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A CRITICAL ANALYSIS OF INTERFACE CONSTITUTIVE MODELS FOR THE
SIMULATION OF DELAMINATION IN COMPOSITES AND FAILURE OF

ADHESIVE BONDS

ANTON MATZENMILLER, SEBASTIAN GERLACH AND MARK FIOLKA

Delamination in layered composites and debonding in adhesive joints are modeled and analyzed us-
ing interfacial mechanics, consisting of interface elements for the kinematical assumption and traction-
separation equations for the constitutive model. Material equations are presented for the inelastic be-
havior of pure and ductile-modified epoxy resins, used for the matrix phase of the composite and in a
chemically modified form for the adhesive in bonded structures.

Two different modeling approaches are proposed. The first is a brittle fracture model with a stress-
based failure criterion and rate-dependent strength parameters together with a mixed-mode energy crite-
rion for the interaction of the three different modes of failure. The second makes use of an elastic-plastic
approach with a traction-separation equation for ductile materials and rate-dependent yield stresses.

Standard tests for the delamination of layered composites under various modes of failure are simulated
by making use of the interface element for bonding/debonding. The model for the inelastic behavior of a
thin layer of the structural adhesive is validated up to fracture for various modes of failure due to pure and
combined loading in the normal and shear directions. Therefore, the relevant part of the experimental
setup for the testing is meshed with finite elements and the results of the simulation are compared to the
corresponding test data.

1. Introduction

Delamination in layered composites and debonding in adhesive joints are caused by crack initiation
and growth, since epoxy resin is often used as the matrix material of the reinforced composite and in
a chemically modified form as the adhesive for the bonding of structural components. With regard
to the mathematical description of both failure mechanisms, that is, the separation of the laminae and
the breaking of the adhesive layer in the joints, interfacial mechanics may be employed with interface
elements for the kinematics and traction-separation equations of the constitutive formulation. Therefore,
constitutive equations for the inelastic behavior of pure and ductile-modified epoxy resins are needed in

Keywords: adhesive models, structural bonding, delamination, crash analysis, interface element, traction-separation model,
adhesively bonded joints, simulation of failure, plasticity, mixed-mode fracture.

Parts of the experimental results presented stem from the research project [Schlimmer et al. 2008], coordinated and financed
by the Forschungsvereinigung Stahlanwendung e.V., Düsseldorf, with resources from the Stiftung Stahlanwendungsforschung,
Essen. The participants of this project are the Institut für Werkstofftechnik, Universität Kassel, the Institut für Mechanik,
Universität Kassel, the Laboratorium für Werkstoff- und Fügetechnik, Universität Paderborn, the Lehrstuhl für Technische
Mechanik, Universität Paderborn, the Institut für Füge- und Schweißtechnik, Universität Braunschweig, the Fraunhofer Insti-
tut für Fertigungstechnik, Bremen, the Fraunhofer Institut für Werkstoffmechanik, Freiburg, and the Fraunhofer Institut für
Kurzzeitdynamik, Freiburg.
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addition to the interface elements for the effective modeling of the cohesive zone in the crashworthiness
analysis of layered composites as well as adhesively bonded structures.

In order to prevent sudden brittle fracture at low strain magnitudes, typical adhesives, made of epoxy
resin, are toughened by admixing tiny particles of elastomeric substances in order to make the duromeric
matrix more ductile. These structural adhesives become strain rate dependent and withstand large de-
formations. They are used in the bonded joints of car bodies. Tests on bulk specimens of toughened
adhesives show permanent deformations after unloading, if the material is strained beyond a critical
limit.

The theory of interfacial mechanics is well suited for the modeling and analysis of delamination in
layered composite structures and failure of adhesive joints in assembled components. The characteristic
feature of interfacial mechanics is the use of only those three stress components, which act on the interface
and, thus, on the plane of failure. The constitutive equations are formulated in terms of the displacement
discontinuities across the interface.

The failure analysis of adhesive joints in assembled structures requires a fine discretization of the
adhesive layer in the thickness direction in order to describe the state of stress precisely. However, for
the crashworthiness analysis of complete vehicle bodies, tiny finite elements are undesirable, since they
require a small critical time step for the simulation of the entire structure with explicit integration schemes
for the equations of motion. Crash simulation with solid elements for thin adhesive layers in complete
car body models is numerically still too elaborate, if no additional measures, like mass-scaling, are taken
to increase the critical step length of time. Thus, interface elements with very small or zero thickness are
superior for the modeling of thin adhesive layers. Then, the critical time step is no longer controlled by
the Friedrichs–Levy criterion of the solid elements for the adhesive layer but rather by the neighbouring
shell or solid elements, applied for the adjacent steel structures.

Two different modeling approaches for the delamination of layered materials and joints with thin
adhesive layers are taken from the literature. The first is a fracture model, founded on the work of
Barenblatt [1959] and Dugdale [1960], with a stress-based failure criterion and rate-dependent strength
parameters together with a mixed-mode energy criterion for the interaction of the three different modes
of failure. The second makes use of an elastic-plastic description with a traction-separation equation for
ductile materials as proposed by Su et al. [2004].

Due to the similarity between thin layers in structural components and laminated fiber composites,
analysis using interface models can be used in both cases. The finite element calculation of fracture or
delamination of specimens in different modes of failure under quasistatic and crash loading is demon-
strated with various numerical examples.

2. Cohesive zone models

The experimental investigations performed in [Schlimmer et al. 2008] at joints, bonded with crash-
resistant adhesives, show that the fracture of the bonding is dominated by cohesive failure, that is, the
crack initiation and growth takes place within the cohesive zone (see Section 5). Modelling with one
element through the thickness of the adhesive layer is numerically sufficient for the purposes of crashwor-
thiness analysis of complex structural assemblages, because only the effective mechanical behavior of the
bonding is important for the vehicle simulation, not the complete three-dimensional fine stress resolution
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in the adhesive layer. Modelling with interface elements is justified, since the compliant adhesive bond
between the stiff sheet metal is nearly inextensible and shear rigid in the plane tangential to the adhesive
layer. Thus, interfacial mechanics are an efficient approach to modeling adhesive layers as they are
widely accepted for the delamination analysis of layered composite structures.

2A. Interface element. Interface elements were originally developed for the description of the delam-
ination process in composite materials [Beer 1985; Mi et al. 1998; Schellekens and de Borst 1993].
Contrary to the usual finite element concept, the primary kinematical variable of the interface element
is the displacement jump vector 1 instead of the strain tensor, as is typical for volumetric continuum
elements. The element has three degrees of freedom at each node and consists of a total of eight nodes
with four nodes on the upper and lower sides of the interface. The displacement field in the length and
transverse directions of the interface is assumed to be bilinear. Full integration with four Gauss points is
performed. The element has no stiffness in the membrane direction. Pronounced locking effects could
not be observed so far.

2B. Mixed-mode extension of the Hillerborg fracture model. The constitutive behavior for fracture
of the adhesive is formulated between the interface stresses ti and the displacement jumps 1i , which
represent the differences of the displacement components in the normal and tangential directions of the
two neighbouring surfaces of the adherents. For the description of the softening behavior in interfaces
various models have been presented in the literature; for example, Barenblatt [1959] developed a damage
model for brittle interfaces. The traction-separation equations are formulated for the three failure modes
of fracture mechanics by means of the dissipated energy during the opening of the interface:

GIc =

∫
t3 d13, GIIc =

∫
t1 d11, GIIIc =

∫
t2 d12, (2-1)

where GIc, GIIc, and GIIIc are the critical energy release rates of the three well-known modes of fracture.
The interface traction as a function of the crack opening in the process zone is unknown and must be
supposed unless better experimental information is available, as given by [Andersson and Stigh 2004].
Different assumptions for the distribution of the traction-separation equation are discussed in the litera-
ture. An example is the bilinear model of Hillerborg et al. [1976] for brittle interfaces, which combines
linear elasticity with brittle fracture (see Figure 1).

The adhesive joint behaves linearly elastically up to the stress maximum:

t = K1, with K =

Kn 0 0
0 Kt 0
0 0 Kt

 . (2-2)

∆i

ti

t max
i

Gc

Kn, Kt

Figure 1. Bilinear course of interface traction versus displacement discontinuity.
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The same relation holds with reduced stiffness values for unloading and reloading, if the interface has
started softening. The failure initiation of the interface is determined here by a mixed-mode stress crite-
rion [Brewer and Lagace 1988]:√(

t1
tmax
1

)2

+

(
t2

tmax
2

)2

+

(
〈t3〉
tmax
3

)2

= 1. (2-3)

The interaction of the three different modes of fracture is accounted for by a mixed-mode energy criterion
[Whitcomb 1986]: (

GI
GIc

)n
+

(
GII
GIIc

)n
+

(
GIII
GIIIc

)n
= 1. (2-4)

The implementation of the model into a commercial finite element code and the application of the mixed-
mode formulation with a bilinear stress-strain diagram were presented first by Dávila and Camanho
[2001] (see also [Pinho et al. 2006]). In the present paper, the model is extended to rate-dependency and
implemented into the commercial FE code LS-DYNA [DYNA 2006], since structural adhesives show
rate-dependent material behavior even under the moderate strain rates encountered in the crashworthiness
analysis of bonded structural components — see the test data in Section 5A.

In order to take rate-dependent material behavior into account, the mixed-mode fracture model is
extended here according to the proposal by Johnson and Cook [1983] for a rate-dependent yield limit.
Its application to the brittle fracture model is based on the scaling of the failure stress components (tmax

i )0
of the rate-independent limit case with the logarithm of the rate of the effective displacement discontinuity
1̇v, defined as

tmax
1 = (tmax

1 )0

(
1+C

〈
ln
1̇v

1̇0

〉)
, tmax

3 = (tmax
3 )0

(
1+C

〈
ln
1̇v

1̇0

〉)
, (2-5)

with the material parameter C , and in the Macaulay brackets 〈 · 〉 the reference value of the jump velocity
1̇0, which must be identified from the experimental results:

1̇v =

√
1̇2

1+ 1̇
2
2+ 1̇

2
3. (2-6)

It is assumed that the rates of the effective displacement discontinuity 1̇v below the reference value 1̇0

do not contribute to the rate-dependency of the strength parameters for the adhesive.

2C. Tvergaard–Hutchinson fracture model. Tvergaard and Hutchinson proposed one of the first inter-
face failure models for the analysis of fractures in the cohesive zone. The model is widely accepted and
used for cohesive zone analysis, since it is available in commercial finite element codes (for example,
LS-DYNA [DYNA 2006]). The model of Tvergaard and Hutchinson [1994], based on the ductile fracture
concept of Dugdale [1960], possesses a trilinear distribution of the interface traction with regards to the
effective crack opening displacement, which is taken as a measure for the damage 3 (see Figure 2),
defined as

3=

√(
11

1max
1

)2

+

(
〈13〉

1max
3

)2

,

where 1max
1 and 1max

3 are the critical crack opening displacements in the tangential and normal directions.
However, no permanent displacement jumps in the sense of plasticity are taken into account. Interaction
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�

Gc

Λ2Λ1

Λ

σ̂

σ(Λ)

1

Figure 2. Trilinear course of interface stress σ versus damage 3.

of fracture modes I and II is inherent in the formulation, which may be extended to mode III in an
analogous manner.

The components ti of the stress vector on the interface are derived from a free energy density function
[Tvergaard and Hutchinson 1996, equation (1.2)] where the parameter for the damage 3 is defined by
means of the components 11 and 13 of the displacement discontinuity vector. The interface stresses are
given by the derivatives of the free energy density function with respect to the associated components
1i of the crack opening:

t3 =
σ(3)

3

13

1max
3

, t1 =
σ(3)

3

1max
3

1max
1

11

1max
1

. (2-7)

Hence, the critical energy release rate Gc becomes:

Gc =
1
2 σ̂1

max
3 (1−31+32). (2-8)

2D. Elastic-plastic interface model. Su et al. [2004] developed an elastic-plastic interface model with
softening, which accounts for elastic and irreversible inelastic displacement jumps prior to failure. In this
paper the model is improved with respect to hardening and softening and is extended to rate-dependency.
It is applied to the analysis of joints, bonded with toughened ductile adhesives under combined loading of
shear and tension. Unlike in [Su et al. 2004], the model is validated here for the case of combined tension
and shear loading. No information about the model’s performance for combined loading is given in [Su
et al. 2004]. The constitutive behavior is formulated between the three components of the interface stress
vector ti and the components of the displacement jump vector across the adherent layer 1i . Based on
the additive decomposition of the displacement jump vector into elastic and plastic parts, 1=1e

+1p,
the elasticity assumption for the calculation of the interface stress vector leads to

t = K1e
= K (1−1p), (2-9)

with the two-dimensional elastic stiffness tensor K of the interface as given in (2-2). The interface stress
vector t may be decomposed into normal and tangential parts, tn = (t · n)n and t t = t− tn . The effective
shear stress τ =

√
t t · t t in the interface is the resultant stress of the two tangential traction components.

The elastic domain is bounded by two yield curves with functions f (1) and f (2) for a two surface plasticity
interface model. The yield conditions in the normal (1) and shear (2) modes are

f (1) = tn − Y (1) ≤ 0, (2-10)

f (2) = τ +µtn − Y (2) ≤ 0, (2-11)
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with the yield stress in the normal, Y (1), and tangential, Y (2), directions. The variable µ in (2-11) can be
interpreted as the friction parameter of the Coulomb model, describing the interaction between stresses
in the normal and tangential directions at yielding.

The rate of the plastic displacement jump is defined by the flow rule:

1̇
p
=

2∑
i=1

λ(i)m(i) (2-12)

with an associated flow vector in tension m(1)
= n(1) and a nonassociated flow vector in shear

m(2)
=

t t
τ
6= n(2),

where n(i) is the normal to the yield surface f (i). The variable λ(i) is the plastic multiplier in the flow
rule for mode (i). It has nothing to do with the 3 of Section 2C in the Tvergaard–Hutchinson model.

Hardening or softening due to either mode of yielding is introduced into the model by means of
evolution equations for the change of the current yield stresses Y (i) in [Su et al. 2004]. Here, the yield
stresses are given as

Y (i) = Ŷ (i)(γ̄) (2-13)

in each mode of plastic flow as a function of the equivalent plastic displacement jump γ̄, introduced as
the weighted sum of the time integrated plastic multipliers γ(i):

γ̄ :=

√
(γ(1))2+β(γ(2))2, (2-14)

with β as an appropriately identified mode interaction parameter, and where

γ(i) :=

∫ t

0
λ(i)(τ )dτ. (2-15)

For the analysis of the peel and KS-II (see Section 5D) tests, the experimental data in Figure 9 are
approximated by piecewise linear yield curves for tension (α = 0) and slow, uniform loading in pure
torsion (α =∞):

Y (1) = Ŷ (1)(1P
n )= Y (1)0 + H (1)(γ̄)1P

n , Y (2) = Ŷ (2)(1P
t )= Y (2)0 + H (2)(γ̄)

√
β1P

t . (2-16)

The kinematical variables1P
n =1

P
3 and1P

t =

√
(1P

1 )
2
+ (1P

2 )
2 are respectively the normal and resultant

shear components of the plastic displacement jump vector 1P . The material quantities H (1) and H (2)

are the hardening parameters H (1)
hard and H (2)

hard identified as the inclinations of the yield curves in the
hardening range. Likewise, H (1)

soft and H (2)
soft denote the slopes of the straight lines through the data in

the successive softening range. Three different cases can be distinguished for the hardening quantities
H (i)(γ̄), depending on the state of the effective plastic displacement jump γ̄:

H (i)(γ̂)=


H (i)

hard if γ̄ < γ̄crit,

H (i)
soft if γ̄crit ≤ γ̄ < γ̄fail and f (i) > 0,

0 if γ̄ ≥ γ̄fail.

(2-17)
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In the first case, the equivalent plastic displacement jump γ̄ is smaller than the given critical displacement
jump γ̄crit and the adhesive layer is still in the state of hardening. If the variable γ̄ is greater than the
critical displacement jump, then softening of the adhesive takes place. The interface fails when the
variable γ̄ is equal to the displacement jump at failure γ̄fail, which follows from the softening moduli
H (1)

soft and H (2)
soft. Note that the softening moduli are included in the model as material parameters and γ̄fail

is calculated from them.
In this paper the elastic-plastic traction-separation equation is extended to rate-dependency by defining

the initial yield stresses Y (1)0 and Y (2)0 in the normal and tangential directions similar to the proposal of
Johnson and Cook [1983] for a rate-dependent yield limit:

Y (1) = Y (1)0

(
1+C

〈
ln
1̇v

1̇0

〉)
+ H (1)

hard1
P
n , Y (2) = Y (2)0

(
1+C

〈
ln
1̇v

1̇0

〉)
+ H (2)

hard1
P
t . (2-18)

The material parameter C and the reference rate of the displacement jump 1̇0 must be determined ex-
perimentally. The variables Y (i)0 are the initial yield stresses according to (2-16) for the two modes of
plastic flow and the variable 1̇v is the rate of the effective displacement jump as given in (2-6).

3. Time step control for explicit integration of equations of motion

The size of the critical time step for the conditionally stable explicit schemes has to be estimated for
the numerical time integration of the equations of motion. The inverse of the largest eigenfrequency
of the linear system of second order ordinary differential equations limits the maximum allowable time
step, which is slightly reduced and then used for the step-by-step integration of the nonlinear system of
the equations of motion. The largest eigenfrequency of the linear system is usually not known, since it
is practically impossible to repeatedly solve the associated eigenvalue problem with a large number of
degrees of freedom for the finite element mesh of a vehicle in a crashworthiness analysis. Therefore,
approximate solutions, mainly based on the analysis of the individual finite element, must be used for a
conservative estimate of an efficient time step.

A conservative estimate of the critical step length for the spatially discretized equations of motion for
the complete structure is computed from the largest value ωmax of the set of maximum eigenfrequencies
of all individual finite elements e: ωsystem

max ≤maxe(ω
e
max), where ωe

max is the maximum frequency of
the e-th element subjected to zero traction boundary conditions [Irons 1970; Hughes et al. 1979]. The
maximum eigenvalue of solid elements is often approximated by the bar wave velocity c and the smallest
distance 1l of two arbitrary nodes within the element, leading to the critical time step 1tcrit =1l/c. If
only one solid element over the thickness dk is used for the spatial modeling of thin adhesive layers, the
smallest distance 1l between adjacent nodes is equal to dk . The criterion above leads to an inefficiently
small critical time step, since the length of any edge in any of the finite elements must currently be at least
5 mm for the crash analysis of complete vehicle bodies to guarantee a reasonable run time in practice.
Therefore, we resort to another estimate for the critical size of the time step.

The distributed springs, symbolizing the stiffness, provided by an eight node interface element connect
the masses of the top and bottom planes in Figure 3, left.

Both planes may consist of shell elements, describing the adjoining sheet metal or the surfaces of
solid elements, used for the modeling of more bulky structural parts. The masses of both surfaces mainly
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integration point

node

m1 k m2

Figure 3. Left: interface element symbolized by distributed springs. Right: spring-mass system.

come from the bonded steel components and, to a small extent, from the adhesive layer. Figure 3, right,
shows a node with mass m1 in the top plane and a neighbouring node with mass m2 in the bottom
surface, connected by a discrete spring with stiffness k, which is computed by numerical quadrature at
the integration points of the interface element. The parameter k equals the product of the shear or normal
stiffness times a quarter of the element area in the case of an eight node interface element. The critical
time step for the spring-mass system is given by:

1tcrit = 2
√

m1m2
m1+m2

1
k
. (3-1)

Note from this equation that the thickness dk of the adhesive layer does not enter the estimate of the
critical time step for the interface element. It may be shown by numerical investigation that the critical
time step of the solid elements for the steel parts is not further limited by this estimate for the interface
elements.

4. Numerical examples for delamination analysis

The interface elements, along with the traction-separation equations of mixed-mode fracture and elasto-
plasticity, were coded into the finite element program FEAP [FEAP 2002] and the commercial code LS-
DYNA [DYNA 1998; DYNA 2006] as user defined material models. The performance of the different
approaches are demonstrated by means of the double cantilever beam (DCB) and fixed ratio mixed-mode
(FRMM) tests for delamination, all run with FEAP. The values of the elastic interface stiffness terms Kn

and Kt serve more or less as penalty parameters in the case of delamination analysis and are kept in a
reasonable range, where the stiffness does not obstruct the condition number of the stiffness matrix in
implicit analysis [Fiolka and Matzenmiller 2007] or the time step of the explicit runs.

4A. DCB test. The double cantilever beam (DCB) test, shown schematically in Figure 4, is a widely used
interlaminar fracture test of fiber-reinforced structures to analyze crack growth in mode I. The material
parameters E11, E22, G12, G13, and ν12 of the orthotropic elasticity model for the DCB specimen, made
of fiber-reinforced composite material, are given in Table 1 together with the material constants for mode
I of the Hillerborg fracture model.

For the analysis of the delamination test, two kinds of elements are used: the three-dimensional in-
terface element (see Section 2A) and a locking-free solid-shell element [Fiolka and Matzenmiller 2007].
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Figure 4. DCB test setup and finite element model.

The convergence study reveals that 140 interface elements along the length of the uncracked specimen
of 118.25 mm are sufficient for the accurate resolution of the load-deflection diagram. A total of 290
solid-shell elements are taken for the double cantilever [Fiolka 2007].

Figure 5, left, displays the experimental data from [Aliyu and Daniel 1985] and the analytical solution
from [Mi et al. 1998] together with the finite element simulation. The numerical and the experimental
results are identical until the load peak is reached, where the crack begins to increase. During the
delamination process, the forces in the numerical and the analytical solutions match very well. Further
finite element simulations have shown that the shape of the traction-separation equation, here taken as
bilinear or trilinear as in the Tvergaard–Hutchinson model, has only a small influence on the force-
displacement curve.

The interface stiffness parameters Kn and Kt are chosen to be sufficiently large enough in Table 1,
since practically the same result is obtained as in Figure 5, left, for the numerical case, if Kn and Kt are
reduced to 12000 N/mm3 or increased to 30000 N/mm3; see Figure 5, right.
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Figure 5. Left: Experimental data and simulation results of the mixed-mode fracture
model for the DCB test. Right: Results for various interface stiffness values Kn and Kt

of the mixed-mode fracture model for the DCB test from [Fiolka 2007, page 115].
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Elasticity moduli E11 = 138000 N/mm2 E22 = 8960 N/mm2

Shear moduli G12 = 7100 N/mm2 G23 = 3446 N/mm2

Poisson’s ratio ν12 = 0.3
Elastic interface stiffness Kn = 18000 N/mm3 Kt = 18000 N/mm3

Maximal interface stress tmax
3 = 51.7 N/mm2

Energy release rate GIc = 222 Nm/m2

Table 1. Material parameters for orthotropic elasticity model of composite and bilinear
interface model of DCB test from [Teßmer 2000; Fiolka 2007].

Elasticity moduli E11 = 130000 N/mm2 E22 = 8000 N/mm2

Shear moduli G12 = 6000 N/mm2 G23 = 3000 N/mm2

Poisson’s ratio ν12 = 0.27
Elastic interface stiffness Kn = 100000 N/mm3 Kt = 100000 N/mm3

Maximal interface stress tmax
1 = 48.0 N/mm2 tmax

3 = 48.0 N/mm2

Energy release rates GIc = 257 Nm/m2 GIIc = 856 Nm/m2

Interaction parameter n = 2

Table 2. Material parameters of orthotropic elasticity model for composite layer and
interface model for FRMM test.

4B. FRMM test. Among the mixed-mode bending tests, the FRMM test in Figure 6 is a common bench-
mark for the investigation of interlaminar fracture and for the determination of the mixed-mode properties
for the delamination process in fiber-reinforced composite structures. The layered composite is notched
at the free end over a length of a0 = 45 mm and clamped at the other end. The material parameters of the
FRMM specimen, made of carbon fiber-reinforced epoxy resin [Chen et al. 1999], are given in Table 2.
The parameters for the elastic interface stiffness are chosen in accordance with the earlier considerations.
A transverse load is applied at the free edge of the upper layer. The length of the finite elements is
chosen as 0.87 mm in the direction of the crack growth after a convergence study of the mesh size has
been undertaken on the experience of the DCB test. Hence, 148 volume-shell elements and 69 interface
elements are used in total.

The simulation results are compared to the experimental data and the analytical solution in Figure
7, left. The Hillerborg mixed-mode model approximates the experimental load-displacement curve
fairly well for an interaction parameter of n = 2 in (2-4). However, the Tvergaard–Hutchinson model

a

u

l=105

F

b=24

h=3.1

= 45a0

initial crack

F

Figure 6. FRMM test setup.
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underestimates the experimental load-displacement curve, because the critical energy release rate Gc in
(2-8) takes only the mode I part into account. Again, it can be shown that the shape of the graph from
the traction-separation equation has only a minor effect on the load-displacement relation — see Figure
7, right, where the force-displacement curve with λ1 = λ2 = 0.1 (the bilinear shape) is compared to the
one with λ1 = 0.2 and λ2 = 0.6 (the trilinear shape in Figure 2).

5. Failure analysis of adhesive bonds

The proposed interface models are used for the simulation of the mechanical behavior of adhesively
bonded joints until failure of the adhesive layer occurs. Therefore, the bonded tube test, the peel test,
and the KS-II test are simulated with LS-DYNA and explicit time integration. The numerical results are
compared to the experimental data. The thickness of the adhesive layers is between 0.25 and 0.30 mm
for all specimens.

5A. Experimental results for toughened adhesives. Structural adhesives are crash-resistant, toughened
plastic polymers, nowadays used in bonding applications. The material behavior of crash-resistant adhe-
sives such as Betamate 1496, SikaPower 490-6, EP 12, or Terokal 5070 was comprehensively examined
in an earlier research project [Schlimmer et al. 2002]. A typical characteristic behavior of toughened
adhesives is plastic flow under shear as well as hydrostatic loading, as can be measured in tension and
torsion tests of adhesively bonded tubes. The constitutive response in shear of a crash-resistant adhesive
under slow loading, complete unloading, and reloading was investigated in [Schlimmer 2003] with a
shear strain rate of γ̇xy = 2 · 10−3 s−1. The shear stress-shear strain from the test is shown in Figure 8,
where permanent strains γxy,bl remain in the specimen, if the external load exceeded the yield limit
before unloading took place. The hysteresis loops due to cyclic loading are neglected in the elastoplastic
approach and the linear elastic response with the shear modulus Gs is fitted to the unloading/reloading
paths.
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Figure 7. Left: Experimental data and simulation results of the Hillerborg mixed-mode
interface model for FRMM test. Right: Experimental data and simulation results of the
Tvergaard–Hutchinson mixed-mode interface model for the DCB test.
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Figure 8. Stress-strain diagram of crash-resistant adhesive EP 12 under cyclic loading
from [Schlimmer 2003].
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Figure 9. Experimental results of pure tension, pure torsion, and combined tension-
torsion tests of adhesively bonded tubes from [Schlimmer 2003].

The material behavior in Figure 9 is typical for an adhesive layer between two bonded steel tubes
under uniaxial tension and torsion loading. The experimental data for the stress-strain diagrams have
been provided by Schlimmer [2003]. The combined tension-torsion tests are characterized by the ratio
α= γ/(2ε) of normal to shear strains ε and γ. In Figure 9 the results of pure tension (α=∞) and torsion
(α = 0) tests and two combined tension-torsion experiments with α = 0.5 and α = 2.0 are shown.

The rate dependency of the yield stress or stress at failure is investigated by means of tension tests
at butt-jointed specimens and of shear tests at thick shear lap specimens [Schlimmer et al. 2008]. The
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Figure 10. Experimental data for rate-dependent tensile strength of adhesively bonded
joints and least square fit of model response for butt-jointed specimen from [Jendrny
2005; Schlimmer et al. 2008].
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Figure 11. Experimental data for rate-dependent shear strength of adhesively bonded
joints and least square fit of model response for thick shear lap specimen from [Jendrny
2005; Schlimmer et al. 2008].

results are summarized in Figures 10 and 11 together with the least square fit to the data of the functions
in (2-5).

5B. Numerical analysis of bonded tubes. The bonded tube test above consists of two hollow metal
cylinders, joined at the cross section by an adhesive layer of Betamate 1496 V. An axial force or a torque
is applied at the upper end of the structure, while the far end of the lower cylinder is kept fixed (see
Figure 12). The parameters of the elastic-plastic interface model, discussed above, are determined by
fitting the model response to the data [Schlimmer et al. 2002] from the pure tension and pure torsion tests
of the bonded tubes. These are given in Table 3. The elastic interface stiffness parameters Kn and Kt
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120dk

50 60

adhesive layer

Figure 12. Bonded tubes with geometrical data.

coincide with the measured stiffness values for the adhesive layer with thickness of 0.3 mm. Dividing the
elasticity modulus and shear modulus of the adhesive layer by the thickness delivers the values chosen for
Kn and Kt in Table 3. The combined tension-torsion tests for α = 0.5 and α = 2.0 are used as validation
examples. The adhesive layer is meshed by 28 interface elements in the circumferential direction of the
tube. Figure 13 shows the experimental data from [Schlimmer et al. 2002] and the simulation results of
the stress-strain curves from the elastoplastic interface model in Section 2D.

The results of the finite element simulation agree sufficiently with the experimental data in the pure
tension and pure torsion tests, which are performed for the identification of the constitutive parameters.
The stress-strain curves in Figure 13 show that the different yield limits in the normal and tangential
directions correspond to the experimental data. The hardening of the adhesive layer is approximated
fairly well by the linear course of the graph from the model, whereas the displacement jump at the
failure of the adhesive bond is not so well represented in the load cases of combined tension and torsion.

Although the model is very flexible, allowing independent approximations of yielding due to ten-
sion and shear, its capability to describe the postcritical behavior is very limited. It does not permit
representing the initiation of softening and the state of failure separately. There is only one variable β
(see (2-14)), which may be identified such that either the initiation of softening at γ̄crit or the failure at
γ̄fail takes place in tension and shear at the same time in both modes of plastic flow. In this paper the
determination of the parameter β is a compromise between the onset of softening and the occurrence
of complete failure. In conclusion, the model has only two parameters β and γ̄crit (see Table 3) to
describe the points of maximum stress at the critical discontinuity and zero stress at failure γfail for both
modes of yielding. The combined tension-torsion tests for α = 0.5 and α = 2.0 serve as examples for

Elastic interface stiffness Kn = 6500 N/mm3 Kt = 2500 N/mm3

Yield limits Y (1)0 = 30.0 MPa Y (2)0 = 26.0 MPa
Hardening modulus H (1)

hard = 210 MPa/mm H (2)
hard = 450 MPa/mm

Softening modulus H (1)
soft = 580 MPa/mm H (2)

soft = 5000 MPa/mm
Coulomb friction parameter µ= 0.55
Interaction parameter β = 0.039
Critical displacement jump γ̄crit = 0.035 mm

Table 3. Material parameters of elastic-plastic interface model.
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plastic interface model for tension, torsion, and combined loading tests of bonded tubes.
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Figure 14. Geometry of peel test specimen and FE mesh of front part.

the validation of the model’s hypotheses in describing the plastic flow in nonuniaxial situations. The
prediction of the mechanical behavior from the simulation using LS-DYNA for these combined loading
tests is not satisfactory for the special adhesive Betamate 1496. The mode interaction behavior should
be improved for this adhesive, as should the simple assumption for the flow vector m(2)

= t t in mode II
(see (2-12)).

5C. Numerical analysis of peel test. The first series of specimens with inhomogeneous stress distribu-
tions and fracture to be examined for adhesive joints is the peel test. It resembles the DCB specimen (see
Figure 14), where two metal sheets with width b = 25 mm are glued together with the crash resistant
adhesive Betamate 1496 V and torn apart by forces at the ends normal to the bonding. However, the
metal sheets deform plastically during the peeling process, whereas in the DCB test the laminae bend
only within the elastic range.

The peel test is analyzed with the mixed-mode fracture model and the elastic-plastic interface approach
for the adhesive. Rate-independent material models are used for the adhesive and conventional Prandtl–
Reuss plasticity theory of the von Mises type for the steel of the sheet metal. The material constants
from Table 3 are taken for the plasticity model of the adhesive and from Table 4 for the isotropic, ideal
plastic description of the adherends and the mixed-mode fracture model. The constitutive parameters
of the latter in Table 4 are determined on the basis of fracture tests for modes I and II by Brede and
Hesebeck [2005].

Elasticity modulus steel E = 209000 N/mm2

Poisson’s ratio steel ν = 0.3
Yield limit steel Y0 = 350 N/mm2

Elastic interface stiffness Kn = 6500 MPa/mm, Kt = 6500 MPa/mm
Maximal interface stress tmax

n = 20.0 MPa, tmax
t = 39.5 MPa

Energy release rate GIc = 5400 Nm/m2 GIIc = GIIIc = 23000 Nm/m2

Interaction parameter n = 2

Table 4. Material parameters of steel sheets and mixed-mode cohesive zone model from
[Brede and Hesebeck 2005].
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Figure 15. FE model of deformed shape of peel test specimen.

The FE model of the peel test consists of 473 interface elements along the length and 25 in the cross
direction of the adhesive layer. Three linear solid elements are taken through the thickness of each steel
sheet and 137 in the length direction. With an element size of about 1.1 mm for the hexahedron of the
steel and 0.275 mm for the interface elements of the adhesive, the finite element mesh may be considered
as converged in practice. The boundary value problem is solved with the commercial code LS-DYNA
[DYNA 2006], extended by the user interface element with the constitutive models above, and explicit
time integration. The test is simulated with a constant velocity boundary condition of 140 mm/s at the
upper end. The deformed specimen is shown in Figure 15.

The comparison of the simulation results with the experimental data from [Schlimmer et al. 2008] is
presented in Figures 16 and 17 by means of the load-displacement curves. The typical features of these
are the peak force at the beginning, when the crack starts to open, and the decrease of the resultant force
value during the advancing peel process. The simulations with the mixed-mode model (Figure 16) and
the elastic-plastic interface approach (Figure 17) lead to different peak values of the force in the cases
with data from [Schlimmer 2003; Brede and Hesebeck 2005]. The mixed-mode model with these data
clearly overestimates the maximum load carrying capacity of the specimen; obviously, the force during
the peeling process is significantly greater than that of the corresponding experimental data (Figure 16).

The excessively high load carrying capacity in the simulation with the mixed-mode model, shown in
blue (upper dotted curve) in Figure 16, is mainly due to the loss of adhesion bonding at the surface of
the adherends in the experiments as outlined in [Schlimmer et al. 2008, chapter 3.1.7]. However, the
material data for the energy release rates in Table 4 are determined in [Brede and Hesebeck 2005] for
cohesive fracture at a much higher load carrying capacity. In summary, they may be too large, since
the area under the experimentally measured diagrams of the stress versus crack opening displacement is,
according to the tests in [Schlimmer 2003], about 3240 Nm/m2 in the case of pure tension, α= 0 in Figure
13a, and 12900 Nm/m2 in the case of torsion, α =∞ for pure shearing in Figure 13b. If these values
are taken for the critical energy release rates GIc and GIIc with the maximal interface stresses adjusted
to tmax

n = 35.0 MPa and tmax
t = 39.0 MPa, the red (solid) curves in Figure 16 follow from the simulation

with the mixed-mode fracture model [Schlimmer et al. 2002; Schlimmer 2003]. In the third run, the
energy release rates are lowered to GIc = 1300 Nm/m2 and GIIc = 10000 Nm/m2 as inversely identified in



202 ANTON MATZENMILLER, SEBASTIAN GERLACH AND MARK FIOLKA

 0

 500

 1000

 1500

 2000

 2500

 0  0.5  1  1.5  2

 F
or

ce
 [N

] 

 Displacement [mm] 

mixed mode interface model

experimental data
simulation data 1
simulation data 2
simulation data 3

 0

 500

 1000

 1500

 2000

 2500

 0  2  4  6  8  10  12  14

 F
or

ce
 [N

] 
 Displacement [mm] 

mixed mode interface model

experimental data
simulation data 1
simulation data 2
simulation data 3

Figure 16. Results of the peel test computed with mixed-mode interface model and
compared to experimental data. Simulation data #1 is from [Brede and Hesebeck 2005],
#2 from [Schlimmer et al. 2008], and #3 from [Schlimmer 2003].

[Schlimmer et al. 2008], where the maximal stresses are changed slightly to tmax
n = 43.0 MPa and tmax

t =

39.0 MPa. Shown in green (light-colored dashed graph), this solution approximates the test data best.
The data in Figure 17 suggest that the elastic-plastic interface model approximates the maximum

resultant force of the experiment very well, but the peak is slightly shifted towards the left. The forces
of the interface model during the peeling process coincide with the experimental data (see Figure 17).
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Figure 18. Geometry of KS-II test specimen, and underfilling (lower right).

5D. KS-II test. Hahn et al. [1999] developed an experimental setup to investigate the mechanical be-
havior of adhesively bonded joints under tensile and shear loading (see Figures 18 and 19). The purpose
of the test is to characterize and evaluate the behavior of bonding techniques under different mechanical
stress conditions. Two U-shaped steel components are joined together with an adhesive similar to a
flange in an automotive application (see Figure 18). The dimensions of the adhesive layer are 23 mm by
16 mm with a thickness of 0.3 mm. The underfilling of 50% at the edge of the adhesive layer is shown
in Figure 18, right.

The test specimen can be pulled apart with different clamping devices under various angles of loading
with respect to the normal on the adhesive layer (see Figure 19). Four different load angles are chosen

Figure 19. Test control unit and load cases.
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Figure 20. Finite element idealization of symmetric half model.

with 0◦ for pure shear loading, 90◦ for normal loading, and the two intermediate angles 30◦ and 60◦

for combined tension and shear stressing. The loading is applied in terms of prescribed nodal velocities
on the far ends of the U-shaped profiles, which are mounted on steel support jaws, treated as rigid in
the FE model. In order to investigate the influence of the rate-dependency, analysis and experimental
testing have been performed for loading velocities of v = 1.0 m/s, in addition to the quasistatic one with
v = 10 mm/min. The displacement is measured 15 mm below the upper and lower edges of the specimen
on the line of symmetry.

In the numerical analysis, only the symmetrical half of the specimen is analyzed, as shown in Figure 20,
left. Since the validation of the substitute element for the bonding was the primary intent, both the
adhesive layer and the adherent steel parts are meshed fairly finely with the interface elements in the
region of the bonding. The adhesive bond is meshed with 16 interface elements lengthwise and 46
interface elements crosswise. However, outside of this area the steel parts in the clamping devices are
modeled as rigid bodies, where the loading in terms of prescribed nodal velocities is applied. Special
attention has to be given to the filling at the outer edge of the adhesive layer around the corner from the
steel parts (see the right side of Figure 20). Due to the increased thickness, the strains in the filling are
smaller and, thus, local failure takes place later.

Each load case has been investigated with both constitutive models mentioned above for the adhesive.
The material parameters of the mixed-mode fracture model are determined on the basis of fracture tests
(see Table 4 for the mechanical properties). The material parameters for the elastic-plastic model in Table
3 are identified from the data from experimental tests at bonded tubes with a fairly homogeneous state
of stress in the adhesive layer under tension and torsion. These are used in the analysis of the KS-II test.

The results of the analysis are plotted as the total internal force in the load direction versus the local
displacement in Figures 21–24 and compared to the data measured in the experiments [Schlimmer et al.
2008]. The local displacements in the experiment are computed as the difference of the displacement
vectors for two marked points on the clamped legs of the upper and lower U-shaped steel parts. In the
finite element analysis, the local displacement is defined as the discontinuity between the displacements
of the rigid bodies for parts of the upper and lower steel components. The force in the load direction on
the ordinate of the diagrams is calculated in the theoretical investigation from the stresses in the adhesive
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layer by summing them over the entire area. It is generally impossible to measure with a device the
force in the adhesive layer without influencing its properties with embedded particles. Therefore, the
force cannot be recorded close to the glued interface in the current test setup and a measurement cell is
put into the top of the upper clamping device. Due to the inertial effects of the mass for the steel parts
between the adhesive layer and the measurement cell, the measured forces differ from the total internal
force, transferred through the adhesive joint between the lower and upper steel components. It is difficult
to estimate the deviation of the internal force in the measurement device from the resultant on the cut
through the adhesive layer. Despite the unknown error between the measured force in the clamping
device and the stress resultant on the adhesive layer we compare the measured force from the test to the
calculated resultant in the joint and plot both quantities over the local displacements in Figures 21–24.
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Figure 21. Comparison between experimental data and simulation results with mixed-
mode interface model for quasistatic loading: tension and shear tests with angles 90◦

and 0◦ (top) and off-axis tests with angles 60◦ and 30◦ (bottom).
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5E. Quasistatic loading of KS-II test. The numerical analysis of the KS-II test shows that the failure
mechanism of the specimen is very complex. The thickness of the adherents is only 1.2 mm and, therefore,
the relatively thin sheet metals are bent in two directions during the loading process. Additionally, the
thickness of the bonding layer varies at the edges of the U-shaped adherents due to the filling of the joint
(see Figure 20). Because of these phenomena, the state of stress and strain in the adhesive layer is very
inhomogeneous. Therefore, the onset of failure takes place in the center very locally and spreads out
continuously throughout the entire bonded area.

The maximum load carrying capacity depends on the off-axis angle and is largest in the cases of shear
loading and minimal under normal loading. The peak values of the forces from the experimental and
numerical analyses are of the same order of magnitude for both models (see Figures 21 and 22). However,
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Figure 22. Comparison between experimental data and simulation results with elastic-
plastic interface model for quasistatic loading: tension and shear tests with angles 90◦

and 0◦ (top) and off-axis tests with angles 60◦ and 30◦ (bottom).
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the courses of the load-deflection diagrams from the test and the simulation in the case of shear loading
(0◦) differ in the postcritical range. As in the mixed-mode approach, the elastic-plastic interface model
describes the mechanical behavior of the bonded joint in all four load cases reasonably well (Figure 22).
The load-deflection diagrams of the load cases 30◦, 60◦, and 90◦ are more ductile in the test than in
the simulations. The predicted peak values in all cases are in the range of the experimental data. The
corresponding local displacement jumps between the two clamping devices are underestimated at both
critical states, namely at the location of the maximum force and at complete failure in most load cases.

5F. Dynamic loading of KS-II test. The rate-dependent material behavior of the adhesive layer becomes
significant in crash analyses. The rate dependency of the models, presented in (2-18), is quantitatively
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Figure 23. Comparison between experimental data and simulation results with mixed-
mode model for velocity v = 1.0 m/s: tension and shear test with angles 90◦ and 0◦ (top),
and off-axis tests with angles 60◦ and 30◦ (bottom).
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defined with the reference value 1̇0 = 10−4 1/s and with the parameter C , which is set equal to the
slope of the graph for the linear regression in Figures 10 and 11: C = m = 0.076. Because of the rate-
dependent influence of the adhesive, the KS-II specimens are tested dynamically. The tests are performed
with tensile loading under four different off-axis angles as given above. The load-displacement curves
are determined from the measured data for the displacements and the internal forces versus time. The
experimental results from the tests in [Schlimmer et al. 2008] are shown in Figures 23 and 24 for a
loading velocity of v = 1.0 m/s. Due to the rate-dependency of the adhesive, the peak value of the force
increases clearly with a larger loading velocity in comparison to the ones of the quasistatic cases in
Figures 21 and 22.

The mechanical behavior of the KS-II specimen under pure normal and combined loading with respect
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Figure 24. Comparison between experimental data and simulation results with elastic-
plastic interface model for velocity v = 1.0 m/s: tension and shear test with angles 90◦

and 0◦ (top), and off-axis tests with angles 60◦ and 30◦ (bottom).
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to the direction of the adhesive layer is investigated in Figure 23 by comparing the finite element results
of the mixed-mode fracture model to the experimental data. The theoretical solution and the test data
are in fairly good agreement.

The results of the numerical analysis with Anand’s traction-separation equations, extended to rate-
dependency, are graphically represented in Figure 24 for the four loading angles and a velocity of
v = 1.0 m/s for the separation of the two steel parts. The experimental data are added to the predicted
load-displacement curves. In the case of shear loading, the ultimate forces in the experiment and the
simulation agree well, but complete failure is detected at a much smaller relative displacement in the
analysis with the traction-separation model than in the test. For the case of combined loading, the
maximum forces differ more than in the diagrams for shear loading; however, the postcritical parts of the
force-displacement curves agree better. A more reliable validation of the test data with the theoretical
results is under way. One source of error is the force, measured far away from the adhesive layer, as
already mentioned, and compared to the stress resultant of the adhesive layer. In contrast to the quasistatic
case the entire test control unit should be modeled from the lower clamping part up to the measurement
device for the force in the case of dynamical loading. The internal force, calculated at the position of the
measurement cell, must be compared to the experimentally found value.

Another uncertainty is the exact reproduction of equal mechanical properties for the adhesive layer.
The liquid glue solidifies under heating of the entire specimen in the successive curing process. It is
difficult to guarantee a specified quality of the adhesive bond with strength and fracture strain within a
small interval of tolerance.

6. Summary and outlook

The similarities of interface models for the analysis of delamination and fracture of adhesive layers
between relatively stiff parts have been outlined and discussed with regard to the validation of simulated
results from experimental tests. Two different approaches for the modeling of thin adhesive layers under
crash loading conditions have been briefly outlined. An existing mixed-mode fracture model is extended
to account for rate-dependent strength and damage and failure of the adhesive bond. Alternatively, an
elastic-plastic interface model with a traction-separation equation can be used to describe the effective
bonding behavior. Although the interface elements may be massless an estimate of the critical time step
for the interface elements can be given.

Comparison of the simulation results and the experimental data demonstrates the model’s ability to
capture the experimentally observed major effects of rate-dependent damage and failure. The numerical
approximation of the experimental data must be still improved, for example, by modeling the entire con-
trol unit and by better matching the experimental data. In order to draw conclusions from the simulation
at hand for the crashworthiness analysis of vehicle bodies, the finite-element idealization for the KS-II
test has to be simplified by reducing the number of elements considerably.

