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The concept of a bistable structure as an energy absorbing structure is presented. A bistable structure
is capable of distributing damage throughout the whole body, thus increasing the amount of energy
dissipation. Using this concept, a helicoidal bistable structure is developed. We investigate a structure in
which a helicoidal orthotropic shell envelops a solid cylinder. The center core of the structure is treated
as a linear-elastic isotropic material. Numerical simulations of damage (breakages) are performed under
static loads, and the force-displacement relation is obtained as a result. As an energy absorbing structure,
the helicoidal bistable structure can absorb more energy than a conventional structure before it fails.
The helicoidal bistable structure can be designed to sustain a small elongation while still being able
to release energy effectively. The additional twisting degrees of freedom correspond to the additional
energy released in the process of elongation.

1. Introduction

The total fracture energy is an important consideration when determining the ability of a structure to
withstand dynamic loading. In most structures, however, localized yielding occurs at a particular location
such that the total energy associated with a fracture in the structure is relatively small.

Bistable structures allow an increase in the total fracture energy. In a bistable structure there are
redundant localized load paths, so that when one load path yields and subsequently fails, the remaining
load paths can carry the load, preserving structural integrity. A bistable structure can be developed by
forming a chain of bistable structural elements such that multiple regions of the structure may exhibit
yielding behavior prior to ultimate structural failure. In other words, yielding is delocalized, occurring
in a larger fraction of the structure.

The analytical solution to the dynamic loading of a chain of bistable structural elements was first
proposed by Slepyan and Troyankina [1984; 1988]. This dynamic yielding model was later extended
by Balk et al. [2001a; 2001b] to the case of reversible two-phase chains of bistable structural elements.
The dynamic response of elastic-brittle bistable structures was also studied by Cherkaev et al. [2005;
2005]. The response of chains of bistable structural elements under quasistatic and dynamic loading was
investigated by Cherkaev and Zhornitskaya [2003]. The numerical results obtained showed that a chain
of bistable links can withstand impact energy levels that are several times larger than for a conventional
chain without bistable behavior.

A special structural design using a “waiting element” [Cherkaev and Slepyan 1995] has been used to
increase stability. Waiting elements are parts of the structure that are initially not active and which remain
nonactive until the strain becomes sufficiently large. Each link in the chain transitions from the lower

Keywords: bistable structure, helicoidal composites, energy absorption, damage.

305

http://www.jomms.org
http://dx.doi.org/10.2140/jomms.2010.5-2


306 SEUBPONG LEELAVANICHKUL, ANDREJ CHERKAEV, DANIEL O. ADAMS AND FLORIAN SOLZBACHER

strain state to the higher strain state, which produces a transition wave that propagates along the chain.
Unlike conventional structures, in which the strain is concentrated near the impact zone, a structure with
waiting elements distributes the strain over a larger area. Cherkaev et al. [2006] showed that by using
an elastic-plastic material in the redundant load path, or waiting element, the cross sectional area of this
portion could be made significantly smaller than the main load path, or main element, because an elastic-
plastic material can sustain larger deformations beyond the material yield strength. An elastic-brittle
material, on the other hand, fails once the yield strength is reached. This concept was also explored
experimentally by Whitman and La Saponara [2007a; 2007b].

The bistable structure presented in our previous work [Cherkaev et al. 2006] (see Figure 1) requires
that the waiting element (waiting link) be sufficiently long to remain inactive upon initial loading. How-
ever, more space is needed as the waiting element becomes longer and more curved. In this paper, we
investigate another configuration, a helicoid, which remedies the spacing issue faced in our previous
work. A bistable response under extension can be achieved similar to that of the matrix fracturing in the
composite described by Slepyan et al. [2000].

Note on terminology. In this work, we will use the term strip (rather than the earlier “link” or “element”)
to mean each of the two components of a bistable link: the main strip and the waiting strip. A bistable
structure is a chain of bistable links.

Consider a helicoidal bistable link consisting of a main strip and a waiting strip, as in Figure 2. The
center core, a solid cylinder, is treated as the main strip, and is made of an isotropic material. The outer
layer serves as the waiting strip, and consists of an orthotropic material having its primary direction of
orthotropy spiraling about the main strip (central core). By enveloping the inner cylinder in a helicoidal
anisotropic shell, the structure maintains symmetry about its cylindrical axis.

