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UNIFORMITY OF STRESSES INSIDE AN ANISOTROPIC ELLIPTICAL
INHOMOGENEITY WITH AN IMPERFECT INTERFACE

XU WANG

By employing the Stroh formalism for two-dimensional anisotropic elasticity, we find that a uniform
stress field exists inside an anisotropic elliptical inhomogeneity imperfectly bonded to an infinite an-
isotropic matrix subject to uniform stresses and strains at infinity. Here, the behavior of the imperfect
interface between the inhomogeneity and the matrix is characterized by the linear spring model with
vanishing thickness. The degree of imperfections, both normal and in-plane tangential to the interface,
are assumed to be equal. A particular form of the interface function that leads to a uniform stress field
within the anisotropic elliptical inhomogeneity is identified. Also presented are real form expressions
for the stress field inside the inhomogeneity that are shown to be valid for mathematically degenerate
(isotropic) material as well. We note that the interpenetration issue that arises from application of the
linear spring model to the imperfect interface is not discussed here.

1. Introduction

Eshelby’s celebrated results [1957; 1959; 1961] demonstrated that the stress field inside an anisotropic
ellipsoidal inhomogeneity is uniform when the infinite matrix is subject to remote uniform stresses. The
corresponding two-dimensional anisotropic elliptical inhomogeneity was discussed by Hwu and Ting
[1989]. These authors also found that the stress field inside an anisotropic elliptical inhomogeneity is uni-
form when the infinite matrix is subject to remote uniform stresses. In [Eshelby 1957; 1959; 1961; Hwu
and Ting 1989], the inhomogeneity-matrix interface was assumed to be perfect, such that tractions and
displacements across the interface are continuous. In recent years, problems involving inhomogeneities
with imperfect bonding at the inhomogeneity-matrix interface have attracted great interest [Achenbach
and Zhu 1989; Hashin 1991; Gao 1995; Ru and Schiavone 1997; Shen et al. 2001; Antipov and Schiavone
2003]. The behavior of the imperfect interface is commonly simulated by the spring layer model with
vanishing thickness. In this model, tractions are continuous but displacements are discontinuous across
the interface. More precisely, the jumps in displacement components are proportional (in terms of the
‘spring-factor-type’ interface functions or interface parameters) to the respective traction components.
Hashin [1991] found that the stress field inside a spherical inhomogeneity imperfectly bonded to a three-
dimensional matrix is intrinsically nonuniform under a remote uniform stress field. The results of [Gao
1995; Shen et al. 2001] also demonstrated that the stress field inside a circular or elliptical inhomogeneity
imperfectly bonded to a matrix is nonuniform under a remote uniform stress field.
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More recently, it was found that the stress field inside an elliptical inhomogeneity imperfectly bonded
to a matrix can still be uniform under a remote uniform antiplane stress field [Antipov and Schiavone
2003] or a remote uniform in-plane stress field [Wang et al. 2008] for a special form of the interface
function. In these investigations, the elastic properties of the inhomogeneity and the matrix were assumed
to be isotropic. The purpose of the research presented here is to address whether a uniform stress field
exists inside a generally anisotropic elliptical inhomogeneity imperfectly bonded to an infinite anisotropic
matrix subject to uniform stresses and strains at infinity.

In this research, the Stroh formalism [Stroh 1958; Ting 1996] is employed to investigate the two-
dimensional problem associated with an anisotropic elliptical inhomogeneity imperfectly bonded to an
infinite matrix under a remote uniform stress field. We find a particular type of interface function that
leads to a uniform stress field inside the anisotropic elliptical inhomogeneity. We also present the real-
form expressions of the uniform stress field by using the identities established in [Ting 1996].

2. Stroh formalism for two-dimensional anisotropic elasticity
The basic equations for a linear anisotropic elastic material are
=0 =Yy = Cs (1)
Oij,j =Y, €ij =z \Ui,j TUj), 0ij = Cijki€ki,

where u; are displacement components, o;; and ¢;; are the stresses and strains, and C;jy; are the elastic
constants. For a two-dimensional problem, a solution exists of the form

u=[u u ug]Tzaf(xl—i-pxz), ()

where a is a 3 x 1 column, p is a complex number, and f () is an analytic function. (The justification
for this and for many of the assertions in this section can be found in [Ting 1996].)
Thus equations (1) are satisfied for an arbitrary function f () if

