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CHAOTIC VIBRATIONS IN A DAMAGE OSCILLATOR
WITH CRACK CLOSURE EFFECT

NOËL CHALLAMEL AND GILLES PIJAUDIER-CABOT

This paper deals with the dynamics of a single-degree-of-freedom unilateral damage oscillator. Using
appropriate internal variables, the hysteretic dynamic system can be written as a nonsmooth autonomous
system. The free dynamics of such a nonlinear system are simply reduced to periodic motion, eventually
attractive trajectories, and divergent motion. The direct Lyapunov method is used to investigate the
stability of the free damage system. A critical energy is highlighted that the oscillator can support while
remaining stable. The natural frequency of the periodic motion depends on the stationary value of the
damage internal variable. The inelastic forced oscillator, however, can exhibit very complex phenomena.
When the damage parameter remains stationary, the dynamics are similar to those of an elastic oscillator
with nonsymmetric stiffness. The dynamics appear to be controlled by the initial perturbations. Chaotic
motions may appear in such a system, specifically for severely damaged oscillators. It is numerically
shown that chaos is observed in the vicinity of the divergence zone (the collapse). This closeness of
both behaviors — chaos and divergence — is probably related to the perturbation of the homoclinic orbit
associated with the critical energy.

1. Introduction

Design procedures are becoming more and more oriented towards failure modes and structural ductility
control. Modern building codes aim at incorporating basic characteristics that result from the nonlinear
analysis of structures. In the case of seismic analysis, knowledge of the basic dynamics of inelastic sys-
tems (plastic or damageable systems) is among the main objectives. This is however quite an open issue
because these models are nonsmooth dissipative systems and very few results have been established in
this particular case [Wiercigroch 2000; Awrejcewicz and Lamarque 2003]. Although concrete structures
are inelastic multiple-degree of freedom (DOF) systems, their dynamics are so complex that there is still
room for use of a simple approach, based on single-DOF inelastic oscillators, in order to investigate and to
illustrate their basic characteristics. The inelastic response of concrete structures is due to several causes:
material nonlinearities, geometrical effects, interface, friction and contact problems, and others. Within
the framework of a single-DOF inelastic oscillator, the influence of each source of nonlinearity on its
dynamic response may be considered separately, its effect being investigated analytically or numerically.
Here we consider material nonlinearities only with two consequences: a nonlinear softening response
and a damage deactivation effect related to crack closure.

Up to now, most studies have been devoted to plastic oscillators. The pioneer analytical work of
Caughey [1960] uses an equivalent asymptotic method to approximate the response of a plastic-kinematic

Keywords: damage oscillator, nonlinear dynamics, seismic design, concrete structures, chaos, unilateral effect, crack closure,
breathing crack, bimodular material.
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hardening oscillator loaded by a harmonic signal. Periodic motion has been found using numerical sim-
ulations of such a plastic oscillator, as in [Savi and Pacheco 1997]; see also [Challamel and Gilles 2007;
Challamel et al. 2007; 2008] for the case of perfect plasticity. Limit cycles have been highlighted for the
free undamped kinematic-hardening system [Pratap et al. 1994]. The same oscillator forced by a periodic
load shows very rich phenomena in dynamics, and sometimes chaotic motion [Pratap and Holmes 1995].
The inelastic response of such a single-DOF oscillator results from a material nonlinear, plastic, response.
Coupling with geometrical nonlinearities also leads to chaotic motion [Poddar et al. 1988]. Without being
exhaustive, let us mention also that chaos may appear in a Bouc–Wen hysteretic oscillator [Lacarbonara
and Vestroni 2003; Awrejcewicz et al. 2008]. It has to be pointed out that these material sources of
nonlinearities are mainly investigated from a theoretical point of view, and very few papers have been
devoted to the experimental evidence of chaos in these nonsmooth oscillators. [Wiercigroch and Sin
1988] can be cited for extensive experimental investigations on nonsmooth oscillators with piecewise
linear restoring forces. [Ing et al. 2008] is also an experimental contribution on an impact oscillator
with a one-sided elastic constraint. To the authors’ knowledge, no paper has been published on the
experimental study of nonlinear dynamics of forced damage oscillators.

Material damage is a degradation of the elastic stiffness in the oscillator due to microcracking which
may become important [Aschheim and Black 1999; Williamson and Hjelmstad 2001]. The free dynamics
of a damage oscillator exhibit a stationary periodic motion in a given perturbation domain [Challamel
and Pijaudier-Cabot 2004]. The dynamics of a forced damage oscillator (without the crack closure effect)
has been studied by DeSimone et al. [2001].

During the loading history, and more specifically for alternated loads, micro and macrocracks may
open and close. Crack closure and contact conditions on the crack faces induce a characteristic response
called the unilateral material response, which depends on the sign of the applied stresses: cracking
and damage affect the material response in tension whereas the compression response remains elastic
(see [Ortiz 1985; Mazars et al. 1990] or more recently [Challamel et al. 2005] for a discussion of this
phenomenon in the framework of damage mechanics). In the case of crack closure, which induces
typically some additional discontinuity in the response of the nonlinear single-DOF oscillator, chaotic
responses have been found by investigating the solutions of the equations of motion in each subspace
and gluing them together [Wiercigroch 2000]. Foong et al. [2003; 2007] compared experiments on a
fatigue-testing rig involving crack closure effects to a numerical model of a bending cracked beam which
exhibited chaos. Carpinteri and Pugno [2005a; 2005b] investigated the specific role of the breathing
crack (the crack closure effect) on the response of a cracked cantilever beam (from an experimental and
numerical point of view). They observed the period doubling bifurcation.

The objective of the present study is to investigate the dynamics of a nonlinear damage oscillator with
nonsymmetric stiffness due to crack closure. The discontinuity induced by crack closure is taken into
account in the model, unlike in the results of [DeSimone et al. 2001; Challamel and Pijaudier-Cabot 2004].
Compared to fracture mechanics, an advantage of continuous damage is that it folds microcracking, crack
initiation (localization of damage), and crack propagation into a single framework [Mazars and Pijaudier-
Cabot 1996]. As we will see further, the dissipative response of the oscillator can be introduced quite
easily into a stability analysis, in addition to the nonsmooth character of the oscillator due to crack closure.
We wish to investigate the influence of the degradation of the elastic properties of an oscillator due to
(micro) cracking and damage deactivation due to crack closure at the same time within this rather general
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framework which has become popular in structural analyses of failure (see for example the review by
Baz̆ant and Jirásek [2002]). Section 2 presents the basic equations. The free vibrations and the forced
vibrations of the oscillator are discussed in the subsequent sections.

2. The general system

    ( )D,U,U &  

K0,KT,F+ M 

F0 cosΩΩΩΩt 

Y

0

+
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Consider the simple system shown on the right. A mass
M is attached to a damage spring. The inelastic system
is loaded by an external harmonic force. This oscillator is
characterized by the displacement U , the velocity U̇ , and
an additional internal variable characterizing the inelastic
damage process. This damage variable, classically denoted
by D, encodes the effect of microcracking in the spring of
the oscillator in tension. It varies between 0 (the initial virgin state) and 1 (at failure). The damage law
is schematized in Figure 1. Concrete, like many other geomaterials, has a nonsymmetric response in
traction and compression. In tension, linear softening is assumed. This law depends on three parameters:
the initial stiffness K0, the tangent stiffness KT in the postpeak regime, which rules the damage evolution,
and the maximum force F+. In the case of a softening process such as is considered in this paper, the
tangent stiffness is negative (KT ≤ 0). It is assumed that concrete remains elastic in compression. Load
levels where some nonlinear response is observed in compression are very high compared to tension and
will not be considered for simplicity. The material response is unilateral, with a discontinuous stiffness
upon the change of sign of the stress.

The material parameters of the model may be easily expressed in terms of characteristic displacements:
UY is the maximum displacement of the initial elastic domain, and U f is the displacement at failure,
defined as

UY =
F+

K0
,

U f

UY
= 1− K0

KT
. (1)

UY 

 K0 

 F 

F+ 

O 

 U 

 KT 

Uf 

Figure 1. Damage incremental law for the inelastic spring.
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In the meantime, the softening damage process can be characterized by one of the two dimensionless
parameters u f or κ2:

u f =
U f

UY
, κ2

=−
KT
K0

⇒ u f = 1+
1
κ2 . (2)

The damage variable D can directly be expressed in terms of a memory variable V , defined as

V (t)=maxt U (t), (3)

and the relation between D and V is given by

D =
〈
1+ KT

K0

〈
−1− K0−KT

KT

UY
V

〉〉
, where 〈x〉 =

{
x if x ≥ 0,
0 if x < 0.

(4)

It is easy to verify that the rate of damage is necessarily positive:

Ḋ ≥ 0, (5)

and the classical thermodynamic inequality prescribing the positiveness of the damage dissipation rate
of such scalar damage model is recovered.

Three dynamical states can be distinguished. These three states correspond to a reversible state (or
elastic state) in the tension domain Ê+, a reversible state in the compression domain Ê−, and an irre-
versible state D̂ (necessarily in the tension domain) associated with the evolution of damage:

Ê+ state: MÜ + K0
(
1− D(V )

)
U = F0 cos�t, Ḋ = 0;

Ê− state: MÜ + K0U = F0 cos�t, Ḋ = 0;

D̂ state: MÜ +〈KT
(
U −U f

)
〉 = F0 cos�t, V̇ = U̇ .

(6)

Each state is defined from a partition of the phase space:
Ê+ :

(
U > 0 or (U = 0 and U̇ ≥ 0)

)
and

(
(U̇ ≤ 0) or (U̇ ≥ 0 and U < V ) or (V <UY )

)
;

Ê− :
(
U < 0 or (U = 0 and U̇ ≤ 0)

)
;

D̂ : (U̇ > 0) and (U = V ) and (V ≥UY ).

(7)

One can recognize in this set Kuhn–Tucker like conditions defining the growth of damage. In the Ê+

state (loading or unloading within the elastic domain), damage does not grow because the displacement
is less than the history variable, or, if it is equal, unloading is being performed. In the Ê− state, crack
closure occurs and the original stiffness of the oscillator is recovered. In the D̂ state, damage grows and
the displacement U is equal to the history variable V at all times; the elastic domain grows at the same
time. Note that the dissipative nature induces an additional regime compared to the usual nonsmooth
oscillator.

Equations (6) and (7) describe a piecewise linear oscillator (see for instance [Shaw and Holmes 1983]
for some fundamental properties of piecewise linear oscillators). The dimensionless phase variables are
introduced as

(u, u̇, v)=
( U

UY
,

U̇
UY
,

V
UY

)
, v =maxt u(t). (8)
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New temporal derivatives are written directly with respect to the dimensionless time parameter

τ =
t
t∗

with t∗ =
√

M
K0
, (9)

where t∗ is a time constant of the dynamical system. With dimensionless variables, the system of equa-
tions of the oscillator becomes

Ê+ : ü+ (1− D(v))u = f0 cosωτ, Ḋ = 0,

Ê− : ü+ u = f0 cosωτ, Ḋ = 0,

D̂ : ü+
〈u−u f

1−u f

〉
= f0 cosωτ, v̇ = u̇,

 with f0 =
F0

F+
, ω =�t∗. (10)

The damage function depends on the new dimensionless memory variable v:

D =
〈
1+ 1

1−u f

〈
−1+

u f

v

〉〉
, (11)

and the three states are now governed by
Ê+ :

(
u > 0 or (u = 0 and u̇ ≥ 0)

)
and

(
(u̇ ≤ 0) or (u̇ ≥ 0 and u < v) or (v < 1)

)
;

Ê− :
(
u < 0 or (u = 0 and u̇ ≤ 0)

)
;

D̂ : (u̇ > 0) and (u = v) and (v ≥ 1).

(12)

For f0 = 0 (free vibrations), the system is autonomous with a three-dimensional phase space associated
with the variables (u, u̇, v). The periodically forced oscillator ( f0 6= 0) can be studied using an extended
four-dimensional phase space with coordinates (u, u̇, v, τ ).

Local solutions of (10) are known explicitly for each state. The solution of the Ê+ state, based on the
initial conditions (

u(τi ), u̇(τi ), v(τi )
)
= (ui , u̇i , vi ), (13)

is written as 
u(τ )= A cosωi (τ − τi )+ B sinωi (τ − τi )+

f0

ω2
i −ω

2
cosωτ,

u̇(τ )=−ωi A sinωi (τ − τi )+ωi B cosωi (τ − τi )−
f0 ·ω

ω2
i −ω

2
sinωτ,

v(τ )= vi ,

(14)

where
ωi =

√
1− D(vi ),

A = ui −
f0

ω2
i −ω

2
cosωτi ,

B =
u̇i

ωi
+

f0ω

ωi (ω
2
i −ω

2)
sinωτi .
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The solution of the Ê− state, based on the initial conditions (13), is
u(τ )= A cos(τ − τi )+ B sin(τ − τi )+

f0

1−ω2 cosωτ,

u̇(τ )=−A sin(τ − τi )+ B cos(τ − τi )−
f0 ·ω

1−ω2 sinωτ,

v(τ )= v0,

(15)

where

A = ui −
f0

1−ω2 cosωτi B = u̇i +
f0ω

1−ω2 sinωτi .

The solution of the D̂ state, based on the initial conditions (13), is
u(τ )= Ae−κ(τ−τi )+ Beκ(τ−τi )−

f0

κ2+ω2 cosωτ + 1+
1
κ2 ,

u̇(τ )=−Aκe−κ(τ−τi )+ Bκeκ(τ−τi )+
f0ω

κ2+ω2 sinωτ,

v(τ )= u(τ ),

(16)

where

A =
f0

2κ(κ2+ω2)
(κ cosωτi +ω sinωτi )−

1
2

(
1+ 1

κ2

)
−

1
2κ

u̇i +
1
2

ui ,

B =
f0

2κ(κ2+ω2)
(κ cosωτi −ω sinωτi )−

1
2

(
1+ 1

κ2

)
+

1
2κ

u̇i +
1
2

ui .

The limit case of the oscillator completely broken (D = 1) yields the differential equation ü = f0 cosωτ
and the solution:

u(τ )= Aτ + B−
f0

ω2 cosωτ, u̇(τ )= A+ f0
ω

sinωτ, (17)

where

A = u̇i −
f0
ω

sinωτi , B = ui +
f0

ω2 cosωτi −

(
u̇i −

f0
ω

sinωτi

)
τi .

The times of flight in each region (each state) cannot be found in closed form in the general case and
piecing together these known solutions is not directly possible directly. Before that, the time which
characterizes the transition between each state is computed from a Newton–Raphson procedure. Note
that this solution is considerably more accurate than the usual numerical solutions of ordinary differential
equations, the only approximations being made at the boundary of each state.