Under an axial tensile load, both components of the helicoidal bistable link elongate until the main
strip yields. As yielding continues, an increasing portion of the applied load is transferred to the outer
helicoidal waiting strip. This paper investigates the energy absorption concept of a bistable structure
using a simplified model where the central main strip exhibits linear elastic material behavior to failure
(brittle failure). The outer helicoidal waiting strip is assumed to remain nonactive (unloaded) until the

Main link 

Waiting link 

Figure 1. Left: A chain of bistable structures and their damage process. Gray regions
represent the undamaged main strips. The broken main strips are shown in white. Right:
A bistable structure with a symmetric waiting element.
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Figure 2. Representative model of a helicoidal bistable structure.

inner main strip fails in a brittle manner. Thus, for a chain of bistable links, each link transitions from a
lower strain state to a higher strain state as the main strip (inner cylinder) fails. The main strip produces
a transition wave that propagates along the chain. Unlike conventional structures, in which the strain is
concentrated near the impact zone, a structure with a waiting strip distributes the strain over a large area.

The outline of this paper is as follows. First, the analytical solutions to the displacements and stresses
are computed using the theory of elasticity. The process by which the main strip breaks and the wait-
ing strip becomes active to maintain the structural stability is demonstrated using finite elements. The
analytical solutions to the displacements and stresses are used to develop an equivalent one-dimensional
discrete model. Three case studies are considered: a single bistable link, a chain of bistable links with
sequential breakages of the main strip in each link, and a chain of bistable links with random breakages
of the main strip in each link.

2. Modeling of a helicoidal bistable structure

To investigate the force-displacement relationship of an individual helicoidal bistable link, a displacement
field corresponding to a given applied load is determined from a generalized theory of linear anisotropic
elasticity as described in [Lekhnitskii 1981; Leelavanichkul and Cherkaev 2009]. The main strip is made
of an isotropic material, while the waiting strip is made of an orthotropic material with its main axis of
orthotropy oriented at an angle φ, as shown in Figure 3.

2A. Linear elasticity solution. The structure shown in Figure 3 possesses cylindrical anisotropy; hence,
it is more desirable to determine the solution in cylindrical coordinates. The detailed formulation of the
solution is given in [Leelavanichkul and Cherkaev 2009]. In three-dimensional stress analysis, stresses
and strains are related via Hooke’s law in cylindrical coordinates as

σrr

σθθ
σzz

σθ z

σr z

σrθ


=



c11 c12 c13 c14 0 0
c21 c22 c23 c24 0 0
c31 c32 c33 c34 0 0
c41 c42 c43 c44 0 0
0 0 0 0 c55 c56

0 0 0 0 c65 c66





εrr

εθθ
εzz

εθ z

εr z

εrθ


. (2-1)
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Figure 3. Helicoidal structure and its coordinate system.

Replacing the strains in (2-1) using the strain-displacement relationship
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(2-2)

and substituting into the equilibrium equations
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r
∂
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(rσrr )+

1
r
∂
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∂
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σθθ
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∂
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∂
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(2-3)

we obtain the solution to the main strip as

u = C1r, v =2r z, w = Cz, (2-4)

and the solution to the waiting strip as

U(r, θ)=C1r k
+C−k

2 −c11m1r2
−4c11m2r+m1c22r2

+m2c22r, V(r, θ)=2r z, W(r, θ)=zC, (2-5)

where

k =
√

c22
c11
, m1 =

22
(
c14−

1
2 c24

)
(c22− c11)(c22− 4c11)

, m2 =
C(c13− c23)

(c22− c11)(c22− 4c11)
.
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The unknown constants C , 2, C1, and C2 can be found using the boundary conditions

σr
∣∣
r1
= σr

∣∣
r2
, τθ z

∣∣
r1
= τθ z

∣∣
r2
, τr z
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r1
= τr z

∣∣
r2
, τrθ

∣∣
r1
= τrθ

∣∣
r2
,

u(r, θ)
∣∣
r1
= u(r, θ)

∣∣
r2
, v(r, θ)

∣∣
r1
= v(r, θ)

∣∣
r2
, w(r, θ)

∣∣
r1
= w(r, θ)

∣∣
r2
,

(2-6)

and the end conditions ∫ r2

0

∫ 2π

0
σzzisordr +

∫ r2

r1

∫ 2π

0
σzzanisordr = P, (2-7)∫ r2

0

∫ 2π

0
σθ zisor

2dr +
∫ r2

r1

∫ 2π

0
σθ zanisor

2dr = 0, (2-8)

where r1 is the radius of the main strip and r2 is the outer radius of the waiting strip. Once all the
unknown constants are determined, Equations (2-4) and (2-5) can be substituted into (2-2) to obtain the
strains, after which the stresses can be computed using (2-1).

