic displacements to the fundamental solu-
tion is adopted to avoid the complexity of using the decay analysis method for a displacement prescribed
boundary. The boundary conditions obtained, which are asymptotically correct up to the second order, are
applied to plates with clamped-free boundary conditions. The results are compared to those of the three-
dimensional FEM and FSDT. It is demonstrated that the FAMPA-2nd is simple enough for engineering
applications and accurate enough for high precision analysis. It can also simulate the free-edge boundary
layer effect qualitatively, whereas FSDT cannot. Although a higher-order computation of the FAMPA is
practically limited due to the displacement boundary conditions and the higher order derivatives of the
macroscopic strain measure, one can have in-depth understanding of the higher-order behaviors of such
composite plates via the microscopic analysis up to any desired order. The through-the-thickness warping
functions obtained can be also used for development and validation of any higher-order plate theories.
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REMARKS ON THE ACCURACY OF ALGORITHMS FOR MOTION
BY MEAN CURVATURE IN BOUNDED DOMAINS

SIMON COX AND GENNADY MISHURIS

Simulations of motion by mean curvature in bounded domains, with applications to bubble motion and
grain growth, rely upon boundary conditions that are not necessarily compatible with the equation of
motion. Three closed form solutions for the problem exist, governing translation, rotation, and expansion
of a single interface, providing the only benchmarks for algorithm verification. We derive new identities
for the translation solution. Then we estimate the accuracy of a straightforward algorithm to recover the
analytical solution for different values of the velocity V given along the boundary. As expected, for large
V the error can reach unacceptable levels especially near the boundary. We discuss factors influencing
the accuracy and propose a simple modification of the algorithm which improves the computational
accuracy.

1. Introduction

Motion by mean curvature and the dynamics of two-dimensional foams are closely related subjects
in the study of materials [Smith 1952]. In the ideal model of the evolution of crystalline grains in a
polycrystalline metal, known as normal grain growth, the size of each grain evolves due to the normal
motion of each of its boundaries [Weaire and McMurry 1996]. Each boundary has a certain mobility λ,
and moves in such a way as to reduce the total perimeter of the pattern. The ideal soap froth is a model
of a two-dimensional foam [Weaire and Hutzler 1999], such as the one studied by Bragg and Nye [1947]
and which has recently enjoyed a renaissance, in which interface curvature and pressure differences are
balanced, again due to minimization of the total perimeter. Both ideal models arise naturally as limits of
the following viscous froth model (VFM) [Kern et al. 2004], derived as a force balance per unit length
of the interface:

1p = γ κ + λvn. (1-1)

Here 1p is the pressure difference across the interface and γ its surface tension (assumed constant); κ
is the local curvature and vn the velocity normal to the interface.

The aim of this paper is to investigate the accuracy of algorithms for (1-1), and for this reason we
restrict ourselves to the simplest case, when 1p = 0. In the case of grain growth, there are no area
(volume in 3D) constraints, and pressure differences between cells are negligible. This limit is also
appropriate to ordered (hexagonal) foams and single soap films.

We ask how a solution to the equations of motion by mean curvature can be commensurate with the
boundary of the domain. That is, even though we can find an interface shape at a particular instant
in time, by solving the governing equation, it is not always possible to match this with the imposed

Keywords: motion by mean curvature, grain growth, foam rheology, algorithms, measures of accuracy.
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boundary condition on velocity. We then ask how well solutions that satisfy both the governing equation
and boundary condition can be calculated numerically.

The most stringent test of a numerical algorithm here is an initial interface shape that is far from
satisfying the boundary conditions. It is this that we use for our preliminary numerical tests. We develop
a general class of less severe solutions, that can be used to test numerical algorithms, based upon this
simple interface shape (rather than the more complicated shapes found in a real foam or metal). We
propose three identities which provide measures of accuracy and, further, can be implemented within an
existing algorithm to improve its performance.

2. Curvature-driven motion of a bounded interface

2A. Problem formulation. In vector form, the motion of an interface in the model of ideal grain growth
can be described by

v = κn, (2-1)

where n and s are the normal and tangential unit vectors to the interface (see Figure 1):

n= [n1, n2], s = [n2,−n1]. (2-2)

If the representation of the interface is taken in the form

x = x(y, t), y ∈ [y(t), y(t)], (2-3)

then the vector components n1, n2 are calculated as follows:

n1 =−
dy
ds
=− sin θ =−

1√
1+ (xy)2

, n2 =
dx
ds
= cos θ =

xy√
1+ (xy)2

, (2-4)

where xy = dx/dy, ds =
√
(dx)2+ (dy)2, and θ is the tangential angle to the interface (see Figure 1).

Finally, the vector v = [v1, v2] is the instantaneous velocity of the point (x, y) lying on the interface at
time t and κ is the curvature of the interface at that point:

κ =
dθ
ds
=

−xyy√
(1+ (xy)2)3

. (2-5)

θ

s
n

y

y

x

y

Figure 1. The bounded interface considered here.
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Equation (2-1) can also be written in component form:

vn = v · n= v1n1+ v2n2 = κ, (2-6)

vs = v · s = v1n2− v2n1 = 0. (2-7)

In this paper we will consider only Mullins’ translational solution [Mullins 1956] (see below), also known
as the grim reaper because of the way in which it scythes through space without change of shape, which
is symmetrical with respect to the x-axis. Invariant solutions for rotation have been considered elsewhere
[Mullins 1956; Wood 1996]. Taking into account the direction of the interface motion, we can assume
that

n1 < 0, n2 > 0, xy > 0, 0< θ < π/2, xyy > 0, κ < 0, (2-8)

vn < 0 (v2 < 0, v1 > 0). (2-9)

Equation (2-6) is widely discussed in the literature [Mullins 1956; Peleg et al. 2001], while (2-7) is
somehow usually forgotten in this context. If one is only interested in reconstructing the interface position
at any time step an approach based only on (2-6) is sufficient. However, if it is required that the position
of each material point along the interface is controlled, as in the case of numerical computation, then
both equations are equally important. Note that there has previously been an attempt to control both the
velocity components in a specific way [Green et al. 2006]. Equation (2-7) allows us to find a relation
between the two unknown components of the velocity vector v and the normal vector n in the form

n2 =
v2
v1

n1. (2-10)

This allows us to eliminate components of the normal vector n from (2-6) to give

−

(
v1+

v2
2

v1

)
=

dθ
dy
. (2-11)

2B. Mullins’ solution for translation revisited. Let us assume that the interface conserves its shape but
moves in the x-direction with a constant speed V . We consider two points A and C having the same
y-coordinate y = y0 at two consecutive time steps t0 and t0 + dt (see Figure 2). It is clear that these
two points correspond to two different material points. Namely, there exists a point B on the interface at

A

B

C

y

x

y
0

y  + dy
0

x
0

x  + dx
0

t  + dt
0

t  
0

θ

Figure 2. Interface under translational motion at two consecutive instants in time.
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time t0 which moves according to the curvature law (2-1) to the point C for an infinitesimally small time
step dt . If the coordinates of the point A are (x0, y0) then the coordinates of B and C can be written
(x0+ dx, y0+ dy) and (x0+ V dt, y0).

Note that
BC = v(x0+ dx, y0+ dy)dt = v(x0, y0)dt + O(dt ds).

On the other hand, |BC | = V sin θ dt , and tan θ = v1/|v2|. As a result one can conclude:

V =
1

v1(y)

(
v2

1(y)+ v
2
2(y)

)
, (2-12)

in some interval y ∈ [0, h]. This relation follows immediately from (2-11) in the case of translation of
the interface in the x-direction.

Now, to reconstruct the solution obtained by Mullins [1956] it is sufficient to substitute (2-12) into
(2-11) to give

π
2
− V y = θ. (2-13)

Here we have taken into account the second of the two symmetry conditions at the point y = 0:

v2(0)= 0, θ(0)= π
2
. (2-14)

Equation (2-13) can be written in the form

cot V y = yx , (2-15)

which after direct integration leads to Mullins’ solution:

x(y)= x(0)+ V t − 1
V

log cos(V y), y ∈ [0, h], (2-16)

where x(0) is the arbitrary initial position of the centre of the interface. This solution exists only under
the condition h < hmax, where

hmax =
π

2V
. (2-17)

Note also that the angle θ defined by such a solution monotonically decreases in the interval y ∈ (0, h)
(h < hmax), taking values

θ(y) ∈
(
θmin,

π
2

)
, θmin = θmin(h)=

π
2
− V h. (2-18)

It is now possible to write analytical representations of all problem variables in the interval y ∈ (0, h):

v1 = V cos2 V y, v2 =−
1
2 V sin 2V y, n1 = sin V y, n2 = cos V y, κ = V cos V y. (2-19)

Note that the first symmetry condition (2-14) has not been used but the reconstructed Mullins solution
(2-16) satisfies it automatically, by (2-4) and (2-10). The solution exhibits the following asymptotics
near the symmetry axis:

x(y)= x(0)+ V t + 1
2 V y2

+ O(y4), y→ 0; (2-20)
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thus near y = 0 the interface is close to a parabola. Close to the other end of the reaper (in the case of
the maximal thickness h = hmax), the following asymptotic estimate can be obtained:

x(y)=− 1
V

log(hmax− y)+O(1), y→ hmax, or y−hmax∼−de−V x , x→+∞, (2-21)

where d = (1/V ) exp{V (x(0)+ V t)} is a positive constant.
Note that relation (2-12) also represents the boundary condition for any moving interface whose upper

point lies on the line y= y= h and which moves in the x-direction with velocity V . Moreover, the velocity
can be in that case a function of time V = V (t):

V (t)v1(h, t)= v2
1(h, t)+ v2

2(h, t). (2-22)

Substituting (2-1) into (2-22) such a boundary condition can be equivalently rewritten in other forms:

κ(h, t)= V (t)n1(h, t), or xyy(h, t)= V (t)
(
1+ (xy(h, t))2

)
. (2-23)

Note that we have not used (2-16) to define (2-23).

2C. Arbitrary instantaneous solution of equations (2-6) and (2-7) in a bounded domain. Let us con-
sider any instantaneous solution of the equations (2-6) and (2-7) with the prescribed boundary condition
(2-22), by which we mean an instantaneous state of the film which may or may not be commensurate
with the boundary conditions and could or could not be a steady state. Effectively this means that, for
a particular time t , the end points of the interface y = y(t) and y = h are defined and the velocity
components v1(y, t) and v2(y, t) are known functions of the variable y, while the problem is now to
determine, using this information, the position of the interface in space variables (y, x).

We introduce a function which in what follows is considered known:

F(y)= v1(y)+
v2

2(y)
v1(y)

> 0, y ∈ (y, h). (2-24)

Note that the condition (2-12) may be not valid at all inside the interval y ∈ (y, h) as it was for Mullins’
solution; as a result, F(y) is not a constant, in general. Equation (2-11) can be integrated to give

−

∫ y

y
F(ξ)dξ = θ(y)− θ. (2-25)

Here, recall that F depends upon time t , so that y = y(t) and the constant of integration is θ = θ(t).
Equation (2-25) should be considered together with (2-10) which, in this case, takes the form

dx
dy
=−

v2
v1
= cot θ, (2-26)

or

x(y)= x −
∫ y

y

v2(ξ)

v1(ξ)
dξ. (2-27)

Equations (2-25) and (2-26) together indicate that the functions v1 and v2 cannot be chosen arbitrarily to
satisfy the vectorial (2-1) as one might expect. Instead, the following identity has to be satisfied:

arctan v1
v2
=

∫ y

y
F(ξ)dξ − θ, (2-28)
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or writing w = v1/v2 and using (2-24), the derivative of (2-28) becomes

wy

1+w2 =
(1+w2)v2

w
, (2-29)

where the subscript y denotes differentiation, which leads to the following identity valid within the entire
interval y ∈ (y, h):

v2
1(y)=−v

2
2(y)

(
1

2
∫ y

y v2(ξ)dξ + c
+ 1

)
, (2-30)

where the constant of integration clearly depends on time too: c = c(t)= 1/(1+w2)|y=y . Note that any
solution of equations (2-6) and (2-7) satisfies this additional relation, which makes sense only under the
constraint

−1≤ 2
∫ y

y
v2(ξ)dξ + c ≤ 0. (2-31)

As 0< θ < θ , one can also deduce another condition which has to be true for any admissible velocities:

0≤
∫ y

y
F(ξ)dξ ≤ θ. (2-32)

Note that the constant x in (2-27) is arbitrary (it changes only the position of the interface in the
x-direction and does not influence any other variables). To determine the other constants θ(t) and c(t),
we need to use the boundary conditions at the ends of the interface. Thus, condition (2-22) together with
(2-30) leads to

v1(h)= V (1+ c+ 2I2), v2(h)=−V
√
−(1+ c+ 2I2)(c+ 2I2). (2-33)

where we have set

I2 ≡ I2(t)=
∫ h

y(t)
v2(ξ)dξ.

If the boundary condition on the other end is given in the form

θ(y(t))= θ(t), (2-34)

then all the constants have been defined. Such an instantaneous solution, assuming that the functions
v1(y) and v2(y) satisfy (2-28), conditions (2-33), and restrictions (2-31) and (2-32), can be realized
during the interface evolution at some step.

In the case of the symmetrical solution, where both symmetry conditions (2-14) and the additional
condition v1(0)=W > 0 have to be satisfied, one can show that

c(t)≡ 0, v2(y)∼−W 2 y, y→ 0. (2-35)

Note here that the value W = W (V, h) should be found from the constructed solution and is not an
additional (arbitrary or given) constant.

Finally, both restrictions (2-31) and (2-32) should be valid for the symmetrical interface:∫ h

0
v2(ξ)dξ ≥−

1
2
,

∫ h

0
F(ξ)dξ ≤ π

2
. (2-36)
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Note that the tangential angle θ for this solution is a monotonically decreasing function in the interval
y ∈ (0, h) so that

θ(y) ∈
(
θmin,

π
2

)
, θmin =

π
2
−

∫ h

0
F(ξ)dξ. (2-37)

It is straightforward to see that Mullins’ solution (2-19) satisfies all these relationships with c(t) = 0,
θ(t)=π/2, and W = V , as expected. In the next section, we construct analytical examples of symmetrical
instantaneous solutions which are different from Mullins’.

3. A family of symmetrical instantaneous solutions

In this section we present analytical representations of some instantaneous symmetrical solutions for
the interface satisfying the same boundary (2-22) and symmetry (2-14) conditions as Mullins’ solution.
Those solutions are not, generally speaking, steady-state ones. This means that they can be reached at
some time step t , given the interface boundary velocity V (t) and the position of the ends h(t), but all
these parameters may later change with time. What is extremely interesting about these solutions is
that some of them are well-defined for any velocity V > 0 and an arbitrary position of the boundary
y = h. This shows a rich behaviour of possible instantaneous solutions. It is also clear that there is an
infinite number of admissible instantaneous solutions. Some of them can be realized during some specific
non-steady-state interface motion. For example, any instantaneous solution obtained during a numerical
computation, for any particular time step, boundary velocity, and topology, has to satisfy all the relations
(2-24)–(2-34). This will allow us to use the relations as indicators of the accuracy of computations.
Moreover, they could provide a means to improve the accuracy of the algorithms.

(One could also consider the family of arbitrary, not necessarily symmetric, instantaneous solutions,
which is even larger than the symmetric case. In fact, the family of symmetrical solutions has one
degree of freedom — since c(t) vanishes in this case — and correspondingly one less boundary condition;
compare (2-34) and (2-14). In the context of further applications of this result to a given algorithm,
where the angle-type boundary condition has to be preserved at the interface intersection point, it is
worth mentioning that the boundary condition (2-34) is therefore more important for application than the
symmetry condition. On the other hand, symmetrical instantaneous solutions can also be considered a
subset of the asymmetric solutions if one considers the interval (h0, h) instead of (0, h) (0 < h0 < h).
This idea has been exploited previously in [Green et al. 2009].)

3A. First example. We consider the following simple combination of compatible velocities

v2(y)=−W 2 y, v1(y)=W
√

1−W 2 y2, W =
V

√
1+ V 2h2

, (3-1)

which satisfy (2-30) with c = 0 and y = 0 and, as a result, can be used to construct a symmetrical
instantaneous solution. Here W is the same constant as in (2-35). Natural restrictions (2-36) for the
existence of such a solution give the same estimate:

W <
1
h
, or

V
√

1+ V 2h2
<

1
h
, (3-2)
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which holds true for any values of V and h. The shape of the interface is an ellipse described by (2-27):

x(y, t)= x(0, t)−
√

1−W 2 y2. (3-3)

The tangential angle θ for this solution is a monotonically decreasing function in the interval y ∈ (0, h)
and

θ(y) ∈
(
θmin,

π
2

)
, θmin =

π
2
− arcsin(W h) > 0. (3-4)

3B. Second example. We now consider another specific instantaneous solution assuming that v1(y)=
W < V . Then the second component of the velocity satisfies the equation

W 2

v2
2(y)
=−

1
2
∫ y

0 v2(ξ)dξ
− 1. (3-5)

To find v2(y) it is more convenient to return to the differential equation (2-29) rather than working
with the nonlinear integral equation (3-5). After integration it takes the form

8
(
v2
W

)
=−W y, (3-6)

where the odd function 8 is defined as

8(ξ)=
1
2

(
arctan ξ +

ξ

1+ ξ 2

)
, 8′(ξ)=

1
(1+ ξ 2)2

. (3-7)

Note that 8 : R+→ [0, π/4) is a monotonic function. Moreover, one can easily obtain the constraint
W h < π/4, which is similar to (2-36) and (3-2). Then the required velocity component v2 can be found
from

v2 =−W8−1(W y), (3-8)

and we can finally find the complete solution using (2-26):

x(y, t)= x(0, t)+
1
W

∫ W y

0
8−1(ξ)dξ. (3-9)

Finally, note that the tangential angle θ for this solution is a monotonically decreasing function in the
interval y ∈ (0, h):

θ(y) ∈
(
θmin,

π
2

)
, θmin =

π
2
−

∫ W h

0

(
1+

(
8−1(ξ)

)2 )dξ. (3-10)

It remains only to find possible values of the unknown constant W in order to satisfy the boundary
condition (2-22). The relevant equation takes the form

8−1(W h)=

√
V h
W h
− 1. (3-11)

This equation has the unique solution W = W∗(V, h) < V . In fact, the left-hand side is an increasing
function from zero to infinity as W h→ π/4, whereas the right-hand side is a decreasing function taking
values between∞ when W h→ 0 and 0 when W h→ V h. Additionally one can conclude from this that
W h < min{V h, π/4}, so the restriction defined after (3-7) always holds. In other words, this solution,
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as well as that of the first example, is well-defined for arbitrary velocity V and position of the boundary
y = h. We can also show that θmin is always positive:

θmin >
π
2
−

∫ π/4

0

(
1+

(
8−1(ξ)

)2 )dξ = π
2
−

∫
∞

0
(1+ η2)8′(η)dη = π

2
−

∫
∞

0

dη
1+ η2 = 0. (3-12)

It is interesting to note that in the case V � 1 both of the instantaneous solutions constructed above
coincide with Mullins’ solution to within an accuracy of O(V 2) for any fixed value of h. On the other
hand, in this case the solution is practically (with the same accuracy) a straight line (or at the next order
of accuracy, a parabola).

3C. General case. The previous example indicates how to build a wider class of symmetrical instanta-
neous solutions. Let us introduce the set A ⊂ C2([−a, a]) (a > 0) of even functions ψ satisfying the
following four conditions:

ψ(ξ)=
1
2
ξ 2
+ O(ξ 4), ξ → 0; ψ(a)≤ 1

2
; ψ ′ > 0;

(
ψ ′

√
ψ(1− 2ψ)

)′
≥ 0, ξ ∈ (0, a). (3-13)

Note that a may differ from function to function, but it is necessary that for every function there exists
some a > 0 for which all four conditions hold.

For example, the following three functions belong to the set A:

ψ1(ξ)=
1
2

sin2 ξ, ψ2(ξ)=
1
2
ξ 2, ψ3(ξ)=

∫ ξ

0
8−1(ζ )dζ = 1

2

(
1−

1

1+
(
8−1(ξ)

)2

)
, (3-14)

with a = π/2, 1, and π/4, respectively. These three functions have been collected from Mullins’ solution
and the two previous examples. Thus, the set A is not empty.

Using any function from this set we can construct a symmetrical instantaneous solution with velocity
components in the form

v2(y)=−Wψ ′(W y), v1(y)=Wψ ′(W y)

√
1− 2ψ(W y)

2ψ(W y)
, (3-15)

that identically satisfies (2-30) with c = 0. Then the unknown constant W should be taken to be of the
form W =W∗(V h)/h where W∗(V h) > 0 is a solution of the implicit equation

ψ ′(W∗)
√

2ψ(W∗)(1− 2ψ(W∗))
=

V h
W∗
, (3-16)

which follows from (2-22).
Because of the last condition in (3-13), there may exist only one solution of this equation. If, in

addition, the left-hand side of (3-16) tends to infinity as W∗→ a, then the solution always exists and
W∗ < a. However, if the left-hand side of (3-16) tends to a finite value L∗ > 0 as W∗→ a, then the
solution exists only under the additional condition

V h < L∗a. (3-17)
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One can check that for Mullins’ solution L∗ = 1 and (3-17) coincides with (2-17). For the other two
cases previously discussed above, we have L∗ =∞ so the solution of the implicit equation (3-16) always
exists and no solvability condition (3-17) is needed in these cases.

To reconstruct the complete symmetrical instantaneous solution based on (3-15) it is enough to sub-
stitute it in (2-24), (2-25), and (2-27).

Note that in the case V � 1, the solution to (3-16) gives W∗ ∼ V , as one can conclude from the
first part of (3-13). This means that any constructed instantaneous solution differs negligibly from the
Mullins’ solution for small values of the velocity V .

It remains to investigate two important constraints (2-36). Taking into account that∫ h

0
v2(ξ)dξ =−ψ(W h),

∫ h

0
F(ξ)dξ = 1

2

(
arcsin

(
4ψ(W h)− 1

)
+
π
2

)
,

then the two constraints (2-36) are equivalent in this case and correspond to ψ(W h) ≤ 1/2, which
coincides with the second part of (3-13).

In fact, the third condition, ψ ′ > 0, from (3-13) is not required: it guarantees that the instantaneous
solution is convex but without it we can construct nonconvex interfaces.

4. Numerical simulations

To indicate the computational inaccuracy of the algorithms, we discuss Mullins’ solution for a symmet-
rical reaper, for which all quantities are known in closed form (see (2-13) and remarks thereafter), and
compare it with the result of a numerical computation using a simple algorithm, implemented in the
Surface Evolver [Brakke 1992]. This takes the form of a single interface separating two cells of equal
pressure being pulled at a velocity V at each boundary (see Figure 3).

The numerical procedure can be briefly described as follows. We start from a straight (vertical) line
joining the two walls a distance 2h = 2 apart. This is subdivided into 25 short elements (edges which

y = h

t  + ∆t0

t  0

v   ∆tN-1

v   ∆tN-2

V∆tAN

BN-2

AN-1

AN-2 BN-1

BN

BN
’

V
2h

Figure 3. Left: The test problem considered here consists of a single interface that
is sheared symmetrically by translating the boundaries. The shape should correspond
to Mullins’ solution. Middle: Standard algorithm for implementation of the boundary
condition at each time step 1t . A j and B j are the respective material points on the
interface at times t0 and t0+1t . Right: Example of a multi-bubble foam simulation, for
which the numerical procedure developed here will be of use.
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meet at points). A time step 1t = 1× 10−5 is chosen for the computations and bounds on the possible
length L of each edge (0.01≤ L ≤ 0.05). The algorithm proceeds as follows:

(i) Each boundary point is moved in the x-direction a distance V1t .

(ii) The curvature at each point that is not on the boundary is calculated from κ = F · n/L̄ , where L̄ is
the average length of the neighbouring edges, F is the negative energy (perimeter) gradient [Brakke
1992], and n is the normal to the line joining the other ends of the neighbouring edges.

(iii) Each point that is not on the boundary is then moved according to 1x = 1tκn (see Figure 3,
middle).

This procedure (one step) is repeated until the difference in the x component of velocity between the
centre-point of the interface and the boundary is less than a critical value (1× 10−8). Every 20 steps
we check the edge-length bounds and add or remove edges as necessary. Thus, each tessellation point
corresponds to the same material point within the step; nonetheless from step to step the algorithm
may use different material points because of the refinement of the tessellation. Note that this standard
algorithm preserves a reasonable restriction on the length of the edges, mainly following the initial
distribution of material points; however, it works in a way that does not guarantee equal-length edges.

Note that this choice of the parameters for numerical simulation is standard and allows us to obtain
acceptable accuracy in reasonable computational time [Cox 2005]. On the other hand, when one com-
putes the dynamics of foams with many bubbles, the total computational error accumulates. Therefore
information about the error is crucial, since it gives us a lower bound for the total computational error.

Two important observations illustrating the weakness of the algorithm should be noted here:

• The density of the tessellation points near the symmetry axis (y = 0) increases with each time
step (see Figure 3, middle). Since the time step is constant, this may lead to failure of the stability
condition for the linearized finite difference (FD) scheme applied to the nonlinear parabolic equation
(2-1) due to this algorithm.

• The opposite effect occurs near the external boundary y = h. However, the situation here is even
worse. In fact, there is not enough information to reconstruct the curvature and the unit vector at a
point AN lying on the boundary, and the algorithm, in fact, simply eliminates it. It creates instead
the point B ′N along the boundary which should be the next point BN+1 (see again Figure 3, middle).
See [Green et al. 2006] for more details.

We stress that the computations were stable (the stable steady-state regime has been reached) for
every value of the external velocity V under consideration. Note that in our computations at high V , the
number of tessellation points has increased from 25 to about 220 at the steady state. As expected, the
worst situation in the sense of computational time, as shown in Figure 4, occurs for the largest value
of the velocity, V = 1.560796, which is slightly less than the critical value Vcr = π/(2h) predicted by
the analytical solution [Mullins 1956]. The algorithm could not reach the steady-state regime at all for
V > 1.560796; physically this is because films are being stretched indefinitely until they burst, which is
manifested in the computations by the interface developing a branch lying outside the external boundary
y= h. All this illustrates that the existing algorithm is well organized and works according to expectations
but it is naturally sensitive to the value of the boundary velocity V . Thus it makes sense to ask about
algorithm accuracy for a specific velocity versus space and time steps.
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Figure 4. The number of iterations and the computational time both increase as the
driving velocity approaches the critical value. The equal-length algorithm requires more
iterations to converge, but does so in a faster time. The calculations were performed on
a 2.66 GHz desktop PC; error bars are ±1 minute.