3. Free vibrations: f0 = 0

3.1. Existence of a stability domain. The following generic perturbation is considered:

τ0 = 0 : (u0, u̇0, v0)= (0, u̇0, 0), with u̇0 ≤ 0. (18)

If u̇0 ≥−1, elastic behavior prevails and the trajectory is a circle in the phase space restricted to D = 0.
On the opposite case, if u̇0 <−1, the motion is also composed of a damage inelastic phase. The time τ1



CHAOTIC VIBRATIONS IN A DAMAGE OSCILLATOR WITH CRACK CLOSURE EFFECT 375

necessary to initiate this damage phase is computed from

u(τ1)= 1, u̇(τ1)=

√
u̇2

0− 1. (19)

During this damage phase, the solution u(τ ) is expressed by (16). Three types of dynamic responses can
be distinguished from the sign of the constant B. A critical speed is then introduced:

u̇c =
√

u f . (20)

The size of the perturbation governs the stability of the origin point:
|u̇0|> u̇c ⇒ lim

τ→∞
u(τ )=∞,

|u̇0| = u̇c ⇒ lim
τ→∞

u(τ )= 0,

|u̇0|< u̇c ⇒ stationary periodic regime.

(21)

In the last case, another elastic phase is initiated and the motion is periodic. Free dynamics of such an
inelastic system can be reduced to the periodic regime (waiting for a certain time), and the attractive
or divergent trajectories (see also [Challamel and Pijaudier-Cabot 2004]). For the broken oscillator, the
autonomous system at failure is characterized by

ü = 0 ⇒

{
u(τ )= u̇i (τ − τi )+ u f ,

u̇(τ )= u̇i .
(22)

The phase portrait is a horizontal line parallel to the u-axis.
The same kind of classification would be observed for the free vibrations of the plastic softening

oscillator [Challamel and Pijaudier-Cabot 2006]. These three cases are distinguished by the value of
the initial speed u̇0 with respect to the critical speed u̇c. The different types of dynamics are plotted on
Figure 2. For the simulations, parameters are chosen as u f = 3 with the following initial conditions:

u0 = v0 = 0, u̇0 =−0.5;

u0 = v0 = 0, u̇0 =−1;

u0 = v0 = 0, u̇0 =−1.5;

u0 = v0 = 0, u̇0 =−
√

3=−u̇c;

u0 = v0 = 0, u̇0 =−2.

(23)

For sufficiently large perturbations, the motion diverges. For sufficiently small perturbations, the motion
is described by a circular (in the compression domain) or an elliptic (in the tension domain) periodic
trajectory after a damage phase. The intermediate trajectory, represented on Figure 2, is an attractive
trajectory. It asymptotically converges towards a fixed point. This attractive trajectory (homoclinic orbit)
is structurally unstable. It is in fact the limit of the domain of perturbations generating bounded evolutions
and also the limit of the domain associated with stability of the origin (in the sense of Lyapunov). This
domain is defined by:

u2
0+ u̇2

0 ≤ u f , u0 ≤ v0 ≤ 1. (24)

For seismic design applications, (24) can be interpreted as a critical energy (induced by seismic solicita-
tion for instance) that the oscillator can support in order to remain stable. For a higher seismic energy
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Figure 2. Dynamics of the free damage system.

level, a divergent evolution is present, leading to structural collapse. This critical energy is nothing but
the energy dissipated by completely damaging the spring and is equal to the area under the monotonic
force extension diagram (see [Challamel and Pijaudier-Cabot 2006] for the plastic softening oscillator).
Moreover, when the motion is periodic, the damage reaches a stationary value denoted by D. The global
pulsation of this periodic motion can be obtained in closed-form solution from

ω =
2
√

1− D

1+
√

1− D
. (25)

A similar relationship can be found in [Ryue and White 2007] where the damage parameter is replaced
by the relative crack depth.

3.2. The direct Lyapunov method. The critical energy related to the stability domain can also be deter-
mined by means of a stability analysis based on the direct Lyapunov method. We follow the reasoning of
[Kounadis 1996] for a smooth softening elastic system. We stress that the direct Lyapunov method was
initially developed by Lyapunov for smooth systems; see for instance [la Salle and Lefschetz 1961]. The
extension of such methodology to nonsmooth systems is a recent topic since the pioneer work of Filippov
[1960; 1988]; for examples see [Shevitz and Paden 1994; Wu and Sepehri 2001; Bourgeot and Brogliato
2005; Leine 2006]. An application of this method to plastic systems can be found in [Challamel and
Gilles 2007]. For the nonsmooth damage system, the Lyapunov function can be chosen as

V (u, u̇, D)= 1
2 u2
−

1
2 D〈u〉2+ 1

2 u̇2. (26)

In this energy function, the damage variable is coupled to the positive part of the displacement (this is simi-
lar to the unilateral continuum damage model of [Challamel et al. 2005] at the material scale). V (u, u̇, D)
is not a positive definite function over the complete space. The function V is vanishing for the trivial state
(u, u̇, D)= (0, 0, 0), but also at failure when the oscillator is fully damaged: (u, u̇, D)= (u ≥ 0, 0, 1).
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However, if it is assumed that the oscillator is not fully damaged (D < 1), it can be rigorously proven
that V (u, u̇, D) is effectively a definite positive function.

The direct Lyapunov method is based on the calculation of the time derivative of V . The time derivative
of V involves the growth of damage, that is, the dissipative nature of the response of the oscillator in
addition to the nonsmooth character captured with the positive part of the displacement introduced in
the function. The time derivative of the Lyapunov function does not exist in the classical sense at the
intersection of the elastic and the damage states (it only exists almost everywhere). It can be convenient
to present the dynamic system with the nonsmooth functions:

{
ü+ u− D(v)〈u〉 = 0,

v̇ = 2h(u− v)u̇,
h(x)=


1 if x > 0,
1
2 if x = 0,

0 if x < 0,

(27)

where h is a step function. The nonsmooth character of such a system is no longer ambiguous with
this unified presentation. In particular, the damage rate is discontinuous at the elastic-damage interface.
Additionally, the displacement rates can be discontinuous at the origin if the damage is nonzero.

The application of the direct Lyapunov method is much simplified when one considers the internal
variable v instead of D. It is possible to show that

dV (u, u̇, v)
dτ

∈
˙̃V, where ˙̃V =

(
∂V
∂u
,
∂V
∂ u̇
,
∂V
∂v

) u̇
−u+ D(v)〈u〉
2K [h(u− v)]u̇

 . (28)

K is called Filippov’s set. It can be calculated for the Heaviside function:

K [h(x)] = H(x), with H(x)=


1 if x > 0,

[0, 1] if x = 0,

0 if x < 0.

(29)

˙̃V can then be simplified as:

˙̃V = ∂V
∂D

∂D
∂v

2u̇ H(u− v)=−1
2
〈u〉2 ∂D

∂v
2u̇ H(u− v). (30)

The final result is obtained: Ê+, Ê− : ˙̃V = 0,

D̂ : ˙̃V =−u2

2
Ḋ ≤ 0.

(31)

V is a positive and definite function. Each element of ˙̃V is negative or zero — as the damage is necessarily
an increasing function of the time, see (5). Then, the origin (0, 0, 0) is stable in the sense of Lyapunov
for sufficiently small perturbations (in fact all perturbations leading to D < 1). The boundary of this
stability domain is exactly the stability domain exhibited by Equation (24). It is worth mentioning that
the particular case of the fully damaged oscillator leads to:

D = 1 ⇒ V (u, u̇)= 1
2 u2
+

1
2 u̇2

⇒ V̇ = uu̇ ≥ 0 since ü = 0. (32)
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In this case, one cannot apply rigorously the instability theorem of the direct Lyapunov method, but (32)
gives us some information about the instability of the fully damaged oscillator.

4. Forced vibrations: general case

Numerical simulations show that two types of responses may be observed, namely the shakedown re-
sponse (damage shakedown means that Ḋ = 0 after a critical time), and the collapse characterized by
a divergent evolution (in such a case, failure is reached and D = 1). The theoretical analysis consists
in treating the bounded dynamics (in the case of damage shakedown) as an equivalent elastic oscillator
after a critical time (as in [Poddar et al. 1988], for instance). The extended four-dimensional phase
space with coordinates (u, u̇, v, τ ) can be reduced to a three-dimensional phase space with coordinates
(u, u̇, τ ). The new oscillator is an elastic oscillator with different stiffnesses in tension and compression.
The results of [Shaw and Holmes 1983; Thompson et al. 1983; Mahfouz and Badrakhan 1990] can be
used for the dynamics of the oscillator studied in the three-dimensional phase space.

We shall employ the Poincaré section method to investigate the response of the forced inelastic oscil-
lator. In the case of elastic evolutions, damage remains constant (D = D) and the motion can be studied
using the three-dimensional phase space with coordinates (u, u̇, τ ). The vector field defined by (6) is
easily seen to be 2π/ω periodic in τ . The Poincaré section is useful to investigate properties of the
dynamical system: the phase space is sliced by the map

(u, u̇, τ )
τ

≡ τ0

[2π
ω

]
. (33)

Numerical simulations have been conducted with the following realistic parameters:

u f = 3, f0 = 0.05, ω = 0.2, u0 = 0, u̇0 = 0. (34)

The value of v0 (equivalently, the value of the initial damage D0) was varied in order to investigate the
damage effect. Periodic, quasiperiodic, chaotic, and divergent behaviors are observed, distributed as
Figure 3.

For the virgin material (v0 ≤ 1 or D0 = 0), with the parameters chosen, the motion is periodic (Figure
4, left) and the Poincaré map of the harmonic motion (Figure 4, right) is a single point (0, 0). With
the chosen initial conditions (u0 = 0; u̇0 = 0), the damage parameter remained stable (D = D0 = 0).
Quasiperiodic motion (Figure 5) has also been found for a system with moderate damage (v0 > 1 or
D0 6= 0). The quasiperiodic nature of the motion is checked in the Poincaré map on Figure 5, right. The
damage value has not varied during the simulation (v0 = 1.25, D = D0 = 0.30): the constant stiffness
ratio in tension and compression is equal to 1− D. The parameter f0 is not so significant if only elastic

 

 

 

 

 

 

xxx
xxx
xxx

periodic 
failure 

1 0 v0 

x
chaos 

x
x
x

x
2.71 

periodic or 
quasiperiodic 

x
D0 0.96 0.95 

2.78 
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Figure 4. Periodic motion: phase portrait (left) and Poincaré map (right) for f0 = 0.25,
ω = 0.2, u f = 3, v0 = 0 (D0 = 0).

states prevail during the evolution (Ḋ = 0). In such a case, all phase portraits are geometrically similar,
transformed from a reference case (with adapted initial conditions). For size reasons, f0 = 0.25 has been
adopted for simulations of Figures 4 and 5 but the case f0 = 0.05 can be directly deduced from these
graphics (as in the bifurcation diagram of Figure 3). With the initial conditions chosen, failure can be
reached for v0 ∈ [2.62, 2.66] or v0> 2.78 (except for the marginal value of v0= 2.82). It strongly depends
on initial conditions. In the simulation plotted in Figure 6 (v0 = 2.65 or D0 = 0.934), damage shakedown
does not occur and failure is reached after several cycles (D = 1). For v0 = 2.71 (D0 = D = 0.946),
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Figure 6. Divergent motion: phase portrait for f0 = 0.05, ω = 0.2, u f = 3, v0 = 2.65 (D0 = 0.934).

chaos is observed (see further in Figure 9, right). Chaotic vibrations are also observed for higher damage
values (v0 ∈ [2.71, 2.78] or D0 ∈ [0.946, 0.960]) or smaller damage values (v0 ∈ [2.26, 2.32] or D0 ∈

[0.836, 0.853]; v0 ∈ [2.48, 2.49] or D0 ∈ [0.895, 0.898]; v0 ∈ [2.55, 2.58] or D0 ∈ [0.912, 0.919]). These
intermittent characteristic damage parameters are close to 1, that is close to the failure value. Figures 7
and 8 show phase portraits and Poincaré maps of the motion numerically observed before the transition
to chaotic motion. In fact, the crisis is sudden. A subharmonic motion of order 3 is recognized on Figure
7, right, and a subharmonic of order 43 for Figure 8, right. The phase portrait of Figure 9, left, is difficult
to analyze, whereas chaotic motion is clearly exhibited in Figure 9, right, and Figure 10. A symmetry is
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Figure 7. Periodic motion: phase portrait (left) and Poincaré map (right) for f0 = 0.05,
ω = 0.2, u f = 3, v0 = 2.68 (D0 = 0.940).
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Figure 8. Periodic motion: phase portrait (left) and Poincaré map (right) for f0 = 0.05,
ω = 0.2, u f = 3, v0 = 2.70 (D0 = 0.944).

observed in the phase space. Twenty-four thousand cycles have been considered for the Poincaré section
applied to chaotic motion. Hence, it is numerically shown that chaos is observed in the vicinity of the
divergence zone (see Figure 9, right, and Figure 10, for instance). This closeness of both behaviors,
chaos and divergence, is probably related to the perturbation of the homoclinic orbit, associated with
the critical energy. The Appendix details this argument, and the possible application of the Melnikov
method to an analogous elastic oscillator.

For the simulations considered, chaos is found for large values of the damage: chaos can be considered
as a route to collapse. Nevertheless, chaos has been difficult to observe from the initial state (D0 = 0),
meaning that this phenomenon is generally a transient phenomenon. Mahfouz and Badrakhan [1990]
show that chaos can appear for large stiffness ratios. The asymptotic case is here the limit where the
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ω = 0.2, u f = 3, v0 = 2.71 (D0 = 0.946).
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stiffness ratio vanishes (the case treated by [Thompson et al. 1983] for instance). Understanding damage
shakedown is also important for investigating the safety margins of concrete structures. Figure 11 shows
a case of successful damage shakedown. The oscillator started in its initial state (D0 = 0) and the
stationary damage value associated with the final periodic motion is equal to D = 0.423. In view of
this result and of those in Figures 6–10, we see that damage shakedown is strongly dependent on initial
conditions. For instance, a divergent evolution can be achieved for a sufficiently perturbed damage
oscillator. This is different from the results observed for an elastic, perfectly plastic oscillator, where
elastoplastic shakedown does not depend on initial conditions [Challamel 2005; Challamel et al. 2005].