2B. Simulation of breakages using the finite element method. While analytical solutions to the dis-
placements and stresses of the undamaged link are obtained from the theory of anisotropic elasticity,
we investigate the breakages of the main strip using the finite element method. Our analytical solution
gives stresses based on the assumption that the strains do not vary along the structure’s generator. Hence,
the solution obtained cannot describe how stresses are distributed along the longitudinal direction of the
structure when the length of the structure is finite or when there is a boundary effect from a discontinuity.
A single breakage in a bistable link is simulated to show the effect that the spiraling angle φ (see Figure 3)
has on the force-displacement relationship. Then, a simulation where multiple breakages occur is per-
formed to determine the minimum length of each link such that stress interactions due to breakages of the
main strips are minimal. Notice that for simplicity we do not consider stress interactions in neighboring
breakage points, and we assume that the failure occurs only in the main strips.

To simulate the failure of the main strip, two load steps are used. The first load step is applied to the
point where failure of the main strip occurs. The second load step begins following the localized failure
of the main strip. Each of these two load steps consists of several substeps that discretely update the
stiffness matrix.

Example 2.1: Numerical simulation of a breakage in the main strip. A three-dimensional finite element
model of the structure is used and its undamaged model is verified with an analytical solution as shown
in Figure 4. For demonstration purposes, we consider a bistable structure made from materials with the
following properties:

• The main strip’s isotropic material has a shear modulus of 25.51 GPa and a Poisson’s ratio of 0.35.

• The waiting strip is modeled using an anisotropic material having a helicoidal fiber orientation and
the following material properties:

Parameter E11 = E22 E33 G23 = G13 G12 ν23 = ν13 ν12

Value 7.591 GPa 139.348 GPa 3.789 GPa 2.782 GPa 0.0178 0.364
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Figure 4. Verification of the finite element model.

• The radius of the inner cylinder is 6.35 mm and the thickness of the outer shell is 1.59 mm. Only
axial tensile loading is considered.

The force versus displacement response for a range of fiber angles in the helicoidal waiting strip
is shown in Figure 5. The effect of the main strip breakage (produced at an applied displacement of
0.127 mm) increases as the fiber angle increases. As the fiber angle increases, the axial stiffness of the
waiting strip decreases as evidenced by the decreasing slope in Figure 5. This behavior is desirable in
order to achieve the desired bistable response.

Figure 5. Force-displacement of the bistable model with a single damage. The force is
normalized by the maximum force when the displacement is 0.254 mm.
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Ideally, the waiting strip should have no effect on the structural response until the main strip fails. At
lower fiber angles, the waiting strip becomes stiffer and requires a higher applied load to achieve the same
axial displacement. The dips in the curves shown in Figure 5 represent the amount of energy dissipated
as a result of the main strip breakage. Hence, less energy is dissipated when the spiraling angle is small.

Example 2.2: Stress distribution around the broken area of the main strip. The stress field near the
broken area in the main strip is investigated in this example to determine the stress distribution when
three-dimensional effects are considered. When more than one damage point is expected, the distance
between each damage point must be determined such that the stresses in the neighborhoods of these
points do not interact with each other. The objective of this part is to determine the most basic condition
which simplifies the analysis of the breakage; namely, to avoid any complication of the stress riser due
to the finite region. We investigate the distribution of the stresses near the broken area in the main strip.
Using the model discussed in the previous section, the von Mises stresses of each variation of the angle
of orthotropy and applied loads are computed for the main strip material and shown in Figure 6.

The stresses shown in these figures are normalized to their corresponding maximum stress values.
Roughly, three groups of stress results can be seen in these figures. They represent when the fiber angles
are 10◦, 30◦, and ≥ 50◦. Each line within each group represents the result for a different magnitude of
the applied load. These figures illustrate that the interval of the high stress concentration x0 does not
depend on the magnitude of the applied load nor the spiraling angle. For the structural configuration in
Example 2.1, x0 is approximately 12.7 mm.