As the exact analytical solution to the Mullins’ problem is known, we can estimate errors in the com-
putations for all the physical and geometrical quantities: position of the interface x(y), curvature κ(y),
and the velocity components v1(y) and v2(y). Corresponding relative errors for all solution parameters
are presented in Figure 5 for different applied velocities.
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Figure 5. Relative error, compared to Mullins’ solution (2-16) and (2-19), in the posi-
tion x(y) of the interface (top left), its curvature κ (top right), and the x- and y- velocity
components v1 and v2 (bottom row), for different velocities V of the external boundary.
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As expected, the least accurate solutions are those for the largest velocity V = 1.560796. The error
can be as large as 90% near the boundary (y = h = 1) in the x component of velocity v1 and 60% near
the symmetry axis for the y component. The former error is due to the fact that the interface is almost
parallel to the boundary, while the latter is naturally related to the fact that the value of the velocity is
equal to zero at the symmetry point. However, the drastic difference in value for this numerical noise,
and its distance from the axis, indicates that at the larger values of V it exceeds reasonable expectations
and is really related to the computational accuracy.

One can also consider that the error near the external boundary is due to parametrization of the nu-
merical solution in y rather than x , but the standard numerical algorithm tries to preserve edge lengths.
Moreover, the algorithm introduces new points in a regular fashion.

Thus both the errors (near the interface ends) are a consequence of the phenomena discussed in the
two observations above. As V decreases, the accuracy increases for given bounds on the edge lengths L .

At first glance, it would appear that the position of the interface, x(y), should be computed with better
accuracy than all other solution parameters, which are, in fact, the results of some derivative procedure.
However, our computations show that this is not the case and the relative error for x(y) varies from 6%
to 28% for the velocity V = 1.560796 while the curvature error is lower. Note also that the error for
smaller velocities reaches a few percent near the boundary or symmetry axis.

The maximal absolute errors for all solution parameters mostly appear near the external boundary
y = h(= 1). This highlights that the implementation of the boundary condition in the existing algorithm
cannot be considered as sufficient and should be improved.

Moreover, in the case of Mullins’ solution an additional simple local indicator defined by identity
(2-12) (independent of the integration of the solution variables) could equally be considered. It is clear
from the results presented in Figure 6, left, that the error in this condition is not localized near the ends
of the interface, as one might expect from the above. This so-called internal error is present for all values
of V and is comparable with that near the interface ends.

To investigate accurately this internal error we repeated the computations for a specific velocity V = 1
and decreased both the time step, 1t , and the minimum edge length, Lmin (see Figure 6, right). This
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Figure 6. Relative error for the characteristic relation (2-12) for varying velocity V (left
diagram) and varying numerical parameters 1t , L (right diagram: thick black line =
equal length; dashed line = standard algorithm; thin black line = halve timestep and
minimum length; grey line = decrease timestep by factor of 10). The best accuracy is
obtained by keeping the line segments of equal length.
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has improved the quality of the computations, but there is still an error at some internal points of the
interval that is comparable with the error near the ends. Unfortunately the computational time increases
considerably. The obvious route of decreasing 1t but fixing Lmin, to ameliorate this effect, leads to
greater error in the solution (see again Figure 6, right). The accuracy of the solution can be improved
internally by making the line segments of equal length [Green et al. 2006]; although this doesn’t affect
the error at the boundary, it does make the calculations faster (see Figure 4).

Possible sources of internal error include: (a) nonoptimal distribution of the tessellation points along
the interface after some time; (b) imperfections in the correction procedure (which adds and eliminates
points from the interface at some prescribed time); and (c) point-to-point error variation related to the
fact that the diffusion-type coefficient changes from point to point along the interface (recall that (2-1)
is a nonlinear parabolic equation which is solved by a direct FD scheme with a fixed time step).

In the last computation in Figure 6, right, for the line segments of equal length, we have redistributed
points to make the segments equal at every time step (note that this length may change in time). Apart
from the fact that the number of tessellation points is smaller than for the standard algorithm, such a
comparison is not absolutely fair as the redistribution in the standard algorithm (removing or subdividing
edges with lengths outside the range 0.01≤ L ≤ 0.05) was done every 20 time steps. To discover if there
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Figure 7. Relative error in the computations shown by the integral measures for unit
velocity of the external boundary, V=1.0, obtained with four different computational
strategies: the standard redistribution of the tessellation points, tl1 and tl20; and uniform
length segment redistribution, V1 and V20, at every time step and every twentieth step,
respectively. The top left graph shows the function F of (2-24) (as in Figure 6); the other
three graphs correspond to the three error indicators defined in (4-1)–(4-3). All integrals
were computed with the trapezium rule.
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is an effect of redistribution frequency on the accuracy, we have tested these two algorithms under the
same strategy by redistributing the points (in a different way) every time step and every twentieth time
step. The error in the function F defined in (2-24), which is a constant in the case of the Mullins
solution, are presented in Figure 7, top left. It is evident that the standard algorithm is quite sensitive to
the chosen strategy. For a given position of the points on the interface, the relative error may differ by
as much as two orders of magnitude, whereas this is not the case for the equal segment strategy. In this
case, only near the external boundary is there some small fluctuation in the accuracy. Comparing the
two redistribution algorithms for the same frequency of redistribution, the largest error always appears
in the case of the standard algorithm — by up to two orders of magnitude — despite the fact that the
number of tessellation points was greater. Moreover, in the standard algorithm this error is irregularly
distributed along the interface. Recall that the number of tessellation points in the standard algorithm
changes during the computations from 25 initially to around 150 (for V = 1) in the steady-state regime,
while the number of the points in the second (equal length) algorithm remains constant. Therefore the
computational time for the second algorithm was less by a factor of approximately two. On the other
hand, the difference in the computational time between the different frequencies for redistribution for
the equal length algorithm was only a few percent. This indicates the further possibility of optimizing
this algorithm by redistributing points every MT time steps. It is clear that MT = MT (V ) and this needs
further investigation [Green et al. 2006].

Note that the function F from (2-24) can be used as an indicator of the accuracy of the computation
only for the Mullins’ solution. However, there are three universal indicators which can be helpful to
estimate the accuracy for any computations, namely, the relative errors of the numerical representations
of the identities (2-25), (2-27), and (2-30), embodied in the following explicit definitions:

After (2-25): IF =−

∫ y

0
F(ξ)dξ ; relative error=

IF

θ(y)−π/2
− 1. (4-1)

After (2-27): Ir =

∫ y

0

v2(ξ)

v1(ξ)
dξ ; relative error=

Ir

x(0)− x(y)
− 1. (4-2)

After (2-30): Iv =

∫ y

0
v2(ξ)dξ ; relative error= Ir

/(
v2

2(y)

2(v2
2(y)+ v

2
1(y))

)
− 1. (4-3)

The respective results are shown in the remaining three parts of Figure 7. All four indicators suggest
that the equidistant distribution of the tessellation points is much better than the standard algorithm,
regardless of the chosen strategy, as recommended in [Green et al. 2006]. Moreover, even near the
symmetry point, y = 0, where the value of the indicators all tend to zero and have a large influence on
the relative errors, the accuracy of the computations for the second algorithm is extremely high. However,
this is not the case for the standard algorithm.

In Figure 8, the relative errors of the solution variables are presented for both algorithms: the standard
one and the equidistant distribution. The result for x(y), shown in the top left part of the figure, looks
surprising at first glance; although the accuracy of the computations performed with these two algorithms
is of the same order and the error related to the new algorithm is distributed more uniformly, it appears
that the accuracy of the standard algorithm is better than the equal-segment-length algorithm, at least
with respect to the accuracy of the position of the interface. However, this is not the case. In fact, as
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was shown above, the computational error for the standard algorithm is redistributed along the interface
irregularly whereas that for the equal-segment algorithm is practically uniform. As a result, the criterion
to stop the iteration process to find the steady-state solution works differently for the two algorithms. The
prescribed maximal growth 10−8 in each time-step, measured on the axis of symmetry, is reached more
quickly for the new algorithm. This is the second reason (together with number of tessellation points)
why this algorithm is faster. If one were to run both algorithms for the same time, or for the same number
of iterations, and compare the corresponding results, the discussed paradox should not appear and the
new algorithm always provides better accuracy by as much as two orders of magnitude.

For the accuracy of other problem variables — the interface curvature, κ , and the interface velocities,
v1 and v2 — the new algorithm is more accurate, notwithstanding the above argument, as can be seen in
the last three parts of Figure 8.

Finally, we stress again that the proposed three indicators are more versatile measures than a compar-
ison of the numerical steady-state solution with the analytical one, since the latter comparison includes
an additional error related to the determination of the steady-state regime, while the indicators show us
accuracy of the solution even if the steady state has not been reached.

5. Discussion and conclusions

All these results clearly indicate that the existing algorithm should be used with caution, especially when
investigating the behaviour of a many-bubble foam near the critical velocity. Moreover, when there
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Figure 8. Relative error in the position x(y) of the interface (top left), its curvature κ
(top right), and the x- and y- velocity components v1 and v2 (bottom row), for different
numerical algorithms with velocity of the external boundary V=1.
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are many cells in a simulation (see Figure 3, right), the user is restricted to some critical number of
tessellation points MP , which gives a limitation on accuracy even for low velocity. In fact, the material
structure is highly nonuniform, in the sense that the cells may have different sizes. Effectively this
means that every interface has its own critical velocity and the bigger cells thus introduce larger errors.
In addition, it takes longer for curvature to diffuse along a longer interface and set it in motion. This
creates the following duality: to accurately describe the process of cell motion it is necessary to have
the computational error as small as possible, while the error generated near the critical velocity takes its
greatest value. This is true for boundary or internal cells equally. Problems requiring high accuracy of
the solution near the external boundary are related to the investigation of the boundary effects describing
the total phenomenological behaviour of the foam structures.

Another important remark is that the choice of the initial condition for testing the numerical procedure
here (a straight-line interface) is much more severe than any of the instantaneous solutions reported in
Section 3. One could even think of worse situations to test the algorithm, for example if the initial
interface is not convex or even not smooth. This may lead to supercritical velocities and so on.

To revise and improve the existing numerical algorithm, we propose to use another strategy for the
redistribution of the tessellation points: an equal-segment-length distribution of the tessellation points is
much more favourable [Green et al. 2006]. However, this strategy is not sufficient to eliminate inaccuracy
in the computation near the maximum velocity in the steady-state regime. The reason for this is the
behaviour of the steady-state solution near the wall (2-21). In fact, there exist two possible realizations of
this algorithm. One, which we have used in our computations, is to keep the same number of tessellation
points, MP , then with time the length between consecutive points, L , will increase significantly when
V is near Vcr. This leads to an effective loss of accuracy. Another strategy would be to keep the same
distance between points during the computations. However, MP will then increase to infinity as V
approaches Vcr. Formally this should preserve computational accuracy but will lead to an unacceptable
increase in computational time and memory use. Thus, further adaptations to the algorithm are required
if high accuracy is required, for example in the steady-state regime with velocities near the critical value
[Cox 2005].

Taking advantage of the auxiliary identities (2-25), (2-27), and (2-30), we may correct the instanta-
neous solution obtained within any algorithm at any or even every time step without time-consuming
computations, as the identities are valid for any instantaneous solution. They also make possible further
investigation of the asymptotic behaviour of the bounded interface solution near the ends. For example,
any possible solution behaves at the symmetry axis according to (2-35), which allows us to tackle the error
in the solution near the symmetry axis. On the other hand, the results obtained in Section 2C may allow
us to construct and implement a new numerical procedure/elements tackling the boundary condition in a
more accurate way (without losing any near-boundary points, using, for example, a boundary layer result
[Grassia et al. 2008]).

Finally, as we have shown, the identities (2-25), (2-27), and (2-30) may be used to probe the accuracy
of computations. These indicators are extremely helpful as they are not based on information about the
exact solution and can therefore illuminate inaccuracy of the numerical solution without any preliminary
knowledge about the exact solution itself.

Summarizing, we have shown that an improvement of the numerical algorithm is highly desirable and
possible. Apart from the fact that some of the improvements have been indicated and proven in this
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paper, there is still an open question how to deal with the accuracy of the computations near the critical
velocities and near the external boundaries. We have also suggested possible directions for future inves-
tigation: improved implementation of the boundary condition and creation of additional near-boundary
points. Further, to check new results related to the numerical algorithm we need a larger set of analytical
benchmarks.
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LAMINATED AND SANDWICH PANELS SUBJECT TO BLAST PULSE LOADING

UGO ICARDI AND LAURA FERRERO

A recently developed optimisation technique is employed for relaxing the interlaminar stress concentra-
tion of laminated and sandwich flat panels undergoing impulsive pressure loading. We determine the
through-the-thickness distribution of the core properties of sandwich panels and the in-plane distribution
of the stiffness properties of their face sheets, as well as that of the constituent layers of laminates
maximizing the energy absorbed through wanted modes (e.g., membrane and bending contributions) and
minimizing the energy absorbed through unwanted modes (e.g., interlaminar shears). As a structural
model, we employ a refined zigzag model with a piecewise high-order variation of in-plane and trans-
verse displacements that fulfils a priori the interfacial stress and displacement contact conditions. The
zigzag model, a characteristic feature of the method, is incorporated through a strain energy updating
into a conventional shear deformable plate element, for the sake of reducing the computational effort
required for accurately computing the stresses. The dynamic equations are solved using the Newmark
implicit time integration scheme; various pulse pressure time histories are employed. Simple, suboptimal
distributions of reinforcement fibres and core density compatible with current manufacturing processes
are considered in the numerical applications. It appears that these distributions can effectively reduce the
critical interlaminar stress concentration under impulsive loadings, with beneficial effects on the strength
at the onset of damage, and improve the dynamic response properties as well.

1. Introduction

Pulse pressure loading due to an accidental cause, an explosive device, fuel and nuclear explosions, gust
and sonic boom represents for aircraft a major hazard responsible for catastrophic failure of structures.
Much research work has been carried out recently in assessing aircraft structures subjected to explosive
pressure pulses and for finding configurations able to alleviate their detrimental effects; see [CAA 2001],
for example. Although very expensive, full-scale tests of fuselage large sections have been undertaken,
showing how the pressure loading hazard could be consistently reduced using hardened luggage contain-
ers and sandwich structures. However most of the research is carried out considering panels that are
representative of real structural components, often using finite elements for the analysis.

As examples of papers dealing with metallic stiffened panels we mention [Simmons and Schleyer
2006; Rudrapatna et al. 2000; Zhu 1996; Langdon and Schleyer 2006]. Since the structure of modern
combat and civil transportation aircraft is often made of or incorporates composite material parts with
higher specific strength and stiffness than metals, a growing number of studies have been published
about their response to pulse pressure loading. Moreover, new manufacturing techniques render their
use economically feasible for large scale applications.

Keywords: optimised tailoring, impulsive loading, stress relaxation, damage resistance improvement.
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The response of marine sandwich panels to explosion loading has been addressed in [Hayman 1996],
[Makinen 1999], [Shin and Geers 1994], [Jiang and Olson 1994] (underwater explosion) and [Houlston
et al. 1985] (in air explosion). Studies of the response of aircraft composite panels under impulsive
loading include [Cheng and Benveniste 1968; Crocker and Hudson 1969; Rajamani and Prabhakaran
1980; Dobyns 1981; Birman and Bert 1987; Cederbaum et al. 1988; 1989; Librescu and Nosier 1990;
Librescu and Na 1998; Song et al. 1998; Librescu et al. 2004; 2006; 2005; Hause and Librescu 2005;
2007; Xue and Hutchinson 2004]. In these studies the blast loads considered were of moderate intensities,
so as to not induce damage. The only exception is the last paper, where an elastic-perfectly plastic
behaviour was considered. Likewise in other fields, it appears that to realistically describe the dynamic
response under impulsive loading, the structural models have to accurately account for the high transverse
shear deformation of composites. The present paper, dealing with blast loading of composites, also takes
into account the contact conditions at the interfaces of dissimilar constituent materials necessary to keep
equilibrium and kinematic compatibility, since many studies have shown their importance for both the
overall and the local behaviour.

To account for the interlayer contact conditions and accurately predict the stress fields with an afford-
able computational effort, we choose as the structural model a refined zigzag model with a piecewise high-
order variation of the displacements. The displacement field is postulated in a way that fulfils a priori
the interfacial stress and displacement contact conditions (namely, continuity of the transverse shear and
normal stress components and of displacement), through an appropriate definition of the continuity. The
transverse displacement is assumed variable across the thickness, because sandwich composites often
fail by crushing, due to the low compressive strength of the core. The model also accounts for internal
damage accumulation mechanisms; since composites suffer from microstructures failures while they
absorb the incoming energy, they can fail in service at load levels much lower than the ultimate design
load. The model has been successfully applied to impact studies of laminated [Icardi 2007] and sandwich
[Icardi and Ferrero 2009] flat panels, where it efficiently predicted the impact induced damage, as shown
by comparisons with the damage detected by ultrasonic cartography, and to the stress analysis of thick
damaged sandwich panels, as shown by comparisons with the exact elasticity solution [Icardi and Ferrero
2009].

To lower the cost of the analysis, both this paper and in the works just mentioned, the zigzag model is
incorporated into a standard eight-node plate element based on first-order shear deformation plate theory
(FSDPT) through an energy updating procedure that is locally carried out in the post-processing phase.

A recently developed optimisation technique [Icardi and Ferrero 2008] is employed for finding the ap-
propriate spatial distribution of the stiffness properties (fibers orientation and core density) that minimize
the out-of-plane stresses due to impulsive loading. It is found solving the Euler–Lagrange equations of
an optimisation problem in which the absorbed energy due to out-of-plane stresses is minimised, while
that due to membrane stresses is maximised. As a preparatory step to the response analysis, the structural
model and the optimisation technique will be briefly discussed.

2. Structural model

As mentioned, the present structural model uses a conventional plate element for a preliminary analysis
and locally improves its predictive capability by updating its strain energy to that of a zigzag model with
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a piecewise cubic variation of the membrane displacements across the thickness and a fourth-order varia-
tion of the transverse displacement. The merit of the zigzag model is to provide accurate results with low
computational effort, since the interfacial stress and displacement contact conditions are fulfilled a priori
and not as constraints that increase the number of the governing equations. Its drawback is the involve-
ment of displacement derivatives as nodal degrees of freedom, which prevents a direct implementation
into a finite element. To overcome this problem, we use the updating process of [Icardi 2007; Icardi and
Ferrero 2009] with some improvements (outlined below) and the same failure and post-failure models.

2.1. Kinematics of the zigzag model. Assume the laminated or sandwich panel to consist of S layers
of different thickness and material properties, the core being treated as a thick layer in a multilayer
construction. The accuracy of this hypothesis have been extensively assessed in a number of previous
papers, even in the case of a thick, damaged sandwich panel as previously mentioned .

As reference system use a Cartesian coordinate system (x, y, z), with (x, y) on the reference midplane
and z as the thickness coordinate. Indicate with U , V the in-plane and W the out-of-plane displacement
components and with σxz , σyz and σzz the out-of-plane stresses. Use a subscript comma to indicate
differentiation. The displacement field is represented as

U (x, y, z)= u(x, y, z)+U(x, y, z),

V (x, y, z)= v(x, y, z)+V(x, y, z),

W (x, y, z)= f 1
w(x, y, z)+ f 2

w(x, y, z).

(1)

That is, the in-plane components are expressed as sums of contributions u, v that are continuous and
have continuous first derivatives across the thickness, as in the equivalent single layer models

u(x, y, z)= u◦+ z(γ◦x −w
◦

,x)+ z2Cx(x, y)+ z3 Dx(x, y),

v(x, y, z)= v◦+ z(γ◦y −w
◦

,y)+ z2Cy(x, y)+ z3 Dy(x, y).
(2)

and contributions U and V that are continuous but have discontinuous first derivatives at the interfaces:

U (x, y, z)=
S−1∑
k=1

(k)φx(x, y)(z− (k)Z+)Hk, V (x, y, z)=
S−1∑
k=1

(k)φy(x, y)(z− (k)Z+)Hk . (3)

The transverse displacement is the sum of a contribution

f 1
w(x, y, z)= a(x, y), (4)

representing the displacement of the reference midplane w◦, and a field with discontinuous derivatives
at the interfaces,

f 2
w(x, y, z)= zb(x, y)+ z2c(x, y)+ z3d(x, y)+ z4e(x, y)

+

S−1∑
k=1

(k)ψx(x, y)(z− (k)Z+)Hk

S−1∑
k=1

(k)ψy(x, y)(z− (k)Z+)2 H. (5)

The piecewise continuous contributions to the displacements, namely (3) and (5), are expressed in terms
of functions (k)8x ,

(k)8y,
(k)91,

(k)92, which we call continuity functions, and which are determined by
enforcing the continuity of the transverse shear and normal stresses σxz , σyz , σzz and of the gradient σzz,z
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at the interfaces, as prescribed by elasticity theory. Since the Heaviside unit step function H.k appearing
in the previous equations is defined only in R+, the continuity functions are computed starting from the
bottom layer, the choice of the starting layer as the upper- or lowermost being immaterial.

The remaining functions Cx , Cy , Dx , Dy , b, c, d, e are determined enforcing the fulfilment of the
boundary conditions at the upper (u) and lower (l) bounding faces, namely the stress-free boundary con-
ditions on the transverse shears and the conditions

σ u
zz = pu

o , σ l
zz = pl

o, σ u
zz,z = σ

l
zz,z = 0

on the transverse normal stress. The symbols pu
o , pl

o represent the transverse distributed loading at the
upper and lower bounding faces, respectively.

As mentioned, this model will be implemented operating an updating of the nodal degree of freedoms
(DOFs) of a FSDPT parent element through an energy updating process in the post-processing phase.
This updating process avoids a direct implementation of the zigzag model, which turns out to be inef-
ficient by the computational viewpoint, because derivatives should appear in the vector of nodal DOFs
that are consequent to the enforcement of the stress continuity conditions.

The updating is carried out through corrective terms that in the present paper are determined in closed
form using a symbolic calculus tool. This technique will be outlined in the following Section. No details
will be given about the eight node FSDPT parent element because it has standard features; the reader
finds the omitted details in [Icardi 2007].

Note that since the functional degrees of freedom of this model u(o), v(o), w(o), γx and γy coincide
with those of the FSDPT model, it is possible to update the strain energy of such a lower order model
to that of the current zigzag model, with the purpose and by the technique described hereafter. Also
note that the FSDPT and the HSDPT models can be particularized from the zigzag model neglecting the
contributions (3) and (5) and, in the case of the FSDPT model, considering only the linear case (2).

A finite element approach is chosen in order to easily treat the spatially variable material properties
that result from the tailoring optimization process, and in order to enable the analysis of a spatially
variable pressure pulse loading such as the NOL pressure model profile [Proctor 1972], that will be the
object of a future application.

2.2. Energy updating and post-processing. As is well known, any model that cannot be refined across
the thickness, like the present one, needs integration of the local equilibrium differential equations

(∗σxz − σxz)=−(〈σxx,x + σxy,y〉+ σxz),

(∗σyz − σyz)=−(〈σxy,x + σyy,y〉+ σyz), (6)

(∗σzz − σzz)=−(〈∗σxz,x +∗σyz,y〉+ σzz)

to provide a realistic description of the interlaminar stress fields (in the former equations the underlined
stresses are those computed from the constitutive equations). To make integration computationally effi-
cient and preserve accuracy, we adopt two procedures in this paper:

(i) The strain energy of the FSDPT eight-node elements is updated to that of the zigzag model.

(ii) The results by the FSDPT elements are interpolated and smoothed with spline functions in the region
where the stress analysis is carried out.
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The goal is to derive these interpolations instead of the shape functions, because the interpolated quanti-
ties have a higher-order representation and thus they do not lose accuracy. So, although standard, efficient
parabolic shape functions are used in the finite element model, no accuracy is lost integrating the local
differential equilibrium equations.

It is remarked that the post-processing operations are much more cost-effective than using discrete-
layer models with a large number of DOFs, because they are carried out only locally and their con-
vergence is fast. The present approach achieves the accuracy of closed-form approaches with a low
computational effort, but it is more versatile, because it allows complex geometry, loading, boundary
conditions and a point-to-point material property variation to be treated. Note that the updating procedure
prevents the locking effects, since the transverse displacement and the shear rotations are described with
their right interdependence; see Equations (7) immediately below.

2.2.1. Computation of the continuity constants. The first operation is the computation of the constants
appearing in the continuity functions. The readers are referred to [Icardi 2001] for a detailed discussion
of these functions, whose purpose is to ensure the fulfilment of the interfacial contact conditions. To
make this operation more efficient than in the former versions of the software, here a symbolic calculus
tool is employed to provide expressions in closed form. The DOFs of the FSDPT must be rearranged in
order to be consistent with the representation of the zigzag model:

θx = z(γ◦x −w
◦

,x), θy = z(γ◦y −w
◦

,y). (7)

Assume u(o), v(o), w(o), γx and γy are the functional DOFs of the FSDPT model; the homologous terms
with a tilde ˜ be those of the zigzag model, are obtained from the earlier ones adding unknown corrective
terms:

ũ◦ = û◦+1û◦, ṽ◦ = v̂◦+1v̂◦, w̃◦ = ŵ◦+1ŵ◦,

γ̃◦x = γ̂
◦

x +1γ̂
◦

x , γ̃◦y = γ̂
◦

y +1γ̂
◦

y .
(8)

In the current version of the software is no longer necessary to start with f 2
w = 0 and then make them

consistent in a subsequent step. The continuity functions computed in this way are those corresponding
to the DOFs provided by the preliminary calculus using the FSDPT finite elements. The result of this
calculus will be improved by the following operations.

2.2.2. Updating of the energy due to transverse shears. This operation is performed equating again the
homologous quantities of the FSDPT and zigzag models, using the representation of Equations (8):

(qe+1qeK)
T Kfsdpt(qe+1qeK)= qe

T Kzigzagqe. (9)

The symbol qe represents the vector of nodal DOFs; 1qeK are the corrective terms; K is the stiffness
matrix (only the rows and columns relative to the out-of-plane shears). The left hand size member is based
on the FEM model, while the right hand side is an analytic expression. The solution is found in closed
form via symbolic calculus assuming as unknown only the transverse shear rotations. Subsequently, the
other DOFs are updated one at a time, reiterating the entire process till convergence.