This study was restricted to an undamped system, but existing results from [Shaw and Holmes 1983;
Thompson et al. 1983; Mahfouz and Badrakhan 1990] suggest that the main phenomena exhibited in this
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Figure 11. Stationary periodic motion (damage shakedown): phase portrait (left) and
Poincaré map (right) for f0 = 0.05, ω = 0.2, u f = 3, u0 = 0, u̇0 = 1.25, v0 = 0 (D0 = 0).
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paper may be also observed for a weakly damped system, where a damping term is added to (10):
Ê+ : ü+ 2ζ u̇+ (1− D(v))u = f0 cosωτ, Ḋ = 0,

Ê− : ü+ 2ζ u̇+ u = f0 cosωτ, Ḋ = 0,

D̂ : ü+ 2ζ u̇+
〈u−u f

1−u f

〉
= f0 cosωτ, v̇ = u̇,

(35)

Here ζ is a dimensionless damping ratio. Equations (11) and (12) are still valid. The bifurcation diagrams
of Figure 12, showing the dependence on the choice of the initial parameter v0 or D0, confirm the
appearance of chaotic phenomena for a severely damaged oscillator. Bifurcation diagrams similar to
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Figure 13. Chaotic motion, Poincaré map, undamped system. f0 = 0.05; ω = 0.2;
u f = 3; u0 = 0; u̇0 = 0; v0 = 2.77 (D0 = 0.958); ζ = 0.
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Figure 14. Chaotic motion: Poincaré map, damped system, for f0 = 0.05, ω = 0.2,
u f = 3, u0 = 0, u̇0 = 0, v0 = 2.77 (D0 = 0.958), ζ = 0.01.

those in Figure 12 were obtained in [Foong et al. 2003] from a fatigue-testing rig (without the divergence
phenomenon). The structure of the chaotic attractor is affected by the damping ratio; compare Figures 13
and 14. The attractor can deform in shape, depending on the strength of damping, and can even become a
chaotic sea with islands of quasiperiodic trajectories for the undamped system, as also observed in [Cao
et al. 2008]. It is worth mentioning that the chaotic attractor associated with the damaged system is very
analogous to the Hénon’s attractor; see, for example, [Thompson 1982].
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5. Conclusions

This paper deals with the stability of a single-DOF damage softening oscillator with crack closure effect.
This system can be understood as an archetypal damage oscillator for concrete structures. Using appropri-
ate internal variables (a damage variable or an equivalent memory variable), the free dynamics of such
a nonlinear system can be written as a nonsmooth autonomous system with three regimes describing
elasticity, elastic stiffness recovery, and energy dissipation due to damage growth, respectively. It is
shown that the free vibrations of such an oscillator are reduced to stationary periodic regimes, attractive
trajectories, or divergent motion.

The stability of this free oscillator is investigated with the direct Lyapunov method extended to non-
smooth systems. Following physical arguments, the Lyapunov function of the problem is chosen as the
nonsmooth energy of the system. A critical energy that the oscillator can support in order to remain stable
is obtained (induced by seismic loads for instance). For energy levels higher than this critical value, a
divergent evolution is observed, leading to structural collapse. This result may have some implications
in seismic design applications.

The behavior of the forced harmonic damage oscillator is much more complex. It is worth mentioning
that the present damage model is different from a nonlinear elastic one essentially because the damage
behavior is irreversible in nature. As a consequence, the inelastic (damage) problem has additional
regimes (that the nonlinear elastic problem does not have), loading-unloading conditions, an energy
threshold associated with the elastic domain, numerical analysis to compute the transition from the elastic
state to the damage state and vice versa, and so on. The dynamics of a forced elastodamage oscillator
with the crack closure effect have been numerically investigated. Periodic, quasiperiodic, chaotic, and
divergent motions are observed. Chaotic motions are observed for severely damaged oscillators, in the
vicinity of the divergence area. This oscillator is typically a simple physical model associated with the
coexistence of chaos and divergence.

Damage shakedown, a fundamental feature related to the structural integrity, means that the damage
value is stationary after a critical time. Damage shakedown is typically controlled by initial conditions
and structural parameters (for example, stiffness ratios). For instance, a divergent evolution can be
achieved for a sufficiently perturbed damage oscillator. In the case of damage shakedown, the stationary
response is the same as that of an elastic oscillator with different stiffnesses in tension and in compres-
sion. Chaotic motions are observed for severely damaged oscillators (for sufficiently small stiffness in
tension). Furthermore, it is numerically shown that chaos is observed in the vicinity of the divergence
zone. This closeness of both behaviors, chaos and divergence, is probably related to the perturbation
of the homoclinic orbit, associated with the critical energy. Therefore, chaos may be understood as a
route to collapse. A more theoretical analysis would be probably needed to understand the specific route
to chaos, for example, using the Melnikov method (even if the application of the Melnikov method to
nonsmooth systems is a mathematically difficult problem [Kukučka 2007]).

Classically, chaotic systems are extremely sensitive to initial conditions and numerical simulations
require specific attention when devising computational schemes [Symonds and Yu 1985; Tongue 1987].
The structure of the chaotic attractor is notably affected by the damping ratio. The attractor can deform
in shape, depending on the strength of damping, and can even become a chaotic sea with islands of
quasiperiodic trajectories for the undamped system, as also observed in [Cao et al. 2008]. It is worth
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mentioning that the chaotic attractor associated with the damaged system is very analogous to the Hénon’s
attractor [Thompson 1982]. One of the characteristics of the inelastic system considered here is that the
dynamic collapse of concrete structures may involve chaotic phenomena. It is expected that large-scale
models of concrete structures may also reveal the complex phenomena highlighted in this paper from an
archetypal damage oscillator.

Appendix: A possible application of the Melnikov method to the analogous elastic oscillator

We study in this Appendix a piecewise elastic system with softening restoring force, somewhat remi-
niscent of the single-DOF system associated with a simple arch model (which includes snap-through
buckling). This later system was considered in [Cao et al. 2008] as an archetypal oscillator exhibiting
chaotic phenomena.

The constitutive elastic law of our dimensionless piecewise elastic system is

ü+ 2ξ u̇+ f (u)= f0 cosωτ,where f (u)=

{ u if u ≤ 1,
u−u f

1−u f
if u ≥ 1,

with u f ≥ 1. This oscillator is similar to the damage oscillator (inelastic system) studied in the paper,
but differs from it in that the restoring force depends only on the position. This piecewise elastic system
has limited tension strength.

Cao et al. [2008] also investigated a symmetrical piecewise elastic constitutive law and used Mel-
nikov’s method to detect the homoclinic tangling under the perturbation of damping and driving. The
Melnikov method can be used to show the possible occurrence of chaos, for certain range of parameters of
the system. We mention the application of the Melnikov method to nonsmooth dynamics [Awrejcewicz
and Lamarque 2003; Awrejcewicz and Holicke 2007; Kukučka 2007]. As shown by Kukučka [2007],
the mathematical background of the Melnikov method applied to nonsmooth systems is very recent and
complex.

The Hamiltonian function associated with the free undamped piecewise elastic system is given by

H(u, u̇)=
1
2

u̇2
+


1
2 u2 if u ≤ 1,

1
2
(u− u f )

2

1− u f
+

1
2

u f if u ≥ 1.

This system is very close to the system studied by Cao et al. [2008] who investigated a piecewise linear
model, based on the following constitutive elastic law written with respect to the unstable equilibrium
solution:

f (u)=
{
−ω2

1u if |u| ≤ u0,

ω2
2

(
u− sgn(u)u f

)
if |u| ≥ u0,

u f = ω2,

which is a symmetrical piecewise elastic model with a softening restoring force (the equilibrium solution
at the origin is unstable). There is a correspondence between both systems for the set of parameters:

ω2
1 =

1
u f −1

=
1
u0
, ω2 = 1.
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The reasoning concerning the application of the Melnikov method is identical to the case treated by Cao
et al. [2008], as the symmetrical part of the constitutive law does not change the result of the perturbed
orbit around the homoclinic orbit.

The equation of the homoclinic orbit is given by

u2
+ u̇2
= u f if u ≤ 1,

u
u f
+

√
u f − 1
u f

|u̇| − 1= 0 if u ≥ 1.

The Melnikov function is defined by the formula for the undamped system:

M(τ0)=

∫
∞

−∞

u̇(τ ) f0 cosω(τ + τ0)dτ .

If the function M(τ0) has simple zeros, then for a sufficiently small parameter f0, the motion governed
by the forced dynamic system can be chaotic. The reader is referred to [Cao et al. 2008] for the technical
calculation of the Melnikov integral. It is shown that chaos may occur for a certain range of parameters for
the equivalent elastic oscillator. This result cannot be strictly used in the case of the damage oscillator, for
two reasons. First, the dimension of the phase space is augmented in the presence of damage (additional
state variable). Secondly, the homoclinic nature of the orbit is lost for the damaged system. Therefore,
the proximity of the chaotic response of the damage oscillator with the divergence area is actually a
numerical finding, without a rigorous theoretical proof, based on the Melnikov method.
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ELASTIC BUCKLING CAPACITY OF BONDED AND UNBONDED
SANDWICH PIPES UNDER EXTERNAL HYDROSTATIC PRESSURE

KAVEH ARJOMANDI AND FARID TAHERI

Sandwich pipes can be a potentially optimal system for use in deep-water applications. In recent years,
there has been considerable interest in understanding the stability characteristics of these pipes under the
governing loading conditions, with the aim of generating optimal design. External hydrostatic pressure is
a critical loading condition that a submerged pipeline experiences during its installation and operational
period.

This article presents an analytical approach for estimating the bucking capacity of sandwich pipes
with various structural configurations and core materials, subject to external hydrostatic pressure. The
influence of adhesion between the core layer and inner or outer pipes is also a focus of this study. Beside
the exact solution, two simplified equations are developed for estimating the buckling capacity of two
configurations commonly used in practice. Details of both the exact and simplified analytical formula-
tions are presented and the required parameters are defined. The efficiency and integrity of the proposed
simplified solutions are compared with a solution developed by other researchers. A comprehensive
series of finite element eigenvalue buckling analyses was also conducted to evaluate the accuracy and
applicability of the proposed solutions.

A list of symbols can be found on page 407.

Introduction

As shallow offshore oil reserves are depleted, the demand for deep water oil reserves is increasing.
Extracting oil from deep waters will not be possible, unless new pipeline systems can be developed
to accommodate the new loading and environmental conditions. High external hydrostatic pressure,
pipeline buoyancy during installation, and low water temperatures restrict the application of single
metallic pipelines to a limited depth. Sandwich pipes can be a potentially optimal design alternative
in addressing the requirements of deep waters. Sandwich pipe (SP) systems employ the structural and
thermal insulation benefits provided by two stiffer pipes sandwiching a lighter-weight and less stiff core
material. Moreover, the secondary containment provided by the outer pipe improves the reliability of the
system in the case of product leak.

A typical pipe in pipe (PIP) system consists of an inner pipe, a relatively thick lightweight core layer,
and an outer pipe. Each layer in this system can be designed for a specific purpose. The inner pipe, also
referred to as the product pipe, usually is designed to endure the internal pressure and to facilitate the
transport of the product safely. The core layer’s function can be different depending on the application.
For example, it can be designed to act as a thermal insulator, or to improve the structural performance
of the pipeline, depending on the core’s material properties and the interaction mechanism between the

Keywords: sandwich pipes, pipe-in-pipe, stability, buckling, hydrostatic pressure.
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core layer and the surrounding pipes. A wide range of core materials such as plastics, gels, ceramics, and
composites can be used to achieve the system’s thermal and structural requirements. The outer pipe, also
called the sleeve pipe, separates the inner and core layers from the surrounding environment. The sleeve
pipe may individually carry the externally applied loads, as in a PIP system, or may act as the main part
of a sandwich system, as in an SP system. The outer pipe also provides secondary containment for the
product being transported, in case of leakage of the product through the inner pipe.

To design an optimal SP system, understanding of its structural behavior is a prerequisite. A great
number of works have been written in recent years to clarify the structural characteristics of such a system
under different loading conditions. Some of those works have considered the stability of a sandwich
cylindrical shell, which can be a general geometry for a sandwich pipe. For example Kyriakides and his
coworkers studied buckle propagation phenomena [Kyriakides 2002; Kyriakides and Netto 2002; 2004;
Kyriakides and Vogler 2002] from both numerical and experimental perspectives. Kardomateas and
Simitses [2002; 2005] studied analytically the buckling of long sandwich cylindrical shells under external
pressure. Ohga et al. [2005] studied, both numerically and analytically, the reduced stiffness buckling of
sandwich cylindrical shells under uniform external pressure. Sato and Patel [2007] and Sato et al. [2008]
studied the buckling behavior of a PIP system under hydrostatic pressure and developed a simplified
solution for estimating a PIP system’s buckling capacity. Castello and Estefen [2006; 2008] and Estefen
et al. [2005] studied the feasibility of a sandwich pipe system for deep water applications with both
numerical and experimental approaches. In another study, Castello and Estefen [2007] investigated the
ultimate strength of sandwich pipes under combined external pressure and bending for several degrees
of adhesion between the core layer and outer pipe. They also investigated the effect of cyclic loads
applied during a reeling installation on the collapse pressure. Very recently, Castello et al. [2009] also
conducted an investigation, comparing PIP and SP systems designed for a hypothetical oil field with
several core materials. In this study they used polypropylene and polyurethane foams with various
densities as the core materials and investigated the influences of both their mechanical and thermal
properties. They concluded that the combination of steel and foams could produce effective SP systems
with good buoyancy and thermal insulation properties.

1. Motivation and aims

Our preliminary investigation indicated that most of the available simplified solutions developed for
predicting buckling capacity of PIP systems subject to hydrostatic pressure produce results with very
large margins of error under certain conditions. This fact prompted an analytical investigation, with the
aim of developing exact and simplified solutions for establishing the buckling capacity of PIPs subject to
externally applied hydrostatic pressure. Moreover, a comprehensive finite element investigation is also
conducted to establish the performance of PIPs with a wide range of material and physical properties,
and to verify the integrity of the proposed solutions. Four different interlayer bonding configurations
are considered. The parameters used to define the characteristic equation of the system are outlined. An
important aim of this investigation is also extracting simplified solutions from the exact solution for use
in practical design. As a result, the simplified and exact solutions are compared and the accuracy of their
results discussed. Finally, the error margins resulting from the use of the proposed simplified equations
and those resulting from the proposals of other researchers are established.
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Figure 1. The coordinate system and the idealized geometry.

2. The analytical model

A long, circular cylindrical shell with three layers (steel, core, and steel) is considered. Due to the
symmetry in structural configuration and loading, this problem can be idealized as a two-dimensional
plane strain problem. The use of polar coordinates also aids in the formulation the problem. Figure 1
shows the geometry and polar coordinate system of the model.

Equilibrium equations of the system. The potential energy of the system can be used to derive the
equilibrium equations. It can be represented as follows [Kyriakides and Corona 2007]:

5=UP,1+UP,2+Uc+Wp, (1)

where the potential energies of the inner and outer pipes are given by

UP,i =

∫ 2π

0

1
2 [Nθθ,iε

o
θθ,i +Mθθ,i kθθ,i ]ri · dθ, (2)

where i = 1 for the outer pipes and i = 2 for the inner one, Nθθ is the internal axial force, εo
θθ is the

circumferential strain of the centroid fiber, Mθθ is the internal moment, and kθθ is the curvature change
in the centroid surface.