In addition to the development of an application oriented substitute model for the adhesive layer,
the determination of adequate constitutive parameters for more effective substitute models is another
important task of the current research project. Finally, the models developed so far should be applied to
the simulation of a B-pillar in a car body, which will be investigated experimentally by another research
partner.
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COMPUTATIONAL STUDIES OF COLLAGEN FIBRIL BIOMINERALS USING A
VIRTUAL INTERNAL BOND MODEL WITH EXTRINSIC LENGTH SCALE

GANESH THIAGARAJAN AND KAVITA DESHMUKH

Mineralized type-I collagen fibrils are made up of mineral hydroxyapatite and type-I collagen and are
known to have good mechanical properties. Hydroxyapatite by itself is stiffer and collagen is relatively
weaker. The development of a multiscale virtual internal bond model (VIB) used to model the material
behavior and failure of such biocomposites was described in an earlier paper by the authors. An explicit
finite element based framework using a two parameter fracture-constitutive VIB model, with an extrinsic
length scale, was used in this study.

The model used in this study is a nano sized dahlite mineral crystal commonly found in collagen fibrils.
Two important computational implementation characteristics are presented here; namely the effect of a
material parameter used in the VIB model and the effect of thickness of the material at the nanoscale on
the failure behavior. The effect of the thickness is studied in order to demonstrate the extrinsic length
scale capability of the VIB model at nano length scales.

1. Introduction

Recent research in biomedical engineering has shown evidence that the growth and development of
biological tissues is also related to the mechanical loadings on and history of the tissue. Many types of
biological materials, such as bone, exhibit a hierarchical structure consisting of several levels [Katz 1976;
1980; Weiner and Wagner 1998]. The mineralized collagen fibril is one of the fundamental constructs
of bone, dentin, and mineralized tendons. There are three major components of a mineralized collagen
fibril; the collagen molecule, minerals, and water [Weiner and Wagner 1998]. The proportion of the
three components varies for different types of tissues. The collagen molecule, which is the major protein
component in the fibrils, is predominantly made of type-I collagen. The triple helical structure of the
collagen molecule has an average diameter of 1.23 nm and is about 300 nm long [Weiner and Traub 1992].
The mineral component of the mineralized collagen fibril in bone consists of plate-shaped crystals of
carbonated apatite [Weiner and Traub 1992]. The apatite crystals are also known as dahlite and are known
to be 10 nm wide and 0.61 nm thick [Landis et al. 1996]. The diameter of the mineralized collagenous
fibril, at the next hierarchical level, is of the order of 80–100 nm.

The physical structure of mineralized collagenous fibril is complex and many forms have been pro-
posed. Apatite crystals are arranged in parallel arrays in a collagenous framework to form mineralized
collagen fibrils. Orgel et al. [2000; 2001] confirmed that collagen molecules show a quasihexagonal
packing in the lateral plane and conform to the Hodge–Petruska quarter stagger model [Petruska and

Keywords: finite element analysis, collagen, biomineralization, nanomechanical behavior, dentin, parametric studies.
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Hodge 1964] in the axial plane, with a periodicity of 67 nm (the D period). The length of the molecule is
4.46 D (300 nm) and there are gap regions of 0.54 D. Each collagen molecule is divided into 4 segments
of length D and a fifth segment of length 0.46 D. The 67 nm periodicity of the collagen molecule is made
up of a 40 nm hole region and a 27 nm overlap region [Weiner and Traub 1992].

Significant advances in the development of experimental capabilities in recent years have made possi-
ble the study of biological tissues at the micro and nano scales. These advances provide the motivation
for developing models at these scales and provide a mechanism to validate the models experimentally.

For mineral platelets, the implementation aspects of the scaled finite element (FE) framework in com-
bination with the virtual internal bond (VIB) model have been demonstrated in [Thiagarajan et al. 2007].
The paper outlined a new scaled FE scheme, which facilitated study of the mechanical behavior of
mineralized collagen fibrils and their constituents. A two parameter VIB model, set up in an explicit FE
environment using ABAQUS, was used in the study. The effect of ABAQUS/Explicit specific parameters,
when applied to quasistatic loading, has been studied and presented. The factors include the mass scaling
factor (MSF) and scaled time specification (ST) in a scaled FE framework. A good understanding of
how the two parameters (MSF and ST) affect the analysis has provided input into the selection of the
parameters for further studies. The quasistatic nature of the explicit FE simulations was also studied.

The model used in the study was a nano sized dahlite mineral crystal which is commonly found in
collagen fibrils. Two important implementation characteristics were explored: first, the usage of scaled
dimensions and material properties at the micro and nano length scales and, second, the scaling of
loading time without the loading becoming dynamic in nature. Using energy studies it was shown that
the simulations remain quasistatic in nature.

1.1. Minerals in collagen fibrils. Mineralization processes and the arrangement of minerals in collagen
fibrils and fibers are areas of extensive ongoing research [Tong et al. 2003; Chang et al. 2005; Veis
2005]. Eppell et al. [2001] performed atomic force microscopy studies on mature bovine cortical bone
mineralites and report that the minerals are plate-like in shape with thickness ranging from 12 to 115 nm
(mean 37 nm), width ranging from 27 to 172 nm (mean 64 nm), and length ranging from 43 to 226 nm
(mean 90 nm). They also point out that the large mineralites could be located at the outer surface of the
fibrils and 98% of the minerals are less than 2 nm thick with mean dimensions of 12 nm×10 nm×0.61 nm.
Kinney et al. [2003] used a small angle x-ray scattering technique and suggested that the thickness of
the mineralite crystals in human teeth, in general, is approximately 5 nm.

1.2. Observed mechanical relations at the mineral level. In addition to the crystallite dimensions two
more important factors influence the mechanical behavior at the fibril level. They are the mineral density
in the fibril and the arrangement of mineral particles in the collagen matrix of the fibril [Rho et al. 1998;
Weiner and Wagner 1998]. Currey [1990] suggested that as mineralization increases the elastic modulus
increases. Mineral crystals in collagen have the effect of increasing the stiffness and fracture stress but
reducing the fracture strain [Tong et al. 2003]. For example, the lack of the intrafibrillar minerals results
in reduced elastic modulus and hardness of dentin [Kinney et al. 2003; Balooch et al. 2008].

Mineralization geometry models: Mineralization is known to initiate primarily in the gap regions. Hence,
the geometric order of the gaps in the lateral direction is important in determining the mineralization
pattern and geometry. Two hypotheses of the manner in which the channels are formed are concentric
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channel arrangement [Hulmes et al. 1995; Perumal et al. 2008] and a three dimensional packing model
that arranges the gaps as lateral channels or holes that are one molecule thick (∼15 Å) and extend an
unknown distance in the transverse direction [Weiner and Traub 1992]. Tong et al. [2003] have suggested
that the channels run for a distance of at least 10 nm in the transverse direction. Hulmes et al. [1995]
have discussed radial packing and order arrangements in collagen fibril and had proposed that the gaps
in the collagen fibril run as concentric channels around a central fibril core. Jager and Fratzl [2000] have
discussed three possible arrangements of minerals in the fibril, namely, crystals occupying only the gap
zones, crystals growing into the overlap zone, and longer crystal sizes (∼100 nm) extending beyond the
overlap zone and having a staggered arrangement.

1.3. Objectives of the study. This paper presents the details of the next steps in the scaled FE study
of mineral platelets, namely the effect of various VIB material model parameters and the effect of the
mineral geometry. The VIB model, in its present stage, has two parameters — A and B. Parameter A
is related to the elastic modulus of the material and has a constant value since the material itself is not
being changed. The effect of varying the parameter B on the stresses and failure behavior is studied and
presented in this paper. Secondly, the effect of geometry on the mineral crystal behavior is studied by
varying the thickness of the mineral platelet and performing scaled FE studies.

The VIB model does not have an intrinsic length scale and consequently an extrinsic length scale
must be adopted in order to represent the fracture energy of the material. The extrinsic length scale
effect, when the VIB model is implemented in this scaled FE framework, is demonstrated using the
thickness studies presented in this paper. The output variables studied are the notch tip stress and the
strain values in the loading direction. Failure patterns have also been observed and presented for various
combinations of the parameters.

2. Materials and methods

Biocomposites, specifically type-I collagen fibrils, have good mechanical properties. Hence, the overall
objective of the research was to develop a new FE based framework by which the mechanical behavior
of mineralized collagen fibrils could be studied. Firstly, the nature and issues pertaining to the modeling
of nano sized mineral platelets must be addressed followed by the mechanical modeling of tissues that
contain only type-I collagen such as the rat tail tendon, the structural model of which is described in
[Orgel et al. 2006]; the next step would be to develop models for a collagen fibril, and finally the collagen
fibril model would be statistically combined to develop the FE framework for collagen fibers. This paper
addresses the implementation issues related to the modeling of a single platelet.

2.1. Virtual internal bond (VIB) model basics. The VIB model is a multiscale model that combines the
behavior at the atomistic and the continuum length scales. In the VIB model [Thiagarajan et al. 2004a;
2004b], the continuum is considered as a spatial distribution of material points at the continuum level, as
shown in Figure 1. The material points are represented by the integration points in a FE scheme. Each
individual material point is hypothesized to represent collectively the behavior of underlying atoms. At
the atomistic length scale the interaction between the atoms is represented by cohesive bonds described
by a two body pair potential (see Figure 1), which results in a cohesive type interaction between material
points at the continuum level.
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Figure 1. Atomic representation of a material point (left) and potential energy function (right).

The Cauchy–Born rule of crystal elasticity relates the motion of atoms to the continuum deformation
and its measures. This rule assumes that the atomic motion, from the undeformed to the deformed
configuration, under a homogeneous deformation, can be defined as a unique mapping. At the continuum
level, the deformation gradient F defines such a mapping. The interaction at the atomistic level may be
described through interaction potentials. In a polycrystalline material, the material behavior is isotropic
due to the random orientation of grains. Such behavior can be modeled by a random spatial distribution
of cohesive bonds using the VIB model. While biocomposites are a complex material, in this study it is
assumed that they can be modeled as material points interconnected by cohesive bonds. The details of
the original implementation of the VIB model can be found in [Thiagarajan et al. 2004a; 2004b].

2.2. VIB model framework and its suitability. The VIB model is described within the framework of
hyperelastic continuum mechanics. The initial and the deformed configurations are defined using the
Lagrangian coordinates X = X I and the Eulerian coordinates x = x(X, t)= xi (X I , t), respectively. In
this paper, capital letter subscripts are used for the initial configuration while lower case subscripts are
used for the deformed configuration. In the Lagrangian description the deformation gradient can be
expressed as follows:

F = ∂x
∂X

or Fi I =
∂xi

∂X I
, (1)

and the Green–Lagrange strain tensor may then be defined as E = 1
2 (F

T F − I ), where I is the second-
order identity tensor.

The atomistic bond can be described by a potential energy function U (l) where l is the bond length
(see Figure 1). Consider an arbitrary microstructural bond at angles θ and φ, where θ is the angle of the
bond orientation with respect to the vertical positive 2-axis, and φ is the angle in the horizontal plane
with respect to the positive 1-axis. The unit vector along this direction is given as

ξ = (sin θ cosφ, sin θ sinφ, cos θ)

with respect to the undeformed configuration. The stretch of this bond can be related to the continuous
deformation as l = lo

√
1+ 2ξI E I J ξJ . The macroscopic strain energy density function is derived using
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the Cauchy–Born rule as follows, thus linking the two scales:

8(E I J )= 〈U (l)〉, (2)

where, 〈 〉 represents the weighted average with respect to the bond density function Dd and U (l) is the
bond potential energy function. Assuming that all bonds have the same initial length lo, the weighted
average is given as

〈 · · · 〉 =

∫ 2π

0

∫ π

0
· · · Dd(θ, φ) sin θ dθ dφ. (3)

The term Dd(θ, φ) sin θ dθ dφ represents the number of bonds per unit volume between the bond angles
(θ, θ + dθ) and (φ, φ+ dφ).

2.3. Constitutive equations and cohesive force law. From the strain energy density function 8 given
in (2), the symmetric second Piola–Kirchhoff stress SIJ and the elastic modulus CIJKL can be derived as
follows:

S = ∂8
∂E

or SIJ =
∂8
∂EIJ

, CIJKL =
∂28

∂EIJ∂EKL
. (4)

The modulus derived from this potential satisfies the major and minor symmetries,

CIJKL = CJIKL = CIJLK = CKLIJ,

as well as the Cauchy symmetry, CIJKL=CIKJL. For isotropic material this results in only one independent
elastic constant due to the fact that the Cauchy symmetry is satisfied by the fourth order isotropic elasticity
tensor only for the case of λ= µ, where λ and µ are the two Lamé’s constants. Consequently, the VIB
model as used in this work represents a Poisson’s ratio of 0.25. The Poisson’s ratio of the VIB model
meshes well with the analytical modeling effort by Jager and Fratzl [2000] in their development of a
mechanical model for mineralized collagen fibrils, wherein they also replaced the anisotropic nonlinear
collagen by an effective elastic material with a Poisson’s ratio of 0.25, which was also used by Akiva
et al. [1998] in their modeling effort.

In order to represent the potential U (l), in this paper the two parameter cohesive force law, as shown
in (5), is used:

U ′(l)= A(l − lo)e−(l−lo)/B . (5)

U ′(l) is the cohesive force and is the derivative of the bond potential energy with respect to the bond
length l. The constant A can be related to the material shear modulus by (5) and represents the initial
slope of the curve. The parameter B is related to the strain at which the cohesive stress is reached.

2.4. VIB and scaled-FE modeling. Modeling the behavior of nano structures using traditional finite ele-
ments necessitates the usage of material models that appropriately represent the behavior at the nanoscale.
Hence, traditional elasticity, plasticity, fracture, and damage based constitutive models may not be suit-
able. There are a number of requirements. For example, it has been hypothesized [Gao and Ji 2003;
Gao et al. 2003] that failure of nanostructural materials is governed by critical surface energy and not
necessarily by stress concentrations at crack tips. It is difficult for FE material models to incorporate this
feature. In order to address these issues a new framework of a scaled FE modeling effort was presented
in [Thiagarajan et al. 2007] by using the scaled material property and dimension (property scaling and
dimension scaling) values at the different length scales. Another advantage of dimension scaling is that
in simulations using ABAQUS/Explicit, the solution results in reduced clock times for the simulation. It
was shown that as length scales decrease the simulation times also decreases.
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2.5. Geometric and VIB model parametric study. To further characterize the mechanical behavior of
mineralites, scaled FE studies on specific sized mineral platelets are performed using the VIB material
model. A parametric study is conducted using a notched rectangular plate model subjected to uniaxial
tensile displacement based loading. The parameters studied were the VIB model parameter B and the
thickness of the mineral platelet t .

Parametric variation: The basic model studied is shown in Figure 2 which shows a mineral crystal size
of 50 nm× 25 nm× t nm. The dimensions chosen for this study are based on the values published in
[Weiner and Wagner 1998]. Dahlite crystals can be represented as rectangular plate shaped materials
with a length of 50 nm and a width of 25 nm. Transmission electron microscopy and small angle x-
ray scattering of these minerals have demonstrated a fairly uniform thickness for these minerals. The
thickness varied from 1.5 nm in mineralized tendons to 4 nm for some mature bone types. Although no
known measurements exist for the elastic modulus of these minerals extracted from bone, the measured
elastic modulus of synthetic powdered carbonated apatite is reported in the same reference as 109 GPa.

Variation of thickness: It was shown in [Thiagarajan et al. 2007] that for a mineral platelet with an elastic
modulus of 100 GPa the value of the critical thickness h∗ comes to about 30 nm. The critical thickness
has been defined as the thickness below which flaws in the material are hypothesized to not affect the
failure behavior. However, in this study of dahlite mineral, the crystal thickness of 30 nm is very high
and hence is not considered. The values reported in [Weiner and Wagner 1998] have been used as a
reference and thus thickness values of 1 nm, 4 nm, and 10 nm have been studied.

2.5.1. Variation of VIB model parameter B. The cohesive force law, which represents the interaction
between two atoms in a structure, given by Equation (5) for U ′(l), has two parameters A and B. The
parameter A represents the initial slope of the curve and is directly related to the elastic modulus of the
material. The parameter B represents the strain at which the cohesive stress (the maximum stress) is
reached. A higher value of B gives a higher cohesive stress value as shown in Figure 3. A higher value

Figure 2. The basic model of mineral crystal with loading shown.
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of cohesive stress results in a greater surface energy required for the separation of surfaces in a body.
Hence, from the perspective of the failure at the continuum level, it can be inferred that a higher value of
B represents a greater surface energy required for separation of two surfaces. Since there are no known
experimental measurements of the surface energy γ (N/m2) for dahlite crystals, a parametric study has
been conducted here with different values of B.

As outlined in [Thiagarajan et al. 2007], the value of the parameter B, using a γ value of 1 N/m2,
for a 4 nm thick plate was 0.055. However, due to the uncertainties in the determination of the surface
energy and the theoretical failure stress values, the B value is clearly not a deterministic one. Hence, the
parametric study conducted here used four different values of B namely, 0.0005, 0.005, 0.05, and 0.1.
Figure 3 shows the cohesive force curves for the dahlite material properties:(

A =
4G
πD2

olo
=

4× 100,000 sPa
π

≈ 127, 000 sPa
)
,

where sPa is a scaled Pascal unit, with different B values. It can be seen that the cohesive stress values,
given by σmax = AB/e, are equal to 23.6, 236, 2336, and 4672 sPa for B values of 0.0005, 0.005, 0.05,
and 0.1 respectively. In Figure 3 the curve representing a B value of 0.0005 is seen as a flat line due
to the difference in the order of stress values represented by the y-axis. The cohesive stress values of
the crack tip element are presented in a later section. A total of 12 different cases are thus studied, and
presented in this paper, using three different thickness and four different B values.

2.5.2. Loading, material properties, and other issues. The loading applied in all the twelve simulations
in the study presented in this section is a displacement based uniaxial loading in the vertical direction. A
specified displacement is given at both ends of the mineral as shown in Figure 2.

The time scaling (ST) concept is used in all the simulations. It was shown in [Deshmukh 2006] that
a displacement application time of 1.2e−1 seconds for the millimeter size model was equivalent to a
displacement application time of 1.2e−7 seconds for the nanometer size model. The scaled time concept
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demonstrated that the problem does not become a dynamic one as a result of loading applied in a very
short time. As the geometric size of the model is in the nanometer range, the time of load application in
all these studies is 1.2e−7 seconds.

The MSF, an ABAQUS/Explicit based parameter, is not a variable in these studies. Based on the
results outlined in [Deshmukh 2006] the value chosen here is 10,000. The values of A = 4G/π and the
density of the mineral are 50.9× 103 sPa and 3.18× 10−21 skg/nm3 (skg = scaled kilogram), respectively.

3. Results and discussions

This section presents a comparison of the stress and strain values at the notch tip for the twelve different
case studies. Stress and strain contours and graphical plots of the variation of stress and strain in the
element at the tip of the notch are presented.

Notch tip stress variation: The variation of the vertical (axial) stress S22 with time for different values
of the material parameter B are presented in Figures 4–7. Each graph shows the variation of the stress
for the three thickness values for a given value of B. From the graphs, the following observations can
be made:
• For B values of 0.1, 0.05, and 0.005, as the thickness increases the failure stress values increases.

• However, for B = 0.0005, all the three thicknesses fail at the same time and with the same peak
stress value. All three thicknesses fail at 1.0e−9 seconds with a stress of approximately 64 MPa.

Failure pattern: The failure patterns of the basic model were studied for the thicknesses 1 nm, 4 nm, and
10 nm for the four different B values. The failure patterns for the models have been shown by depicting
the axial strain contours at one time step before a total collapse was observed. Figures 8–11 show the
axial strain contour and deformed shapes for B values of 0.0005, 0.005, 0.05, and 0.1, respectively. The
actual time step of depiction in each case is different.
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Failure types: There are two types of failure that can be observed from the contour plots shown. The
first type is referred to as a general failure and the second type is termed the stress concentration failure.

• A general failure is defined as occurring when the whole model tends to collapse. It is proposed
here that this type of failure occurs when the stresses in a majority of the elements reach close to
the peak or the cohesive stress values at the same time, resulting in a subsequent loss of stiffness in
almost all the elements.
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Figure 7. Variation of S22 with time for B = 0.1.

 
h = 1 nm h = 4 nm h = 10 nm

Figure 8. Strain contours showing the failure pattern for B = 0.0005.

• Stress concentration failure or a crack propagation failure is defined as one in which the cohesive
stress is reached only at those elements near the crack tip. The rest of the elements in the model
are in a state of stress well below the cohesive stress value. Consequently, the subsequent loss of
stiffness occurs only in a limited number of elements along which the crack propagation occurs.

Observations: For each B value, it can be seen that as the thickness decreased from 10 nm to 1 nm the
failure became a general failure. For thicker platelets, with thicknesses 4 nm and 10 nm, the failure was
due to stress concentration at the notch tip. The observations suggest that for thinner platelets the failure
is general and not due to the presence of the notch, whereas in thicker platelets the presence of the notch
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h = 1 nm h = 4.25 nm h = 10 nm

Figure 9. Strain contours showing the failure pattern for B = 0.005.

  
h = 1 nm h = 4.25 nm h = 10 nm

Figure 10. Strain contours showing the failure pattern for B = 0.05.

results in a stress concentration type failure of the platelet. The observed failure pattern suggests that,
for a particular thickness, the change in the B value does not change the manner in which the platelet
fails. The behavior exhibited by the model results lend to the extrinsic length scale of the scaled VIB FE
framework.

Stress-strain-time observations: This section presents select results of axial stress and strain and the
times of failure for the different parameter values. These results are presented form in Table 1 on the
next page. The following observations can be made from that table.
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h = 1 nm h = 4.25 nm h = 10 nm

Figure 11. Strain contours showing the failure pattern for B = 0.1.

• Specific B value: As thickness increases the stress and the time of failure increases. The increase
in the time of failure indicates that the model is capable of taking a higher displacement at the ends
before failure occurs.

• Specific thickness value: For a specific thickness as the B value decreases the cohesive stress (failure
stress) value decreases as expected.

• For all the thicknesses the failure stress and time for a B value of 0.0005 remained the same, unlike
for the other B values. For 1 nm thickness the failure was of a general type while for thicknesses
of 4 nm and 10 nm it was of a stress concentration type. This observation appears to indicate an

Thickness B Time of failure Stress at notch tip (MPa) Strain at notch tip

1 nm 0.0005 1× 10−9 62.403 0.000412
0.005 1× 10−9 104.16 0.000359
0.05 1× 10−9 106.732 0.00035
0.1 1× 10−9 105 0.00035

4 nm 0.0005 1× 10−9 64.7658 0.000463
0.005 3.5× 10−9 344.594 0.405
0.05 3.5× 10−9 338 0.372
0.1 3.5× 10−9 341 0.0014

10 nm 0.0005 1× 10−9 65.1243 0.000472
0.005 7.5× 10−9 594.624 0.0113
0.05 7.5× 10−9 846.09 0.00513
0.1 7.5× 10−9 854.97 0.0114

Table 1. Stress-strain-time of failure with change in thickness.
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interesting suggestion that since the surface energy values for the material are not known a priori, a
low B value in the range of 0.0005 could be a reasonable value to be chosen for any further studies
using minerals such as dahlite.

4. Conclusions

This paper has described a novel methodology, outlined, applied, and demonstrated issues involving
scaled finite element virtual internal bond (VIB) modeling in an explicit finite element (FE) framework.
The previous study [Thiagarajan et al. 2007] illustrated two FE implementation related characteristics,
firstly that scaled properties can be used at the lower levels along with scaled dimensions and secondly
that the loading time can be appropriately scaled without the loading becoming a dynamic loading. The
scaled time aspect is significant as it allows for computations to be completed in real time which is about
three to six orders faster than with traditional frameworks.

The parametric studies done and presented in this paper, using four different B values and three
different thicknesses for a total of twelve combinations, suggest that the B values for minerals such as
the one studied here should be in the range of 0.0005.

The mesh size of a model plays an important role in the failure behavior of that particular model. The
failure of any VIB model is represented by separation of the adjacent nodes near the crack tip which is
caused due to localization of the strain in that region. Ji and Gao [2004] showed that for a material with
E = 100 GPa and γ= 1 J/m2 with B= 0.06 the localization zone is 3.5 nm wide. Since fracture simulation
in the VIB model is often contained within one strip of the mesh, the mesh size has to be of the order
of the localization zone. In the models that have been studied, the mesh size is of the order of the scale
itself. Hence, in the cases of millimeter and micrometer models, as the mesh size is very large compared
to the localization zone, the localization zone of nanometer length scale is seen in the model as a high
stress zone near the notch tip which in turn results in a crack formation. In the nanometer scale model,
since the mesh size is of the same order as the localization zone, the model shows a uniform distribution
of the high stress resulting in the possibility that the model can fail anywhere, not necessarily at the notch
tip. To have a nanometer mesh size in a millimeter or micrometer model will require prohibitively large
computational times for this simulation.
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THE SIMULATION OF STOCHASTICALLY EXCITED VISCOELASTIC SYSTEMS
AND THEIR STABILITY

VADIM D. POTAPOV

An efficient method for the analysis of nonlinear elastic and viscoelastic systems under the action of para-
metric forces in the form of Gaussian random stationary processes is suggested. The spectral densities
of the input random stationary processes are assumed to be in the form of rational functions. The method
is based on the simulation of stochastic processes and the numerical solution of differential equations,
describing the motion of the system. Considering a sample of solutions, statistical characteristics of
trajectories can be found. The effect of the parameters of the input random processes on the indicated
statistical characteristics is investigated. Special attention is devoted to investigation of the stability of
the unperturbed motion of elastic and viscoelastic systems. To analyze the stability of the unperturbed
motion of the system the motion due to perturbations of the initial conditions is considered. The method
of the stability investigation is based on the numerical solution of differential equations, describing the
perturbed motion of the system, and the calculation of the top Lyapunov exponents. The method results
in the estimation of the stability with respect to statistical moments of different orders. In some cases the
superposition of a stochastic noise on the deterministic periodic excitation can have a stabilizing effect
on the motion of elastic and viscoelastic systems.

1. Introduction

The behavior of nonlinear mechanical systems subjected to random loads in the form of random stationary
processes, was considered in [Dimentberg 1980; 1988; Simiu 2002], which contain an extensive review
of investigations in the indicated direction. As a rule, these investigations were developed under various
restrictions imposed on the character of the stationary processes. For example, sometimes these processes
were assumed as narrow-band; in this case the method used for the solution was similar to the method
of the harmonic balance. In other cases the level of the nonlinearity was assumed to be small, and then
the method of stochastic averaging was applied [Dimentberg 1980; 1988]. For the estimation of the
reliability of nonlinear systems in [Simiu 2002] the Melnikov stochastic process was used.

Some questions on the stability of elastic and viscoelastic systems, subjected to random loads in the
form of random stationary processes, were considered in [Potapov 1999]. A numerical method was
suggested for nonlinear problems using the method of canonical expansions of stationary processes. The
present paper is devoted to a numerical analysis of nonlinear oscillation of viscoelastic systems under
stochastic excitation in the form of a Gaussian stationary process with a rational spectral density. The
analysis is based on numerical simulation of the input stationary process, on a numerical solution of

Keywords: stochastics, viscoelasticity, nonlinear oscillations, stability, simulation, top Lyapunov exponents, random stationary
processes.
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the differential equations which describe the motion of the system, and, in the case of the stability
investigation of this motion, on the calculation of the top Lyapunov exponent. In the example of a
plate subjected to a random stationary load acting in the middle plane, peculiarities in the application of
the proposed method are considered. Particular attention is devoted to the interaction of deterministic
periodic and stochastic excitations from the stability point of view of the motion. It is shown that in
some cases the superposition of a colored noise can have a stabilizing effect on an unstable deterministic
system.

2. Statement of the problem

The dynamic behavior of a viscoelastic system with regard to finite deflections, provided that strains
are small, is described by a system of nonlinear integrodifferential equations with partial derivatives.
Using different methods, for example, the method of finite elements, the method of finite differences,
the Bubnov–Galerkin method, et cetera, this system can be replaced by a system of ordinary integrodif-
ferential equations. The relaxation kernels of the material are assumed as degenerate. This means that
they can be presented in the form

R(t, τ )=
m∑

i=1

fi (t)ϕi (τ ).

We increase the dimensions of the phase space and replace the system of integrodifferential equations
with a system of nonlinear first-order differential equations:

ż = F
(
z, α(t), t

)
, (1)

where z is the vector of unknowns, α(t) = α∗(t)+ αo(t), α∗(t) is a deterministic function, αo(t) is a
random stationary process, and t is the time. A dot indicates the derivative with respect to time t .

The random stationary process αo(t) is assumed to be a Markov process, which is a result of passing
the Gaussian white noise through a linear filter of the m-th order. That is, the function αo(t) is the
solution of the stochastic differential equation

αo(m)
+ d1α

o(m−1)
+ · · ·+ dm−1α̇

o
+ dmα

o
= hξ(t), (2)

where dk (k = 1, 2, . . . ,m) and h are constants, and ξ(t) is the Gaussian white noise.
For the analysis of the behavior of the system the method of statistical simulation is used, which is

based on the numerical solution of differential equations (by the Runge–Kutta method) in combination
with a numerical method of obtaining the realizations of random stationary processes.

3. Oscillations of the plate under the action of a random load in the middle of the plane

As an illustration of the present method let us consider transverse oscillations of a thin rectangular
viscoelastic plate hinged along all edges and subjected to a uniformly distributed load applied to two
opposite edges in the plate plane (see Figure 1). It is assumed that the opposite edges remain parallel to
each other during the motion of the plate.

If the material of the plate is isotropic and the Poisson coefficient is constant with respect to time µ,
then the equations of the plate oscillations for the case of finite deflections of von Karman type is written
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Figure 1. The rectangular plate under loads applied to the middle of the plane.

in the following form [Vol’mir 1967]:

D(1− R)∇4w− h(8,22w,11− 28,12w,12+8,11w,22)=−γ ẅ− kẇ, (3)

1
E
∇

48= (I − R)(w2
,12−w,11w,22), (4)

where w is the deflection of the plate, 8 is the function of stresses, acting in the middle of the surface
of the plate, h is the thickness of the plate, γ is the mass per unit area of the plate, k is the damping
coefficient, ∇4 is the biharmonic operator, E is the Young modulus, and R is the relaxation operator.

If the form of the plate is close to square and the initial conditions have the form

w(t, x1, x2)
∣∣
t=0 = f0 sin π

a
x1 sin π

b
x2, ẇ(t, x1, x2)

∣∣
t=0 = v0 sin π

a
x1 sin π

b
x2, (5)

then the deflection of the plate can be found in a similar form:

w(t, x1, x2)= f (t) sin π
a

x1 sin π
b

x2. (6)

Really, even for the initial conditions given by (5), the solution of (3) and (4) has a more complicated
form. However, since we focus on the qualitative aspect of the problem rather than the quantitative one,
we restrict the consideration to the first approximation of the function w(t, x1, x2), given by (6).

Substituting (6) in the right-hand side of (4) and solving it with respect to the function 8, we obtain

8(t, x1, x2)=
1

32
E(1− R) f 2(t)

(a2

b2 cos 2π
a

x1+
b2

a2 cos 2π
b

x2

)
−

qx2
1

2h
. (7)

It is not difficult to prove that the boundary conditions concerning the parallelism of opposite edges are
fulfilled [Potapov 1999].

To find the plate deflection amplitude f (t) let us use the Bubnov–Galerkin method. To this end we
multiply both sides of (3) by sin(π/a)x1 sin(π/b)x2 and integrate the resultant relation over the plate
area. Then we obtain the integrodifferential equation

z′′+ 2εz′+ (1− R)z−αz+ 3
4
(1−µ2)

a4
+ b4

(a2+ b2)2
z(1− R)z2

= 0. (8)

Here z = f/h, 2ε = k/(γω), and ω is the fundamental frequency of plate oscillations, given by

ω2
=

D
γ

(
π2

a2 +
π2

b2

)2
, α =

π2q
Db2

(
π2

a2 +
π2

b2

)−2
,
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where the prime denotes the derivative with respect to dimensionless time t1 = ωt .
If a = b and µ= 0.3, then Equation (8) acquires the form

z′′+ 2εz′+ (1− R)z−αz+ 0.34125z(1− R)z2
= 0. (9)

Suppose that the material of the plate is standard. Then the relaxation kernel R(t − τ) has an exponential
form, R(t − τ)= χLe−χ(t−τ), where χ and L are constant.

We introduce the new variables

z1 = z, z2 = z′, z3 =

∫ t

0
χLe−χ(t−τ)z(τ )dτ, z4 =

∫ t

0
χLe−χ(t−τ)z2(τ )dτ,

and we replace the integrodifferential equation (9) by the system of first-order differential equations

z′1 = z2, z′2 =−2εz2− (1−α)z1+ z3− 0.34125z1(z2
1− z4),

z′3 = χLz1−χ z3, z′4 = χLz2
1−χ z4.

(10)

The solution of these equations should satisfy the initial conditions

z1(0)=
f0

h
, z2(0)=

v0

h
, z3(0)= z4(0)= 0.

Let us express the function α(t) in the form of the sum α(t)= α0+α1 sinωt +αo(t), where α0 and α1

are deterministic constants, ω is the frequency of the deterministic periodic part of the load, αo(t) is a
stationary random process with zero mathematical expectation, 〈αo(t)〉 = 0, and the correlation function

K (t1− t2)= σ 2 exp(−δ|t1− t2|)
[
cos θ(t1− t2)+

δ
θ

sin θ(t1− t2)
]
, (11)

where σ 2 is the dispersion of the process and δ and θ are parameters, characterizing the scale of the
correlation and the frequency of the implicit periodicity respectively. Angle brackets denote the operation
of the mathematical expectation.

The spectral density S(ω) in this case has the form

S(ω)= 2σ 2δ
π

δ2
+ θ2

(ω2− θ2− δ2)2+ 4δ2ω2 .

The considered random process is differentiable.
Equation (2) is written in the following way [Vol’mir 1967; Shalygin and Palagin 1986]:

α̈o
− a2α̇

o
− a1α

o
= b2σξ(t), (12)

where a1 =−(δ
2
+ θ2), a2 =−2δ, b2 =

√
2(δ2+ θ2), and ξ(t) is the Gaussian white noise, simulated by

the expression

ξ(t)=

√
2δ
1
ε1(t).

Here ε1(t) = εi , and t ∈ [i1, (i + 1)1], where εi is a sequence of normally distributed uncorrelated
numbers with zero mean value and 〈ε2

〉 = 1; 1=1t is the time step.
Let us consider some results for the viscoelastic plate, obtained at ε = 0.1, L = 0.5, χ = 0.1, δ = 0.5,

θ = ω = 1.4, and 1t = 0.1 by means of the numerical solution of (10) by the fourth-order Runge–Kutta
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method. The number of increments n and initial conditions in all cases were assumed to be the same,
namely, n = 104 and z1(0)= 1.0, z2(0)= z3(0)= z4(0)= 0.

Figure 2 shows the most typical trajectories of the plate motion on the phase plane z1 ∼ z2. For each
of these trajectories the limits of the variation of values z1 and z2 are indicated. These results can be
explained as follows.

If the load is deterministic and constant with time, then the quantity z, corresponding to an equilibrium
state of the plate, can be found from the cubic equation

(1−α0)z+ 0.34125z3
= 0. (13)

If α0 < 1, then this equation has only one root, z = 0, which corresponds to the unbent equilibrium
configuration of the plate, and this state is known to be stable. If α0 > 1, then (13) has three roots,

z(1) = 0, z(2),(3) =±

√
α0−1

0.34125
.

It can be shown that the solution z(1) is unstable and nontrivial while solutions z(2) and z(3) are stable.
The quantity α0 = 1 is critical for an elastic plate.
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Figure 2. Trajectories of the viscoelastic plate motion in the phase plane.
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Figure 3. The trajectory of the elastic plate motion in the phase plane.

The situation is similar in a viscoelastic plate, but in this case the critical value of the parameter α0 is
equal to 1− R̄, where

R̄ =
∫
∞

0
R(θ)dθ.

The results for the dynamic (deterministic or stochastic) statement of the problem are similar. Indeed,
if parameters α0, α1, and σ are sufficiently small, then, obviously, oscillations are performed in the
neighborhood of the trivial equilibrium state. This statement is confirmed by the plots in Figure 2a,
obtained at α0 = 0, α1 = 1.0, and σ 2

= 0.09, and dampened with time.
But if the same parameters α0, α1, and σ are sufficiently large, then the plate motion becomes much

more diverse. The plate can oscillate in the neighborhood of a certain equilibrium (see Figure 2b at
α0 = 1.0, α1 = 0, and σ 2

= 0.04) or jump between two equilibria (see Figure 2c at α0 = 0.5, α1 = 1.0,
and σ 2

= 0.01; and Figure 2d at α0 = 0.5, α1 = 0.5, and σ 2
= 0.25); moreover, in some cases the plate

motion is chaotic (see Figure 2e at α0 = 1.0, α1 = 1.0, and σ 2
= 0.25). It should be said that in such

cases with increasing time the solution of the nonlinear equations becomes steady-state and different
initial conditions may lead to different steady-state solutions.

The effect of the viscous properties of the material on the behavior of the plate can be estimated with
help of the trajectory, shown in Figure 3, obtained with the same input data and the same realization of
the process αo(t), as in Figure 2d, and of the charts of variation deflections z1 with time (see Figure 4),
which correspond to the same elastic and viscoelastic plates. In Figure 5 the histograms of the value
z1 are shown corresponding to the same input data and obtained at n = 105 (〈z1〉 and σ1 are the mean
value and the mean square scattering of z1, respectively). As seen the viscous properties of the material
lead to the noticeable modification of the trajectories on the phase plane and with time. A more detailed
analysis of these trajectories shows that the motion of the elastic plate is chaotic (unstable) while that of
the viscoelastic plate is asymptotically stable. These histograms have the same form for different times
if they are far enough from initial time t = 0; this fact verifies the stationary state of the plate motion.
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and (b) elastic plates.
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Figure 5. Histograms of the value z1 for the (a) viscoelastic and (b) elastic plates.

4. Stability of the unperturbed motion of the system

For the analysis of the stability of the unperturbed motion of the system, described by Equation (9), let
us consider the perturbed motion, caused by perturbations of the initial conditions.

In the case of perturbed motion the solution of (1) has the form y = z+ δz, that is,

ẏ = F
(

y, α(t), t
)
, (14)

where z = {z1, z2, . . . , zn}
T is the vector of unknowns, corresponding to the unperturbed motion of

the system; the vector y = {y1, y2, . . . , yn}
T , corresponding to the perturbed motion; and the vector of

perturbations δz = {δz1, δz2, . . . , δzn}
T . Let us expand the right-hand side of (14) by the Taylor series

in the neighborhood of the solution z(t):

F
(
z+ δz, α(t), t

)
= F

(
z, α(t), t

)
+ F′

(
z, α(t), t

)
δz+ · · · .
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Restricting this expansion to the two first terms and taking into account (1), we obtain a linearized
equation:

δ ż = F′
(
z, α(t), t

)
δz. (15)

The solution of the equation should satisfy the initial condition δz(0)= δz0, δz0={δz01, δz02, . . . , δz0n}
T .

For the estimation of the stability of the system the method of top Lyapunov exponents is used, which
is calculated for each pair consisting of a realization α(t) and the corresponding realization of the process
z(t). Further, the stability is treated as stability with respect to the statistical moments.

• The solution δz(t)≡ 0 is called p-stable if, for any ε > 0, a 1> 0 can be found such that at t ≥ 0
and |δzi (0)|<1 (i = 1, 2, . . . , n), where n is the number of first-order differential equations in (15)
and |〈δz p

i (t)〉|< ε.

• The solution δz(t)≡ 0 is called asymptotically p-stable if it is p-stable and, in addition, for a small
enough |δzi (0)| (i = 1, 2, . . . , n),

lim
t→∞

∣∣〈δz p
i (t)〉

∣∣= 0.

At p = 1 stability takes place in the mean (with respect to the mathematical expectation), and at p = 2
there is stability in the mean square.

The growth of the vector δz(t) can be estimated with the help of the top Lyapunov exponent λ, which
is defined by the expression

λ= lim
t→∞

1
t

ln
‖δz(t)‖
‖δz(0)‖

,

where ‖δz(t)‖, ‖δz(0)‖ is the norm of the vector δz(t) in a Euclidean space at time t and at initial time
t = 0.

The value λ can be found numerically with help of the method proposed in [Benettin et al. 1980a;
Benettin et al. 1980b]. With this purpose in mind let us divide a large enough time interval [0, t] into m
equal intervals, so 1t = t j+1− t j ( j = 1, 2, . . . ,m).

Let us assume that (15) is deterministic and that at t = t j the norm of the vector ‖δz(t j )‖ is of unit
length. Using this vector as the vector of initial conditions, let us obtain the solution of the system (15)
for time t j+1 with the norm ‖δz(t j+1‖= d j+1. Continuing the solution of the system (15) with new initial
conditions δzi0(t j+1)/d j+1, we will find the sequence of values d j , and then the top Lyapunov exponent
can be found as the limit

λ= lim
m→∞

1
m1t

m∑
i=1

ln d j . (16)

Because the system of equations for the statistical moments of functions δzi (t) in the case of colored
noises αo(t) cannot be obtained in a closed form, let us find it using the method of statistical simulation
[Potapov 1997; 1999].

The estimation of statistical moments 〈δz p
i 〉 for times t j can be obtained as the result of a statistical

averaging of the values 〈δz p
i 〉, found from (15) for a sufficiently large number of realizations q:

〈δ̃z p
i (t j )〉 =

1
q

q∑
m=1

[δz p
i (t j )]

(m), (17)
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where [δz p
i (t j )]

(m) is the quantity δz p
i (t j ) corresponding to m-th realization of the solution of (15).

Assume that the norm of the vector

〈δz p(tk)〉 =
{
〈δz p

1 (tk)〉, 〈δz
p
2 (tk)〉, . . . , 〈δz

p
n (tk)〉

}T

in the Euclidean space for time tk is of unit length. The norm of the vector 〈δz(t)p
〉 becomes equal to

d̃k+1 at time tk+1 = tk +1. Furthermore, the system of equations (15) is solved for each realization of
the matrix F′(z, α(t), t) with initial conditions

δzi0(tk+1)=
δzi (tk+1)

(d̃k+1)1/p
.

Repeating the stated procedure we obtain the sequence of values d̃k , with the help of which the estimation
of the top Lyapunov exponent can be found:

3̃= lim
l→∞

1
l1

l∑
k=1

ln d̃k .

Let us illustrate the investigation of the stability of geometric nonlinear systems by the example of the
above plate.

Equation (9), linearized with respect to perturbations δz, has the following form:

δz′′+ 2εδz′+ [(1−α− R)+ 0.34125(3z2
− 2z Rz)]δz− δz Rz2

= 0. (18)

We introduce the new variables

z5 = δz, z6 = δz′, z7 =

∫ t

0
χLe−χ(t−τ)δz(τ )dτ, z8 =

∫ t

0
χLe−χ(t−τ)z(τ )δz(τ )dτ ;

hence we can write (18) as a system of first-order differential equations

z′5 = z6, z′6 =−2εz6− (1−α)z5+ z7− 0.34125(3z2
1z5− 2z1z8+ z4z5),

z′7 = χLz5−χ z7, z′8 = χLz1z5−χ z8.
(19)

If the plate is subjected to a deterministic periodic load, then at some values of the input parameters the
motion of the plate can be chaotic [Guckenheimer and Holmes 1996].

This is confirmed by the trajectory of the motion of the elastic plate on the phase plane z1 ∼ z2, shown
in Figure 6a, which is obtained at ε = 0, 1; α0 = 0.5; α1 = 2.0; ω = 1, 4; 1t = 0.1; and number of
increments n = 104. The value of the top Lyapunov exponent at t = 6.104 is λ= 0.165 (see Figure 7a),
which confirms the instability of the plate.

If we impose on the deterministic load a random noise in the form of a Gaussian stationary process
αo(t) with characteristics σ 2

= 0.01, δ = 0.5, and θ = 1.4, then the plate becomes stable with respect to
statistical moments of the first, λ1 =−0.082 (see Figure 7b), and second, λ2 =−0.164 (see Figure 7c),
orders. These estimates of the top Lyapunov exponents are obtained as a result of averaging the results
of 20 realizations at t = 6.104. One of realizations of the trajectories on the phase plane in this case,
obtained at n = 104, is shown in Figure 6b.
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Figure 6. Trajectories of the elastic plate motion in the phase plane under (a) determin-
istic and (b) stochastic treatments of the problem.
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Figure 7. Changes in the estimate of the top Lyapunov exponent for the elastic plate
under (a) deterministic and (b and c) stochastic treatments of the problem.

If we increase the time interval to 105, the same values result in quantities λ1 = −0.088 and λ2 =

−0.180. At finally, if the number of realizations is assumed to be equal to 40, then at t = 105 we will
find λ1 =−0.087 and λ2 =−0.177.

If the material of the plate has a small viscosity, then the indicated effect remains. This is confirmed
by the data, shown in the tables at the top of the next page. The results shown in Table 1 are obtained for
the plate under the action of a deterministic load, with and without random noise (with characteristics
σ 2
= 0.01, δ = 0.5, and θ = 1.4). These quantities of the top Lyapunov exponents are found as a result

of data processing of 40 realizations at t = 105.
The presented results show that the calculation of top Lyapunov exponent estimates demands a lot

of steps with respect to time. In such situations questions about the exactness of the numerical solution
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L χ λ

0 0 0.166
0.1 0.1 0.156
0.5 0.1 0.131
0.1 0.5 0.151
0.5 0.5 −0.149

L χ λ
(4)
1 λ

(4)
2 λ

(5)
1 λ

(5)
2

0 0 −0.087 −0.177 −0.085 −0.179
0.1 0.1 −0.086 −0.172 −0.086 −0.167
0.5 0.1 0.132 0.260 0.132 0.259
0.1 0.5 0.140 0.273 0.136 0.284
0.5 0.5 −0.146 −0.291 −0.146 −0.291

Table 1. Results obtained for the plate under the action of a deterministic load (left) and
under a deterministic load and random noise with σ 2

= 0.01, δ = 0.5, and θ = 1.4.

arise. In order to verify the results obtained with the help of the fourth-order Runge–Kutta method, the
λ
(4)
1 results are shown in Table 1; these are found with the help of the fifth-order Runge–Kutta–Fehlberg

results, λ(5)1 [Fehlberg 1969; Butcher 2003]. Because the algorithm of this method is not widely known
we will give a scheme for the numerical solution of the ordinary differential equation dz/dt = f (t, z):

zn+1 = zn + h
s∑

i=1

bi ki , ki = f
(

tn + ci h, xn + h
s∑

j=1

ai j k j

)
.