2.2.3. Transverse normal stress and strain. Since this contribution that plays a primary role for sand-
wich panels is disregarded in the FSDPT parent element, it is approximated at a local point in the
post-processing phase. This operation is carried out integrating the third local differential equilibrium
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equation, where a spline interpolation of the previously computed transverse shear stresses is used. Then
an approximate expression of the transverse normal strain oεzz is obtained by the stress–strain relation
of elasticity

0εzz = σxx S13+ σyy S23+
0σzz S33+ σyz S34+ σxz S35+ σxy S36. (10)

Using these approximated transverse normal stress and strain, their contribution to the strain energy is
computed. In the current version, the energy balance is used to compute improved transverse shear stress
rotations and the variation of the out-of-plane displacement across the thickness in closed form, in combi-
nation with the local differential equilibrium equations. Once the improved stresses have been computed,
they are interpolated with spline functions for the subsequent operations. This process is restarted with
the improved transverse shear and transverse displacement DOFs and repeated till convergence.

2.2.4. Updating of the membrane energy. The displacements and stresses computed at this stage are used
for improving the membrane energy and thus for computing refined in-plane DOFs. To this purpose, the
in-plane displacements are represented as in (8)1,2 and the strain energy as in Equation (9), where only
the rows and columns relative to the membrane energy contributions are retained. The solution is found
substituting the corrected displacements one at a time and reiterating the entire process till convergence.

2.2.5. Updating of the work of inertial forces. The expression of the work of inertial forces is used to
make the dynamics of the FSDPT model with that of the zigzag model:

(qe+1qeM)
T Mfsdpt(qe+1qeM)

T F f (t)= qe
T Mzigzagqe

T Fzz(t). (11)

Mfsdpt and Mzigzag being their consistent mass matrices, qe the converged vector of nodal DOFs after the
steps up to 2.2.4, and 1qeM the corrective terms. Since the previous equation must hold irrespective of
the time evolution of the solution, it can be rearranged as:

(qe+1qeM)
T Mfsdpt(qe+1qeM)

T
= qe

T Mzigzagqe
T . (12)

The corrective terms are computed in closed form at each iteration one at a time and reiterating till
convergence. The sequence of steps 2.2.1–2.2.5 is repeated till convergence, using the current stresses
and displacements at the end of each iteration as entry values for the subsequent one. The convergence
of the energy updating procedure appeared fast whenever applied. The energy updating appeared always
able to consistently improve the quality of the stress predictions and did not heavily affect the overall
computational costs.

2.3. Failure and progressive damage accumulation. The present structural model incorporates criteria
for matrix cracking, fibres failure, delamination and core crushing in order to account for all the possi-
ble failure modes and their reciprocal interactions. Only macromechanical, stress-based criteria using
standard, easy to assess, engineering properties are here employed, since they are the only ones with an
affordable computational effort for the transient analysis. The formulation is that successfully adopted
in [Icardi 2007; Icardi and Ferrero 2009]. A 3D version of the Hashin’s criterion with in situ strengths
is used to predict the failure of fibres and matrix. For the tensile failure of fibres we have(σ11

X t

)2
+

1
S12=13

2 (τ12
2
+ τ13

2)= 1 (σ11 > 0) (13)
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while for compressive failure we have

σ11 =−X c (σ11 < 0).

The expression for the matrix failure under traction is(
σ22+ σ33

Y t

)2

+
1

S23
2 (τ23

2
− σ22σ33)+

(
τ12

S12=13

)2

+

(
τ13

S12=13

)2

= 1 (σ22+ σ33 > 0),

while for compressive failure it is

1
Y c

(( Y c

2S23

)2
−1
)
(σ22+σ33)+

1

4S23
2 (σ22+σ33)

2
+

1
S23

2 (τ23
2
−σ22σ33)+

1
S12=13

2 (τ12
2
+τ13

2)= 1

(σ22+ σ33 < 0).

To compare the same failures with a different formulation, the criterion of Hou et al. is incorporated into
the structural model, which predicts the failure of fibres by the formula(

σ11

X t

)2

+

(
τ12+ τ13

S f

)2

= 1

and the tensile and compressive failures of the matrix, respectively, by(
σ22

Y t

)2

+

(
τ12

S12

)2

+

(
τ23

Sm23

)2

= 1,
1
4

(
−σ22

S12

)2

+
(Y c)2σ22

4S2
12Y c

−
σ22

Y c +

(
σ12

S12

)2

= 1.

This criterion is also used to predict the onset of delamination, together with the Chang–Springer criterion.
The criterion of Hou et al. predicts delamination by the expressions(

σ33

ZT

)2

+
(τ12

2
+ τ13

2)

S13
2(dmsdfs+ δ)

= 1 (σ33 ≥ 0),

(τ12
2
+ τ13

2
− 8σ33

2)

S13
2(dmsdfs+ δ)

= 1
(
−

√
1
8(σ

2
13+ σ

2
23)≤ σ33 < 0

)
,

while the Chang–Springer criterion uses the expression(
σ33

Y t

)2

+

(
τ13

S13=23

)2

+

(
τ23

S13=23

)2

= 1.

To predict the sandwich core failure in crushing mode, we use the criterion by Besant et al.,(
σzz

σcu

)n

+

(
τxz

τlu

)n

+

(
τyz

τlu

)n

= ecore,

where σcu and τlu being the core strengths in compression and transverse shear; it predicts failure of the
core when ecore > 1.

The exponent n= 1.5 is assumed, since it best fits the experimental results. In the event of crushing, the
work done by the inner crush force has to be accounted for; therefore the through-the-thickness variation
of the transverse displacement by the updating subprocedure of Section 2.2.3 has to be considered.
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The degradation of the properties after failure is simulated using the ply-discount theory. Namely, the
elastic moduli in the subelement regions where the spline interpolation is performed are locally degraded
according to the rule

Qafter = Qbefore10−m with 0≤ m ≤ 20,

Qafter and Qbefore being Young’s and shear elastic moduli selected according to the type of failure oc-
curred. This implies that within the time steps, the stiffness coefficients have to be locally reduced in the
region where the damage arose and the stiffness properties locally modified during the process, choosing
an appropriate exponent m. In event of fibre failure, E11, G12, and ν12 are reduced, while for matrix
failure E22, G12, and ν12 are reduced. In the event of delamination, G13 and G23 are reduced. More
complex degradation models in a better harmony with the physics are not considered, their effort being
too large.

Nevertheless a failure model is implemented with the features outlined above, in the numerical appli-
cations the pulse pressure loading will be of a moderate intensity that will not induce damage, so the
analysis of the effects of an intense loading is left to a future study.

3. Blast pulse modelling

When a pressure pulse is generated, a shock wave is transmitted in all directions. Once this wave reaches
a structure, it produces an instantaneous pressure peak, followed by a decrease. Various expressions have
been proposed for describing the overpressure time history, either of theoretical or numerical nature. Also
results of experiments have been published in the literature.

Since most of the studies are analytical or based on a finite element analysis, usually an analytical
overpressure time history is adopted. Customary the blast-type loading is described in terms of the
modified Friedlander exponential decay equation1

Pz(t)= Pm(1− t/tp)e−a′t/tp, (14)

Pm being the peak pressure in excess of the ambient one, tp the positive phase duration measured from
the time of arrival of the blast and a′a decay parameter that can be adjusted in order to approximate
the result of an experimental test. Customarily the pressure is assumed to be uniformly distributed over
the entire panel and the impact is assumed to occur with a normal incidence having in view the large
dimension of the blast front. This is not the case of gun blast pressure pulses, which require the spatial
distribution of the pressure pulse to be considered; the readers find a recent study about gun blast in the
paper by [Kim and Han 2006].

Assuming a′/tp equal to zero, the limiting case of the triangular loading is featured. As other special
cases, the rectangular, step and sine pressure pulses have been considered in literature.

The sonic boom-type loading is customary modelled as an N -shaped pressure pulse corresponding to
an idealized far-field pulse impacting at a normal incidence:

Pz(t)=
{

Pm(1− t/tp) for 0< t < r tp,

0 for t < 0 and t > r tp,
(15)

1See the pioneering papers [Gupta 1985; Gupta et al. 1986] and applications in [Cederbaum et al. 1988; 1989; Librescu and
Nosier 1990; Librescu and Na 1998; Song et al. 1998; Librescu et al. 2004; 2006; 2005; Hause and Librescu 2005].
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where r denotes the shock pulse length factor and the other symbols are as in (14). For the case r = 1, the
N -shaped pulse degenerates into a triangular distribution, while for r = 2 a symmetric pulse is obtained.

The former pulse pressure time histories of (14) and (15) have been incorporated in the impact compu-
tational model of [Icardi 2007] at the place of the contact force time history. However any other analytical
or computational model could be used.

The dynamic response problem resulting from blast pulse pressure loading Mq̈e+Cq̇e+ K qe = F,
where M, C and K denote the mass, damping and stiffness matrices, respectively, while qe is the vector
of nodal DOFs and F is the vector of the nodal forces, is solved using the Newmark implicit time
integration scheme, because this technique, at the contrary of explicit schemes, is stable for reasonably
large time steps.

In the present numerical applications only the undamped motions will be considered; work is in
progress in order to account for damping, which has implications on the thermodynamic constraints
involved in the tailoring optimization process.

4. Tuning of the energy absorption properties

In this paper, a technique for tuning the energy absorption properties of laminated and sandwich com-
posites is presented, which is based on a new tailoring concept. The purpose is to minimize the energy
absorbed through unwanted modes (those involving interlaminar strengths) and maximize the energy
absorbed through desired modes (those involving membrane strengths). This is done by finding a suited
variable distribution of stiffness properties, an extension of the one developed by the authors in [Icardi
and Ferrero 2008]. While this former version only dealt with an in-plane variation of properties of
laminates, in the current version either a variation of the stiffness properties of the face sheets over their
plane, or of the core properties across the thickness of sandwich composites are considered.

The suitable distribution of stiffness properties is obtained solving the Euler–Lagrange equations of
a problem where the strain energy contributions of interest are made extremal under spatial variation of
such properties.

The effect of this technique is to act as an energy absorption tuning, since the amount of energy
absorbed by specific modes can be minimized or maximized. Minimization of the energy due to out-of-
plane strains and stresses can result in a reduction of these very critical parameters by the viewpoint of
damage accumulation in service, as shown by the numerical applications. This result can be obtained
without any stiffness loss, since the membrane and bending energy contributions can be maximized,
while the energy of out-of-plane stresses is minimized.

The present technique can be seen as a non classical optimization technique in which the design
variables to be modified are the stiffness properties (through spatial variation of the ply angles and/or
of fibre volume fraction and constituent materials) and the constraints are represented by imposition
of constant thickness of individual layers, constant overall properties (e.g. averaged stiffness of the
“optimized” layers equal to the stiffness of classical layers made of the same constituent materials),
the thermodynamic constraints for energy conservation and the Lempriere, Lekhnitski and Chentsov’s
conditions. The objective function is the extremization of wanted energy contributions of interest, while
the optimization algorithm can be seen as the variational calculus rule, i.e. imposition of the first variation
vanishing.
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Note that in the applications, pre-existing conventional layers will be substituted with layers that
either (i) minimizes bending and maximizes membrane energy, (ii) minimizes bending and maximizes
transverse shear, or (iii) maximizes bending and minimizes transverse shear, because for each of these
three cases a solution was found in [Icardi and Ferrero 2008] that does not make contradictory these
requirements.

The following simplified version of the structural model with a constant transverse displacement is
employed in this context:

U (x, y, z)= u◦+ z(γ◦x −w
◦

,x)+ z2Cx(x, y)+ z3 Dx(x, y)+
S−1∑
k=1

(k)φx(x, y)(z− (k)Z+)H,

V (x, y, z)= v◦+ z(γ◦y −w
◦

,y)+ z2Cy(x, y)+ z3 Dy(x, y)+
S−1∑
k=1

(k)φy(x, y)(z− (k)Z+)Hk,

W (x, y, z)= w◦,

(16)

since the model of (1)–(5) requires too big a mathematical effort. Higher-order contributions neglected
in the simplification will be accounted for by updating its strain energy to that of the model (1)–(5).

4.1. Tailoring of constituent plies. This optimisation is carried out finding spatially variable stiffness
properties which makes the bending, in-plane and out-of-plane strain energy contributions stationary,
with the purpose to minimise the energy absorbed by modes involving out-of-plane stresses and strains
and maximise that related to membrane stresses and strains. The stiffness properties of the constituent
layers (i.e., the face sheets in the case of sandwich panels) represent the master field, while the other
variables not subjected to variation represent the slave and data fields. The optimisation starts writing the
first variation of the strain energy under variation of the functional DOFs that represents the constraint
of dynamic equilibrium.

A rather intricate system of coupled partial differential equations are obtained, the so-called Euler–
Lagrange equations and related natural boundary conditions, enforcing the vanishing of the first variation
of the strain energy under variation of the stiffness properties, that define the optimised distributions of
these properties (i.e., that make the considered energy contributions extremal). We report as an example
the stationary condition for the bending energy:

−WR1δu◦−WR2δv
◦
−WR3δw

◦
+ (WR4−

4
3 WR5+WR6+WR7)δγ

◦

x

+ (WR8−
4
3 WR9+WR10+WR11)δγ

◦

y = 0, (17)

where the WR’s are sums of partial derivatives of various orders of the stiffness quantities; for instance

WR3 = D11,1111+ 2D12,1122+ 4D16,1112+ 4D26,1222+ 4D66,1122+ D22,2222. (18)

Similarly, the expression for the transverse shear energy in the plane (x, z) is a sum of multiples of δu◦,
δv◦, δw◦, δγ◦x and δγ◦y ; the coefficient of the first of these is one of the simplest and will serve to give
the flavor:{

XRR1+ XRa
R1+ XRd

R1+ XRR44+ XRa
R44+ XRd

S44−
4
3(XRP1− XRP6)/h2

−
1
2(XR26X2+ XR31X2+ XR36X2+ XR41X2)/h− 2

3(XR26X3+ XR31X3+ XR36X3+ XR41X3)/h2
}
δu◦.
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(The XR are also defined in terms of partial derivatives of the stiffness quantities.)
At this point, we must add to the system of governing equations also the constraint conditions rep-

resenting the energy updating from the simplified model of (16) to that of the model of (1) with vari-
able transverse displacement. An approximate solution of technical interest to this governing system of
equations is a second-order polynomial approximation of the transformed reduced stiffness coefficients
distribution, since it can be easily obtained by current manufacturing techniques:

Q11 = A1+ A2x + A3x2, Q12 = C1+C2x +C3 y+C4x2
+C5 y2

+C6xy,

Q16 = E1+ E2x + E3x2
+ E4xy, Q22 = B1+ B2 y+ B3 y2,

Q26 = F1+ F2 y+ F3 y2
+ F4xy, Q44 = G, Q55 = L ,

Q45 = M, Q66 = D1+ D2x + D3 y+ D4x2
+ D5 y2

+ D6xy.

(19)

This approximation holds at the laminate level (i.e., for a group of layers that together makes extremal
the energy contributions of interest), or at the single ply level (i.e., of a layer able itself to minimise or
maximise certain energy contributions).

The quantities A1, A2, . . . , B1, . . . , F1, . . . , M appearing in (19) are determined by enforcing con-
ditions that make the solution physically consistent. The thermodynamic constraints, the conservation
of energy and the conditions formulated by Lempriere, Lekhnitski and Chentsov’s are enforced in this
paper. In addition, a mean value of the stiffness coefficients is imposed; it is assumed equal to that of
the conventional layers that are replaced with the optimised ones. Also a convex or a concave shape
can be chosen, together with the value of the stiffness at the bounds of the region. The coefficients of
Q12 and Q66 are determined enforcing the mean value and the thermodynamic constraints. Q16, Q26 are
enforced to have a zero mean value, while the coefficients of Q44, Q45 and Q55 are determined enforcing
Chentsov’s relations.

We remark that the variable distribution of stiffness properties, (19), can be obtained either varying
the orientation of the reinforcement fibres, the fibre volume rate or the constituent materials (i.e. fibres
and matrix) over the plane of the plies. It is also remarked that as shown in [Icardi and Ferrero 2008],
even a rough approximation of the elastic coefficients of (19) using patches with a step variation of the
orientation can be effective.

4.2. Core with variable properties. The stiffness discontinuity at the face sheet/core interface results in a
large increase in interfacial shear stresses, so debonding at or near the core/face sheet interface is a major
problem in sandwich construction. An alternative for overcoming this problem is a sandwich structure
with a functionally graded core: grading the core properties in the thickness direction allows a reduction in
the stiffness discontinuity. Although their technology is still in its infancy, functionally graded materials
are of great interest for their potential in many applications. New fabrication methods are expected to
be developed in the next years that will control the foaming process parameters as required [Apetre et al.
2006]. For such reason, the advantages of these new sandwich structures are here assessed. Assuming
that the core properties can be controlled across the thickness, the strain energy due to transverse stresses
and strains have to be made extremal for finding core property distributions that reduce the interlaminar
stress concentration at the face sheet/core interfaces. As an example we report the extremal condition
for the energy due to the shear in the plane (x, z):
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Q11(z2G y

,x − z2W y
,xx + zU y

,x)+ Q12(zV − z2W,y + z2 H)

+ Q16(2zU + 2z2G− 3z2W,x − zV y
,x + z2 H y

,x)+ Q26(zV x
,y − z2W x

,yy + z2 H x
,y)

+ Q66(zV + zU x
,y − 2z2W,y + z2 H + z2Gx

,y)+ Q44Gxy
+ Q45 H xy

)
dz. (20)

We give some of the expressions for the symbols appearing in this equation, as examples:∫
u0
,x dx =U,

∫
v0
,x dx = V,

∫
w0
,x dx =W,

∫
γx,x dx = G,

∫
γy,x dx = H,∫

U dy =U y,

∫
V dy = V y,

∫
W dy =W y,

∫
G dy = G y,

∫
H dy = H y .

The terms not reported here also contain derivatives of the DOFs integrated over the domain. As in the
former case of the optimisation of face sheets, one must add the constraints representing the equilibrium
and the updating from the simplified model of (16) to the model of (1). As a final result, the following
condition is obtained, that defines the core properties distribution that makes the energy of transverse
shears extremal: ∫

Qi j (z)F dz = constant, (21)

where F = A+ Bz, with A and B representing integrals of the spatial derivatives of the displacements
in (x, y). Similar considerations hold for the membrane energy contributions. In this case, the extremal
conditions correspond to

F = Az2
+ Bz. (22)

This equation holds for the elastic coefficients Q11, Q12, Q22, Q16, Q26 and Q66, while in the case of
Q44, Q45 and Q55, the quantity F has to be set equal to 1. Accordingly, the stiffness properties Q11 to
Q66 have to vary across the thickness according to (Az2

+ Bz)−1, while Q44, Q45 and Q55 have to be
constant.

If we assume the foam constituting the core to be an isotropic material with properties E , G and υ and
represent its stiffness coefficients as Q11 = K1/(z2

+C1z), Q12 = K2/(z2
+C2z), we find the following

relation after enforcement of thermodynamic and isotropy constraints:

−2K1 < K2 < K1. (23)

In the numerical applications, the properties of the core will be assumed to vary according to the former
relations (19) to (23) considering as upper and lower limits those of the ROHACELL foam.

5. Numerical results

The accuracy of the present structural model with energy updating was extensively assessed in a number
of previously published papers. The reader is referred, among other recent papers by the authors not
cited for brevity, to [Icardi 2007] for laminates and to [Icardi and Ferrero 2009] for sandwich plates with
or without damage. In all these assessments, the result of the simulation in terms of stress fields, damage
and impact force time history were compared to the exact 3D elasticity solution, where available, and to
experiments. The model always appeared accurate with a low computational effort (less that two minutes
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on a PC with a 1.9 GHz dual core processor); therefore no further assessments will be presented in this
paper.

Our purpose is to test whether the optimisation of layers and core can relax the critical interlaminar
stress concentrations and then improve the strength at the onset of delamination (without any loss of
bending stiffness or decay of the response properties).

As a necessary premise, comparisons by the results of the present simulation to the results by Li-
brescu and co-workers will be presented for sample cases taken from [Librescu and Nosier 1990; Hause
and Librescu 2005], with the purpose to assess whether the higher-order effects by the present model
(necessary for capturing the 3D stress fields) improve the accuracy of the dynamic response. To this
purpose, also the results of a closed-form approach based on the model of Section 2.1 and solution of
the governing equations by the Galerkin method will be presented for comparisons. The reader can find
details in [Icardi 2007], where this approach was used for computing the contact force time history. Note
that while in the impact study of [Icardi 2007] up to 15 terms were required to represent the waves that
reach the edges and reflect off during the contact time, in the current case no change in the results was
seen up to 11 terms. Since the FSDPT model can be particularised from the zigzag model of (1)–(5), the
response of this model will also be used for comparisons.

It will be shown that the results by Librescu and co-workers agree with those obtained by the FSDPT
model using a single term, while using more terms high-order effects will be evidenced as little larger
deflections and lower frequencies. This behaviour is believed to be correct, since the improved description
of the shear deformation and the inclusion of the energy associated to the transverse normal stress and
strain modes make the structural model a little less stiff.

Hereafter results will be presented for laminated and sandwich panels with laminated faces under blast
loading. Note that sandwich composites represent much more severe test cases from the viewpoint of
modelling, since they require a refined modelling that accounts for large transverse shear and normal
deformations.

5.1. Laminated plates. Consider a pinned [0/90/90/0] laminated square plate with a length-to-thickness
ratio of 30, undergoing a pressure pulse characterised by a′/tp = 0 in (14), Pm = 3.447 MPa and tp = 0.1 s,
according to [Librescu and Nosier 1990, Figure 3], which is here referred as the classical case. The
deflection will be presented for all the studied cases in a non-dimensional form, as the ratio between
the dynamic displacement and the static one. The non-dimensional deflection predicted by the present
finite element model with energy updating (in-plane discretization into 10× 10 elements) is represented
in Figure 1, left, where it is compared with the predictions of the closed-form approach based on the
Galerkin’s method for 11 terms in both x and y directions, as predicted by the zigzag model of Section
2.1 and by the CLPT (classical laminated plate theory) and FSDPT models with only one term in both
directions. Figure 1, right, shows the response when the effects of damage are assessed while time
unfolds.

According to [Librescu and Nosier 1990], the normalisation of results is carried out with respect to
the deflection of the static case. In the damaged case, this reference deflection is computed when the
delaminated area at the most critical interface (the one next to the impacted face) is 50%.

Figure 1, left, also depicts the time response when the external layers oriented at 0◦ are replaced with
optimised layers having the stiffness distributions of Figure 2 (corresponding to the variable orientation
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Figure 1. Triangular blast pulse loading: nondimensional deflection time history for a
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Figure 2. Stiffness distribution for the optimised layers. The horizontal coordinate is
the in-plane direction x , in meters.

of reinforcement fibres presented in [Icardi and Ferrero 2008, Figure 3], here referred as OPT1). In this
figure we regard the material as undamaged, although the hypothesis of mild loading is not consistent
with the magnitude of the pressure pulse considered by Librescu and Nosier, the stresses being very large
(that is, failure has already occurred at the loading level they consider). To be consistent with [Librescu
and Nosier 1990], we will compare the stress fields without considering the degradation of the properties
also in the remaining cases.

In Section 2.3 we analyse Figure 1, right, considering the effects of damage, and showing that at the
first peak, after about 0.005 sec, the matrix damage is extended to 90% of first layer, 50% of second and
third layers and 40% in the last layer. The area where the fibres have failed is 50% in the first layers, 90%
in the subsequent two layers and 40% in the last layer. Delamination occurs at the 0◦/90◦ and 90◦/0◦

interfaces. In the first case, the delaminated area is 60% of the whole interface area, while in the last
case it has an extension of 40%.

It appears by the comparison with the response predicted by the FSDPT model in Figure 1, left, that
the high-order effects brought by the zigzag model have an increasing importance while the time unfolds.
Also evident from the same figure is the beneficial effect of optimised layers in terms of motion amplitude
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with optimised layers.
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Figure 4. Normalized transversal shear stress (horizontal axis) versus thickness coor-
dinate (vertical axis, in meters) for the laminate with classical layers (black curve with
markers) and the two with optimised layers (smooth black curve = OPT1; grey curve =
OPT2).

reduction (mean properties equal to those of the replaced layers). The effect on interlaminar stress fields
of optimised layers is shown in Figure 4, which reports the stresses at the interfaces. A comparison is
presented with the reference configuration and also with another optimised case having in plane shear
stiffness with a maximum value close to the constraints and Q16 and Q26 with a double slope, here
referred as OPT2.

These results are those corresponding to 3 msec after application of the pressure pulse. One can see in
Figures 3 and 4 how the optimised layers that have limited deflections also can limit the magnitude of in-
terlaminar stresses and oppose the spreading of the stress peaks at the inner interfaces. Application of the
delamination criterion by Chang and Springer shows that the loading magnitude considered corresponds
to a fully delaminated area at the first interface (starting from the bottom layer), as shown by the left
column of Figure 5, while at the next interfaces the central region remain undamaged. When an optimised
layer OPT2 is incorporated, these regions enlarge to the whole plate and at the first interface there is a
central region where delamination does not take place; see middle column of Figure 5. Thus, it appears
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classical OPT1 OPT2

Figure 5. Delaminated area (shown in grey) at the first interface (0/90, top row) and at
the third (90/0, bottom row). Left column, classical laminate; middle column, OPT1;
right column, OPT2.

that the present optimisation technique can both improve the response and the strength. Obviously,
orienting the reinforcement fibres in a complementary way, the opposite result could be found.

5.2. Sandwich plates. Now consider cases of sandwich panels subjected to different blast pulse loading,
with the purpose to assess the accuracy of the structural model when it predicts their transient motions
and discuss the implications of the optimisation. Cases with optimised face sheets, i.e. incorporating
optimised layers with the features discussed above, and with or without an optimised distribution of the
core properties across the thickness will be considered. The reference configurations are chosen among
the sample cases presented in [Hause and Librescu 2005, Figure 7 and 12].

The first of these refers to a pulse step of 0.005 sec, using the same 10× 10 in-plane discretization
than in the former case. The time response for this case as predicted by Hause and Librescu, by the
present structural finite element model with energy updating, by the CLPT and FSDPT models using
the Galerkin method (with only one term in both directions) and by the present model varying the
core properties across the thickness is represented in Figure 6. The stacking sequence for this case
is [45/−45/45/−45/45/core/45/−45/45/−45/45]; the length-to-thickness ratio is 20.97. It appears
again that the high-order effects incorporated in the current model results in little larger deflections,
while frequencies remain unchanged. This result is consequent to the large deformation in the transverse
direction and to the very high bending stiffness peculiar of sandwich panels. The four core configurations
considered produce a different response, but the variation is not large. All have the same mean properties
that correspond to those of the reference case and all produce a reduction in the amplitude of motions. The
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wich plates with [45/−45/45/−45/45/core/45/−45/45/−45/45] lay-up.

first case OPT-S1 corresponds to a V variation of the core properties across the thickness increasing at
the midplane; it represents a simplified suboptimal variation that simulates in a rough way the optimised
variation of (21)–(23), here referred to as OPT-S2 (where the property variation on the thickness has
an hyperbolic shape. The case OPT-S3 is similar to OPT-S1 but has properties that decrease from the
interfaces with the face sheets to the midplane. The last case OPT-S4 is similar to OPT-S2, but has the
minimum value at the midplane.