(Q+p(R+R")+p°T)a=0, 3)
where the 3 x 3 real matrix R and the two 3 x 3 symmetric matrices ) and T are defined by
Qik = Ciik1, Rix = Ciik, Tix = Cizga- 4)

For a stable material with positive-definite energy density, the six roots of (3) form three distinct
conjugate pairs with nonzero imaginary parts. If p; (where i = 1, 2, 3) are the three distinct roots with
positive imaginary parts, and a; are the associated eigenvectors, then the general solution is given by

u=[u u M3]T=Af(Z)+Km, ®=[D D, ®3]T=Af(z)+§m, (5)

where
bl':(RT+piT)ai:—pi_l(Q+piR)ai’ (121,2,3),

A=|a; a a3], B =[b; b, b3],

f@=[AG) fz) fe)],
Zi = X1+ pixa2, Im{p;} > 0, (i=1,23).

(6)
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Thus, the stresses are given by

Oil =_q)i,2, O-i2=q)l',]a (l = 152, 3) (7)
The second-order eigenvalue problem (3) can also be recast into the standard first-order eigenvalue prob-
lem,
a a
where - |
. N N, . —T 'R T
N= [N3 NIT} - [RT‘lRT— [0 —RT—I]‘ ©)
Due to the fact that the matrices A and B satisfy the normalized orthogonal relationship
BT AT|[A A
[ET ZT] [B E] = (10

the real matrices S, H, and L can be introduced,
S=i(2AB" —-1),  H=2AA", L=-2iBB', (11)

Furthermore, H and L are symmetric, while SH, LS, H~'S, and SL~! are antisymmetric. The devel-
opment presented here uses the identities

2A(py)A" = N, —i(N1H + N»S7"),
2A(py)B" =Ny +i(N,L — N, S), (12)
2B(p,)B" = N3 +i(N{ L — N3S),

where (x) is a 3 x 3 diagonal matrix in which each component is varied according to the index a.

Let ¢ be the surface traction on a boundary I'. If s is the arc-length measured along I" so that, when
facing the direction of increasing s, the material is on the right-hand side, it can be shown that [Stroh
1958; Ting 1996]

do
=
To simplify the analysis, we set x = x1, y = xp, and z = x3.

t (13)

3. Uniform stress field inside the anisotropic elliptical inhomogeneity

Consider an infinite domain in R? that contains a single internal anisotropic elastic inhomogeneity with
elastic properties that are different from those of the surrounding anisotropic matrix, as shown in Figure 1.
The elastic constants are Cl.(jl,zl for the inhomogeneity and Cl.(jz,zl for the surrounding matrix. The inhomo-
geneity occupies the elliptical region
2 2
s+l <
1 . a2 b2 —_— b

and the matrix domain is given by
) 2
Sy —+ y— > 1.
a? b~
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y Imperfect interface I”

Matrix S, (2(xy), AxY))
() b
Elliptical inhomogeneity S;
(C§)

~_ |

Figure 1. An anisotropic elliptical inhomogeneity imperfectly bonded to an infinite matrix.

a X

The ellipse I', whose semimajor and semiminor axes are a and b, respectively, denotes the interface
between the inhomogeneity and matrix. In the following discussion, the subscripts or superscripts 1 and
2 refer to the regions S1 and S, respectively. At infinity, the matrix is subject to remote uniform stresses

T
60 =[o%3 o5 051,

and remote uniform strains

e =[5 % 2:3 17

Without losing generality, the rigid body rotation at infinity is assumed to be zero. The inhomogeneity
is imperfectly bonded to the matrix. The boundary conditions on the imperfect interface I" are given by

o =0 = 1 (x, ) — ulD),

1 2 2 1
oy =05 = x (e, 0 (ug —ug), (14)

1 2 2 1
Ur(3) :Ur(3) = y(x,y)(ug ) _ug )),

where y(x, y) and y (x, y) are nonnegative imperfect interface functions whose values depend on the
coordinates x and y of T’; a,(f ), ar(g), and ar(? (k = 1,2) denote the traction components along the
normal, in-plane tangential, and antiplane directions of the interface, respectively; and uﬁk), u((,k), and
ugk) (k =1, 2) denote the displacement components along the normal, in-plane tangential, and antiplane
directions of the interface, respectively. Equation (14) demonstrates that the same degree of imperfection
is realized in both the normal and in-plane tangential directions. A perfectly bonded interface is achieved
for y — oo, y — oo, while a traction-free surface is achieved for y — 0, y — 0. Note that a jump in
the normal displacement may give rise to interpenetration of the inhomogeneity and the matrix in some
regions of the interface. This issue will not be discussed here.
Combining (13) and (14), we can equivalently write the boundary conditions on I" as