This method is defined by the Butcher tableau, which shows the coefficients of the method as follows:

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass

b1 b2 . . . bs

These coefficients for the Runge–Kutta–Fehlberg version are equal to

0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197
1 439/216 −8 3680/513 −845/4104

1/2 −8/27 2 −3544/2565 1859/4104 −11/40

16/135 0 6656/12825 28561/56430 −9/50 2/55

The comparison of the corresponding results shows that the fourth-order Runge–Kutta method gives
sufficiently correct results.

The stabilizing effect of the unstable system was discovered for the first time in the investigation of
the stability of the first-order differential equation [Leibowitz 1963; Hasminskiı̆ 1980]

Ẋ = (b+ σξ)X, (20)

where b and σ are constants, and ξ is a Gaussian white noise, introduced by Ito.
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The trivial solution of Equation (20) is stable at b < σ 2/2, which has been considered as physically
contradictive [Hasminskiı̆ 1980]. On this basis the conclusion was made that the white noise in Ito’s
sense is “physically unrealizable”.

If ξ(t) is a white noise in Stratonovich’s sense, then the effect of the stabilization disappears [Has-
minskiı̆ 1980], and it has been remarked that the unstable deterministic system ẋ = bx (b > 0− const.)
cannot be stabilized by a physically realizable perturbation of its parameter.

However, Hasminskiı̆ [1980] has shown that for higher-order systems of differential equations Stratono-
vich white noise can stabilize an unstable deterministic system. In particular, the trivial solution of the
second-order equation z̈ + (k + σχ)ż + ω2z = 0, where k and ω2 are constants, at definite quantities
of the parameter σ can be stable, although the same solution of the deterministic equation (at the same
magnitudes of values k and ω2) z̈+ kż+ω2z = 0 is unstable.

It should be said that white noises in both Ito’s and Stratonovich’s senses are mathematical idealiza-
tions, which cannot be realized physically (as physical processes with unlimited power doesn’t exist).
From this point of view the smoothing in the mean square process, used in the present paper, can be
considered a physically realizable process.

Arnold et al. [1983] showed that deterministic differential equations can be stabilized (in sense of the
almost sure stability) by stochastic wide-band stationary processes. The result, obtained for the plate in
the present paper, demonstrates that a physically realizable (colored) noise can render a stabilizing effect
(in sense of stability with respect to statistical moments) in the analysis of the stability of elastic and
viscoelastic systems, the motion of which is described by nonlinear differential equations.

5. Conclusion

In the present paper an effective method of investigation of nonlinear oscillations and the stability of
elastic and viscoelastic systems at stochastic excitations is proposed. Loads are assumed to be in the
form of Gaussian random stationary processes with rational spectral densities (colored noises). The
method is based on the numerical simulation of random processes, the numerical solution of differential
equations, describing the motion of the considered system, and on the calculation of the top Lyapunov
exponent. It is shown that the viscous properties of the material have an essential effect on its nonlinear
oscillations. It is remarked that in some cases the addition of a stochastic noise on the deterministic
periodic excitation can have a stabilizing effect on the motion of elastic and viscoelastic plates.
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FUNDAMENTAL SOLUTIONS FOR AN INHOMOGENEOUS
CROSS-ANISOTROPIC MATERIAL DUE TO HORIZONTAL AND VERTICAL

PLANE STRAIN LINE LOADS

CHENG-DER WANG, JIA-YAN HOU AND WEI-JER WANG

This work derives the fundamental solutions for displacements and stresses due to horizontal and ver-
tical line loads acting in a continuously inhomogeneous plane strain cross-anisotropic full space with
Young’s and shear moduli varying exponentially with depth. The governing equations can be obtained
by combining the generalized Hooke’s law, the strain-displacement relationships, and the equilibrium
equations. Then, utilizing Fourier transforms, the governing equations are transformed into ordinary
differential equations. Additionally, by using the variation of parameters, the solutions of the displace-
ments in the Fourier domain are found. However, the stress solutions in the same domain can also be
found by employing the stress-strain-displacement relationships. Eventually, performing inverse Fourier
transforms by means of the numerical integration program QDAGI, the displacements and stresses in-
duced by horizontal and vertical plane strain line loads can be calculated. The solutions indicate that the
displacements and stresses are profoundly influenced by the nondimensional inhomogeneity parameter,
the type and degree of material anisotropy, the types of loading, and the nondimensional horizontal
distance. The proposed solutions are identical to those of Wang and Liao after suitable integration, as
derived in an appendix, when the full space is a homogeneous cross-anisotropic material. A series of
parametric studies are conducted to demonstrate the present solutions, and to elucidate the effects of
aforementioned factors on the vertical normal stress. The results reveal that estimates of displacement
and stress should take the inhomogeneity into account when studying cross-anisotropic materials under
applied line loads.

Introduction

Many natural soils, such as flocculated clays, varved silts, or sands, are often deposited through a geologic
process of sedimentation over a long period of time. The effects of deposition, overburden, desiccation,
et cetera, can cause both anisotropic and inhomogeneous deformability. The mechanical responses of
anisotropic materials with spatial gradients in composition, called anisotropic functionally graded ma-
terials, are important in many fields of applied mechanics. Hence, an elastic loading problem for a
continuously inhomogeneous plane strain cross-anisotropic full space with Young’s and shear moduli
varying exponentially with depth is considered in this article.

The solution of a point load acting in the interior of a full space is called the fundamental solution or the
Green’s function solution. This kind of solution is employed in the boundary integral equation method (or
boundary element method) for solving elastostatic boundary value problems [Hu et al. 2007]. However,

Keywords: inhomogeneity, cross-anisotropic full space, horizontal and vertical plane strain line loads, Fourier transforms,
fundamental solutions of displacements and stresses, numerical integrations.
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theoretical treatment of both inhomogeneous and anisotropic characteristics in materials frequently poses
mathematical difficulties. Therefore, a plane strain state on the y-axis of a cartesian coordinate system is
assumed throughout this study, which means the inhomogeneous cross-anisotropic medium is subjected
to two-dimensional horizontal/vertical line loads, Px/Pz (force/length). Furthermore, the magnitudes and
distributions of displacements and stresses in materials due to these applied loads have always played an
important role in the design of foundations. In the past, a great deal of study was contributed to estimate
the displacements and stresses in isotropic media with Young’s or shear modulus varying with depth
according to the power law, the linear law, the exponential law, et cetera. A very detailed survey of the
solutions related to soil/rock mechanics and foundation engineering for inhomogeneous isotropic/cross-
anisotropic media is given in [Wang et al. 2003]. However, some recent investigations are not included in
that survey, and will be mentioned here. Some relevant articles about inhomogeneous isotropic media are
[Chen et al. 2001; Gray et al. 2001; Doherty and Deeks 2002; 2003c; 2003a; 2003b; 2005; 2006; Martin
2004; Martin et al. 2002; Cihan 2003], and some about inhomogeneous anisotropic media are [Azis and
Clements 2001; Wang et al. 2003; 2006; Wang and Tzeng 2009]. Azis and Clements [2001] studied
the solutions of boundary value problems for static deformations of inhomogeneous anisotropic elastic
materials. The elastic moduli varied continuously with three cartesian coordinates, and three plane strain
boundary value problems for inhomogeneous isotropic/cross-anisotropic media were illustrated. Wang
et al. [2003] presented semianalytical solutions for displacements and stresses by employing the Hankel
integral transforms in a cylindrical coordinate system with the assumption of axial symmetry about the
z-axis, owing to a vertical point load in a continuously inhomogeneous cross-anisotropic half space with
Young’s and shear moduli varying exponentially with depth (Ee−kz , E ′e−kz , and G ′e−kz). The planes
of cross-anisotropy were horizontal, and the resulting integrals involved products of Bessel functions of
the first kind, an exponential, a polynomial; some of them cannot be given in a closed form. Hence,
numerical techniques proposed by Longman [1956b; 1956a] and Davis and Rabinowitz [1984] were
adopted. The point load solutions in the Hankel domain for the half space were obtained by superposing
the solutions of two full spaces, one with a point load in its interior and the other with opposite traction
of the first full space along the boundary surface plane. Subsequently, Wang et al. [2006] integrated the
point load solutions of [Wang et al. 2003] to get solutions for the displacements and stresses along the
centerline, induced by a uniform vertical circular load acting in the interior of an inhomogeneous cross-
anisotropic half space with Young’s and shear moduli varying exponentially with depth. In addition,
Wang and Tzeng [2009] generated the solutions for the same medium for conical and parabolic vertical
circular loads.

In this article, the fundamental solutions of displacements and stresses subjected to horizontal and
vertical line loads for an inhomogeneous plane strain cross-anisotropic medium with Young’s and shear
moduli varying exponentially with depth (Ee−kz , E ′e−kz , and G ′e−kz) are derived. Note that, in order to
consider the important effect of a horizontal force on the inhomogeneous cross-anisotropic medium, the
axisymmetric assumption cannot be utilized. In other words, the solutions of Wang et al. [2003] cannot
be applied to solve for the displacements and stresses resulting from the actions of horizontal forces,
or those from asymmetrically shaped loads, such as strip loads. Hence we use cartesian coordinates
for performing Fourier transforms. However, past investigations suggest that considering anisotropic
deformability together with inhomogeneity can make the problems too complicated to allow closed-form
solutions for the displacement and stress; therefore, we resort to numerical integration using QDAGI.
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The present solutions indicate that the displacements and stresses are governed by the nondimensional
inhomogeneity parameter (kz), the type and degree of material anisotropy (E/E ′, G ′/E ′, and ν/ν ′),
the types of line loading (Px and Pz , force/length), and the nondimensional horizontal distance (x/z).
The proposed solutions are identical with those of [Wang and Liao 1999] by integration, as derived in
the Appendix of this article, when the full space is a homogeneous cross-anisotropic medium owing to
infinite horizontal and vertical line loads. Finally, a parametric study is conducted to demonstrate the
obtained solutions and to elucidate the effect of aforementioned factors on the vertical normal stress.
The results reveal that the inhomogeneous characteristics should be taken into account in the case of
cross-anisotropic soil/rock masses under plane strain horizontal/vertical line loads.

1. Governing equations for an inhomogeneous plane strain cross-anisotropic medium
due to line loads

In this study, solutions for the displacements and stresses caused by horizontal/vertical line loads in a
continuously inhomogeneous plane strain cross-anisotropic full space are derived. Figure 1 depicts a
cartesian coordinate system in which the z-axis is the axis of rotation associated with elastic symmetry,
and the x-y plane is the cross-anisotropic plane. The cross-anisotropic medium has inhomogeneous
elastic properties according with the assumptions of [Wang et al. 2003]. The Young’s and shear moduli
vary exponentially with depth, but the two Poisson’s ratios remain constants. Hence, the expression of
stress-strain for an inhomogeneous cross-anisotropic medium under the plane strain assumption isσxx

σzz

τxz

=
C11 C13 0

C13 C33 0
0 0 C44

εxx

εzz

γxz

 e−kz, (1)

where k is referred to as the inhomogeneity parameter, and it has dimensions of inverse length. The
product kz represents the nondimensional inhomogeneity parameter; here z is coordinate (increasing

 

                                                       

                               a full space 

  Pz (force/length)                      
                                                             

             

 Px (force/length)  σzz                             x 

                               τzx 

                                  τxz 

                               ux    σxx 

                          uz 

                         

         z 

Figure 1. Horizontal/vertical line load Px/Pz acting in an inhomogeneous plane strain
cross-anisotropic full space.
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downward) in the direction of the axis of rotation associated with elastic symmetry. The matrix entries
C11, C13, C33, and C44 are elastic moduli or elasticity constants of the medium, and can be expressed in
terms of five independent elastic constants E , E ′, ν, ν ′, and G ′ as

C11 =
E
(

1− E
E ′
ν ′2
)

(1+ ν)
(

1− ν− 2E
E ′
ν ′2
) , C13 =

Eν ′

1− ν− 2E
E ′
ν ′2
, C33 =

E ′(1− ν)

1− ν− 2E
E ′
ν ′2
, C44 = G ′, (2)

where

• E and E ′ are Young’s moduli in the plane of cross-anisotropy and in the direction normal to it,
respectively;

• ν and ν ′ are Poisson’s ratios characterizing the lateral strain response in the plane of cross-anisotropy
to a stress acting parallel or normal to it, respectively; and

• G ′ is the shear modulus in planes normal to the plane of cross-anisotropy.

Since it is often convenient in soil mechanics to consider compressive stresses as positive, this conven-
tion is adopted in this article. The normal and shear stresses act in an element as shown in Figure 1, and
the stresses are all of positive sign [Poulos and Davis 1974]. The differences between the homogeneous
cross-anisotropic elastic constants [Wang and Liao 1999] and the inhomogeneous ones [Wang et al.
2003] in this work are listed in Table 1. For an inhomogeneous cross-anisotropic material as described
by (1), only three engineering elastic constants (E , E ′, and G ′) are exponentially dependent on the
nondimensional inhomogeneity parameter kz; however, two Poisson’s ratios (ν and ν ′) remain constants.
In addition, according to the nondimensional inhomogeneity parameter k, three distinct situations exist:

• kz > 0 indicates a hardened surface, where E , E ′, and G ′ decrease with increasing depth (for
example, graded ceramic coatings on metallic substrates [Giannakopoulos and Suresh 1997]).

• kz = 0 indicates the conventional homogeneous condition.

• kz < 0 indicates a soft surface, where E , E ′, and G ′ increase with increasing of depth: for example,
modulus variations measured as a function of depth beneath the earth’s surface for soils and rocks
[Giannakopoulos and Suresh 1997].

Homogeneous Inhomogeneous

E Ee−kz

E ′ E ′e−kz

ν ν

ν ′ ν ′

G ′ G ′e−kz

Table 1. Differences between homogeneous [Wang and Liao 1999] and inhomogeneous
[Wang et al. 2003] cross-anisotropic elastic constants.
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The expressions of the strain-displacement relations for small strain in a cartesian coordinate system
are [Poulos and Davis 1974]:

εxx =−
∂ux

∂x
, εzz =−

∂uz

∂z
, γxz =−

∂ux

∂z
−
∂uz

∂x
, (3)

where ux and uz are the displacements in the x and z directions, as shown in Figure 1. A positive normal
strain corresponds with a decrease in length, whereas a positive shear strain represents an increase in the
right angle, and a negative shear strain denotes a decrease in the right angle [Poulos and Davis 1974].

By considering the equilibrium of the element shown in Figure 1 in a cartesian coordinate system, the
following equilibrium equations are obtained [Poulos and Davis 1974]:

∂σxx

∂x
+
∂τxz

∂z
− Pxδ(x)δ(z)= 0,

∂τxz

∂x
+
∂σzz

∂z
− Pzδ(x)δ(z)= 0, (4)

where δ is the Dirac delta function, and Px and Pz (force/length) are the horizontal and vertical infinite
line loads acting at the origin in an inhomogeneous cross-anisotropic full space.

Combining (1) and (3), and substituting them into (4), the Navier–Cauchy equations for an inhomo-
geneous plane strain cross-anisotropic medium can be regrouped as(

C11
∂2

∂x2 +C44
∂2

∂z2 − kC44
∂
∂z

)
ux +

(
(C13+C44)

∂2

∂x∂z
− kC44

∂
∂x

)
uz + Pxδ(x)δ(z)= 0,(

(C13+C44)
∂2

∂x∂z
− kC13

∂
∂x

)
ux +

(
C44

∂2

∂x2 +C33
∂2

∂z2 − kC33
∂
∂z

)
uz + Pzδ(x)δ(z)= 0.

(5)

2. Fundamental solutions of displacements in the Fourier domain

In order to solve the governing equations as expressed in (5), the Fourier transforms relating to the x
coordinate of the components of displacement are

1
√

2π

∫
∞

−∞

{
ux(x, z)
uz(x, z)

}
e−iαx dx =

{
ux(α, z)
uz(α, z)

}
, (6)

where α is the Fourier transformed parameter.
However, the Dirac delta function has the property

∫
∞

−∞

δ(x)dx = 1. Hence, (5) becomes a system of
ordinary differential equations:(

−α2C11+C44
d2

dz2 − kC44
d
dz

)
ux +

(
iα(C13+C44)

d
dz
− iαkC44

)
uz =−

Px
√

2π
δ(z),(

iα(C13+C44)
d
dz
− iαkC13

)
ux +

(
−α2C44+C33

d2

dz2 − kC33
d
dz

)
uz =−

Pz
√

2π
δ(z).

(7)

The homogeneous solutions of (7) are found by solving the ordinary differential equations

ux(H)= A1e(k+u1)z/2+ A2e(k−u1)z/2+ A3e(k+u2)z/2+ A4e(k−u2)z/2,

uz(H) = B1e(k+u1)z/2 + B2e(k−u1)z/2 + B3e(k+u2)z/2 + B4e(k−u2)z/2,
(8)
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where

u1, u2 =

√
2α2t + k2C33C44∓ 2α

√
α2t2
− 4(α2C11+ k2C13)C33C2

44
C33C44

,

with t = C11C33−C2
13− 2C13C44. (The top sign is used for u1.)

The coefficients Bi can be eliminated in favor of the Ai by substituting (8) into (7). This reduces
equations (8) to

ux(H)= A1e(k+u1)z/2+ A2e(k−u1)z/2+ A3e(k+u2)z/2+ A4e(k−u2)z/2,

uz(H)= S1 A1e(k+u1)z/2+ S2 A2e(k−u1)z/2+ S3 A3e(k+u2)z/2+ S4 A4e(k−u2)z/2,

where

S1 =
−2iα

(
C13(k− u1)−C44(k+ u1)

)
4α2C44+C33(k2− u2

1)
, S2 =

−2iα
(
C13(k+ u1)−C44(k− u1)

)
4α2C44+C33(k2− u2

1)
,

S3 =
−2iα

(
C13(k− u2)−C44(k+ u2)

)
4α2C44+C33(k2− u2

2)
, S4 =

−2iα
(
C13(k+ u2)−C44(k− u2)

)
4α2C44+C33(k2− u2

2)
.

Next, the particular solutions of (7) can be found by defining two displacement functions:
• For z ≥ 0 (recall that the sign of z is downward positive):

ux(P) = C1e(k+u1)z/2 + C2e(k−u1)z/2 + C3e(k+u2)z/2 + C4e(k−u2)z/2,

uz(P)= D1e(k+u1)z/2+ D2e(k−u1)z/2+ D3e(k+u2)z/2+ D4e(k−u2)z/2.

• For z < 0: ux(P)= 0, uz(P)= 0.

The undetermined coefficients Ci and Di (i = 1, . . . , 4) can be obtained by variation of parameters:

C1,C2 =
−4
(( 1

4C33(k±u1)
2
−

1
2C33k(k±u1)−α

2C44
)
Px−iα

(1
2(C13+C44)(k±u1)−kC44

)
Pz

)
√

2πC33C44u1(u2
1−u2

2)
,

C3,C4 =
−4
(( 1

4C33(k±u2)
2
−

1
2C33k(k±u2)−α

2C44
)
Px−iα

(1
2(C13+C44)(k±u2)−kC44

)
Pz

)
√

2πC33C44u2(u2
1−u2

2)
,

D1, D2 =
−4
(
−iα

( 1
2(C13+C44)(k±u1)−kC13

)
Px+

( 1
4C44(k±u1)

2
−

1
2C44k(k±u1)−α

2C11
)
Pz

)
√

2πC33C44u1(u2
1−u2

2)
,

D3, D4 =
−4
(
−iα

( 1
2(C13+C44)(k±u2)−kC13

)
Px+

( 1
4C44(k±u2)

2
−

1
2C44k(k±u2)−α

2C11
)
Pz

)
√

2πC33C44u2(u2
1−u2

2)
.

The general solutions are obtained as sums of homogeneous and particular solutions:

• For z ≥ 0:

ux(G)= (A1+C1)e(k+u1)z/2+ (A2+C2)e(k−u1)z/2+ (A3+C3)e(k+u2)z/2+ (A4+C4)e(k−u2)z/2,

uz(G)= (S1 A1+D1)e(k+u1)z/2+ (S2 A2+D2)e(k−u1)z/2+ (S3 A3+D3)e(k+u2)z/2+ (S4 A4+D4)e(k−u2)z/2.
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• For z < 0:

ux(G)= A1e(k+u1)z/2+ A2e(k−u1)z/2+ A3e(k+u2)z/2+ A4e(k−u2)z/2,

uz(G)= S1 A1e(k+u1)z/2+ S2 A2e(k−u1)z/2+ S3 A3e(k+u2)z/2+ S4 A4e(k−u2)z/2.

In these four equations, we assume k+ u1 and k+ u2 are positive and k− u1 and k− u2 are negative,
so we can utilize the two infinite boundary conditions (z→∞ and −∞) of displacements to solve for
the undetermined constants Ai . The final expressions for the general solutions ux(α, z) and uz(α, z) in
the Fourier domain are as follows:

• For z ≥ 0:

ux(α, z)=
4

√
2πC33C44(u2

1−u2
2)

×

((( 1
4C33(k−u1)

2
−

1
2C33k(k−u1)−α

2C44
)
Px−iα

( 1
2(C13+C44)(k−u1)−kC44

)
Pz

)e(k−u1)z/2

u1

−

(( 1
4C33(k−u2)

2
−

1
2C33k(k−u2)−α

2C44
)
Px−iα

( 1
2(C13+C44)(k−u2)−kC44

)
Pz

)e(k−u2)z/2

u2

)
,

uz(α, z)=
4

√
2πC33C44(u2

1−u2
2)

×

((
−iα

( 1
2(C13+C44)(k−u1)−kC13

)
Px+

( 1
4C44(k−u1)

2
−

1
2C44k(k−u1)−α

2C11
)
Pz

)e(k−u1)z/2

u1

−

(
−iα

( 1
2(C13+C44)(k−u2)−kC13

)
Px+

( 1
4C44(k−u2)

2
−

1
2C44k(k−u2)−α

2C11
)
Pz

)e(k−u2)z/2

u2

)
.

• For z < 0:

ux(α, z)=
4

√
2πC33C44(u2

1−u2
2)

×

((( 1
4C33(k+u1)

2
−

1
2C33k(k+u1)−α

2C44
)
Px−iα

( 1
2(C13+C44)(k+u1)−kC44

)
Pz

)e(k+u1)z/2

u1

−

(( 1
4C33(k+u2)

2
−

1
2C33k(k+u2)−α

2C44
)
Px−iα

( 1
2(C13+C44)(k+u2)−kC44

)
Pz

)e(k+u2)z/2

u2

)
,

uz(α, z)=
4

√
2πC33C44(u2

1−u2
2)

(
2iα[C13(k−u1)−C44(k+u1)]

4α2C44+C33(k2−u2
1)

(
−Qx1 Px+iαQz1 Pz

)e(k+u1)z/2

u1

−
2iα[C13(k−u2)−C44(k+u2)]

4α2C44+C33(k2−u2
2)

(
−Qx2 Px+iαQz2 Pz

)e(k+u2)z/2

u2

)
,

where in the last expression we used the abbreviations Qxi =
( 1

4C33(k+ui )
2
−

1
2C33k(k+ui )−α

2C44
)

and Qzi =
( 1

2(C13+C44)(k+ui )−kC44
)
, for i = 1, 2.
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The desired solutions for the displacements ux(x, z) and uz(x, z) in the inhomogeneous plane strain
cross-anisotropic full space can be obtained by taking the inverse Fourier transforms with respect to α:[

ux(x, z)
uz(x, z)

]
=

1
√

2π

∫
∞

−∞

[
ux(α, z)
uz(α, z)

]
eiαx dα. (9)

3. Fundamental solutions of stresses in the Fourier domain

The horizontal normal stress σ xx(α, z), the vertical normal stress σ zz(α, z), and the shear stress τ xz(α, z)
can be derived by combining (1) and (3) and performing the Fourier transforms; the result is

σ xx(α, z)=−iαC11ux(α, z)−C13
duz(α, z)

dz
, σ zz(α, z)=−iαC13ux(α, z)−C33

duz(α, z)
dz

,

τ xz(α, z)=−C44

(
dux(α, z)

dz
+ iαuz(α, z)

)
.

Thus, for example, the stresses for z ≥ 0 are

σ xx(α, z) =
e(k−u1−u2)z/2

2
√

2πC33C44u1u2(u2
1− u2

2)

×

(
2iα

(
− u1eu1z/2

{C13C44(k− u2)
2
−C2

13(k
2
− u2

2)+C11[4α2C44+C33(k2
− u2

2)]}

+ u2eu2z/2
{C13C44(k− u1)

2
−C2

13(k
2
− u2

1)+C11[4α2C44+C33(k2
− u2

1)]}
)
Px

+
(
− u1(k+ u2)C44eu1z/2

[4α2C11+C13(k− u2)
2
]

+ u2(k+ u1)C44eu2z/2
[4α2C11+C13(k− u1)

2
]
)
Pz

)
, (10)

σ zz(α, z) =
e(k−u1−u2)z/2

2
√

2πC33C44u1u2(u2
1− u2

2)
×

(
2iα

(
− u1C44eu1z/2

[4α2C13+C33(k− u2)
2
]

+ u2C44eu2z/2
[4α2C13+C33(k− u1)

2
]
)
Px

+
(
− u1eu1z/2

{−4α2C2
13(k−u2)+4α2C13C44(k+u2)+C33(k−u2)[4α2C11+C44(k2

−u2
2)]}

+ u2eu2z/2
{−4α2C2

13(k−u1)+4α2C13C44(k+u1)+C33(k−u1)[4α2C11+C44(k2
−u2

1)]}
)
Pz

)
, (11)

τ xz(α, z) =
e(k−u1−u2)z/2

2
√

2πC33u1u2(u2
1 − u2

2)
×

((
− u1(k+ u2)eu1z/2

[4α2C13+C33(k− u2)
2
]

+ u2(k+ u1)eu2z/2
[4α2C13+C33(k− u1)

2
]
)
Px

+ 2iα
(
− u1eu1z/2

[4α2C11+C13(k− u2)
2
]

+ u2eu2z/2
[4α2C11+C13(k− u1)

2
]
)
Pz

)
. (12)

Finally, the stresses σxx(x, z), σzz(x, z), and τxz(x, z) in the physical domain are determined by inverse
Fourier transformation: σxx(x, z)

σzz(x, z)
τxz(x, z)

= 1
√

2π

∫
∞

−∞

σ xx(α, z)
σ zz(α, z)
τ xz(α, z)

eiαx dα. (13)
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However, from (9) and (13), the formulation of displacements ux(x, z) and uz(x, z) and stresses
σxx(x, z), σzz(x, z), and τxz(x, z) in a continuously inhomogeneous cross-anisotropic full space have
very complicated integrals, which cannot be given in an exact closed form; hence, numerical inversion
of the Fourier transforms is required. The detailed numerical integrations required to estimate the vertical
normal stress are elucidated in the next section.

4. An illustrative example

From (10)–(13), the numerical inversion of Fourier transforms for stress fields can be performed by using
the routines of QUADPACK. QUADPACK can be utilized for the numerical computation of definite
one-dimensional integrals [Piessens et al. 1983; Barros and Mesquita 1999]. There are routines for
adaptive and nonadaptive integration, finite, semiinfinite and fully infinite integration regions, integrands
with singularities, and integrands with sin x or cos x . Therefore, the values of (13) can be accurately
calculated by employing the numerical integration subroutine QDAGI between the limits −∞ and∞.
In this investigation, the displacements, (9), owing to horizontal/vertical line loadings in the full space
are only meaningful if evaluated as the displacements of one point relative to another point, with both
points located neither at the origin of loading nor at infinity [Poulos and Davis 1974]. Hence, in this
section, a parametric study is conducted to clarify the effect of inhomogeneity, the type and degree of
material anisotropy, and the loading types on the most interesting quantity in geotechnical engineering,
namely, the vertical normal stress (σzz).

Two illustrative examples, horizontal and vertical line loads acting in the inhomogeneous plane strain
cross-anisotropic full space, are given to show the effect of the nondimensional inhomogeneity parameter
kz; the degree of material anisotropy specified by the ratios E/E ′, G ′/E ′, and ν/ν ′; and the loading
types Px/Pz (force/length) on σzz , respectively. In this investigation, the values of the nondimensional
inhomogeneity parameter kz (z is downward positive in this numerical analysis) are theoretically as-
sumed to be −0.3, −0.2, −0.1, and 0 (homogeneous). As mentioned previously, the situation kz < 0
(−0.3,−0.2,−0.1) corresponds to soft surface, where E , E ′, and G ′ increase with the depth. This
situation would be suitable for the earth materials, such as soils and rocks. Regarding the typical ranges
of cross-anisotropic parameters, Gazetas [1982] summarized experimental data for deformational cross-
anisotropy of clays and sands. He concluded that the ratio E/E ′ for clays ranges from 0.6 to 4, and
was as low as 0.2 for sands. However, for the heavily overconsolidated London clay, the range of E/E ′

was 1.35–2.37, and that of the ratio G ′/E ′ was 0.23–0.44 [Ward et al. 1965; Gibson 1974; Lee and
Rowe 1989; Tarn and Lu 1991; Wang et al. 2008]. The ratio ν/ν ′ is hypothetically assumed to be within
the range 0.75–1.5 in this study. Therefore, the anisotropic ratios (E/E ′, G ′/E ′, and ν/ν ′) of elastic
constants for seven different soils are listed in Table 2.

The influence of inhomogeneity and of the degree and type of soil anisotropy on the vertical normal
stress due to a horizontal line load acting in the cross-anisotropic material is explored first. Figure 2 plots
the effect of the nondimensional inhomogeneity parameter kz (equal to −0.3, −0.2, −0.1, or 0) on the
nondimensional vertical normal stress (zσzz/Px ) versus the nondimensional horizontal distance (x/z),
induced by a horizontal line load (Px ) for isotropic soil 1 and for each of the cross-anisotropic soils 2–7.
In order to examine the accuracy of the numerical integration by using QDAGI, comparisons are carried
out with the extension of the homogeneous point load solutions of [Wang and Liao 1999] (kz = 0). That
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Soil type E/E ′ G ′/E ′ ν/ν ′

1 1 0.385 1
2 1.35 0.385 1
3 2.37 0.385 1
4 1 0.23 1

Soil type E/E ′ G ′/E ′ ν/ν ′

5 1 0.44 1
6 1 0.385 0.75
7 1 0.385 1.5

Table 2. Anisotropic ratios of elastic constants for different soil types. Soil 1 is isotropic,
while the others exhibit cross-anisotropy. In each case, E = 50 MPa and ν = 0.3.
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Figure 2. Effect of the inhomogeneity parameter kz on the vertical normal stress (σzz)
induced by a horizontal line load (Px ) for soil types 1–3. (Continued on next page.)
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means the horizontal/vertical point load solutions for the stress components of [Wang and Liao 1999]
in a cartesian coordinate system for a homogeneous cross-anisotropic full space should be extended to
those of line load solutions by suitable integration. The new solutions are also expressed in the Appendix,
and formulae (A.1)–(A.3) are the checking criteria for the present solutions, (10)–(13), in the case of
the nondimensional inhomogeneity parameter kz = 0. From Figure 2, the calculated results from the
present solutions for soils 1–7 are in excellent agreement with those of in the Appendix. In addition, we
see that when the nondimensional horizontal distance x/z is less than 0.5, the nondimensional vertical
normal stresses (zσzz/Px ) are almost the same irrespective of the variation of kz for the isotropic medium

 

0.08

0.06

0.04

0.02

0

-0.02

N
o

n
d

im
en

si
o

n
al

 V
er

ti
ca

l 
N

o
rm

a
l 

S
tr

es
s 

 
 

zσ
zz

P
x

 

0 1 2 3 4 5

Nondimensional Distance   
x

z

Effect of nondimensional inhomogeneity parameter kz 

for Soil 4 with E/E'=1.0, G'/E'=0.23, υ/υ'=1.0

kz=-0.3

kz=-0.2

kz=-0.1

kz=0 (present solution)

kz=0 (Appendix A)

 

 

0.08

0.06

0.04

0.02

0

-0.02

N
o

n
d

im
en

si
o

n
al

 V
er

ti
ca

l 
N

o
rm

a
l 

S
tr

es
s 

 
 

zσ
zz

P
x

 

0 1 2 3 4 5

Nondimensional Distance   
x

z

Effect of nondimensional inhomogeneity parameter kz 

for Soil 5 with E/E'=1.0, G'/E'=0.44, υ/υ'=1.0

kz=-0.3

kz=-0.2

kz=-0.1

kz=0 (present solution)

kz=0 (Appendix A)

 

 

0.08

0.06

0.04

0.02

0

-0.02

N
o

n
d

im
en

si
o

n
al

 V
er

ti
ca

l 
N

o
rm

a
l 

S
tr

es
s 

 
 

zσ
zz

P
x

 

0 1 2 3 4 5

Nondimensional Distance   
x

z

Effect of nondimensional inhomogeneity parameter kz 

for Soil 6 with E/E'=1.0, G'/E'=0.385, υ/υ'=0.75

kz=-0.3

kz=-0.2

kz=-0.1

kz=0 (present solution)

kz=0 (Appendix A)

 

 

0.08

0.06

0.04

0.02

0

-0.02

N
o

n
d

im
en

si
o

n
al

 V
er

ti
ca

l 
N

o
rm

a
l 

S
tr

es
s 

 
 

zσ
zz

P
x

 

0 1 2 3 4 5

Nondimensional Distance   
x

z

Effect of nondimensional inhomogeneity parameter kz

for Soil 7 with E/E'=1.0, G'/E'=0.385, υ/υ'=1.5

kz=-0.3

kz=-0.2

kz=-0.1

kz=0 (present solution)

kz=0 (Appendix A)

 

Figure 2 (continued). Effect of the inhomogeneity parameter kz on the vertical normal
stress (σzz) induced by a horizontal line load (Px ) for soil types 4–7.
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(soil 1). However, with increasing x/z > 1.5, the vertical normal stress would be transferred by tension
except for kz =−0.3, and the induced stress follows, decreasing steadily as kz goes from −0.3 to 0. It
is apparent that the nondimensional inhomogeneity parameter kz does have a great influence on σzz .

With an increase in E/E ′ from 1 for soil 1 to 1.35 for soil 2 and then to 2.37 for soil 3, the magnitude
and region of the induced tensile stress is gradually reduced. In each figure, zσzz/Px converges with
increasing x/z.

A similar trend, except for the magnitude, holds for the comparison of soils 1, 4 and 5, with G ′/E ′

decreasing from 0.385 for soil 1 to 0.23 for soil 4, and increasing to 0.44 for soil 5.
However, zσzz/Px becomes larger within the very small loaded distance of x/z (< 1) with a decrease

in ν/ν ′ from 1 for soil 1, to 0.75 for soil 6, and becomes smaller in the case of increasing ν/ν ′ (from
1 for soil 1 to 1.5 for soil 7). Thus, it is clear from Figure 2 that the induced vertical normal stress by
a horizontal line load in a plane strain cross-anisotropic material strongly relies on the nondimensional
inhomogeneity parameter kz and the nondimensional horizontal distance x/z.

Figures 3–5 depict the effect of soil anisotropy (E/E ′, G ′/E ′, and ν/ν ′) on the vertical normal stress
(σzz) induced by a horizontal line load (Px ) for three groups of soils: 1, 2, and 3 (E/E ′ varies, Figure 3);
soils 1, 4, and 5 (G ′/E ′ varies, Figure 4); and soils 1, 6, and 7 (ν/ν ′ varies, Figure 5).

In each figure the cases kz =−0.3 (E , E ′, and G ′ increase with depth) and kz = 0 (homogeneous) are
shown, in the left and right panes respectively. From Figure 3, left, we see that for x/z < 1, the order of
the induced compression stress is soil 1 > soil 2 > soil 3. However, with an increase of x/z, that order
would be reversed.

In Figure 4, left, we see that the magnitudes of zσzz/Px obey the order soil 5> soil 1> soil 4, while
the corresponding order for Figure 5, left is soil 6> soil 1> soil 7, with a slight tensile stress observed
in the case of soil 7.
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Figure 3. Effect of ratio E/E ′ on the vertical normal stress (σzz) induced by a horizontal
line load (Px ) when kz =−0.3 (left) and kz = 0 (right). Comparison of soils 1, 2, and 3.
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Figure 4. Effect of ratio G ′/E ′ on the vertical normal stress (σzz) induced by a horizontal
line load (Px ) when kz =−0.3 (left) and kz = 0 (right). Comparison of soils 1, 4, and 5.
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Figure 5. Effect of ratio ν/ν ′ on the vertical normal stress (σzz) induced by a horizontal
line load (Px ) when kz =−0.3 (left) and kz = 0 (right). Comparison of soils 1, 6, and 7.

The right halves of Figures 3–5 represent the homogeneous case, kz = 0. The trends here are quite
different from those in the case kz =−0.3, especially in that a great deal of tension stress is produced
in the homogeneous isotropic/cross-anisotropic media.
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From Figures 3–5 it is clear that the type and degree of soil anisotropy (E/E ′, G ′/E ′, and ν/ν ′) affects
profoundly the vertical normal stress due to a horizontal line load in an inhomogeneous isotropic/cross-
anisotropic material.

Figure 6 shows the effect of the nondimensional inhomogeneity parameter kz (equal to −0.3, −0.2,
−0.1, or 0) on the nondimensional vertical normal stress (zσzz/Pz) versus the nondimensional horizontal
distance (x/z), subjected to a vertical line load (Pz) for isotropic soil 1 and cross-anisotropic soils 2–7.
The figure suggests that the results of the present solutions when kz = 0 for soils 1–7 agree very well
with those in the Appendix. Additionally, we see that the vertical normal stresses due to a vertical line

 

0.4

0.3

0.2

0.1

0

N
o
n

d
im

e
n
si

o
n
a
l 

V
e
rt

ic
al

 N
o
rm

a
l 

S
tr

es
s 

 
 

zσ
zz

P
z

 

0 1 2 3 4 5

Nondimensional Distance   
x

z

Effect of nondimensional inhomogeneity parameter kz 

for Soil 1 with E/E'=1.0, G'/E'=0.385, υ/υ'=1.0

kz=-0.3

kz=-0.2

kz=-0.1

kz=0 (present solution)

kz=0 (Appendix A)

 

 

0.4

0.3

0.2

0.1

0

N
o
n

d
im

e
n
si

o
n
a
l 

V
e
rt

ic
al

 N
o
rm

a
l 

S
tr

es
s 

 
 

zσ
zz

P
z

 

0 1 2 3 4 5

Nondimensional Distance   
x

z

Effect of nondimensional inhomogeneity parameter kz

for Soil 2 with E/E'=1.35, G'/E'=0.385, υ/υ'=1.0

kz=-0.3

kz=-0.2

kz=-0.1

kz=0 (present solution)

kz=0 (Appendix A)

 

 

0.4

0.3

0.2

0.1

0

N
o
n

d
im

e
n
si

o
n
a
l 

V
e
rt

ic
al

 N
o
rm

a
l 

S
tr

es
s 

 
 

zσ
zz

P
z

 

0 1 2 3 4 5

Nondimensional Distance   
x

z

Effect of nondimensional inhomogeneity parameter kz

for Soil 3 with E/E'=2.37, G'/E'=0.385, υ/υ'=1.0

kz=-0.3

kz=-0.2

kz=-0.1

kz=0 (present solution)

kz=0 (Appendix A)

 

Figure 6. Effect of the inhomogeneity parameter kz on the vertical normal stress (σzz)
induced by a vertical line load (Pz) for soil types 1–3. (Continued on next page.)



INHOMOGENEOUS ANISOTROPIC MATERIAL UNDER HORIZONTAL AND VERTICAL LINE LOADS 255

load are all compressive, and these phenomena are different from those in Figure 2 for the stresses owing
to a horizontal line load.

It can be seen that the magnitudes of σzz induced by vertical line loading (Figure 6) are greater than
those induced by horizontal line loading (Figure 2). Thus the type of loading (Px or Pz) has a strong
influence on σzz .

The plots for soils 1, 2 and 3 in Figure 6, with E/E ′ increasing from 1 to 1.35 and 2.37, all show the
same trend, indicating that increases in E/E ′ (in this range) have only a minor effect on σzz .
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Figure 6 (continued). Effect of the inhomogeneity parameter kz on the vertical normal
stress (σzz) induced by a vertical line load (Pz) for soil types 4–7.
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A comparison of the plots as G ′/E ′ decreases from 0.385 for soil 1 to 0.23 for soil 4, and again as it
increases to 0.44 for soil 5, indicates that the ordering (relative to kz) of the graphs of zσzz/Pz remains
the same, but the magnitude changes significantly. The same is true for the decrease in ν/ν ′ from 1 for
soil 1 to 0.75 for soil 6, and its increase to 1.5 for soil 7.

Figures 7–9 depict the effect of soil anisotropy (E/E ′, G ′/E ′, and ν/ν ′) on the vertical normal stress
(σzz) induced by a vertical line load (Pz) for three groups of soils: 1, 2, and 3 (E/E ′ varies, Figure 7);
soils 1, 4, and 5 (G ′/E ′ varies, Figure 8); and soils 1, 6, and 7 (ν/ν ′ varies, Figure 9).

In each figure the cases kz = −0.3 (E , E ′, and G ′ increase with depth) and kz = 0 (homogeneous)
are shown, in the left and right panes respectively. It is seen that the induced vertical normal stresses are
compressive for kz =−0.3 in all types of soil considered.

From Figure 7, left, we see that for x/z < 0.5, the value of zσzz/Pz increases as E/E ′ grows from 1
to 1.35 to 2.37; however, with higher x/z from 0.5 to 2, zσzz/Pz in soils 1, 2, and 3 moves toward the
same values. In Figure 8, left, zσzz/Pz increases as G ′/E ′ drops from 0.385 to 0.23, and decreases as
G ′/E ′ grows from 0.385 to 0.44, within the range x/z < 0.5. It also can be found in Figure 9, left, that
zσzz/Pz increases with a drop in ν/ν ′ from 1 to 0.75, and decreases with an increase in ν/ν ′ from 1 to
1.5, at about x/z < 1.2.

The homogeneous case (kz = 0) is shown in the right-hand halves of Figures 7–9. When comparing
this with the case kz =−0.3, we see that except for the magnitudes of zσzz/Pz being diverse, the trends
are similar. Overall, Figures 7–9 suggest that the magnitudes of vertical normal stresses are decisively
influenced by soil anisotropy owing to a vertical line load in the isotropic/cross-anisotropic materials.

Moreover, it is evident from Figures 2–9 that the isotropic/cross-anisotropic materials resulting from
different loading types (Px and Pz) would affect the vertical normal stress. Therefore, we choose cross-
anisotropic soil 6 (ν/ν ′ = 0.75) to interpret the effects of both loading types on σzz . Figure 10 shows
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Figure 7. Effect of ratio E/E ′ on the vertical normal stress (σzz) induced by a vertical
line load (Pz) when kz =−0.3 (left) and kz = 0 (right). Comparison of soils 1, 2, and 3.
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Figure 8. Effect of ratio G ′/E ′ on the vertical normal stress (σzz) induced by a vertical
line load (Pz) when kz =−0.3 (left) and kz = 0 (right). Comparison of soils 1, 4, and 5.
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Figure 9. Effect of ratio ν/ν ′ on the vertical normal stress (σzz) induced by a vertical
line load (Pz) when kz =−0.3 (left) and kz = 0 (right). Comparison of soils 1, 6, and 7.

the results for kz =−0.3, −0.2, −0.1, and 0. We see that the induced vertical normal stresses are larger
from a vertical line load (Pz) than from a horizontal one (Px ) in the case of kz ≤ 0. Thus the type of
loading deeply affect the vertical normal stress in inhomogeneous cross-anisotropic soil 6.

The examples above confirm the present solutions and clarify how the nondimensional inhomogeneity
parameter kz, the type and degree of soil anisotropy, and the types of loading would influence the vertical
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Figure 10. Effect of loading types (Px and Pz) on the vertical normal stress (σzz) for
cross-anisotropic soil 6 for kz =−0.3 (top left), −0.2, −0.1, and 0 (bottom right).

normal stress, σzz , in the inhomogeneous plane strain isotropic/cross-anisotropic material. Numerical
results also show that the stress in the continuously inhomogeneous plane strain cross-anisotropic full
space resulting from horizontal and vertical line loads can be easily calculated by the proposed solutions.
The magnitudes and distributions of vertical normal stress are simply sensitive to the nondimensional
inhomogeneity parameter kz (Figures 2 and 6), the anisotropic ratios specified by E/E ′, G ′/E ′, ν/ν ′

(Figures 3–5 and 7–9), and the different loading types (Figure 10). Also, the adopted nondimensional
horizontal distance x/z is another factor that could affect the present stress. Hence, the aforementioned
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factors should be taken into account when estimating the displacements and stresses in an inhomogeneous
plane strain cross-anisotropic medium subjected to applied line loads.

Conclusions

The fundamental solutions of displacements and stresses in a cartesian coordinate system for a contin-
uously inhomogeneous plane strain cross-anisotropic full space with Young’s and shear moduli varying
exponentially with depth, due to horizontal and vertical line loads, are derived in this article. The planes
of cross-anisotropy are assumed to be horizontal. Fourier transforms with respect to x are employed to
find the solutions. However, inverse Fourier transforms for displacements and stresses are associated
with complicated polynomial and exponential functions which cannot be given in exact closed forms;
hence, numerical integration is required. The resulting integrals can be performed by the subroutine
QDAGI between the limits −∞ and∞. The present solutions, setting the nondimensional inhomogeneity
parameter kz = 0, are then compared with the extension of Wang and Liao’s horizontal/vertical point load
solutions to horizontal/vertical infinite line load solutions for a homogeneous cross-anisotropic full space,
as shown in the Appendix. The numerical results agree very well with those obtained in the Appendix.
Overall, the generated solutions indicate that the displacements and stresses are deeply affected by all the
factors considered: the nondimensional inhomogeneity parameter (kz), the type and degree of material
anisotropy (E/E ′, G ′/E ′, and ν/ν ′), the types of loading (Px and Pz), and the nondimensional horizontal
distance (x/z).