Consider now the sample case treated in [Hause and Librescu 2005, Figure 12] with the purpose to
show the high sensitivity of the response to the lay-up variation of the faces, for a sonic boom pressure
pulse. The lay-up considered in by House and Librescu was (t/−t/t/−t/t/core/t/−t/t/−t/t), with
t respectively equal to 45◦, 30◦, 0◦. The response predicted by the present model for these three cases
is reported in Figure 7. It appears that also for this sample case, the FSDPT model and the Galerkin’s
solution with just one term in both the directions x and y is equivalent to that of Hause and Librescu, as
shown by the results for t = 0◦ and t = 45◦. A similar result, not shown in the figure for readability, was
also obtained for t = 30◦.

The effect of incorporation of cores with variable properties across the thickness is shown in Figure 8.
The sample cases considered in this figure pertains to the case t = 0◦ and the core variations OPT-S2 and
OPT-S3. Besides the beneficial effect of the core property variation across the thickness that is shown by
both the configurations considered, it has to be noted that a different behaviour is presented for different
boundary conditions. Numerical tests show that for pinned edges better results are obtained in terms
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of vibrations suppression when the elastic coefficients of the core are decreasing from the face sheets
interfaces to the midplane, as in OPT-S3, while the opposite occurs for simply supported edges: OPT-S2
is more efficient.

To assess whether the incorporation of optimised faces in sandwich panels with optimised core can
consistently decrease the amplitude of motions, the sample case of a sandwich panel with core of type
OPT-S2 (i.e., not the most efficient case) and faces with a [0/90/90/0] lay-up was considered. To be self-
contained, the motions for this case are not reported; it is just reported that if the 0◦ layers are substituted
with optimised layers, as described in Section 5.1, a reduction of the amplitude to 1/6 is obtained already
in the first instants of motion with respect to the reference case with constant properties of the 0◦ layers
(equivalent to the mean value of optimised layers) and this ratio is kept while the time unfolds.

The interlaminar stress fields for the case t = 0◦ and cores with variable properties OPT-S2 and OPT-S3
are reported in Figure 9, which refers to 0.11 sec after application of the pressure pulse. Their magnitude
being large, the pressure pulse considered in [Hause and Librescu 2005] for this sample case does not
reflect the hypothesis of mild loading, therefore failures occurred during the motions that also in the
present paper have not been considered. Just comparing the stress fields without considering the degra-
dation of properties, it appears that the variable core properties reduce the critical stress concentration of
shear stresses at the interface with the core and spread these stresses across the core. Beneficial effects
are seen also for the transverse normal stress, since in the region close to the lower interface where
they are peeling, i.e., tensile, the magnitude consistently decreases, and they also decrease at the upper
interface where they are compressive; since they are spread across the core. This reduction of the critical
interfacial concentration by spreading the stresses was also the objective pursued by the former studies
on functionally graded materials. While in such studies the core property variation was postulated, in
the present paper it is grounded on energy considerations and still appears successful.

Applying the Chang–Springer criterion for delamination it appears that in the reference case the upper
interface with the core is fully delaminated, while the lower one is undamaged, as shown by Figure 10.
The situation is different in the optimised cases; for example in the case OPT-S1 some regions are
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Figure 9. Transverse shear (left) and normal (right) stresses across the thickness for the
sandwich plate with classical and optimised configuration.
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classical

optimised

Figure 10. Delaminated area (shown in grey) at the two core-face interfaces for the
sandwich plate with classical (top row) and optimised (bottom row) configurations.

preserved from delamination at the upper interface, while the lower interface present a delamination
damage distributed in a similar way because the stress peak are spread across the thickness. This means
that all the constituent materials contribute to the absorption of the incoming energy due to the pulse
pressure, with evident practical advantages.

Concluding remarks

The dynamic response and the stress fields of laminated and sandwich flat panels undergoing impulsive
pressure loading have been investigated for different pulse pressure time histories. A refined zigzag model
with a piecewise high-order variation of in-plane and transverse displacements is employed as structural
model, which is incorporated through a strain energy updating into a conventional shear deformable
plate element. The reason is that the direct implementation of the zigzag model involves displacement
derivatives as nodal DOFs, which makes the elements inefficient from the computational viewpoint.
The current model represents a good compromise because it requires a lower computational effort than
discrete-layer models for providing a lower, but still rather good accuracy of predictions.

A recently developed technique is employed for relaxing the critical interlaminar stress concentrations
at the interfaces of constituent layers. With this technique, the optimal through-the-thickness distribution
of the core properties and the in-plane distribution of the stiffness properties of the face sheets (and of the
constituent layers of laminates) are found maximising the strain energy absorbed through membrane and
bending modes and minimizing that absorbed by out-of-plane modes involving the interlaminar stresses.
While in the former studies on functionally graded materials the core property variation was postulated,
in the present paper it results from energy considerations.
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It appears that the current technique reduces the critical interlaminar stress concentrations (that is, it
spreads them across the thickness), with beneficial effects on the strength at the onset of damage. It
also improves the dynamic response, since it limits deflections while time unfolds. Even simple subopti-
mal distributions that approximate in a rough way the optimised variation of stiffness properties appear
effective in the numerical applications.
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UNIFORMITY OF STRESSES INSIDE AN ANISOTROPIC ELLIPTICAL
INHOMOGENEITY WITH AN IMPERFECT INTERFACE

XU WANG

By employing the Stroh formalism for two-dimensional anisotropic elasticity, we find that a uniform
stress field exists inside an anisotropic elliptical inhomogeneity imperfectly bonded to an infinite an-
isotropic matrix subject to uniform stresses and strains at infinity. Here, the behavior of the imperfect
interface between the inhomogeneity and the matrix is characterized by the linear spring model with
vanishing thickness. The degree of imperfections, both normal and in-plane tangential to the interface,
are assumed to be equal. A particular form of the interface function that leads to a uniform stress field
within the anisotropic elliptical inhomogeneity is identified. Also presented are real form expressions
for the stress field inside the inhomogeneity that are shown to be valid for mathematically degenerate
(isotropic) material as well. We note that the interpenetration issue that arises from application of the
linear spring model to the imperfect interface is not discussed here.

1. Introduction

Eshelby’s celebrated results [1957; 1959; 1961] demonstrated that the stress field inside an anisotropic
ellipsoidal inhomogeneity is uniform when the infinite matrix is subject to remote uniform stresses. The
corresponding two-dimensional anisotropic elliptical inhomogeneity was discussed by Hwu and Ting
[1989]. These authors also found that the stress field inside an anisotropic elliptical inhomogeneity is uni-
form when the infinite matrix is subject to remote uniform stresses. In [Eshelby 1957; 1959; 1961; Hwu
and Ting 1989], the inhomogeneity-matrix interface was assumed to be perfect, such that tractions and
displacements across the interface are continuous. In recent years, problems involving inhomogeneities
with imperfect bonding at the inhomogeneity-matrix interface have attracted great interest [Achenbach
and Zhu 1989; Hashin 1991; Gao 1995; Ru and Schiavone 1997; Shen et al. 2001; Antipov and Schiavone
2003]. The behavior of the imperfect interface is commonly simulated by the spring layer model with
vanishing thickness. In this model, tractions are continuous but displacements are discontinuous across
the interface. More precisely, the jumps in displacement components are proportional (in terms of the
‘spring-factor-type’ interface functions or interface parameters) to the respective traction components.
Hashin [1991] found that the stress field inside a spherical inhomogeneity imperfectly bonded to a three-
dimensional matrix is intrinsically nonuniform under a remote uniform stress field. The results of [Gao
1995; Shen et al. 2001] also demonstrated that the stress field inside a circular or elliptical inhomogeneity
imperfectly bonded to a matrix is nonuniform under a remote uniform stress field.

Keywords: Stroh formalism, uniform stress field, anisotropy, imperfect interface, generalized plane strain.
This research was supported by the United States Army Research Laboratory through the Composite Materials Technology
cooperative agreement with the Center for Composite Materials at the University of Delaware.
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More recently, it was found that the stress field inside an elliptical inhomogeneity imperfectly bonded
to a matrix can still be uniform under a remote uniform antiplane stress field [Antipov and Schiavone
2003] or a remote uniform in-plane stress field [Wang et al. 2008] for a special form of the interface
function. In these investigations, the elastic properties of the inhomogeneity and the matrix were assumed
to be isotropic. The purpose of the research presented here is to address whether a uniform stress field
exists inside a generally anisotropic elliptical inhomogeneity imperfectly bonded to an infinite anisotropic
matrix subject to uniform stresses and strains at infinity.

In this research, the Stroh formalism [Stroh 1958; Ting 1996] is employed to investigate the two-
dimensional problem associated with an anisotropic elliptical inhomogeneity imperfectly bonded to an
infinite matrix under a remote uniform stress field. We find a particular type of interface function that
leads to a uniform stress field inside the anisotropic elliptical inhomogeneity. We also present the real-
form expressions of the uniform stress field by using the identities established in [Ting 1996].

2. Stroh formalism for two-dimensional anisotropic elasticity

The basic equations for a linear anisotropic elastic material are

σi j, j = 0, εi j =
1
2

(
ui, j + u j,i

)
, σi j = Ci jklεkl, (1)

where ui are displacement components, σi j and εi j are the stresses and strains, and Ci jkl are the elastic
constants. For a two-dimensional problem, a solution exists of the form

u =
[
u1 u2 u3

]T
= a f

(
x1+ px2

)
, (2)

where a is a 3× 1 column, p is a complex number, and f (∗) is an analytic function. (The justification
for this and for many of the assertions in this section can be found in [Ting 1996].)

Thus equations (1) are satisfied for an arbitrary function f (∗) if(
Q+ p

(
R+ RT )

+ p2T
)
a = 0, (3)

where the 3× 3 real matrix R and the two 3× 3 symmetric matrices Q and T are defined by

Qik = Ci1k1, Rik = Ci1k2, Tik = Ci2k2. (4)

For a stable material with positive-definite energy density, the six roots of (3) form three distinct
conjugate pairs with nonzero imaginary parts. If pi (where i = 1, 2, 3) are the three distinct roots with
positive imaginary parts, and ai are the associated eigenvectors, then the general solution is given by

u =
[
u1 u2 u3

]T
= A f (z)+ A f (z), 8=

[
81 82 83

]T
= A f (z)+ B f (z), (5)

where
bi =

(
RT
+ pi T

)
ai =−p−1

i

(
Q+ pi R

)
ai , (i = 1, 2, 3),

A=
[
a1 a2 a3

]
, B =

[
b1 b2 b3

]
,

f (z)=
[

f1(z1) f2(z2) f3(z3)
]T
,

zi = x1+ pi x2, Im{pi }> 0, (i = 1, 2, 3).

(6)
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Thus, the stresses are given by

σi1 =−8i,2, σi2 =8i,1, (i = 1, 2, 3). (7)

The second-order eigenvalue problem (3) can also be recast into the standard first-order eigenvalue prob-
lem,

N
[

a
b

]
= p

[
a
b

]
, (8)

where

N =
[

N1 N2

N3 NT
1

]
=

[
−T−1 RT T−1

RT−1 RT
− Q −RT−1

]
. (9)

Due to the fact that the matrices A and B satisfy the normalized orthogonal relationship[
BT AT

BT AT

] [
A A
B B

]
= I, (10)

the real matrices S, H , and L can be introduced,

S= i
(
2ABT

− I
)
, H = 2i AAT , L =−2i B BT , (11)

Furthermore, H and L are symmetric, while SH , LS, H−1 S, and SL−1 are antisymmetric. The devel-
opment presented here uses the identities

2A〈pα〉AT
= N2− i

(
N1 H + N2 ST ),

2A〈pα〉BT
= N1+ i

(
N2 L− N1 S

)
, (12)

2B〈pα〉BT
= N3+ i

(
NT

1 L− N3 S
)
,

where 〈∗〉 is a 3× 3 diagonal matrix in which each component is varied according to the index α.
Let t be the surface traction on a boundary 0. If s is the arc-length measured along 0 so that, when

facing the direction of increasing s, the material is on the right-hand side, it can be shown that [Stroh
1958; Ting 1996]

t =
d8

ds
. (13)

To simplify the analysis, we set x = x1, y = x2, and z = x3.

3. Uniform stress field inside the anisotropic elliptical inhomogeneity

Consider an infinite domain in R2 that contains a single internal anisotropic elastic inhomogeneity with
elastic properties that are different from those of the surrounding anisotropic matrix, as shown in Figure 1.
The elastic constants are C (1)

i jkl for the inhomogeneity and C (2)
i jkl for the surrounding matrix. The inhomo-

geneity occupies the elliptical region

S1 :
x2

a2 +
y2

b2 ≤ 1,

and the matrix domain is given by

S2 :
x2

a2 +
y2

b2 ≥ 1.
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Elliptical inhomogeneity S1 
       ( )1(
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Matrix S2 
( )2(

ijklC ) 

 
Figure 1. An anisotropic elliptical inhomogeneity imperfectly bonded to an infinite matrix.

The ellipse 0, whose semimajor and semiminor axes are a and b, respectively, denotes the interface
between the inhomogeneity and matrix. In the following discussion, the subscripts or superscripts 1 and
2 refer to the regions S1 and S2, respectively. At infinity, the matrix is subject to remote uniform stresses

t∞2 = [ σ
∞

12 σ∞22 σ∞32 ]
T ,

and remote uniform strains

e∞1 = [ ε
∞

11 ε
∞

12 2ε∞31 ]
T .

Without losing generality, the rigid body rotation at infinity is assumed to be zero. The inhomogeneity
is imperfectly bonded to the matrix. The boundary conditions on the imperfect interface 0 are given by

σ (1)rr = σ
(2)
rr = χ(x, y)

(
u(2)r − u(1)r

)
,

σ
(1)
rθ = σ

(2)
rθ = χ(x, y)

(
u(2)θ − u(1)θ

)
,

σ
(1)
r3 = σ

(2)
r3 = γ (x, y)

(
u(2)3 − u(1)3

)
,

(14)

where χ(x, y) and γ (x, y) are nonnegative imperfect interface functions whose values depend on the
coordinates x and y of 0; σ (k)rr , σ (k)rθ , and σ (k)r3 (k = 1, 2) denote the traction components along the
normal, in-plane tangential, and antiplane directions of the interface, respectively; and u(k)r , u(k)θ , and
u(k)3 (k = 1, 2) denote the displacement components along the normal, in-plane tangential, and antiplane
directions of the interface, respectively. Equation (14) demonstrates that the same degree of imperfection
is realized in both the normal and in-plane tangential directions. A perfectly bonded interface is achieved
for χ→∞, γ →∞, while a traction-free surface is achieved for χ→ 0, γ → 0. Note that a jump in
the normal displacement may give rise to interpenetration of the inhomogeneity and the matrix in some
regions of the interface. This issue will not be discussed here.

Combining (13) and (14), we can equivalently write the boundary conditions on 0 as

81 =82, −
d81

ds
= t =�(x, y)

(
u2− u1

)
, (15)
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where the increasing s is in the counterclockwise direction of the interface, and

�(x, y)=

χ(x, y) 0 0
0 χ(x, y) 0
0 0 γ (x, y)

 . (16)

In order to address the boundary value problem, we first consider the mapping functions

zα = x + pα y = mα(ζα)=
1
2

(
a− i pαb

)
ζα +

1
2

(
a+ i pαb

)
ζ−1
α (α = 1, 2, 3), (17)

which map the elliptical region with a cut in the zα-plane onto the annulus√∣∣∣∣a+ i pαb
a− i pαb

∣∣∣∣≤ |ζα| ≤ 1,

in the ζα-plane. pα (α = 1, 2, 3) are the three Stroh eigenvalues pertaining to the inhomogeneity.
Second, we consider the mapping functions

z∗α = x + p∗α y = m∗α
(
ζ ∗α
)
=

1
2

(
a− i p∗αb

)
ζ ∗α +

1
2

(
a+ i p∗αb

)
ζ ∗−1
α (α = 1, 2, 3), (18)

which map the outside of an elliptical region in the z∗α-plane onto the outside of unit circle, |ζ ∗α | ≥ 1, in
the ζ ∗α -plane. p∗α, (α = 1, 2, 3) are the three Stroh eigenvalues pertaining to the matrix.

Third, we consider the mapping function [Muskhelishvili 1953]

z = x + iy = m(ζ )= 1
2

(
a+ b

)
ζ + 1

2

(
a− b

)
ζ−1, (19)

which maps the region S2 :
x2

a2 +
y2

b2 ≥ 1 onto |ζ | ≥ 1 in the ζ -plane.
Given that ζ1 = ζ2 = ζ3 = ζ

∗

1 = ζ
∗

2 = ζ
∗

3 = ζ on 0, we can replace ζα and ζ ∗α by ζ . The variable ζ can
be easily substituted with ζα or ζ ∗α at the end of the analysis.

Extending the developments outlined in [Antipov and Schiavone 2003] and [Wang et al. 2008], the
two interface functions χ(x, y) and γ (x, y) are chosen to be

χ(x, y)=
1

λ1|m′(ζ )|
, γ (x, y)=

1
λ2|m′(ζ )|

(|ζ | = 1), (20)

where λ1 and λ2 are two nonnegative constants, and |m′(ζ )| is explicitly given by

|m′(ζ )| = 1
2 |(a+ b)− (a− b)ζ−2

| = b
√

1+ b∗ sin2 θ, ζ = eiθ on 0, (21)

with b∗ = (a2
− b2)/b2.

In this case, �(x, y) in (16) can also be expressed as

�(x, y)=
3−1

|m′(ζ )|
, where 3= diag[λ1 λ1 λ2]. (22)

The boundary conditions in (15) on the imperfect interface can also be expressed in terms of the
analytic function vectors f1(ζ ) and f2(ζ ), for |ζ | = 1, as

B2 f −2 (ζ )+ B2 f̄ +2 (1/ζ )= B1 f +1 (ζ )+ B1 f̄ −1 (1/ζ ),

A2 f −2 (ζ )+ A2 f̄ +2 (1/ζ )− A1 f +1 (ζ )− A1 f̄ −1 (1/ζ )=−i3
(
ζ B1 f

′
+

1 (ζ )− ζ−1 B1 f̄
′
−

1 (1/ζ )
)
.

(23)
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To ensure that the stress field inside the elliptical inhomogeneity is uniform, assume that

f1(ζ )=
1
2〈
(
a− i pαb

)
ζ +

(
a+ i pαb

)
ζ−1
〉k, (24)

where k is a 3× 1 vector to be determined.
Substituting (24) into (23), we obtain, for |ζ | = 1,

B2 f −2 (ζ )+ B2 f̄ +2 (1/ζ ) =
1
2ζ
(
B1〈a− i pαb〉k+ B1〈a− i p̄αb〉k̄

)
+

1
2ζ
−1(B1〈a+ i pαb〉k+ B1〈a+ i p̄αb〉k̄

)
,

A2 f −2 (ζ )+ A2 f̄ +2 (1/ζ ) =
1
2ζ
(
(A1− i3B1)〈a− i pαb〉k+ (A1− i3B1)〈a− i p̄αb〉k̄

)
+

1
2ζ
−1((A1+ i3B1)〈a+ i pαb〉k+ (A1+ i3B1)〈a+ i p̄αb〉k̄

)
.

(25)

Given that f2(ζ )∼=
1
2ζ 〈a− i p∗αb〉

(
BT

2 e∞1 + AT
2 t∞2

)
as ζ →∞, it follows from (25)1 that, for |ζ | ≥ 1,

f2(ζ )=
1
2ζ
−1
(

B−1
2 B1〈a+ i pαb〉k+ B−1

2 B1〈a+ i p̄αb〉k̄

− B−1
2 B2〈a+ i p̄∗αb〉

(
BT

2 e∞1 + AT
2 t∞2

))
+

1
2ζ 〈a− i p∗αb〉

(
BT

2 e∞1 + AT
2 t∞2

)
, (26)

Similarly, it follows from (25)2 that, for |ζ | ≥ 1,

f2(ζ )=
1
2ζ
−1
(

A−1
2

(
A1+ i3B1

)
〈a+ i pαb〉k+ A−1

2

(
A1+ i3B1

)
〈a+ i p̄αb〉k̄

− A−1
2 A2〈a+ i p̄∗αb〉

(
BT

2 e∞1 + AT
2 t∞2

))
+

1
2ζ 〈a− i p∗αb〉

(
BT

2 e∞1 + AT
2 t∞2

)
. (27)

The obtained expressions for f2(ζ ) must be compatible with each other (or must be equal), and the
following set of linear algebraic equations can be obtained(
B1〈a+i pαb〉−B2 A−1

2

(
A1+i3B1

)
〈a+i pαb〉

)
k+
(
B1〈a+i p̄αb〉−B2 A−1

2

(
A1+i3B1

)
〈a+i p̄αb〉

)
k̄

=
(
B2− B2 A−1

2 A2
)
〈a+ i p̄∗αb〉

(
BT

2 e∞1 + AT
2 t∞2

)
. (28)

Consequently, the unknown vector k can be uniquely determined,

k = B−1
1

(
E−1

2 E1− E−1
1 E2

)−1(E−1
2 g− E−1

1 ḡ
)
, (29)

where the 3× 3 matrices E1, E2, and the 3× 1 vector g are given by

E1 = a I − aM2
(
M−1

1 −3
)
+ b

(
I +M23

)(
N3 L−1

1 + i
(
NT

1 − N3 S1 L−1
1

))
+ bM2

((
N2− N1 S1 L−1

1

)
− i N1 L−1

1

)
,

E2 = a I + aM2
(
M−1

1 +3
)
− b

(
I +M23

)(
N3 L−1

1 + i
(
N3 S1 L−1

1 − NT
1
))

(30)

+ bM2
((

N2− N1 S1 L−1
1

)
+ i N1 L−1

1

)
,

g =
(
H−1

2

(
bN∗1 + aS2

)
+ i H−1

2

(
bN∗1 S2− bN∗2 L2− a I

))
e∞1

+
((

a I + bH−1
2 N∗2

)
+ ibH−1

2

(
N∗1 H2+ N∗2 ST

2
))

t∞2 ,
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with
Mk =−i Bk A−1

k = H−1
k (I + i Sk)= Lk(I − i Sk)

−1 (k = 1, 2). (31)

In (30), N1, N2, N3 are the real matrices defined in (9) for the inhomogeneity, and N∗1 , N∗2 , N∗3 are
those for the surrounding matrix. Note that in the course of this derivation, we have utilized the identities
(11) and (12).

The uniform stress field within the elliptical inhomogeneity can now be given byσ12

σ22

σ32

= 2 Re
{

B1k
}
= 2 Re

{(
E−1

2 E1− E−1
1 E2

)−1(E−1
2 g− E−1

1 ḡ
)}
, (32)

σ11

σ21

σ31

=−2 Re
{

B1〈pα〉k
}

= 2 Re
{(

N3 S1 L−1
1 − NT

1 + i N3 L−1
1

)(
E−1

2 E1− E−1
1 E2

)−1(E−1
2 g− E−1

1 ḡ
)}
. (33)

We note that E1, E2, g, defined in (30), are expressed in terms of the real Barnett–Lothe tensors
Hk, Lk, Sk (k = 1, 2), whose explicit expressions are given in [Dongye and Ting 1989; Ting 1997],
and (ii) the three 3× 3 real matrices Ni (i = 1, 2, 3) for the inhomogeneity, and the three 3× 3 real
matrices N∗i (i = 1, 2, 3) for the matrix. In other words, the expressions of E1, E2, g do not contain
the Stroh eigenvalues or eigenvectors, thus the expressions of stresses (and also strains and rigid-body
rotation) within the elliptical inhomogeneity are also valid for (mathematically) degenerate materials,
such as an isotropic material. Note from (29) that the internal stress field depends on the imperfection of
the interface characterized by the two nonnegative interface constants λ1 and λ2. Finally, the full field
expression of f2(ζ ) can be easily obtained,

f2(ζ )=
1
2〈ζ
∗−1
α 〉

(
B−1

2 B1〈a+ i pαb〉k+ B−1
2 B1〈a+ i p̄αb〉k̄− B−1

2 B2〈a+ i p̄∗αb〉(BT
2 e∞1 + AT

2 t∞2 )
)

+
1
2〈ζ
∗

α 〉〈a− i p∗αb〉(BT
2 e∞1 + AT

2 t∞2 ), (34)

for |ζ ∗α | ≥ 1, which clearly indicates that the remote uniform stresses and strains are disturbed by the
imperfectly bonded elliptical inhomogeneity.

4. Conclusions

In this investigation, we found that a uniform stress field exists inside an anisotropic elliptical inhomo-
geneity imperfectly bonded to an infinite matrix provided that: (i) the same degree of imperfection on
the interface is realized in both the normal and the in-plane tangential directions; and (ii) the interface
functions satisfy equation (20). Condition (i) has been adopted in previous studies of isotropic materials
[Wang et al. 2005; Wang et al. 2008], while the circumferential inhomogeneity of the imperfect interface
reflects a realistic scenario of inhomogeneous interface damage in which the extent of bonding varies
along the interface [Ru and Schiavone 1997]. The interface functions given by equation (20), which lead
to a uniform stress field inside the inhomogeneity, depend only on the shape of the ellipse 0, that is, the
semimajor and semiminor axes a and b are independent of the material properties of both inhomogeneity
and matrix. For a circular inhomogeneity a = b, it follows from (20) and (21) that χ(x, y) = 1/(λ1a)
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and γ (x, y)= 1/(λ2a) are constant. In other words, the stress field inside an anisotropic circular inho-
mogeneity will be uniform when the interface is homogeneously imperfect and when the same degree of
imperfection on the circular interface is realized in both the normal and the in-plane tangential directions.
The interpenetration issue due to the introduction of the imperfect interface is not discussed here. Finally,
our work poses an interesting question: Can the stress field inside an imperfectly bonded anisotropic
ellipsoidal inhomogeneity still remain uniform when the infinite anisotropic matrix is subject to remote
uniform stresses?
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MODELING DISLOCATION SOURCES AND SIZE EFFECTS AT INITIAL YIELD
IN CONTINUUM PLASTICITY

SAURABH PURI, ANISH ROY, AMIT ACHARYA AND DENNIS DIMIDUK

Size effects at initial yield (prior to stage II) of idealized micron-sized specimens are modeled within
a continuum model of plasticity. Two different aspects are considered: specification of a density of
dislocation sources that represent the emission of dislocation dipoles, and the presence of an initial,
spatially inhomogeneous excess dislocation content. Discreteness of the source distribution appears to
lead to a stochastic response in stress-strain curves, with the stochasticity diminishing as the number
of sources increases. Variability in stress-strain response due to variations of source distribution is also
shown. These size effects at initial yield are inferred to be due to physical length scales in dislocation
mobility and the discrete description of sources that induce internal-stress-related effects, and not due
to length-scale effects in the mean-field strain-hardening response (as represented through a constitutive
equation).