In (1), the effect of the core layer can be considered as the work done by the entire layer’s stresses
applied to the inner and outer pipes. These works can be represented by

UC =Uc,1+Uc,2, where UC,i =

∫ 2π

0

(
σr |ai ·w|ai + τrθ |ai · v|ai

)
ai · dθ, (3)

where a1 = r1− t1/2 and a2 = r2+ t2/2.
The work done by the external hydrostatic pressure is given by

WP = P
∫ 2π

0

(
wr1+

1
2(v

2
+w2

− vw′+ v′w)
)
· dθ, (4)

where the ′ indicates the differentiation with respect to θ .
Sander’s shell equations are used to describe the strain-displacement relationships. Sander’s kinematic

equations are nonlinear and are based on small strain and moderate rotation assumptions, which are
appropriate for establishing the linear buckling equations. The kinematic equations in polar coordinate
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can be written as

εθθ = ε
o
θθ + zkθθ , εo

θθ =
w+v′

r
+

1
2β

2, kθθ =
β ′

r
. (5)

In these equations β represents the rotation of a circumferential element located at the midplane of the
pipes. β for an intermediate class of deformation (small midsurface strains and small but finite rotations)
can be defined as in [Farshad 1994] by as

β =
v−w′

r
. (6)

Using the plane strain material constitutive relation, we get for the force and moment intensities in (2)

Nθθ = Cεo
θθ , Mθθ = Dkθθ , (7)

where C = Et/(1− ν2
p) and D = 1

12 Et3/(1− ν2
p).

By substituting the kinematic and constitutive equations and using variational calculus, we can write
the equilibrium equations of the system as

α1,1(w1+ v
′

1)−α2,1(v1−w
′

1)
′′′

+ p(w
′′

1+w1)+a1σr
∣∣
a1
= 0, (8a)

α1,1(w1+ v
′

1)
′
+α2,1(v1−w

′

1)
′′

+ a1τrθ
∣∣
a1
= 0, (8b)

α1,2(w1+ v
′

1)−α2,2(v1−w
′

1)
′′′

− a2σr
∣∣
a2
= 0, (8c)

α1,2(w1+ v
′

1)
′
+α2,2(v1−w

′

1)
′′

− a2τrθ
∣∣
a2
= 0, (8d)

where

α1,i =
Ci

ri
, α2,i =

Di

r3
i

(i = 1, 2). (8e)

These Euler differential equations are written in terms of the four independent variables u1, v1, u2, and v2,
which represent the deformation of the inner and outer pipes, and four dependent variables σr |a1 , τrθ |a1 ,
σr |a2 , and τrθ |a2 . The dependent variables can be described as functions of the independent variables,
using the core properties. An elasticity approach is used here to characterize the core behavior.

The displacement function that could satisfy the equilibrium equations can be assumed to be cir-
cumferentially periodic. Considering this assumption, the following stress function would satisfy the
equilibrium equations [Sato and Patel 2007]:

φ(r, θ)= fn(r) cos nθ, (9)

where n is the buckling mode number. To yield a possible stress distribution, the stress function must be
such that the following compatibility equation is satisfied [Timoshenko and Goodier 1970]:(

∂2

∂r2 +
1
r
∂
∂r
+

1
r2

∂2

∂θ2

)(
∂2φ

∂r2 +
1
r
∂φ
∂r
+

1
r2

∂2φ

∂θ2

)
= 0. (10)

In order for φ to be an admissible solution of this equation, the general form of fn must be as follows
[Timoshenko and Goodier 1970]:

fn(r)= Anr−n
+ Bnr2−n

+Cnr2+n
+ Dnrn (n ≥ 2), (11)
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in which the constants An , Bn , Cn , and Dn are calculated from the distribution of forces and displacements
at the boundaries. The stress and displacement components in polar coordinates are

σr =
1
r
∂φ(r, θ)
∂r

+
1
r2

∂2φ(r, θ)
∂θ2 , τrθ =−

∂
∂r

(
1
r
∂φ(r, θ)
∂θ

)
, w̃ =

∫
εr · dr , ṽ =

∫
(rεθ −w) ·dθ.

(12)
Using these relations, stresses at the boundary of the core can be described as a function of the deforma-
tion of the boundary. The following general core boundary conditions are considered:

w̃|a1 = W̃1 cos nθ, ṽ|a1 = Ṽ1 sin nθ, τrθ |a1 = 0, (13)

w̃|a2 = W̃2 cos nθ, ṽ|a2 = Ṽ2 sin nθ, τrθ |a2 = 0. (14)

Four sets of boundary conditions are chosen depending on the problem:

I. Core is fully bonded to both inner and outer pipes: boundary conditions (13)1,2 and (14)1,2.

II. Core is unbonded to the outer pipe in the tangential direction, but is fully bonded to the inner pipe:
boundary conditions (13)1,3 and (14)1,2.

III. Core is unbonded to the inner pipe in the tangential direction, but is fully bonded to the outer pipe:
boundary conditions (13)1,2 and (14)1,3.

IV. Core can slide freely against both inner and outer pipes: boundary conditions (13)1,3 and (14)1,3.

Characteristic equation of the system. We denote the stiffness matrices of the pipes and core by K p =

[pi j ]0≤i, j≤4 and Kc = [ci j ]0≤i, j≤4. The nonzero coefficients of K p are

p11=α1

[
1+ 1

12

( t1
r1

)2
n4
]
+q(n2

−1), p22=α1n2
[
−1+ 1

12

( t1
r1

)2]
, p12=−p21=α1n

[
1+ 1

12

( t1
r1

)2
n2
]
,

p33=α2

[
1+ 1

12

( t2
r2

)2
n4
]
, p44=α2n2

[
−1+ 1

12

( t2
r2

)2]
, p34=−p43=α2n

[
1+ 1

12

( t2
r2

)2
n2
]
,

where

a1 = r1−
t1
2
, a2 = r2+

t2
2
, α1 =

E pt1
r1(1− ν2

p)
, α2 =

E pt2
r2(1− ν2

p)
.

The coefficients of Kc are more complex and are given in the Appendix.
The characteristic equation of the system can be written as

[K p + Kc]{δ} = 0, (15)

where δ represents the deformation of the structure in the form of a vector representing the radial and
circumferential deformations of the inner and outer pipes. To obtain a nontrivial solution, the determinant
of the coefficient matrix must be set to zero. By solving this eigenvalue equation, the buckling pressure
of the sandwich pipe is determined.

The characteristic equation of a sandwich pipe is more complex than that of a single pipe. Because
of this complexity, the mode number that yields the lowest buckling pressure is not necessarily 2. In the
system under investigation, the first buckling mode (n = 1) corresponds to a rigid body motion; therefore
the characteristic equation must be solved for higher buckling modes.
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3. Simplified solutions

A simplified solution was developed independently by Brush and Almroth [1975] and Sato and Patel
[2007] for calculating the buckling pressure of a sandwich pipe under externally applied hydrostatic
pressure; hereafter it is abbreviated as SS. The SS equation is

Pcr = Pcrs+
1

n2− 1
k, (16)

where

k = Ec
2n(νc− 1)− 2νc+ 1

4ν2
c + νc− 3

, Pcrs =

( t1
r1

)3 E p(n2
− 1)

(1− ν2
p)
(
(t1/r1)

2
+ 12

) .
This equation was developed by solving the buckling pressure of a ring supported internally by an

elastic foundation. This would indicate that the continuity of the shear stresses between the core and
outer pipe is ignored. Furthermore, the above equation was developed based on the assumption that the
core can be replaced by a set of springs. The solution has been improved in this study by considering a
proper stress function representing the core layer’s response. In the mathematical model developed in this
study, the continuity of the interlayer deformations and stresses was considered, and the characteristic
equation of the system, which included the response of both core and pipes, was solved simultaneously.

In this section a set of simplified equations will be developed with the assumptions that r2→ 0 and
h2→ 0, indicating that the inner portion of the system (surrounded by the outer pipe) is filled entirely
by the core material. It is indeed recognized that this assumption may not be entirely correct, violating
the exact proportional equivalency of the inner steel pipe in terms of the core material; however, as
will be seen later, this simplifying assumption facilitates the solution of an otherwise complex equation.
Moreover, as will also be shown, the produced solution is capable of generating relatively accurate results.

The assumption above enables one to establish the buckling pressure of a sandwich pipe by satisfying
the equation

lim
R→0

lim
h2→0
[K p + Kc]{δ} = 0. (17)

The accuracy of the proposed simplified solution is discussed in the following sections.

A: Core free to slide against outer pipe. Using the simplifying assumptions above, the characteristic
equation of the system was solved using Mathematica, leading to the following equation, which can
be used to establish the critical buckling capacity (pressure) of a sandwich pipe whose core layer is
unbonded from the outer pipe:

Pcr = Pcrs+
Ec

[2n(1− νc)+ 2νc− 1](1+ νc)
. (18)

This satisfies (17), using boundary conditions II or IV.

B: Core bonded to outer pipe. Using the same method, the following buckling pressure has been calcu-
lated by solving (17) with case I boundary conditions:

Pcr =
ξ1

ξ2
, (19)
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where

ξ1 = 192E2
c a1r1

3(ν2
p − 1)

2
+ E2

pt14n23(n2
− 1)(3+ 7)2+ 2Ec E pr1t1(ν

2
p − 1)(3+ 7)

×
{
t12n2
[n(3− 1)−3− 1] − 6t1r1[(n+ 1)2+ (n− 1)23] − 12r1

2
[n(3− 1)−3− 1]

}
,

ξ2 = r1(ν
2
p−1)(3+ 7){−12Ecr1

2a1(ν
2
p−1)[n(3−1)−3−1] + E pt1n23(t12

+ 12r1
2)(3+ 7)}.

Here
3= 4νc− 3. (20)

For brevity, the simplified solutions just developed will be referred to as the ATS.

4. Results and discussion

The histogram in Figure 2 illustrates the number of standard and heavy wall line pipes available in the
API standard [API 2000]. This histogram has been generated for API pipes with radii greater than 0.1 m,
which is the most widely used range for offshore pipeline applications. As shown in this graph, the
thickness to radius ratio in API pipe charts varies between 0.02 and 0.18.

Exact solution results. The ratio of the buckling pressure of an integral sandwich pipe to the buckling
pressure of the outer pipe of a SP system can be written as a function of nondimensional parameters:

Pcr

Pcrs
= f

(
Ec

E p
,

t1
r1
, νp, νc, n

)
, (21)

where Pcrs is the buckling pressure of the outer pipe; see the beginning of Section 3. This ratio is used
hereafter to present the results obtained from the proposed and SS solutions.

Figure 3 shows the variation of the buckling pressure of a sandwich pipe with respect to the change in
pipe geometry (r2/r1) and pipe material properties (Ec/E p) in the aforementioned practical range. As
stated, the buckling pressures of the sandwich pipes in these figures have been normalized with respect
to that of the outer pipe. These graphs have been developed for a sandwich pipe with inner and outer
pipe thickness to radius ratios of 0.05. In this study, Poisson’s ratios of the core and pipes are taken
as 0.5 and 0.3, respectively. As can be seen, the continuity of the shear stresses between the pipes and
the core layer would significantly affect the buckling resistance of the pipe under external pressure. As
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Figure 2. Histogram of t/r for API heavy and standard wall pipes with diameter greater
than 0.1 m.



398 KAVEH ARJOMANDI AND FARID TAHERI

expected, the fully bonded configuration provides the greatest buckling capacity in comparison with the
other configurations. The configuration in which the core layer and surrounding pipes are free to slide
against each other exhibits the lowest buckling pressure. The difference between the buckling pressures
of these two extreme configurations can be more than 100 times for certain values of r2/r1 and Ec/E p.

Figure 3, top left, shows that for the fully bonded case, the buckling pressure of sandwich pipes
with wide ranges of r2/r1 and Ec/E p values is not significantly affected by the variation in the r2/r1

parameter. This fact was used as the basis for driving the simplified equations based on the assumption
that the equivalent structure would be a pipe (the outer pipe) filled with the core material. The same
conclusion can be made by considering Figure 3, top right, for the lower range of r2/r1. As also seen,
the buckling pressure in the other configurations is significantly dependent on the inner pipe diameter.

The other interesting results are associated with the pipe configuration in which the core and inner
pipe can slide on one another. As can be seen in Figure 3, bottom left, there is no consistent trend
for the buckling pressure within the studied range of parameters. By comparing the bottom left panes
of Figures 3 and 5, which illustrate the buckling mode numbers for the same configuration, it can be
concluded that the uneven behavior of the graph in the former is due to the oscillation in the buckling
mode response of the pipe. Note that the actual buckling mode response of such sandwich pipes would
not be exactly the same as what has been captured in our investigation. Indeed, the discrepancy between
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Figure 3. Ratio of buckling capacity of sandwich pipe versus outer pipe as a function
of geometric and material properties for the cases discussed on page 395.
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what has been considered as the general buckling mode shape in this study and what would happen
in reality becomes more significant in sandwich pipes in which the core can freely slide on the inner
pipe. This phenomenon is believed to be the cause the oscillation in the calculated buckling pressures
corresponding to the different buckling mode shapes. For the sake of consistency, the logarithmic scale
has been used in these figures, which magnifies the unevenness.

Figure 4 shows the variation of buckling pressure of the sandwich system as a function of the inner
pipe’s geometry (t1/r1) and the pipeline material properties (Ec/E p) within the practical range. In these
figures, the ratios r2/r1 and t2/r2 have been taken as 0.8 and 0.05, respectively. These graphs show
that the buckling pressure of the system is significantly influenced by t1/r1. The bottom right graph in
Figure 4 shows that if the core layer is free to slide on both the inner and outer pipes, then the increase
in the core modulus of elasticity would not improve the structural performance of the pipe when subject
to external pressure. For other configurations, however, the increase in the core’s modulus of elasticity
would increase the buckling pressure of the system.

According to the results exhibited in Figures 3 and 4, in order to design an optimal sandwich pipe
under external hydrostatic pressure, close attention should be paid to the bonding properties between the
layers, as well as the geometrical and material related parameters like Ec/E p, r2/r1, and t1/r1.

Figure 5 shows the mode number associated with the minimum buckling pressure of the SPs with var-
ious geometries and material properties. As illustrated in the figures, for the system under investigation,
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the buckling mode associated with the minimum buckling pressure of a sandwich pipe is not necessarily
mode number 2. In fact, in most of the configurations studied, the buckling mode corresponding to the
lowest capacity shifts upward as the core’s stiffness is increased. The bottom right graph in Figure 5
shows that for the fully unbonded case, the corresponding buckling mode number is mode number 2 for
all the studied parameters ranges. This conclusion would help to simplify the calculations significantly.