A series of parametric studies is conducted to demonstrate the present solutions, and elucidate the
influence of aforementioned factors on the vertical normal stress. The results reveal that the computa-
tions of stresses (or displacements) should consider inhomogeneous characteristics in a cross-anisotropic
material induced by applied line loads. In addition, these solutions could realistically imitate the actual
stratum of loading problems in practical engineering. Most importantly, the proposed solutions can be
used to derive the solutions of displacements and stresses resulting from the subjected line loads in an
inhomogeneous plane strain cross-anisotropic half space; in particular, the actions of horizontal forces
have never been provided in the literature. These matters will be addressed in forthcoming papers.

Appendix

The point load solutions of stress components for a homogeneous cross-anisotropic full space in a carte-
sian coordinate system can be rewritten from the solutions of [Wang and Liao 1999] as

σ p
xx =

Px

4π

[
(C11− u′1m1C13)g

p11

m1
− (C11− u′2m2C13)g

p12

m2
− 2C66g

( p71

m1
−

p72

m2

)
+ 2u′3 p73

]
+

Pz

4π
g
[
(C11− u′1m1C13− 2C66)p31− (C11− u′2m2C13− 2C66)p32+ 2C66(p51− p52)

]
,

(A.1)

σ p
yy=

Px

4π

[
(C11−u′1m1C13−2C66)g

p11

m1
−(C11−u′2m2C13−2C66)g

p12

m2
+2C66g

( p71

m1
−

p72

m2

)
−2u′3 p73

]
+

Pz

4π
g
[
(C11− u′1m1C13− 2C66)p31− (C11− u′2m2C13− 2C66)p32+ 2C66(p61− p62)

]
,
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σ p
zz =

Px

4π
g
[
(C13− u′1m1C33)

p11

m1
− (C13− u′2m2C33)

p12

m2

]
+

Pz

4π
g
[
(C13− u′1m1C33)p31− (C13− u′2m2C33)p32

]
,

(A.2)

τ p
xy =

Px

4π

[
2C66

( g
m1

p81−
g

m2
p82

)
− u′3(2p83− p23)

]
−

Pz

2π
C66g(p41− p42),

τ p
yz =−

Px

4π

[
(u′1+m1)C44

g
m1

p41−(u′2+m2)C44
g

m2
p42− p43

]
−

Pz

4π
gC44

[
(u′1+m1)p21−(u′2+m2)p22

]
,

τ p
xz =

Px

4π

[
(u′1+m1)C44

g
m1

p51−(u′2+m2)C44
g

m2
p52+ p63

]
−

Pz

4π
gC44

[
(u′1+m1)p11−(u′2+m2)p12

]
,

where:

• C11, C13, C33, and C44 are the elastic moduli or elasticity constants of the cross-anisotropic material,
as seen in (2); however, C66 = E/

(
2(1+ ν)

)
.

• u′3 =
√

C66/C44, u′1, and u′2 are the roots of the following characteristic equation: u′4− su′2+q = 0,
where s =

(
C11C33−C13(C13+ 2C44)

)
/(C33C44) and q = C11/C33.

Since the strain energy is assumed to be positive definite in the material, the values of the elastic constants
are restricted. Hence, there are three categories of the characteristic roots, u′1 and u′2, as follows:

Case 1: u′1,2 =±
√

1
2

(
s±

√
s2− 4q

)
are two real distinct roots when s2

− 4q > 0;

Case 2: u′1,2 =±
√ s

2
,±
√ s

2
are double equal real roots when s2

− 4q = 0;

Case 3: u′1 =
1
2

√
s+ 2
√

q − i 1
2

√
−s+ 2

√
q = γ − iδ and u′2 = γ + iδ are two complex conjugate

roots (where γ cannot be equal to zero) when s2
− 4q < 0.

• m j =
(C13+C44)u′j
C33u ′2j −C44

=
C11−C44u

′2
j

(C13+C44)u′j
( j = 1, 2), g =

C13+C44

C33C44(u
′2
1 − u ′22 )

.

• Defining p1i –p8i in (A.1)–(A.2) as the elementary functions, they can be represented as

p1i =
x
R3

i

, p2i =
y

R3
i

, p3i =
zi

R3
i

, p4i =
xy(2Ri + zi )

R3
i (Ri + zi )2

,

p5i =
1

Ri (Ri + zi )
−

x2(2Ri + zi )

R3
i (Ri + zi )2

, p6i =
1

Ri (Ri + zi )
−

y2(2Ri + zi )

R3
i (Ri + zi )2

,

p7i =
x
R3

i

−
3x

Ri (Ri + zi )2
+

x3(3Ri + zi )

R3
i (Ri + zi )3

, p8i =
y

R3
i

−
3y

Ri (Ri + zi )2
+

y3(3Ri + zi )

R3
i (Ri + zi )3

,

and
Ri =

√
x2+ y2+ z2

i , zi = u′i z (i = 1, 2, 3).

The solutions for stresses in a homogeneous cross-anisotropic full space due to infinite horizontal
and vertical line loads can be directly obtained by integrating the elementary functions of the point
load solutions (p1i –p8i ). That is, the explicit solutions for stresses caused by horizontal and vertical
infinite line loads in a full space can be regrouped in the form of (A.1)–(A.2). In other words, the exact
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solutions for the present case are the same as (A.1)–(A.2) except that the elementary functions, p1i –p8i

(i = 1, 2, 3), are replaced by the integral functions, L1i –L8i (i = 1, 2, 3), respectively. Therefore, only
L1i –L8i (i = 1, 2, 3) are derived, and are given as

L1i =

∫
∞

−∞

p1i dy =
2x

x2+ z2
i
, L2i =

∫
∞

−∞

p2i dy = 0,

L3i =

∫
∞

−∞

p3i dy =
2zi

x2+ z2
i
, L4i =

∫
∞

−∞

p4i dy = 0,

L5i =

∫
∞

−∞

p5i dy =
2zi

x2+ z2
i
, L6i =

∫
∞

−∞

p6i dy = 0,

L7i =

∫
∞

−∞

p7i dy = 0, L8i =

∫
∞

−∞

p8i dy = 0.

(A.3)

References

[Azis and Clements 2001] M. I. Azis and D. L. Clements, “A boundary element method for anisotropic inhomogeneous elas-
ticity”, Int. J. Solids Struct. 38:32–33 (2001), 5747–5763.

[Barros and Mesquita 1999] P. L. A. Barros and E. de Mesquita Neto, “Elastodynamic Green’s functions for orthotropic plane
strain continua with inclined axes of symmetry”, Int. J. Solids Struct. 36:31–32 (1999), 4767–4788.

[Chen et al. 2001] L. Chen, A. J. Kassab, D. W. Nicholson, and M. B. Chopra, “Generalized boundary element method for
solids exhibiting nonhomogeneities”, Eng. Anal. Boundary Elem. 25:6 (2001), 407–422.

[Cihan 2003] O. A. Cihan, “Contact mechanics of a graded surface with elastic gradation in lateral direction”, MS Thesis, The
Middle East Technical University, Ankara, 2003.

[Davis and Rabinowitz 1984] P. J. Davis and P. Rabinowitz, Methods of numerical integration, 2nd ed., Academic Press, New
York, 1984.

[Doherty and Deeks 2002] J. P. Doherty and A. J. Deeks, “Applications of the scaled boundary finite-element method to
offshore geotechnical problems”, pp. 706–711 in Twelfth International Offshore and Polar Engineering Conference, Kyushu,
2002.

[Doherty and Deeks 2003a] J. P. Doherty and A. J. Deeks, “Elastic response of circular footings embedded in a non-homo-
geneous half-space”, Géotechnique 53:8 (2003), 703–714.

[Doherty and Deeks 2003b] J. P. Doherty and A. J. Deeks, “Scaled boundary finite-element analysis of a non-homogeneous
axisymmetric domain subjected to general loading”, Int. J. Numer. Anal. Meth. Geomech. 27:10 (2003), 813–835.

[Doherty and Deeks 2003c] J. P. Doherty and A. J. Deeks, “Scaled boundary finite-element analysis of a non-homogeneous
elastic half-space”, Int. J. Numer. Meth. Eng. 57:7 (2003), 955–973.

[Doherty and Deeks 2005] J. P. Doherty and A. J. Deeks, “Stiffness of flexible caisson foundations embedded in nonhomoge-
neous elastic soil”, J. Geotech. Geoenvironmental Eng., ASCE 131:12 (2005), 1498–1508.

[Doherty and Deeks 2006] J. P. Doherty and A. J. Deeks, “Stiffness of a flexible circular footing embedded in an elastic
half-space”, Int. J. Geomech., ASCE 6:1 (2006), 46–54.

[Gazetas 1982] G. Gazetas, “Stresses and displacements in cross-anisotropic soils”, J. Geotech. Eng. Div., ASCE 108:4 (1982),
532–553.

[Giannakopoulos and Suresh 1997] A. E. Giannakopoulos and S. Suresh, “Indentation of solids with gradients in elastic prop-
erties: Part I. Point force”, Int. J. Solids Struct. 34:19 (1997), 2357–2392.

[Gibson 1974] R. E. Gibson, “The analytical method in soil mechanics”, Géotechnique 24:2 (1974), 115–140.

[Gray et al. 2001] L. J. Gray, J. D. Richardson, T. Kaplan, J. Berger, P. A. Martin, and G. H. Paulino, “Green’s functions
for exponentially graded elastic materials”, pp. 327 in Sixth U.S. National Congress on Computational Mechanics, Dearborn,
2001.



262 CHENG-DER WANG, JIA-YAN HOU AND WEI-JER WANG

[Hu et al. 2007] T. B. Hu, C. D. Wang, and J. J. Liao, “Elastic solutions for a transversely isotropic full space with inclined
planes of symmetry subjected to a point load”, Int. J. Numer. Anal. Meth. Geomech. 31:12 (2007), 1401–1442.

[Lee and Rowe 1989] K. M. Lee and R. K. Rowe, “Deformation caused by surface loading and tunneling: the role of elastic
anisotropy”, Géotechnique 39:1 (1989), 125–140.

[Longman 1956a] I. M. Longman, “Note on a method for computing infinite integrals of oscillatory functions”, Proc. Cam-
bridge Philos. Soc. 52 (1956), 764–768.

[Longman 1956b] I. M. Longman, “Tables for the rapid and accurate numerical evaluation of certain infinite integrals involving
Bessel functions”, Proc. Cambridge Philos. Soc. 52 (1956), 166–180.

[Martin 2004] P. A. Martin, “Fundamental solutions and functionally graded materials”, in Seventh International Conference
on Integral Methods in Science and Engineering (Saint-Étienne, 2002), edited by C. Constanda et al., Birkhäuser, Boston,
2004.

[Martin et al. 2002] P. A. Martin, J. D. Richardson, L. J. Gray, and J. R. Berger, “On Green’s function for a three-dimensional
exponentially graded elastic solid”, Proc. Royal Soc. London A 458 (2002), 1931–1947.

[Piessens et al. 1983] R. Piessens, R. DeDoncker-Kapenga, C. W. Überhuber, and D. K. Kahaner, QUADPACK: a subroutine
package for automatic integration, Springer, New York, 1983.

[Poulos and Davis 1974] G. H. Poulos and E. H. Davis, Elastic solutions for soil and rock mechanics, Wiley, New York, 1974.

[Tarn and Lu 1991] J. Q. Tarn and C. C. Lu, “Analysis of subsidence due to a point sink in an anisotropic porous elastic half
space”, Int. J. Numer. Anal. Meth. Geomech. 15:4 (1991), 573–592.

[Wang and Liao 1999] C. D. Wang and J. J. Liao, “Elastic solutions for a transversely isotropic half-space subjected to buried
asymmetric-loads”, Int. J. Numer. Anal. Meth. Geomech. 23:2 (1999), 115–139.

[Wang and Tzeng 2009] C. D. Wang and C. S. Tzeng, “Displacements and stresses induced by nonuniform circular loads in an
inhomogeneous cross-anisotropic material”, Mech. Res. Commun. 36 (2009), 921–932.

[Wang et al. 2003] C. D. Wang, C. S. Tzeng, E. Pan, and J. J. Liao, “Displacements and stresses due to a vertical point load in
an inhomogeneous transversely isotropic half-space”, Int. J. Rock Mech. Mining Sci. 40:5 (2003), 667–685.

[Wang et al. 2006] C. D. Wang, E. Pan, C. S. Tzeng, F. Han, and J. J. Liao, “Displacements and stresses due to a uniform
vertical circular load in an inhomogeneous cross-anisotropic half-space”, Int. J. Geomech., ASCE 6:1 (2006), 1–10.

[Wang et al. 2008] C. D. Wang, M. T. Chen, and T. C. Lee, “Surface displacements due to batter piles driven in cross-anisotropic
media”, Int. J. Numer. Anal. Meth. Geomech. 32:2 (2008), 121–141.

[Ward et al. 1965] W. H. Ward, A. Marsland, and S. G. Samuels, “Properties of the London clay at the ashford common shaft”,
Géotechnique 15:4 (1965), 321–344.

Received 13 Jan 2009. Revised 8 Aug 2009. Accepted 13 Aug 2009.

CHENG-DER WANG: cdwang@nuu.edu.tw
Department of Civil and Disaster Prevention Engineering, National United University, No. 1, Lien Da, Kung-Ching Li,
Miao-Li, Taiwan 360, Taiwan

JIA-YAN HOU: ayanyan1982@yahoo.com.tw
Department of Civil and Disaster Prevention Engineering, National United University, No. 1, Lien Da, Kung-Ching Li,
Miao-Li, Taiwan 360, Taiwan

WEI-JER WANG: wwj111@nuu.edu.tw
Department of Civil and Disaster Prevention Engineering, National United University, No. 1, Lien Da, Kung-Ching Li,
Miao-Li, Taiwan 360, Taiwan



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 5, No. 2, 2010

MECHANICAL AND FRACTURE ANALYSIS
OF WELDED PEARLITIC RAIL STEELS

ALDINTON ALLIE, HESHMAT A. AGLAN AND MAHMOOD FATEH

Welding rail steels using gas metal arc welding shows promise for repairing railhead defects. Finite
element analysis was performed on the rail before and during the welding process. It was revealed that
the sizes of the heat affected zone (HAZ) and fusion zone would be approximately 15 mm and 5 mm
respectively. Hardness tests showed that the parent material is harder than both the HAZ and the welded
region. The parent steel has ultimate strength, yield strength, and elongation to failure of 1114 MPa,
624 MPa, and 11.1% respectively. These values are higher than those of the welded rail steel. The
average KI for the parent specimen was 70 MPa·m0.5, while for the welded steel it was 54 MPa·m0.5.
The pearlitic steel displayed ductile fracture features immediately ahead of the crack tip but approaching
the end of the fracture surface the failure mechanism became less ductile. The welded rail steel in
contrast consists of ductile features throughout the entire fracture surface.

1. Introduction

Welding produces very high temperatures in the area of the weld and these temperatures decrease rapidly
as the distance from the weld increases. This heating followed by cooling to ambient temperature pro-
duces stresses in the rail. When the temperature of the rail returns to ambient temperature these stresses
remain and are referred to as residual stresses [Little and Kamtekar 1998]. To reduce the formation of
residual stresses, the rail steel is usually heated before the welding process begins [Funderburk 1997].
This method of heating the rail is called preheating and creates a softer and tougher structure. Properly
monitoring and sometimes adjusting the temperature of both the base metal and weld metal before, during,
and after welding is more likely to yield a successful weld. Improper rates of heating and cooling may
cause defects to be formed in the welded area or the base material [Funderburk 2000]. Examinations
and audits of welding procedures on failed welds conducted by Mutton and Alvarez [2004] have shown
that the most likely cause of defects is an insufficient preheat temperature. Preheating may be done by
gas torches, ovens, or electrical devices depending on the size of the part being welded and the type
of welding equipment being used [Funderburk 2000; WTIA 2006]. When preheating, the temperature
of the base material must also be in the range of the preheat temperature within 75 mm of the welded
area in all directions [Mutton and Alvarez 2004; Chandler 2008]. The temperature of the welded joint
can be checked by using a thermocouple, a temperature indicating crayon, or a contact thermometer
[Reis and Harness 2004]. Preheating is done for several reasons; it slows the cooling rate in the base
material and weld metal, which produces a more ductile metallurgic structure. This slow cooling also

Keywords: welded rail steels, heat affected zone, welding efficiency, fracture toughness.
This work was sponsored by the Federal Railroad Administration. The authors would also like to acknowledge Mike Cannon,
lab manager at Tuskegee University, for his assistance in the welding procedures.
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allows hydrogen to diffuse from the weld metal, reducing the potential for forming imperfections. It also
reduces shrinkage stresses that help in reducing imperfections that may be formed in the weld metal or
base material [WTIA 2006; Chandler 2008].

The interpass temperature is defined as the temperature of the base metal between the first and last
welding pass at the time welding is to be performed [Funderburk 1999; 2000; Mutton and Alvarez 2004;
Lincoln 2005]. The interpass temperature is usually considered as more important than the preheat
temperature with regards to the mechanical and microstructural properties of the weldment [Lincoln
2005]. A high interpass temperature will reduce the weld metal strength but usually improves toughness
due to a finer grain structure with grain size measured in microns. However, if the interpass temperature is
excessive the toughness trend is reversed. Therefore, it is important to maintain the minimum interpass
temperature to prevent weld defects while at the same time the maximum interpass temperature must
be controlled to provide satisfactory mechanical properties [Lincoln 2005]. The proper preheat and
interpass temperatures to be used are dependent on the chemical composition and the thickness of the base
material [Funderburk 1999; Tojo 2003]. For low carbon steels with a carbon content of approximately
0.3% a preheat temperature of 25–150◦C is required. For medium carbon steels with carbon content of
approximately 0.3%–0.45% a preheat temperature of 150–260◦C is required. And for high carbon steels
with carbon content exceeding 0.45% a preheat temperature of 260–425◦C is required. To determine
appropriate temperatures within the ranges of the different carbon content steels, use higher temperatures
for higher carbon contents and for larger base materials [Funderburk 1999].

The hardness of a metal is mainly dependent on the phases that are present, with increases in martensite
giving an increased hardness [El-Banna et al. 2000]. When conducting hardness testing the distributions
of hardness in the weld, heat affected zone (HAZ), and rail base metal should be shown [Saarna and
Laansoo 2004]. A weld containing a wide HAZ or having a low hardness in the fusion zone is predisposed
to batter, which may contribute to premature failure in the weld [Mutton and Alvarez 2004]. An increase
in the cooling rate of a work piece will provide higher hardness values [El-Banna et al. 2000]. However,
if the cooling rate is too fast it may cause the base material to crack. Hardness testing is the simplest
method for approximating the quality of a rail weld, but on its own it does not give a true assessment of
the rail weld. It is therefore complemented by other test results, including tensile, fatigue, and fracture
tests, et cetera [Saarna and Laansoo 2004].

Tensile tests are used to determine the weld metal quality in comparison to the parent rail. The ratio
of the weld-to-parent ultimate tensile strength is known as the weld efficiency [Orange 1966]. The
tensile strength of pearlitic steels has been proven to be dependent on the ferrite-cementite lamellae
spacing, with a smaller spacing giving a higher strength [Aglan and Fateh 2006; 2007]. The thermal
cycle associated with welding may cause the mechanical properties in the HAZ to be degraded by grain
coarsening, precipitation, and by segregation of trace impurities [Kim et al. 2001]. When a sequence
of several weld deposits, called a multirun, is used in welding the microstructure of the weld becomes
much more complicated as the deposition of each successive layer of weld heat treats the underlying
microstructure. This heat treating may apply a temperature high enough to cause the reformation of
austenite, which during cooling transforms the part to a different microstructure [Sugden and Bhadeshia
1989; Bhadeshia 1997].

The purpose of fracture toughness testing is to give a measure of the resistance of the material to
fracture [Crear 2001, Chapter 5, p. 5-4]. Once the critical crack length is detected in a rail, it is considered
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unsafe and must therefore be removed from the track. There are four methods that may be used to
calculate the fracture toughness, including the Charpy v-notch test, the crack tip opening displacement,
the plain strain fracture toughness test (K I c), and the plain stress fracture toughness (KI ). The latter will
be used to study the fracture resistance of the welded pearlitic rail steel. Due to the complexity of the
welding process, the toughness of welds is dependent on a lot more variables than the toughness of the
steel [Bhadeshia 1997]. The toughness of carbon steels has been shown to be dependent on the prior
austenite grain size, with a decrease in the grain size increasing the fracture toughness [Gray et al. 1982;
Lewandowski and Thompson 1986]. In most cases, an increase in the strength of a steel decreases its
toughness. This occurs because as the strength increases, plastic deformation, which is the major energy
absorption mechanism during fracture, becomes more difficult [Bhadeshia 1997]. The type of welding
process that is used will also play a significant role in the toughness of the steel, because each welding
process is different, and forms different microstructures in the process [Bhadeshia 1997]. The general
expression that is used to calculate the value of K I c is shown in the following equation:

K I c = σ
√
πa f

( a
W

)
, (1)

where σ is the residual strength for a notched specimen, a is the crack length, and f (a/W ) is a geomet-
rical correctional factor, which is given by the following equation [Aglan and Fateh 2007]:
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The ASTM E399, plain strain fracture toughness is generally used in determining K I C . This standard
requires that the thickness, t , and crack length, a, both exceed 2.5× (K1c/σys)

2 for the result to qualify
as a plain strain fracture toughness, K1c. K1c is the calculated fracture toughness and σys is the yield
strength of the unnotched sample. For thin specimens, plain stress may be dominant and KI can be
designated as the plain stress fracture toughness.

2. Materials and experimental parameters

The materials used in the present work were pearlitic rail steels provided by the Transportation Tech-
nology Center, Inc. The composition of the material is shown in Table 1. The rail sections provided
were approximately 304.8 mm long. Two grooves were milled in the railhead, each having 25.4 mm
width and 19.05 mm depth. Each groove was located 63.5 mm away from an end. This was done to

C Mn P Si Ti
Parent 0.92–1.01 0.69–1.04 ∼0.015 0.37–0.44 0.001–0.018
LA-100 0.05–0.06 1.55–1.70 0.005–0.007 0.40–0.50 0.02–0.04

Cu N S Cr
Parent ∼0.3 ∼0.0054 ∼0.007 ∼0.22
LA-100 0.10–0.20 0.003–0.005 0.02–0.05

Table 1. Chemical compositions of the pearlitic rail steel and of the Superarc LA-100
welding wire.
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Figure 1. Schematic diagram of the railhead showing how specimens were machined
(left) and the dimensions of the welded test specimens (right).

simulate the removal of materials from a railhead containing defects. A strip heater, 177.8 mm long
and 38.1 mm wide, was placed on each side of the rail web in the center of the longitudinal direction.
The strip heaters used had a maximum heat transfer of 250 W each. Finite element analysis (FEA) was
performed to determine the temperature profile before and during welding and to determine the size of
the HAZ. Before welding, the rail was preheated to 340◦C, to prevent cracking or inclusions in the weld.
The groove was then filled using a Millermatic350, a gas metal arc welder. A heat input of 1397.6 KJ/m
and a wire feed speed of 10.41 m/min were employed. The welding wire used was the Superarc LA-100
manufactured by Lincoln Electric with chemical properties shown in Table 1. This wire was chosen
because its mechanical properties were the closest match to that of the parent rail steel.

After welding, the excess weldment was removed from the rail steel by grinding. The rail was then
cut into two halves with the weld in the center of both sections. Specimens were then machined from
the welded pearlitic rail head along the direction of the rail using electrical discharge machining. A
Unigraphics drawing of the welded rail after grinding is shown in Figure 1 along with the typical slices
that were prepared for testing.

The welded pearlitic rail steel contains the weld in the center of the specimen and is 25.4 mm long.
Both parent and welded rail steel had dimension of 152 mm length, 19 mm width, and 2 mm thickness.
Notched specimens were also prepared with a 60◦ notch at one free edge in the center of the specimen.
The notch depth was approximately 2.4 mm with a notch depth to width ratio (a/W ) of 0.125 for both
the pearlitic and welded rail steels. Static tensile tests were performed on both notched and unnotched
specimens under displacement control mode using an MTS servohydraulic machine with TestStar data
acquisition software. The results from the unnotched specimen were used to obtain the stress-strain
relationship and the results from the notched specimen were used to obtain the residual strength and
fracture properties.
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3. Results and discussion

3.1. Finite element analysis (FEA) of heated rail sections. FEA was used to study the heat transfer of
the rail steel, with heat strips on opposite sides of the rail web, before and during the welding process.
SolidWorks 2007 was utilized to perform the FEA. The temperature that was applied to the rail by the
strip heaters in this study was 340◦C. This temperature was applied because the preheat temperature
of high carbon steels should range from 260–425◦C, with the high carbon range being above 0.45%
carbon [Lincoln 2005]. This implies that a thick material with carbon content of 1% should use a higher
temperature from this range. The heat flux of the heaters was calculated as Q/A, where Q is the amount
of heat transferred and A is the area of the heating surface. The heat flux of each electrical strip heater
was calculated and found to be 36.93 KW/m2.

The boundary conditions that were used in the thermal analysis of the rail steel include: The web and
base of the rail were considered adiabatic because fiber glass insulation was used to help prevent the loss
of heat to the environment and the head of the rail was considered as undergoing convection since it was
open to its surroundings. The ambient temperature used for this analysis was 26◦C and the convection
was calculated using the equation

h = Nu K
L

, (3)

where h is the convective heat transfer coefficient, Nu is the Nusselt number, K is the thermal conductivity,
and L is the average length of the railhead represented as a square. From this calculation, it was found
that the convective heat transfer coefficient of the rail was 10.26 W/m2K.

Prewelding. All the boundary conditions mentioned above were used in the prewelding analysis of the
rail. The FEA heat distribution diagram was obtained for these conditions. From the plot it was noted that
there is an insignificant variation in the temperature distribution in the rail, since the highest temperature
was 340◦C compared to the lowest, 310◦C. This is a difference of 30◦C. This demonstrates that the
electrical strip heaters are very efficient in heating the groove to the desired temperature, even with the
rail head exposed to the environment.

During welding. During welding, all the boundary conditions that were applied previously were applied
again, along with one additional boundary condition. For this condition, it was assumed that the welding
arc applied a heat of 4500◦C and this heat was applied to a small circular location at the bottom of the
groove. The assumption of 4500◦C was based on an average value stated in the literature. The range
given was between 3000◦C to 6000◦C for the temperature of the arc generated from a MIG welder
[Dorzin 2003]. The plot of the heat distribution was obtained from the FEA. The distribution showed
that the temperature at the arc was much higher than that of the heaters. It can be assumed from this
observation that the temperature of the electrical strip heaters does not play a significant role in heating
the groove during welding. However, the heat strips are still considered very important during welding
because the process will be stopped at times to remove any inclusions that may be present in the weld,
and the heaters will be needed to maintain the minimum interpass temperature during this period.

The temperature profile at the welding arc to the center of the rail web directly below the arc was
studied to understand the temperature distribution of the arc on the rail; this distribution is shown in
Figure 2a. The temperature is taken every 5 mm starting from the bottom of the groove.
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Figure 2. Left: Heat distribution during welding. Right: Iron-carbon phase diagram.

Studying this distribution in conjunction with the iron-carbon phase diagram shown in Figure 2b, taken
from [Cornell and Bhadeshia 1999], will give a good indication of the sizes of the HAZ and the fusion
zone. The line labeled RA shows the carbon content of the rail being studied. Following this line to the
first change in the microstructure of the material would indicate the minimum temperature of the HAZ.
The diagram shows that this temperature is 723◦C. Figure 2a suggests that this temperature is reached
approximately 15 mm from the center, so this length is indicative of the size of the HAZ. From the phase
diagram it is seen that once the temperature reaches 1443◦C all of the metal becomes liquid, which shows
where the fusion would start. This region is at approximately 5 mm, which shows that the rail should be
properly fused with the weld metal.

3.2. Hardness distribution of welded pearlitic rail steel. The hardness distribution from the center of
the weld was recorded using a handheld hardness tester. The first two slices of the rail were removed to
expose the middle layers for hardness testing. The hardness distribution of the rail steel from the weld’s
center is shown in Figure 3, with the center of the weld being at 0 mm and the weld’s width extending
from −12.7 mm to 12.7 mm. The hardness of the rail is taken every 12.7 mm.

Figure 3. Hardness of rail steel versus distance to center of weld, in mm.
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There is a clear trend to the right and to the left of the center of the weld, which shows that the further
from the weld the harder the material. The two furthest points to the left and to the right of the weld, the
parent rail, are in the range 300–315 HB. The graph shows that 20.4 mm to 50.8 mm to the right and left
of the weld’s center the hardness is slightly lower than the actual hardness of the rail, being in the range
279–286 HB. This decrease in hardness is associated with the HAZ, with decreased hardness due to the
heat treatment produced during welding. The weld’s hardness is significantly lower than the parent rail
with a range of 220–240 HB. This hardness is due to the filler material used for welding and the heat
treatment associated with multirun welds. The hardness of the weld and HAZ may be increased by heat
treating the rail using a specific type of hardening technique, either induction or flame hardening. If this
is not done the weld and HAZ will be prone to batter, leading to premature failure of the weld in service.

3.3. Microstructure of welded rail. The microstructure of the parent rail, HAZ, fusion line, and weld
were studied using optical microscopy. The locations where the optical micrographs were taken are
shown in Figure 4, together with sample micrographs at 100 times magnification. In the micrograph
on the top left, taken in the parent rail, a typical pearlite microstructure is clearly seen. The pearlite
microstructure consists of a fine lamellar aggregate of soft and ductile ferrite and very hard cementite.
The micrograph on the top right shows that the microstructure of the HAZ has been altered by the welding
process. This micrograph shows that the HAZ consists of a coarser pearlite structure than the parent rail.

The fusion zone of the weld shown in micrograph in Figure 4, bottom left, consists of the weld to
the right and the HAZ to the left of the image. The change in the microstructure from the HAZ to the
weld can be clearly seen and shows that the grain size of the weld is much smaller than that of the
HAZ. The micrograph on the bottom right part of the figure reveals that the metallurgy of the weld is
very different from that of the parent material. The weld material consists of a lower acicular ferrite
plate structure containing small amounts of cementite. The dark regions between the ferrite consist of
mainly martensite. This mixture containing mostly ferrite and small amounts of cementite and martensite
explains the hardness of the weld; ferrite is soft while martensite and cementite are hard.

3.4. Stress-strain relationships. A comparative study was conducted on both the welded and parent
pearlitic rail to study the effects of welding on the mechanical properties of the rail. The stress-strain
relationships of the pearlitic rail steels used were previously studied [Aglan and Gan 2001; Aglan et al.
2004; 2006; 2007]. Figure 5, left, shows the average stress-strain curves for the welded and parent
pearlitic rail steel. Both curves consist of linear elastic behavior followed by nonlinear plastic behavior
until failure. However, the elastic modulus of the welded pearlitic rail steel is higher than that of the
parent pearlitic rail steel, with that for the welded rail being 275 GPa and for the parent rail being 200 GPa
[Aglan and Gan 2001]. The figure also shows that the nonlinear plastic portion of the welded rail’s curve
falls below that of the parent rail. This shows that the welded rail’s tensile strength is not as high as the
parent rail. The strain to failure of the welded rail shows a significant decrease which reveals that the
welded rail is not as ductile as the parent rail.

Table 2 lists the mechanical properties for both the welded and parent pearlitic rail steels. The ultimate
strength declined by 47% from 1114 MPa for the parent rail to 760 MPa for the welded rail. The weld
efficiency is the ratio of the weld-to-parent ultimate tensile strength, found to be 68%. The yield strength
had a negligible decline of 5% from 624 MPa for the parent rail to 595 MPa for the welded rail. This
negligible decline is very positive as the yield strength is used in design rather than the ultimate tensile
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(a) Parent rail (b) HAZ

(c) Fusion (d) Weld

Figure 4. Micrographs at 100 times of the rail steel examined. The sections correspond
to the points marked on the diagram.

Figure 5. Stress-strain relationships of welded and unwelded pearlitic rail steels: un-
notched (left) and notched (right). The horizontal axis shows the percent strain.
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Condition Specimen number Ultimate strength Yield strength Failure strain (%)

Welded 1 865 650 3.34
2 695 580 3.98
3 726 585 3.81
4 755 565 4.46

Average 760 595 3.90

Parent 1 1161 667 11.3
2 1059 548 11.8
3 1121 657 10.2

Average 1114 624 11.1

Table 2. Ultimate and yield strengths (in MPa) and failure strain of welded and parent
pearlitic rail steel specimens.

strength. The strain to failure decreased from 11.1% for the parent rail to 3.9% for the welded rail, a
two-fold decrease in ductility.

The parent and welded rail steel materials with simulated defects were tested to determine their residual
strengths. A notch was created using a triangular file with a crack length to sample width ratio of 0.125.
The specimens were tested and the unnotched cross sectional area was used to calculate the stress. The
average stress-strain relationship for both the parent and welded rail steel is shown in Figure 5, right.
This figure shows that the average residual strength of the welded rail is slightly higher than that of the
parent rail. The strain to failure of the welded rail is also higher than that of the parent rail. The parent
rail has a linear elastic behavior followed by a very short nonlinear plastic behavior until failure, while
the welded rail has a linear elastic behavior followed by a longer nonlinear plastic behavior until failure.

The mechanical properties of the notched parent and welded pearlitic rail steel specimens are shown
in Table 3. This table shows an increase of 5% in the residual strength from 566 MPa for the parent rail

Condition Specimen number K1 Residual strength Failure strain (%) Notch sensitivity

Welded 1 53 588 1.22 0.23
2 50 577 0.78 0.24
3 59 631 1.77 0.17

Average 54 598 1.26 0.21

Parent 1 84 685 1.1 0.39
2 56 457 0.7 0.59
3 84 683 1.1 0.39
4 54 438 0.8 0.61

Average 70 566 0.93 0.49

Table 3. Mechanical properties of notched welded and parent pearlitic rail steel speci-
mens (K1 in units of MPa·m0.5 and residual strength in units of MPa).
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to 598 MPa for the welded rail. There is a considerable increase of 26% in the ductility of the welded rail
over the parent rail, with the strains to failure being 1.26% and 0.93% respectively. The notch sensitivity
is defined as (Sut − Sr )/Sut where Sr is the residual strength and Sut is the ultimate tensile strength of
the unnotched specimen. The notch sensitivity decreased from 0.49 for the parent rail to 0.21 for the
welded rail. This shows that the parent rail is a lot more sensitive to the introduction of a notch than the
welded rail.

The notched parent rail steel has an average residual strength of 566 MPa which is a 51% decrease in
the ultimate tensile strength of the unnotched specimen. The average residual strength of the welded rail
steel is 598 MPa which is a 27% decrease in the ultimate tensile strength of the unnotched welded rail
steel. The average strain to failure, which is a measure of the ductility of the material, decreased from
11.1% for the unnotched parent specimens to 0.93% for the notched parent specimen which is almost
a 12 fold decrease in ductility. This is compared to the average strain to failure of the notched welded
rail steel, which was 1.26%, a mere 3 fold decrease from 3.9% for the unnotched welded rail steel. As
a result of the introduction of a notch equal to 0.125 of the specimen width, the parent material lost
almost half of its strength compared to the welded material, which only lost approximately a quarter
of its strength. The introduction of the notch also caused the parent material to lose practically all its
ductility, showing high notch sensitivity. The welded material, however, only lost a small fraction of its
ductility when compared to the parent material, showing low notch sensitivity.

The test results show that the samples failed in the center of the weld. This happened in all tests. This
failure reveals that the fusion between the parent rail and the weld material was very good and that there
was perfect fusion, else failure would have occurred at the fusion line. The failure in the center of welded
area also confirms that the weld is not as strong as the parent rail. The welded specimen also shows a
significant amount of necking which demonstrates that the weld material is ductile. This shows that even
if there is a defect or crack in the rail steel during service there might not be a catastrophic failure due
to the high ductility of the weld.

3.5. Plain stress fracture toughness evaluation. Equations (1) and (2) were used to calculate the frac-
ture toughnesses of the parent and welded rail steel. To qualify as a plain strain fracture toughness, as
stated before, the thickness, t , and crack length, a, must both be greater than 2.5× (K1c/σys)

2. Using
σys = 595 MPa and K1c = 54 MPa

√
m, gives 2.5× (54/595)2 = 20.6 mm. This value is much larger than

both the thickness and the crack length. Therefore, this is not considered a valid K I C and is referred to
as the plain stress fracture toughness K1.

The plain stress fracture toughness of the parent material is 70MPa
√

m compared to 54MPa
√

m for
the welded material. This is a 30% decrease in the fracture toughness for the parent compared with that
for the welded rail material. However, the residual strength, strain to failure, and notch sensitivity of the
welded rail are all better than those of the parent rail.

3.6. Fractography. A schematic representation of the fracture surface is shown in Figure 6, top. The
notch is on the left side of the figure, which means the crack propagation direction is from left to right.
Points A and B represent the locations at which SEM micrographs were taken. Immediately ahead
of the crack tip, at point A, is referred to as the crack initiation region, while close to the end of the
fracture surface, at point B, and is referred to as the fast crack propagation region. The fracture surface
morphology of the parent and welded rail steel, respectively are shown in the top and bottom micrographs
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Figure 6. SEM micrograph at 1000 times of the parent rail (top row) and welded rail
(bottom row) at the beginning of the notch (left column, region A in the diagram) and
toward the end of the fracture surface (right column, region B in the diagram).

in Figure 6: the micrographs on the left were taken at point A, and those on the right at point B. All these
micrographs were taken at 1000 times magnification.

The fracture surface morphology of the parent pearlitic rail steel specimen taken immediately ahead
of the crack tip can be seen in the top left micrograph. The image displays cleavage facets and river
patterns. The entire fracture surface contains well-drawn ferrite strips. Pulled up lamellae and tearing
ridgelines inside the grains can also be seen [Khourshid et al. 2001]. The fracture surface of the parent
rail taken from location B is shown in the top right micrograph. The fracture surface displays a mixed
type of fracture mechanism with the ductile mechanism dominant. The ductile behavior is evident in
the micrograph from ductile tearing features such as pulled up ferrite strips and tearing ridges. Small
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amounts of cleavage facets and river patterns can also be seen, which are associated with brittle fracture.
In some areas, there exist intergranular cracks along the grain boundaries as shown in the left hand section
of the micrograph. It is observed that further from the fracture surface the failure mechanism becomes
less ductile.

The fracture surface morphology of the welded rail steel taken from location A consists of a dimpled
appearance and can be seen in the bottom left micrograph in Figure 6. Dimpled rupture is created by
microvoid coalescence, which is formed as a result of particle matrix decohesion or cracking of second-
phase particles [Davis 1998, pp. 1212–1216]. This type of fracture morphology is associated with ductile
fracture. The fracture morphology of the welded rail steel taken at location B is shown in the bottom
right micrograph, which looks very similar to the one taken at location A. This similarity shows that the
entire fracture surface of the welded rail steel consists of a dimpled appearance, and also explains its
relatively high ductility.

4. Concluding remarks

• Finite element analysis revealed that the sizes of the heat affected zone (HAZ) and fusion zone of the
pearlitic rail steel under consideration are approximately 15 mm and 5 mm respectively at a preheat
temperature of 340◦C and an arc temperature of 4500◦C.

• The pearlitic rail, welded rail, and HAZ had hardness ranges of 300–315 HB, 200–240 HB, and
279–286 HB respectively.

• The parent rail steel has ultimate tensile strength, yield strength, and elongation of about 1114 MPa,
624 MPa, and 11.1% respectively while the welded rail steel has 760 MPa, 595 MPa, and 3.90%
respectively.

• The average residual strength of the welded rail was slightly higher than that of the parent rail and
the parent rail was more sensitive to the introduction of a notch.

• The average plain stress fracture toughnesses of the parent and welded rail steels were 70 MPa·m0.5

and 54 MPa·m0.5 respectively.

• The fracture surface morphologies of both the parent and welded rail steel display ductile failure
mechanisms. However, the failure mechanisms seen in the welded rail steel are more ductile than
those in the pearlitic rail steel.
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RATE DEPENDENCE OF INDENTATION SIZE EFFECTS
IN FILLED SILICONE RUBBER

RAMANJANEYULU V. S. TATIRAJU AND CHUNG-SOUK HAN

Indentation experiments at the nanometer and micrometer range reported in the literature have shown that
the deformation of polymers is — similarly to metals — size-dependent. In addition its size dependence,
the deformation behavior of polymers is also known to be rate-dependent. Here silicone rubber is con-
sidered. In order to characterize the relation between size and rate-dependent deformation indentation
tests of silicone at indentation depths of between 30 and 300 microns and loading times of between
1 and 1000 seconds are performed. In these experiments the hardness and dissipation increased with
decreasing loading time and decreasing indentation depth. These experimental results are analyzed with
a recently suggested indentation model which incorporates a Frank energy-related nonlocal deformation
work. It is found that the indentation model is in good agreement with the experimental data. Evaluation
of the experimental data indicates that the rate effects are mostly related to the nonlocal, size-dependent
deformation.

1. Introduction

The indentation size effect manifests itself in increasing hardness at decreasing indentation depths and
is fairly well investigated for metals [Ma and Clarke 1995; Nix and Gao 1998; Han et al. 2007a]. Such
elevated hardnesses at small indentation depths have also been observed in polymers [Briscoe et al.
1998; Chong and Lam 1999; Tjernlund et al. 2004; Lim and Chaudhri 2006; Han and Nikolov 2007]
but, in comparison to metals, for polymers these effects are not well understood. An understanding
of size-dependent deformation behavior is important not only for small components in MEMS/NEMS
(micro/nano-electromechanical systems), but also for the development of advanced material systems and
composite materials with small material phases and other applications such as sealants, gaskets [Tan et al.
2007], and adhesives [Han et al. 2007b]. As many biological materials can be viewed as polymers, the
relevance of size effects in polymers extends also to these materials [Yang et al. 2002].

Rate effects in indentation testing have been studied in [Sargent and Ashby 1992; Larsson and Carlsson
1998; Ebenstein and Wahl 2006; Tweedie and Van Vliet 2006], for instance, but without considering
size effects. The effects of cross-linking and adhesion on the determination of the elasticity modulus
of polydimethylsiloxane elastomers have been studied in [Carrillo et al. 2005]. A phenomenological
constitutive model incorporating both rate and size effects has been suggested in [Gudmundson 2006], for
instance. The elasticity modulus has also been determined to vary with the indentation depth [McFarland
and Colton 2005; Tweedie et al. 2007]; this may be seen as a indication that a change in the dominant
forces or mechanisms may be present at small indentation depths.

Keywords: indentation, hardness, polymeric material, viscoelasticity, size dependent deformation.
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In [Han and Nikolov 2007] indentation experiments in the literature have been analyzed, and it has
been found that the indentation size effect strongly depends on the polymeric material and its molecular
structure [Han 2010]. For instance, Teflon (polytetrafluoroethylene) [Li and Bhushan 2000] does not
seem to show any indentation size effects, while epoxy and polycarbonate show significant indentation
size effects at indentation depths from 100 nm up to several microns [Chong and Lam 1999].

Assuming the rate of deformation does not alter the basic characteristics, these experimental results
were evaluated with a hardness model suggested in [Han and Nikolov 2007]. The model and experimental
results were found to be in good agreement for indentation depths above some 200 nm. The model is
based on an elastoplastic extension of the rotation gradient model suggested in [Nikolov et al. 2007],
which relates the length scale component of the deformation work to the Frank energy known from
liquid crystal polymers. For indentation depths smaller than 200 nm surface effects may be present
which are not represented in the hardness model. In metals such surface effects may include the effect of
the curvature of the indenter tip [Qu et al. 2004], different deformation mechanisms close to free surfaces
[Han et al. 2006], and surface roughness effects [Zhang and Xu 2002; Zhang et al. 2004].

Among the different polymers tested for size-dependent deformation, silicone rubber appears to exhibit
astonishing behavior. While at the macroscale silicone rubber is very soft, at indentation depths of under
one micron it exhibits higher hardness than many macroscopically harder polymers [Zhang and Xu 2002;
Xu and Zhang 2004; Han and Nikolov 2007]. Here we investigate the rate dependence of the indentation
size effect in silicone rubber with indentation tests at indentation depth ranges of approximately 30–
300 microns and in loading time ranges of 1–1000 seconds. The data for these experiments are analyzed
and discussed using the hardness model suggested in [Han and Nikolov 2007].

2. Experimental setting

Indentation system. The indentation tests were performed with the commercially available Fischerscope
HM2000S indentation system (Fischer Technology Inc., USA). It is a load controlled system for the
determination of hardness and other material properties [ISO 14577-1 2002]. The applicable load of the
machine ranges between 0.4 and 2000 mN and the loading time between 0.6 and 106 seconds. The load
and penetration depth resolutions are given by the manufacturer as ≤ 40µN and ≤ 100 pm, respectively.
Also according to the manufacturer the curvature of the indenter tip is guaranteed to be less than 500 nm,
approximately between 200 and 300 nm; only polymeric materials with this indenter tip have been tested.

Silicone rubber material. The ingredients for the silicone rubber sample fabrication were obtained from
Gelest, Inc., Morrisville, PA, USA. The silicone materials were produced in two parts, both of them
silicone blends. Part A consists of fumed silica-reinforced vinyl-terminated polydimethylsiloxane (Gelest
catalog code DMS-V31S15) as a base and a precious metal catalyst for vinyl-addition silicone cure
platinum-divinyltetramethyldisiloxane complex in xylene (Gelest SIP 6831.2). Part B consist of vinyl-
terminated polydimethylsiloxanes (Gelest DMS-V31) as vinyl silicone, methylhydrosiloxane-dimethyl-
siloxane copolymers and a trimethylsiloxy terminated (Gelest HMS-301) cross-linker.