When there are multiple locations of the damage, as shown in Figures 7 and 8, the interactions of
the concentrated stresses are still minimal as long as the broken locations take place 25.4 mm from each
other. Here, breakages are introduced to seven locations simultaneously, 50.8 mm apart from each other.
One can see that the distribution of stresses around the breakages has the same characteristics, and they
do not interact with one another.

Next, the effect due to the change of the radius ri of the main strip is investigated, with the total
cross-sectional area of the structure held constant.

Figure 6. Normalized von Mises stress around the breakage.
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Figure 7. Stress distribution when the breakage locations are 50.8 mm apart (60◦).

Figure 8. Contour plot of normalized von Mises stress in the main link when the break-
age locations are 50.8 mm apart. Darker (blue) areas correspond to values near 0 and
lighter areas to values near 0.3.

Example 2.3: Effect of changes in the radii of the main strip and waiting strip. The normalized von
Mises stress in the center core is shown in Figure 9, top. The legends there represent the ratio between
the radii of the waiting strip and the main strip, ro/ri . The pattern of stress distributions cannot be
obtained from these plots due to the fluctuation of the stresses. The fluctuation of the von Mises stress
becomes more visible at lower ro/ri ratios. These oscillations are the result of the approximation of the
element stress. However, the differences in the magnitudes between peaks are reduced, but remain, as the
number of elements is increased while the results converge. Each period of the oscillation corresponds
to the length of the element, which 5.08 mm.

To further investigate the distribution of the stresses, two more scenarios are investigated. The first
occurs when the main strip’s radius remains fixed 6.35 mm and the radius of the waiting strip is varied.
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Figure 9. Stress distribution around the breakage in the main link. Top: ri is varied
while ro remains at 7.94 mm. Middle: ro is varied while ri remains at 6.35 mm. Bottom:
ri and ro are varied while the thickness of the waiting link is held at 1.59 mm.

The second case occurs when the thickness of the waiting strip is fixed at 1.59 mm and the radius of the
main strip is varied. Results for these two cases are shown in the last two parts of Figure 9.

These results show that the stress distribution depends greatly on the ratio of the inner and outer radii
of the spiraling layer, ro/ri . For the specific model having the properties as given in Example 2.1, the
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Figure 10. One-dimensional structural model.

range of x0 values from three-dimensional analysis is 25.4 mm. This value, however, may change as the
geometry of the structure varies. To maintain our focus on the bistable structure and its energy absorption
capabilities, we did not analyze further the three-dimensional stress effect.

3. One-dimensional models

Since the deformations of the structure considered in this paper are symmetric about a cylindrical axis,
this structure can be represented by a one-dimensional model. It is convenient to replace the three-
dimensional cylinder with a link. The helicoidal symmetry results in a coupling between a rotation about
the axis and the elongation as shown in Figure 10.

3A. One-dimensional structural model. A one-dimensional structural element is developed based on
the formulation given in [Leelavanichkul and Cherkaev 2009], where an elongation is coupled to a
rotation. Linkages are useful in describing the physics of a larger structure assembled from multiple links
where the displacement and reactions at their ends are of major interest. We obtain the stiffness matrix k
relating the force P and moment M at the element ends to the elongation and the rotation about the θ -axis:

f = ku or
{

P
M

}
=

[
k1 k2

k4 k3

]{
u
θ

}
. (3-1)

The quantities of interest are the stiffness constants k1, k2, k3, and k4. Without losing generality, one can
assume that k4 = k2. Using the displacements, which are given by (2-4) and (2-5), at two measures of
the loads P and M , the stiffness k constants can be determined [Leelavanichkul and Cherkaev 2009].

Example 3.1: Illustration of the varying stiffnesses as function of angle φ. The stiffness values of the
equivalent one-dimensional model of the structure given in Example 2.1 are illustrated in Figure 11.
These plots demonstrate how the stiffness values vary with the spiral angle. The values of the stiffness
also vary linearly with the load P and the length L of the three-dimensional model. Despite having only
an axial load applied, the stiffness constants k2 and k3 generate rotation as the structure is stretched. We
realize that the effect of the coupling increases the energy release capability while the elongation remains
the same. The additional twisting degrees of freedom correspond to additional energy released in the
process of elongation.

