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THE DEVIATORIC STRESS TENSOR, II

DAVID J. UNGER

In the first paper with this title (J. Mech. Mater. Struct. 3:4 (2008), 795–807), the solution of a stress
function of a mode I perfectly plastic crack problem was found analytically for two of the three sectors
that comprise the solution of the problem for a yield condition based on the second and third invariants
of the deviatoric stress tensor. Here an exact solution is derived for the remaining sector of this crack
problem, which comprises the singular solution of the governing differential equation.

1. Introduction

In [Unger 2008] we obtained a statically admissible solution for the opening mode of fracture under
plane stress loading conditions for a yield condition containing both the second and third invariants of
the deviatoric stress tensor. The second-order nonlinear differential equation of the singular solution of
this particular crack problem was reduced to a first-order differential equation of the thirtieth degree in the
previous analysis. At that time an analytical solution was believed to be intractable and an approximation
was used to solve the problem. Here the singular solution is reduced to quadrature by introducing a
parametric formulation of the yield condition. This process allows the exact solution to be evaluated in
implicit form with the aid of incomplete elliptic integrals of the first and third kinds.

In terms of the deviatoric stress invariants the yield condition employed in [Unger 2008] assumes the
algebraic form
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are the second and third invariants [Chakrabarty 1987] of the deviatoric stress tensor, σ1 and σ2 being the
principal stresses and σ0 the yield stress in tension. A representation of this yield condition is shown in
Figure 1 in the principal stress plane (σ1, σ2) along with a comparison with the Mises and Tresca yield
conditions. A rotation of the coordinate axes to (ξ, η) in the principal stress plane, given by

σ1 =
ξ + η
√

2
, σ2 =

ξ − η
√

2
, (3)

Keywords: plane stress, mode I crack, perfectly plastic, yield condition, second and third invariants of deviatoric stress tensor,
differential algebraic equation, DAE.
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further allows the yield condition to be expressed as a comparatively simple algebraic equation in the
form of the sextic

2ξ 6
+ 45ξ 4η2

+ 81η6
= 16σ 6

0 . (4)

The homogeneous structure of the left-hand side of (4) suggests the introduction of the ratio µ:

η = µξ. (5)

By substituting η from (5) into (4) and solving for ξ in terms of µ, one obtains the following parametric
representation of the yield locus:

ξ =
22/3σ0

(2+ 45µ2+ 81µ6)1/6
, η =

22/3σ0µ

(2+ 45µ2+ 81µ6)1/6
. (6)

Equations (3) and (5) allow the identification of the parameter µ in terms of the principal stresses as

µ=
σ1−σ2
σ1+σ2

. (7)

The locations of several specific values of µ are indicated on the yield locus in Figure 1.
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2. Singular solution

In order to satisfy the equations of equilibrium in the plane, a stress function in polar coordinates (r , θ)
was introduced in [Unger 2008]. The stresses, which are independent of the coordinate r , assume the
following relationships with the stress function f (θ) and its first two derivatives with respect to θ , f ′(θ)
and f ′′(θ):

σθ = 2 f (θ), τrθ =− f ′(θ)=−p, σr = f ′′(θ)+ 2 f (θ)= p dp
d f
+ 2 f, (8)

where σr and σθ are the normal stresses in the radial and transverse directions, respectively, and τrθ

is the in-plane shear stress. In terms of the previously defined stress coordinates (ξ , η), the following
relationships exist among the in-plane stresses:

ξ =
σ1+ σ2
√

2
=
σr + σθ
√

2
, η =

σ1− σ2
√

2
=

√
(σr − σθ )

2
+ 4τ 2

rθ
√

2
. (9)

We next define a function Q and its first derivative q with respect to f :

Q ≡
p2

2
+ 2 f 2

=
τ 2

rθ + σ
2
θ

2
, (10)

q ≡
d Q
d f
= p

dp
d f
+ 4 f = σr + σθ =

√
2ξ =

27/6σ0

(2+ 45µ2+ 81µ6)1/6
. (11)

The chain rule of differentiation and (11) imply that

dq
d f
=

dq
dµ

dµ
d f
=−

21/66µ(27µ4
+ 5)σ0

(81µ6+ 45µ2+ 2)7/6
dµ
d f
. (12)

The Clairaut operator U [Zwillinger 1989, pp. 158–160], associated with a certain class of differential
equations to which the governing equation of this problem belongs, is defined by

U ≡ f
d Q
d f
− Q = f q − Q. (13)

The operational procedure to find the singular solution of a Clairaut equation is to first solve the differ-
ential equation for the operator U . Next, differentiate this expression with respect to the independent
variable to generate a second equation. The elimination of the first derivative of the dependent variable
with respect to the independent variable between the original equation and the second equation constitutes
the singular solution to the problem [Zwillinger 1989, pp. 158–160]. In our case the dependent variable
is Q and the independent variable is f . The first derivative of Q with respect to f is defined as q.