For part A, 84.85 ml of the base was poured into a glass beaker by measuring its mass on a weighing
machine; meanwhile, 3 ml of the catalyst was slowly added with a pipette. The compound was then
thoroughly mixed with a stirrer for a couple of minutes. For part B, 80 ml of vinyl silicone and 20 ml
of cross-linker were thoroughly mixed with a stirrer in another beaker. Parts A and B were poured in a
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proportion of 3:1 into a polypropylene specimen cup. To get rid of any bubbles, the whole mixture was
placed in an airtight chamber using a vacuum pump. The aggregate was then poured into a Petri dish
(50 mm in diameter and 9 mm in depth, Pall Corporation, USA) to avoid damage and straining of the
material due to handling. Finally the specimen was allowed to cure for several days at room temperature.

3. Indentation experiments

Figure 1 shows the indentation depth h and its projected counterpart hc. Also shown are the elastic,
W e

I , and inelastic, W p
I , parts of the total indentation work WI =W e

I +W p
I in the loading and unloading

sequence of the load-displacement curve. A Berkovich indenter tip was applied with a characteristic
angle of about 65◦2′. The nominal contact area is As = cBh2 for the Berkovich tip, where cB = 26.440
[ISO 14577-1 2002].

The stress and strain fields are highly inhomogeneous during indentation [Dao et al. 2001]. Because
of this inhomogeneity, strain fields and strain rates vary strongly. From a classical local continuum
mechanics viewpoint, where the constitutive equations are described by the stresses and strains and their
rates, these stress and strain fields should be affine to each other with h under certain conditions: first,
the indenter tip geometry should be self-affine, that is, the nominal penetrating shape of the indenter tip
should scale with the indentation depth, and, second, the strain and strain rate fields should also be affine
to the indentation depth at a certain time.

For the self-affine cone geometry of the Berkovich indenter tip used here, the maximum indentation
depth hmax is related to the maximal applied force Fmax by

h2
max = co Fmax, (1)

where the constant co depends on the specific indenter shape, material constants, and loading rise time
tR; see [Oyen 2006]. Following the discussion above, the relation (1) should be true irrespective of the
maximum applied load if material points experience the same strain rates spatially affine to the maximum
indentation depth hmax at all times. In other words, under these conditions the location of a material point
with the same strain rate history scales with hmax. From a classical continuum mechanical viewpoint this
should be fulfilled if the load F goes up from 0 to its maximum Fmax linearly in time, as in [Oyen
2006]; in symbols, F = (t/tR)Fmax, where tR is the load raising time. If the load is raised quadratically
then F = (t/tR)2 Fmax. If tR remains the same while Fmax changes, the stress fields and the strain and

F

h

hc

F
Fmax

hhmax

W p
I

W e
I

Figure 1. Indentation depths (left) and elastic W e
I and inelastic W p

I parts of the total
indentation work WI in a load-displacement diagram (right).
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strain rate fields will be affine with respect to hmax. As a direct consequence of (1) the universal hardness
Hmax = Fmax/(cBh2

max) is not dependent on Fmax or on hmax, which is the expected result from a classical
continuum mechanical viewpoint in terms of local stresses and strains and their rates.

In order to examine the rate dependence of the silicone rubber various loading times were applied for
a given maximum load Fmax. The load rising and falling time of the load-controlled indentations were
chosen to be equal and set to be tR = 1, 10, 100, and 1000 seconds with zero holding time to minimize
creep type deformation. The load increased quadratically in time till the maximum prescribed load was
reached at tR. The unloading was correspondingly decreased quadratically in the same time interval.

It has been found that the tested silicone material is highly elastic. Typical load-displacement curves
with different indentation times are shown in Figure 2, left, including the load-displacement curves of
the loading and unloading sequences. The lines in loading and unloading for these loading times can
hardly be distinguished. Particularly for the 1000 second test, the indentation depth h at zero load was
also practically zero, which indicates that there is little if any plastic deformation. However, to visualize
that there is some dissipation, the load displacement curves in loading and unloading for the 1 second
test have been redrawn in Figure 2, right.

Essentially no permanent indentation h was observed after the load had been removed, although at
small loading times tR (see Figure 2, right) some indentation depth h is measured at zero applied load.
Because there is hardly any remaining indentation depth for the indentations for tR = 1000 s it can
arguably be assumed that most of the remaining h in Figure 2, right, at the end of the unloading sequence
is actually recovered in time. This motivates the use of

WI =W e
I +W v

I (2)

as the decomposition of the indentation work, where W v
I is the viscous part of the indentation work

which, is not recovered.
In Figure 3 the ratio between W e

I and WI, that is, ηe
=W e

I /WI, is illustrated for different indentation
depths and loading/unloading times. As depicted therein, with decreasing indentation time the ratio ηe
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Figure 2. Indentation depth h versus load F at various loading/unloading times (left).
The curves for 1 second are repeated on the right.
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Figure 3. Ratio ηe versus indentation depth h for various loading times.

decreases, corresponding to increasing dissipation. Such behavior is well known and widely observed in
other material tests such as simple tensile tests [Lemaitre and Chaboche 1990]. The values in Figure 3,
however, also show a decrease of ηe with decreasing h, and therefore the dissipation of the indentation
work increases with decreasing h. Similar tendencies have also been observed in other polymers [Briscoe
et al. 1998; Tatiraju et al. 2008]. The magnitude with which ηe decreases is more pronounced at shorter
loading times. As the majority of the deformation is elastic and hardly any plastic deformation is present
the hardness values characterize elastic rather than plastic deformation.

A material model that is formulated only in local stress and strain related terms would not predict any
change in ηe with the indentation depth h. The changes in ηe with h are, however, apparent in Figure 3.
The indentation size effect is usually assessed by the relation between hardness and indentation depth.
The values of these quantities corresponding to Figure 3 are shown in Figure 4, which plots the universal
hardness,

H = F/As, (3)
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Figure 4. Universal hardness H versus indentation depth h for various loading times.
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versus h for different loading times; here F denotes the force applied by the indenter and As = 26.44h2

is the nominal contact area of the indenter penetrating beyond the zero-point of contact, h, described
above [ISO 14577-1 2002].

The universal or Martens hardness was chosen because the determination of the indentation hardness
has been developed for metallic materials where the elastic deformation is small compared to the inelastic
deformation [Oliver and Pharr 1992], and is therefore questionable for a highly elastic material such as
silicone rubber; while the universal hardness can be applied to all materials [ISO 14577-1 2002]. If
size effects are not present both the universal hardness and the indentation hardness are independent of
h. As can be seen in Figure 4, however, a significant increase in the universal hardness, H , has been
determined for small indentation depths below about 100 microns. The figure also shows that with longer
indentation times and corresponding smaller strain rates H decreases. Such increased hardness at lower
loading times has also been observed by others [Shen et al. 2004], and is consistent with the increased
dissipation at lower loading times shown in Figure 3. Assuming that the deformation in the considered
silicone rubber is of viscoelastic nature the data in Figure 3 would indicate that the viscosity and rate
dependence are increasing with decreasing h.

4. Analysis and evaluation of experimental data

In the above described experiments we observed significant indentation size effects at indentation depths
between 30 and 300 microns and, with decreasing loading times, the dissipation and the indentation
size effect increased. While the dissipation increases with decreasing h the elastic indentation work
W e

I is large compared to the dissipation W v
I in all indentations performed here. For an analysis of the

h-dependent universal hardness, the rate-independent hardness model suggested in [Han and Nikolov
2007] may therefore be considered as an approximation, where rate effects have been neglected.

It is well established that the deformation of liquid crystal polymers can be described by the Frank
energy and the related rotational gradients [de Gennes and Prost 1993; Stewart 2004] which originate
from molecular interactions. While the here-considered filled silicone rubber is not a liquid crystal
polymer it is here assumed that for glassy polymers the molecular interactions related to the Frank
energy still play an important role in the deformation process at small scales because the lack of ne-
matic order is due to topological defects like cross-links and entanglements rather than to the absence
of sufficiently strong molecular interactions. Following this assumption, that the Frank energy is also
relevant in amorphous polymers, a Frank elasticity type rotation gradient energy was suggested by
Nikolov et al. [2007] to account for the observed elastic size effects in the bending of epoxy microbeams
[Lam et al. 2003; McFarland and Colton 2005]. A corresponding extension for elastoplastic materials
and a related hardness model were deduced in [Han and Nikolov 2007] by including a Frank energy
related indentation work term W F

I in the total indentation work. For viscoelastic materials this extension
of (2) can be given by WI = W e

Iε +W v
Iε +W F

I , where the subscript ε has been added to indicate the
local nature of these indentation work components. The Frank energy density in its one-parameter form
W F
=

1
2 K 〈∇n : ∇n〉 = 1

2 K 〈ni, j ni, j 〉 is a quadratic function in the gradients of the orientations of the
more rigid (nematic) parts of the polymer chain n (averaged over all directions, which is indicated by
〈 〉) and is also directly proportional to the Frank constant K , which depends on the molecular structure
and properties of the polymer [Liu and Fredrickson 1993]. The change in the Frank energy density from
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the initial configuration n0 to the current configuration n can then be expressed by

1W F
=

K
2

(
〈ni, j ni, j 〉− 〈n0

i, j n
0
i, j 〉

)
. (4)

This expression is not a practical description in deformation related terms. Assuming, firstly, a decoupling
of the local work densities W

e

ε , W
v

ε , and the Frank energy and that, secondly, a Frank energy related
deformation potential is zero in the undeformed state and increases with deformation, Nikolov et al.
[2007] motivated a Frank energy type deformation potential 1W̃ F

1W̃ F
=

K̃
3
χS

i jχ
S
i j , (5)

where χS
i j =

1
2 (χi j +χ j j ) and χi j =

1
2 einmum, jn represent gradients in the rotations. The displacement

field is um and the permutation symbol is e jnm . The tilde is introduced in (5) to differentiate it from the
Frank energy, (4), due to the applied assumptions and approximations. In spite of the modifications of
the Frank energy, (4), the K -related constant K̃ in (5) should be of the same order.

With 1W̃ F, the total deformation work density is suggested as

W =W e
ε +W v

ε +1W̃ F, (6)

where W v
ε corresponds to the indentation work component W v

Iε and is described in local stress and strain
related terms.

To a first order approximation the magnitude of the rotation gradient χS averaged over the area under
the indenter increases with decreasing h as the distances are proportional to h. Consequently for large
indentation depths h the nonlocal work W F

I should become small relative to W e
Iε +W v

Iε. With decreasing
h, however, the energy W F

I to be exerted during indentation will increase relative to W e
Iε +W v

Iε resulting
in higher applied forces and corresponding higher hardness values (see [Han and Nikolov 2007] for more
details).

Based on the additional indentation work W F
I associated with the deformation work density 1W̃ F, an

approximate hardness model,
H = H0

(
1+ c`

h

)
, (7)

was deduced in [Han and Nikolov 2007]. It involves a length scale parameter c` and a macroscopic
hardness H0, which also represents the lower limit of H . This model was developed by neglecting rate
effects and assuming that the essential characteristics will not change with the loading time. A more
general model discussed in the same paper is H = H0(1+ (c`/h)γ ), with a fitting parameter accounting
for the assumptions applied in its deduction. For γ = 1/2 this is identical to the model suggested in
[Chong and Lam 1999]. For a short range h the differences from using (7), that is, γ = 1, and γ = 1/2
are small, but they increase with the range of h.

Equation (7) describes the h-H relation fairly well for elastoplastically deforming epoxy, polycar-
bonate, and polystyrene for which experimental data of up to 10 microns were reported in the literature
[Chong and Lam 1999]. For small indentation depths (under 50 nm or so), effects from surface roughness,
indenter tip curvature, and surface effects may be present, as discussed in the introduction. Equation (7)
does not take into account these effects and consequently does not represent the size-dependent hardness
below about 50 nm indentation depth.
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Figure 5. Universal hardness H versus inverse indentation depth 1/h.

The dissipation is rather small in the indentation of our silicone material (see Figure 3) and therefore
one could assume that the above approach should be a good approximation. In fact, (7) was also found
to predict the h-H relation quite well for different loading times, as can be seen in Figure 5 where 1/h
versus H is shown. The figure also contains linear curves in 1/h obtained from least square fits of the
parameters of (7), that is, H0 and c`. As can be seen from these figures the deviation of the experimental
data from these linear curves in 1/h is rather small. As the differences in H at small loading times
increase with decreasing h it can be concluded that rate effects are pronounced and thus more important
at small indentations, while at large indentation depth rate effects are less important.

The numerical values of these least square fits are given in Table 1, where the macroscopic hardness
H0 varies little with the loading time, while there are quite significant increases of c` with decreasing
tR. This can also be seen in Figure 5 where the fitted lines for different tR values more or less converge
to a common H0 at 1/h = 0. This would imply that there is little rate dependence in the macroscopic
hardness H0 which in turn also implies that there is little rate dependence in the macroscopic deformation
(that is, the deformation with or without small rotation gradients).

Loading time tR 1 s 10 s 100 s 1000 s

H0 (MPa) 0.0633 0.0689 0.0698 0.0633
c` (µm) 85.988 66.972 57.192 47.442

Table 1. Least square fits for H0 and c`.

5. Discussion

Adhesion forces may be of importance at indentation depths below the micron range, as reported in
[Carrillo et al. 2005] where a spherical indenter tip was used at indentation depths of about 500 nm.
With a cone shaped indenter tip and in the indentation depth range considered herein, between 30 and
300 microns, the work of adhesion should, however, be less significant, or negligible compared to the
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ε, ε̇
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Figure 6. Rheological representation at the macro and micro levels (including the
Maxwell, Kelvin–Voigt, and combined models).

indentation work components indicated in Figure 1. In this respect it is worth noting that in a numer-
ical analysis friction effects [Mata and Alcalá 2004] could not be related to the indentation size effect.
Similarly adhesion forces should also scale with the contact area and should therefore be affine with
the indentation depth. These are therefore unlikely to be the cause of the indentation size effect. Using
conical indenter tips the effect of the indenter tip curvature is of more relevance at submicron indentation
depths [Qu et al. 2004] than the here-considered range of 30–300 microns. While rate effects were not
investigated in [Lim and Chaudhri 2006] it was found that for a silicone rubber with a higher cross-link
density elevated hardnesses were also observed for small indentation depths.

As opposed to [Lim and Chaudhri 2006], the silicone rubber material used in this work is not a pure
polydimethylsiloxane as described in Section 2. The silicone rubber used here is more of a polymer blend,
and that has not been taken into consideration in the analysis and evaluation given in Section 4. There is
also a lack of clarity about the length scale of the second phases that may be present due to the fumed
silica reinforced vinyl-terminated polydimethylsiloxane and the divinyltetramethyldisiloxane complex
in xylene used in the fabrication process of the samples used in this work. We believe however that
the issue of quantification/characterization of microscopic phases and corresponding possibly present
anisotropy would be quite complicated and beyond the scope and intent of this work. Given the fact,
however, that such an indentation size effect in a similar indentation depth range has also been found
in [Lim and Chaudhri 2006] for highly cross-linked polydimethylsiloxane, this may indicate that the
notion suggested in Section 4 is nevertheless valid for the silicone rubber used in this work as well as the
highly cross-linked polydimethylsiloxane of [Lim and Chaudhri 2006]. The possible differences between
the polydimethylsiloxane of [Lim and Chaudhri 2006] and the polymer blend used here fabricated with
fumed silica reinforced vinyl terminated polydimethylsiloxane remains an open question which is not
considered in this article.

As the depth-dependent hardness cannot be related to W e
Iε and W v

Iε, the small changes in H0 at different
tR values indicate that the rate effects are mostly related to the rotational gradient-dependent W F

I . That
would necessitate a reformulation of 1W̃ F, as it should be rate-dependent and not purely elastic, as
described in (5).

The viscoelastic nature of the Frank elasticity per se has already been investigated for liquid crystal
polymers both in theory and experiment [Jamieson et al. 1996]. Possible combined micro-macro rheo-
logical models are suggested in Figure 6, where the macroscopic model is not rate-sensitive while the
microscopic model includes damping terms dependent on χ̇ . Note that because the macroscopic model
is an elastic solid the overall local/nonlocal model would remain rheologically a (viscoelastic) solid even



286 RAMANJANEYULU V. S. TATIRAJU AND CHUNG-SOUK HAN

if the nonlocal rheological component on its own would be a fluid. A corresponding constitutive material
formulation in χS and its rate would necessitate a decomposition of χS into elastic and viscous parts.
The constitutive equations and boundary conditions of such a material model would be quite complex.
A phenomenological theory for elastoplastic materials with such a decomposition of a strain gradient
tensor into elastic and plastic parts has been, for instance, suggested in [Chen and Wang 2002].

6. Conclusions

The rate dependence of indentation size effects in silicone rubber has been studied in the range of 30–
300 microns and 1–1000 seconds. From the experimental results we can draw the following conclusions:
• The dissipation and hardness H increase with decreasing indentation depth h and with decreasing

loading time.

• The rate dependence increases with decreasing indentation depth for the investigated silicone rub-
ber. Therefore rate effects are very significant and important at small indentation depths of below
100 microns.

• The rate-independent hardness model H = H0

(
1+ c`

h

)
describes the hardness indentation depth

relation well for a constant loading time.

• In this model the length scale parameter c` decreases with loading time, while H0 as a projected
value of the macroscopic hardness is relatively unaffected by the loading time. Consequently rate
effects are mostly associated with nonlocal deformation.
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A NOVEL APPLICATION OF A LASER DOPPLER VIBROMETER
IN A HEALTH MONITORING SYSTEM

DAVOOD REZAEI AND FARID TAHERI

This paper presents the results of an experimental study of the applicability of the laser Doppler vibrom-
eter (LDV) as a potential measurement tool for structural health monitoring in pipelines. In this case, use
of the LDV has been integrated into a novel damage detection method referred to as the empirical mode
decomposition (EMD) energy damage index. This method involves monitoring the free vibrations of a
pipe through sensors, followed by decomposition of the sensor generated signals using EMD, and subse-
quently comparing an energy term of the pipe in its healthy state to that of the same pipe in a damaged
state. In the experiment, a single beam LDV was utilized to acquire the vibration of a cantilever steel
pipe impacted by an impulse hammer. Three cases were studied: pipes with a single half-circumferential
damage, a single full-circumferential damage, and with multiple circumferential damages. The integrity
of the LDV results was verified by comparison with those obtained from piezoceramic sensors bonded
to the pipe surface. The results confirmed the effectiveness of the LDV and its integration into the
proposed EMD damage index for identifying and locating single and multiple damages. Compared to
piezoceramic sensors, the LDV, as a remote and accurate optical measurement system, provided more
satisfactory identification of single and multiple damages and can therefore be successfully utilized in
structural health monitoring.

Introduction

Despite the development of new sources of energy, the world economy is still heavily dependent upon
petroleum, which is distributed in the form of oil and natural gas to numerous industries through wide-
spread pipeline networks. Consequently, pipelines should always be maintained in a healthy condition
to ensure the safe, reliable, and effective transportation of petroleum and other chemicals. Cracking and
corrosion are the most common sources of damage in an operative pipeline, and may interrupt energy
supplies and result in severe property damages and/or industry shut downs. These damages ultimately
result in large repair, environmental clean-up, and legal costs. To avoid such misfortunes, the use of
different structural health monitoring (SHM) methodologies is becoming increasingly common. The
main purpose of SHM is to increase operational reliability and effectiveness via pipeline monitoring by
detecting damage at its earliest stage and thereby reducing the risk of interruption of the energy supply.

In addition to common nondestructive damage detection methods in pipelines (visual inspection, X-ray,
magnetic particle, and ultrasonic), modal based damage identification methods have been considered by
many researchers. In these methods, deviations in specific dynamic characteristics of the structure before

Keywords: structural health monitoring, vibration-based damage detection, laser Doppler vibrometer, pipeline damage
detection, piezoceramic sensors, empirical mode decomposition.
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and after damage are treated as the measures for damage identification. Every modal based SHM requires
two key elements: sensors, which monitor the structural vibrations, and a method of data interpretation
for extraction of the damage sensitive features.

Accelerometers and piezoelectric sensors (PZTs) are two well-known sensors used for capturing vibra-
tion in various applications such as mechanical systems, buildings, bridges, and aircrafts. Accelerometers
have been commonly used to measure real-time acceleration of structures caused by vibration [Peeters
et al. 2001; Hong et al. 2002; Kim and Melhem 2004; Lin et al. 2005]. There is also extensive work in
the literature which considers the use of PZTs to monitor vibration [Banks et al. 1996; Jian et al. 1997;
Soh et al. 2000; Winston et al. 2001; Fukunaga et al. 2002; Giurgiutiu et al. 2002]. Among conventional
sensors in SHM, PZTs have the advantages of being small, light, inexpensive, and self-excited with the
further benefits of having a high signal to noise ratios and being easily integrated into structures.

Despite the advantages of conventional contact sensors, such as accelerometers and PZTs, they still
must be attached to the monitored structure. The necessity of direct contact with the structure introduces
several drawbacks: added mass in the system (especially in the case of accelerometers on lightweight
components), sensor slippage, sensor damage, failure in harsh environments, and the considerable diffi-
culty of setting a large number of sensors on a structure and wiring them to a data acquisition system.
Furthermore, most conventional sensors cannot cover the high frequency domain because of low mea-
surement accuracy and inadequate sensitivity.

Greater sensitivity is required to pick up the minuscule amplitudes usually observed in structures
undergoing vibration [Kaito et al. 2005]. There are also cases where access to the components is diffi-
cult. In order to overcome these shortcomings, important innovations have been achieved in the field of
noncontact sensors by introducing laser-based measurements. Among the different laser-based methods,
the laser Doppler vibrometer (LDV) is one of the most common techniques. For more information on
laser Doppler vibrometry, the reader is referred to [Polytec 2009]. As a replacement for traditional
sensors, LDVs are widely used for vibration measurements in fields such as biomedicine and field mea-
surements such as quality control testing, material characterization, casting systems, structural testing,
and damage detection in aerospace as well as civil and mechanical engineering. LDVs are able to monitor
vibrations with a high degree of accuracy, sensitivity, and resolution. An LDV monitors the velocity and
displacement of a vibrating object through the frequency shift between the laser beam projecting to the
object and the reflected beam.

Kaito et al. [2005] employed an LDV scanning system to measure the vibration of real-scale structures
such as steel girders and reinforced concrete decks of actual bridges. For the steel members, this study
verified that the LDV and the accelerometer results matched with a high degree of accuracy in the time
and frequency domains. It was reported that the accuracy of the LDV was reduced due to low laser
reflection when the specimen was a concrete or dirt-adhering steel member. To overcome this problem,
Kaito et al. [2005] suggested that a surface treatment, such as reflective tape, should be applied prior to
measuring.

A comparative study performed by Nassif et al. [2005] showed that an LDV, as a noncontact and
nondestructive measuring system, could provide accurate results for monitoring bridge vibration and
deflection. Moreover, the LDV’s results compared well with results from contact sensors such as linear
variable differential transformers (LVDTs) mounted on the structure. This study also proved the capa-
bilities of an LDV in interpreting accurate velocity measurements compared with mounted geophone
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sensors. Therefore, an LDV can replace two systems (LVDT and geophone) for measuring vibration
deflection and velocity while maintaining sufficient accuracy.

Khan et al. [2000] performed a set of experiments to detect cracks in structures with a scanning laser
Doppler vibrometer (SLDV). Their study focused on detecting cracks in a cantilever beam, a concrete
beam, and plates. They found that if the defects are such that they produce localized mode-shape dis-
continuities, the SLDV can successfully detect and locate damages. Khan et al. [2000] also reported that
speckle noise could affect the results which led them to recommend using a low-pass filter to improve
measurement quality.

As mentioned previously, the analysis and interpretation of a structure’s dynamic response is a key
factor in an effective and successful damage identification technique. There is a vast amount of work in
the published literature utilizing different modal properties as damage sensitive features such as natural
frequencies and mode shapes [Peeters et al. 1996; Hassiotis 2000; Wang et al. 2001; Kim et al. 2003;
Kim and Chun 2004], modal strain energy [Shi et al. 2000], and stiffness matrices [Ren and De Roeck
2002; Hwang and Kim 2004]. Other researchers have focused on vibration signal processing and have
introduced methods based on frequency domain techniques, such as the Fourier transform, or based
on time-frequency domain decompositions, such as the wavelet transform method [Douka et al. 2004;
Kim and Melhem 2004; Ovanesova and Suarez 2004; Cheraghi et al. 2005b]. An emerging signal time-
frequency processing technique called the Hilbert–Huang transform (HHT) has recently been investigated
in the field of SHM and has proven its potential in damage detection [Xu and Chen 2004; Cheraghi et al.
2005a; Lin et al. 2005; Liu et al. 2006; Cheraghi and Taheri 2007; 2008]. This method employs a
decomposition technique called empirical mode decomposition (EMD), which is used to decompose
the signal into basic oscillatory modes that contain crucial information about the structure’s dynamic
characteristics and from which damage sensitive features can be deduced. These oscillatory modes are
referred to as intrinsic mode functions (IMFs).

Xu and Chen [2004] experimentally investigated the applicability of EMD for identifying the damage
resulting from stiffness changes in a three-story shear building model. The structure was monitored
continuously under free vibration, random vibration, and earthquake simulation. Xu and Chen [2004]
were successful in identifying the damage time instant and damage location through spikes in the IMF
derived from the EMD.

Lin et al. [2005] employed the HHT technique to identify damage in an IASC-ASCE benchmark
four-story building under ambient vibration. In this study, the damage was identified by a comparison of
the structural stiffness and damping, obtained by the HHT technique, between the intact and damaged
structure.

Liu et al. [2006] experimentally investigated the applicability of the HHT technique for damage detec-
tion in the benchmark problem (a four-story building), developed by the University of British Columbia.
They could identify the damage and instant of occurrence of damage, based on a comparison of the first
three IMFs and their time-frequencies between the undamaged and damaged structure. The damaged
structure was simulated by removing bracings and loosening bolts.

In [Cheraghi et al. 2005a; Cheraghi and Taheri 2007; 2008] an SHM methodology was introduced
based on the HHT and developed a novel damage index, called the EMD energy damage index (DI),
which uses the energy of the first IMF of a structure’s response signals in the healthy and damaged states.
This method was theoretically applied to a 6-DOF mechanical system [Cheraghi and Taheri 2008] and
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successfully detected the damage. The integrity of the proposed DI was also verified experimentally
[Cheraghi et al. 2005a] to detect the unbounded region in an adhesively bonded join in PVC pipes.
For further verification of the EMD energy DI, Cheraghi and Taheri [2007] carried out a numerical
study to detect damage in a cantilever aluminum pipe having various forms of defects simulated by
removing material from the pipe surface at different locations. They applied the Fourier transform,
Wavelet transform, and EMD energy DI methods; it was concluded that the EMD and wavelet approaches
were the most successful methods in detecting the locations and the EMD was the best method for
identifying damage severity.

In the present work, a set of experiments was completed to further investigate the applicability of
the EMD energy DI introduced in [Cheraghi and Taheri 2008]. The experiments included a cantilever
steel pipe having different damage cases in terms of defect location, number, and severity. The damages
were created to simulate corrosion; they were created by manually grinding the pipe to remove material
from its surface. The pipe was excited using an impulse hammer and the free vibrations generated were
captured via an LDV. MATLAB code was written to perform the signal processing including data filtration
and cleansing, decomposition of the signals via EMD, and calculation of the EMD energy. To verify
the performance of the LDV, its results were compared with those obtained from piezoceramic sensors
bonded to the pipe surface. The capability of both the LDV and PZTs for the extraction of the pipe’s
natural frequencies has been investigated. The results of the proposed damage detection methodology
with the integrated LDV are presented, discussed and compared with those obtained from the PZTs.

EMD energy damage index

Huang et al. [1998] introduced the Hilbert–Huang transform (HHT) signal processing method, which
almost satisfied all the requirements for processing linear, nonlinear, stationary, and nonstationary signals.
The HHT consists of two main parts: the EMD and the Hilbert transform. The EMD method decomposes
a real signal into a collection of simpler modes or intrinsic mode functions (IMFs) which are basically
associated with energy at different time scales and contain important data characteristics [Huang et al.
1998]. The Hilbert transform, once applied to IMFs, produces an energy-frequency-time distribution of
the data known as a Hilbert spectrum. In general, the decomposition resulting from an HHT is well
localized in the time-frequency domain and reveals important information within its data.

The procedure of sifting is schematically illustrated in Figure 1. To extract the IMFs for a given
time signal x(t), two cubic splines are fitted through the local maxima and minima to produce the upper
and lower envelopes of the original signal, respectively (note that the upper and lower envelopes should
contain all the data). Then the mean, m1(t), of these two splines is calculated and subtracted from the
original signal. The difference between the signal and mean, h1(t), is called the first component, defined
as h1(t)= x(t)−m1(t).

Now h1 is treated as the original time signal and the sifting process is repeated to get the next compo-
nent (that is, h11(t)= h1(t)−m11(t)). Each step of the sifting process produces a more symmetric signal
with respect to the zero mean. To achieve the desired symmetry, more siftings have to be performed,
mathematically represented by h1k(t)= h1(k−1)(t)−m1k(t).

If the sifting process continues to the extreme, it will remove the physically meaningful amplitudes
and fluctuations. In response, Huang et al. [1998] proposed a criterion for limiting the size of the standard
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Figure 1. Schematic of the EMD sifting process.

deviation (SD) computed from two successive sifting results. This stoppage criterion is expressed as

SD=
T∑

t=0

[
|h1(k−1)(t)− h1k(t)|2

h2
1(k−1)(t)

]
. (1)

If the SD is smaller than a predetermined value (usually between 0.2 and 0.3), the sifting process is
stopped and h1k(t) is called the first IMF component (c1(t)) of the signal; that is c1(t)= h1k(t).

The first IMF component c1(t) contains the finest scale or the shortest period component of the signal.
Each IMF satisfies two conditions. Firstly, the numbers of extrema and zero crossings either are equal
or differ by one. Secondly, the average of the envelopes, defined by the local maxima and local minima,
is zero. To derive the other IMFs, c1(t) is removed from the signal: r1(t)= x(t)− c1(t).

The residue r1(t) contains the larger scales or longer period components. Then r1(t) is considered
as the new signal and the sifting process is performed on it to obtain the second IMF component. This
procedure is repeated for all subsequent ri (t) to derive the longer period components. At each repetition,
the signal is modified with respect to the obtained IMF: rn(t)= rn−1(t)− cn(t).
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After extracting all the IMFs, the original signal is decomposed into n empirical modes and a residue
rn(t), which can be either the mean trend or a constant. Hence,

x(t)=
n∑

i=1

ci (t)+ rn(t). (2)

In the present work, the damage index (DI) introduced by Cheraghi and Taheri [2008] was used to
identify and locate damage in a cantilever steel pipe. This DI is based on the energy of the vibration
signal’s first IMF. According to this method, the dynamic characteristics of the healthy structure during
free vibration are collected through sensors; the acquired signals are then passed through a band-pass
filter to ensure the existence of the first natural frequency within the data. This is followed by extraction
of the first IMF through EMD as described in the previous paragraphs. Finally, the energy of the first
IMF for each sensor is established by:

E =
∫ t0

0
(c1(t))2 dt, (3)

where c1(t) is the first IMF, t0 is the duration of the signal, and E is a scalar value representing the energy
of the first IMF. As mentioned earlier, the first IMF contains the highest frequency component within the
signal. Furthermore, structural damage is associated with higher frequencies and therefore only the first
IMF is considered in the proposed DI.

The above procedure is repeated for the same structure in its damaged state to determine the energy
of each sensor’s first IMF. The last step is the application of the EMD energy DI to each sensor:

DI=
∣∣∣∣EHealthy− EDamaged

EHealthy

∣∣∣∣× 100. (4)

Once the DI is calculated for each sensor (for each measurement location when using a single LDV),
the existence and locations of damages may be determined by associating high index values with the
existence of damage close to the respective sensors.

Experimental setup

The test specimen used in this study was an API compliant [API 2000] standard steel pipe commonly
used in oil and gas pipelines. The pipe was size 65/8, grade A; its specifications are listed in Table 1.
Figure 2 is an image of the experimental setup showing the pipe as a cantilever supported by two clamps
at one end. The clamps are bolted to a massive structure in order to provide a rigid support and to reduce
vibration dissipation through support flexibility.

A VibroMet 500 single beam LDV, manufactured by MetroLaser, Inc., is used in this study. The
VibroMet 500 consists of a laser head and an electronic controller box. The laser head contains a diode

Pipe size 65/8, Grade A, API Standard
Outside diameter 168.3 mm E 200 GPa
Wall thickness 6.4 mm n 0.30
Length 2.0 m r 7850 kg/m3

Table 1. Dimensions and properties of the pipe.
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Figure 2. Experimental setup of the cantilever steel pipe and data acquisition equipment.

laser, a Bragg cell, a photodetector, and front-end electronics. The electronic controller contains the
power supply, RF power for the Bragg cell, and an analog demodulator, which processes the laser head
output and provides an analog velocity signal of the vibrations in real time. The electronic controller also
contains a signal strength indicator, two selectable velocity ranges, and five selectable low pass filters (1,
2, 5, 10, and 20 kHz) which may be used to improve the signal to noise ratio of certain spectral bands.

As mentioned before, in order to compare and verify the results obtained from the LDV, the dynamic
response of the pipe was monitored by PZTs bonded to the upper surface of the pipe (see Figure 2). The
sensors were of type PZT-5H available in 72.4× 72.4 mm sheets from Piezo Systems, Inc. The PZT
sensors were cut into small pieces (24× 10 mm) and then bonded to the pipe surface using Araldite 2011
two part epoxy, distributed by Huntsman Advanced Materials Americas, Inc. These sensors are polarized
through the thickness, so two electrodes were soldered to the top and bottom surfaces of each sensor.

In order to attain a good description of pipe vibration, five locations along the pipe were selected
for LDV measurement. Because of the dark surface of the pipe, which is a poor reflector for the laser
beam, a white spot was created using correction liquid at each measurement location to provide a proper
reflector. Adjacent to each spot, a PZT sensor was bonded to the surface of the pipe (see Figure 3).
Figure 3 also depicts the arrangement of the measurement locations. The locations are numbered from
1, at the clamped end, to 5, at the free end. The same numbering was used for the PZTs.

To observe the free vibration of pipe, the pipe was excited with a piezoelectric impulse hammer (model
5800B5) manufactured by Dytran Instruments, Inc. The sensitivity of the hammer is 5 mV/lb and is able
to apply a force up to 1000 lb. This hammer produces a constant force over the frequency range of
interest. The output of the hammer is an analog voltage which is the representative of the input impulse.
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Figure 3. A typical reflective (white) spot and its adjacent PZT sensor on the pipe (top)
and arrangement of measurement locations (bottom).

The impulse hammer can be equipped with either an aluminum tip or a hard plastic tip. The difference
between the two tips is that the aluminum tip can excite frequencies up to 5 kHz while the hard plastic
tip is only capable of exciting frequencies below 2 kHz. In the present study the aluminum tip was
employed.

The responses of the LDV, impulse hammer, and PZT sensors were collected through a multifunction
PCI-6220 data acquisition card manufactured by National Instruments, Inc. During all experiments the
sampling frequency was kept at 20 kHz. The collected data was stored in an ASCII file which was then
read by a MATLAB program, developed in-house, for processing. The code was constructed so that it
could remove unwanted data before impact, compensate for any offset, normalize the signals, apply a
band-pass filter, decompose the signals based on the EMD method, and finally calculate the energy of
first IMF for each sensor. In order to remove the influence of the impact hammer on the pipe vibration,
the acquired signals from sensors were normalized with respect to the hammer signal.

During the experiment, it was necessary to impact the free end of the pipe using the impulse hammer.
It was observed that a slight change in the location of impact could affect the results. This change in
location happened easily when the hammer was manually carried and guided to the impact location. To
resolve this problem, a small steel ball (of diameter 12 mm) was glued to the free end of the pipe using
Araldite 2011. This ball acted as a target for the impulse hammer thus ensuring impact at the same
location on the pipe for each test. This method resulted in reasonable consistency for different impacts.

Procedure of EMD damage detection

In order to employ the EMD damage detection methodology, the first step was to investigate the vibration
of the pipe in its healthy state by using the LDV. Afterward, damage was introduced to the pipe and the
vibration of the damaged pipe was monitored. The LDV responses from before and after the creation of
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damage were processed by EMD, the energies of the first IMF for both the healthy and damaged states
were calculated accordingly, and finally the EMD energy damage index (DI) was evaluated based on
Equation (4). Once evaluated at each measurement location, the distribution of indices identified the
location of damage on the pipe. The same procedure was employed for the PZT sensors and their results
were compared with those of the LDV.

As stated earlier, the healthy pipe was restrained at one end by two clamps (see Figures 2 and 3).
Clamp bolts were tightened to a torque of 145.0 Nm and the LDV beam was positioned to capture the
vibration of the pipe at the measurement locations (the white spots in Figures 2 and 3). The LDV was set
to a high velocity measurement setting with a low-pass filter of 5 kHz. After the pipe was impacted at
the free end with the impulse hammer, the voltages of the impulse hammer and the LDV were acquired
simultaneously by the data acquisition system. Following the collection of data for the first measurement
location, the LDV was moved to the next location after which the pipe was again impacted and the LDV
and hammer outputs were monitored. This procedure was repeated for all measurement locations to
acquire the pipe vibration at all specified locations. After measurements were taken using the LDV, the
pipe’s vibrations were also monitored using the PZT sensors.

In order to achieve consistent results, the pipe was impacted three times for each measurement and the
acquired signals were normalized based on the input force (the hammer signal). The difference between
the signals after normalization was deemed to be a good measure of the repeatability of the impact
procedure. To normalize the signals, the fast Fourier transform of each sensor response was divided
by the fast Fourier transform of the hammer signal. The result was then transferred to time domain
by the inverse fast Fourier transform. As mentioned above, the test was repeated three times for each
case to ensure consistency of the results; their average was chosen as the EMD energy used in further
calculations of the DI. Note that all these calculations were done by MATLAB code developed in-house.

The healthy pipe was then removed from the setup and damage was created by manually grinding the
outer surface of the pipe. The damage was intended to simulate typical partial corrosion in a pipeline.
Three damage cases were studied on the pipe. The first damage applied was material removal in the form
of a half circumference with dimensions of 100 mm length and 3 mm depth, located halfway between
measurement locations 3 and 4 (see Figure 4a). The second damage case extended the first damage to a
full circumference with the same dimensions. In the third case, in addition to the first damage, another
half-circumferential damage was created halfway between measurement locations 2 and 3 to represent
multiple damages in the system (see Figure 4b). This damage had the same length and depth as in the
first case. After creating the damage for each case, the pipe was placed in the setup and clamp bolts were
tightened to the same torque as was used for the intact pipe. Subsequently the pipe was impacted and
its free vibration was recorded by the data acquisition system. After collecting the response of the LDV
at all measurement locations as well as the PZTs responses for the healthy and damaged pipe states, the
developed MATLAB code was employed.

According to [Cheraghi and Taheri 2008], the acquired signal should be filtered through a band-pass
so that the data will only contain the first natural frequency of the system. It was concluded that the
suggested method works well for cases where the first frequency is the dominant vibrating frequency
of the structure; otherwise, more frequency components should be included in the data to increase the
accuracy of the proposed method. In the conducted experiment, the amplitude of the first frequency was
of the same (or even lower) order as the other components (see Figure 5). Consequently, to improve
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(a) (b) 

Figure 4. (a) Damage case 1: Half-circumferential damage between PZTs 3 and 4.
(b) Damage case 3: Multiple damages — full-circumferential damage between PZTs 3
and 4 and half-circumferential damage between PZTs 2 and 3.

accuracy, a pass-band filter was designed in the MATLAB code to filter out all frequencies except the
first six components. This filter was of the Butterworth type and passed frequencies in the range 10 Hz
to 700 Hz.

The acquired signals from both the LDV and the PZT sensors lasted up to 3 s before decaying to zero.
Considering the high sampling frequency used in the experiments, the acquired signal consisted of a
huge amount of data, requiring lengthy processing time. Fortunately, the EMD energy DI is based on the
comparison of special features in the PZT signals before and after the existence of damage; therefore,
there are no limitations on the duration of the signals so long as the same duration is used for processing
the pipe vibrations in the healthy and damaged states. Consequently, in the present work only the first
0.5 s of the signals were considered for evaluating the EMD energy.
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Figure 5. Frequency spectrum of response of the LDV at location 3 and its adjacent PZT.
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Results and discussion

Figure 5 illustrates the frequency spectrum obtained from the LDV at measurement location 3 and its
adjacent PZT sensor. This figure shows a good agreement of the natural frequency extraction results
between the LDV and the piezoceramic sensors. However, the LDV was not as successful as the PZT
sensors in capturing all the frequencies. This can be explained by noting that the LDV is located on top
of the pipe and can therefore only measure the flexural vibration modes in the vertical direction; it is
unable to monitor in-plane vibrations. Consequently, those modes are missing in the frequency spectrum
of the LDV.

Figure 6 illustrates a typical LDV response and its full decomposition via the EMD sifting process.
The decomposition consists of seven IMF and a residue. As mentioned previously, the first IMF contains
the highest frequency component within the data. Table 2 shows the energy of the first IMF of the LDV
signals for the intact pipe at the five measurement locations. Table 3 lists the EMD energy for the first
damage case. The EMD energy DI calculated from Equation (1) for the first damage case is illustrated
using a bar chart in Figure 7. Figure 7 also shows a bar chart representing the EMD damage energy
indices obtained from the piezoceramic sensors. Ignoring the DI at location 5 (PZT 5) it can be observed
in both bar charts that the indices in the vicinity of the damage (locations 3 and 4, PZTs 3 and 4) are
higher compared to those for locations 1 and 2. This clearly shows the capability of the proposed DI as
well as the efficacy of the LDV in identifying and localizing the damage.
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Figure 6. Typical PZT signal and its first five IMFs after decomposition.
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Test 1 Test 2 Test 3 Average

LDV signal at location 1 0.169797 0.165133 0.181408 0.172112
LDV signal at location 2 0.396397 0.454278 0.461394 0.437357
LDV signal at location 3 0.345839 0.343561 0.371000 0.353467
LDV signal at location 4 0.539827 0.484020 0.448339 0.490728
LDV signal at location 5 0.560725 0.511886 0.546993 0.539868

Table 2. EMD energy of the first IMF of the pipe in its healthy state.

Test 1 Test 2 Test 3 Average

LDV signal at location 1 0.155000041 0.143422832 0.139656454 0.146026
LDV signal at location 2 0.415372962 0.36785452 0.346687328 0.376638
LDV signal at location 3 0.181852193 0.186811528 0.214943954 0.194536
LDV signal at location 4 0.135520932 0.135375133 0.139095011 0.136664
LDV signal at location 5 0.957739222 0.8970118 0.971491258 0.942081

Table 3. EMD energy of the first IMF of the pipe in its damaged state (case 1: half-
circumferential damage between locations 3 and 4).

The high value of the DI at location 5 (PZT 5) in Figure 7, is due to the fact that this location is
very close to the free end at which the pipe is impacted. Impact at that location produces considerable
perturbations in the vibration in that vicinity and therefore the results from this sensor do not provide
reliable results.

In Figure 7, PZT 1 also has a relatively high DI value although there is no damage in the vicinity of
this sensor. It is believed that this error was caused by the changes in the pipe’s support conditions due
to the removal of the pipe from its original setup state to create the damage, and then its replacement
(which was unavoidable). It was practically impossible to reach the same boundary conditions as before
the pipe removal even if the same torque was applied on the clamp bolts. Fortunately, this would not be
encountered in real pipelines, since pipes are installed once and corrosion occurs gradually, and thus the
support conditions remain the same. Interestingly, the LDV had smaller values at locations 1 and 5 (as
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opposed to PZTs 1 and 5). This shows that an advantage of the LDV over PZT sensors is less sensitivity
to support conditions or impact location. A reason for this sensitivity reduction may be that the PZT
sensors’ output is related to the longitudinal pipe while the LDV measures the pipe’s vertical vibrational
velocity. Knowing this, it may be proposed that the boundary conditions and the impact location do not
affect the velocity as much as the strain in the pipe. From Figure 7, it can be observed that the damage
indices calculated from the LDV at locations 1 and 5 (where there was no damage) are lower than those
obtained by the PZTs. The DI obtained from the LDV at location 4 (which is in the vicinity of the
damage) is higher than that of PZT 4. However, the LDV predicted a lower DI at location 3 (which is
in the vicinity of the damage) compared to the one calculated from PZT 3. Thus, in general it can be
concluded that using the data obtained through LDV produced better damage identification compared to
that taken through the piezoceramics.

Figure 8 depicts the EMD damage indices predicted by the LDV and the piezoceramics for the second
damage case. The material removal for the second damage case was extended from the first case to a
full circumference in order to examine more severe damage. Ignoring the signals from location 5, it can
be seen that indices in the vicinity of the damage show higher values, which further demonstrates the
applicability of the proposed damage methodology to locate damage. Comparing Figures 7 and 8, the
following observations can be made:

• The damage indices computed from the LDV and PZTs at locations 3 and 4 for the second damage
case are greater than those in the first case. This verifies the capability of the EMD DI in identifying
the severity of damage.

• The LDV indices at locations 3 and 4 have higher values than those from the PZTs while at locations
1 and 5 the LDV indices are lower than those of the PZTs. This emphasizes the advantages of the
LDV in terms of better damage location identification and less sensitivity to the boundary conditions
and impact location.

• The damage indices obtained from the LDV show a greater difference between damage cases 1 and
2 compared to the PZT sensor results. This highlights the suitability of the LDV for damage severity
assessment.
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Figure 9. EMD damage index for the third damage case: a full circumference between
locations 3 and 4 and a half circumference between locations 2 and 3.

Based on these observations, use of the LDV provides a clearer damage identification method com-
pared with use of the piezoceramic sensors.