Accuracy of the simplified equations. In this section, both simplified solutions (that is, both Sato and
Patel’s and our proposed solutions) are compared with the exact solution. The comparison is done for a
sandwich system with core and pipe Poisson’s ratios of 0.5 and 0.3, respectively. The percentage error
is calculated by

% error=
∣∣∣∣ Pcr (Exact)− Pcr (Simplified)

Pcr (Exact)

∣∣∣∣× 100. (22)

Figure 6 shows the buckling pressure error in the SS solution, (16), relative to the exact values calculated
by solving (15). This graph has been generated for case I boundary conditions (fully bonded case).
As seen in the left half of the figure, this simplified equation would produce error up to 180% for the
illustrated range of parameters. The right half reports the margin of error for a sandwich pipe with
t1/r1 = 0.05 and inner to outer pipe radius ratio of 0.8. We see that the error produced by (15) for the
sample pipe is at least 120% and can be as large as 200%. In conclusion, the error produced by this
equation increases as the core stiffness decreases and the outer pipe thickness to radius ratio increases.
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Figure 5. Sandwich pipe buckling mode numbers for the cases discussed on page 395.
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Figure 6. Percent error produced by the SS in the fully bonded case, as a function of
Ec/E p and the outer pipe’s t/r ratio (left) and as a function of Ec/E p and r2/r1 (right).
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Figure 7. Percent error produced by the ATS in the fully bonded case, as a function of
Ec/E p and the outer pipe’s t/r ratio (left) and as a function of Ec/E p and r2/r1 (right).
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Figure 8. Percent error produced by the ATS for the case of the outer pipe sliding over
the core, as a function of Ec/E p and the outer pipe’s t/r ratio (left) and as a function of
Ec/E p and r2/r1 (right).

Figure 7 shows the percent error resulting from the ATS (19) (that is, the simplified solution developed
in this study), for the case of a fully bonded SP. The figure suggests that the ATS yields more accurate
results than the SS from (16). The SS produced a maximum error of 120%, where for the same pipe the
ATS produces a maximum error of 50% in predicting the buckling pressure (in the worst possible case).

Figure 8 shows the percentage error produced by our simplified solution in predicting the buckling
pressure of the pipe with core layer unbonded to the outer pipe. The exact results are obtained by solving
(15), using type II boundary condition. As can be seen, the ATS produces very large errors for values of
r2/r1 above 0.75. However, if the inner to outer pipes radius ratio is below 0.75, the error is less than
20%. In practice, most PIP systems use r2/r1 < 0.75. Therefore, the ATS (19), would be admissible
for use in practice. Figure 8, top right, shows the percent error for a sandwich pipe with a thickness to
radius ratio of 0.05 and an inner to outer pipe radius ratio of 0.8.

Numerical results

In this section a series of finite element (FE) eigenvalue analyses are performed for a parametric study
to assess the accuracy of the proposed simplified solution. ABAQUS Version 6.8 was used to construct
and analyze the FE models. Due to the assumption of uniform structural properties and loading con-
ditions along the length of the pipeline, a sandwich ring was modeled as the equivalent structure, to
study the buckling characteristic of the SP under hydrostatic pressure. The 20-node, reduced integration
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brick element (C3D20R) was used to construct the finite element model of the pipes. In this paper, SP
systems with incompressible core layers were investigated to establish the margin of error produced by
the solutions outlined earlier. Therefore, the core layer was modeled with 20-node, reduced integration
hybrid brick elements (C3D20RH), suited for modeling soft materials. Appropriate boundary conditions
were applied to restrain the rigid body motions of the model; however, they were kept to a minimum so
that the higher order buckling modes could be captured.

The “tie” multipoint constraint option of ABAQUS was used to model the fully bonded contacts
between the core and inner and outer pipes. However, in those configurations in which the core layer
was disbonded from the pipes, the contact mechanism was modeled using the linear two point constraint
equations of ABAQUS. With this approach, the radial displacement of the core on the contact surfaces is
set to follow the radial displacement of the contacting surfaces of the pipes, but no constraint is imposed
on the tangential displacements. This approach is prone to error, because the elements may intersect.
To minimize this possibility, a fine mesh must be used. A mesh convergence study was conducted to
investigate the effect of the mesh density on the calculated buckling pressure. Figure 9 shows the buckling
mode shapes of the four studied PIP configurations.

To test the integrity of the simplified solution, four sets of parametric studies were performed on the
four analytically studied configurations. In each set, 1296 FE models were analyzed and the results were
compared with those obtained using the simplified solution. Figure 10 shows the percent error produced
by the simplified equations with respect to the FE results for the SS from (16), AST from (19), and AST
from (18) cases.

Case I Case II

Case III Case IV

Figure 9. Buckling mode shapes for the cases discussed on page 395.
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Figure 10. Percentage error produced by the simplified equations with respect to the FE
results for (a) SS from (16), (b) AST from (19), and (c) AST from (18).

As shown in Figure 10a, the SS solution results in an error of less than 50% for larger values of r2/r1.
The comparison of the results obtained by the ATS simplified from (19) and FE are illustrated in Figure
10b. As can be seen, the solution yields a maximum error of slightly less than 50% for smaller values of
r2/r1. These graphs show that either solution can predict the buckling pressure of a sandwich pipe, for
a limited range of the parameters, with reasonable accuracy.

Figure 10c shows the error margins when using (18) for a SP system in which the core layer is
disbonded from the outer pipe. As illustrated in this figure, for Ec/E p greater than 10−3, this equation
yields an error of greater than 60%. However, for smaller values of Ec/E p, which would pertain to most
of the commonly used plastic materials, (18) would yield acceptable accuracy.

Figure 11 shows the admissible parameter ranges for which one could use the simplified equations,
keeping the margin of error below 50%. Also within a small range of parameters (that is, r2/r1 > 0.75
and Ec/E p > 0.01), both solutions — given by Equations (16) and (19) — would yield error margins
greater than 50%. Therefore, in order to obtain reliable results in the noted ranges (that is, the parameter
ranges that fall within the cyan region in Figure 11), it is recommended that a FE buckling analysis be
conducted.
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Figure 11. Range of parameters for which each of the simplified equations can predict
the buckling pressure with less than 50% error.

Conclusions

We used an analytical approach to develop exact and simplified (approximate) solutions for the elastic
buckling pressure of sandwich pipes under external hydrostatic pressure. The parameters required to de-
scribe the characteristic equation of the system were discussed in detail. The integrity of the approximate
solution given in [Brush and Almroth 1975; Sato and Patel 2007] was compared with that of this study.
The practical and admissible ranges for physical and material parameters were established. The results
were compared with those obtained through an extensive series of FE parametric case studies and the
accuracy of the equations was assessed. Here is a summary of our conclusions:

• The contact mechanism between the core layer and the inner and outer pipes significantly affects
the buckling capacity of the system.

• While for a single pipe the first buckling mode shape always corresponds to the second eigenmode
(the first eigenmode would correspond to the rigid-body mode), the same does not always hold in
the case of a sandwich pipe. Therefore, to find the buckling capacity of a sandwich pipe, one should
explore the higher eigenmodes.

• The results obtained from the exact solution were used to validate the assumptions made in devel-
oping the simplified solution and to establish the range of applicability of the simplified solution.

• Comparison of the results obtained from the simplified solutions for the fully bonded system with
those obtained from either the FE or exact analytical solutions indicated that the approximate solu-
tions could produce reasonable accuracy for predicting the buckling capacity of the system, but for a
limited range of the investigated parameters. It was shown that for stiffer core materials and greater
ratios of inner to outer pipe radii, the simplified solution of [Sato and Patel 2007] would yield more
accurate results. However, for the other ranges, which would fall within a more practical domain
for SPs with plastic core materials, the simplified solution presented in this study would predict the
buckling capacity with a higher accuracy.
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• The choice from among the simplified solutions is facilitated by the graphs produced in this study.
These graphs can be used to gain a sense as to what error margin one could expect when using the
proposed simplified equation within a practical range.

• The comparison of the results produced by the FE analyses and those obtained from the simplified
solutions for the case where the core layer could slide on the external pipe demonstrated that the
simplified equation (the ATS) would produce large error margins within certain ranges; however, the
solution would generate acceptable accuracy for SP systems with conventionally used core materials.

Appendix: Coefficients of the core material stiffness matrix Kc

We set Kc =
1
ψ

L A, where L is given by

L =


1 0 0 0

−nt1/2r1 1− t1/2r1 0 0
0 0 1 0
0 0 nt2/2r2 1+ t2/2r2


and ψ and the coefficients Ai j of A (for 0≤ i, j ≤ 4) are given in terms of R = a2

a1
and 3= 4νc− 3 by

case-dependent formulas:

Case I: core is fully bonded to inner and outer pipes (nonvanishing entries only).

ψ = (7+3)
{
32(1+R4n)−R2n−2

[(n2
−1)(R2

−1)
2
+(1+R4)32

]
}

A11 = 2Ec
{
3[n(3−1)−3−1]−R4n3[n(3−1)+3+1]

+2R2n−2
[2(3−1)+n2(R2

−1)(R2
+3−2)+R2(3−3)+R4(32

−1)]
}

A33 = 2Ec
{
3[n(3−1)+3+1]−R4n3[n(3−1)−3−1]

+2R2n−2
[1−32

+n2(R2
−1)(1+R2(3−2))+R2(3−3)−2R4(3−1)]

}
A22 = 2Ec

{
3[n(3−1)−3−1]−R4n3[3+1+n(3−1)]+2R2n−2

[n23−(n2
−1)R2(1+3)+R4(n2

−1+32)]
}

A44 = 2Ec
{
3[n(3−1)+3+1]+R4n3[3+1−n(3−1)]−2R2n−2

[(1+3)(R2
−1+3)+n2(R2

−1)(R23−1)]
}

A12 = A21 =−2Ec
{
3[1+n+(n−1)3]+R4n−23(n(1+3)+3−1)−2n R2n−2

[(n2
−1)(R2

−1)2+R432
+3]

}
A34 = A43 = 2Ec

{
R4n3[1+n+(n−1)3]+3(n(1+3)+3−1)−2n R2n−2

[(n2
−1)(R2

−1)
2
+R43+32

]
}

A13 = A31 =−2Ec(3−1)
{

R3n−1
[(n2
−1)(R2

−1)−(1+n+(n−1)R2)3]

+Rn−1
[((1+n)R2

+n−1)3+(n2
−1)(R2

−1)]
}

A14 = A41 =−2Ec(3−1)
{

R3n−1
[(n2
−1)(R2

−1)−(1+n−(n−1)R2)3]

+Rn−1
[((1+n)R2

−n+1)3−(n2
−1)(R2

−1)]
}

A23 = A32 =−2Ec(3−1)
{
−R3n−1

[(n2
−1)(R2

−1)+(1+n+R2
−n R2)3]

+Rn−1
[(n2
−1)(R2

−1)+(1+R2
+n(R2

−1))3]
}

Case II: Core can slide against outer pipe but is bonded to inner pipe (nonvanishing entries only).

ψ = (7+3)
{
3[n(3−1)−1−3]−R4n3[1+3+n(3−1)]+2R2n−2

[n23−(n2
−1)R2(1+3)+R4(n2

−1+32)]
}
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A11 = 8Ec(n2
−1)

{
−3−R4n3+R2n−2

[2R2
+n2(R2

−1)
2
+R4(32

−1)]
}

A13 = A31 = 4Ec(n2
−1)(3−1)

{
R3n−1

[n(R2
−1)+R2(1−3)]+Rn−1

[R2(1−3)+n(1−R2)]
}

A14 = A41 = 4Ec(n2
−1)(3−1)

{
Rn−1
[n(R2

−1)−R2(1+3)]+R3n−1
[R2(1+3)−n(1−R2)]

}
A33 = 2Ec

{
−2R2n−2

[2R4(2−23+n2(3−2))−2n23−(n2
−1)R2(3−3)(1+3)]

+[n2(3−1)2−(1+3)2]+R4n
[n2(3−1)2−(1+3)2]

}
A34 = A34 = 2Ec

{
−R4n

[3+1+n(3−1)][1−3+n(1+3)]

+[n(3−1)−3−1][3−1+n(1+3)]+4n R2n−2
[n23−(n2

−1)R2(1+3)+R4(n23−1)]
}

A44 = 2Ec
{
[n2(3−1)2−(1+3)2]+R4n

[n2(3−1)2−(1+3)2]+2R2n−2
[2n23(1+R4)−(n2

−1)R2(1+3)2]
}

Case III: Core can slide against inner pipe but is bonded to outer pipe (nonvanishing entries only).

ψ= (7+3)
{
3[1+3+n(3−1)]−R4n3[n(3−1)−1−3]−2R2n−2

[(1+3)(R2
−1+3)+n2(R2

−1)(R23−1)]
}

A11 = 2Ec
{
[n2(3−1)2−(1+3)2]+R4n

[n2(3−1)2−(1+3)2]

+2R2n−2
[4(3−1)−R2(3−3)(1+3)+n2(4−23+2R43+R2(3−3)(1+3))]

}
A21 = A12 =−2Ec

{
a4n

1 R2
[1+n(3−1)+3][1+n+(n−1)3]−R2(a1 R)4n

[n(3−1)−3−1]

[n−1+3+n3]−4a1
2nn(a1 R)2n

[3−1+R2(1+3)+n2(R2
−1)(R23−1)]

}
A31 = A13 =−4an

1 Ec(n2
−1)(3−1)

{
R3n−1(3−1+n(1−R2))+Rn−1

[3−1+n(R2
−1)]

}
A22 = 2Ec

{
[n2(3−1)2−(1+3)2]+R4n

[n2(3−1)2−(1+3)2]+2R2n−2
[2n23+2n2 R43−(n2

−1)R2(1+3)2]
}

A32 = A23 =−4Ec(n2
−1)(3−1)

{
Rn−1
[n(R2

−1)−1−3]+R3n−1
[1+3+n(R2

−1)]
}

A33 = 8Ec(n2
−1)

{
3(−2−R4n)+R2n−2

[n2(R2
−1)

2
+32
−1+2R2

]
}

Case IV: Core can slide against both inner and outer pipes (nonvanishing entries only).

ψ = (7+3)
{
[n2(3−1)2−(1+3)2]+R4n

[n2(3−1)2−(1+3)2]+2R2n−2
[2n23(1+R4)−(n2

−1)R2(1+3)2]
}

A11 =−8Ec(n2
−1)

{
−R4n

[n(3−1)−1−3]+[1+3+n(3−1)]−2R2n−2
[R2(1+3)+n2(R2

−1)(R23−1)]
}

A31 = A13 =−8Ecn(n2
−1)(3−1)

{
Rn−1
[(n−1)R2

−1−n]+R3n−1
[1+R2

+n(R2
−1)]

}
A33 =−8Ec(n2

−1)
{
[−1−3+n(3−1)]−R4n

[1+3+n(3−1)]+2R2n−2
[n2 R4

+n23−(n2
−1)R2(1+3)]

}
List of symbols

AST Simplified solution developed in this study r1, r2 Outer and inner pipe nominal radius
Ec, E p Elastic moduli of core and pipe material SS Simplified solution from [Brush and

Almroth 1975; Sato and Patel 2007]h Constituent’s thickness
Kc, K p Stiffness matrices of core and pipe layers σr Radial stress
n Buckling mode number t1, t2 Outer and inner pipe wall thickness
νc, νp Poisson ratios of core and pipe material τrθ Tangential stress
P External pressure v Tangential deformation
Pcr Sandwich pipe buckling pressure w Radial deformation
Pcrs External pipe buckling pressure φ Stress function
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ELASTIC ANALYSIS OF CLOSED-FORM SOLUTIONS FOR ADHESIVE
STRESSES IN BONDED SINGLE-STRAP BUTT JOINTS

GANG LI

In this paper, the adhesive stresses in unbalanced bonded single-strap butt joints are theoretically studied.
Mathematical difficulties in the analysis of high order differential equations were solved and closed-
form solutions for both the adhesive peel and shear stresses have been successfully developed. In the
proposed solutions the adherends and doublers can be different in material and thickness. Peak stresses
are located at the bonded overlap edges, especially at the inner edges. In addition, two-dimensional
geometrically nonlinear finite element analyses were carried out to study the adhesive stresses in two
different bonded butt joints. One was a special butt joint case with the adherends and doubler of identical
material and thickness, and the other was a general butt joint case with different adherends and doubler.
Good agreement in the adhesive stresses between the closed-form solutions and finite element results has
been achieved. The single-strap butt joint actually consists of two single-lap joints; thus, the adhesive
stress solutions can be further applied to unbalanced single-lap joints.