3B. Finite element model: formulation of the stiffness matrix. A single element, as shown in Figure 12,
used in the finite element model can be constructed based on the one-dimensional structural model given
in the previous section including both elongation and rotational degrees of freedom. When the structure
is subjected to an axial load, the force-displacement relation is governed by

F = K (u)u,
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Figure 11. Stiffnesses of the one-dimensional model (normalized by the maximum
value of k1).

where

K (u)=
{

K1 if σe ≤ σY ,

K2 otherwise,
and σe and σY represent the stress in the element and the main strip yield stress, respectively. The stiffness
matrix K1 is the total stiffness of the bistable structure and the stiffness matrix K2 is the stiffness of the
waiting strip only. The axial deformation is coupled with the rotation about the generator; see Figure 12.

Thus, the deformations are represented by

δ = d̂2x − d̂1x , γ = φ̂2x − φ̂1x , (3-2)

where δ and γ are the elongation and rotation, respectively. The local axial displacement is represented
by d̂ while the nodal rotation is represented by φ̂. The force-displacement relationship is expressed as

P = k1δ+ k2γ, M = k2δ+ k3γ, (3-3)

where P and M are the axial and torsional loads, respectively. The quantities k1, k2, and k3 are the
stiffness constants. Substituting (3-2) into (3-3), we have

P = k1(d̂2x − d̂1x)+ k2(φ̂2x − φ̂1x), M = k2(d̂2x − d̂1x)+ k3(φ̂2x − φ̂1x). (3-4)

Figure 12. One-dimensional structural element.
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By the sign convention for the nodal forces and equilibrium,

f̂1x =−P, f̂2x = P, m̂1x = M, m̂2x =−M. (3-5)

Substituting (3-4) into (3-5), the following system is constructed:
f̂1x

m̂1x

f̂2x

m̂2x

=


k1 k2 −k1 −k2

k2 k3 −k2 −k3

−k1 −k2 k1 k2

−k2 −k3 k2 k3




d̂1x

φ̂1x

d̂2x

φ̂2x

 . (3-6)

Hence, the element stiffness matrix is defined as

K̂ =


k1 k2 −k1 −k2

k2 k3 −k2 −k3

−k1 −k2 k1 k2

−k2 −k3 k2 k3

 , (3-7)

where k1, k2, and k3 are the values calculated from the one-dimensional structural model as discussed in
Section 3.

Two breakage scenarios are investigated: a sequential breakage and a random breakage. Both scenarios
are demonstrated in this paper using numerical examples based on the formulation discussed above.
Considering the structure given in Example 2.1, breakages of the main strip are assumed to occur at
50.8 mm intervals for this particular example to avoid interaction of concentrated stresses [Leelavanichkul
2007].

Example 3.2: Sequential breakages. For the case of sequential breakage of the main strip (central core),
each new breakage occurs adjacent to the previous one. The location of the new core breakage is assumed
to be 50.8 mm from the preceding core breakage as shown in Figure 13 (2x0 = 50.8). The objective of
this analysis is to determine the total energy absorption during the sequence of core breakages.

The material of the main strip is assumed to return to its unloaded state after a breakage occurs. The
stiffness K (u) of the damaged link is updated with the new values K2 obtained from the computation
of the one-dimensional structural model. We treat the main strip as an elastic-brittle material, therefore,
the von Mises failure criterion is chosen to determine when the failure of the main strip occurred. Axial

Figure 13. Representative model of sequential breakages.
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Figure 14. Force-displacement diagram for three sequential core breakages of a 254 mm
axially loaded chain consisting of twenty links.

and shear stresses are determined separately using the nodal displacements,

σx = Eεx = E du
dx
=

E
L
(d̂2x − d̂2x), τxy = Gγxy =

Gr
L
(φ̂2x − φ̂2x). (3-8)

The applied load is increased until the material yield strength is met:

σe =

√
σ 2

1 − σ1σ2+ σ
2
2 ≤ σY , (3-9)

where σe is the element von Mises stress and σY is the material yield stress. The principal stresses σ1

and σ2 are expressed as
σ1,2 =

σx
2
±

√(
σx
2

)2
+ τ 2

xy . (3-10)

The force versus displacement response for the sequential breakage of a chain composed of four helicoidal
bistable structures, each with a waiting strip having a fiber angle of 60◦, is illustrated in Figure 14. Three
main strip breakages take place in the chain (represented by vertical lines in the figure). Each time
a breakage occurs, the overall stiffness of the structure is reduced and an increase in displacement is
required for the next breakage to occur. The total strain energy of 31 J is required to produce three
breakages for the chosen materials and specimen geometry.