The effectiveness of the EMD DI in detection of multiple damages is further illustrated in Figure 9
by considering the results of the LDV and piezoceramic sensors for the third damage case. In this case,
a full-circumferential damage was created between locations 3 and 4 and a half-circumferential damage
was created between locations 2 and 3. Neglecting the DI at location 5 (PZT 5), the bars in Figure 9 show
higher indices at locations 2, 3, and 4, which are all in the vicinity of damages. This verifies the validity
of the proposed methodology in identifying multiple damages. Moreover, the LDV has been shown to
be an effective remote sensor that can be successfully utilized with an SHM methodology.

Conclusion

In the present study, the applicability of the laser Doppler vibrometer (LDV) as a vibration measurement
tool for structural health monitoring (SHM) was experimentally investigated through the application of
a novel damage index (DI). This index is referred to as the EMD energy DI and is based on the Hilbert–
Huang transform. For the experiment, a cantilever steel pipe was excited with an impulse hammer and
its free vibrational velocity was acquired by the LDV at specified measurement locations. The vibration
signals were then processed and decomposed via EMD and the energy of the first IMF for each signal
was calculated for both the healthy and damaged pipe states. Three cases were analyzed to simulate
various degrees of corrosion on the pipe surface: a single damage case (a partial circumference), a more
severe single damage case (a full circumference), and a multiple damage case. In order to verify the
LDV’s results, they were compared with the results from PZT sensors bonded to the pipe’s surface close
to the LDV measurement locations.

The experimental results verified the capability of the LDV and the EMD energy DI to successfully
detect and localize single and multiple damages in addition to qualifying damage severity. It was also
observed that signal pass-band filtering should be carefully applied to avoid filtering out meaningful
frequency components required for the proposed damage detection method. The frequency spectrum
obtained from the LDV was in good agreement with the PZT results. However, a few frequency compo-
nents were missing in the LDV results; these components corresponded to the in-plane vibration modes
which the LDV was not able to capture. Compared to piezoceramic sensors, the LDV provided higher
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damage indices at damage locations as well as a better assessment of damage severity. Furthermore, the
LDV was less sensitive to boundary conditions and impact locations.

In general, use of the LDV as a remote and accurate high resolution optical measurement system
provided satisfactory identification of single and multiple damages and can therefore be successfully
utilized in SHM.

References

[API 2000] API spec 5L: specification for line pipe, 42nd ed., American Petroleum Institute, Washington, DC, 2000. Replaced
by 44th edition.

[Banks et al. 1996] H. T. Banks, D. J. Inman, D. J. Leo, and Y. Wang, “An experimentally validated damage detection theory
in smart structures”, J. Sound Vib. 191:5 (1996), 859–880.

[Cheraghi and Taheri 2007] N. Cheraghi and F. Taheri, “A damage index for structural health monitoring based on the empirical
mode decomposition”, J. Mech. Mater. Struct. 2:1 (2007), 43–62.

[Cheraghi and Taheri 2008] N. Cheraghi and F. Taheri, “Application of the empirical mode decomposition for system identifi-
cation and structural health monitoring”, Int. J. Appl. Math. Eng. Sci. 2:1 (2008), 61–72.

[Cheraghi et al. 2005a] N. Cheraghi, M. J. Riley, and F. Taheri, “A novel approach for detection of damage in adhesively
bonded joints in plastic pipes based on vibration method using piezoelectric sensors”, pp. 3472–3478 in Proceedings of the
International Conference on Systems, Man, and Cybernetics (Waikoloa, HI, 2005), vol. 4, IEEE, Piscataway, NJ, 2005.

[Cheraghi et al. 2005b] N. Cheraghi, G. P. Zou, and F. Taheri, “Piezoelectric-based degradation assessment of a pipe using
Fourier and wavelet analyses”, Comput.-Aided Civ. Infrastruct. Eng. 20:5 (2005), 369–382.

[Douka et al. 2004] E. Douka, S. Loutridis, and A. Trochidis, “Crack identification in plates using wavelet analysis”, J. Sound
Vib. 270:1–2 (2004), 279–295.

[Fukunaga et al. 2002] H. Fukunaga, N. Hu, and F.-K. Chang, “Structural damage identification using piezoelectric sensors”,
Int. J. Solids Struct. 39:2 (2002), 393–418.

[Giurgiutiu et al. 2002] V. Giurgiutiu, A. Zagrai, and J. J. Bao, “Piezoelectric wafer embedded active sensors for aging aircraft
structural health monitoring”, Struct. Health Monit. 1:1 (2002), 41–61.

[Hassiotis 2000] S. Hassiotis, “Identification of damage using natural frequencies and Markov parameters”, Comput. Struct.
74:3 (2000), 365–373.

[Hong et al. 2002] J.-C. Hong, Y. Y. Kim, H. C. Lee, and Y. W. Lee, “Damage detection using the Lipschitz exponent estimated
by the wavelet transform: applications to vibration modes of a beam”, Int. J. Solids Struct. 39:7 (2002), 1803–1816.

[Huang et al. 1998] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu,
“The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis”, Proc. R.
Soc. Lond. A 454:1971 (1998), 903–995.

[Hwang and Kim 2004] H. Y. Hwang and C. Kim, “Damage detection in structures using a few frequency response measure-
ments”, J. Sound Vib. 270:1–2 (2004), 1–14.

[Jian et al. 1997] X. H. Jian, H. S. Tzou, C. J. Lissenden, and L. S. Penn, “Damage detection by piezoelectric patches in a free
vibration method”, J. Compos. Mater. 31:4 (1997), 345–359.

[Kaito et al. 2005] K. Kaito, M. Abe, and Y. Fujino, “Development of non-contact scanning vibration measurement system for
real-scale structures”, Struct. Infrastruct. Eng. 1:3 (2005), 189–205.

[Khan et al. 2000] A. Z. Khan, A. B. Stanbridge, and D. J. Ewins, “Detecting damage in vibrating structures with a scanning
LDV”, Opt. Lasers Eng. 32:6 (2000), 583–592.

[Kim and Chun 2004] H.-S. Kim and Y.-S. Chun, “Structural damage assessment of building structures using dynamic experi-
mental data”, Struct. Des. Tall Spec. Build. 13:1 (2004), 1–8.

[Kim and Melhem 2004] H. Kim and H. Melhem, “Damage detection of structures by wavelet analysis”, Eng. Struct. 26:3
(2004), 347–362.



304 DAVOOD REZAEI AND FARID TAHERI

[Kim et al. 2003] J.-T. Kim, Y.-S. Ryu, H.-M. Cho, and N. Stubbs, “Damage identification in beam-type structures: frequency-
based method vs. mode-shape-based method”, Eng. Struct. 25:1 (2003), 57–67.

[Lin et al. 2005] S. Lin, J. N. Yang, and L. Zhou, “Damage identification of a benchmark building for structural health moni-
toring”, Smart Mater. Struct. 14:3 (2005), 162–169.

[Liu et al. 2006] J. Liu, X. Wang, S. Yuan, and G. Li, “On Hilbert–Huang transform approach for structural health monitoring”,
J. Intell. Mater. Syst. Struct. 17:8–9 (2006), 721–728.

[Nassif et al. 2005] H. H. Nassif, M. Gindy, and J. Davis, “Comparison of laser Doppler vibrometer with contact sensors for
monitoring bridge deflection and vibration”, NDT & E Int. 38:3 (2005), 213–218.

[Ovanesova and Suarez 2004] A. V. Ovanesova and L. E. Suarez, “Applications of wavelet transforms to damage detection in
frame structures”, Eng. Struct. 26:1 (2004), 39–49.

[Peeters et al. 1996] B. Peeters, M. Abdel Wahab, G. De Roeck, J. De Visscher, W. P. De Wilde, J.-M. Ndambi, and J.
Vantomme, “Evaluation of structural damage by dynamic system identification”, pp. 1349–1361 in Proceedings of ISMA21:
1996 International Conference on Noise and Vibration Engineering (Leuven, 1996), edited by P. Sas, Katholieke Universiteit
Leuven, Leuven, 1996.

[Peeters et al. 2001] B. Peeters, J. Maeck, and G. De Roeck, “Vibration-based damage detection in civil engineering: excitation
source and temperature effects”, Smart Mater. Struct. 10:3 (2001), 518–527.

[Polytec 2009] Polytec, “Single-point vibrometers”, 2009, Available at http://www.polytec.com/usa/158_421.asp.

[Ren and De Roeck 2002] W.-X. Ren and G. De Roeck, “Structural damage identification using modal data, II: Test verifica-
tion”, J. Struct. Eng. (ASCE) 128:1 (2002), 96–104.

[Shi et al. 2000] Z. Y. Shi, S. S. Law, and L. M. Zhang, “Structural damage detection from modal strain energy change”, J. Eng.
Mech. (ASCE) 126:12 (2000), 1216–1223.

[Soh et al. 2000] C. K. Soh, K. K.-H. Tseng, S. Bhalla, and A. Gupta, “Performance of smart piezoceramic patches in health
monitoring of a RC bridge”, Smart Mater. Struct. 9:4 (2000), 533–542.

[Wang et al. 2001] X. Wang, N. Hu, H. Fukunaga, and Z. H. Yao, “Structural damage identification using static test data and
changes in frequencies”, Eng. Struct. 23:6 (2001), 610–621.

[Winston et al. 2001] H. A. Winston, F. Sun, and B. S. Annigeri, “Structural health monitoring with piezoelectric active
sensors”, J. Eng. Gas Turb. Power (ASME) 123:2 (2001), 353–358.

[Xu and Chen 2004] Y. L. Xu and J. Chen, “Structural damage detection using empirical mode decomposition: experimental
investigation”, J. Eng. Mech. (ASCE) 130:11 (2004), 1279–1288.

Received 27 Jan 2009. Revised 9 Jul 2009. Accepted 5 Aug 2009.

DAVOOD REZAEI: drezaei@dal.ca
Department of Civil and Resource Engineering, Dalhousie University, 1360 Barrington St., Halifax, NS B3J 1Z1, Canada

FARID TAHERI: farid.taheri@dal.ca
Department of Civil and Resource Engineering, Dalhousie University, 1360 Barrington St., Halifax, NS B3J 1Z1, Canada
http://myweb.dal.ca/farid/



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 5, No. 2, 2010

ENERGY ABSORPTION OF A HELICOIDAL BISTABLE STRUCTURE

SEUBPONG LEELAVANICHKUL, ANDREJ CHERKAEV,
DANIEL O. ADAMS AND FLORIAN SOLZBACHER

The concept of a bistable structure as an energy absorbing structure is presented. A bistable structure
is capable of distributing damage throughout the whole body, thus increasing the amount of energy
dissipation. Using this concept, a helicoidal bistable structure is developed. We investigate a structure in
which a helicoidal orthotropic shell envelops a solid cylinder. The center core of the structure is treated
as a linear-elastic isotropic material. Numerical simulations of damage (breakages) are performed under
static loads, and the force-displacement relation is obtained as a result. As an energy absorbing structure,
the helicoidal bistable structure can absorb more energy than a conventional structure before it fails.
The helicoidal bistable structure can be designed to sustain a small elongation while still being able
to release energy effectively. The additional twisting degrees of freedom correspond to the additional
energy released in the process of elongation.

1. Introduction

The total fracture energy is an important consideration when determining the ability of a structure to
withstand dynamic loading. In most structures, however, localized yielding occurs at a particular location
such that the total energy associated with a fracture in the structure is relatively small.

Bistable structures allow an increase in the total fracture energy. In a bistable structure there are
redundant localized load paths, so that when one load path yields and subsequently fails, the remaining
load paths can carry the load, preserving structural integrity. A bistable structure can be developed by
forming a chain of bistable structural elements such that multiple regions of the structure may exhibit
yielding behavior prior to ultimate structural failure. In other words, yielding is delocalized, occurring
in a larger fraction of the structure.

The analytical solution to the dynamic loading of a chain of bistable structural elements was first
proposed by Slepyan and Troyankina [1984; 1988]. This dynamic yielding model was later extended
by Balk et al. [2001a; 2001b] to the case of reversible two-phase chains of bistable structural elements.
The dynamic response of elastic-brittle bistable structures was also studied by Cherkaev et al. [2005;
2005]. The response of chains of bistable structural elements under quasistatic and dynamic loading was
investigated by Cherkaev and Zhornitskaya [2003]. The numerical results obtained showed that a chain
of bistable links can withstand impact energy levels that are several times larger than for a conventional
chain without bistable behavior.

A special structural design using a “waiting element” [Cherkaev and Slepyan 1995] has been used to
increase stability. Waiting elements are parts of the structure that are initially not active and which remain
nonactive until the strain becomes sufficiently large. Each link in the chain transitions from the lower

Keywords: bistable structure, helicoidal composites, energy absorption, damage.
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strain state to the higher strain state, which produces a transition wave that propagates along the chain.
Unlike conventional structures, in which the strain is concentrated near the impact zone, a structure with
waiting elements distributes the strain over a larger area. Cherkaev et al. [2006] showed that by using
an elastic-plastic material in the redundant load path, or waiting element, the cross sectional area of this
portion could be made significantly smaller than the main load path, or main element, because an elastic-
plastic material can sustain larger deformations beyond the material yield strength. An elastic-brittle
material, on the other hand, fails once the yield strength is reached. This concept was also explored
experimentally by Whitman and La Saponara [2007a; 2007b].

The bistable structure presented in our previous work [Cherkaev et al. 2006] (see Figure 1) requires
that the waiting element (waiting link) be sufficiently long to remain inactive upon initial loading. How-
ever, more space is needed as the waiting element becomes longer and more curved. In this paper, we
investigate another configuration, a helicoid, which remedies the spacing issue faced in our previous
work. A bistable response under extension can be achieved similar to that of the matrix fracturing in the
composite described by Slepyan et al. [2000].

Note on terminology. In this work, we will use the term strip (rather than the earlier “link” or “element”)
to mean each of the two components of a bistable link: the main strip and the waiting strip. A bistable
structure is a chain of bistable links.

Consider a helicoidal bistable link consisting of a main strip and a waiting strip, as in Figure 2. The
center core, a solid cylinder, is treated as the main strip, and is made of an isotropic material. The outer
layer serves as the waiting strip, and consists of an orthotropic material having its primary direction of
orthotropy spiraling about the main strip (central core). By enveloping the inner cylinder in a helicoidal
anisotropic shell, the structure maintains symmetry about its cylindrical axis.

Under an axial tensile load, both components of the helicoidal bistable link elongate until the main
strip yields. As yielding continues, an increasing portion of the applied load is transferred to the outer
helicoidal waiting strip. This paper investigates the energy absorption concept of a bistable structure
using a simplified model where the central main strip exhibits linear elastic material behavior to failure
(brittle failure). The outer helicoidal waiting strip is assumed to remain nonactive (unloaded) until the

Main link 

Waiting link 

Figure 1. Left: A chain of bistable structures and their damage process. Gray regions
represent the undamaged main strips. The broken main strips are shown in white. Right:
A bistable structure with a symmetric waiting element.
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Figure 2. Representative model of a helicoidal bistable structure.

inner main strip fails in a brittle manner. Thus, for a chain of bistable links, each link transitions from a
lower strain state to a higher strain state as the main strip (inner cylinder) fails. The main strip produces
a transition wave that propagates along the chain. Unlike conventional structures, in which the strain is
concentrated near the impact zone, a structure with a waiting strip distributes the strain over a large area.

The outline of this paper is as follows. First, the analytical solutions to the displacements and stresses
are computed using the theory of elasticity. The process by which the main strip breaks and the wait-
ing strip becomes active to maintain the structural stability is demonstrated using finite elements. The
analytical solutions to the displacements and stresses are used to develop an equivalent one-dimensional
discrete model. Three case studies are considered: a single bistable link, a chain of bistable links with
sequential breakages of the main strip in each link, and a chain of bistable links with random breakages
of the main strip in each link.

2. Modeling of a helicoidal bistable structure

To investigate the force-displacement relationship of an individual helicoidal bistable link, a displacement
field corresponding to a given applied load is determined from a generalized theory of linear anisotropic
elasticity as described in [Lekhnitskii 1981; Leelavanichkul and Cherkaev 2009]. The main strip is made
of an isotropic material, while the waiting strip is made of an orthotropic material with its main axis of
orthotropy oriented at an angle φ, as shown in Figure 3.

2A. Linear elasticity solution. The structure shown in Figure 3 possesses cylindrical anisotropy; hence,
it is more desirable to determine the solution in cylindrical coordinates. The detailed formulation of the
solution is given in [Leelavanichkul and Cherkaev 2009]. In three-dimensional stress analysis, stresses
and strains are related via Hooke’s law in cylindrical coordinates as

σrr

σθθ
σzz

σθ z

σr z

σrθ


=



c11 c12 c13 c14 0 0
c21 c22 c23 c24 0 0
c31 c32 c33 c34 0 0
c41 c42 c43 c44 0 0
0 0 0 0 c55 c56

0 0 0 0 c65 c66





εrr

εθθ
εzz

εθ z

εr z

εrθ


. (2-1)
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Figure 3. Helicoidal structure and its coordinate system.

Replacing the strains in (2-1) using the strain-displacement relationship

εrr =
∂ur
∂r
, εθθ =

1
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∂uθ
∂θ
+

ur
r
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∂z
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1
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∂uz
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)
,
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)
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∂ur
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uθ
r

)
,

(2-2)

and substituting into the equilibrium equations

0= 1
r
∂
∂r
(rσrr )+

1
r
∂
∂θ
σrθ +

∂
∂z
σr z −

σθθ
r
,

0=
1
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∂
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(r2σθr )+

1
r
∂
∂θ
σθθ +

∂
∂z
σθ z,

0= 1
r
∂
∂r
(rσzr )+

1
r
∂
∂θ
σzθ +

∂
∂z
σzz,

(2-3)

we obtain the solution to the main strip as

u = C1r, v =2r z, w = Cz, (2-4)

and the solution to the waiting strip as

U(r, θ)=C1r k
+C−k

2 −c11m1r2
−4c11m2r+m1c22r2

+m2c22r, V(r, θ)=2r z, W(r, θ)=zC, (2-5)

where

k =
√

c22
c11
, m1 =

22
(
c14−

1
2 c24

)
(c22− c11)(c22− 4c11)

, m2 =
C(c13− c23)

(c22− c11)(c22− 4c11)
.
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The unknown constants C , 2, C1, and C2 can be found using the boundary conditions

σr
∣∣
r1
= σr

∣∣
r2
, τθ z

∣∣
r1
= τθ z

∣∣
r2
, τr z

∣∣
r1
= τr z

∣∣
r2
, τrθ

∣∣
r1
= τrθ

∣∣
r2
,

u(r, θ)
∣∣
r1
= u(r, θ)

∣∣
r2
, v(r, θ)

∣∣
r1
= v(r, θ)

∣∣
r2
, w(r, θ)

∣∣
r1
= w(r, θ)

∣∣
r2
,

(2-6)

and the end conditions ∫ r2

0

∫ 2π

0
σzzisordr +

∫ r2

r1

∫ 2π

0
σzzanisordr = P, (2-7)∫ r2

0

∫ 2π

0
σθ zisor

2dr +
∫ r2

r1

∫ 2π

0
σθ zanisor

2dr = 0, (2-8)

where r1 is the radius of the main strip and r2 is the outer radius of the waiting strip. Once all the
unknown constants are determined, Equations (2-4) and (2-5) can be substituted into (2-2) to obtain the
strains, after which the stresses can be computed using (2-1).

2B. Simulation of breakages using the finite element method. While analytical solutions to the dis-
placements and stresses of the undamaged link are obtained from the theory of anisotropic elasticity,
we investigate the breakages of the main strip using the finite element method. Our analytical solution
gives stresses based on the assumption that the strains do not vary along the structure’s generator. Hence,
the solution obtained cannot describe how stresses are distributed along the longitudinal direction of the
structure when the length of the structure is finite or when there is a boundary effect from a discontinuity.
A single breakage in a bistable link is simulated to show the effect that the spiraling angle φ (see Figure 3)
has on the force-displacement relationship. Then, a simulation where multiple breakages occur is per-
formed to determine the minimum length of each link such that stress interactions due to breakages of the
main strips are minimal. Notice that for simplicity we do not consider stress interactions in neighboring
breakage points, and we assume that the failure occurs only in the main strips.

To simulate the failure of the main strip, two load steps are used. The first load step is applied to the
point where failure of the main strip occurs. The second load step begins following the localized failure
of the main strip. Each of these two load steps consists of several substeps that discretely update the
stiffness matrix.

Example 2.1: Numerical simulation of a breakage in the main strip. A three-dimensional finite element
model of the structure is used and its undamaged model is verified with an analytical solution as shown
in Figure 4. For demonstration purposes, we consider a bistable structure made from materials with the
following properties:

• The main strip’s isotropic material has a shear modulus of 25.51 GPa and a Poisson’s ratio of 0.35.

• The waiting strip is modeled using an anisotropic material having a helicoidal fiber orientation and
the following material properties:

Parameter E11 = E22 E33 G23 = G13 G12 ν23 = ν13 ν12

Value 7.591 GPa 139.348 GPa 3.789 GPa 2.782 GPa 0.0178 0.364
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Figure 4. Verification of the finite element model.

• The radius of the inner cylinder is 6.35 mm and the thickness of the outer shell is 1.59 mm. Only
axial tensile loading is considered.

The force versus displacement response for a range of fiber angles in the helicoidal waiting strip
is shown in Figure 5. The effect of the main strip breakage (produced at an applied displacement of
0.127 mm) increases as the fiber angle increases. As the fiber angle increases, the axial stiffness of the
waiting strip decreases as evidenced by the decreasing slope in Figure 5. This behavior is desirable in
order to achieve the desired bistable response.

Figure 5. Force-displacement of the bistable model with a single damage. The force is
normalized by the maximum force when the displacement is 0.254 mm.
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Ideally, the waiting strip should have no effect on the structural response until the main strip fails. At
lower fiber angles, the waiting strip becomes stiffer and requires a higher applied load to achieve the same
axial displacement. The dips in the curves shown in Figure 5 represent the amount of energy dissipated
as a result of the main strip breakage. Hence, less energy is dissipated when the spiraling angle is small.

Example 2.2: Stress distribution around the broken area of the main strip. The stress field near the
broken area in the main strip is investigated in this example to determine the stress distribution when
three-dimensional effects are considered. When more than one damage point is expected, the distance
between each damage point must be determined such that the stresses in the neighborhoods of these
points do not interact with each other. The objective of this part is to determine the most basic condition
which simplifies the analysis of the breakage; namely, to avoid any complication of the stress riser due
to the finite region. We investigate the distribution of the stresses near the broken area in the main strip.
Using the model discussed in the previous section, the von Mises stresses of each variation of the angle
of orthotropy and applied loads are computed for the main strip material and shown in Figure 6.

The stresses shown in these figures are normalized to their corresponding maximum stress values.
Roughly, three groups of stress results can be seen in these figures. They represent when the fiber angles
are 10◦, 30◦, and ≥ 50◦. Each line within each group represents the result for a different magnitude of
the applied load. These figures illustrate that the interval of the high stress concentration x0 does not
depend on the magnitude of the applied load nor the spiraling angle. For the structural configuration in
Example 2.1, x0 is approximately 12.7 mm.

When there are multiple locations of the damage, as shown in Figures 7 and 8, the interactions of
the concentrated stresses are still minimal as long as the broken locations take place 25.4 mm from each
other. Here, breakages are introduced to seven locations simultaneously, 50.8 mm apart from each other.
One can see that the distribution of stresses around the breakages has the same characteristics, and they
do not interact with one another.

Next, the effect due to the change of the radius ri of the main strip is investigated, with the total
cross-sectional area of the structure held constant.

Figure 6. Normalized von Mises stress around the breakage.
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Figure 7. Stress distribution when the breakage locations are 50.8 mm apart (60◦).

Figure 8. Contour plot of normalized von Mises stress in the main link when the break-
age locations are 50.8 mm apart. Darker (blue) areas correspond to values near 0 and
lighter areas to values near 0.3.

Example 2.3: Effect of changes in the radii of the main strip and waiting strip. The normalized von
Mises stress in the center core is shown in Figure 9, top. The legends there represent the ratio between
the radii of the waiting strip and the main strip, ro/ri . The pattern of stress distributions cannot be
obtained from these plots due to the fluctuation of the stresses. The fluctuation of the von Mises stress
becomes more visible at lower ro/ri ratios. These oscillations are the result of the approximation of the
element stress. However, the differences in the magnitudes between peaks are reduced, but remain, as the
number of elements is increased while the results converge. Each period of the oscillation corresponds
to the length of the element, which 5.08 mm.

To further investigate the distribution of the stresses, two more scenarios are investigated. The first
occurs when the main strip’s radius remains fixed 6.35 mm and the radius of the waiting strip is varied.
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Figure 9. Stress distribution around the breakage in the main link. Top: ri is varied
while ro remains at 7.94 mm. Middle: ro is varied while ri remains at 6.35 mm. Bottom:
ri and ro are varied while the thickness of the waiting link is held at 1.59 mm.

The second case occurs when the thickness of the waiting strip is fixed at 1.59 mm and the radius of the
main strip is varied. Results for these two cases are shown in the last two parts of Figure 9.

These results show that the stress distribution depends greatly on the ratio of the inner and outer radii
of the spiraling layer, ro/ri . For the specific model having the properties as given in Example 2.1, the
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Figure 10. One-dimensional structural model.

range of x0 values from three-dimensional analysis is 25.4 mm. This value, however, may change as the
geometry of the structure varies. To maintain our focus on the bistable structure and its energy absorption
capabilities, we did not analyze further the three-dimensional stress effect.

3. One-dimensional models

Since the deformations of the structure considered in this paper are symmetric about a cylindrical axis,
this structure can be represented by a one-dimensional model. It is convenient to replace the three-
dimensional cylinder with a link. The helicoidal symmetry results in a coupling between a rotation about
the axis and the elongation as shown in Figure 10.

3A. One-dimensional structural model. A one-dimensional structural element is developed based on
the formulation given in [Leelavanichkul and Cherkaev 2009], where an elongation is coupled to a
rotation. Linkages are useful in describing the physics of a larger structure assembled from multiple links
where the displacement and reactions at their ends are of major interest. We obtain the stiffness matrix k
relating the force P and moment M at the element ends to the elongation and the rotation about the θ -axis:

f = ku or
{

P
M

}
=

[
k1 k2

k4 k3

]{
u
θ

}
. (3-1)

The quantities of interest are the stiffness constants k1, k2, k3, and k4. Without losing generality, one can
assume that k4 = k2. Using the displacements, which are given by (2-4) and (2-5), at two measures of
the loads P and M , the stiffness k constants can be determined [Leelavanichkul and Cherkaev 2009].

Example 3.1: Illustration of the varying stiffnesses as function of angle φ. The stiffness values of the
equivalent one-dimensional model of the structure given in Example 2.1 are illustrated in Figure 11.
These plots demonstrate how the stiffness values vary with the spiral angle. The values of the stiffness
also vary linearly with the load P and the length L of the three-dimensional model. Despite having only
an axial load applied, the stiffness constants k2 and k3 generate rotation as the structure is stretched. We
realize that the effect of the coupling increases the energy release capability while the elongation remains
the same. The additional twisting degrees of freedom correspond to additional energy released in the
process of elongation.

3B. Finite element model: formulation of the stiffness matrix. A single element, as shown in Figure 12,
used in the finite element model can be constructed based on the one-dimensional structural model given
in the previous section including both elongation and rotational degrees of freedom. When the structure
is subjected to an axial load, the force-displacement relation is governed by

F = K (u)u,
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Figure 11. Stiffnesses of the one-dimensional model (normalized by the maximum
value of k1).

where

K (u)=
{

K1 if σe ≤ σY ,

K2 otherwise,
and σe and σY represent the stress in the element and the main strip yield stress, respectively. The stiffness
matrix K1 is the total stiffness of the bistable structure and the stiffness matrix K2 is the stiffness of the
waiting strip only. The axial deformation is coupled with the rotation about the generator; see Figure 12.

Thus, the deformations are represented by

δ = d̂2x − d̂1x , γ = φ̂2x − φ̂1x , (3-2)

where δ and γ are the elongation and rotation, respectively. The local axial displacement is represented
by d̂ while the nodal rotation is represented by φ̂. The force-displacement relationship is expressed as

P = k1δ+ k2γ, M = k2δ+ k3γ, (3-3)

where P and M are the axial and torsional loads, respectively. The quantities k1, k2, and k3 are the
stiffness constants. Substituting (3-2) into (3-3), we have

P = k1(d̂2x − d̂1x)+ k2(φ̂2x − φ̂1x), M = k2(d̂2x − d̂1x)+ k3(φ̂2x − φ̂1x). (3-4)

Figure 12. One-dimensional structural element.
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By the sign convention for the nodal forces and equilibrium,

f̂1x =−P, f̂2x = P, m̂1x = M, m̂2x =−M. (3-5)

Substituting (3-4) into (3-5), the following system is constructed:
f̂1x

m̂1x

f̂2x

m̂2x

=


k1 k2 −k1 −k2

k2 k3 −k2 −k3

−k1 −k2 k1 k2

−k2 −k3 k2 k3




d̂1x

φ̂1x

d̂2x

φ̂2x

 . (3-6)

Hence, the element stiffness matrix is defined as

K̂ =


k1 k2 −k1 −k2

k2 k3 −k2 −k3

−k1 −k2 k1 k2

−k2 −k3 k2 k3

 , (3-7)

where k1, k2, and k3 are the values calculated from the one-dimensional structural model as discussed in
Section 3.

Two breakage scenarios are investigated: a sequential breakage and a random breakage. Both scenarios
are demonstrated in this paper using numerical examples based on the formulation discussed above.
Considering the structure given in Example 2.1, breakages of the main strip are assumed to occur at
50.8 mm intervals for this particular example to avoid interaction of concentrated stresses [Leelavanichkul
2007].

Example 3.2: Sequential breakages. For the case of sequential breakage of the main strip (central core),
each new breakage occurs adjacent to the previous one. The location of the new core breakage is assumed
to be 50.8 mm from the preceding core breakage as shown in Figure 13 (2x0 = 50.8). The objective of
this analysis is to determine the total energy absorption during the sequence of core breakages.

The material of the main strip is assumed to return to its unloaded state after a breakage occurs. The
stiffness K (u) of the damaged link is updated with the new values K2 obtained from the computation
of the one-dimensional structural model. We treat the main strip as an elastic-brittle material, therefore,
the von Mises failure criterion is chosen to determine when the failure of the main strip occurred. Axial

Figure 13. Representative model of sequential breakages.
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Figure 14. Force-displacement diagram for three sequential core breakages of a 254 mm
axially loaded chain consisting of twenty links.

and shear stresses are determined separately using the nodal displacements,

σx = Eεx = E du
dx
=

E
L
(d̂2x − d̂2x), τxy = Gγxy =

Gr
L
(φ̂2x − φ̂2x). (3-8)

The applied load is increased until the material yield strength is met:

σe =

√
σ 2

1 − σ1σ2+ σ
2
2 ≤ σY , (3-9)

where σe is the element von Mises stress and σY is the material yield stress. The principal stresses σ1

and σ2 are expressed as
σ1,2 =

σx
2
±

√(
σx
2

)2
+ τ 2

xy . (3-10)

The force versus displacement response for the sequential breakage of a chain composed of four helicoidal
bistable structures, each with a waiting strip having a fiber angle of 60◦, is illustrated in Figure 14. Three
main strip breakages take place in the chain (represented by vertical lines in the figure). Each time
a breakage occurs, the overall stiffness of the structure is reduced and an increase in displacement is
required for the next breakage to occur. The total strain energy of 31 J is required to produce three
breakages for the chosen materials and specimen geometry.

Due to the anisotropy of the waiting strips, the conventional maximum strength criterion for isotropic
materials gives a poor prediction of the failure. We use the Tsai–Hill failure criterion to determine
whether the outer helicoidal layer fails:(

σ1
σ1u

)2
+

(
σ2
σ2u

)2
−
σ1σ2

σ 2
1u

+

(
τ12
τ12u

)2
< 1. (3-11)

When the left side is reaches or exceeds 1, failure is predicted. For an angle of 60◦, the predicted values
are approximately 0.2 and 0.45 at the outer and inner surfaces, respectively, of the helicoidal layer.
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Figure 15. Representative model of random breakages.

The Tsai–Hill failure criterion does not distinguish between tensile and compressive failures, but is
sufficient for our goal. The waiting strip becomes active only after the main strip fails. The nature of the
main strip failure is not considered here. Axial and shear stresses computed in the element are used in
the Tsai–Hill failure criterion.

Example 3.3: Random breakages. The breakages of the main strip may not necessarily occur sequen-
tially. For nonsequential breakages, the same requirement for the spacing (50.8 mm) between the main
strip breakages as in the sequential analysis is imposed. As shown in Figure 15, the spacing x0 can
become as large as 101.6 mm for the same structure used in the previous section.

Consider a vector A containing elements 1 to n, [e1, e2, e3, . . . , en], as shown in Figure 16. The
random breakages are assumed to be uniformly distributed over the interval [1, n]. Each time an element
is selected, the load is incrementally applied and the von Mises stress is computed. Once the yield
strength of the selected element is reached, that element is presumed to have failed. The elements within
the range 25.4 mm to the left and to the right of the broken element are then removed from the vector A.
The next randomly selected element is taken from the new updated A. The process is repeated until no
elements are left in the updated vector A.

Using the stiffness matrix formulated in Section 3, the resulting force versus displacement response
is presented in Figure 17 for the case when three breakages occur before the chain of consisting of
four bistable structures completely fails. The main strip (inner core) breakages occur at the following
positions from the fixed end: 145 mm, 66 mm, and finally 201 mm. Despite the random sequence of main
strip breakages, the same force-displacement diagram is produced as for the case of sequential breakages.

Figure 16. Elements as components of vector A.
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Figure 17. Force-displacement diagram for random breakages: three breakages (left)
and two breakages (right).

The total strain energy required to produce three random breakages, 31.0 J, is also the same as for the
case of sequential breakages.

The results presented in Figures 14 and 17 show that the order in which the core breakages occur does
not affect the force versus displacement response of the structure. Thus, the amount of energy absorbed
depends only on the number of the breakages — since the same amount of strain energy per unit volume
is required to break the helicoidal main strip.

A comparison of the energy absorbed by the structure in this investigation to a conventional structure
of the same size and geometry made of only isotropic material is presented here:

Conventional structure 7.74 J
Bistable structure (sequential) 31.0 J
Bistable structure (random) 24.0–31.0 J

Figure 18. Comparison of force-displacement relation between one- and three-
dimensional models. The results show good agreement for small deformations.
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A comparison of the force-displacement relation between the two models is shown in Figure 18.
This comparison illustrates that the simplified one-dimensional model gives an approximation of the
force-displacement relation close to that of the three-dimensional model only when the deformation
is sufficiently small. The advantage of the one-dimensional finite element model is the relatively low
number of elements required in comparison to the three-dimensional model. Hence, the computational
time is reduced significantly, which is extremely beneficial to the design, optimization, and concept
development process.

4. Conclusion

A helicoidal bistable structure is proposed and its energy absorption behavior studied. In comparison
with the earlier bistable structure studied in [Cherkaev et al. 2006], the helicoidal bistable structure allows
for a longer waiting inactive time relative to the additional spacing required, It can also be designed to
sustain a smaller elongation for the same energy release. The additional twisting degrees of freedom
correspond to the additional energy released in the process of elongation.

A one-dimensional model is formulated for numerical simulations of a linear chain of helicoidal
bistable links. The location where the breakages occur does not affect the amount of the energy absorbed.
Comparison of the force-displacement relations shows that the one-dimensional model gives a good
approximation of the three-dimensional model when the deformation is sufficiently small. The helicoidal
bistable structure can absorb more energy, in comparison to the conventional structure, by distributing
the damage along its length.
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DECAY PROPERTIES OF SOLUTIONS OF A MINDLIN-TYPE PLATE MODEL
FOR RHOMBIC SYSTEMS

FRANCESCA PASSARELLA, VINCENZO TIBULLO AND VITTORIO ZAMPOLI

In the present paper, we investigate the spatial behavior of transient and steady-state solutions for the
problem of bending applied to a linear Mindlin-type plate model; the plate is supposed to be made of
a material characterized by rhombic isotropy, with the elasticity tensor satisfying the strong ellipticity
condition. First, using an appropriate family of measures, we show that the transient solution vanishes
at distances greater than cT from the support of the given data on the time interval [0, T ], where c is a
characteristic material constant. For distances from the support less than cT , we obtain a spatial decay
estimate of Saint-Venant type. Then, for a plate whose middle section is modelled as a (bounded or
semiinfinite) strip, a family of measures is used to obtain an estimate describing the spatial behavior of
the amplitude of harmonic vibrations, provided that the frequency is lower than a critical value.

A list of symbols can be found on page 337.

1. Introduction

Mechanical structures involving elastic plates are useful in a wide range of technical applications and have
been the subject of many studies, such as [Green and Naghdi 1967; Naghdi 1971; Lagnese and Lions
1988]. Initially, authors considered the plate model based on Kirchhoff’s elastic strain-displacement
relations, completely neglecting the effects of transverse shear forces [Nowinski 1978; Lagnese and
Lions 1988]. Then, increasingly refined models were introduced, taking into account not only the
deflection of the middle section, but also transverse shear deformations. The theory of elastic plates
based on the Mindlin model has been developed by Constanda [1990] for the elastostatic bending of a
thin slab, including the effects of transverse shear deformation. Furthermore, a dynamic model for small
deformations of a thin thermoelastic plate was developed by Schiavone and Tait [1993].

The Reissner–Mindlin and Kirchhoff–Love models are the two most common models of a thin linear
elastic plate. It is often remarked in the engineering literature that the Reissner–Mindlin model is more
accurate, particularly for thin plates and when transverse shear strain plays a significant role [Hughes
1987]; in fact, both Mindlin [1951] and Reissner [1945; 1947] independently proposed theories which
also include the effects of transverse shear deformation. Arnold et al. [2002] showed that the Reissner–
Mindlin plate bending model has a wider range of applicability than the Kirchhoff–Love model. Under
the assumption of constant body force density in the transverse direction, they proved that the Reissner–
Mindlin model solution converges to the three-dimensional linearly elastic solution in the relative energy
norm for the full range of surface loads. Fabrizio and Chirit,ă [2004] studied the deformations of a linear
viscoelastic plate, including transverse shear deformations.

Keywords: plates, rhombic systems, strong ellipticity, transient and steady-state solutions.
The work in this paper was performed under the auspices of the GNFM of the Italian INdAM..
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The state of bending for a transversely isotropic plate of Mindlin-type has been analyzed by Passarella
and Zampoli [2009a; 2009b]. The first of these papers contains a uniqueness result and a Galerkin repre-
sentation of the solution, without positive definiteness assumptions on the elasticity tensor. Furthermore,
under the hypotheses of positive definiteness of the elasticity tensor, the authors prove a Gurtin type
variational theorem and a minimum principle. In [Passarella and Zampoli 2009b], previous hypotheses
are relaxed and, assuming strong ellipticity of the elasticity tensor, results about the spatial behavior of
transient and steady-state solutions are established.

With regard to the spatial behavior of solutions, Saint-Venant’s principle plays a central role in the
theory and applications of elasticity. A comprehensive review of research on the spatial behavior of
solutions is given by [Toupin 1965; Knowles 1966; Flavin 1974; Horgan and Knowles 1983; Gregory
and Wan 1985; Horgan 1989; 1996; Mielke 1988].

For genuine dynamic problems of elasticity, useful information on the spatial behavior of solutions can
be furnished by the well-known domain of influence theorem as presented by Gurtin [1972] and ascribed
to Wheeler and Sternberg [1968]. According to Gurtin the domain of influence of the given external
data at time T consists of the set DT of all points in the body that can be reached by signals propagating
from the support D̂T , on the time interval [0, T ], with speeds equal to or less than the maximum speed
of propagation c. Then the domain of influence theorem shows that on [0, T ] the externally given data
have no effect on points outside of DT .

In the present paper we study a bending state of a rhombic system modelled as a (either bounded
or unbounded) Mindlin-type plate, under a strong ellipticity condition on the elasticity tensor. In this
context, we use the properties of rhombic systems widely investigated by Gurtin [1972] and Chirit,ă
et al. [2007]. Such systems, together with transversely isotropic materials, show a good applicability to
mathematical models of plates that take into account transverse shear deformations (see [Paroni et al.
2006] for details). In particular, in the context of the linear theory, we investigate the spatial behavior of
transient and steady-state solutions. This investigation is concerned with some properties of the solutions
of the evolution equations ruling the displacement and rotation fields, supposing the plate to be initially
at rest. Moreover, time-dependent displacements and rotation fields are imposed on its boundary. These
fields on the boundary induce disturbances that propagate in the interior of the plate.

Outline of paper. In Section 2, we derive the evolution equations for the two-dimensional theory and
state assumptions concerning the strong ellipticity of the elasticity tensor.

In Section 3, considering the spatial support of data contained in a bounded domain D∗T , we define a
set of appropriate line-integral measures Iκ and establish some estimates in order to obtain the domain of
influence and the spatial decay of transient solutions away from D∗T . Using these estimates and following
the time-weighted power function method [Chirit,ă and Ciarletta 1999; 2003; Ciarletta et al. 2005], we
determine the speed of propagation of mechanical disturbances from D∗T , as well as the spatial decay of
solutions.

In Section 4, we treat a more specific mechanical problem, concerning the steady-state vibrations
of a (either bounded or semiinfinite) strip. Starting from an idea of Ciarletta et al. [2005] and Chirit,ă
[1995], we introduce a set of appropriate line-integral measures Jκ associated with the amplitude of time-
harmonic vibrations. We obtain a differential inequality describing the behavior of steady-state solutions
under the hypothesis that the frequency of harmonic vibrations is lower than a certain critical value.
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2. Formulation of the problem

In this paper, we study the behavior of a homogeneous body filled by a material that occupies at time
t = 0 a right cylinder B̄ of height 2h with (bounded or unbounded) cross-section 6̄ and smooth lateral
boundary 5. We call B and 6 the interiors of B̄ and 6̄; we choose the rectangular Cartesian coordinate
frame in such a way that Ox1x2 is the middle plane of the cylinder and thus its faces are located at
x3=±h. We also suppose that6 is a simply connected region, ∂6 is the boundary of6, and h� diam6.
Latin subscripts (unless otherwise specified) range over the integers {1, 2, 3}, whereas Greek subscripts
are confined to the range {1, 2}; summation over repeated subscripts is implied. Superposed dots, or
subscripts preceded by a comma, mean a partial derivative with respect to time or to the corresponding
Cartesian variables. When needed, vector fields are represented by bold-type letters. We will disregard
regularity questions, simply assuming a degree of smoothness sufficient to ensure analysis is valid.

For each point (x1, x2, x3) ∈ B̄ and t ∈ [0,∞), a bending state for such an elastic cylinder is charac-
terized by

uα(x1, x2, x3, t)=−uα(x1, x2,−x3, t) and u3(x1, x2, x3, t)= u3(x1, x2,−x3, t),

where ui are the components of the displacement vector that vary smoothly with respect to x3. Never-
theless, as with the study carried out in [Passarella and Zampoli 2009a; 2009b], we restrict our attention
to the bending state characterized by

uα(x1, x2, x3, t)= x3vα(x1, x2, t) and u3(x1, x2, x3, t)= w(x1, x2, t),

and we assume that the components fi of the body force vector obey the relations

fα(x1, x2, x3, t)=− fα(x1, x2,−x3, t), f3(x1, x2, x3, t)= f3(x1, x2,−x3, t).

The behavior of thin plates of uniform thickness is described by the equations of motion

1
3 h2 Mβα,β − τα3+ Hα = 1

3 h2%v̈α, τβ3,β + F = %ẅ, on 6× (0,∞) (2-1)

and the constitutive equations

Mi j (x1, x2, t)=
3

2h3

∫ h

−h
x3Ci jkluk,l(x1, x2, x3, t)dx3,

τi j (x1, x2, t)= 1
2h

∫ h

−h
Ci jkluk,l(x1, x2, x3, t)dx3,

(2-2)

where % is the reference mass density, Ci jkl are the components of the elasticity tensor obeying the usual
symmetry relations, and

F(x1, x2, t)= 1
2h

∫ h

−h
f3(x1, x2, x3, t)dx3+

1
h

C33kluk,l(x1, x2, h, t),

Hα(x1, x2, t)= 1
2h

∫ h

−h
x3 fα(x1, x2, x3, t)dx3+C3αkluk,l(x1, x2, h, t).

Suppose that
Hα = 0, F = 0, on 6̄×[0,∞). (2-3)
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In what follows, we consider a homogeneous rhombic elastic material, with the group C3 generated1 by
Rπe3

and Rπe2
characterized by (see, for example, [Gurtin 1972])

C1123 = C1131 = C1112 = C2223 = C2231 = C2212 = 0,

C3323 = C3331 = C3312 = C2331 = C2312 = C3112 = 0.
(2-4)

Using these equations and defining as usual

c11 = C1111, c22 = C2222, c33 = C3333, c44 = C2323, c55 = C1313,

c66 = C1212, c12 = C1122, c23 = C2233, c31 = C3311,

the constitutive equations (2-2) for rhombic materials become

M11 = c11v1,1+ c12v2,2, M22 = c12v1,1+ c22v2,2, M12 = M21 = c66(v1,2+ v2,1), (2-5)

τ13 = τ31 = c55(w,1+ v1), τ23 = τ32 = c44(w,2+ v2). (2-6)

Now, we restrict our attention to the class of rhombic materials having a strongly elliptic elasticity tensor,
that is,

Ci jklmi mkn j nl > 0 (2-7)

for all nonzero vectors (m1,m2,m3) and (n1, n2, n3). As it is possible to see in [Gurtin 1972], this
hypothesis on the elasticity tensor is weaker than positive definiteness. Chirit,ă et al. [2007] prove that
for rhombic systems the strong ellipticity condition (2-7) is equivalent to

c11n2
1m2

1+ c22n2
2m2

2+ c33n2
3m2

3+ c66(n1m2+ n2m1)
2
+ c44(n3m2+ n2m3)

2

+ c55(n1m3+ n3m1)
2
+ 2c12n1m1n2m2+ 2c23n2m2n3m3+ 2c31n3m3n1m1 > 0, (2-8)

and this relation implies the conditions

c11 > 0, c22 > 0, c33 > 0, c44 > 0, c55 > 0, c66 > 0,

|c12+ c66|< c66+
√

c11c22, |c13+ c55|< c55+
√

c11c33, |c23+ c44|< c44+
√

c22c33.