1. Introduction

The elastic analysis of bonded joints can be traced back to the 1930s, and was first practiced on balanced
single-lap joints by Volkersen [1938]. Since then, extensive theoretical studies have been carried out on
this joint configuration [Goland and Reissner 1944; Hart-Smith 1973; Chen and Cheng 1983; Adams
and Wake 1984; Oplinger 1994; Tsai and Morton 1994; Li and Lee-Sullivan 2006a; 2006b]. To date,
closed-form solutions of balanced single-lap joints for predicting bending moments and shear forces at
the overlap edges, as well as the adhesive shear and peel stresses in the adhesive layer, have been well
established. A balanced symmetric, adhesive single-lap joint is defined as a single-lap joint made by
adhesively bonding two identical adherends. When the two adherends have different geometries and/or
mechanical properties, the joints are referred to as unbalanced (see Figure 1(a)). The complexity of this
joint configuration is much greater than that of the balanced case. In addition, due to the complicated
and tedious derivation and lengthy stress expressions, the corresponding complete closed-form adhesive
stress solutions have not been provided in the open literature [Hart-Smith 1973; Williams 1975; Bigwood
and Crocombe 1989; Cheng et al. 1991]. With the progress achieved in adhesively bonded single- and
double-lap joints (see Figure 1(b)), single-strap butt joint configuration became the subsequent topic of
study (see Figure 1(c)). The extent of study on single-strap butt joints was less than that on the single-lap
joints and the theoretical progress was slow. This situation could be attributed to the inherent theoretical
difficulties in the required mathematics and identification of its potential roles in engineering structural
applications, as claimed by Hart-Smith [1985].

Keywords: adhesive stress, closed-form solution, single-strap butt joint, finite element analysis.
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(a) Single-lap joint (b) Double-lap joint

doubler 

adherend 

adhesive 

(c) Single-strap butt joint

Figure 1. Several adhesively bonded joint configurations.

A single-strap joint consists of two single-lap joints. For joints with identical doubler and adherends, a
special joint case, closed-form adhesive stress solutions can be easily obtained using the same approach as
in the balanced single-lap joint configuration. For the butt joints with different doubler and adherends, a
coupling relationship exists between the adhesive peel and shear stresses, and the corresponding complete
closed-form solutions in explicit expressions in the adhesive stresses have not been reported in the open
literature. Delale et al. [1981] reported on a bonded panel-to-substrate joint structure, which could be
approximately treated as an unbalanced butt joint configuration with one piece of the adherend bonded
with a sort of doubler. They gave general expressions of the closed-form solutions for the adhesive
peel and shear stresses, and presented the boundary conditions used to determine the integral constants.
Complex terms with nonzero imaginary terms were present in the adhesive stress expressions, the integral
constants, and the final expressions of the adhesive stresses, and were not further investigated.

Currently, there is a strong and growing trend towards optimizing the strength, weight, and durability
of aircraft structures. The substantial developments in high performance composite structures and special
automated fiber placement machines encourage expectations for the extensive application of composite
joints to both the secondary and primary structures in aircraft. The fuselage structures for the new gener-
ation of aircraft are being built by assembling several precured one-piece composite fuselage barrels. A
bonded single-strap butt joint configuration could be one of the possible configurations for the assembly
of the fuselage structure. In addition, this joint configuration has a better aerodynamic efficiency than
most other joint configurations. As reported by Kweon et al. [2006], the static strength of bonded double-
lap joints using film adhesives FM73 could be much higher than that of bolted joints. With the develop-
ment in joint bonding techniques, the peak peel stress can be effectively reduced, as reported by da Silva
and Adams [2007a; 2007b]. To maximize the joint efficiency, an adequate understanding of the variation
in adhesive stresses under various influences is essential. This paper presents theoretical explorations
of the adhesive stresses in an adhesively bonded general single-strap joint configuration with different
adherends and doubler. Without losing generality of the solutions and avoiding unnecessary complexity
in the theoretical derivation, the joints will be restricted to being made from isotropic materials. The aim
of the work is to obtain closed-form solutions for the adhesive stresses in isotropic butt joints so that the
solutions can later be extended to composite joints including unbalanced single-lap joints. The obtained
theoretical solutions can be used to quantitatively study the effect of each component on the variation in
adhesive stresses, guide practical joint design, and make possible sound bases for practical applications
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in the aerospace industry. For the provided complete closed-form solutions, the integration constants
are quite long, which should be acceptable for such a complicated analysis of high order differential
equations. Furthermore, they can be a solid basis for further effective development of simplified stress
solutions for more practical applications in the near future. For the sake of brevity, only the main contents
of the adhesive stress derivations are present in this paper. An extended version including a parametric
study using the developed closed-form solutions can be found elsewhere [Li 2008].

2. Theoretical formulations

Joint deflection. Secondary bending occurs in butt joints when they are loaded in tension. Within the
elastic deformation range, it is appropriate to treat both adherends and doubler as beams using cylindrical
bent plate theory, as initially proposed by Goland and Reissner [1944], and then applied by others in
works including [Hart-Smith 1973; Cheng et al. 1991; Oplinger 1994; Li and Lee-Sullivan 2006a; Li
2008]. The deformation of a single-strap butt joint in tension is shown in Figure 2. The geometrical
nonlinearity induced by the out-of-plane deflection w should be involved in identifying the joint bending
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Figure 2. Deformation of the adhesively bonded single-strap butt joint in tension (not to scale).
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moment. An accurate joint deflection and shear force can then be determined using cylindrical bent plate
or beam theory. The variables in this joint configuration include both dimension and material parameters.
The length of the outer unbonded adherend is L , the bonded overlap length is 2c on each side, the length
of the inner unbonded doubler is 2L0, the total length of the doubler is 4c+2L0, and the total joint length
is 2L+ 4c+ 2L0. The adherend thickness is t1 and the doubler thickness is t2. The plane strain condition
is applicable for the joint configuration, and thus, the per-unit-width forces of tensile force, T , the shear
force, Vi , and the bending moment, Mi , are the three forces assumed in the joint. By convention, when
i = 1 the forces are in the outer unbonded adherends, when i = 2 the forces are in the bonded overlap
section, and when i = 3 the forces are in the inner unbonded doubler section. The tensile force T is
applicable to any section of the joint.

Brief descriptions of the joint deflection derivation are given in the following. Detailed expressions
of the deflection within each section can be found in [Li 2008].

Bending moments and shear forces. The per-unit-width bending moment and shear force at specific
positions can be obtained using the relations

Mi = Di
d2wi

dx2
i

(i = 1, 2, 3), Vi =
d Mi

dxi
= Di

d3wi

dx3
i

(i = 1, 2, 3), (1a)

where
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=
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.

(1b)

The parameter Di (i = 1, 2, 3) is the per-unit-width bending stiffness in the plane strain condition of the
outer unbonded adherends, overlap, and inner unbonded doubler sections, respectively. In the bonded
overlap section, the impact of the adhesive stiffness to the stiffness D2 can be neglected, because it is
small enough compared to those of the adherends and doubler. The origins of the coordinate frames are
located at the centroid in the left end cross-sectional area of each section. δ1 and δ2 are the transverse
(vertical) distances between the neutral planes, as shown in Figure 3 and given by

δ1 =
t1+ t2+ 2η

2
(
1+ E ′1t1/(E ′2t2)

) , δ2 =
t1+ t2+ 2η

2
. (1c)
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Figure 3. Neutral planes of the cross-sectional area of the bonded overlap section.

Overlap section. The sign convention for the positive tensile force, shear force, and bending moment
is defined in Figure 4. The subscripts u and d apply to the upper adherend and doubler in the overlap
section, respectively.

The bending moments and shear forces at the two outer overlap edges are

M0 = Du
d2w1(x1)

dx2
1

∣∣∣∣∣
x1=L

, V0 = Du
d3w1(x1)

dx3
1

∣∣∣∣∣
x1=L

. (2a)

The bending moment and shear forces at the two inner overlap edges are

M1 = Dd
d2w3(x3)

dx2
3

∣∣∣∣∣
x3=0

, V1 = Dd
d3w3(x3)

dx3
3

∣∣∣∣∣
x3=0

. (2b)
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Figure 5. Illustration of loading state in infinitesimal elements for upper adherend (u)
and lower doubler (d) in the overlap section.

Please note that the relations, Du = D1 (the adherend) and Dd = D3 (the doubler) exist throughout
the entire paper. To clearly display the variation in moments at the outer and inner overlap edges and
directly study the quantitative relationship between the two edge moment magnitudes affected by each
joint component and tensile load, these being the edge moments normalized by the moment parameter
(t1+ η)T /2, the edge moment factors are introduced and defined as

k1 =
2

(t1+ η)T
M0 ≈

2M0

T t1
(outer edges), k2 =

2
(t1+ η)T

M1 ≈
2M1

T t1
(inner edges). (2c)

Adhesive shear and peel stresses. Adhesive stresses can be determined from the equilibrium in the over-
lap section, as shown in Figure 5, where σa is the peel stress, τa the shear stress, and η the adhesive
thickness. The adherend thickness is t1 and the doubler thickness is t2. The force and the moment
equilibrium equations for the upper and lower infinitesimal elements in the bonded overlap section can
be described by

d Mu

dx
− Vu− τa

( t1+η
2

)
= 0,

dTu

dx
− τa = 0,

dVu

dx
+ σa = 0,

d2wu

dx2 =
Mu

Du
,

d Md

dx
− Vd− τa

( t2+η
2

)
= 0,

dTd

dx
+ τa = 0,

dVd

dx
− σa = 0,

d2wd

dx2 =
Md

Dd
.

(3a)

The axial strains of the adherend-adhesive and adhesive-doubler interfaces are

εux =
duu
dx
=

Tu

E ′ut1
+

t1
2

Mu

Du
, εdx =

dud
dx
=

Td

E ′dt2
−

t2
2

Md

Dd
, (3b)

where E ′ = E/(1− v2) under the plane strain condition.
Generally, the adherends and doubler may behave in a linear elastic manner, but under relatively

severe loading and temperature the adhesive may exhibit viscoelastic and/or nonlinear properties. The
nonlinearities in the material properties make exact analytical treatment of the structural and material
problems very complicated. Therefore, the theoretical analysis was carried out using simplified assump-
tions. The adherends, doubler, and adhesive were treated as linear elastic materials. For the elastic
adhesive layer, the relationships between the adhesive peel and shear stresses and the displacements of
the upper adherend and lower doubler can be defined by

σa

Ea
=
wu−wd

η
,

τa

Ga
=

uu− ud

η
, (3c)
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where Ea and Ga are elastic and shear moduli of the adhesive material.
Differentiating Equation (3c) and utilizing these equilibrium relations, the coupling relations existing

between the peel and shear stresses can be identified as

d3τa

dx3 + a1
dτa

dx
+ a2σa = 0,

d4σa

dx4 + b1σa + b2
dτa

dx
= 0, (4a)

where

a1 =−
Ga
η

(
1

E ′ut1
+

1
E ′dt2
+

t1(t1+ η)
4Du

+
t2(t2+ η)

4Dd

)
, a2 =

Ga
η

(
t1

2Du
−

t2
2Dd

)
,

b1 =
Ea
η

( 1
Du
+

1
Dd

)
, b2 =

Ea
η

(
t2+ η
2Dd

−
t1+ η
2Du

)
.

(4b)

The coupling relations vanish provided the coupling parameters a2 = b2 = 0, when the same material
with identical thickness is used for the adherends and doubler.

3. Solutions for the adhesive stresses

Definition of the butt joints in general and special cases. The general case refers to joints with different
adherends and doubler in their materials and/or thicknesses. The special case refers to joints in which
the coupling between the adhesive peel and shear stresses vanishes, for instance, in joints with the same
material and thickness in the adherends and doubler. For this situation, the adhesive peel and shear
stresses can be decoupled as in balanced single-lap joints; thus, it is easy to obtain the closed-form
solutions [Oplinger 1994; Li and Lee-Sullivan 2006a; Li 2008].

Efforts to explore the closed-form solutions are carried out for the general butt joint case in the fol-
lowing.

Determination of the adhesive stresses in the general case.

Adhesive shear stress. By eliminating the peel stress in the coupling Equation (4a), the equation of the
adhesive shear stress can be written as

d7τa

dx7 + a1
d5τa

dx5 + b1
d3τa

dx3 + (a1b1− a2b2)
dτa

dx
= 0. (5a)

The characteristic equation of this equation is

λ7
+ a1λ

5
+ b1λ

3
+ (a1b1− a2b2)λ= 0 (5b)

(see [AEP 1979; Derrick and Grossman 1987; Kreyszig 1993]). One root is λ0 = 0, and then the equation
above becomes λ6

+ a1λ
4
+ b1λ

2
+ (a1b1− a2b2)= 0. Assuming φ = λ2, the equation can be written as

φ3
+ a1φ

2
+ b1φ+ (a1b1− a2b2)= 0. Substituting φ = γ− a1/3 into the above equation [AEP 1979],

the above equation becomes
γ3
+ pγ+ q = 0, (5c)

where

p = b1−
a2

1

3
, q =

2a3
1

27
+

2a1b1

3
− a2b2. (5d)
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We use the classical formula to solve (5c). Setting

r ′ =
3

√
−

q
2
+

√(q
2

)2
+

( p
3

)3
and r ′′ =

3

√
−

q
2
−

√(q
2

)2
+

( p
3

)3
,

the three roots of (5c) are

γ1 = r ′+ r ′′, γ2 = ωr ′+ω2r ′′, γ3 = ω
2r ′+ωr ′′, (5e)

where ω = (−1+ i
√

3)/2, ω2
= (−1− i

√
3)/2, and i2

=−1. The root γ1 is real; γ2 and γ3, and γ2
2 and

γ2
3, are complex conjugates and can be further expressed as

γ2 =−
γ1

2
+ i
√

3
2
(r ′− r ′′), γ3 =−

γ1

2
− i
√

3
2
(r ′− r ′′). (5f)

Using these expressions, the three roots of parameter φ can be expressed as

φk = γk −
a1
3

(k = 1, 2, 3). (6a)

Thus, the second and third roots of λ for (5b) can be determined as

λ1,2 =±

√
γ1−

a1
3

(
provided γ1−

a1
3
≥ 0

)
. (6b)

The second and third roots of φ can be expressed as follows [AEP 1979; Derrick and Grossman 1987;
Kreyszig 1993]:

φ2 = |φ| exp(iβ)= |φ|(cosβ + i sinβ), φ3 = |φ| exp(−iβ)= |φ|(cosβ − i sinβ), (6c)

where the argument β is the directed angle from the positive x-axis to the complex vector on the complex
plane, given by β =min{β1, β2}, where the angles are defined within the range from 0 to 2π . The sum
of the two angles β1 and β2 is 2π .