dd
& =, —d—;=t=52(x,y)(u2—u1), (15)
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where the increasing s is in the counterclockwise direction of the interface, and

x(x,y) 0 0
Q(x,y)= 0 x&,») 0 : (16)
0 0 y&,y

In order to address the boundary value problem, we first consider the mapping functions
zm=x—i-pmy=mm(ga)=%(a—ipo(b)(a+%(a+ipab)(a_1 (a =1,2,3), a7

which map the elliptical region with a cut in the z,-plane onto the annulus

Cl‘Jl‘ipab
a—ip.b

5 |COC| S 1’

in the ¢-plane. p, (a =1, 2,3) are the three Stroh eigenvalues pertaining to the inhomogeneity.
Second, we consider the mapping functions

g =x+ppy=mi(c)) =5(a—ipib)i +3(a+ipib)™ (a=1,23), (18)
which map the outside of an elliptical region in the z;-plane onto the outside of unit circle, [¢| > 1, in
the ¢;-plane. p}, (a =1,2,3) are the three Stroh eigenvalues pertaining to the matrix.

Third, we consider the mapping function [Muskhelishvili 1953]

z=x+iy=mQ)=z(@+b)+z(a—b)c, (19)

which maps the region S : ;C—z + Z—z > 1 onto || > 1 in the ¢-plane.

Giventhat {1 = =G == =3 = onI', we can replace ¢, and ¢ by ¢. The variable { can
be easily substituted with ¢, or {7 at the end of the analysis.

Extending the developments outlined in [Antipov and Schiavone 2003] and [Wang et al. 2008], the
two interface functions y (x, y) and y (x, y) are chosen to be

1 1
) ) = =1 b 20
ol TS ey €= (20)

where 1, and 1, are two nonnegative constants, and |m’(¢)| is explicitly given by

x(x,y)=

m' ()l = H(a+b)— (@—b) | =bV1+b*sin?0,  =eonT, 1)
with b* = (a® — b?)/b>.

In this case, 2(x, y) in (16) can also be expressed as
~1
im' ()1

The boundary conditions in (15) on the imperfect interface can also be expressed in terms of the
analytic function vectors fi(¢) and f>(¢), for |¢| =1, as

Bof5 (O)+Baofs (1/0) = Bifi7 () + B f(1/0),
Aoy (O +Asf (1) — ALFT () — Ay (1)0) = —iA(CBLf T () — B f, - (1/0)).

Q(x,y) =

where A = diag[/; 4 42]. (22)

(23)
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To ensure that the stress field inside the elliptical inhomogeneity is uniform, assume that

F1(©O) = 3((a—ipab)¢ + (a+ipab)c )k, (24)

where k is a 3 x 1 vector to be determined.
Substituting (24) into (23), we obtain, for || =1,

Bofs (O)+ Baofs (1/¢) = 3¢(Bita —ipub)k + By(a —ip,b)k)
+ 17 Y (Bi{a+ipab)k + Bi{a+ipyb)k),

_ _ _ _ (25)
Arfs (O + A fy (1/0) = 5¢((Ar—iABy){a —ipab)k + (A1 —iAB1)(a — i pab)k)
+ 307 (A1 +iAB)(a+ipeb)k + (A1 +iAB1){a +ipyb)k).
Given that f>(¢) = % (a — zpab)( > 4 Athé’o) as ¢ — 00, it follows from (25); that, for |¢| > 1,
£ =37 (B Bila +ipob)k + By ' Bi(a+i pubk
— By 'Byla+ip.b)(B]ef® +Z§t§°)) + 3¢ (a—ipib)(B] e + AT£5°), (26)

Similarly, it follows from (25); that, for || > 1,

L) =1 (A;l(Al +iAB)(a+ipsb)k+ A5 (A +iAB))(a+ipab)k
— A" Ayla+ipib) (BT e + AL £ )) Leta—ipib)(BY e + AT6). (27

The obtained expressions for f,(¢) must be compatible with each other (or must be equal), and the
following set of linear algebraic equations can be obtained