3. Transient solutions: decay estimate of Saint-Venant type

In this section, we establish results describing the spatial behavior of solutions of the given data on the
interval [0, T ] under the strong ellipticity condition on the elasticity tensor. To this end, we can rewrite
the system of (2-1), (2-3), (2-5), and (2-6) in terms of (vα, w) as

1
3 h2
[c11v1,11+ c66v1,22+ (c12+ c66)v2,12] − c55(w,1+ v1)=

1
3 h2%v̈1,

1
3 h2
[c66v2,11+ c22v2,22+ (c12+ c66)v1,12] − c44(w,2+ v2)=

1
3 h2%v̈2,

c55(w,11+ v1,1)+ c44(w,22+ v2,2)= %ẅ,

(3-1)

or, equivalently, as
1
3 h2 M̃βα,β − τα3 =

1
3%h2v̈α, τβ3,β = %ẅ, (3-2)

1 Rθu is the orthogonal tensor corresponding to a right-handed rotation through the angle θ about an axis of unit vector u.
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where M̃βα represents the family of tensors depending on the parameter κ through

M̃11 = c11v1,1+ (c66− κ)v2,2, M̃12 = (c12+ κ)v1,2+ c66v2,1,

M̃21 = c66v1,2+ (c12+ κ)v2,1, M̃22 = (c66− κ)v1,1+ c22v2,2,
(3-3)

and τβ3 is defined by Equation (2-6). The family of tensors M̃βα has a nonvanishing skew-symmetric
part, depending on the skew-symmetric part of vα,β .

Let P be the problem defined by (2-6), (3-2), (3-3) and the initial-boundary conditions

vα(x1, x2, 0)= 0, w(x1, x2, 0)= 0 on 6,

v̇α(x1, x2, 0)= 0, ẇ(x1, x2, 0)= 0 on 6,

vα = v̆α, w = w̆ on L × [0,+∞),

vα = 0, w = 0 on LC×[0,+∞),

where L and LC are disjoint and complementary nonempty subsets of ∂6 and D= (v̆α, w̆) is the set of
assigned fields representing the external data of the problem in question.

We define the support D̂T of external data D on the time interval [0, T ] as the set of points

x = (x1, x2) ∈ L

for which there exists τ ∈ [0, T ] such that v̆α(x, τ ) 6= 0 or w̆(x, τ ) 6= 0. In other words, for x ∈ ∂6\D̂T ,
we have

v̆α(x, t)= 0 and w̆(x, t)= 0 for all t ∈ [0, T ]. (3-4)

For convenience, we assume that D̂T is a nonempty bounded set and that D∗T is the smallest regular
subcurve of L including D̂T . We consider the sets

Dr =
{

x ∈6 : D∗T ∩ S(x, r) 6=∅
}
, 6r =6\Dr , 6(r1, r2)=6r2\6r1,

where r > 0, r2 ≤ r1, and S(x, r) is the closed ball with radius r and center at x, that is,

S(x, r)= { y ∈ R2
: | y− x| ≤ r}.

Then, Lr = ∂6r ∩6 is the subcurve of ∂6r that lies inside the inner part of 6, and whose unit normal
vector n is directed towards the interior of 6r (or, equivalently, towards the exterior of Dr ).

We also agree that, for r = 0, D0 and L0 coincide with D∗T , and the normal vector n to L0 is directed
towards the interior of 6.

For any positive parameter λ, we introduce the function

Iκ(r, t)=−
∫ t

0

∫
Lr

e−λs[τβ3(s)ẇ(s)+ 1
3 h2 M̃βα(s)v̇α(s)

]
nβ dl ds, r ≥ 0, t ∈ [0, T ]; (3-5)

for what follows, it is useful to remark that

Iκ(r, 0)= 0 for all r ≥ 0. (3-6)
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From direct differentiation of (3-5) with respect to the variable t , we get

∂Iκ
∂t
(r, t)=−

∫
Lr

e−λt[τβ3(t)ẇ(t)+ 1
3 h2 M̃βα(t)v̇α(t)

]
nβ dl. (3-7)

On the other hand, from the definition of 6r , from (3-4), and from the divergence theorem, we have

Iκ(r1, t)−Iκ(r2, t)=−
∫ t

0

∫
6(r1,r2)

e−λs[τβ3(s)ẇ(s)+ 1
3 h2 M̃βα(s)v̇α(s)

]
,β

dσ ds.

Using (2-6) and (3-2)–(3-5), we obtain, for r2 < r1,

Iκ(r1, t)−Iκ(r2, t)

=−
1
2

∫ t

0

∫
6(r1,r2)

e−λs ∂
∂s

{
%
[
ẇ2(s)+ 1

3 h2v̇α(s)v̇α(s)
]
+c55

(
w,1(s)+v1(s)

)2
+c44

(
w,2(s)+v2(s)

)2

+
1
3 h2[c11v

2
1,1(s)+c22v

2
2,2(s)+2(c66−κ)v1,1(s)v2,2(s)

+c66
(
v2

2,1(s)+v
2
1,2(s)

)
+2(c12+κ)v2,1(s)v1,2(s)

]}
dσ ds. (3-8)

Introducing
T= 1

2%
(
ẇ2
+

1
3 h2v̇α v̇α

)
, W= 1

2

(
W0+

1
3 h2W1+

1
3 h2W2

)
, (3-9)

and

W0 = c55(w,1+ v1)
2
+ c44(w,2+ v2)

2, W1 = c11v
2
1,1+ c22v

2
2,2+ 2(c66− κ)v1,1v2,2,

W2 = c66(v
2
2,1+ v

2
1,2)+ 2(c12+ κ)v2,1v1,2,

(3-10)

it follows from (3-8) that

Iκ(r1, t)−Iκ(r2, t)=−
∫ t

0

∫
6(r1,r2)

e−λs ∂
∂s
[T(s)+W(s)]dσ ds if r2 < r1. (3-11)

Now, it is possible to show that Iκ is continuously differentiable with respect to r ; in fact, considering

lim
r1→r2

Iκ(r1, t)−Iκ(r2, t)
r1− r2

=− lim
r1→r2

1
r1−r2

∫ t

0

∫
6(r1,r2)

e−λs ∂
∂s
[T(s)+W(s)]dσ ds

=−

∫ t

0

∫
Lr

e−λs ∂
∂s
[T(s)+W(s)]dσ ds,

and integrating by parts with respect to the time variable s, we arrive at

∂Iκ

∂r
(r, t)=−

∫
Lr

e−λt
[T(t)+W(t)]dl − λ

∫ t

0

∫
Lr

e−λs
[T(s)+W(s)]dl ds. (3-12)

Let A0, A1, and A2 be the matrices associated with the quadratic forms W0, W1, and W2, respectively.
When the strong ellipticity condition (2-8) is valid and κ satisfies the relation

max
{
−c66− c12, c66−

√
c11c22

}
< κ <min

{
c66− c12, c66+

√
c11c22

}
, (3-13)

the eigenvalues of A0, A1, and A2, which are

c55, c44,
1
2

[
c11+ c22±

√
(c11− c22)2+ 4(c66− κ)2

]
, c66± |c12+ κ|,
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are all strictly positive. In what follows, we denote with µκ and ηκ the smallest and largest eigenvalues
of A0, A1, and A2, respectively. These are

µκ =min
{

c44, c55,
1
2

[
c11+ c22−

√
(c11− c22)2+ 4(c66− κ)2

]
, c66− |c12+ κ|

}
,

ηκ =max
{

c44, c55,
1
2

[
c11+ c22+

√
(c11− c22)2+ 4(c66− κ)2

]
, c66+ |c12+ κ|

}
.

If % > 0 and (2-8) and (3-13) hold, then T and W are positive definite; thus, we show through (3-12) that
Iκ(r, t) is a nonincreasing function with respect to r , that is,

Iκ(r1, t)≤ Iκ(r2, t) if r2 < r1. (3-14)

If the plate is bounded and `=maxx∈6̄
{
min y∈D∗T

√
(x1− y1)2+ (x2− y2)2

}
, we obtain from the defini-

tion of Lr that L` =∅ and, consequently,

Iκ(`, t)= 0, t ∈ [0, T ]; (3-15)

moreover, (3-11), (3-14), and (3-15) imply that

0≤ Iκ(r, t)=
∫ t

0

∫
6(`,r)

e−λs ∂

∂s
[T(s)+W(s)]dσ ds for r ≤ `. (3-16)

In this case, it is obvious that 6(`, r) = 6r . It is possible to obtain a relation similar to (3-16) for an
unbounded plate. To this end, we estimate Iκ(r, t) and ∂Iκ(r, t)/∂t in terms of ∂Iκ(r, t)/∂r .

Theorem 3.1. Let % > 0 and suppose the hypotheses (2-8) and (3-13) hold. Let (vα, w) be a solution
of the initial-boundary value problem P and D̂T the bounded support of external data D on the time
interval [0, T ], then the function Iκ satisfies the first-order differential inequalities

|Iκ(r, t)| + cκ
λ
∂Iκ
∂r

(r, t)≤ 0,
∣∣∣∂Iκ
∂t
(r, t)

∣∣∣+ cκ
∂Iκ
∂r

(r, t)≤ 0, with cκ =
√
ηκ
%
. (3-17)

Proof. Under the hypotheses (2-8) and (3-13), we can observe that

0≤ k(α)m (γ2
1+ γ

2
2)≤ F[Aα; γ , γ ] ≤ k(α)M (γ2

1+ γ
2
2), (3-18)

where k(α)m and k(α)M are the smallest and largest eigenvalues of Wα, the functional F is given by

F[Aα;ϕ, γ ] := ϕ ·Aαγ ,

with the variables ϕ = (ϕ1, ϕ2) and γ = (γ1, γ2). In particular,

k(1)m =
1
2

[
c11+ c22−

√
(c11−c22)2+ 4(c66−κ)2

]
, k(2)m = c66− |c12+ κ|,

k(1)M =
1
2

[
c11+ c22+

√
(c11−c22)2+ 4(c66−κ)2

]
, k(2)M = c66+ |c12+ κ|.

Through the Schwarz inequality and Equations (3-3) and (3-10), we get

F[Aq;ϕ, γ ] ≤
[
F[Aq;ϕ,ϕ]

]1/2[
F[Aq; γ , γ ]

]1/2 (3-19)
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and
F
[
A1; γ̂

(1), γ̂ (1)
]
=W1, F

[
A1; M̃(1), γ̂ (1)

]
= M̃2

11+ M̃2
22,

F
[
A2; γ̂

(2), γ̂ (2)
]
=W2, F

[
A2; M̃(2), γ̂ (2)

]
= M̃2

21+ M̃2
12,

(3-20)

where

γ̂ (1) = (v1,1, v2,2), M̃(1)
= (M̃11, M̃22), γ̂ (2) = (v1,2, v2,1), M̃(2)

= (M̃21, M̃12).

Now, collecting (3-10) and (3-18)–(3-20), we deduce that

M̃2
11+ M̃2

22 ≤ F1/2[A1; M̃(1), M̃(1)]W1/2
1 ≤

[
k(1)M (M̃2

11+ M̃2
22)
]1/2

W
1/2
1 ,

M̃2
21+ M̃2

12 ≤ F1/2[A2; M̃(2), M̃(2)]W1/2
2 ≤

[
k(2)M (M̃2

21+ M̃2
12)
]1/2

W
1/2
2 .

(3-21)

On the other hand, from (2-6) and (3-10) it follows that

0≤ k(0)m W0 ≤ τβ3τβ3 ≤ k(0)M W0, (3-22)

where k(0)m =min{c44, c55} and k(0)M =max{c44, c55}. Equations (3-9), (3-21), and (3-22) allow us to show
easily that

τβ3τβ3+
1
3 h2 M̃βα M̃βα ≤ k(0)M W0+

1
3 h2k(1)M W1+

1
3 h2k(2)M W2 ≤ 2ηκW. (3-23)

Next, the Cauchy–Schwarz and arithmetic-geometric mean inequalities lead to∣∣∣(τβ3ẇ+
1
3 h2 M̃βα v̇α

)
nβ
∣∣∣≤ ε%2 (ẇ2

+
1
3 h2v̇α v̇α

)
+

1
2ε%

(
τβ3τβ3+

1
3 h2 M̃βα M̃βα

)
. (3-24)

Finally, we use the estimates (3-23) and (3-24) in (3-5) and (3-7) in order to obtain

|Iκ(r, t)| ≤ ε
∫ t

0

∫
Lr

e−λs
[
T(s)+

ηκ

ε2%
W(s)

]
dl ds, (3-25)∣∣∣∣∂Iκ

∂t
(r, t)

∣∣∣∣≤ ε ∫
Lr

e−λt
[
T(t)+

ηκ

ε2%
W(t)

]
dl. (3-26)

Recalling (3-12) and setting ε = cκ in (3-25) and (3-26), we derive the differential inequalities (3-17). �

Using Theorem 3.1, a result similar to (3-16) may be shown for an unbounded plate. In this case, the
variable r ranges in [0,∞). Thanks to (3-17)2 and for any pair (r0, t0) such that t0 ∈ [0, T ] and r0 ≥ cκ t0,
we can see that the functions Iκ(r, t0+ (r − r0)/cκ) and Iκ(r, t0− (r − r0)/cκ) are nonincreasing with
respect to r . This feature, together with (3-6), implies

Iκ(r0, t0)≤ Iκ(r0− cκ t0, 0)= 0, r0 ≥ r0− cκ t0,

Iκ(r0, t0)≥ Iκ(r0+ cκ t0, 0)= 0, r0+ cκ t0 ≥ r0,
H⇒ lim

r0→∞
Iκ(r0, t0)= 0. (3-27)

Taking into account (3-11), (3-14), and (3-27), it follows that

0≤ Iκ(r, t)= lim
r0→∞

∫ t

0

∫
6(r0,r)

e−λs ∂
∂s
[T(s)+W(s)]dσ ds, (3-28)

and it is obvious that limr0→∞6(r0, r)=6r .
With the help of (3-16) and (3-28), and integrating by parts with respect to s, it is possible to prove,

for bounded or unbounded plates, the following theorem.
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Theorem 3.2. Let the hypotheses of Theorem 3.1 be still valid. The function Iκ(r, t) is nonnegative and

0≤ Iκ(r, t)=
∫
6r

e−λt
[T(t)+W(t)]dσ + λ

∫ t

0

∫
6r

e−λs
[T(s)+W(s)]dσ ds. (3-29)

Now, since Iκ(r, t) is a nonnegative function, we can write from (3-17)1

∂
∂r

[
exp

(
λ
cκ

r
)

Iκ(r, t)
]
≤ 0 H⇒ Iκ(r, t)≤ exp

(
−
λ
cκ

r
)

Iκ(0, t).

On the other hand, (3-17)2 implies that the function Iκ(cκ t, t) is nonincreasing with respect to t . This
characteristic, together with (3-6), implies

Iκ(cκ t, t)≤ Iκ(0, 0)= 0, t ≥ 0. (3-30)

We deduce from (3-14) and (3-29) that

0≤ Iκ(r, t)≤ Iκ(cκ t, t), r ≥ cκ t. (3-31)

Thus, (3-29)–(3-31) imply∫
6r

e−λt
[T(t)+W(t)]dσ + λ

∫ t

0

∫
6r

e−λs
[T(s)+W(s)]dσ ds = 0 for r ≥ cκ t. (3-32)

When T and W are positive definite, (3-32) is valid if and only if T and W are null in 6r for any r ≥ cκ t .
The results obtained up to now lead us to formulate the following theorem about the spatial decay.

Theorem 3.3. Let the hypotheses of Theorem 3.1 be still valid; for each fixed t ∈ [0, T ], we have

Iκ(r, t)≤ exp
(
−
λ
cκ

r
)

Iκ(0, t) for 0≤ r < cκ t, Iκ(r, t)= 0 for r ≥ cκ t. (3-33)

It is easy to observe that, for t ∈ [0, T ] and for each r ≥ cκ t , (3-29) and (3-33)2 lead to∫
6r

e−λt
[T(t)+W(t)]dσ + λ

∫ t

0

∫
6r

e−λs
[T(s)+W(s)]dσ ds = 0.

Consequently, when % > 0 and W is positive definite, we obtain v̇α = ẇ = 0 on 6r ×[0, T ], and through
homogeneous initial conditions, we get

vα = w = 0 on 6r ×[0, T ]. (3-34)

Following [Gurtin 1972], we depict the domain of influence of the externally given data at time T as
the set of the points of 6̄ that can be reached by signals propagating from the support D̂T on the time
interval [0, T ], with speeds equal to or less than the maximum speed of propagation

c =
√
η
%

with η = inf
κ
ηκ ,

where κ satisfies the relation (3-13). In fact, for a bounded or unbounded plate, we can show by means
of (3-34) that on [0, T ] the externally given data have no effect on points outside of DcT .

Lemma 3.4 (domain of influence). Let the hypotheses of Theorem 3.1 be still valid and let (vα, w) be a
solution of initial-boundary value problem P. Then, vα = w = 0, on 6cT ×[0, T ].
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We can easily prove the following uniqueness result, valid for a bounded or unbounded plate.

Lemma 3.5 (uniqueness). Let the hypotheses of Theorem 3.1 hold. There exists at most one solution for
the initial-boundary value problem P.

Proof. Thanks to the linearity of the problem, we have only to show that the null data imply a null
solution. Let (ṽα, w̃) be a solution corresponding to the null data. If we choose T1 > 0, since the set
D̂T = ∅ for each T ∈ (0, T1) and the function Iκ(r, t) = 0, we can conclude that: vα = w = 0, on
6̄×[0, T1]. �

4. Steady-state solutions: decay estimate of Saint-Venant type

Throughout this section, the cross-section 6 is a rectangular strip, and the problem of steady-state vi-
brations is studied assuming that (vα, w) are separable with respect to space and time variables and that
the time dependence is periodic, that is vα = Re[ζα(x1, x2)eiωt

], w = Re[ψ(x1, x2)eiωt
], where Re[ f ]

represents the real part of f , ω ∈R+ is the prescribed frequency of oscillations, and ζα and ψ are complex
functions. We choose a Cartesian frame of reference such that the middle section of the plate is defined
by 6 = [0, `1]×[0, `2] ⊂R2, where `1 and `2 are some positive constants and `1 can also tend to infinity.
Moreover, we impose prescribed harmonic vibrations on the end of the strip located at x1 = 0.

Using the equations of motion (3-1), we conclude that the amplitude (ζα, ψ) satisfies

1
3 h2
[c11ζ1,11+ c66ζ1,22+ (c12+ c66)ζ2,12] − c55(ψ,1+ ζ1)+ %

1
3 h2ω2ζ1 = 0,

1
3 h2
[c66ζ2,11+ c22ζ2,22+ (c12+ c66)ζ1,12] − c44(ψ,2+ v2)+ %

1
3 h2ω2ζ2 = 0,

c55(ψ,11+ ζ1,1)+ c44(ψ,22+ ζ2,2)+ %ω
2ψ = 0,

or, equivalently, it satisfies the system

1
3 h20βα,β −χα + %

1
3 h2ω2ζα = 0, χβ,β + %ω

2ψ = 0, (4-1)

with
011 = c11ζ1,1+ (c66− κ)ζ2,2, 012 = (c12+ κ)ζ1,2+ c66ζ2,1,

021 = c66ζ1,2+ (c12+ κ)ζ2,1, 022 = (c66− κ)ζ1,1+ c22ζ2,2,
(4-2)

and
χ1 = c55(ψ,1+ ζ1), χ2 = c44(ψ,2+ ζ2). (4-3)

In particular, using (4-1) we can easily show that

1
3 h201α,1 =−

1
3 h202α,2+χα − %

1
3 h2ω2ζα, χ1,1 =−χ2,2− %ω

2ψ. (4-4)

Let P0 be the problem defined by (4-1)–(4-3) and by the boundary conditions

ζα(x1, 0)= 0, ψ(x1, 0)= 0, ζα(x1, `2)= 0, ψ(x1, `2)= 0, x1 ∈ [0, `1],

ζα(`1, x2)= 0, ψ(`1, x2)= 0, ζα(0, x2)= ζ̆α(x2), ψ(0, x2)= ψ̆(x2), x2 ∈ [0, `2],
(4-5)

where ζ̆α and ψ̆ are prescribed continuous functions such that

ζ̆α(0)= 0, ψ̆(0)= 0, ζ̆α(`2)= 0, ψ̆(`2)= 0.
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Using a superposed bar for complex conjugation and defining the segment L x1={(x1, x2) : x2∈[0, `2]},
we introduce the function

Jκ(x1)=

∫
Lx1

2 Re
[
χ1ψ +

1
3 h201αζα

]
dx2, x1 ∈ [0, `1]. (4-6)

Differentiating Jκ , we obtain

J′κ(x1)=

∫
Lx1

2 Re
[
χ1,1ψ +χ1ψ,1+

1
3 h2(01α,1ζα +01αζα,1)

]
dx2. (4-7)

Using integration by parts, boundary conditions (4-5), and Equations (4-3), (4-4), and (4-7), we arrive at

J′κ(x1)=

∫
Lx1

2
[
Ŵ− %ω2(ψ̄ψ + 1

3 h2ζ̄αζα
)]

dx2, (4-8)

where
Ŵ= Ŵ0+

1
3 h2Ŵ1+

1
3 h2Ŵ2,

Ŵ0 = c55(ζ̄1+ ψ̄,1)(ζ1+ψ,1)+ c44(ζ̄2+ ψ̄,2)(ζ2+ψ,2),

Ŵ1 = c11ζ̄1,1ζ1,1+ c22ζ̄2,2ζ2,2+ (c66− κ)(ζ̄1,1ζ2,2+ ζ1,1ζ̄2,2),

Ŵ2 = c66(ζ2,1ζ̄2,1+ ζ1,2ζ̄1,2)+ (c12+ κ)(ζ̄2,1ζ1,2+ ζ2,1ζ̄1,2).

Again, as in the previous section, the matrices associated with Ŵ0, Ŵ1, and Ŵ2 are A0, A1, and A2,
respectively. When the relations (2-8) and (3-13) are satisfied, we have

Ŵ≥ µκ
[
(ζ̄α + ψ̄,α)(ζα +ψ,α)+

1
3 h2ζ̄α,βζα,β

]
> 0. (4-9)

Taking into account the well-known membrane problem, we can write

π2

`2
2

∫
Lx1

ζ̄αζα dx2 ≤

∫
Lx1

ζ̄α,2ζα,2 dx2,
π2

`2
2

∫
Lx1

ψ̄ψ dx2 ≤

∫
Lx1

ψ̄,2ψ,2 dx2, (4-10)

and considering (4-8) and (4-9) we arrive at

J′κ(x1)≥

∫
Lx1

2µκ
[
(ζ̄α + ψ̄,α)(ζα +ψ,α)+

1
3 h2ζ̄α,βζα,β −

%ω2`2
2

µκπ2

(
ψ̄,2ψ,2+

1
3 h2ζ̄α,2ζα,2

)]
dx2. (4-11)

Using relations (4-10), we can observe that

6`2
2

π2h2

∫
Lx1

[
(ζ̄2+ ψ̄,2)(ζ2+ψ,2)+

1
6 h2ζ̄2,2ζ2,2

]
dx2 ≥

`2
2

π2

∫
Lx1

ζ2,2ζ̄2,2 dx2 ≥

∫
Lx1

ζ2ζ̄2 dx2. (4-12)

On the other side, Schwarz and arithmetic-geometric mean inequalities imply

(ζ̄2+ ψ̄,2)(ζ2+ψ,2)≥ (1− ε)ζ2ζ̄2+

(
1− 1

ε

)
ψ,2ψ̄,2 for every ε > 0,
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and in particular, for ε = 2, (ζ̄2+ ψ̄,2)(ζ2+ψ,2)≥−ζ2ζ̄2+
1
2ψ,2ψ̄,2; thus,∫

Lx1

[
(ζ̄2+ ψ̄,2)(ζ2+ψ,2)+

1
6 h2ζ̄2,2ζ2,2

]
dx2 ≥

∫
Lx1

(ζ̄2+ ψ̄,2)(ζ2+ψ,2)dx2

≥

∫
Lx1

(
−ζ̄2ζ2+

1
2 ψ̄,2ψ,2

)
dx2. (4-13)

Combining (4-12) and (4-13) we obtain∫
Lx1

[
(ζ̄2+ ψ̄,2)(ζ2+ψ,2)+

1
6 h2ζ̄2,2ζ2,2

]
dx2 ≥

h2π2

2(6`2
2+π

2h2)

∫
Lx1

ψ̄,2ψ,2 dx2. (4-14)

Moreover, (4-11) and (4-14) imply

J′κ(x1)≥

∫
Lx1

µκ

{
2(ζ̄1+ ψ̄,1)(ζ1+ψ,1)+

h2π2

6`2
2+π

2h2

[
1−

2%`2
2ω

2

π2µκ

(
1+

6`2
2

π2h2

)]
ψ̄,2ψ,2

+
1
3 h2

[
2ζ̄1,1ζ1,1+ 2ζ̄2,1ζ2,1+ 2

(
1−

%`2
2ω

2

π2µκ

)
ζ̄1,2ζ1,2+

(
1−

2%`2
2ω

2

π2µκ

)
ζ̄2,2ζ2,2

]}
dx2. (4-15)

If % > 0, (2-8) and (3-13) hold and

ω < ωm with ωm =

[
2%`2

2

π2µκ

(
1+

6`2
2

π2h2

)]−1/2

. (4-16)

The frequency ωm depends on the geometrical properties of the plate, namely h and `2. We can see that
µκ is strictly positive and the critical frequency ωm is such that

0< 1−
ω2

ω2
m
=min

{
1−

2%`2
2ω

2

π2µκ

(
1+

6`2
2

π2h2

)
, 1−

%`2
2ω

2

π2µκ
, 1−

2%`2
2ω

2

π2µκ

}
. (4-17)

Then, (4-15) and (4-17) lead to

J′κ(x1)≥

∫
Lx1

µκ
[

p1(ζ̄1+ ψ̄,1)(ζ1+ψ,1)+ p2ψ̄,2ψ,2

+
1
3 h2(p3ζ̄1,1ζ1,1+ p4ζ̄2,1ζ2,1+ p5ζ̄1,2ζ1,2+ p6ζ̄2,2ζ2,2)

]
dx2, (4-18)

where p1, . . . , p6 represent the following strictly positive coefficients:

p1 = p3 = p4 = 2, p2 =
h2π2

6`2
2+ h2π2

(
1−

ω2

ω2
m

)
, p5 = 2p6 = 2

(
1−

ω2

ω2
m

)
.

Under the above hypotheses, Jκ is a nondecreasing function and we can prove the following theorem.

Theorem 4.1. Let the hypotheses of Theorem 3.1 be still valid and let the frequency of harmonic vibra-
tions ω be lower than the critical value ωm , as in (4-16). The function Jκ is such that∣∣Jκ(x1)

∣∣≤ ∫
Lx1

`2
π

[
P1(ζ̄1+ ψ̄,1)(ζ1+ψ,1)+ P2ψ̄,2ψ,2

+
1
3 h2(P3ζ̄1,1ζ1,1+ P4ζ̄2,1ζ2,1+ P5ζ̄1,2ζ1,2+ P6ζ̄2,2ζ2,2)

]
dx2, (4-19)
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where

P1 = c55, P2 = c55, P3 = c11, P4 = c66, P5 = (c11+ c66+ c12), P6 = (2c66+ c12). (4-20)

Furthermore, Jκ satisfies the inequality

µκ
∣∣Jk(x1)

∣∣≤ νJ′k(x1) with ν = max
i=1,...,6

`2 Pi
πpi

. (4-21)

We underline that, as with ωm , ν also depends on the geometrical properties of the plate.

Proof. Considering (4-2)–(4-6), we arrive at

Jκ(x1)=

∫
Lx1

2 Re
{
c55(ζ̄1+ ψ̄,1)ψ+

1
3 h2[c11ζ̄1,1ζ1+ (c66−κ)ζ̄2,2ζ1+ (c12+κ)ζ̄1,2ζ2+c66ζ̄2,1ζ2

]}
dx2.

(4-22)
Using the arithmetic-geometric and Schwarz inequalities and taking into account (4-10), we can show
that∫

Lx1
Re[(ζ̄1+ ψ̄,1)ψ]dx2 ≤

`2
π

(∫
Lx1
(ζ̄1+ ψ̄,1)(ζ1+ψ,1)dx2

)1/2(∫
Lx1
ψ̄,2ψ,2 dx2

)1/2
≤
`2
2π
[∫

Lx1
(ζ̄1+ ψ̄,1)(ζ1+ψ,1)dx2+

∫
Lx1
ψ,2ψ̄,2 dx2

]
,∫

Lx1
Re[ζ̄1,1ζ1]dx2 ≤

`2
π

(∫
Lx1
ζ̄1,1ζ1,1 dx2

)1/2(∫
Lx1
ζ̄1,2ζ1,2 dx2

)1/2
≤
`2
2π

∫
Lx1
ζ̄1,αζ1,α dx2,∫

Lx1
Re[ζ̄2,2ζ1]dx2 ≤

`2
π

(∫
Lx1
ζ̄2,2ζ2,2 dx2

)1/2(∫
Lx1
ζ̄1,2ζ1,2 dx2

)1/2
≤
`2
2π

∫
Lx1
ζ̄α,2ζα,2 dx2,∫

Lx1
Re[ζ̄1,2ζ2]dx2 ≤

`2
π

(∫
Lx1
ζ̄1,2ζ1,2 dx2

)1/2(∫
Lx1
ζ̄2,2ζ2,2 dx2

)1/2
≤
`2
2π

∫
Lx1
ζ̄α,2ζα,2 dx2,∫

Lx1
Re[ζ̄2,1ζ2]dx2 ≤

`2
π

(∫
Lx1
ζ̄2,1ζ2,1 dx2

)1/2(∫
Lx1
ζ̄2,2ζ2,2 dx2

)1/2
≤
`2
2π

∫
Lx1
ζ̄2,αζ2,α dx2.

(4-23)

By means of (4-22) and (4-23), we obtain the inequality

∣∣Jκ(x1)
∣∣≤ ∫

Lx1

`2
π

{
c55(ζ̄1+ ψ̄,1)(ζ1+ψ,1)+ c55ψ̄,2ψ,2

+
1
3 h2[c11ζ̄1,αζ1,α + (c66− κ)ζ̄α,2ζα,2+ (c12+ κ)ζ̄α,2ζα,2+ c66ζ̄2,αζ2,α

]}
dx2,

which, through (4-20), leads to (4-19).
Since µκ and p1, . . . , p6 are strictly positive, the definition of νκ and (4-19) allow us to write

∣∣Jκ(x1)
∣∣≤ ∫

Lx1

ν
[

p1(ζ̄1+ ψ̄,1)(ζ1+ψ,1)+ p2ψ̄,2ψ,2

+
1
3 h2(p3ζ̄1,1ζ1,1+ p4ζ̄2,1ζ2,1+ p5ζ̄1,2ζ1,2+ p6ζ̄2,2ζ2,2)

]
dx2. (4-24)

Finally, (4-18) and (4-24) prove that (4-21) is satisfied. �
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For what follows, it is useful to introduce the class of steady-state vibrations (ζα, ψ) for which

E(x1)=

∫
Sx1

`2
π

[
P1(ζ̄1+ ψ̄,1)(ζ1+ψ,1)+ P2ψ,2ψ̄,2

+
1
3 h2(P3ζ1,1ζ̄1,1+ P4ζ̄2,1ζ2,1+ P5ζ̄1,2ζ1,2+ P6ζ̄2,2ζ2,2)

]
da <∞, (4-25)

where Sx1 =6 ∩ [x1,∞)×[0, `2]. From a direct differentiation of E(x1), we get

−E
′

(x1)=

∫
Lx1

`2
π

[
P1(ζ̄1+ ψ̄,1)(ζ1+ψ,1)+ P2ψ,2ψ̄,2

+
1
3 h2(P3ζ1,1ζ̄1,1+ P4ζ2,1ζ̄2,1+ P5ζ1,2ζ̄1,2+ P6ζ2,2ζ̄2,2)

]
dx2. (4-26)

As a consequence of (4-19) and (4-26), it follows that∣∣Jκ(x1)
∣∣≤−E

′

(x1), (4-27)

so E(x1) is a nonincreasing function.
When the strip 6 is bounded, the hypothesis (4-25) is trivially satisfied; Equations (4-5) and (4-27)

imply
E
′

(`1)= 0 ⇒ Jκ(`1)= 0. (4-28)

On the other side, if the strip 6 is semiinfinite and the hypothesis (4-25) is satisfied, then (4-26) and
(4-27) lead to

lim
x1→∞

E
′

(x1)= 0 ⇒ lim
x1→∞

Jκ(x1)= 0. (4-29)

Now, provided that the frequency of harmonic vibrations is lower than the critical value ωm , we can
establish the following theorem.

Theorem 4.2. Let the hypotheses of Theorem 4.1 be still valid and let {ζα, ψ} be the steady-state vibra-
tions for which (4-25) holds. Then, the function Jκ satisfies a decay estimate of Saint-Venant type:

0≤−Jκ(x1)≤−Jκ(0) exp
(
−
µκ
ν

x1

)
. (4-30)

Proof. Whether the considered strip is bounded or not, from hypothesis (4-16) on the frequency ω and
from the nondecreasing property of Jκ , (4-28) and (4-29) imply

Jκ(x1)≤ 0. (4-31)

We can also remark, from the definitions of coefficients P1, . . . , P6 and ν, that ν is strictly positive. Then,
(4-21) and (4-31) allow us to write

J′κ(x1)+
µκ
ν

Jκ(x1)≥ 0 ⇒
d

dx1

[
Jκ(x1) exp

(
µκ
ν

x1

)]
≥ 0. (4-32)

It is easy to observe that (4-32) leads to the estimate (4-30) with exponential decay factor µκ/ν. �

Remark. The investigation performed is based on an assumption concerning the strong ellipticity of the
elasticity tensor. The results obtained under such an hypothesis are thus valid also for classes of particular
materials characterized by special properties, like negative Poisson’s ratio and negative stiffness (auxetic
or antirubber materials). These particular structures (see, for example, [Park and Lakes 2007]) expand
laterally when stretched, in contrast to ordinary materials.
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A CONSISTENT REFINEMENT OF FIRST-ORDER SHEAR DEFORMATION
THEORY FOR LAMINATED COMPOSITE AND SANDWICH PLATES USING

IMPROVED ZIGZAG KINEMATICS

ALEXANDER TESSLER, MARCO DI SCIUVA AND MARCO GHERLONE

A refined zigzag theory is presented for laminated-composite and sandwich plates that includes the
kinematics of first-order shear deformation theory as its baseline. The theory is variationally consis-
tent and is derived from the virtual work principle. Novel piecewise-linear zigzag functions are used,
providing a more realistic representation of the deformation states of transverse shear-flexible plates
than other similar theories. The formulation does not enforce full continuity of the transverse shear
stresses across the plate’s thickness, yet it is robust. Transverse shear correction factors are not required
to yield accurate results. The theory avoids the shortcomings of earlier zigzag theories (such as shear-
force inconsistency and difficulties in simulating clamped boundary conditions) which have limited their
accuracy. This new theory requires only C0-continuous kinematic approximations and is perfectly suited
for developing computationally efficient finite elements. It should be useful for obtaining relatively
efficient, accurate estimates of structural response, needed in designing high-performance load-bearing
aerospace structures.

A list of symbols can be found on page 363.

1. Introduction

The high-performance and lightweight characteristics of advanced composite materials have spurred
numerous applications of these materials in military and civilian aircraft, aerospace vehicles, and naval
and civil structures. To realize the full potential of composite structures, further advances in structural
design and analysis methods are necessary. In particular, development of cost-effective and reliable
laminated-composite structures as the primary load-bearing components of a vehicle requires further
advances in stress analysis and failure prediction methodologies.

A wide variety of modern civilian and military aircraft employ relatively thick laminated composites,
with one hundred or more layers, in the primary load-bearing structures. Such structures can exhibit
pronounced transverse shear deformation and, under certain conditions, design-critical thickness-stretch
deformations. Fail-safe design of these structures requires accurate stress-analysis methods, particu-
larly for regions of stress concentration. Computationally efficient analytical models based on beam,
plate, and shell assumptions that account for transverse shear and thickness-stretch deformations have
recently been addressed in [Tessler 1993; Cook and Tessler 1998; Barut et al. 2002]. To achieve accurate
computational models, three-dimensional finite element analyses are often preferred over beam, plate,
and shell models based on first-order shear deformation theories (FSDT). This preference is due to the

Keywords: first-order shear deformation plate theory, zigzag kinematics, laminated composite plates, sandwich plates, virtual
work principle.
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latter having the tendency to underestimate the normal stresses, particularly in highly heterogeneous and
thick composite and sandwich laminates [Reissner 1985; Librescu et al. 1987; Noor and Burton 1989;
Liu and Li 1996]. For composite laminates with hundreds of layers, however, 3D modeling becomes
prohibitively expensive, especially for nonlinear and progressive failure analyses. To realize improved
response predictions based on beam, plate, and shell assumptions, numerous refined theories have been
developed [Ambartsumyan 1961; Sun and Whitney 1973; Lo et al. 1977a; 1977b; Reddy 1997]. Many
of these theories have significant flaws in their theoretical foundation and predictive capabilities and, for
these reasons, have not found general acceptance in practical applications.

One class of refined theories that has emerged as practical for engineering applications is known as
zigzag theories [Di Sciuva 1984a; 1984b; 1985a; 1985b; 1986; 1987; 1990; 1992; Murakami 1986;
Toledano and Murakami 1987; Cho and Parmerter 1992; 1993; Di Sciuva et al. 2002]. This class of
theories employs a zigzag-like distribution for the in-plane displacements through the laminate thick-
ness, while ensuring a fixed number of kinematic variables regardless of the number of material layers
(or laminae). Using through-the-thickness linear in-plane kinematics with displacements and transverse
shearing angles as primary variables, [Di Sciuva 1984a; 1984b; 1985a; 1985b; 1986; 1987] added a piece-
wise linear distribution known as the zigzag displacement. By explicitly enforcing a set of equilibrium
conditions along lamina interfaces, constant transverse shear stresses are developed across the laminate
thickness. These theories are often referred to as linear zigzag theories (or models) to delineate through-
the-thickness linear distributions of their baseline in-plane displacements. Di Sciuva [1990; 1992] and
Cho and Parmerter [1992; 1993] provided further enhancements to the zigzag theory by adding quadratic
and cubic power-series terms to the in-plane displacements. As in the previous efforts, the procedure
relies on the transverse shear stress equilibrium constraints. The resulting transverse shear stresses
are continuous across the laminate thickness, and vanish along the top and bottom laminate surfaces
(see also [Di Sciuva et al. 2002]). Murakami and coworkers developed another linear zigzag theory
[Murakami 1986] and a higher-order zigzag theory [Toledano and Murakami 1987] that also includes
transverse normal deformations. The governing equations are derived using Reissner’s mixed variational
theorem [Reissner 1984], and they include transverse shear and transverse normal stresses [Toledano and
Murakami 1987] as their primary unknowns.

Zigzag theories provide sufficiently accurate response predictions for relatively thick laminated-
composite and sandwich structures including those for normal strains and stresses [Di Sciuva 1984a;
1984b; 1985a; 1985b; 1986; 1987; 1990; 1992; Murakami 1986; Toledano and Murakami 1987; Cho
and Parmerter 1992; 1993; Di Sciuva et al. 2002]. Furthermore, these theories often yield response
predictions comparable to those of layer-wise and higher-order theories that are more computationally
intensive. To make a zigzag theory practical for large-scale analyses and engineering design, its ana-
lytic framework must be well suited for an efficient finite element approximation. While pursuing a
computationally desirable zigzag beam theory, Averill [1994; Averill and Yip 1996] recognized two
significant drawbacks that plague many previously mentioned zigzag theories, in particular those hav-
ing displacements as primary unknowns [Di Sciuva 1984a; 1984b; 1985a; 1985b; 1986; 1987; 1990;
1992; Cho and Parmerter 1992; 1993]: Firstly, because the curvature is expressed as a second spatial
derivative of the deflection variable, C1 continuous functions are required to approximate the deflection
within the finite element framework. Due to their complexity and overly stiff response properties, such
approximations are especially undesirable for plate and shell finite elements. Secondly, transverse shear
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stresses calculated from constitutive equations vanish erroneously along the clamped boundaries, this
being a “physical inconsistency that plagues many popular shear deformation theories” [Averill 1994].
Averill resolved the first issue by adopting the kinematics of Timoshenko’s shear deformation theory
as a baseline; however, to resolve the second issue he proposed a boundary-condition compromise at
the expense of the variational consistency of the theory, in which a kinematic variable representing
the amplitude of the zigzag displacement is omitted from the variationally required set of boundary
conditions.

Tessler et al. [2007] presented a clearer insight into the existing flaws of the linear zigzag models
[Di Sciuva 1984a; 1984b; 1985a; 1985b; 1986; 1987]. In these earlier theories, the kinematic field is con-
structed by way of enforcing equilibrium of the transverse shear stresses along lamina interfaces, which
results in constant (uniform) transverse shear stresses across the laminate thickness. The consequence
of the transverse shear equilibrium constraints within a displacement-based theory is that they tend to
overconstrain the kinematic field. As delineated in [Tessler et al. 2007], the overconstraint is manifested
by a physical inconsistency (or anomaly) in the definition of the transverse shear forces. Consequently,
the cross-sectional integral of the transverse shear stress does not correspond to the transverse shear force
obtained from the bending equilibrium equation of the theory. A further byproduct of this anomaly is the
erroneous vanishing of the transverse shear strains, stresses, and forces along the clamped boundaries.
Averill [1994] pointed out the latter aspect; however, as previously discussed, he proposed only a varia-
tionally inconsistent strategy to circumvent the issue. It is also worth mentioning that the same transverse
shear stress anomaly exists in many other theories, for example, the cubic zigzag theories by Di Sciuva
[1990; 1992] and Cho and Parmerter [1992; 1993], and the smeared cubic theory by Reddy [1984; 1997;
2004]. Also note that almost exclusively, and this pertains to all of the aforementioned articles, the
proposed theories are assessed by solving example problems with simply supported boundaries, where
the solutions inherently do not exhibit transverse shear anomalies. Regrettably, the few contributions
that considered clamped boundary conditions, for example [Averill 1994; Umasree and Bhaskar 2006],
do not discuss shear stress distributions along the clamped boundary.

Yu [2005] proposed a variational asymptotic plate and shell analysis (VAPAS), and Kim and Cho
[2005; 2006] presented an enhanced first-order shear deformation theory (EFSDT). Both of these mod-
eling strategies use a three-step procedure [Yu et al. 2008]: (1) obtain a 2D Reissner–Mindlin type
constitutive model, (2) carry out the global plate analysis using the constitutive model from step (1),
and (3) recover through-the-thickness distributions of displacements and stresses from step (1). In the
framework of EFSDT, the recovery of through-the-thickness distributions is performed by means of the
cubic zigzag theory by Cho and Parmerter [1992; 1993]. A critical review and comparison of the two
approaches in [Yu et al. 2008] reveal that VAPAS requires high-order displacement derivatives to achieve
adequate predictions for the in-plane and transverse normal stresses, whereas EFSDT is somewhat in-
accurate in terms of the in-plane normal stresses and its extension to nonlinear problems may not be
straightforward. Furthermore, since the recovery of the 3D distributions is performed by means of the
cubic zigzag theory by Cho and Parmerter [1992; 1993], it is argued that EFSDT should be affected by
the aforementioned transverse shear stress anomaly. Unfortunately, Kim and Cho [2005; 2006] discuss
numerical results only for plates with simply supported boundary conditions.

To construct a computationally attractive theory suitable for FEM without the flaws of the previ-
ous zigzag models, Tessler et al. [2007] proposed a refined zigzag theory for laminated composite and
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sandwich beams. They derived a novel zigzag function without enforcing a full transverse shear stress
equilibrium along the lamina interfaces. The shear force definitions are fully consistent with respect to
the physical and variational requirements. The resulting theory is without the aforementioned flaws of
the previous zigzag theories and has been shown to demonstrate consistently superior results.

A successful extension of this new zigzag methodology to plate theory was advanced in [Tessler et al.
2009]; in the present we detail the theoretical foundation of the refined zigzag plate theory introduced
there. The theory’s applicability to laminated composite and sandwich plates is demonstrated by pre-
senting example problems with simply supported and clamped boundaries and which include relatively
thick laminates with a high degree of transverse shear flexibility, anisotropy, and heterogeneity. This
new formulation augments FSDT with an improved zigzag kinematic field that involves a novel C0-
continuous (across lamina interfaces) representation of the in-plane displacements. The kinematic field
is independent of the number of material layers and does not require enforcement of transverse shear
stress continuity to yield accurate results. Unlike other similar theories [Di Sciuva 1984a; Averill 1994],
the zigzag contribution to the in-plane displacement field is physically realistic, is zero-valued at the
top and bottom plate surfaces, and accounts for the shear deformation of every lamina in a consistent
way. As a result, transverse shear correction factors are not needed. Additionally, the plate equilibrium
equations, constitutive equations, boundary conditions, and strain-displacement relations are consistently
derived from the virtual work principle. Moreover, the analytical form of this new theory is ideally
suited for developing computationally efficient finite elements requiring only C0-continuity. This benefit
will enable an efficient use of accurate zigzag approximations in large-scale analyses to facilitate the
development of robust designs of high-performance aerospace vehicles.