1. Introduction

There is a considerable body of experimental evidence that demonstrates that plastic deformation in FCC
and other crystalline solids is size dependent at length scales of the order of tens of microns and smaller
[Fleck et al. 1994; Ma and Clarke 1995; Stölken and Evans 1998]. Research has suggested that this
behavior can be either an effect of constraint imposed on dislocation motion from grain boundaries or
internal interfaces or an effect of excess dislocation density resulting from similar externally imposed
constraints. However, recently, experiments performed on unconstrained single crystals demonstrated
strong size effects at initial yield (including a hardening phenomenon at small strains) as well [Uchic et al.
2004; Dimiduk et al. 2005; Greer et al. 2005; Frick et al. 2008]. This observed phenomenon was modeled
within a two-dimensional discrete dislocation (DD) framework [Benzerga et al. 2005; Deshpande et al.
2005; Balint et al. 2006; Benzerga and Shaver 2006] and, more recently using three-dimensional DD
techniques [Rao et al. 2008; Tang et al. 2008]. While those studies showed via selected DD frameworks
that size effects may arise from aspects of dislocation source properties and source availability, they
did not consider that related size effects may arise simply from the dislocation source attributes and
heterogeneous spatial arrangement coupling to the boundary constraints when considered completely
within a continuum theory for the flow kinematics.

In this paper we examine the question of how dislocation sources may be modeled in continuum plas-
ticity and if the nature of sources contributes to size effects within a continuum representation of idealized
simulation cells. We find the answer to be affirmative and use the strategy to demonstrate size effects
at initial yield within the context of a recently proposed continuum theory; namely, phenomenological
mesoscopic field dislocation mechanics (PMFDM) [Acharya and Roy 2006]. Results obtained from a

Keywords: continuum plasticity, dislocations, finite elements.
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finite-element implementation of the theory reasonably accounted for plasticity at mesoscopic scales.
Physical length scales exist in the theory and size-affected strain hardening has been demonstrated suc-
cessfully [Roy and Acharya 2006]. In this paper we specifically discuss size effects at initial yield based
on two continuum-level mechanisms. First, size effects are demonstrated in idealized simulation cells
having a predefined pattern of statistical dislocation (SD) sources. For the second mechanism, simulations
are performed on cells having an initial, spatially inhomogeneous excess dislocation (ED) distribution.
Note that the present study is not intended to provide a direct quantitative rationalization of the widely
reported experimental findings. Any such attempt would require more advanced quantitative treatments
of selected constitutive assumptions, as well as further advances to the computation framework.

In Section 2, a brief description of the governing equations of PMFDM is presented. Section 3 involves
discussion of modeling strategy and results so obtained. The paper ends with some concluding remarks
in Section 4.

A note regarding terminology: henceforth, given a scale of resolution, l, we refer to the spatial average
of Nye’s dislocation-density tensor [Nye 1953] over a volume l3 around a point as the excess dislocation
(ED) density tensor at that point. Nye’s tensor being a tensorial quantity, the dislocations that on average
make no contribution to the net density of Burgers vectors in this process, due to cancellation in sign,
form a density that we refer to as the statistically distributed dislocation (SD) density. Thus, the difference
of local value of Nye’s tensor field and its spatial average (ED) is referred to as SD.

2. Theory

The phenomenological mesoscopic field dislocation mechanics (PMFDM) theory [Acharya and Roy
2006] results from an elementary space-time averaging of the equations of field dislocation mechanics
[Acharya 2001; 2003; 2004]. It admits constitutive hypotheses on elasticity, the mean (that is, the space-
time average) of signed velocity of dislocation segments (that may be associated with the velocity of
mean ED), and the mean slip rate produced by SD. The phenomenology introduced in the model beyond
conventional plasticity is meager, with the qualitative predictions of the model not depending upon the
phenomenological assumptions. The essential equations of PMFDM are summarized below1.

The (symmetric) stress tensor T satisfies

T = C : Ue, div T = 0, (1)

along with standard traction/displacement boundary conditions. C is the possibly anisotropic fourth
order tensor of linear elastic moduli and Ue is the elastic distortion tensor defined as

Ue
= grad u−U p. (2)

In this equation, u is the total displacement field and U p is the plastic distortion tensor which is
decomposed uniquely into compatible and incompatible parts as

U p
= grad z−χ. (3)

1For motivation behind the formulation the reader is referred to the work of Acharya and Roy [2006].
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Thus, the elastic distortion tensor may be rewritten as,

Ue
= grad(u− z)+χ, (4)

where the field χ cannot be written as a nontrivial gradient. The incompatible part, χ , is given by

curlχ = α, divχ = 0, χn= 0 on ∂B, (5)

where α is the space-time averaged excess dislocation density tensor field and n is the unit normal on
the boundary ∂B of the body. The vector field z whose gradient represents the compatible part of U p

obeys the relation

div(grad ż)= div(α× V + L p), (grad ż)n= (α× V + L p)n on ∂B, (6)

where V and L p need to be specified constitutively. V represents the velocity of the ED and L p represents
that part of the total slip strain rate which is not represented by the slipping produced by the averaged
signed dislocation density (ED). The value of ż is prescribed at an arbitrarily chosen point of the body
and in our case is assumed to vanish without loss of generality. Finally the temporal evolution of the ED
density tensor field is prescribed as

α̇ =− curl S, (7)

where S is the averaged slipping distortion (slip rate) defined as

S := α× V + L p. (8)

2.1. Boundary condition on surface flow. Equation (7) admits boundary conditions on the dislocation
flow [Acharya and Roy 2006]. In general, a natural boundary condition of the form S× n=8, where 8
is a (second-order tensor valued) specified function of time and position along the boundary satisfying
the constraint 8n= 0, is appropriate to model controlled flow at the boundary. A rigid boundary with
respect to slipping may be represented with a zero flow boundary condition S× n = 0 on the entire
boundary. Imposing such a boundary condition can lead to the development of shocks or discontinuities.
A less restrictive boundary condition is the imposition of the dislocation flux, α(V · n), on inflow points
of the boundary (where V · n < 0), along with a specification of L p

× n on the entire boundary. This
condition allows free exit of dislocations without any added specification.

2.2. Constitutive specification. Constitutive specifications for the dislocation-velocity vector, V , and
the slip-distortion rate due to SDs, L p, are required. Simple choices motivated by conventional plasticity
and the thermodynamics of PMFDM (ibid.) are

L p
= γ̇

T ′

|T ′|
, γ̇ ≥ 0, V = v

d
|d|
, v ≥ 0, (9)

where T ′ is the stress deviator, γ̇ and v are nonnegative functions of state representing the magnitudes of
the SD slipping rate and the averaged ED velocity, respectively. The direction of the dislocation velocity
is defined by

d : = b−
(

b · a
|a|

) a
|a| , b : = X(T ′α), bi = ei jk T ′jrαrk,

a : = X
(
tr(T )α

)
, ai =

( 1
3 Tmm

)
ei jkα jk .

(10)
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Thermodynamics indicates b as the driving force for V ; the definition of d is to ensure pressure indepen-
dence of plastic straining in the model. We choose a power law relation for γ̇ as

γ̇ = γ̇0

(
|T ′|
√

2g

)1/m

, (11)

where m is the rate sensitivity of the material, g is the strength of the material, and γ̇0 is a reference
strain rate. The expression for v is assumed to be

v(state)= η2b
(
µ
g

)2
γ̇ (T ′, g), (12)

where µ is the shear modulus, b the Burgers vector magnitude and η = 1/3 a material parameter.
The strength of the material is assumed to evolve according to

ġ =
[
η2µ2b

2(g− g0)
k0|α| + θ0

( gs−g
gs−g0

)]
{|α× V | + γ̇ }, (13)

where gs is the saturation stress, g0 is the yield stress, and θ0 is the stage II hardening rate. The material
parameters gs , g0, µ, b, γ̇0, and m are known from conventional plasticity (Voce law and power-law
hardening). Consequently, k0 is the only extra parameter that needs to be fitted and can be obtained from
experimental grain-size dependence of flow stress results, as shown in [Acharya and Beaudoin 2000;
Beaudoin et al. 2000].

The finite-element discretization for the system of equations above is discussed in [Roy and Acharya
2006]. Here we only summarize the finite-element discretization of (7), which has an extra term in the
weak formulation corresponding to the least-squares finite-element discretization of the inflow boundary
condition on α [Varadhan et al. 2006].

In the following expression, the symbol δ( · ) represents a variation (or test function) associated with
the field ( · ) in a suitable class of functions. An increment of time [t,t+1t] is considered, and fields
without any superscripts refer to values at t +1t and those with the superscript t refer to values at time t .
All spatial fields are discretized by first-order, 8-node (three-dimensional), isoparametric brick elements.
A mixed forward-backward Euler scheme is adopted as∫

B
δαi j (αi j −α

t
i j )dv−1t

∫
B
[δαi j,kαi jv

t
k − δαi j,kαikv

t
j ]dv−1t

∫
B
δαi j st

i j dv+1t
∫
∂Bi

δαi j Fi j da

+1t
∫
∂Bo

δαi jα
t
i j (v

t
knk)da−1t

∫
∂B
δαi jα

t
iknkv

t
j da−1t

∫
B
δαi j,ke jkl L

p
il dv

+1t
∫
∂B
δαi j e jkl L

p
ilnk da+

∫
Binteriors

Ari (δαri +1t[δαri, jv
t
j + δαriv

t
j, j − δαr j, jv

t
i − δαr jv

t
i, j ])dv

+1t
∫
∂Bi

δαi j
(
Fi j −α

t
i j (v

t
knk)

)
da = 0, (14)

where
Ari = αri −α

t
r i +1t[αt

r i, jv
t
j +α

t
r iv

t
j, j −α

t
r j, jv

t
i −α

t
r jv

t
i, j − st

r i + ei jk L p
rk, j ]. (15)

F is the prescribed flux on the inflow boundary (∂Bi ), ∂Bo is the set of outflow/neutral points of the
boundary where V · n≥ 0, and Binteriors refers to the union of the element interiors. δαi j is arbitrary up to
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satisfying any prescribed essential boundary conditions. The term on the last line of (14) is an additional
term that enters the discretization for excess dislocation density evolution for all the computations in
this paper over those described in [Roy and Acharya 2006]. The scheme is consistent even without the
addition of this term; numerical experiments show a better imposition of inflow boundary conditions
with its inclusion.

3. Results and discussion

Unless otherwise mentioned, material parameters used for all the computational experiments are

b = 4.05× 10−4 µm, m = 1.0, gs = 161 MPa, g0 = 17.3 MPa, θ0 = 392.5 MPa, k0 = 20.0.

The reference strain rate is γ̇0 = 1 sec−1. Isotropic elastic constants of the representative material, alu-
minum, are E = 62.78 GPa, ν = 0.3647, where E is the Young’s modulus and ν is the Poisson’s ratio.

A comment on the rate sensitivity value is in order. Our intent here is to model a situation where
dislocations move in unobstructed, free-flight mode in large parts of the body. Under these circumstances,
and with the understanding that rate insensitivity is a manifestation of very fast motions homogenized
in time with near stationary events, it is only reasonable to utilize a rate sensitivity parameter value
representative of linear drag in our simulations.

The initial conditions corresponding to the field equations mentioned in Section 2 are as follows. For
the u field we assume u|t=0 ≡ 0, which is a physically natural initial condition on the displacement field.
Unless otherwise mentioned, we assume that the body is initially ED-free which translates to α|t=0 ≡ 0.
The initial condition on the grad z field is obtained from solving (1) and (5) with u|t=0 ≡ 0 and the value
of z set to zero at a single arbitrary point in the body.

Time-dependent simple-shearing solutions are studied numerically. The imposed boundary conditions
corresponding to such a loading are as follows: displacements on the bottom face are constrained in all
three directions while those on the top, left and right faces are constrained in the x2 and x3 directions only
(see Figure 1). The front and back faces are displacement-constrained in the x3 direction and traction
free in the x1 and x2 directions. The displacements corresponding to a simple shear strain are prescribed

left face (x1 = 0)

top face (x2 = a)
back face (x3 = 0)

right face (x1 = a)

x1

front face (x3 = a)

bottom face (x2 = 0)

ax3

x2

Figure 1. Schematic layout of a typical model geometry.
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through the kinematic boundary condition

u1(x1, x2, x3, t)= d(x2)0̇t (16)

on the nodes of the left, right, top, and bottom faces. Here, d(x2) is the height, from the bottom of the
cube, of the point with coordinates (x1, x2, x3). 0 is the average engineering shear strain given by the
ratio of the applied horizontal displacement of the top surface to the cube height, 0̇ is an applied shear
strain rate of 1 sec−1, and t is time.

All computations are performed on one of two desktop machines with 2 GB and 8 GB RAM, respec-
tively. In the interpretation of results, the symbol τ refers to the nominal (reaction) shear traction on the
top surface of the simulation cell.

3.1. Dislocation source distribution. The effect of physical dimensions of the simulation cell (having a
predefined distribution of SD sources) on the initial yield strength is described in this section. First we
discuss how a Frank–Read source is grossly represented in our framework. In general, a Frank–Read
source produces dislocation loops that cannot be sensed if their size is less than the scale of resolution.
However, once the loop expands up to the scale of resolution, it can be sensed as demonstrated in Figure
2a. In order to numerically simulate (SD) dislocation sources in the framework of PMFDM, the size of
the region representing a source is assumed to be greater than or equal to the scale of resolution (see
Figure 2b). In the interior of the source region there are no EDs due to cancellation in signs during

X
1

0 0.2 0.4 0.6 0.8 1

X
2

0

0.2

0.4

0.6

0.8

1

X 3

0

0.5

1

α
13
(µm

-1
)

0.0019

0.0013

0.0006

-0.0001

-0.0007

-0.0014

-0.0020

(c)

Slip
Planes

(b)

Scale of Resolution,
source region Scale of Resolution

ED also
sensed

slipped
regionExpanding subgrid

loop, No ED
but plastic strain
rate sensed

(a)

Figure 2. Top: physical representation of a Frank–Read source. Bottom left: represen-
tation of a numerically simulated Frank–Read Source. Bottom right: excess dislocation
density at 0 = 0.1% for pattern (a).
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averaging. This corresponds to the physical situation of the dislocation loop not being sensed when
its size is smaller than the scale of resolution. The plastic strain rate corresponding to the motion of
these unresolved dislocations, however, is sensed, and is taken into account through L p. At the interface
between the slipped and unslipped regions, EDs are observed due to the gradient in plastic strain rate (7)
and (8). This observation corresponds to the physical definition of a dislocation loop being sensed when
its size equals or exceeds the scale of resolution. A simple test is performed to demonstrate this idea.
Consider a cubical cell of edge length of 1.0µm and discretized into a finite element grid. The element
at the center is the dislocation source region, as shown in Figure 2b. The cell is unstressed and ED free
initially, with some SD content in the source region. Displacement boundary conditions corresponding
to a simple shear strain of 0.1% are imposed. With the onset of plasticity in the source region, excess
edge dislocations (α13) of opposite signs generated at the subgrid scale of resolution cancel each other,
resulting in zero ED density inside the source region, though a change in the magnitude of L p

12 values
corresponding to these cancelled dislocations is observed. Since L p is zero in nonslipped regions, a
gradient in L p

12 develops at the interfaces of the slipped and nonslipped regions which in turn leads to
the generation of α13 through (7), as shown in Figure 2c. The α13 density generated contributes to flow
in the grid elements not containing sources.

Now we discuss size effects at initial yield in cells having a predefined distribution of dislocation
sources. Two cubical samples with edge lengths of 0.6µm and 3.0µm are considered. The spatial
distribution of dislocation sources is shown in Figure 3. Both cells are discretized into a finite element
grid with equal element size and are equal to the size of a dislocation source region, in order to avoid
any size effect due to the scale of resolution. Displacement boundary conditions corresponding to an
engineering simple shearing strain of 0.3% are imposed on the cells as in (16). First, experiments were
performed in the context of conventional plasticity theory. Conventional plasticity may be recovered
from PMFDM by setting α = 0 for all times and replacing (2) with

Ue
= grad u−U p, U̇ p

= L p. (17)

Figure 3. Schematic layout of position of sources (black spots represents the dislocation sources).
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Figure 4. Size effect in simple shear with a predefined spatial distribution of dislocation
sources, within a conventional plasticity framework.

Since α = 0 in the conventional plasticity framework, nonsource regions are elastic in nature. A size
effect is observed for this case as shown in Figure 4, with smaller being harder. It can be inferred from
dimensional analysis that in the case of a homogeneous material, there is no length scale in the classical
plasticity theory and hence it is not possible to predict size effects in this framework. However, a length
scale emerges when a body consisting of discrete dislocation sources is considered. Dimensional analysis
of τ yields

τ = µ8

(
θ0

µ
,

gs

µ
,

g0

µ
,
0̇

γ̇0
,m, 0,

s
H

)
, (18)

where H denotes the dimension of the body, s is a representative measure of the distance between the
sources (strictly speaking, the size of the sources should also enter as another length-scale parameter),
and 8 is a dimensionless function of the arguments shown. It can be deduced from the relation above that
if s is kept the same and H is changed, a difference in average response is expected. Thus, it is the spatial
layout of dislocation sources that introduces a physical length scale in classical plasticity theory which
is otherwise absent. However, the magnitude of that size effect on an average response utilizing discrete
sources in an otherwise conventional elastoplastic material falls short of what is qualitatively observed in
experiment, indicating the existence of other scale effects and the need for better theory. Nonetheless, this
same phenomenology of dislocation sources carries in PMFDM, but now with a greater effect because of
the generation of ED at all spatial discontinuities of flow (such as source and nonsource grid elements)
and its transport, as well as its accurate accounting in stress response via (1)–(5).

The same numerical experiment is now performed with PMFDM. Accordingly, two cubical cells
having edge lengths of 0.6µm and 3.0µm and a spatial distribution of dislocation sources as shown in
Figure 3, are considered. The area density of sources is identical (0.1) in both cells. The displacement
boundary conditions corresponding to a simple shear strain of 0.8% are applied through (16). The
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Figure 5. Size effect in simple shear with a predefined source pattern, with hardening
rate based on Equation (13) (left) and on Equation (20) (right). The green curves with
knots correspond to the 0.6µm cubes, and the smooth brown curves to the 3.0µm cubes.

nonsource regions can behave in a plastic manner when ED content is transported through them; however,
there is no SD slip rate in these regions.

The average shear stress-strain response, graphed on the left in Figure 5, shows that initial yield
strength strongly depends on the cell size with smaller being harder. The size effect is maintained
throughout the process of deformation in qualitative agreement with experimentally observed trends
[Dimiduk et al. 2005; Greer et al. 2005]. A significant stress drop corresponding to the dislocation activity
developing bursts of plastic strain rate is observed in our results which is absent in the experimental
results of [Uchic et al. 2004] but may be present in the results from [Greer et al. 2005]. This is due to
the fact that numerical experiments performed here correspond to displacement control (similar to those
by Greer et al. [2005]) whereas the experimental results presented in [Uchic et al. 2004; Dimiduk et al.
2005] involved mixed (load and displacement) control. The applied load was not allowed to decrease
during the experiments performed by Uchic et al. [2004] and Dimiduk et al. [2005] and thus, stress
drops are not observed in those studies. The other serrations observed in the experimental results can be
obtained in this setup by incorporating a stochastic constitutive response for the plastic strain rate and
the ED velocity. We have intentionally stayed away from doing so to demonstrate size effects with the
least constitutive input.

In order to understand the cause of size effects in the current framework, dimensional analysis of the
applied, (reaction) nominal stress τ is performed which implies the relation

τ = µ8

(
θ0

µ
,

gs

µ
,

g0

µ
,
0̇

γ̇0
,

b
H
, α0 H,m, 0, k0, η,

s
H

)
, (19)

where α0 is a representative measure of the magnitude of the initial ED density field, s is a representative
measure of the distance between sources, and 8 is a dimensionless function of the arguments shown. The
dimensionless arguments b/H , α0 H , s/H introduce a dependence of average response on the Burgers
vector of the material, the geometric proportion of the body, the initial ED density, and the layout of
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sources. In these series of tests, the response is independent of α0 H as the specimens were initially
ED-free. Due to the change in spatial distribution of dislocation sources (with associated changes in ED
generation), internal stresses may change. Thus, s/H corresponds to the effect of internal stresses of
dislocation distributions on average response. The argument (b/H ) corresponds to the size effects due
to dislocation mobility (12) and strain hardening (13). To evaluate the dependence of the response on
internal length scale in strain hardening, the following equation is used for strength rate instead of (13):

ġ = θ0

( gs−g
gs−g0

)
{|α× V | + γ̇ }. (20)

Use of such an equation removes all excess hardening by the ED evolution and interactions as can be
seen from the following expression:

h = dg
d P
= θ0

( gs−g
gs−g0

)
, P =

∫
{|α× V | + γ̇ }dt . (21)

Nonetheless, significant size effects are observed as shown in Figure 5, right. Thus, from these sets
of computational experiments it may be inferred that a strong size effect at initial yield in PMFDM is
primarily due to length scales induced by a discrete SD source distribution and the ED mobility, but not
due to strain hardening in the mean-field or stage II sense. This finding is qualitatively consistent with the
recent reports by Norfleet et al. [2008] and Rao et al. [2008], both of which show a potent size effect in
microcrystal deformation that is associated with the instantaneous mobile dislocation density relative to
the imposed loading conditions. Further, the result does not preclude other hardening phenomena, such
as the absence of sources as suggested by Greer et al. [2005], or the hardening of sources as suggested by
Parthasarathy et al. [2006], from providing alternate or additional hardening mechanisms, respectively.
Those effects, while not investigated in the present study, may be represented via alternative selections
of the constitutive assumptions of (11)–(13).

Effect of dynamic instability. To study the possibility of dynamical sensitivity of the stress-strain re-
sponse at initial yield, additional numerical experiments were performed, each corresponding to a small
perturbation of the order of machine precision in the boundary condition for displacement. The spatial
distribution of sources is assumed to be similar to that used in Section 3.1. It is observed that this small
magnitude of perturbation in boundary condition results in a significant difference in the stress-strain
response as shown in the top row of Figure 6. There is about 34% variation in the shear stress at 0.8%
applied strain for the cell having an edge length of 0.6µm and 16% for the cell having an edge length
of 3.0µm. The mean shear stress-strain response for each cell size is shown in Figure 6, bottom. The
mean values show a cell-size dependence with smaller being harder.

The mechanical response at the macroscopic scale is insensitive to minor perturbations. At the macro-
scopic scale, sources are considered to be present everywhere in the body. Motivated by this fact, numer-
ical experiments were performed with sources present everywhere in the body, that is, L p is set active
in the entire cell. The four simple shear experiments with varying boundary condition perturbations
were performed on the small and big cells. It was observed that in the case of plastically unconstrained
cells the stress-strain response up to 0.8% simple shear strain is insensitive to such perturbation in the
boundary conditions.
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Figure 6. Variability in stress-strain response in simple shear with perturbation in
boundary conditions. Top left: 0.6µm, Top right: 3.0µm, Bottom: mean response
for each of the two sizes.

From these experiments and results presented in [Roy and Acharya 2006] pertaining to the effect of
size on stability of stress-strain response in PMFDM, one may infer that discreteness in source distri-
bution and decreasing cell size lead to dynamical sensitivity to perturbations in this model. Note that
a qualitatively similar sensitivity to perturbations was found in DD simulations by Deshpande et al.
[2001]. Interestingly, there are experimental observations of drastically different responses in samples
of the same size when subjected to a prescribed deformation [Uchic et al. 2004]. However, it is not yet
possible to deduce from those experiments the degree to which such variation results from differences in
initial dislocation configurations and how much may result from small perturbations in the testing. The
existence of such intrinsic instability in flow response also emphasizes the importance of the stochastic
nature of the material response and the need to average over large numbers of samples to glean the typical
material behavior at small scales.

Variation of microstructure. It was deduced from dimensional analysis performed in Section 3.1 that the
stress-strain response of PMFDM material depends upon the dimensionless argument s/H . Here we
investigate the effect of changes in the spatial distribution of sources in a cell of fixed size containing a
fixed source density. Calculations for a cubic cell having an edge length of 3µm were performed with
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Figure 7. Variability in stress-strain response with change in the source pattern.

three patterns of source distribution, as shown in Figure 7. No perturbations were imposed in this case.
The figure shows that average stress at 0.8% applied strain varies approximately from 43 MPa to 180 MPa
with varying source pattern. This demonstrates the variation of mechanical response of same-sized cells
with a change in microstructure.

Since cells (a) and (c) in Figure 7 are geometrically equivalent (by a 180 degree rotation about the
x3 direction, so the top face of (a) corresponds to the bottom face of (c)), the intuitive expectation is
to get the same response in these cases. Reaction forces, however, are measured at the top faces of all
cells. The cause for this difference in the reaction force for the two different source patterns is due to
the presence of nonzero tractions in the x1-direction on the left and right faces of the cube due to the
imposed displacement boundary conditions for simple shear. Accordingly, the reaction forces on the top
need not be equal in magnitude to the reaction forces at the bottom of the cell. The horizontal reaction
force on the top face of (a) was indeed identical to the horizontal reaction at the bottom face of (c) as
required by symmetry, and likewise for the bottom face of (a) and the top face of (c). The top and bottom
face reactions would have to be equal in magnitude from statics for both (a) and (c) if the side faces of
the cube were traction free in the 1-direction; this was verified in our numerical experiments.