It is readily determined that the following relationships hold true from (6), (8), (9)–(11), and (13):√
(σr − σθ )

2
+ 4τ 2

rθ =

√
q2
− 8U =

√
2η =

27/6σ0µ

(2+ 45µ2+ 81µ6)1/6
. (14)

By substituting q from (11) into (14) and solving for U one finds

U =
σ 2

0 (1−µ
2)

22/3(2+ 45µ2+ 81µ6)1/3
. (15)
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Differentiating U from (13) with respect to f and using the definition of q from (11), one establishes that

dU
d f
= q + f dq

d f
−

d Q
d f
= f dq

d f
. (16)

Introducing the parametric relationship between U and µ from Equation (15) and differentiating it with
respect to the function f produces

f dq
d f
=

dU
d f
=

dU
dµ

dµ
d f
=−

21/3µ(81µ4
+ 30µ2

+ 17)σ 2
0

(81µ6+ 45µ2+ 2)4/3
dµ
d f
. (17)

Dividing (17) by (12), a parametric representation of the singular solution f is found in terms of the
parameter µ as

f =
(

f dq
d f

)/dq
d f
=

(81µ4
+ 30µ2

+ 17)σ0

25/63(27µ4+ 5)(81µ6+ 45µ2+ 2)1/6
. (18)

Solving for Q from (13) and substituting the parametric relationships for variables defined in (11), (15),
and (18), one finds that

Q = f q −U =
σ 2

0 (81µ6
+ 81µ4

+ 75µ2
+ 19)

22/33(27µ4+ 5)(81µ6+ 45µ2+ 2)1/3
. (19)

Solving (10) for p and then substituting the parametric relationships for f and Q, established in (18)
and (19), produces the parametric relationship

p =
√

2Q− 4 f 2 =
21/6σ0(9µ2

− 1)3/2(9µ4
+ 3µ2

+ 4)1/2

3(27µ4+ 5)(81µ6+ 45µ2+ 2)1/6
. (20)

Differentiating f from (18) with respect to µ produces

d f
dµ
=−

3σ0µ(9µ2
− 1)2(243µ8

+ 324µ6
+ 234µ4

+ 148µ2
+ 75)

25/6(27µ4+ 5)2(81µ6+ 45µ2+ 2)7/6
. (21)

Dividing (21) by (20), defines the function h(µ) as

h(µ)≡ 1
p

d f
dµ
=

dθ
dµ
=−

9µ(9µ2
− 1)1/2(243µ8

+ 324µ6
+ 234µ4

+ 148µ2
+ 75)

2(9µ4+ 3µ2+ 4)1/2(27µ4+ 5)(81µ6+ 45µ2+ 2)
, (22)

which is the first derivative of the polar coordinate θ with respect to the parameter µ.
By integrating h(µ) over dµ, one finds the parametric relationship between the polar angle θ and the

parameter µ

θ =

∫
h(µ)dµ+β, (23)

where β is a constant of integration equal to π . The symbolic mathematics computer program Mathemat-
ica® 7 was used to evaluate this indefinite integral analytically. For conciseness, the result is reproduced
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here in decimal form as

θ =

6∑
j=1

C j (µ)+π, (24)

C1(µ)≡ (−0.327975+ 0.498185i)F(ψ | m), (25)

C2(µ)≡ (−0.971129+ 0.0747711i)5(−1.25+ 0.968241i; ψ | m), (26)

C3(µ)≡−(0.0622228+ 0.148923i)5(−0.8090192+ 0.468624i; ψ | m), (27)

C4(µ)≡ (0.16139− 0.00170961i)5(0.896508− 0.265318i; ψ | m), (28)

C5(µ)≡ (0.315179+ 0.921599i)5(1.5625− 0.242062i; ψ | m), (29)

C6(µ)≡ (0.884757− 1.34392i)5(1.787511+ 4.153800i; ψ | m), (30)

where

ψ ≡ sin−1
(

i
√

2(9µ2
−1)

5+3i
√

15

)
, m ≡

5+ 3i
√

15

5− 3i
√

15
, (31)

and the first F(ψ | m) and third 5(n; ψ | m) incomplete elliptical integrals are defined by

F(ψ | m)≡
∫ ψ

0

dz√
1−m sin2 z

, 5(n; ψ | m)≡
∫ ψ

0

dz

(1− n sin2 z)
√

1−m sin2 z
. (32)

Functions C1(µ) and C6(µ) in (24) are real valued functions despite the use of complex variable notation
in their representation. On the other hand, functions {C2(µ),C5(µ)} and {C3(µ),C4(µ)} constitute
complex conjugates and must be added together in pairs to obtain real valued functions. The original
exact symbolic output, which involves numerous radicals, has been truncated in decimal form here to
save space. Consequently, if one wishes to manipulate the truncated form of the solution, for instance,
for plotting, one may need to take the real part of Equation (24) computationally to avoid receiving an
error message related to a tiny but nonzero imaginary part.

3. Crack problem

The branch of the general solution to the governing differential equation appropriate for this crack prob-
lem was obtained in [Unger 2008] and will not be repeated here. The general solution applies to sectors
AOB and BOC of the crack geometry shown in the insert of Figure 2. The singular solution, defined
parametrically by (18) and (24), governs the leading sector of the crack problem COD as illustrated
in Figure 2. An iterative computer program was developed to determine the parameters of the general
solution and to find the corresponding angles which divide the three distinct regions of the half plane
subject to equilibrium. The solution parameters defined in [Unger 2008] were found by this iterative
procedure as

c = 0.15501σ0, α =−0.39503, (33)

while the corresponding angles were determined as

θAO B = 0.52000= 29.79◦, θAOC = 1.76886= 101.35◦. (34)
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Figure 2. Comparison of perfectly plastic stress fields of the mode I fracture problem.

The stresses obtained from the stress functions are also plotted in Figure 2. For comparison the analogous
solution obtained in [Hutchinson 1968] using the Mises yield condition is also shown. The results
obtained here are qualitatively similar to those obtained in [Unger 2008] using an approximate singular
solution. Quantitatively, the angle θAO B , determined using the approximate singular solution, differs
from the value obtained using the exact singular solution by about 2.6% error. Correspondingly, the
approximate value of θAOC differs from the exact value by about 1.3% error.
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