In the remainder of the paper, the theoretical foundation of the new theory and its quantitative assess-
ment are detailed. The zigzag kinematic assumptions, strain-displacement equations, and constitutive
lamina relations are presented in Section 2. A set of unique zigzag functions is then introduced and their
mathematical structure is described in Section 3. The plate equilibrium equations and their associated
boundary conditions, derived from the virtual work principle, are presented in Section 4. In Section 5,
an extensive quantitative assessment of the theory is carried out, using closed-form solutions for simply
supported and cantilevered plates made of laminated-composite and sandwich material systems. Some
of the example problems represent significant challenges for any approximate theory. It is demonstrated
that this new zigzag theory eliminates a major flaw of other similar theories; that is, the theory enables
accurate modeling of the clamped boundary condition while adhering strictly to the variationally required
boundary conditions. Finally, in Section 6, several concluding remarks emphasizing the merits of the
new theory are highlighted.

2. Kinematics and formulation

Consider a laminated plate of uniform thickness 2h with N perfectly bonded orthotropic layers (or
laminae) as shown in Figure 1. Points of the plate are located by the orthogonal Cartesian coordinates
(x1, x2, z). The ordered pair (x1, x2) ∈ Sm denotes the in-plane coordinates, where Sm represents the set
of points given by the intersection of the plate with the plane z = 0, referred to herein as the middle
reference plane (or mid-plane). The symbol z ∈ [−h, h] denotes the through-the-thickness coordinate,
with z= 0 identifying the plate’s mid-plane. The plate is subjected to a normal-pressure loading, q(x1, x2),
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Figure 1. General plate notation (left), and lamination notation (right).

attributed to the mid-plane, Sm , that is defined as positive in the positive z direction. In addition, a traction
vector, (T̄1, T̄2, T̄z), is prescribed on Sσ ⊂ S, where S denotes the total cylindrical-edge surface. On the
remaining part of the edge surface, Su ⊂ S, displacement restraints are imposed (or prescribed). The
sections of the plate edge are related by Sσ ∪ Su = S and Sσ ∩ Su =∅. Moreover, the curves Cσ = Sσ ∩ Sm

and Cu = Su ∩ Sm define the two parts of the total perimeter C = Cσ ∪Cu surrounding the mid-plane
region, Sm . Finally, it is presumed that the constitutive properties may differ appreciably from lamina to
lamina, the plate deformations result in small strains, and that body and inertial forces are negligible.

The orthogonal components of the displacement vector, corresponding to material points of the plate
(or laminate), are expressed as

u(k)1 (x1, x2, z)≡ u(x1, x2)+ zθ1(x1, x2)+φ
(k)
1 (z)ψ1(x1, x2),

u(k)2 (x1, x2, z)≡ v(x1, x2)+ zθ2(x1, x2)+φ
(k)
2 (z)ψ2(x1, x2),

uz(x1, x2, z)≡ w(x1, x2),

(1)

where the in-plane displacement components u(k)1 and u(k)2 are comprised of constant, linear, and zigzag
variations through the thickness. The zigzag variations are C0-continuous functions with discontinuous
thickness-direction derivatives along the lamina interfaces. The superscript (k) is used to indicate quan-
tities corresponding to the k-th lamina, whereas the subscript (k) defines quantities corresponding to
the interface between the k-th and (k+ 1)-th laminae. Thus, the k-th lamina thickness is defined in the
range z ∈ [z(k−1), z(k)] (k = 1, . . . , N ); see Figure 1. The transverse displacement uz is assumed to be
constant through the thickness and is independent of constitutive properties of the k-th lamina; hence the
superscript (k) does not appear in its definition.

The kinematic variables in (1) can be interpreted as follows. For homogeneous plates, the zigzag
functions φ(k)α (α= 1, 2) vanish identically and (1) yield the kinematics of FSDT. For this degenerate case,
u and v represent the mid-plane displacements along the coordinate directions x1 and x2, respectively;
θ1 and θ2 represent average bending rotations of the transverse normal about the positive x2 and the
negative x1 directions, respectively; and w is the transverse deflection. For more precise definitions of
the kinematic variables within FSDT refer, for example, to [Tessler 1993]. The symbols φ(k)α (α = 1, 2)
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denote through-the-thickness piecewise-linear zigzag functions associated with heterogeneous plates, yet
to be defined. The ψα = ψα(x1, x2) (α = 1, 2) functions represent the spatial amplitudes of the zigzag
displacements and, together with the other five kinematic variables, are the unknowns in the analysis. The
zigzag displacements φ(k)α ψα (α = 1, 2) may be regarded as corrections to the in-plane displacements
associated with laminate heterogeneity.

Consistent with the kinematic assumptions in (1), the theory accounts for transverse shear deforma-
tion. (Transverse normal deformations are neglected in the kinematics; however, their inclusion may
be possible following, for example, [Tessler 1993]). Correspondingly, the in-plane and transverse shear
strains are

ε
(k)
11 = u,1+ zθ1,1+φ

(k)
1 ψ1,1, (2a)

ε
(k)
22 = v,2+ zθ2,2+φ

(k)
2 ψ2,2, (2b)

γ
(k)
12 = u,2+ v,1+ z(θ1,2+ θ2,1)+φ

(k)
1 ψ1,2+φ

(k)
2 ψ2,1, (2c)

γ (k)αz = γα +β
(k)
α ψα (α = 1, 2), (2d)

where, henceforward, (•),α ≡ ∂(•)
∂xα

denotes a partial derivative with respect to the mid-plane coordinate,
xα (α = 1, 2). Also, the following notation is introduced

γα ≡ w,α + θα (α = 1, 2), (2e)

β(k)α ≡
∂
∂z
(φ(k)α ) (α = 1, 2), (2f)

where the shear angles γα are uniform through the total laminate thickness, and β(k)α are piecewise
constant functions that are uniform through the thickness of each individual lamina.

The generalized Hooke’s law for the k-th orthotropic lamina, whose principal material directions are
arbitrary with respect to the mid-plane reference coordinates, (x1, x2) ∈ Sm , is written as

σ11

σ22

τ12

τ2z

τ1z



(k)

=


C11 C12 C16 0 0
C12 C22 C26 0 0
C16 C26 C66 0 0
0 0 0 Q22 Q12

0 0 0 Q12 Q11


(k)

ε11

ε22

γ12

γ2z

γ1z



(k)

, (3)

where C (k)
i j (i, j = 1, 2, 6) and Q(k)

pq (p, q = 1, 2) are the transformed elastic stiffness coefficients referred
to the (x1, x2, z) coordinate system and relative to the plane-stress condition that ignores the transverse-
normal stress. The expressions for these coefficients in terms of the elastic moduli corresponding to the
material coordinates can be found, for example, in [Reddy 1997].

3. Refined zigzag functions and transverse shear constitutive relations

The refined zigzag functions (or zigzag displacements) of the present theory are defined by piecewise
linear, C0-continuous functions through the laminate thickness. For convenience, the zigzag functions
φ
(k)
1 and φ(k)2 , which have units of length, are defined in terms of their respective lamina-interface values

u(i) and v(i) (i = 0, 1, . . . , N ) (see Figure 2 depicting the notation for a three-layered laminate).
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Thus, for the k-th lamina located in the range [z(k−1), z(k)], φ
(k)
1 and φ(k)2 are given as

φ
(k)
1 ≡

1
2 (1− ξ

(k))u(k−1)+
1
2 (1+ ξ

(k))u(k), φ
(k)
2 ≡

1
2 (1− ξ

(k))v(k−1)+
1
2 (1+ ξ

(k))v(k), (4)

where

ξ (k) =

[
z− z(k−1)

h(k)
− 1

]
∈ [−1, 1] (k = 1, . . . , N ), (5)

with the first lamina beginning at z(0) = −h, the last (N -th) lamina ending at z(N ) = h, and the k-th
lamina ending at z(k) = z(k−1)+ 2h(k), where 2h(k) denotes the k-th lamina thickness.

Evaluating (4) at the laminae interfaces gives rise to the definitions of the interfacial displacements

u(k−1) = φ
(k)
1 (ξ (k) =−1), u(k) = φ

(k)
1 (ξ (k) = 1),

v(k−1) = φ
(k)
2 (ξ (k) =−1), v(k) = φ

(k)
2 (ξ (k) = 1) (k = 1, . . . , N ),

(6a)

where the interfacial displacements at the bottom and top plate surfaces are set herein to vanish identically,
that is,

u(0) = u(N ) = v(0) = v(N ) = 0. (6b)

Substituting (4) into (2f) results in the piecewise constant functions β(k)α given by{
β
(k)
1

β
(k)
2

}
=

1
2h(k)

{
u(k)− u(k−1)

v(k)− v(k−1)

}
. (7)

Because the zigzag functions are zero-valued on the top and bottom surfaces, as defined by Equations (6a)
and (6b), through-the-thickness integrals of the slope functions β(k)α (α = 1, 2) vanish identically, that is,

∫ h

−h

{
β
(k)
1

β
(k)
2

}
dz =


N∑

k=1
2h(k)β(k)1

N∑
k=1

2h(k)β(k)2

=
{

0
0

}
. (8)
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Figure 2. Notation for a three-layered laminate and φ(k)1 and φ(k)2 zigzag functions de-
fined in terms of interfacial values (displacements), u(i) and v(i) (i = 0, 1, . . . , N ).
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Integrating (2d) across the laminate thickness and normalizing the result by the total laminate thickness
reveals that {

γ1

γ2

}
=

1
2h

∫ h

−h

{
γ
(k)
1z

γ
(k)
2z

}
dz. (9)

Thus, γα (α = 1, 2) represent the average transverse shear strains, coinciding with the common represen-
tation of the transverse shear strains used in FSDT. Also, (9) indicates that the zigzag amplitude variables,
ψα (α = 1, 2), do not contribute to the average transverse shear strains.

The u(k) and v(k) interfacial values of the zigzag functions are obtained from (7) in terms of β(k)α
(α = 1, 2; k = 1, . . . , N ), that is,{

u(k)
v(k)

}
= 2h(k)

{
β
(k)
1

β
(k)
2

}
+

{
u(k−1)

v(k−1)

}
(k = 1, . . . , N ), (10a)

or, alternatively,

{
u(k)
v(k)

}
=


k∑

i=1
2h(i)β(i)1

k∑
i=1

2h(i)β(i)2

 (k = 1, . . . , N ). (10b)

Following the approach in [Tessler et al. 2007], the β(k)α functions are determined by first casting the
transverse shear strains, (2d), in terms of the transverse shear strain measures, ηα ≡ γα −ψα (α = 1, 2),
and the zigzag amplitude functions, ψα (α = 1, 2), as{

γ1z

γ2z

}(k)
≡

{
η1

η2

}
+

[
1+β(k)1 0

0 1+β(k)2

]{
ψ1

ψ2

}
. (11)

The ηα strain measures are set to vanish explicitly in the theory of Di Sciuva [1984a] and enforced to
vanish by way of penalty constraints in the theory of Averill [1994], thus equating γα to ψα. Presently,
no such constraints are imposed on these strain measures.

The transverse shear stresses using Equations (3) and (11) are given as{
τ1z

τ2z

}(k)
≡

[
Q11 Q12

Q21 Q22

](k) ({
η1

η2

}
+

[
1+β(k)1 0

0 1+β(k)2

]{
ψ1

ψ2

})
, (12a)

or, alternatively, they can be expressed as{
τ1z

τ2z

}(k)
≡

[
Q11 Q12

Q21 Q22

](k) {
η1

η2

}
+ Q(k)

11 (1+β
(k)
1 )

{
1

Q(k)
12 /Q(k)

11

}
ψ1+ Q(k)

22 (1+β
(k)
2 )

{
Q(k)

12 /Q(k)
22

1

}
ψ2.

In this form of the transverse shear constitutive relations, the stress vector associated with the ηα strain
measures is independent of the zigzag functions. The second and third stress vectors include, as their
normalization factors, the coefficients Q(k)

αα(1+ β
(k)
α ) (α = 1, 2) that are dependent on the zigzag func-

tions through β(k)α . Herein, these normalization factors are set to be constant quantities, denoted as
Gα (α = 1, 2), thus imposing constraint conditions on the distribution of the zigzag functions.
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These constraints give rise to the expressions{
β
(k)
1

β
(k)
2

}
=

{
G1/Q(k)

11 − 1

G2/Q(k)
22 − 1

}
. (12b)

The G1 and G2 constants are obtained by integrating (12b) through the laminate thickness while making
use of (8), resulting in

{
G1

G2

}
≡



(
1

2h

∫ h

−h

dz
Q(k)

11

)−1

(
1

2h

∫ h

−h

dz
Q(k)

22

)−1

=


(
1
h

N∑
k=1

h(k)

Q(k)
11

)−1

(
1
h

N∑
k=1

h(k)

Q(k)
22

)−1

 , (12c)

where it is seen that G1 and G2 are weighted-average transverse shear stiffness coefficients of their
respective lamina-level coefficients, Q(k)

11 and Q(k)
22 .

Substituting (12b) into (12a) results in the transverse shear constitutive relations of the form{
τ1z

τ2z

}(k)
≡

[
Q11 Q12

Q21 Q22

](k) {γ1+ψ1
(
G1/Q(k)

11 − 1
)

γ2+ψ2
(
G2/Q(k)

22 − 1
)
}
, (13a)

where, with the use of (12c), the dimensionless stiffness ratios are given as

Gα

G(k)
αα

=

(
Q(k)
αα

2h

∫ h

−h

dz

Q(k)
αα

)−1

(α = 1, 2). (13b)

These ratios are, in general, piecewise constant through the laminate thickness; however, for homoge-
neous plates, they are unit-valued. Thus, for homogeneous plates, the zigzag transverse shear contribu-
tions vanish, in which case (13a) becomes identical to the corresponding relations of FSDT.

The φ(k)α (α = 1, 2) zigzag functions are determined by substituting (10b) and (12b) into (4), while
making use of (5), resulting in

φ(1)α = (z+ h)
(

Gα

Q(1)
αα

− 1
)

(k = 1),

φ(k)α = (z+ h)
(

Gα

Q(k)
αα

− 1
)
+

k∑
i=2

2h(i−1)
(

Gα

Q(i−1)
αα

−
Gα

Q(k)
αα

)
(k = 2, . . . , N ),

z ∈ [z(k−1), z(k)], z(0) =−h, z(k) = z(k−1)+ 2h(k) (k = 1, . . . , N ; α = 1, 2).

(13c)

It is seen that the zigzag functions are independent of the state of deformation and are represented
by C0-continuous, piecewise linear functions of the thickness coordinate. The zigzag amplitudes, ψα
(α = 1, 2), are vector functions of the actual response due to the applied loading, and they provide
the proper scaling of the zigzag functions, thus controlling the total zigzag contribution to the in-plane
displacements. The two zigzag amplitude functions and the remaining five kinematic variables constitute
a set of seven kinematic variables associated with this refined zigzag plate theory.
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4. Equilibrium equations, boundary conditions, and constitutive relations

The plate equilibrium equations and boundary conditions are derived from the virtual work principle
which, neglecting body forces and assuming zero shear tractions on the top and bottom bounding plate
surfaces, may be written as∫

Sm

∫ h

−h

(
σ
(k)
11 δε

(k)
11 + σ

(k)
22 δε

(k)
22 + τ

(k)
12 δγ

(k)
12 + τ

(k)
1z δγ

(k)
1z + τ

(k)
2z δγ

(k)
2z

)
dzd S

−

∫
Sm

(qδw)d S−
∫

cσ

∫ h

−h
[T̄1δu

(k)
1 + T̄2δu

(k)
2 + T̄zδu(k)z ]dsdz = 0, (14)

where δ is the variational operator; all other symbols have been defined in Section 2.
Substituting (1) and (2) into (14) and integrating across the plate thickness yields the 2D statement of

virtual work∫
Sm

(
N1δu,1+N2δv,2+N12(δu,2+δv,1)+M1δθ1,1+M2δθ2,2+M12(δθ1,2+δθ2,1)

+Q1(δw,1+δθ1)+Q2(δw,2+δθ2)−qδw
)

d S−
∫

Cσ
(N̄1nδu+ N̄2nδv+ Q̄znδw+M̄1nδθy+M̄2nδθx)ds

+

∫
Sm

(Mφ
1 δψ1,1+Mφ

2 δψ2,2+Mφ
12δψ1,2+Mφ

21δψ2,1+Qφ
1 δψ1+Qφ

2 δψ2)d S

−

∫
Cσ
(M̄φ

1nδψ1+M̄φ
2nδψ2)ds = 0, (15)

where the underlined terms correspond to the zigzag kinematics contributions. In Equation (15), the
membrane stress resultants and conjugate strain measures are

NT
m ≡ {N1, N2, N12} =

∫ h

−h

{
σ
(k)
11 , σ

(k)
22 , τ

(k)
12

}
dz, eT

m ≡ {u,1, v,2, u,2+ v,1}. (16)

Likewise, the bending stress resultants and conjugate strain measures are

MT
b ≡ {M1,Mφ

1 ,M2,Mφ
2 ,M12,Mφ

12,Mφ
21}

=

∫ h

−h

{
zσ (k)11 , φ

(k)
1 σ

(k)
11 , zσ (k)22 , φ

(k)
2 σ

(k)
22 , zτ (k)12 , φ

(k)
1 τ

(k)
12 , φ

(k)
2 τ

(k)
12

}
dz, (17a)

eT
b ≡ {θ1,1, ψ1,1, θ2,2, ψ2,2, θ1,2+ θ2,1, ψ1,2, ψ2,1}, (17b)

and the transverse shear stress resultants and conjugate strain measures are

QT
s ≡{Q2, Qφ

2 , Q1, Qφ
1 }=

∫ h

−h

{
τ
(k)
2z , β

(k)
2 τ

(k)
2z , τ

(k)
1z , β

(k)
1 τ

(k)
1z

}
dz, eT

s ≡{w,2+θ2, ψ2, w,1+θ1, ψ1}. (18)

The force and moment resultants due to the prescribed tractions have the form

{N̄1n, N̄2n, Q̄zn, M̄1n, M̄2n, M̄φ
1n, M̄φ

2n} =

∫ h

−h

{
T̄1, T̄2, T̄z, zT̄1, zT̄2, φ

(k)
1 T̄1, φ

(k)
2 T̄2

}
dz. (19)

Integrating (15) by parts results in seven equilibrium equations and associated boundary conditions.
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The equilibrium equations are

δu : N1,1+ N12,2 = 0, δv : N12,1+ N2,2 = 0, δw : Q1,1+ Q2,2+ q = 0,

δθ1 : M1,1+M12,2− Q1 = 0, δθ2 : M12,1+M2,2− Q2 = 0,

δψ1 : Mφ
1,1+Mφ

12,2− Qφ
1 = 0, δψ2 : Mφ

21,1+Mφ
2,2− Qφ

2 = 0.

(20)

The kinematic and force boundary conditions are given by

u = ū on Cu or N1n1+ N12n2 = N̄1n on Cσ ,

v = v̄ on Cu or N12n1+ N2n2 = N̄2n on Cσ ,

w = w̄ on Cu or Q1n1+ Q2n2 = Q̄zn on Cσ ,

θ1 = θ̄1 on Cu or M1n1+M12n2 = M̄1n on Cσ ,

θ2 = θ̄2 on Cu or M12n1+M2n2 = M̄2n on Cσ ,

ψ1 = ψ̄1 on Cu or Mφ
1 n1+Mφ

12n2 = M̄φ
1n on Cσ ,

ψ2 = ψ̄2 on Cu or Mφ
21n1+Mφ

2 n2 = M̄φ
2n on Cσ ,

(21)

where n1 = cos(x1, n) and n2 = cos(x2, n) are the components (direction cosines) of the unit outward
normal vector to the cylindrical plate edges.

The plate constitutive relations are derived by using Equations (2) and (3) with (16)–(18), and inte-
grating over the laminate thickness. The resulting constitutive relations of the new zigzag plate theory
are expressed in matrix form as 

Nm

Mb

Qs

=
 A B 0

BT D 0
0 0 G


em

eb

es

 . (22)

The expressions for the components of the stiffness matrices A ≡ [Ai j ] (i, j = 1, . . . , 3), B ≡ [Bi j ]

(i = 1, . . . , 3, j = 1, . . . , 7), D ≡ [Di j ] (i, j = 1, . . . , 7), and G ≡ [Gi j ] (i, j = 1, . . . , 4) are given in
the Appendix.

Introducing (22) into (20) results in seven second-order partial differential equilibrium equations in
terms of seven kinematic variables, giving rise to a 14th-order theory. The equilibrium equations can be
solved exactly or approximately depending on the complexity of the material lay-up, boundary conditions,
and loading. In addition, because the highest partial derivative appearing in the strain measures in (15) are
first-order, computationally efficient C0-continuous plate finite elements can be developed, thus enabling
application of this refined zigzag theory in large-scale analyses of complex aerospace structures.

5. Example problems and results

To determine the accuracy of the present zigzag plate theory, analytic solutions for simply supported and
cantilevered rectangular laminates are derived and detailed distributions of the displacements and stresses
are examined. The rectangular laminates are defined on the domain x1 ∈ [0, a], x2 ∈ [0, b], z ∈ [−h, h].
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Example 1. A simply supported rectangular plate is subjected to the sinusoidal transverse pressure
q(x1, x2) = q0 sin(πx1/a) sin(πx2/b). The simply supported boundary conditions are obtained from
(21). For cross-ply and uniaxial laminates, the kinematic and force boundary conditions along x1 ∈ [0, a]
are

v = w = θ2 = ψ2 = 0, N1 = M1 = Mφ
1 = 0, (23a)

and along x2 ∈ [0, b],
u = w = θ1 = ψ1 = 0, N2 = M2 = Mφ

2 = 0. (23b)

For this set of boundary conditions, the exact solutions are obtained by the trigonometric expansions

w=W sin πx1
a

sin πx2
b
,


u
θ1

ψ1

=


U
21

91

 cos πx1
a

sin πx2
b
,


v

θ2

ψ2

=


V
22

92

 sin πx1
a

cos πx2
b
, (24)

where {U, V,W,21,22, 91, 92} are the unknown amplitudes of the kinematic variables that are deter-
mined from satisfaction of the equilibrium equations.

For antisymmetric angle-ply laminates, the kinematic and force boundary conditions along x1 ∈ [0, a]
are

u = w = θ2 = ψ2 = 0, N12 = M1 = Mφ
1 = 0, (25a)

and along x2 ∈ [0, b]
v = w = θ1 = ψ1 = 0, N12 = M2 = Mφ

2 = 0. (25b)

Thus, the trigonometric expansions that satisfy (25a) and (25b) exactly differ from those in (24) only for
the u and v variables, and they are given by

u =U sin πx1
a

cos πx2
b
, v = V cos πx1

a
sin πx2

b
. (26)

Example 2. A cantilevered rectangular plate is clamped along a single edge (x1 = 0), free along the
other edges, and subjected to the uniform transverse pressure q(x1, x2) = q0. The clamped boundary
conditions along x1 = 0 are

u = v = w = θ1 = θ2 = ψ1 = ψ2 = 0. (27a)

Unlike the previous zigzag theories where the clamped boundary conditions result in erroneous solutions
for transverse shear stresses and forces that vanish along the clamped edges, the solutions of the present
theory do not possess such anomalies. For instance, along the clamped boundary at x1 = 0, the kinematic
constraints in (27a), with the use of (2e), (13b), and (18), give rise to the following transverse shear
stresses, τ (k)1z (0, x2, z), and force, Q1(0, x2):{

τ
(k)
1z

Q1

}
(x1=0)

=

{
Q(k)

11∫ h
−h Q(k)

11 dz

}
w,1(0, x2), (27b)

where, in general, w,1(0, x2) 6= 0.
The traction-free boundary conditions along the edge x1 = a are

N1 = N12 = M1 = M12 = Q1 = Mφ
1 = Mφ

12 = 0, (28a)
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Lamina material E (k)1 , E (k)2 , E (k)3 ν
(k)
12 , ν

(k)
13 , ν

(k)
23 G(k)

12 ,G(k)
13 ,G(k)

23

C
Carbon-epoxy
unidirectional composite

1.579×102

9.584
9.584

0.32
0.32
0.49

5.930
5.930
3.227

H Titanium honeycomb core
1.915×10−1

1.915×10−1

1.915

0.658×10−2

0.643×10−6

0.643×10−6

4.227×10−8

3.651×10−1

1.248

P PVC core E (k) = 1.040×10−1 ν(k) = 0.3

T Titanium E (k) = 1.041×102 ν(k) = 0.31

Table 1. Mechanical properties of orthotropic materials (C and H) and isotropic material
(P and T). The Young’s modulus E and shear modulus G are expressed in GPa.

Laminate Normalized lamina Lamina materials Lamina orientation [ ˚ ]
thickness, h(k)/h

A Cross-ply composite (0.5/0.5) (C/C) (0/90)
B Uniaxial sandwich (0.1/0.8/0.1) (C/P/C) (0/0/0)
F Uniaxial sandwich (0.1/0.8/0.1) (T/H/T) (0/0/0)
G Angle-ply sandwich (0.05/0.05/0.8/0.05/0.05) (C/C/P/C/C) (30/−45/0/45/−30)

Table 2. Laminate stacking sequences (lamina sequence is in the positive z direction).

and along the edge x1 ∈ [0, b]

N12 = N2 = M12 = M2 = Q2 = Mφ
12 = Mφ

2 = 0. (28b)

For both example problems, various laminates are considered with the emphasis on relatively thick
laminated composite and sandwich plates having span-to-thickness ratio a/2h = b/2h = 5. The me-
chanical material properties are listed in Table 1, and Table 2 summarizes the stacking sequences of the
laminates.

The example problems include: a two-layer, cross-ply carbon-epoxy laminate, labeled laminate A; a
three-layer sandwich laminate, laminate B, having uniaxial carbon-epoxy face sheets and a thick, closed-
cell polyvinyl chloride (PVC) core, where PVC is represented as an isotropic material; a sandwich
laminate with two-layered titanium face sheets and a thick titanium honeycomb core, laminate F ; and a
five-layer, angle-ply sandwich laminate with carbon-epoxy face sheets and a thick PVC core, laminate
G. Additional sandwich laminates that involve very thin face sheets have been studied in [Tessler et al.
2009].

For comparison purposes, several analytic and finite element solutions were also obtained for the cor-
responding boundary-value problems using 3D elasticity theory [Pagano 1969; Noor and Burton 1990],
FSDT, the theory of Di Sciuva [1984a], and MSC/MD-NASTRAN finite element code [MSC 2006]. Note
that application of FSDT generally requires the use of shear correction factors. For laminated composites,
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lamination-dependent shear correction factors have been shown to provide relatively accurate deflection
predictions (for examples, refer to [Vlachoutsis 1992; Reddy and Vijayakumar 1995]). Yet, such shear
corrections fail to furnish substantial improvements for the normal strain and stress predictions. Presently,
to establish a common framework reference for FSDT, a shear correction factor k2

=
5
6 , appropriate for

homogeneous plates, was used throughout.
For the simply supported cross-ply and uniaxial laminates, the exact solutions for the FSDT and Di

Sciuva zigzag theory were obtained using the trigonometric functions in (24) (excluding those functions
for ψα (α = 1, 2) which do not appear in FSDT). For the angle-ply antisymmetric laminates, Di Sciuva
theory permits only approximate solutions to be determined. Presently, the Rayleigh–Ritz method was
employed, where the kinematic variables were approximated with suitable Gram–Schmidt polynomials
[Arfken 1985] that satisfy the kinematic boundary conditions, (26), exactly (refer to [Tessler et al. 2009]
for the particular expressions of the Gram–Schmidt polynomials used). Furthermore, for the simply
supported cross-ply and angle-ply antisymmetric laminates, exact 3D elasticity solutions were obtained
using the solution procedures developed by Pagano [1969] and Noor and Burton [1990].

For the cantilevered laminates, approximate solutions corresponding to Di Sciuva and refined (present)
zigzag theories were developed using the Rayleigh–Ritz method. Here the displacement approximations
are based on the Gram–Schmidt polynomials, using seven functions along the x1 axis and five along the
x2 axis (for details, refer to [Tessler et al. 2009]). Furthermore, for the cantilevered plate (laminate B),
a high-fidelity 3D finite element solution was obtained by using MSC/MD-NASTRAN. The model is
regularly discretized and is comprised of three elements through the thickness for each face sheet, six
elements through the core thickness, and sixty subdivisions along each span direction, with a total of
43,200 HEXA20, linear-strain elements.

The numerical and graphical results that follow are labeled as:

• 3D Elasticity (3D elasticity solutions using procedures developed by Pagano [1969] for cross-ply
laminates and by Noor and Burton [1990] for angle-ply antisymmetric laminates).

• FSDT (first-order shear deformation theory, k2
=

5
6 ).

• Zigzag (D) [Di Sciuva 1984a].

• Zigzag (R) (present, refined zigzag theory).

• 3D FEM (3D FEM solution using MSC/MD-NASTRAN [MSC 2006]).

• Zigzag (R-E) (transverse shear stresses obtained by way of integrating 3D elasticity equilibrium
equations, using the normal and in-plane shear stresses derived from the refined zigzag theory).

Comparisons of the maximum deflection and maximum top-surface displacement are presented for
the simply supported square laminates (a/1h = b/2h = 5) in Tables 3 and 4. These results demonstrate
that both zigzag theories predict accurate plate displacements as compared to the 3D elasticity solution,
with the refined theory achieving slightly more accurate predictions. The laminate G case is somewhat
pathological for Zigzag (D), because the solution in this case is only approximate and has not converged.
The deflections predicted by FSDT are generally overly stiff; however, they are expected to improve
substantially with the use of lamination-dependent shear correction factors. In Table 5, the range of
applicability of the various theories is examined by comparing the maximum (central) plate deflection
for a simply supported sandwich laminate B, where the solutions correspond to a span-to-thickness
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Laminate Normalization factor 3D elasticity FSDT Zigzag (D) Zigzag (R)
(102 D11q0a4)

A 8.147× 10−2 1.228 1.278 1.170 1.219
B 7.502× 10−2 29.761 2.731 29.769 29.785
F 5.444× 10−2 1.331 0.389 1.332 1.333
G 3.551× 10−2 14.124 1.055 12.734 14.105

Table 3. Normalized maximum (central) deflection, w̄ = (102 D11/q0a4)w(a/2, b/2),
for simply supported laminates subjected to sinusoidal transverse pressure loading.

Laminate Normalization factor 3D Elasticity FSDT Zigzag (D) Zigzag (R)
(103 D11/qoa4)

A 8.147× 10−1 4.233 4.152 3.855 4.251
B 7.502× 10−1 9.977 2.156 9.945 9.897
F 5.444× 10−1 0.643 0.796 0.646 0.649
G 3.551× 10−1 3.908 0.704 1.295 3.845

Table 4. Normalized maximum (top surface) displacement along the x1 axis
ū1 = (103 D11/qoa4)× u(N )1 (a, b/2, h) of simply supported laminates subjected to sinu-
soidal transverse pressure loading.

Span-to-thickness Normalization factor 3D Elasticity FSDT Zigzag (D) Zigzag (R)
ratio (102 D11/q0a4)

4 1.832× 10−1 42.420 3.739 42.124 42.189
10 4.668× 10−3 9.734 1.321 9.738 9.739
20 2.931× 10−4 3.487 0.948 3.489 3.490
50 7.502× 10−6 1.305 0.841 1.305 1.305

100 4.688× 10−7 0.945 0.826 0.945 0.945
200 2.931× 10−8 0.852 0.822 0.852 0.852

Table 5. Normalized maximum (central) deflection, w̄ = (102 D11/q0a4)w(a/2, b/2),
for simply supported laminate B subjected to sinusoidal transverse pressure loading and
corresponding to various span-to-thickness ratios.

ratio in the range 4–200. These results are also plotted in Figure 3. It is observed that both zigzag
theories predict accurate deflections for all span-to-thickness ratios examined, whereas FSDT is overly
stiff, especially in the thick regime, as expected. Even for a relatively thin laminate B (a/2h = 50), FSDT
underestimates the maximum deflection by about 36%, which means that a much more significant shear
correction factor would be required for FSDT for this type of laminate.

For the simply supported laminates, normalized through-the-thickness distributions for the in-plane
displacement, ū1=(104 D11/q0a4)u(k)1 (0, a/2, z), the normal stress, σ̄11≡(4h2/q0a2)× σ

(k)
11 (a/2, a/2, z),

and the transverse shear stress, τ̄1z ≡ (2h/q0a)τ (k)1z (0, a/2, z), are depicted in Figures 4–11.
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Figure 3. Normalized central deflection versus span-to-thickness ratio for simply sup-
ported laminate B subjected to sinusoidal transverse pressure (left); zoomed view (right).

For laminate A — an asymmetric cross-ply carbon-epoxy composite — the values of ū1 and σ̄11 are
accurately modeled by FSDT and the two zigzag theories (Figures 4 and 5), with Zigzag (D) producing
slightly underestimated displacement near the top surface. The major differences in results for this lam-
inate correspond to the τ̄1z distribution (Figure 5), where both FSDT and Zigzag (R) produce piecewise
constant stresses, whereas Zigzag (D) gives a uniform distribution for τ̄1z significantly less accurate
than the predictions of the other two theories. In addition, Zigzag (R) theory provides a more accurate
evaluation of the average transverse shear stress within each lamina than does FSDT. Also, the τ̄1z stress,
obtained by an equilibrium-based method, Zigzag (R-E), is best correlated with the 3D elasticity solution.

-1

-0.5

0

0.5

1

-5 -4 -3 -2 -1 0 1 2

3D Elasticity

FSDT

Zigzag (D)

Zigzag (R)

T
h

ic
k

n
es

s 
co

o
rd

in
at

e,
 z

 /
 h

(C, 0
o
)

(C, 90
o
)

Displacement, u 1 (0,a / 2,z)

-1

-0.5

0

0.5

1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

3D Elasticity

FSDT

Zigzag (D)

Zigzag (R)

T
h

ic
k

n
e
ss

 c
o

o
rd

in
a
te

, 
z
 /

 h

Stress, " 11(a / 2,a / 2,z)

(C, 0
o
)

(C, 90
o
)

Figure 4. Normalized in-plane displacement (left) and normal stress (right) for simply
supported laminate A subjected to sinusoidal transverse pressure.
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Figure 5. Normalized transverse shear stress for simply supported laminate A subjected
to sinusoidal transverse pressure.

The ū1, σ̄11, and τ̄1z results for sandwich panel B, which has constant-thickness carbon-epoxy face
sheets and a PVC core, are provided in Figures 6 and 7. For laminate B, the top and bottom-surface
values of the ū1 displacement are significantly underestimated by FSDT which is only capable of a
linear (average) distribution. Also, as shown in Figure 7, left, FSDT grossly underestimates the normal
stress σ̄11 on the bounding surfaces where the greatest compression and tension occur. By contrast,
Zigzag (R) yields accurate solutions of all response quantities examined. When the transverse shear
stresses are evaluated from the constitutive relations, the theory provides the correct average values
in the face sheets and in the core. Moreover, the equilibrium-based method, Zigzag (R-E), furnishes
superior transverse shear stresses that are virtually indistinguishable from those of 3D elasticity. An
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Figure 6. Normalized in-plane displacement for simply supported laminate B subjected
to sinusoidal transverse pressure.
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Figure 7. Normalized normal stress (left) and transverse shear stress (right) for simply
supported laminate B subjected to sinusoidal transverse pressure.

additional study evaluating the effect of face-sheet thinness in sandwich laminates on the distribution of
displacements and stresses through the thickness can be found in [Tessler et al. 2009].

The displacement and stress results for laminate F — a cross-ply sandwich with a lower degree of
anisotropy than laminate B — are depicted in Figures 8 and 9. For this laminate, the zigzag effect of the
in-plane displacement is somewhat less pronounced than for laminate B. As in the previous example,
Zigzag (R) yields highly accurate predictions of all response quantities. It is seen that FSDT provides
overestimated values for the in-plane displacement on the bounding surfaces. Also, it is evident from
Figure 9, left, that the integral of the shear stress over the thickness computed using the Zigzag (D)
transverse shear stress would result in a significantly greater value than the exact shear force.

Figure 8. Normalized in-plane displacement (left) and normal stress (right) for simply
supported laminate F subjected to sinusoidal transverse pressure.
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(a) (b)

Figure 9. Left: Normalized transverse shear stress for simply supported laminate F
subjected to sinusoidal transverse pressure. Right: detail near the top layer.

Figures 10 and 11 demonstrate the results for laminate G — an angle-ply antisymmetric sandwich
plate with multilayered face sheets. This is a highly challenging test case for any lamination theory. For
this lamination, only an approximate solution can be obtained for Zigzag (D), requiring a large number of
suitable shape functions to achieve a converged solution. Using the Rayleigh–Ritz method with the Gram–
Schmidt polynomials approximating the kinematic variables (see the details in [Tessler et al. 2009]), a
relatively inaccurate solution was obtained. Consequently, the Zigzag (D) results for the in-plane dis-
placement and normal stress (Figure 10) are somewhat erroneous. On the other hand, Zigzag (R) enables
an exact solution to be obtained for this problem, once again yielding highly accurate predictions of the

Figure 10. Normalized in-plane displacement (left) and normal stress (right) for simply
supported laminate G subjected to sinusoidal transverse pressure.



360 ALEXANDER TESSLER, MARCO DI SCIUVA AND MARCO GHERLONE

(a) (b)

Figure 11. (a) Normalized transverse shear stress for simply supported laminate G sub-
jected to sinusoidal transverse pressure; (b) near the top layer.

response quantities. As in the previous examples, FSDT models the in-plane displacement response only
in an average sense (a linear distribution through the thickness), leading to a significant underestimation
(a nonconservative prediction) of the normal stress in the face sheets. Figure 11 demonstrates the highly
accurate transverse shear stress obtained by the present theory, Zigzag (R), as compared to the other
plate-theory solutions.

To examine the effect of clamped boundary conditions, a square cantilevered laminate B under a
uniform transverse pressure was examined. Table 6 summarizes the maximum deflection calculated
using the three different theories and a 3D finite element solution that serves as a reference. The FSDT
deflection is underestimated by an order of magnitude. The two zigzag theories give accurate results,
with Zigzag (R) producing a somewhat superior deflection prediction.

For the cantilevered sandwich laminate B, normalized through-the-thickness distributions of the in-
plane displacement, ū1 = (104 D11/qoa4)u(k)1 (a, a/2, z), the normal stress,

σ̄11 = ((2h)2/q0a2)× σ
(k)
11 (a/5, a/2, z),

and the transverse shear stress, τ̄1z = (2h/q0a)× τ (k)1z (a/5, a/2, z), are provided in Figures 12 and 13.
The stresses were computed near the clamped edge (x1 = a/5, x2 = a/2) to allow for proper comparisons
with the accurate stresses obtained from the 3D FEM analysis. For this problem, both zigzag theories
produce accurate results; however, application of Zigzag (R) resulted in superior predictions of transverse

Normalization factor (102 D11/q0a4) 3D FEM FSDT Zigzag (D) Zigzag (R)

7.502× 10−2 246.778 25.351 244.077 245.615

Table 6. Normalized maximum (free-edge) deflection, w̄=(102 D11/q0a4)w(a/2, b/2),
for cantilevered laminate B subjected to uniform transverse pressure loading.
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Figure 12. Normalized in-plane displacement (left) and normal stress (right) for can-
tilevered laminate B subjected to uniform transverse pressure.

shear stresses. Finally, the normalized transverse shear force,

Q̄1 =
1

q0a

∫ h

−h
τ
(k)
1z dz,

evaluated at x2 = a/2, is plotted versus the normalized axial coordinate, x1/a, as shown in Figure 14.
For this problem, both FSDT and Zigzag (R) predict the correct linear distribution, yielding a maximum
value at the clamped edge and vanishing at the free edge. This contrasts with an erroneous Zigzag (D)
solution that varies in a nonlinear manner across the span and which vanishes at the clamped edge.

Figure 13. Normalized transverse shear stress for cantilevered laminate B subjected to
uniform transverse pressure.
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Figure 14. Normalized transverse shear force along centerline of cantilevered laminate
B subjected to uniform transverse pressure.

6. Conclusions

A variationally consistent and robust refined zigzag plate theory has been discussed and its predictive
capability examined on laminated-composite and sandwich plates that exhibit a high degree of transverse
shear flexibility, anisotropy, and heterogeneity. In this refined theory, a first-order shear deformation
theory is used as a baseline for the kinematic assumptions with a set of novel piecewise-continuous
zigzag displacements added to the in-plane displacement components. The resulting kinematic field is
independent of the number of material layers, and the zigzag displacements are defined by requiring
only partial lamina-interface continuity requirements of transverse shear stresses. The force equilibrium
equations, boundary conditions, and strain-displacement relations are completely consistent with respect
to the virtual work principle, and transverse shear correction factors are not required. The refined zigzag
theory is better suited for engineering practice than previous similar theories because of its relative
simplicity and its ability to model accurately the transverse shear and in-plane deformations of the indi-
vidual laminae in a physically realistic manner. Unlike other similar theories, meaningful in-plane and
transverse shear stresses are obtained directly from the constitutive equations, in a theoretically consistent
manner. The new theory is devoid of a major shortcoming of other similar theories; namely, the new
theory enables accurate modeling of clamped boundary conditions.

Results for several example problems were presented, highlighting the superior predictive capability
attainable with the present theory and its ability to model correctly clamped boundary conditions. The
critical quantitative assessment of the new theory, including analyses of highly heterogeneous sandwich
laminates in bending, revealed that this refined zigzag theory is more accurate than previous similar ones.

An additional and important benefit is that the new zigzag theory lends itself well to finite element
approximations. In particular, the theory is perfectly suited for the development of computationally
efficient, C0-continuous finite elements. Because of a wide applicability range that includes moderately
thick laminated-composite and sandwich structures, such finite elements would be highly desirable for
large-scale analyses and design studies of high-performance aerospace vehicles.
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Appendix: Plate stiffness coefficients

The stiffness coefficients in (22) are computed from the following expressions using the constitutive
coefficients given in (3):

• Matrix A≡
[
Ai j
]

(i, j = 1, . . . , 3), symmetric, 3× 3:

A≡
∫ h

−h
C dz.

• Matrix B ≡
[
Bi j
]

(i = 1, . . . , 3; j = 1, . . . , 7), nonsymmetric, 3× 7:

B ≡
∫ h

−h
C Bφ dz.

• Matrix D ≡
[
Di j
]

(i, j = 1, . . . , 7), symmetric, 7× 7:

D ≡
∫ h

−h
BT
φ C Bφ dz.

• Matrix G ≡
[
Gi j

]
(i, j = 1, . . . , 4), symmetric, 4× 4:

G ≡
∫ h

−h
BT
β Q Bβ dz,

where

C ≡

C11 C12 C16

C12 C22 C26

C16 C26 C66

(k), Bφ ≡

z φ
(k)
1 0 0 0 0 0

0 0 z φ
(k)
2 0 0 0

0 0 0 0 z φ
(k)
1 φ

(k)
2

 ,
Q ≡

[
Q22 Q12

Q12 Q11

](k)
, Bβ ≡

[
1 β

(k)
2 0 0

0 0 1 β
(k)
1

]
,

List of symbols

a, b Lateral dimensions of a rectangular plate.
2h Total plate (laminate) thickness.

2h(k) Thickness of the k-th material layer (lamina).
(x1, x2) Reference plate-coordinate axes positioned in the middle plane of the laminate.

z Thickness coordinate axis.
N Number of material layers (laminae) through the laminate thickness.

Sm Reference middle plane of the laminate.
Su , Sσ Parts of the cylindrical edge surface of the laminate where displacements and tractions are

prescribed, respectively.
C0 Denotes a continuous function whose first-order derivative is discontinuous.

Cu , Cσ Intersections of the cylindrical edge surfaces (Su , Sσ ) with the middle surface Sm where
displacements and traction resultants are prescribed, respectively.

s, n Unit outward tangential and normal vectors to the midplane boundary: see Figure 1.
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q Applied transverse pressure [force/length2]: see Figure 1.

T̄1, T̄2, T̄z Prescribed in-plane and transverse shear tractions: see (14).

u(k)1 , u(k)2 , uz In-plane and transverse components of the displacement vector in the k-th material layer:
see (1).

u, v, w,
θ1, θ2, ψ1, ψ2 Kinematic variables of the refined zigzag plate theory: see (1).

N1, N2, N12 Membrane stress resultants: see (16).

M1, M2, M12 Bending and twisting stress resultants: see (17).

Mφ
1 , Mφ

2 Bending stress resultants due to zigzag kinematics: see (17).

Mφ
12, Mφ

21 Twisting stress resultants due to zigzag kinematics: see (17).

Q1, Q2 Transverse shear stress resultants: see (18).

Qφ
1 , Qφ

2 Transverse shear stress resultants due to zigzag kinematics: see (18).

φ
(k)
1 , φ

(k)
2 Zigzag functions: see (1).

β
(k)
1 , β

(k)
2 Derivatives of zigzag functions with respect to the thickness coordinate: see (2b).

ξ (k) Dimensionless thickness coordinates of the k-th layer (lamina): see (5).

z(k) Thickness coordinate of the interface between the k-th and (k+1)-st layers: see Figure 1.

u(k), v(k) Dimensionless in-plane displacements along the interface between the k-th and (k+1)-th
layers: see Figure 2.

ε
(k)
11 , ε(k)22 In-plane in the k-th layer: see (3).

γ
(k)
12 , γ (k)2z , γ (k)1z Transverse strains in the k-th layer: see (3).

γ1, γ2 Average shear strains: see (2a) and (9).

η1, η2 Transverse shear strain measures: see (11).

ψ1, ψ2 Zigzag amplitude functions: see (1).

σ
(k)
11 , σ (k)22 Normal stresses in the k-th layer: see (3).

τ
(k)
12 , τ (k)2z , τ (k)1z Transverse stresses in the k-th layer: see (3).

E (k)i Young’s moduli of the k-th layer: see Table 1.

G(k)
i j Shear moduli of the k-th layer: see Table 1.

ν
(k)
i j Poisson’s ratios of the k-th layer: see Table 1.

Ai j , Bi j ,
Di j ,Gi j Constitutive stiffness coefficients: see (22).

C (k)
i j , Q(k)

pq In-plane and transverse shear elastic stiffness coefficients for the k-th layer: see (3).

G1,G2 Weighted-average, laminate-dependent transverse shear constants: see (12b).

δ Variational operator: see (9).
∂
∂xα

or ( · ),α Partial differentiation.

k2 Shear correction factor for FSDT.
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