3.2. Size effects due to initial ED distribution. Low energy dislocation microstructures are observed in
materials. Such structures frequently consist of an array of like-signed dislocations having a low energy
arrangement, such as a tilt or twist boundary. Here we investigate the variation of initial yield strength in
cells having a predefined spatial distribution of initial ED density of a common sign. Two cubical cells
having edge lengths of 0.6µm and 3µm are considered. The spatial distribution of initial ED density is
shown in Figure 3 for an excess edge-dislocation density of α23 =−2.025× 10−3 µm−1 prescribed on
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Figure 8. Left: variation in average of |α| over the whole domain with time. Right: size
effect in simple shear with a nonzero initial excess dislocation density.

the nodes of shaded elements. In order to obtain an equilibrium state of initial ED density distribution,
cells are relaxed in time without any external load. The volume average of |α| is used as a measure of
ED content in the cell. Equilibrium is considered to be attained at t = 0.03 sec when this measure attains
a constant value with respect to time, as shown in Figure 8, left. The strength of the material is assumed
to be constant throughout the deformation process, that is, ġ = 0 in (13). Once equilibrium is attained,
simple shear boundary conditions corresponding to a strain of 0.3% are imposed on the cells. The average
shear stress at 0.3% strain for the cell having an edge length of 0.6µm is 2.5 times higher than that of
cell having a 3µm edge length, as shown in Figure 8, right. Next, a similar test was performed with
an initially-prescribed ED density of the same magnitude and opposite in sign. A reversed size effect
is observed in this test wherein the larger cell shows a harder response (see again Figure 8b). One can
infer from the dimensional analysis performed in (19), that the average response of the material depends
upon α0 H for these cases. With a prescribed α0 among different sized cells a size effect is expected
but it is not possible to predict the sense of size effect based on dimensional analysis alone. Due to the
complexity and difference in initial ED distribution in these examples, a simpler problem is studied to
understand the variation in the sense of size effect depending on the sign of initial ED density. For this
simpler case, an initial excess edge-dislocation density α23 = 2.025× 10−3 µm−1 is prescribed at the
center of two cubic cells having edge lengths of 0.6µm and 3µm, as shown in Figure 9. The cells are
relaxed in time to obtain corresponding equilibrated ED arrangements. Then, displacement boundary
conditions corresponding to an engineering simple shearing strain of 0.3% are imposed on the cell. The
average shear stress-strain response demonstrates that the smaller cell is indeed harder than the large one.
However, a reversed size effect is observed with a change in sign of initial excess dislocation density
(see Figure 9). This phenomenon is explained as follows.

Consider a traction free finite cubical block containing a dislocation. In order to understand the
resulting stress distribution in the block, we first note that the equations for determining the stress field
of a specified ED field in PMFDM are linear; thus supersposition applies. Consider now the stress
field of a dislocation in an infinite medium, situated as in Figure 9. This infinite medium stress field
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Figure 9. Size effect in simple shear with a nonzero initial excess dislocation density
and the new pattern as shown in the inset.

naturally induces tractions on the surface of the finite crystal. Thus, image tractions equal in magnitude
and opposite in sign of those induced by the dislocation need to be present on the external surface of the
block to satisfy the traction free boundary conditions. Therefore, the initial stress field of a traction free
finite crystal in equilibrium can be considered as a superposition of the internal stress due to initial ED
distribution in the linear elastic infinite medium and the image stress required to satisfy the traction-free
boundary conditions. When an external stress is applied, the stress at any point in the finite body is a
sum of the initial stress and the applied stress due to boundary conditions (again using superposition)
at that point. In the regions having an initially prescribed ED density, less applied stress is required to
cause flow if both the initial stress and the applied stress are of the same sign as compared to the case
when both are of opposite sign. Now, consider two cubic blocks of different sizes and same initial ED
distribution. The magnitude of image stress corresponding to the (1/r) fundamental stress field of a
dislocation is higher for the smaller block than the larger block. Accordingly, in the case of the external
applied stress being the same sign as the initial stress in the dislocation core region, the smaller cell yields
before the large cell (for a constant yield stress). If the sign of the initial ED density is now changed
with the direction of applied stressing remaining the same, the initial stress changes sign, the larger cell
has a smaller-in-magnitude initial stress that subtracts from the applied stress and consequently yields
later than the smaller cell.

4. Conclusions

A finite element implementation of PMFDM has been shown to predict size effects at initial yield in
plasticity of micron-scale simulation cells. The results are qualitatively consistent with experimental
observation in [Uchic et al. 2004; Dimiduk et al. 2005; Greer et al. 2005], as well as with recent discrete
dislocation simulations of Weygand et al. [2007], Senger et al. [2008], Tang et al. [2007; 2008], and Rao
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et al. [2008]. In the PMFDM framework, size effects are caused by the internal stress of the dislocation
distribution, its coupling to the imposed deformation conditions including deformation rate, and natural
length scales that enter the theory through strain hardening and the ED velocity. However, an important
observation from the computational experiments presented in this paper is that length scales associated
with the internal stress due to discrete source patterns and those associated with the plastic strain rate of
ED, are solely sufficient for size effects at initial yield within this model. We observe a sensitivity of the
overall mechanical response to the presence of discrete source volumes or regions. Size-effect reversals
under appropriate circumstances are also observed and explained. For the most part, such sample-scale
kinematical size effects have not been treated in discrete dislocation (DD) simulations (notable exceptions
being those following the Needleman–Van der Giessen formulation of discrete DD), and have only been
peripherally considered in explanations of the widening set of size-effect experiments.
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FORCED VIBRATIONS OF A NONLINEAR OSCILLATOR WITH WEAK
FRACTIONAL DAMPING

YURIY A. ROSSIKHIN, MARINA V. SHITIKOVA AND TATIANA SHCHEGLOVA

This article deals with force-driven vibrations of nonlinear mechanical oscillators whose constitutive
equations involve fractional derivatives, defined as fractional powers of the conventional time-derivative
operator. This definition of fractional derivatives enables one to analyze approximately the vibratory
regimes of the oscillator. The assumption of small fractional derivative terms allows one to use the
method of multiple time scales, whereby a comparative analysis of the solutions obtained for different
orders of low-level fractional derivatives and disturbing force terms can be carried out. The relationship
between the fractional parameter (order of the fractional operator) and nonlinearity manifests itself in full
measure when the orders of the small fractional derivative term and of the cubic nonlinearity appearing
in the oscillator’s constitutive equation coincide.

1. Introduction

Fractional derivatives have been useful in describing, among other things, the frequency-dependent damp-
ing behavior of nonlinear structural systems [Padovan and Sawicki 1998; Rossikhin and Shitikova 1997a;
1998; 2000; 2003; 2006; Li et al. 2003; Seredyńska and Hanyga 2005; Nasuno et al. 2006]. Since the
methods of integral transformations are unusable in nonlinear problems, different perturbation techniques
or numerical methods must be used for investigating vibrations of such nonlinear structures.

The dynamics of the fractionally damped Duffing oscillator has been examined by several authors
[Padovan and Sawicki 1998; He 1998; Sheu et al. 2007; Seredyńska and Hanyga 2000; Gao and Yu 2005;
Singh and Chatterjee 2006; Wahi and Chatterjee 2004; Chen and Zhu 2009; Atanackovic and Stankovic
2008]. In particular, a Duffing-like oscillator with positive linear stiffness and weak damping defined
by a fractional derivative has been studied in [Padovan and Sawicki 1998] using an energy-constrained
Lindstedt–Poincaré perturbation procedure that involves a diophantine version of the fractional operator
powers. The influence of fractional damping on the frequency amplitude response has been examined
when the oscillator is subjected to the action of an external harmonic force.

The case of free vibrations with a half-order Riemann–Liouville fractional derivative was analyzed
in [He 1998] using variational iteration method, allowing the author to obtain an approximate analytical
solution.

The occurrence and nature of chaotic motion in a single-degree-of-freedom system described by a
Duffing-like equation with negative linear stiffness have been studied using different numerical methods
in [Sheu et al. 2007], including the use of Caputo-type fractional derivatives. The Galerkin projection

Keywords: fractionally damped oscillator, nonlinear fractional oscillator, method of multiple time scales.
This research has been made possible in part by a joint Grant from the Russian Foundation for Basic Research No. 07-01-92002-
HHC-a and the National Science Council of Taiwan No. 96WFA2500005.
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method and the finite element method were adopted in [Singh and Chatterjee 2006] for solving a similar
equation but with the dissipative force modeled via Riemann–Liouville fractional derivatives of half-
order, while the possibilities of using other values of the fractional parameter were also discussed.

The method of averaging was applied in [Wahi and Chatterjee 2004] for investigating the equations
with a different type of small damping including Riemann–Liouville half-order fractional derivative terms
and delayed terms, as well as in [Chen and Zhu 2009] for treating the case of combined external harmonic
and parametric white noise excitations.

In [Rossikhin and Shitikova 2009], departing from earlier practice in the literature, we suggested an
approximate approach to the analysis of free vibrations of mechanical oscillators whose constitutive
equations involve fractional derivatives. The approach is based on the representation of the fractional
derivative as a fractional power of the ordinary time derivative operator d/dt , a representation typically
given by the equality ( d

dt

)γ
x(t)= Dγ

+x(t) (1-1)

(see formula (5.82) of [Samko et al. 1993]), where

Dγ
+x(t)=

d
dt

∫ t

−∞

x(t − t ′)dt ′

0(1− γ)t ′γ
(1-2)

is the Riemann–Liouville fractional time-derivative. Since the lower limit of the integral here is −∞,
the equality in (1-1) allows one to use the Liouville representation of the fractional derivative applied to
the exponential function:

Dγ
+e

iωt
= (iω)γeiωt . (1-3)

This latter formula is no longer valid when the lower limit of integration is 0. For this case there exists
another formula (see Appendix for details) based on the Riemann–Liouville fractional derivative

Dγ
0+e

iωt
=

d
dt

∫ t

0

eiω(t−t ′)dt ′

0(1− γ)t ′γ
= (iω)γeiωt

+
sin γπ
π

∫
∞

0

uγe−ut du
u+ iω

, (1-4)

which turns into (1-3) when t→+∞.
If one uses the exact formula (1-4) for the fractional differentiation of the exponent, in many cases

the integral appearing in (1-4) can also be neglected compared with the first term in the same formula
[Rossikhin and Shitikova 1997a; 1997b; 1998; 2000; 2003], since this integral decays rapidly with time.
For example, if γ is small, while the frequency ω lies within the range of interest in engineering, the
integral on the right-hand side of (1-4) can be ignored, what allows one to use formula (1-3).

Calculations of the magnitude of the fractional parameters carried out on the basis of experimental
data [Abdel-Ghaffar and Scanlan 1985] show that this value for suspension bridges is of the order of
0.05–0.1 [Rossikhin and Shitikova 1998; 2008]. The value γ = 0.118 was reported in [Giovagnoni and
Berti 1992] when studying the experimental response of a deformable single-link mechanism, which
was realized by means of a brass bar fixed onto a vertical shaft. The fractional parameters γ1 = 0.1991
and γ2 = 0.2499 were identified in [Schmidt and Gaul 2006] from experimental measurements of a
cantilever made of DelrinTM. The value γ = 0.28 was obtained in [Cooke and Keltie 1987] in a beam
impact experiment. A series of experiments measuring the frequency responses of viscoelastic rods of
materials like teflon, polyamide, polyurethane, polyvinyl chloride, and polyethylene was reported in
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[Schäfer 2000; Schäfer and Seifert 2002], where it was found that the fractional parameter lies in the
range of 0.086–0.11. During flexible polyurethane foam modeling via a nonlinear fractional oscillator
in [Deng et al. 2003], viscoelastic parameters for automotive seating applications were identified with a
fractional parameter equal to 0.019.

The evaluation of the second term in (1-4) is of great importance only during the consideration of linear
vibrations, since ignoring this term allows one to solve the equation of linear vibrations of a fractionally
damped oscillator

ẍ +ω2
0τ
γ
σ

( d
dt

)γ
x(t)+ω2

0x = 0, (1-5)

where ω2
0 = E0m−1, E0 is the spring rigidity, m is the oscillator’s mass, and τσ is the relaxation time,

with the help of the Euler substitution as done in [Rossikhin and Shitikova 2009]:

x(t)= CeλT . (1-6)

Indeed, substituting (1-6) into (1-5) we obtain the characteristic equation

λ2
+ω2

0τ
γ
σλ

γ
+ω2

0 = 0, (1-7)

which possesses two complex conjugate roots [Rossikhin and Shitikova 1997b]

λ1,2 =−α± iω, (1-8)

where α and ω are the damping coefficient and the frequency of vibrations, respectively.
The solution of (1-5) with due account for (1-8) can be written as [Rossikhin and Shitikova 2009]

x(t)= Ae−αt cos(ωt +ϕ), (1-9)

where A and ϕ are arbitrary constants to be determined from the initial conditions.
The Green’s function for (1-5) with the second term of (1-4) taken into consideration is written in the

form [Rossikhin and Shitikova 1997b]

x(t)= A0(t)+ Ae−αt cos(ωt +ϕ), (1-10)

where A0(t) is the term governing the drift of the position of equilibrium.
In the present paper, the approach suggested in [Rossikhin and Shitikova 2009] for the analysis of free

vibrations of nonlinear mechanical oscillators is generalized to the case of forced vibrations. It will be
shown that the second term in (1-4) can altogether be ignored in nonlinear problems, since it does not
affect the first approximations to be constructed here using the method of multiple time scales.

The need for studying fractional oscillators is motivated by two reasons: first, engineers often use
one-degree-of-freedom models as a first approximation or as a benchmark before preceding to more
intricate models or multi-degree-of-freedom structural systems (for example, as the simplest model of a
vibration-isolation system [Koh and Kelly 1990; Makris and Constantinou 1991; Hwang and Ku 1997;
Aprile et al. 1997; Munshi 1997; Hwang and Hsu 2001; Gusella and Terenzi 2001; Sjöberg and Kari
2003]), and second, the study of vibrations of more complex structures can be reduced to vibrations of a
set of fractional oscillators [Giovagnoni and Berti 1992; Rossikhin and Shitikova 2001; 2004; Agrawal
2004; Schäfer and Kempfle 2004].
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In all the examples considered below the emphasis will be on investigating the influence of a small
external force on vibratory motion, because many of our recent publications have already examined
the influence of the order γ of the fractional derivative on nonlinear free damped vibrations of such
fractionally damped structures as oscillators [Rossikhin and Shitikova 2009], two-degree-of-freedom
mechanical systems [2000], plates [2003; 2006], and suspension bridges [1998; 2008]. We have shown
that the fractional parameter plays the role of a structural parameter of the whole system and influences the
character of the system’s damping coefficient as a function of the natural frequencies of linear vibrations.
For example, the power relationships obtained in [Rossikhin and Shitikova 1998; 2008] between the
damping coefficient of the system and its natural frequencies of linear vibration correlate well with the
experimental data describing the natural frequency dependence of the damping ratio for the Golden
Gate suspension bridge [Abdel-Ghaffar and Scanlan 1985]. When the fractional parameter tends to
one, i.e., when the fractional derivative transforms into the common derivative with respect to time, the
system’s damping coefficient does not depend on the natural frequencies of linear vibrations, which is
in contradiction with experimental data. Thus, nonlinear viscoelastic models with fractional derivatives
with respect to time are to be preferred over models with integral derivatives for describing the damping
features of a combined suspension system.

2. Problem formulation

We will consider force-driven vibrations of the Duffing-like oscillator with positive linear stiffness and
damping defined by a fractional derivative (1-1):

mẍ(t)+β
( d

dt

)γ
x(t)+ k1x(t)+ k2x(t)3 = f cos(ωt), (2-1)

where x , β, k1, and k2 are, respectively, the oscillator’s displacement, damping coefficient, linear stiffness,
and small parameter of nonlinear stiffness, f is the force amplitude, and ω is its frequency.

Dividing (2-1) by the mass and introducing dimensionless values

t̃ = t�0, x̃ =
x
x0
, ω̃ =

ω

�0
, ω̃2

0 =
ω2

0

�2
0
, (2-2)

where

ω2
0 =

k1

m
, �0 =

√
g
l0
, x0 =

mg
k1
=

g
ω2

0

(g being the acceleration of gravity and l0 the undeformed spring length) yields

¨̃x +
β

m
�
γ−2
0

( d
dt̃

)γ
x̃ + ω̃2

0 x̃ +
k2

m
x2

0�
−2
0 x̃3

=
f

m
�−2

0 x−1
0 cos(ω̃t̃ ), (2-3)

which we then turn into the dimensionless form of Equation (2-1):

¨̃x + εkµ
( d

dt̃

)γ
x̃ + ω̃2

0 x̃ + k̃2 x̃3
= εk+1 F cos(ω̃t̃ ) (k = 1 or 2), (2-4)

where

εkµ=
β

m
�
γ−2
0 , k̃2 =

k2

m
x2

0�
−2
0 , εk+1 F =

f
m
�−2

0 x−1
0 .
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Here ε is a small parameter which is of the same order of magnitude as the amplitudes, and µ and F are
finite values. The choice of k in (2-4) depends on the order of smallness of the exciting force amplitude
and viscosity coefficient.

To lighten the notation, tildes over dimensionless values will be omitted henceforth.
We will assume that the linear natural frequency ω0 is approximately equal to the frequency of the

external excitation ω, i.e.,
ω0 ≈ ω. (2-5)

3. Method of solution

An approximate solution of (2-4) for small amplitudes varying weakly with time can be represented by
an expansion in terms of different time scales in the following form [Nayfeh 1973]:

x(t)= εx1(T0, T1, T2, . . . )+ ε
2x2(T0, T1, T2, . . . )+ ε

3x3(T0, T1, T2, . . . )+ · · · (3-1)

Here, Tn = ε
nt (n = 0, 1, 2, . . . ) are new independent variables, among them: T0 = t is a fast scale,

characterizing motions with ω and the natural frequency ω0, and T1 = εt and T2 = ε
2t are slow scales

characterizing the modulations of the amplitude and phase.
Recall that the first, the second and fractional derivatives are defined by

d
dt
= D0+ εD1+ ε

2 D2+ · · · ,
d2

dt2 = D2
0 + 2εD0 D1+ ε

2 (D2
1 + 2D0 D2

)
+ · · · ,( d

dt

)γ
= (D0+ εD1+ ε

2 D2+ · · · )
γ
= Dγ

++ εγDγ−1
+ D1+

1
2 ε

2γ
(
(γ− 1)Dγ−2

+ D2
1 + 2Dγ−1

+ D2
)
+ · · · ,

where Dn = ∂/∂Tn , and Dγ
+, Dγ−1

+ , Dγ−2
+ , . . . are the Riemann–Liouville fractional time derivatives:

Dγ−n
+ x =

d
dt

∫ t

−∞

x(t − t ′)dt ′

0(1− γ+ n)t ′γ−n (n = 0, 1, 2, . . . ).

Using this and substituting (3-1) into (2-4), after equating the coefficients at equal powers of ε, we are
led to a set of recurrence equations to various orders:

to order ε:
D2

0 x1+ω
2
0x1 = 0, (3-2)

to order ε2:
D2

0 x2+ω
2
0x2 =−2D0 D1x1−µ(2− k)Dγ

+x1+ (2− k)F cosωT0 (3-3)

to order ε3:

D2
0 x3+ω

2
0x3 =−2D0 D1x2−

(
D2

1 + 2D0 D2
)

x1−µ(2− k)Dγ
+x2

−µγ(2− k)Dγ−1
+ D1x1−µ(k− 1)Dγ

+x1− k2x3
1 + (k− 1)F cosωT0. (3-4)

The general solution of (3-2) has the form

x1 = A1(T1, T2)eiω0T0 + Ā1(T1, T2)e−iω0T0, (3-5)

where A1 and Ā1 are yet unknown complex conjugate functions.
For further analysis we need to specify the order of weak damping and external excitation.
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3A. Viscosity of the order of ε. Consider first the case where the viscosity is of the order of ε. Then
(2-4) reduces to

ẍ + εµ
( d

dt

)γ
x +ω2

0 x + k2 x3
= ε2 F cos(ωt). (3-6)

Substituting (3-5) in the right-hand side of (3-3) with k = 1 and taking (1-4) into account, we obtain

D2
0 x2+ω

2
0x2=−2iω0

( 1
2(iω0)

γ−1µA1+ D1 A1
)

eiω0T0+2iω0
( 1

2(−iω0)
γ−1µ Ā1+ D1 Ā1

)
e−iω0T0

+
1
2 F(eiωT0 + e−iωT0)−µA1

sin γπ
π

∫
∞

0

uγe−uT0du
u+ iω0

−µ Ā1
sin γπ
π

∫
∞

0

uγe−uT0du
u− iω0

. (3-7)

The functions exp(±iω0T0) on the right-hand side of (3-7) produce secular terms, so the coefficients
affecting these functions must be made to vanish. Taking (2-5) into account, we have as a result

D1 A1+
1
2(iω0)

γ−1µA1−
F

4iω0
= 0, (3-8)

whence it follows that

A1(T1, T2)= a1(T2) exp
(
−

1
2(iω0)

γ−1µT1
)
+

F
2µ(iω0)γ

, (3-9)

where a1(T2) is yet unknown function.
In view of (3-9), Equation (3-7) takes on the form

D2
0 x2+ω

2
0x2 =−µ

sin γπ
π

∫
∞

0
uγe−uT0

(
A1

u− iω0

u2+ω2
0
+ Ā1

u+ iω0

u2+ω2
0

)
du. (3-10)

Writing the function A1(T1, T2) defined by (3-9) and its complex conjugate Ā1(T1, T2) as

A1 = a+ ib, Ā1 = a− ib (3-11)

and substituting (3-11) into (3-10) yields

D2
0 x2+ω

2
0x2 =−2µ

sin γπ
π

f (T0, T1, T2), (3-12)

where

f (T0, T1, T2)=

∫
∞

0

uγ(au+ bω0)

u2+ω2
0

e−uT0du. (3-13)

Then the solution of (3-12) has the form

x2 = A2(T1, T2)eiω0T0 + Ā2(T1, T2)e−iω0T0 +C(T0, T1, T2)eiω0T0 +C(T0, T1, T2)e−iω0T0, (3-14)

where A2 and Ā2, and C and C are yet unknown complex conjugate functions. The first two terms of
(3-14) represent the general solution of the homogeneous part of (3-12), while the second pair of terms
is the particular solution of the inhomogeneous equation (3-12).

Substituting the particular solution from (3-14) in (3-12), we find

C(T0, T1, T2)=−2µ
sin γπ
π

∫ T0

0
e−2iω0T ′0 dT ′0

∫ T ′0

0
f (T ′′0 , T1, T2)eiω0T ′′0 dT ′′0 . (3-15)
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Substituting (3-5), (3-9), (3-14), and (3-15) in the right-hand side of (3-4) with k = 1, we are led to the
equation for determining x3. Eliminating the terms that produce secular terms, we obtain the solvability
condition

D2a1(T2)+ a1

(
1
8µ

2(1− 2γ)(iω0)
2γ−3
− κ

3k2 F2

4µ2ω
2γ+1
0

)
= 0,

whence it follows that

a1 = a11 exp
(
−

1
8µ

2(1− 2γ)(iω0)
2γ−3
+ κ

3k2 F2

4µ2ω
2γ+1
0

)
T2, (3-16)

where a11 is a constant to be determined from the initial conditions and κ = i cos 2γπ + sin 2γπ .
Considering (3-16), the coefficients a and b appearing in the expression (3-13) of f (T0, T1, T2) take

the form

a(T1, T2)= a11 exp
(
−

1
2µT1ω

γ−1
0 sin

( 1
2γπ

)
+

1
8µ

2T2(1− 2γ)ω2γ−3
0 sin γπ

)
× cos

(
1
2µT1ω

γ−1
0 sin

( 1
2γπ

)
+

1
8µ

2T2(2γ−1)ω2γ−3
0 cos γπ +

3k2 F2

4µ2ω
2γ+1
0

T2 cos 2γπ
)

+
F
µω

γ
0

cos
γπ

2
, (3-17)

b(T1, T2)= a11 exp
(
−

1
2µT1ω

γ−1
0 sin

(1
2γπ

)
+

1
8µ

2T2(1− 2γ)ω2γ−3
0 sin γπ

)
× sin

(
1
2µT1ω

γ−1
0 sin

( 1
2γπ

)
+

1
8µ

2T2(2γ−1)ω2γ−3
0 cos γπ +

3k2 F2

4µ2ω
2γ+1
0

T2 cos 2γπ
)

−
F
µω

γ
0

sin
γπ

2
, (3-18)

Combining (3-9) and (3-16) with (3-5) yields

x1=

[
a11 exp

(
−

1
8 µ

2(1−2γ)(iω0)
2γ−3
+κ

3k2 F2

4µ2ω
2γ+1
0

)
T2 exp

(
−

1
2(iω0)

γ−1µT1
)
+

F
2µ(iω0)γ

]
× exp(iω0T0)+ c.c., (3-19)

where c.c. stands for the complex conjugate to the preceding terms.
Reference to (3-19) shows that the second term of formula (1-4) does not affect the solution within

the limits of this approximation.
Limiting ourselves to the first term in (3-1) with due account for (3-19), we find the solution of (3-6)

in the form

x = ε
(

a0e−αt cos�t +
F
µω

γ
0

cos
(
ω0t − 1

2γπ
))
, (3-20)

where we have introduced the quantities a0 = 2a11,

α = 1
2εµω

γ−1
0 sin 1

2γπ
(
1+ 1

2εµ(2γ− 1)ωγ−2
0 cos 1

2γπ
)
− ε2 3k2 F2

4µ2ω
2γ+1
0

sin 2γπ, (3-21)
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and

�= ω0

(
1+ 1

2εµω
γ−2
0 cos 1

2γπ +
1
8ε

2µ2(2γ− 1)ω2(γ−2)
0 cos γπ + ε2 3k2 F2

4µ2ω
2(γ+1)
0

cos 2γπ
)
. (3-22)

Reference to (3-20) shows that the solution involves two parts: the first corresponds to the damping
vibrations and describes the transient process, while the second one is nondamping in character and de-
scribes forced vibrations with the frequency of the exciting force and with the phase difference depending
on the fractional parameter γ. Note that in the first term of (3-20) the amplitude of the external force F
does not affect the damping coefficient α (3-21), while it weakly influences the nonlinear frequency �
of vibrations (3-22).

When γ = 1, Equation (3-20) goes over into the equation describing vibrations of the viscoelastic
Duffing oscillator with ordinary Kelvin–Voigt constitutive relations, i.e.,

x = ε

{
a0e−εµt/2 cosω0

[
1−

ε2µ2

4ω2
0

(
1
2
−

3k2 F2

µ4ω2
0

)]
t +

F
µω0

cos
(
ω0t − π

2

)}
. (3-23)

It can be noted that if in the right-hand part of (3-6) one takes sinωt instead of the cosine function,
then the first term in the solution remains unchanged, while in the second term of (3-20) or (3-23) the
cosine function should be simply substituted with the sine function.