(Bi{a+ipab)—BrAs' (A1+iABy){a+ipeb))k+(Bi{a+ipub)—BrAs ' (A1+iAB\){a+ip,b))k
= (B2 — BoA; ' Ao)(a+ipib)(BY e® + AT£5°). (28)
Consequently, the unknown vector k can be uniquely determined,
k=B '(E;'E,—E;'E,)) ' (E;'¢ —E;'g), (29)
where the 3 x 3 matrices E1, E, and the 3 x 1 vector g are given by
E\=al —aMy(M{' — A) +b(I + MoA)(NsLT' +i(N] — N3S,LT"))
+bMy(Ny = NiSILy') —iN Ly),
Ex=al +aM>(M;"'+A) —b(I + MoA)(NsL;' +i(N3S Ly = NY)) (30)
+bM>((N2— NiS1LyTY) +iN( LT,
g=(Hy'(bN} +aS:) +iH, ' (bN;S, —bN;Lr —al))es
+ ((aI +bH; 'N}) +ibHy ' (NFH, + N3 87 ))65°,
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with
My=—iB A = H' (T +iS) = Li(I—iS)™" (k=1,2). (31)

In (30), Ny, N2, N3 are the real matrices defined in (9) for the inhomogeneity, and N, N5, N3 are
those for the surrounding matrix. Note that in the course of this derivation, we have utilized the identities
(11) and (12).

The uniform stress field within the elliptical inhomogeneity can now be given by

012
o2 | =2Re{Bik} =2Re{(E;'E1 — E;'E)) ™' (E;'g — E{'g)), (32)
032 |

.
021 | = —2Re{Bi(p, )k}
| 031

T =2Re{(MsSIL;' = NI +iNsL;")(E;'E\ - E;'Ey) (B '¢—E ')} (33)

We note that E;, E», g, defined in (30), are expressed in terms of the real Barnett—Lothe tensors
Hy, L, S; (k=1,2), whose explicit expressions are given in [Dongye and Ting 1989; Ting 1997],
and (ii) the three 3 x 3 real matrices N; (i = 1, 2, 3) for the inhomogeneity, and the three 3 x 3 real
matrices N (i = 1, 2, 3) for the matrix. In other words, the expressions of Ej, E>, g do not contain
the Stroh eigenvalues or eigenvectors, thus the expressions of stresses (and also strains and rigid-body
rotation) within the elliptical inhomogeneity are also valid for (mathematically) degenerate materials,
such as an isotropic material. Note from (29) that the internal stress field depends on the imperfection of
the interface characterized by the two nonnegative interface constants 1; and A,. Finally, the full field
expression of f>({) can be easily obtained,

£©&) =527 (By ' Bila+ipyb)k + By ' Bila+ip.byk — By ' Bola+ipib)(BY e° + A1 £5°))
+ M a—ipib) (Bl e + AT £5°), (34)

for || > 1, which clearly indicates that the remote uniform stresses and strains are disturbed by the
imperfectly bonded elliptical inhomogeneity.

4. Conclusions

In this investigation, we found that a uniform stress field exists inside an anisotropic elliptical inhomo-
geneity imperfectly bonded to an infinite matrix provided that: (i) the same degree of imperfection on
the interface is realized in both the normal and the in-plane tangential directions; and (ii) the interface
functions satisfy equation (20). Condition (i) has been adopted in previous studies of isotropic materials
[Wang et al. 2005; Wang et al. 2008], while the circumferential inhomogeneity of the imperfect interface
reflects a realistic scenario of inhomogeneous interface damage in which the extent of bonding varies
along the interface [Ru and Schiavone 1997]. The interface functions given by equation (20), which lead
to a uniform stress field inside the inhomogeneity, depend only on the shape of the ellipse I, that is, the
semimajor and semiminor axes @ and b are independent of the material properties of both inhomogeneity
and matrix. For a circular inhomogeneity a = b, it follows from (20) and (21) that y (x, y) = 1/(41a)
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and y (x, y) = 1/(42a) are constant. In other words, the stress field inside an anisotropic circular inho-
mogeneity will be uniform when the interface is homogeneously imperfect and when the same degree of
imperfection on the circular interface is realized in both the normal and the in-plane tangential directions.
The interpenetration issue due to the introduction of the imperfect interface is not discussed here. Finally,
our work poses an interesting question: Can the stress field inside an imperfectly bonded anisotropic
ellipsoidal inhomogeneity still remain uniform when the infinite anisotropic matrix is subject to remote
uniform stresses?
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