Due to the anisotropy of the waiting strips, the conventional maximum strength criterion for isotropic
materials gives a poor prediction of the failure. We use the Tsai–Hill failure criterion to determine
whether the outer helicoidal layer fails:(

σ1
σ1u

)2
+

(
σ2
σ2u

)2
−
σ1σ2

σ 2
1u

+

(
τ12
τ12u

)2
< 1. (3-11)

When the left side is reaches or exceeds 1, failure is predicted. For an angle of 60◦, the predicted values
are approximately 0.2 and 0.45 at the outer and inner surfaces, respectively, of the helicoidal layer.
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Figure 15. Representative model of random breakages.

The Tsai–Hill failure criterion does not distinguish between tensile and compressive failures, but is
sufficient for our goal. The waiting strip becomes active only after the main strip fails. The nature of the
main strip failure is not considered here. Axial and shear stresses computed in the element are used in
the Tsai–Hill failure criterion.

Example 3.3: Random breakages. The breakages of the main strip may not necessarily occur sequen-
tially. For nonsequential breakages, the same requirement for the spacing (50.8 mm) between the main
strip breakages as in the sequential analysis is imposed. As shown in Figure 15, the spacing x0 can
become as large as 101.6 mm for the same structure used in the previous section.

Consider a vector A containing elements 1 to n, [e1, e2, e3, . . . , en], as shown in Figure 16. The
random breakages are assumed to be uniformly distributed over the interval [1, n]. Each time an element
is selected, the load is incrementally applied and the von Mises stress is computed. Once the yield
strength of the selected element is reached, that element is presumed to have failed. The elements within
the range 25.4 mm to the left and to the right of the broken element are then removed from the vector A.
The next randomly selected element is taken from the new updated A. The process is repeated until no
elements are left in the updated vector A.

Using the stiffness matrix formulated in Section 3, the resulting force versus displacement response
is presented in Figure 17 for the case when three breakages occur before the chain of consisting of
four bistable structures completely fails. The main strip (inner core) breakages occur at the following
positions from the fixed end: 145 mm, 66 mm, and finally 201 mm. Despite the random sequence of main
strip breakages, the same force-displacement diagram is produced as for the case of sequential breakages.

Figure 16. Elements as components of vector A.
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Figure 17. Force-displacement diagram for random breakages: three breakages (left)
and two breakages (right).

The total strain energy required to produce three random breakages, 31.0 J, is also the same as for the
case of sequential breakages.

The results presented in Figures 14 and 17 show that the order in which the core breakages occur does
not affect the force versus displacement response of the structure. Thus, the amount of energy absorbed
depends only on the number of the breakages — since the same amount of strain energy per unit volume
is required to break the helicoidal main strip.

A comparison of the energy absorbed by the structure in this investigation to a conventional structure
of the same size and geometry made of only isotropic material is presented here:

Conventional structure 7.74 J
Bistable structure (sequential) 31.0 J
Bistable structure (random) 24.0–31.0 J

Figure 18. Comparison of force-displacement relation between one- and three-
dimensional models. The results show good agreement for small deformations.
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A comparison of the force-displacement relation between the two models is shown in Figure 18.
This comparison illustrates that the simplified one-dimensional model gives an approximation of the
force-displacement relation close to that of the three-dimensional model only when the deformation
is sufficiently small. The advantage of the one-dimensional finite element model is the relatively low
number of elements required in comparison to the three-dimensional model. Hence, the computational
time is reduced significantly, which is extremely beneficial to the design, optimization, and concept
development process.

4. Conclusion

A helicoidal bistable structure is proposed and its energy absorption behavior studied. In comparison
with the earlier bistable structure studied in [Cherkaev et al. 2006], the helicoidal bistable structure allows
for a longer waiting inactive time relative to the additional spacing required, It can also be designed to
sustain a smaller elongation for the same energy release. The additional twisting degrees of freedom
correspond to the additional energy released in the process of elongation.

A one-dimensional model is formulated for numerical simulations of a linear chain of helicoidal
bistable links. The location where the breakages occur does not affect the amount of the energy absorbed.
Comparison of the force-displacement relations shows that the one-dimensional model gives a good
approximation of the three-dimensional model when the deformation is sufficiently small. The helicoidal
bistable structure can absorb more energy, in comparison to the conventional structure, by distributing
the damage along its length.
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