3B. Viscosity of the order of ε2. Now let us consider vibrations of a nonlinear oscillator putting k = 2
in the equation of motion (2-4):

ẍ + ε2µ
( d

dt

)γ
x +ω2

0x + k2x3
= ε3 F cosωt. (3-24)

Substituting (3-5) into the right-hand side of (3-3) with k = 2, we obtain

D2
0 x2+ω

2
0x2 =−2iω0 D1 A1 exp (iω0T0)+ c.c. (3-25)

To eliminate circular terms in (3-25), it is necessary to vanish to zero the coefficient standing at
exp (iω0T0), i.e.,

D1 A1(T1, T2)= 0,

whence it follows that A1 is T1-independent.
Then the general solution of (3-25) has the form

x2 = A2(T1, T2)eiω0T0 + Ā2(T1, T2)e−iω0T0 . (3-26)

Substituting (3-5) and (3-26) in the right-hand side of (3-4) with k = 2 and considering formula (1-4)
and condition (2-5), we are led to this equation for determining x3:

D2
0 x3+ω

2
0x3 =−2iω0 D1 A2 exp (iω0T0)− k2 A3

1 exp (3iω0T0)

−
(
2iω0 D2 A1+µ(iω0)

γA1+ 3k2 A2
1 Ā1−

1
2 F
)

exp (iω0T0)−µA1
sin γπ
π

∫
∞

0

uγe−uT0du
u+ iω0

+ c.c. (3-27)

From (3-27) it is evident that its last term does not generate secular terms and thus does not affect the
solution constructed thereafter.
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Eliminating secular terms in (3-27), we obtain the solvability conditions

D1 A2(T1, T2)= 0, (3-28)

2iω0 D2 A1+µ(iω0)
γA1+ 3k2 A2

1 Ā1−
1
2 F = 0. (3-29)

From (3-28) it follows that A2 is independent of T1.
We multiply (3-29) by Ā1 and write its complex conjugate. Separately adding and subtracting together

the two conjugate equations, we find

3k2ω
−1
0 A2

1 Ā2
1+ i( Ā1 D2 A1− A1 D2 Ā1)+ 2µωγ−1

0 A1 Ā1 cos π2 γ−
F

4ω0
(A1+ Ā1)= 0, (3-30)

i( Ā1 D2 A1+ A1 D2 Ā1)+ 2µiωγ−1
0 A1 Ā1 sin π

2 γ+
F

4ω0
(A1− Ā1)= 0. (3-31)

Representing the function A1(T2) in the polar form

A1 = a exp(iϕ),

we obtain from (3-30) and (3-31)

ϕ̇−
1
2
δ−

3k2

2ω0
a2
+

1
4ω0

Fa−1 cosϕ = 0, (a2)̇+ sa2
+

1
2ω0

Fa sinϕ = 0, (3-32)

where the superscript dot denotes the T2-derivative, δ = µωγ−1
0 cos π2 γ, and s = µωγ−1

0 sin π
2 γ.

Dividing the second equation in (3-32) by a we obtain

ȧ+ 1
2 sa+

1
4ω0

F sinϕ = 0 (3-33)

and then integrating (3-33), we obtain

a =
(

a0−
F

4ω0

∫ T2

0
esT2/2 sin

(
ϕ(T2)

)
dT2

)
e−sT2/2 (3-34)

To obtain the equation for determining the function ϕ(T2), rewrite (3-32)2 as

(ln a2)̇=−s−
F

2ω0
a−1 sinϕ, (3-35)

multiply it by cosϕ and add it to (3-32)1 multiplied by −sinϕ. Considering (3-35), as a result we obtain

(cosϕ)̇−
(

a0−
F

4ω0

∫ T2

0
esT2/2

√
1− cos2 ϕ dT2

)−1 F
4ω0

esT2/2 cosϕ
√

1− cos2 ϕ

+

(
a0−

F
4ω0

∫ T2

0
esT2/2

√
1− cos2 ϕ dT2

)2 3k2

2ω0
e−sT2

√
1− cos2 ϕ+ 1

2 δ
√

1− cos2 ϕ = 0. (3-36)

Integrating (3-36), we find the T2-dependence of cosϕ, and then substituting the function sinϕ(T2)

thus found in (3-35), we can obtain T2-dependence of a.
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To find the functions ϕ(T2) and a(T2), we use another approach. Dividing (3-32)1 by (3-33), we get

dϕ
da
=

F(4ω0)
−1a−1 cosϕ− 3k2(2ω0)

−1a2
− 2−1δ

2−1sa+ F(4ω0)−1 sinϕ
(3-37)

or

tanχ(F)=
dϕ

d(ln a)
=

F(4ω0)
−1 exp(−ln a) cosϕ− 3k2(2ω0)

−1 exp(2 ln a)− 2−1δ

2−1s+ F(4ω0)−1 exp(−ln a) sinϕ
(3-38)

From (3-38) first we find the function ϕ(a) and substituting it in (3-33), we can determine the function
a(T2), hence, ϕ[a(T2)] = ϕ(T2).

If on the right-hand part of (3-24) one takes sinωt instead of the cosine function, (3-38) takes on the
form

tanχ(F)=
dϕ

d(ln a)
=

F(4ω0)
−1 exp(−ln a) sinϕ− 3k2(2ω0)

−1 exp(2 ln a)− 2−1δ

2−1s+ F(4ω0)−1 exp(−ln a) cosϕ
(3-39)

3B1. The case of free vibrations. At F = 0, the system (3-32) is reduced to the form

ϕ̇− 1
2δ−

3k2

2ω0
a2
= 0,

(
a2)
˙+ sa2

= 0. (3-40)

Integration yields

a2
= a2

0e−sT2, ϕ =
1
2
δT2−

3k2

2ω0s
a2

0e−sT2 +ϕ0, (3-41)

where a0 and ϕ0 are the initial magnitudes of a and ϕ, respectively. Eliminating T2 from (3-41), we find

ϕ =−
δ

s
ln

a
a0
−

3k2

2ω0s
(a2
− a2

0)+ϕ0, (3-42)

or
G(ln a, ϕ)= 1

2ϕs+ 1
2δ ln a+

3k2

4ω0
exp(2 ln a)= G0(ln a0, ϕ0) (3-43)

This relationship can be interpreted as the stream-function for the phase fluid moving in the plane with
the coordinates ln a, ϕ. Really, considering (3-40), it is followed from (3-43) that the components of the
vector of the phase fluid motion EV

{
vln a = (ln a)̇, vϕ = ϕ̇

}
are determined by the formulas

(ln a)̇=−
∂G
∂ϕ
, ϕ̇ =

∂G
∂(ln a)

. (3-44)

Since
dG =

∂G
∂ϕ

dϕ+
∂G

∂(ln a)
d(ln a)= 0,

we obtain, taking into account (3-44),

−vln adϕ+ vϕd(ln a)= 0, or
dϕ
vϕ
=

d(ln a)
vln a

. (3-45)

This is the equation of the streamline.
In the case of free vibrations, it follows from (3-38) that tanχ |F=0 defines the angle of inclination of

the tangent to the streamline. If a is small, then

tanχ(0)=−
δ

s
=− cot

γπ

2
or χ =

π

2
+
γπ

2
. (3-46)
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For large a from (3-38) it follows that

tanχ(0)→−∞ or χ→
π

2
+ . (3-47)

The streamlines for the oscillator with natural frequency ω0 = 1 are presented in Figure 1 in the
semilogarithmic coordinates ln a, ϕ. The top pane shows streamlines constructed for various G0 and
fixed γ = 0.5 and k2 = 0.1. On the bottom left we have G0 = 0 and k2 = 0.1 fixed and varying γ. The
bottom right pane presents the streamlines constructed for the fixed G0 = 0 and γ = 0.5, while k2 is used
as the parameter.
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Figure 1. Streamlines of the phase fluid corresponding to different values of G0 (top),
fractional parameter γ (bottom left), and nonlinear stiffness coefficient k2 (bottom right).
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The asymptotic character of the curves in Figure 1 is verified by relationships (3-46) and (3-47). In
the first and last panes of the figure, the fractional parameter γ is fixed for all curves. Therefore their
left branches are asymptotically parallel in the first case (Figure 1, top) due to the different values of G0,
and they tend to the same asymptote in the latter case (Figure 1, bottom right) since the value of G0 is
shared. Further, from (3-46) and the bottom left pane of the figure it is seen that, for small values of a,
the left branches of the curves approach infinitely close the vertical and horizontal axes as γ→ 1 and
γ→ 0, respectively. Thus the curves in Figure 1 show that the various parameters have different effects
upon the behavior of the curves.

The solution for nonlinear free damped vibrations has the form

x = εa0e−αt/2 cos
(
�t +ϕ0− da2

0e−αt) , (3-48)

where

α = ε2µω
γ−1
0 sin π

2 γ, d = 3
2 k2

(
µω

γ
0 sin π

2 γ
)−1

, �= ω0
(
1+ 1

2ε
2µω

γ−2
0 cos π2 γ

)
.

In the particular case when γ = 1, the solution takes the form

x = εa0e−ε
2µt/2 cos

(
ω0t +ϕ0−

3k2
2µω0

a2
0e−ε

2µt
)
, (3-49)

3B2. The case of small force amplitude. If the amplitude F of the external force is small, Equation
(3-37) takes the form

dϕ
da
=−

δ
s

a−1
−

3k2

ω0s
a+ F f (a, ϕ), (3-50)

where

f (a, ϕ)=
cosϕ

2ω0sa2 +
sinϕ
ω0s2a2

(
3k2a2

2ω0
+

1
2
δ

)
.

Integrating (3-50) yields

ϕ =−
δ
s

ln
a
a0
−

3k2

2ω0s
(a2
− a2

0)+ϕ0+ F
∫ a

a0

f [a, ϕ(a)] da, (3-51)

or
1
2 ϕs+ 1

2 δ ln a+
3k2

4ω0
e2 ln a

= G0+
1
2 s F

∫ a

a0

f [a, ϕ(a)] da. (3-52)

From this relationship it is evident that the streamlines do not remain unchanged; they vary even for
small external forces.

3B3. The case of finite force amplitude. To investigate the influence of a finite exciting force F cosωt (or
F sinωt) on the character of the oscillator’s vibratory motions, let us choose some streamline and assume
that at t = 0 a phase fluid point lie somewhere on this line. If the external force F cosωt or F sinωt
acts on the oscillator beginning from the moment t = 0, the phase fluid point under consideration moves,
according to (3-38) or (3-39), respectively, along a trajectory that does not coincide with the chosen
streamline. We can take another point on the same streamline and calculate the trajectory according to
the same equations, and so on. If after some instant of time we connect with a curve the points thus found,
lying on the different trajectories, and compare this curve to the reference streamline, we can judge by
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the departure of one line from the other the character of the transient vibratory motion occurring in the
mechanical system after the external force begins to act.

Relationships (3-38) and (3-39) define the angle of inclination of the tangent to the trajectory of the
phase fluid point. For small a from (3-38) it follows that

tanχ = cotϕ or χ =
π

2
−ϕ or χ =

3π
2
−ϕ, (3-53)

while from (3-39) for small a we have

tanχ = tanϕ or χ = ϕ or χ = π +ϕ. (3-54)

The tangent vectors to the trajectories of motion for the phase fluid points (i.e., the polarization vector
of motion of the given system) at different points of the streamline with the parameters G0 = 0, γ = 0.5,
and k2 = 0.1 are presented in Figure 2, at the instant the force F cosωt or F sinωt begins to take effect
(T2 = 0).

Examination of the left half of the figure shows that under the action of the force F cosωt the po-
larization vector executes a vibrational motion with a decrease in ln a: first it rotates counterclockwise
until attaining the maximal angle χ = 164.5◦ at the point with the coordinates ln a0 =−1.18, ϕ0 = 1.18,
and it then begins to rotate in a clockwise direction. From the right half of the figure it is seen that for
the oscillator driven by the force F sinωt the polarization vector executes a counterclockwise rotational
motion with the decrease in ln a: the angle χ increases monotonically starting from 90◦ and tending to
make a complete turn as a0→ 0.
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Figure 2. Directions of the polarization vectors of the system’s vibrational motions at
the instant the force F cosωt (left) or F sinωt (right) takes effect, for F = 0.5.
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Figure 2 makes it clear that at the instant the external exciting force begins to take effect on the system
the points of the phase fluid leave the stream line either to the left or to the right of it and start to move
along their own trajectories. In other words, the stream lines disappear the moment the force is applied.

4. Conclusion

The engineering analytical approach proposed in [Rossikhin and Shitikova 2009] for the approximate
analysis of the dynamic behavior of linear and nonlinear fractional oscillators has been generalized to
the case of forced vibrations. It allows the authors to analyze the force-driven vibrations of a fractional
oscillator of Duffing type at different low-level orders of damping and external force terms using the
method of multiple time scales.

In the case of viscosity of the order of ε and the external exciting force of the order of ε2, it has been
shown that the solution involves two parts, where the first term corresponds to damping vibrations and
describes the transient process, while the second one is nondamping in character and describes forced
vibrations with the frequency of the exciting force and with a phase difference depending on the fractional
parameter γ.

In the case of free vibrations with a weak damping term of the order of ε2, the nonlinear fractional
oscillator performs steady-state vibrations, which are in compliance with the phase fluid motion in the
phase plane along the streamlines in the direction of decreasing amplitude of vibrations. At the instant
the small external force of the order of ε3 begins to take effect, vibrations of the nonlinear fractional
oscillator go over into transient ones, leading to the disappearance of the stream lines, while the phase
fluid points lying on the streamlines at the moment of the force application start to follow their own
phase trajectories.

It has been shown that the integral term in formula (1-4) does not affect the solution of either problem
within the chosen approximation framework, so it is sufficient to use formula (1-3) regardless of the
values of the driving frequency or the fractional parameter.

Appendix

It is well known [Janke et al. 1960; Abramowitz and Stegun 1964] that many special functions exist in
two equivalent representations: as incomplete integrals and as infinite power series.

To show the validity of formula (1-4), we apply the Laplace transformation to the expression x(t)=
Dγ

0+e
iωt , obtaining

x̄(p)=
pγ

p− iω
. (4-1)

Applying the Mellin–Fourier inversion formula

x(t)=
1

2π i

∫ c+i∞

c−i∞

pγept

p− iω
dp, (4-2)

to go back to the time domain, and using the integration contour presented in Figure 3, we find

x(t)=
∑

k

res
(
x̄(pk)epk t)

+
1

2π i

∫
∞

0

(
x̄(ue−iπ )− x̄(ueiπ )

)
e−ut du. (4-3)
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Figure 3. Integration contour used in the proof of (1-4).

Formula (1-4) follows immediately from (4-3).
For the function x(t), it is possible to obtain another representation in the form of an infinite series.

For this purpose, we rewrite formula (4-1) as

x̄(p)=
pγ−1 p
p− iω

=
pγ−1

1− iωp−1 (4-4)

Now express this last fraction as the sum of an infinite descending geometric progression with initial
term pγ−1 and ratio iωp−1:

pγ−1

1− iωp−1 =

∞∑
n=1

(iω)n−1 pγ−n
=

∞∑
n=0

(iω)n pγ−n−1. (4-5)

The inversion of formula (4-5) gives

x(t)= tν
∞∑

n=0

Zn

0(n+ 1+ ν)
=

tν

0(ν)

∞∑
n=0

Zn

ν(ν+ 1) . . . (ν+ n)
, (4-6)

where ν =−γ and Z = iωt . We next use the equalities [Janke et al. 1960]
∞∑

n=0

Zn

ν(ν+ 1) . . . (ν+ n)
= eZ Z−νγ(ν, Z)

and

γ∗(ν, Z)=
Z−ν

0(ν)
γ(ν, Z),

where γ(ν, Z) is the incomplete gamma function [Janke et al. 1960; Abramowitz and Stegun 1964],
finally we obtain

x(t)= tνeZγ∗(ν, Z)= t−γeiωtγ∗(−γ, iωt). (4-7)

Formula (4-7) coincides (apart from notation) with that discussed in [Miller and Ross 1993].
In the present paper, the first representation for the function x(t), resulting in formula (1-4), has been

adopted, since it is more convenient and physically admissible for engineering applications.
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Formulas (1-3) and (1-4) can also be easily obtained from the similar expressions for fractional inte-
grals presented in [Samko et al. 1993, Tables 9.1 and 9.2].
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A TWO-TEMPERATURE GENERALIZED THERMOELASTIC MEDIUM
SUBJECTED TO A MOVING HEAT SOURCE AND RAMP-TYPE HEATING:

A STATE-SPACE APPROACH

HAMDY M. YOUSSEF

We construct a model of two-temperature generalized thermoelasticity for an elastic half-space with
constant elastic parameters. The Laplace transform and state-space techniques are used to obtain the
general solution for any set of boundary conditions. The general solution obtained is applied to the
specific problem of a half-space subjected to a moving heat source with constant velocity and ramp-type
heating. The inverse Laplace transforms are computed numerically. The effects of different values of the
heat source velocity, the two-temperature parameter, and the ramping time parameter are compared.

A list of symbols can be found on page 1648.

1. Introduction

P. J. Chen and collaborators [Chen and Gurtin 1968; Chen and Williams 1968; Chen et al. 1969] formu-
lated a theory of heat conduction in deformable bodies, which depends upon two temperatures: the con-
ductive temperature ϕ and the dynamical temperature T . For time-independent situations, the difference
between these two temperatures is proportional to the heat supply. In the absence of any heat supply, the
two temperatures are identical [Chen and Gurtin 1968]. For time-dependent problems, however, and for
wave propagation problems in particular, the two temperatures can be different regardless of the presence
of a heat supply. The two temperatures, T and ϕ, and the strain are found to have representations in the
form of a traveling wave plus a response, which occurs instantaneously throughout the body [Boley and
Tolins 1962].

Warren and Chen [1973] investigated the wave propagation in the two-temperature theory of ther-
moelasticity. In [Youssef 2006b] we investigated this theory in the context of the generalized theory of
thermoelasticity.

In most earlier studies, mechanical or thermal loading on the bounding surface is considered to be in
the form of a shock. However, the sudden jump in the load is merely an idealized situation, because it is
impossible to realize a pulse described mathematically by a step function; even a very rapid rise time (on
the order of 10−9 s) may be slow in terms of the continuum. This is particularly true in the case of second
sound effects when the thermal relaxation times for typical metals are less than 10−9 s. It is thus felt that
a finite rise time of the external load (mechanical or thermal) applied on the surface should be considered
while studying a practical problem of this nature. Considering this aspect of rise time, Misra et al. [1991a;
1991b; 1992] solved some problems involving ramp-type heating. In [Youssef 2005] we used the state-
space approach to solve the generalized thermoelasticity problem of an infinite material with a spherical

Keywords: generalized thermoelasticity, two-temperature, heat source, ramp type.
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cavity and variable thermal conductivity subjected to ramp-type heating. Later we found the solutions of
the problem of a generalized thermoelastic infinite medium with a cylindrical cavity subjected to a ramp-
type heating and loading [2006a] and the two-dimensional generalized thermoelasticity problem for a
half-space subjected to ramp-type heating [2006c]. In [Youssef and Al-Lehaibi 2007] we used the state-
space approach in the problem of two-temperature generalized thermoelasticity while in [Bassiouny and
Youssef 2008] we solved the two-temperature generalized thermopiezoelasticity problem of a finite rod
subjected to different types of thermal loading. In [Youssef 2008] solved the two-dimensional problem
of a two-temperature generalized thermoelastic half-space subjected to ramp-type heating. Al-Huniti
et al. [2001] discussed the dynamic response of a rod due to a moving heat source under the hyperbolic
heat conduction model.

Here we consider a half-space filled with an elastic material with constant elastic parameters. The
governing equations are written in the context of two-temperature generalized thermoelasticity theory.
A moving heat source with constant velocity is applied to the medium. Laplace transforms and state-
space techniques are used to obtain the general solution for any set of boundary conditions. The general
solution obtained is applied to a half-space subjected to ramp-type heating with a traction-free bounding
plane. The inverse Laplace transforms are computed numerically using the Riemann sum approximation
method. The effects of the heat source velocity, the two-temperature parameter, and the ramping time
parameter are estimated.

1.1. Formulation of the problem. According to our model, the heat conduction equation takes the form
[Youssef 2006b]

Kϕ,i i =
(
∂
∂t
+ τ0

∂2

∂t2

)
(ρCEθ + γT0e)−

(
1+ τ0

∂
∂t

)
Q, i = 1, 2, 3. (1)

The constitutive equations take the form

σi j = 2µei j + λekkδi j − γθδi j , i = 1, 2, 3, (2)

where δi j is the Kronecker delta function
The equations of motion without body forces take the form

σi j , j = ρüi , i = 1, 2, 3. (3)

The relation between the heat conduction and the thermodynamic heat takes the form

ϕ− T = aϕ,i i , i = 1, 2, 3, (4)

where a is a nonnegative parameter called the two-temperature parameter [Youssef 2006b].
Now, we will suppose an elastic and homogeneous half-space x ≥ 0 which obeys Equations (1)–(4)

and is initially quiescent, where all the state functions depend only on the dimension x and the time t .
The displacement components for a one-dimensional medium have the form

ux = u(x, t), u y = uz = 0. (5)

The strain component takes the form

e = exx =
∂u
∂x
. (6)
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The heat conduction equation takes the form

K ∂
2ϕ
∂x2 =

(
∂
∂t
+ τ0

∂2

∂t2

)
(ρCE T + γT0e)−

(
1+ τ0

∂
∂t

)
Q. (7)

The constitutive equation takes the form

σxx = σ = (2µ+ λ)e− γ(T − T0). (8)

The equation of motion takes the form
∂2σ
∂x2 = ρ

∂2e
∂t2 . (9)

The relation between the heat conduction and the thermodynamic heat takes the form

ϕ− T = a ∂
2ϕ
∂x2 . (10)

For simplicity, we will use the nondimensional variables

x← c0ηx, ι← c2
0ηι, τ0← c2

0ητ0, θ←
θ
T0
, ϕ←

ϕ
T0
, σ ←

σ
2µ+λ

, Q← Q
K0c2

0η
2T0

,

where
c2

0 =
2µ+λ
ρ

, η =
ρCE

K
.

Hence, we have the system of equations

∂2ϕ
∂x2 =

(
∂
∂t
+ τ0

∂2

∂t2

)
(θ + εe)−

(
1+ τ0

∂
∂t

)
Q, σ = e− bθ,

∂2σ

∂x2 =
∂2e
∂t2 , ϕ− θ = β

∂2ϕ

∂x2 , (11)

where
ε =

γ
ρCE

, b = γT0
λ+2µ

, β = ac2
0η

2.

Applying the Laplace transform

f̄ (s)=
∫
∞

0
f (t)e−st dt

to the equations in (11), we obtain

d2ϕ̄

dx2 = (s+ τ0s2)θ̄ + (s+ τ0s2)εē− (1+ τ0s)Q̄. (12)

We consider that the medium is subjected to a moving heat source of constant strength releasing its
energy continuously while moving along the x-axis in the positive direction with a constant velocity v.
This moving heat source is assumed to be of the nondimensional form [Al-Huniti et al. 2001]

Q = Q0δ(x − vt), (13)

where Q0 is the constant heat source strength and δ is the delta function.
After using a Laplace transformation, we get

Q̄ = ` exp
( s
v

x
)
, `=

Q0

v
. (14)
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To simplify the notation we set h = s
v

. Then we have

d2ϕ̄

dx2 = (s+ τ0s2)θ̄ + (s+ τ0s2)εē− (1+ τ0s)`e−hx , (15)

σ̄ = ē− bθ̄ ,
d2σ̄

dx2 = s2ē, θ̄ = ϕ̄−β
d2ϕ̄

dx2 , (16)

where all the initial state functions are equal to zero.
Eliminating ē and θ̄ from these equations, we obtain

d2ϕ̄

dx2 = (1+ εb)sα1ϕ̄+ sεα1σ̄ − `α1e−hx , where α1 =
1+ τ0s

1+β(s+ τ0s2)(1+ bε)
, (17)

and
d2σ̄

dx2 = α2σ̄ +α3ϕ̄+α4`e−hx , (18)

where
α2 = s2(1−βεsbα1), α3 = s2b

(
1−βsα1(1+ bε)

)
, α4 = s2bβα1.

Then, we have
θ̄ =

(
1−βsα1(1+ bε)

)
ϕ̄−βεsα1σ̄ +βα1`e−hx . (19)

2. State-space approach

Choosing as state variables the temperature of heat conduction ϕ̄ and the stress component σ̄ in the
x-direction, equations (18) and (19) can be written in matrix form as

d2V (x, s)
dx2 = A(s)V (x, s)+ F(s)e−hx , (20)

where

V (x, s)=
[
ϕ̄(x, s)
σ̄ (x, s)

]
, A(s)=

[
s(1+ bε)α1 sεα1

α3 α2

]
, F(s)=

[
−`α1

`α4

]
.

Solutions of (20) that remain bounded for large x (that is, not involving diverging exponentials) can be
written as

V (x, s)= exp
(
−

√
A(s) x

)
C(s)+ D(s)e−hx , (21)

where C(s)=
[

C1(s)
C2(s)

]
is to be determined, and D(s)=

[
D1

D2

]
=
(
h2 I − A(s)

)−1 F(s), with I =
[

1 0
0 1

]
.

We will use the Cayley–Hamilton theorem to find the matrix exp
(
−
√

A(s) x
)
. The characteristic

equation of A(s) is

k2
− k

(
s(1+ bε)α1+α2

)
+α1s

(
(1+ bε)α2− εα3

)
= 0; (22)

that is, the characteristic roots k1 and k2 satisfy

k1+ k2 = s(1+ bε)α1+α2, k1k2 = s(1+ bε)α1α2− sεα1α3. (23)
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Next we write the spectral decomposition of A(s) in terms of the projectors E1 and E2 of A(s) (see
[Cullen 1972] for details):

A(s)= k1 E1+ k2 E2 (24)

By definition, the projectors satisfy E1+ E2 = I , E1 E2 = E2 E1 = 0, and E2
i = Ei for i = 1, 2. Thus

AE1 = k1 E2
1 + k2 E2 E1 = k1 E1. (25)

Similarly, AE2 = k2 E2, so A(I − E1) = k2 I − k2 E1. Adding this latter equation to (25) we obtain
A = k2 I + (k1− k2)E1, which is to say, E1 = (A− k2 I )/(k1− k2). Taking into account (23) to achieve
simplifications, and following a similar reasoning for E2, we reach the explicit form of the projectors:

E1 =
1

k1−k2

 k1−α2 sεα1

(α2−k2)(k1−α2)
sεα1

α2−k2

 , E2 =
1

k1−k2

 α2− k2 −sεα1

(α2−k2)(α2−k1)
sεα1

k1−α2

 . (26)

The matrix
√

A(s) has the same projectors as A(s) and its characteristic roots p1, p2 are given by
p1 =
√

k1 and p2 =
√

k2. That is,

B(s) :=
√

A(s)=
√

k1 E1+
√

k2 E2 =
A+
√

k1k2 I
√

k1+
√

k2
=

1
√

k1+
√

k2

[√
k1k2+ s(1+bε)α1 sεα1

α3
√

k1k2+α2

]
.