The modulus, |φ|, of φ2 and φ3 is

|φ| =

√(
−
γ1
2
−

a1
3

)2
+

3
4(r
′− r ′′)2, (6d)

The angles are measured in radians and are positive in the counterclockwise sense. For instance, if
the angle β1 is within the range [0, π/2], then the angles can be calculated as

β1= argφ2= arctan
(
√

3/2)(r ′− r ′′)

−
γ1
2
−

a1
3

(6e)

and β2 = 2π −β1.
Based on the actual positions of φ2 and φ3 on the complex plane, the angle values can be determined.

The real part of φ2 and φ3 is |φ| cosβ =−γ1/2− a1/3, and the imaginary parts of the φ2 and φ3 are

±|φ| sinβ =±

√
3

2
(r ′− r ′′).
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Based on (6c), the remaining four roots of λ can then be determined as

|φ|
1
2

(
cos β

2
+i sin β

2

)
, −|φ|

1
2

(
cos β

2
+i sin β

2

)
, |φ|
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(
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2
−i sin β

2

)
, −|φ|

1
2

(
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2
−i sin β

2

)
. (6f)

Expression of the adhesive shear stress. Provided φ1= γ1−a1/3≥ 0, the general solution of the adhesive
shear stress can be expressed as

τa = C0+C1 cosh
(

x
√
γ1−

a1

3

)
+C2 sinh

(
x
√
γ1−

a1

3

)
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1
2 cos β

2

)
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x |φ|
1
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x |φ|

1
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)
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x |φ|
1
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1
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2

)
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1
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2

)
+C6 sinh

(
x |φ|

1
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2

)
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(

x |φ|
1
2 sin β

2

)
. (7a)

In this expression, all seven terms are real (no imaginary part). This shear stress can be directly used
for practical joint analysis under the influence of joint components and external loading conditions. This
shear stress expression is more practical than the one given in [Delale et al. 1981], where imaginary and
real terms were used together.

The seven constants C j (where j ranges from 0 to 6) can be determined using the following seven
boundary conditions:∫ c
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(7b)

The expressions of the seven constants in the adhesive shear stress are given in the Online Supplement.
The above first boundary condition is obtained through the equilibrium relation of the joint adherend
tensile load with the integral of the resulting shear stress in the adhesive layer. The rest of the six
boundary conditions relate different derivatives of the adhesive shear stress at the outer and inner overlap
ends with the applied loads at the same positions. Assuming continuity of axial strains in the adherends
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and doubler at the interfaces with the adhesive layer and the adhesive stresses in the adhesive layer,
the second and third boundary conditions at the two overlap ends are obtained by combining the first
derivative of the adhesive shear stress in (3c) and the expressions of the axial strains at the adherend-
adhesive and adhesive-doubler interfaces in (3b). The adhesive shear stress in (3c) is differentiated twice,
using the equilibrium equations of moment and tensile force in (3a) to substitute for the fourth and fifth
boundary conditions. To obtain the sixth and seventh boundary conditions for the uncoupled adhesive
shear stress, two differentiations are applied to the first coupled adhesive stress equation in (4a) with the
aid of the peel stress expression in (3c) and moment-curvature relation in (1a).

Adhesive peel stress. Exploration of the closed-form solution for the adhesive peel stress should be car-
ried out based on its fundamental behavior expressed in (4a). This nonhomogeneous equation degrades
to its corresponding homogeneous equation in the special butt joint case when the coupling parameter b2

vanishes. The nonhomogeneous equation can be investigated using variation of constants or Lagrange’s
method [AEP 1979; Derrick and Grossman 1987]. The general solution is established by combining the
general solution of the homogeneous equation and any one particular solution of the nonhomogeneous
equation. If we define

X = x 4
√

b1
4
,

the general solution of the homogeneous equation is

σaH = C1H cosh X cos X +C2H sinh X cos X +C3H cosh X sin X +C4H sinh X sin X. (8a)

One particular solution for the nonhomogeneous equation can be expressed in the form

σap = G1p(x) cosh X cos X +G2p(x) sinh X cos X +G3p(x) cosh X sin X +G4p(x) sinh X sin X, (8b)

where the functions G1p(x), G2p(x), G3p(x), and G4p(x) are determined using the following simulta-
neous equations [AEP 1979; Derrick and Grossman 1987]:

G ′1p(x) cosh X cos X +G ′2p(x) sinh X cos X +G ′3p(x) cosh X sin X +G ′4p(x) sinh X sin X = 0,

G ′1p(x)
d

dx
(cosh X cos X)+G ′2p(x)

d
dx
(sinh X cos X)

+G ′3p(x)
d

dx
(cosh X sin X)+G ′4p(x)

d
dx
(sinh X sin X)= 0,

G ′1p(x)
d2

dx2 (cosh X cos X)+G ′2p(x)
d2

dx2 (sinh X cos X)

+G ′3p(x)
d2

dx2 (cosh X sin X)+G ′4p(x)
d2

dx2 (sinh X sin X)= 0,

G ′1p(x)
d3

dx3 (cosh X cos X)+G ′2p(x)
d3

dx3 (sinh X cos X)

+G ′3p(x)
d3

dx3 (cosh X sin X)+G ′4p(x)
d3

dx3 (sinh X sin X)=−b2
dτa

dx
.

(8c)
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The expressions for Gi p(x) (i = 1, . . . , 4) functions are given in the Online Supplement. The general
solution for the adhesive peel stress in the general butt joint case can be established as

σa = σaH + σap

= C1H cosh X cos X +C2H sinh X cos X +C3H cosh X sin X +C4H sinh X sin X

+G1p(x)cosh X cos X +G2p(x)sinh X cos X +G3p(x)cosh X sin X +G4p(x)sinh X sin X. (8d)

The expressions for the constants C1H , C2H , C3H , and C4H are also given in the Online Supplement,
and are determined using the boundary conditions

d2σa

dx2

∣∣∣∣
x=−c
=

Ea
η

Mu

Du

∣∣∣∣
x=−c
=

Ea
η

M0

Du
,

d2σa

dx2

∣∣∣∣
x=c
=−

Ea
η

Md

Dd

∣∣∣∣
x=c
=−

Ea
η

M1

Dd
,

d3σa

dx3 + b2τa

∣∣∣∣
x=−c
=

Ea
η

Vu

Du

∣∣∣∣
x=−c
=

Ea
η

V0

Du
,

d3σa

dx3 + b2τa

∣∣∣∣
x=c
=−

Ea
η

Vd

Dd

∣∣∣∣
x=c
=−

Ea
η

V1

Dd
.

(8e)

These four boundary conditions relate the derivatives of the adhesive peel stress with the applied loads
at the outer and inner overlap ends. Two differentiations are conducted on the peel stress expression in
(3c) with the aid of the moment-curvature relation in (1a) to obtain the first two boundary conditions.
One more differentiation is applied to the second derivative of the peel stress expression with the aid of
the moment equilibrium relation in (3a) to obtain the third and fourth boundary conditions.

Joint special case: parameters of a2 = b2 = 0. It can be seen from (4b) that the coupling parameters a2

and b2 vanish when the butt joints are balanced, a special case. The adhesive shear and peel stresses are
then decoupled. The other two parameters in (4b) are

a1 =−
Ga
η

(
2

E ′t
+

t (t + η)
2D

)
, b1 =

2Ea

ηD
. (9a)

The shear and peel stress equations can be simplified as

d3τa

dx3 + a1
dτa
dx
= 0,

d4σa

dx4 + b1σa = 0. (9b)

Adhesive shear stress. The general solution for the adhesive shear stress is then

τa = C0S +C1S cosh

(
x

√
Ga

η

(
2

E ′t
+

t (t + η)
2D

))
+C2S sinh

(
x

√
Ga

η

(
2

E ′t
+

t (t + η)
2D

))
. (10)

The expressions of these three constants, Ci S (i = 0, 1, 2), are given in the Online Supplement and are
determined using the three boundary conditions∫ c

−c
τa dx =−T, dτa

dx

∣∣∣∣
x=−c
=

Ga
η

(
T

E ′ut1
+

t1
2

Mu

Du

)∣∣∣∣∣
x=−c

,
dτa
dx

∣∣∣∣
x=c
=

Ga
η

(
−

T
E ′dt2
+

t2
2

Md

Dd

)∣∣∣∣∣
x=c

.

Similarly to the general butt joint case, the first boundary condition is the equilibrium relation in the
adherend between the applied tensile load with the integral of the resulting shear stress in the adhesive
layer. The second and third boundary conditions relate the first derivative of shear stress to the loads at
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the two overlap ends, and are obtained by combining the first derivative of the adhesive shear stress in (3c)
with the expressions of the axial strains at the adherend-adhesive and adhesive-doubler interfaces in (3b).

Adhesive peel stress. The general solution for the adhesive peel stress is

σa = C3S cosh X cos X +C4S sinh X cos X +C5S cosh X sin X +C6S sinh X sin X. (11)

The constants Ci S (i = 3, 4, 5, 6) are given in the Online Supplement. They are determined using the
boundary conditions

d2σa

dx2

∣∣∣∣∣
x=−c

=
Ea

η

Mu

Du

∣∣∣∣∣
x=−c

=
Ea

η

M0

D
,

d2σa

dx2

∣∣∣∣∣
x=c

=−
Ea

η

Md

Dd

∣∣∣∣∣
x=c

=−
Ea

η

M1

D
,

d3σa

dx3

∣∣∣∣∣
x=−c

=
Ea

η

Vu

Du

∣∣∣∣∣
x=−c

=
Ea

η

V0

D
,

d3σa

dx3

∣∣∣∣∣
x=c

=−
Ea

η

Vd

Dd

∣∣∣∣∣
x=c

=−
Ea

η

V1

D
.

As in the general butt joint case, the above four boundary conditions relate the derivatives of the adhesive
peel stress with the applied loads at the outer and inner overlap ends of the balanced butt joint.

Consistence of the adhesive stresses from the general to the special joint cases. The derivations in
the closed-form stress solutions were carried out based on their fundamental equations, thus, when the
general case approaches the special butt joint case, both the adhesive peel and shear stresses will converge
to their corresponding adhesive stresses in the special joint case, which has been validated in [Li 2008].

Validation of the closed-form solutions of the adhesive stresses using finite element methods. Due to
the geometrical nonlinearity caused by the secondary bending deformation in butt joints, two-dimensional
geometrically nonlinear finite element (FE) analyses were carried out under the plane strain condition,
using MSC Patran and Marc version 2008r1. Linear elastic material properties were used for the FE
analyses. Two different joint situations, as given in Table 1 and Figure 6, were considered. The FE
results obtained for the adhesive stresses were compared with the corresponding closed-form solutions.

Assuming a small clearance in the joint, a gap of 0.02 mm was assumed to represent the inner section
length without adherends and adhesive, as shown in Figure 6. Two elements were used through the
adhesive thickness. A fine mesh was applied to the overlap edge areas. Ten elements were used across

Item Mechanical parameters Length (mm) Thickness (mm)

Adherends E = 70 GPa, v = 0.3 L = 50
(each outer adherend)

t1 = 2.1

Doubler E = 70 GPa, v = 0.3 4c+ 2L0 = 101.6
(inner section length of
2L0 = 0.02)

t2 = 2.1 and 3.2
for special and general
(thicker doubler) cases

Adhesive Ea = 3 GPa, va = 0.3 4c = 101.58 η = 0.15

Table 1. Parameters for the unit width single-strap butt joint. The total gauge length of
the joint is 2L + 4c+ 2L0 = 201.6 mm.



CLOSED-FORM SOLUTIONS FOR ADHESIVE STRESSES IN SINGLE-STRAP BUTT JOINTS 421

 

 

 

 

 

 

 
 

(a) Special case, 2.1 mm thick doubler and adherends 
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(b) General case, 3.2 mm thick doubler and 2.1 thick mm adherends 
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Figure 6. Schematic diagrams for the two simulated butt joints with a 0.02 mm inner
gap section for both adherends and adhesive for the special (2.1 mm doubler) and general
(3.2 mm doubler) joints.

the adherends and doubler thicknesses for the special case, and 12 elements were used for the 3.2 mm
thick doubler. A total of 3,284 eight-node quadrilateral elements with 10,273 nodes were created for the
special case. A total of 3,516 eight-node quadrilateral elements with 10,971 nodes were generated for
the thicker doubler general case joint. The left edge was clamped without any displacement in both the
horizontal and vertical directions, while the right adherend far end edge was uniformly loaded with a
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Figure 7. Comparison of the adhesive peel stresses obtained from closed-form solutions
and FE results for a special butt joint with identical adherends and doubler (above) with
dashed box marking the detail (below). FE_lower refers to the lower path along the
midnodes of the lower adhesive layer elements.

tensile stress of 100 MPa. Multipoint-constrain conditions were applied to the right edge nodes having
the same displacement during the tensile loading stage.

Comparison of the adhesive stresses between the closed-form solutions and FE results. Five nodes were
used through the thickness of the adhesive layer. The peel and shear stresses at the nodes along the
adherend-adhesive or adhesive-doubler interface are dominated by the mechanical parameters of both the
adherend (or doubler) and adhesive, and cannot be treated as the adhesive stresses. Thus, the adhesive
stresses at the upper element midnode, adhesive centerline, and lower elements midnode were extracted
and analyzed. The stresses at the lower node were greater than the corresponding stresses at the centerline
and upper node. The average stresses along the three paths were identical to the stresses along the
centerline. For the closed-form stress solutions, the first step was to determine the bonded overlap edge
forces such as the bending moments and shear forces as introduced in Section 2 and elsewhere [Li 2008],
then to follow the steps in Section 3, as well as the Online Supplement, to get the adhesive stresses.
Variations in the adhesive peel and shear stresses obtained from the closed-form solutions and finite
element results are presented in Figures 7–10 for both butt joint cases. Based on these figures, the
following observations can be made: the adhesive stresses are uniform in the thickness direction except
at the overlap edge nodes; high stresses are present in the vicinity of the overlap edges, the highest
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Figure 8. Comparison of the adhesive peel stresses obtained from closed-form solutions
and FE results for a general butt joint with 2.1 mm thick adherends and a 3.2 mm thick
doubler. FE_lower refers to the lower path along the midnodes of the lower adhesive
layer elements.

being at the inner overlap edge position; the stress magnitudes are lower using the thicker doubler; the
closed-form solutions are approximately the same as the FE results, except at the edge positions; and
at the inner overlap edge position, the peel stresses obtained from the closed-form solutions are within
the FE stresses at the centerline and lower path nodes, and the shear stresses obtained from the closed-
form solutions are almost identical to the FE results at the lower path nodes and slightly larger than the
centerline values. The peak stress values and stress singularity, which existed at the adherend-adhesive
and adhesive-doubler interfaces in the vicinity of the overlap edges, are not within the scope of the paper,
and thus were not covered in the current FE analyses.