Thus the matrix exponential in (21) is given by

exp
(
−

√
A(s) x

)
= exp

(
−B(s) x

)
=

∞∑
n=0

(
−B(s)x

)n

n!
. (27)

By the Cayley–Hamilton theorem, the positive powers of B are linear combinations of I and B. Thus,
the infinite series in (27) is of the form

exp
(
−B(s)

)
= b0(x, s) I + b1(x, s)B(s), (28)

where b0 and b1 are coefficients depending on s and x . To find these coefficients, note that the charac-
teristic roots p1 and p2 of B satisfy

e−p1x
= b0+ b1 p1, e−p2x

= b0+ b1 p2. (29)

Solving this linear system, we get b0 =
1

p1− p2

(
p1e−p2x

− k2e−p1x
)

and b1 =
1

p1− p2

(
e−p1x

− e−p2x
)
.

Hence the entries of the matrix

exp
(
−B(s) x

)
= L i j (x, s) i, j = 1, 2,

are given by

L11 =
(k1−α2)e−

√
k1 x
− (k2−α2)e−

√
k2 x

k1− k2
, L12 =

sεα1(e−
√

k1 x
− e−

√
k2 x)

k1− k2
,

L22 =
e−
√

k1 x(α2− k2)− e−
√

k2 x(α2− k1)

k1− k2
, L21 =

α3(e−
√

k1 x
− e−

√
k2 x)

k1− k2
.
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Similarly,

D1 =
`α1(α2+ sεα4− h2)

(h2− k1)(h2− k2)
, D2 =

`
(
h2α4−α1α3−α1α4s(1+ bε)

)
(h2− k1)(h2− k2)

.

We can write the solution (21) in the form[
ϕ̄(x, s)
σ̄ (x, s)

]
=

[
L11(x, s) L12(x, s)
L21(x, s) L22(x, s)

][
C1(s)
C2(s)

]
+

[
D1(s)
D2(s)

]
e−hx . (30)

To get C1 and C2 we set x = 0 on the last equation, and we get[
ϕ̄(0, s)
σ̄ (0, s)

]
=

[
L11(0, s) L12(0, s)
L21(0, s) L22(0, s)

][
C1(s)
C2(s)

]
+

[
D1(s)
D2(s)

]
,

which gives [
C1(s)
C2(s)

]
=

[
ϕ̄(0, s)
σ̄ (0, s)

]
−

[
D1(s)
D2(s)

]
. (31)

Hence, for any set of boundary conditions, we have

ϕ̄(x, s)=
(
ϕ̄(0, s)− D1

)
L11(x, s)+

(
σ̄ (0, s)− D2

)
L12(x, s)+ D1e−hx ,

σ̄ (x, s)=
(
ϕ̄(0, s)− D1

)
L21(x, s)+

(
σ̄ (0, s)− D2

)
L22(x, s)+ D2e−hx .

(32)

3. Application

We now consider the boundary conditions on the boundary plane x = 0, which are of two forms:

(1) Thermal boundary condition. We suppose that the boundary plane x = 0 is subjected to ramp-type
heating as follows [Youssef 2005]:

ϕ(0, t)=


0 if t ≤ 0,

ϕ0
t
t0

if 0< t < t0,

ϕ0 if t ≥ t0,

(33)

where t0 is called the ramping parameter and ϕ0 is constant. After Laplace transformation, we get

ϕ̄(0, s)=
ϕ0(1− e−st0)

s2t0
. (34)

(2) Mechanical boundary condition. We consider the boundary plane x = 0 traction-free, so σ(0, t)= 0,
which gives, after Laplace transformation,

σ̄ (0, s)= 0. (35)

Applying (34) and (35) to (32) we get the solution for the heat conduction and stress x-component in
the Laplace transform domain:

ϕ̄(x, s)= ϕ1(s)e−
√

k1 x
−ϕ2(s)e−

√
k2 x
+ D1(s)e−hx ,

σ̄ (x, s)= σ1(s)e−
√

k1 x
− σ2(s)e−

√
k2 x
+ D2(s)e−hx ,

(36)
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where

ϕ1(s)=
1

k1− k2

[(ϕ0(1− e−st0)

s2t0
− D1

)
(k1−α2)− sεα1 D2

]
,

ϕ2(s)=
1

k1− k2

[(ϕ0(1− e−st0)

s2t0
− D1

)
(k2−α2)− sεα1 D2

]
,

σ1(s)=
1

k1− k2

[(ϕ0(1− e−st0)

s2t0
− D1

)
α3− D2(α2− k2)

]
,

σ2(s)=
1

k1− k2

[(ϕ0(1− e−st0)

s2t0
− D1

)
α3− D2(α2− k1)

]
.

By substituting the expressions (36) into (19), we obtain

θ̄ (x, s)= (1−βk1)ϕ1(s)e−
√

k1 x
− (1−βk2)ϕ2(s)e−

√
k2 x
+ (1−βh2)D1(s)e−hx . (37)

From (16)2 and by using (36)2, we obtain the displacement:

ū(x, s)=−
1
s2

(
σ1(s)

√
k1e−

√
k1 x
− σ2(s)

√
k2e−

√
k2 x
+ D2(s)he−hx). (38)

This completes the solution in the Laplace transform domain.

4. Numerical inversion of the Laplace transform

To determine numerically the conductive and thermal temperature, displacement, and stress distributions
in the time domain, we used the Riemann sum approximation method. In this method, a function in the
Laplace domain is inverted to the time domain through the sum

f (t)= eκt

t

[
1
2

f̄ (κ)+Re
N∑

n=1

(−1)n f̄
(
κ +

inπ
t

)]
, (39)

where Re is the real part and i is the imaginary number unit. For faster convergence, numerical experi-
ments have shown that the value of κ should satisfy the relation κt ≈ 4.7 [Tzou 1997].

5. Numerical results and discussion

Copper was chosen as the material for the numerical evaluations. The constants of the problem (see
[Bassiouny and Youssef 2008]) were as follows:

K = 386 N/K sec, αT = 1.78× 10−5 K−1, CE = 383.1 m2/K, η = 8886.73 m/sec2,

µ= 3.86× 1010 N/m2, λ= 7.76× 1010 N/m2, ρ = 8954 kg/m3, τ0 = 0.02 sec,

T0 = 293 K, ε = 1.618, β = 0.01, b = 0.01041.

The computations were carried out for t = 0.2 and ϕ0= 1.0. The conductive temperature, the dynamical
temperature, the stress and the displacement distributions are represented graphically with respect to x .
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Figure 1. The conductive heat distribution at different values of the heat source velocity.
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Figure 2. The thermodynamic heat distribution at different values of the heat source velocity.
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Figure 3. The displacement distribution at different values of the heat source velocity.
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Figure 4. The stress distribution at different values of the heat source velocity.
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Figure 5. The conductive heat distribution at different values of the ramp time parameter.
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Figure 6. The thermodynamic heat distribution at different values of the ramp time parameter.
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Figure 7. The displacement distribution at different values of the ramp time parameter.

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0 0.2 0.4 0.6 0.8 1 1.2

σ

x

t0 = 0.1
t0 = 0.2
t0 = 0.3
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Figure 9. The conductive heat distribution for the L–S and Youssef models.
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Figure 10. The thermodynamic heat distribution for the L–S and Youssef models.
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Figure 12. The stress distribution for the L–S and Youssef models.
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Figures 1–4 display the conductive heat, the thermodynamic heat, the displacement, and the stress
distributions at different values of heat source velocity v (v = 2.0, v = 3.0 and v = 4.0) to show its
effect, where we have noticed that the heat source velocity parameter v has a significant effect on all the
fields. The peak values of the conductive heat, the thermodynamic heat, and the stress are found at the
points when x = vt (x = 4.0, x = 6.0 and x = 8.0) which mean that the heat source releases its maximum
energy at the point x = vt and just after this point the values of that fields decrease with high speed.

Figures 5–8 display the conductive heat, the thermodynamic heat, the displacement, and the stress
distributions at constant velocity of heat source v= 3.0 and different values of the ramping time parameter
t0 (t0 = 0.1, t0 = 0.2, and t0 = 0.3). The figures show that this parameter has significant effect on all
the fields. The conductive heat and the thermodynamic heat decrease when the value of t0 increases and
the absolute values of the displacement and the stress also decrease when the value of t0 increases. This
gives this type of heating real character, more than the thermal shocks in previous works.

Figures 9–12 display the conductive heat, the thermodynamic heat, the displacement, and the stress
distributions at constant velocity of heat source v = 3.0 and constant value of the ramping time parameter
t0 = 0.1 but with different values of the nondimensional two-temperature parameter β (β = 0.0 and
β = 0.01). This shows the difference between the one temperature generalized thermoelasticity of Lord
and Shulman (L–S) and the two-temperature generalized thermoelasticity of Youssef. We can see the
significant effect of that parameter on all the fields.

The phenomenon of finite speeds of propagation is manifest in all these figures. This is expected,
since the thermal wave travels with a finite velocity. It should be mentioned that in Figures 1, 2, 5, 6, 9
and 10 the effects of the ramp-type heating on x = 0 of the half-space remain in a bounded region of
space in the two generalized theories (Youssef and L–S) and do not reach infinity instantaneously.

Nomenclature

λ,µ Lamé constants K thermal conductivity
ρ density τ0 relaxation times
CE specific heat at constant strain c0 longitudinal wave speed ( =

√
(λ+ 2µ)/ρ)

t time η thermal viscosity, = ρCE/K
T dynamical temperature ε dimensionless thermoelastic coupling constant
T0 reference temperature ( = γ/(ρCE))
θ dynamical temperature increment ( = T− T0) a two-temperature parameter, a > 0
ϕ conductive temperature β dimensionless two-temperature parameter
αT coefficient of linear thermal expansion ( = ac2

0η
2)

γ equal to αT (3λ+ 2µ) b dimensionless mechanical coupling constant
σi j components of stress tensor ( = γT0/(λ+ 2µ))
ei j components of strain tensor t0 ramping parameter
ui components of displacement vector v heat source velocity
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A PLANE STRESS PERFECTLY PLASTIC MODE I CRACK PROBLEM FOR A
YIELD CRITERION BASED ON THE SECOND AND THIRD INVARIANTS OF

THE DEVIATORIC STRESS TENSOR, II

DAVID J. UNGER

In the first paper with this title (J. Mech. Mater. Struct. 3:4 (2008), 795–807), the solution of a stress
function of a mode I perfectly plastic crack problem was found analytically for two of the three sectors
that comprise the solution of the problem for a yield condition based on the second and third invariants
of the deviatoric stress tensor. Here an exact solution is derived for the remaining sector of this crack
problem, which comprises the singular solution of the governing differential equation.

1. Introduction

In [Unger 2008] we obtained a statically admissible solution for the opening mode of fracture under
plane stress loading conditions for a yield condition containing both the second and third invariants of
the deviatoric stress tensor. The second-order nonlinear differential equation of the singular solution of
this particular crack problem was reduced to a first-order differential equation of the thirtieth degree in the
previous analysis. At that time an analytical solution was believed to be intractable and an approximation
was used to solve the problem. Here the singular solution is reduced to quadrature by introducing a
parametric formulation of the yield condition. This process allows the exact solution to be evaluated in
implicit form with the aid of incomplete elliptic integrals of the first and third kinds.

In terms of the deviatoric stress invariants the yield condition employed in [Unger 2008] assumes the
algebraic form

J 3
2 −

( 3
2 J3

)2
=

2
81σ

6
0 , (1)

where

J2 ≡
1
3(σ1+ σ2)

2
− σ1σ2 and J3 ≡

1
3(σ1+ σ2)

( 2
9(σ1+ σ2)

2
− σ1σ2

)
(2)

are the second and third invariants [Chakrabarty 1987] of the deviatoric stress tensor, σ1 and σ2 being the
principal stresses and σ0 the yield stress in tension. A representation of this yield condition is shown in
Figure 1 in the principal stress plane (σ1, σ2) along with a comparison with the Mises and Tresca yield
conditions. A rotation of the coordinate axes to (ξ, η) in the principal stress plane, given by

σ1 =
ξ + η
√

2
, σ2 =

ξ − η
√

2
, (3)

Keywords: plane stress, mode I crack, perfectly plastic, yield condition, second and third invariants of deviatoric stress tensor,
differential algebraic equation, DAE.
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Figure 1. Three yield loci in the principal stress plane. The black dots on the darker
curve correspond, clockwise from second quadrant, to µ=−∞,−1

3 , 0, 1
3 ,∞,

further allows the yield condition to be expressed as a comparatively simple algebraic equation in the
form of the sextic

2ξ 6
+ 45ξ 4η2

+ 81η6
= 16σ 6

0 . (4)

The homogeneous structure of the left-hand side of (4) suggests the introduction of the ratio µ:

η = µξ. (5)

By substituting η from (5) into (4) and solving for ξ in terms of µ, one obtains the following parametric
representation of the yield locus:

ξ =
22/3σ0

(2+ 45µ2+ 81µ6)1/6
, η =

22/3σ0µ

(2+ 45µ2+ 81µ6)1/6
. (6)

Equations (3) and (5) allow the identification of the parameter µ in terms of the principal stresses as

µ=
σ1−σ2
σ1+σ2

. (7)

The locations of several specific values of µ are indicated on the yield locus in Figure 1.
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2. Singular solution

In order to satisfy the equations of equilibrium in the plane, a stress function in polar coordinates (r , θ)
was introduced in [Unger 2008]. The stresses, which are independent of the coordinate r , assume the
following relationships with the stress function f (θ) and its first two derivatives with respect to θ , f ′(θ)
and f ′′(θ):

σθ = 2 f (θ), τrθ =− f ′(θ)=−p, σr = f ′′(θ)+ 2 f (θ)= p dp
d f
+ 2 f, (8)

where σr and σθ are the normal stresses in the radial and transverse directions, respectively, and τrθ

is the in-plane shear stress. In terms of the previously defined stress coordinates (ξ , η), the following
relationships exist among the in-plane stresses:

ξ =
σ1+ σ2
√

2
=
σr + σθ
√

2
, η =

σ1− σ2
√

2
=

√
(σr − σθ )

2
+ 4τ 2

rθ
√

2
. (9)

We next define a function Q and its first derivative q with respect to f :

Q ≡
p2

2
+ 2 f 2

=
τ 2

rθ + σ
2
θ

2
, (10)

q ≡
d Q
d f
= p

dp
d f
+ 4 f = σr + σθ =

√
2ξ =

27/6σ0

(2+ 45µ2+ 81µ6)1/6
. (11)

The chain rule of differentiation and (11) imply that

dq
d f
=

dq
dµ

dµ
d f
=−

21/66µ(27µ4
+ 5)σ0

(81µ6+ 45µ2+ 2)7/6
dµ
d f
. (12)

The Clairaut operator U [Zwillinger 1989, pp. 158–160], associated with a certain class of differential
equations to which the governing equation of this problem belongs, is defined by

U ≡ f
d Q
d f
− Q = f q − Q. (13)

The operational procedure to find the singular solution of a Clairaut equation is to first solve the differ-
ential equation for the operator U . Next, differentiate this expression with respect to the independent
variable to generate a second equation. The elimination of the first derivative of the dependent variable
with respect to the independent variable between the original equation and the second equation constitutes
the singular solution to the problem [Zwillinger 1989, pp. 158–160]. In our case the dependent variable
is Q and the independent variable is f . The first derivative of Q with respect to f is defined as q.

It is readily determined that the following relationships hold true from (6), (8), (9)–(11), and (13):√
(σr − σθ )

2
+ 4τ 2

rθ =

√
q2
− 8U =

√
2η =

27/6σ0µ

(2+ 45µ2+ 81µ6)1/6
. (14)

By substituting q from (11) into (14) and solving for U one finds

U =
σ 2

0 (1−µ
2)

22/3(2+ 45µ2+ 81µ6)1/3
. (15)
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Differentiating U from (13) with respect to f and using the definition of q from (11), one establishes that

dU
d f
= q + f dq

d f
−

d Q
d f
= f dq

d f
. (16)

Introducing the parametric relationship between U and µ from Equation (15) and differentiating it with
respect to the function f produces

f dq
d f
=

dU
d f
=

dU
dµ

dµ
d f
=−

21/3µ(81µ4
+ 30µ2

+ 17)σ 2
0

(81µ6+ 45µ2+ 2)4/3
dµ
d f
. (17)

Dividing (17) by (12), a parametric representation of the singular solution f is found in terms of the
parameter µ as

f =
(

f dq
d f

)/dq
d f
=

(81µ4
+ 30µ2

+ 17)σ0

25/63(27µ4+ 5)(81µ6+ 45µ2+ 2)1/6
. (18)

Solving for Q from (13) and substituting the parametric relationships for variables defined in (11), (15),
and (18), one finds that

Q = f q −U =
σ 2

0 (81µ6
+ 81µ4

+ 75µ2
+ 19)

22/33(27µ4+ 5)(81µ6+ 45µ2+ 2)1/3
. (19)

Solving (10) for p and then substituting the parametric relationships for f and Q, established in (18)
and (19), produces the parametric relationship

p =
√

2Q− 4 f 2 =
21/6σ0(9µ2

− 1)3/2(9µ4
+ 3µ2

+ 4)1/2

3(27µ4+ 5)(81µ6+ 45µ2+ 2)1/6
. (20)

Differentiating f from (18) with respect to µ produces

d f
dµ
=−

3σ0µ(9µ2
− 1)2(243µ8

+ 324µ6
+ 234µ4

+ 148µ2
+ 75)

25/6(27µ4+ 5)2(81µ6+ 45µ2+ 2)7/6
. (21)

Dividing (21) by (20), defines the function h(µ) as

h(µ)≡ 1
p

d f
dµ
=

dθ
dµ
=−

9µ(9µ2
− 1)1/2(243µ8

+ 324µ6
+ 234µ4

+ 148µ2
+ 75)

2(9µ4+ 3µ2+ 4)1/2(27µ4+ 5)(81µ6+ 45µ2+ 2)
, (22)

which is the first derivative of the polar coordinate θ with respect to the parameter µ.
By integrating h(µ) over dµ, one finds the parametric relationship between the polar angle θ and the

parameter µ

θ =

∫
h(µ)dµ+β, (23)

where β is a constant of integration equal to π . The symbolic mathematics computer program Mathemat-
ica® 7 was used to evaluate this indefinite integral analytically. For conciseness, the result is reproduced
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here in decimal form as

θ =

6∑
j=1

C j (µ)+π, (24)

C1(µ)≡ (−0.327975+ 0.498185i)F(ψ | m), (25)

C2(µ)≡ (−0.971129+ 0.0747711i)5(−1.25+ 0.968241i; ψ | m), (26)

C3(µ)≡−(0.0622228+ 0.148923i)5(−0.8090192+ 0.468624i; ψ | m), (27)

C4(µ)≡ (0.16139− 0.00170961i)5(0.896508− 0.265318i; ψ | m), (28)

C5(µ)≡ (0.315179+ 0.921599i)5(1.5625− 0.242062i; ψ | m), (29)

C6(µ)≡ (0.884757− 1.34392i)5(1.787511+ 4.153800i; ψ | m), (30)

where

ψ ≡ sin−1
(

i
√

2(9µ2
−1)

5+3i
√

15

)
, m ≡

5+ 3i
√

15

5− 3i
√

15
, (31)

and the first F(ψ | m) and third 5(n; ψ | m) incomplete elliptical integrals are defined by

F(ψ | m)≡
∫ ψ

0

dz√
1−m sin2 z

, 5(n; ψ | m)≡
∫ ψ

0

dz

(1− n sin2 z)
√

1−m sin2 z
. (32)

Functions C1(µ) and C6(µ) in (24) are real valued functions despite the use of complex variable notation
in their representation. On the other hand, functions {C2(µ),C5(µ)} and {C3(µ),C4(µ)} constitute
complex conjugates and must be added together in pairs to obtain real valued functions. The original
exact symbolic output, which involves numerous radicals, has been truncated in decimal form here to
save space. Consequently, if one wishes to manipulate the truncated form of the solution, for instance,
for plotting, one may need to take the real part of Equation (24) computationally to avoid receiving an
error message related to a tiny but nonzero imaginary part.

3. Crack problem

The branch of the general solution to the governing differential equation appropriate for this crack prob-
lem was obtained in [Unger 2008] and will not be repeated here. The general solution applies to sectors
AOB and BOC of the crack geometry shown in the insert of Figure 2. The singular solution, defined
parametrically by (18) and (24), governs the leading sector of the crack problem COD as illustrated
in Figure 2. An iterative computer program was developed to determine the parameters of the general
solution and to find the corresponding angles which divide the three distinct regions of the half plane
subject to equilibrium. The solution parameters defined in [Unger 2008] were found by this iterative
procedure as

c = 0.15501σ0, α =−0.39503, (33)

while the corresponding angles were determined as

θAO B = 0.52000= 29.79◦, θAOC = 1.76886= 101.35◦. (34)
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Figure 2. Comparison of perfectly plastic stress fields of the mode I fracture problem.

The stresses obtained from the stress functions are also plotted in Figure 2. For comparison the analogous
solution obtained in [Hutchinson 1968] using the Mises yield condition is also shown. The results
obtained here are qualitatively similar to those obtained in [Unger 2008] using an approximate singular
solution. Quantitatively, the angle θAO B , determined using the approximate singular solution, differs
from the value obtained using the exact singular solution by about 2.6% error. Correspondingly, the
approximate value of θAOC differs from the exact value by about 1.3% error.

References

[Chakrabarty 1987] J. Chakrabarty, Theory of plasticity, pp. 21–23, McGraw-Hill, New York, 1987.

[Hutchinson 1968] J. W. Hutchinson, “Plastic stress and strain fields at a crack tip”, J. Mech. Phys. Solids 16:5 (1968), 337–347.

[Unger 2008] D. J. Unger, “A plane stress perfectly plastic mode I crack problem for a yield condition based on the second and
third invariants of the deviatoric stress tensor”, J. Mech. Mater. Struct. 3:4 (2008), 795–807.

[Zwillinger 1989] D. Zwillinger, Handbook of differential equations, Academic Press, Boston, 1989.

Received 25 May 2009. Accepted 13 Jun 2009.

DAVID J. UNGER: du2@evansville.edu
Department of Mechanical and Civil Engineering, University of Evansville, 1800 Lincoln Avenue, Evansville, IN 47722,
United States
http://mece.evansville.edu/faculty/unger.asp



SUBMISSION GUIDELINES

ORIGINALITY
Authors may submit manuscripts in PDF format on-line. Submission of a manuscript acknowledges that the manuscript is
original and has neither previously, nor simultaneously, in whole or in part, been submitted elsewhere. Information regarding
the preparation of manuscripts is provided below. Correspondence by email is requested for convenience and speed. For further
information, consult the web site at http://www.jomms.org or write to

jomms.steele@stanford.edu

LANGUAGE
Manuscripts must be in English. A brief abstract of about 150 words or less must be included. The abstract should be self-
contained and not make any reference to the bibliography. Also required are keywords and subject classification for the article,
and, for each author, postal address, affiliation (if appropriate), and email address if available. A home-page URL is optional.

FORMAT
Authors are encouraged to use LATEX and the standard article class, but submissions in other varieties of TEX, and, exceptionally
in other formats, are acceptable. Electronic submissions are strongly encouraged in PDF format only; after the refereeing
process we will ask you to submit all source material.

REFERENCES
Bibliographical references should be listed alphabetically at the end of the paper and include the title of the article. All references
in the bibliography should be cited in the text. The use of BIBTEX is preferred but not required. Tags will be converted to the
house format (see a current issue for examples), however, in the manuscript, the citation should be by first author’s last name
and year of publication, e.g. “as shown by Kramer, et al. (1994)”. Links will be provided to all literature with known web
locations and authors are encouraged to provide their own links on top of the ones provided by the editorial process.

FIGURES
Figures prepared electronically should be submitted in Encapsulated PostScript (EPS) or in a form that can be converted to EPS,
such as GnuPlot, Maple, or Mathematica. Many drawing tools such as Adobe Illustrator and Aldus FreeHand can produce EPS
output. Figures containing bitmaps should be generated at the highest possible resolution. If there is doubt whether a particular
figure is in an acceptable format, the authors should check with production by sending an email to

production@mathscipub.org

Each figure should be captioned and numbered so that it can float. Small figures occupying no more than three lines of vertical
space can be kept in the text (“the curve looks like this:”). It is acceptable to submit a manuscript with all figures at the end, if
their placement is specified in the text by comments such as “Place Figure 1 here”. The same considerations apply to tables.

WHITE SPACE
Forced line breaks or page breaks should not be inserted in the document. There is no point in your trying to optimize line and
page breaks in the original manuscript. The manuscript will be reformatted to use the journal’s preferred fonts and layout.

PROOFS
Page proofs will be made available to authors (or to the designated corresponding author) at a web site in PDF format. Failure to
acknowledge the receipt of proofs or to return corrections within the requested deadline may cause publication to be postponed.



Journal of Mechanics of Materials and Structures

Volume 4, Nº 9 November 2009

Buckling of stiffened composite panels with stringer terminations
ENZO COSENTINO and PAUL WEAVER 1505

An asymptotic analysis of anisotropic heterogeneous plates with consideration of end effects
JUN-SIK KIM 1535

Remarks on the accuracy of algorithms for motion by mean curvature in bounded domains
SIMON COX and GENNADY MISHURIS 1555

Laminated and sandwich panels subject to blast pulse loading
UGO ICARDI and LAURA FERRERO 1573

Uniformity of stresses inside an anisotropic elliptical inhomogeneity with an imperfect
interface XU WANG 1595

Modeling dislocation sources and size effects at initial yield in continuum plasticity
SAURABH PURI, ANISH ROY, AMIT ACHARYA and DENNIS DIMIDUK 1603

Forced vibrations of a nonlinear oscillator with weak fractional damping
YURIY A. ROSSIKHIN, MARINA V. SHITIKOVA and TATIANA SHCHEGLOVA 1619

A two-temperature generalized thermoelastic medium subjected to a moving heat source and
ramp-type heating: A state-space approach HAMDY M. YOUSSEF 1637

A plane stress perfectly plastic mode I crack problem for a yield criterion based on the second
and third invariants of the deviatoric stress tensor, II DAVID J. UNGER 1651

1559-3959(200909)4:9;1-W

JournalofM
echanics

ofM
aterials

and
S

tructures
2009

Vol.4,N
º

9

Journal of

Mechanics of
Materials and Structures

Volume 4, Nº 9 November 2009

mathematical sciences publishers


	cover-front-print
	Masthead and Copyright
	print01
	print02
	print03
	print04
	print05
	print06
	print07
	print08
	print09
	instructions-print
	cover-back-print