The above comparisons clearly show that the closed-form stress solutions are reliable and accurate in
predicting the stress variations. The closed-form stress solutions can also be used to analyze the mode I
and mode II strain energy release rates for cohesive crack propagation behavior in a generic situation of
butt joints using the approach suggested by Hu [1995] on the single-lap joints.
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Figure 9. Comparison of the adhesive shear stresses obtained from closed-form solu-
tions and FE results for a special butt joint with identical adherends and doubler.

4. Concluding remarks

In the study of unbalanced butt joint, the derived high order differential equation was the same as the
one initially obtained by Delale et al. [1981] for the uncoupled adhesive shear stress. They provided
general stress expressions containing complex terms with nonzero imaginary terms, and did not present
the final complete adhesive stress solutions. Among the seven boundary conditions, two were slightly
different. However, the impact on the final solutions could be neglected based on our previous study
[Li and Lee-Sullivan 2006a]. Due to the page limit, the study of the impact of small differences on
the set of boundary conditions on the adhesive stress variation is not carried further. Difficulties and
complexities in the derivation process using these high order differential equations have been solved.
Closed-form solutions for the adhesive peel and shear stresses have been successfully developed in this
paper for the general butt joint case. Good agreement was achieved in the adhesive stresses obtained
from the closed-form solutions and finite element results for both the special and general butt joints. The
obtained results validate that the used boundary conditions are accurate. Since the closed-form solutions
have been obtained from their fundamental behavior equations, the consistence of the adhesive stresses
between the general and special joint cases can be theoretically ensured. Moreover, the obtained stress
solutions allows the quantitatively study of the effect of each joint component on the variation in the
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Figure 10. Adhesive shear stresses obtained from closed-form solutions and FE results
for a general butt joint with 2.1 mm thick adherends and a 3.2 mm thick doubler.

adhesive stresses for more joint geometries and materials, as can be found elsewhere [Li 2008]. Thus,
a practical evaluation of this joint configuration can be easily carried out using the Excel spreadsheet
tool. Usually the length of the inner gap section (the inner unbonded doubler section) in a butt joint is
very small and much shorter than the outer adherend length; the two single-lap joints of the butt joint
should be then treated as in the unbalanced single-lap joint case. Thus, the adhesive stress solutions
obtained from the butt joint configuration can be applied to the unbalanced single-lap joint case if the
overlap edge loads are known. The next stage could be: the exploration of the simplified stress solutions
for better practical applications, the development of the adhesive stresses in composite butt joints, and
the identification of the proper hole positions for introducing extra fasteners to fabricate a strong hybrid
attached joint.
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THEORETICAL AND EXPERIMENTAL STUDIES OF BEAM BIMORPH
PIEZOELECTRIC POWER HARVESTERS

SHUDONG YU, SIYUAN HE AND WEN LI

This paper presents a theoretical model for simulating a piezoelectric beam bimorph power harvester
consisting of a laminated piezoelectric beam, a proof mass, and an electrical load. The vertical offset
of the proof mass center from the beam centroid couples the bending and longitudinal motions, which
makes it necessary to consider both longitudinal and lateral vibrations simultaneously. Experiments
were carried out on a beam bimorph prototype mounted on a shaker to measure the electrical output.
Numerical results obtained using the proposed procedure for piezoelectric bimorph power harvesters are
in good agreement with the experimental data.

1. Introduction

Power harvesting devices scavenge energy from ambient mechanical vibrations. When a cantilever bi-
morph piezoelectric beam is attached to a vibrating base, electrical energy is produced continuously.
Devices of this kind are often used to replace or extend the life time of electrochemical batteries for
wireless sensors, implanted medical devices, handheld electronic devices, and other portable electronic
devices [Roundy et al. 2004; Yang 2006; Liao and Sodano 2008]. Compared with other energy scaveng-
ing methods such as electromagnetic [Glynne-Jones et al. 2004] and electrostatic methods [Mitcheson
et al. 2004], piezoelectric vibration based energy harvesting systems have been attracting a lot of at-
tention recently because of their simple structure, direct conversion of vibration energy into electrical
energy with a high voltage level, lower number of additional electrical components, and not requiring
an electric power source [Sodano et al. 2004; Anton and Sodano 2007]. The most popular structures
for vibration based piezoelectric power harvesting systems are piezoelectric cantilever (unimorph or
bimorph) beams, which are suitable for small amplitude ambient vibration. Most test results available in
the literature were obtained for sinusoidal mechanical motion. Cantilever-type energy harvesting devices
function most effectively when the excitation frequencies vary in the vicinity of the fundamental resonant
frequency of the electromechanical system.

Models of distributed-parameter energy harvesting systems were presented in [Erturk and Inman
2008b], and approaches based on modal analysis were proposed to solve the dynamical response of the
electromechanical system. An energy-based formulation of piezoelectric structures is given in [Dutoit
et al. 2005]. Some simplified analytical models for a cantilever piezoelectric beam energy harvester are
available in the literature. However, as pointed out in [Erturk and Inman 2008a], errors were unfortu-
nately present in deriving the simplified analytical solutions in several published papers. The authors of
the current paper also had the opportunity to examine the analytical results published in the literature,
and observed that errors and mistakes of a nontypographical nature indeed existed in the earlier works

Keywords: power harvesting, finite element modeling, piezoelectric structures, bending, axial deformation, rotary inertia.
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concerning the derivations of analytical solutions for bimorph piezoelectric structures. The timely paper
[Erturk and Inman 2009] deals with the analytical solution for a bimorph piezoelectric beam energy
harvester carrying a symmetrically placed proof mass.

In this paper, the finite element method is employed to obtain the governing equations of the electrome-
chanical system consisting of a piezoelectric beam, a proof mass, and a resistive load. The three-node
beam element [Yu and Cleghorn 2002], presented in this paper, is of a higher order type and is ideal for
dynamic problems. The authors anticipate that energy harvesting devices of this type can be modeled
accurately using the proposed method. Effects of mass, mass moment of inertia, and offsets of the mass
center with respect to the mass-beam interface can be studied for a proof mass of general configuration.

2. Formulation of mechanical and electrical energies

A piezoelectric power harvester consisting of a piezoelectric bimorph beam and a proof mass is sketched
in Figure 1. The piezoelectric beam is clamped onto a vibrating base. As the base vibrates, the mechanical
energy is converted into electrical energy through the piezoelectric power harvester. In this section, the
mechanical (kinetic, strain, and dissipative) energy, the electrical energy, and the electrical work done
on a power-consuming resistor are studied and related to a set of electromechanical variables.

Axial strain. The axial strain everywhere in the piezoelectric beam is induced by the axial and lateral
deformations in the x-z coordinate plane (see Figure 1). Within the context of classical beam theory, a
plane of a beam normal to its neutral axis before deformation remains a plane and normal to the deformed
neutral axis after deformation. The total axial displacement of a material point in the beam structure,
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Figure 1. Illustration of a typical piezoelectric power generator.
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bounded by 0≤ x ≤ l, −b/2≤ y ≤ b/2, and −h/2≤ z ≤ h/2, may be written as

u(x, z, t)= u0(x, t)− θ(x, t)z, (1)

where u0(x, t) is the axial displacement due to uniform axial stretching, w(x, t) is the lateral displacement
of the centroid due to in-plane bending, z is the vertical distance of the material from the centroid, and
b is the beam width.

According to Euler–Bernoulli beam theory, the angle of rotation of a beam cross section, normal to
the centroid axis, is everywhere related to the slope of the deformed centroid axis as follows:

θ(x, t)=
∂w(x, t)
∂x

, 0≤ x ≤ l. (2)

For small deformations, the axial strain everywhere in the beam is

S1(x, z, t)=
∂u0(x, t)
∂x

−
∂2w(x, t)
∂x2 z. (3)

Constitutive equations. The constitutive equation for the nonactive shim material, bounded by −hs/2≤
z ≤ hs/2, may be written as

T1,s = c11,s S1, (4)

where T1,s is the axial stress in the shim material and c11,s is the modulus of elasticity of the shim
material.

For the two piezoelectric layers, bounded by hs/2≤ z ≤ h/2 and −h/2≤ z ≤−hs/2, the constitutive
equations may be written as [Roundy et al. 2004]

T1,p = c11,p S1− e31,p E3,p, D3,p = e31,p S1+ ε33,p E3,p, (5)

where T1,p is the axial stress in the piezoelectric material, c11,p is the elastic constant of the piezoelectric
material, ε33,p is the permittivity in the thickness direction, d31,p is the piezoelectric constant, E3,p is the
electric field in the thickness direction, and D3,p is the electric displacement in the thickness direction.

A bimorph piezoelectric beam in the {3-1} mode is made of two identical piezoelectric layers at the
top and bottom and a shim in the middle, which makes the structure a symmetrically laminated beam.
In a symmetrically laminated beam, the axial stretching does not induce bending, and vice versa. For
a composite beam of very large length-to-thickness ratios, the dominating strains and stresses in each
constitutive layer are the axial strains and stresses due to the bending and axial stretching when it is
operated in the vicinity of the fundamental natural frequency of the in-plane bending. Other stress
components, for example the transverse shear stress, are negligible.

For piezoelectric composite beams of moderate or large thickness, the electrical field in a piezoelectric
layer may vary considerably in the thickness direction [Wang et al. 2007]. However, for a very thin
piezoelectric laminate, the electrical field across each piezoelectric layer may be considered constant in
the thickness direction. In this paper, the piezoelectric structure is thin and symmetric. The following sim-
plified relationship between the electric field and the voltage differential (v) across a single piezoelectric
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layer is employed:

E3,p =


−v/h p if hs ≤ 2z ≤ h,

0 if −hs ≤ 2z ≤ hs,

v/h p if −h ≤ 2z ≤−hs,

(6)

where h p is the thickness of the top or bottom piezoelectric layer and v is the voltage across one piezo-
electric layer.

Motion analysis. A rigid proof mass is commonly attached to the beam at the free end to enhance power
generation. When the beam-mass system is clamped to a rigid moving base, the beam-mass system
participates in two motions: the rigid body motion with the base and the elastic motion relative to the
base. The rigid reference motion is responsible for providing an excitation in the form of a distributed
inertial force field. The relative elastic motion is desired to yield necessary straining of materials for
producing electrical charges.

A beam-mass system is capable of various types of elastic deformations when the excitation fre-
quencies vary considerably. They include bending, axial stretching/compression, and torsion. However,
when the system is excited in the vicinity of the fundamental natural frequency, the beam motion is
predominantly bending in the x-z coordinate plane. The proof mass motion is of the type of general plane
motion. Since the lateral motion is coupled to the lateral bending motion for nonsymmetric attachments
of the proof mass, the longitudinal deformation and lateral bending are considered. Bending in the y-z
coordinate plane and torsion about the z axis are negligible.

To determine the deformations of a flexible beam at time t , a set of moving coordinates fixed to the
moving ground are employed. For translational base motion in the vertical direction, the base-fixed
coordinate translates with velocity v̇b. A material point P , located a distance x from the reference point
on the neutral axis before deformations, as shown in Figure 2, moves to P ′ after deformations. If the

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

u

O,o 

Z,z 

X,x 

P

P
c

v

zb(t) 

TL 

G 

o 

Configuration at t = 0 

Configuration at t = t 

G 

dx 

x 

R

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

z 
x 

Figure 2. Sketch of deformed piezoelectric structure with respect to the reference configuration.
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longitudinal and lateral displacements measured with respect to the body-fixed coordinate system x-z are
u(x, t) and w(x, t), respectively, the absolute position of P ′ may be written in terms of the base-fixed
coordinates as

R =
{

ex ey
} { x + u0(x, t)
wb(t)+w(x, t)

}
, (7)

where Ro is the rigid-body position vector of reference point o, and ex and ey are the two unit vectors
of the base-fixed coordinate system. For a nonrotating base motion, these two unit vectors are constant
and identical to the unit vectors in the space-fixed coordinates.

The velocity of point P ′ may be written in the body-fixed coordinate system as

Ṙ =
{

ex ez
} { u̇0

ẇb+ ẇ

}
, (8)

where ẇb is the velocity of the vibrating base and u̇0 and ẇ are the time rates of longitudinal and lateral
deflections with respect to the moving coordinate system.

Kinetic energy. The kinetic energy of the dynamical system may be conveniently written as

T = Tbeam+ Tmass, (9)

where Tbeam is the kinetic energy of the beam and Tmass is the kinetic energy of the proof mass plus the
portion of the beam bonded to the mass.

The kinetic energy of the beam may be written as

Tbeam =
1
2

∫ l

0
m̄ Ṙ2 dx︸ ︷︷ ︸

translational

+
1
2

∫ l

0
īy θ̇

2 dx︸ ︷︷ ︸
rotational

, (10)

where m̄ is the mass of the beam per unit length, īy is the mass moment of inertia of the beam about the
y-axis per unit length, and θ̇ is the rate of the angle of rotation of a plane normal to the centroid. For a
symmetrically laminated beam of constant width b, we can compute m̄ and īy by

m̄ =
n∑

k=1

ρkhkb, īy =
1
3

n∑
k=1

ρkb
{(

z(k)2

)3
−
(
z(k)1

)3}
, (11)

where z(k)1 and z(k)2 are the z-coordinates of the lower and upper faces of k-th layer, ρk is the density of
the material in k-th layer, and hk is the thickness of k-th layer. For large length-to-thickness ratios, the
rotary inertia of the beam bimorph is very small, and will be ignored in this paper.

The kinetic energy of the proof mass attached to the free end of the piezoelectric beam structure may
be written as

Tmass =
1
2 m[Ẋ2

G + Ż2
G] +

1
2 JG,y θ̇

2
l , (12)

where ẊG and ŻG are the velocities of the proof mass center along the x and z directions respectively,
JG,y is the mass moment of inertia of the proof mass about the yG axis, m is the mass of the proof mass,
and θ̇l is the angle of rotation of the beam at x = l.

At a given instant, the proof mass center is related to the beam deflection as

XG = u0,l + aG cos θl − cG sin θl, YG = wb+wl + aG sin θl + cG cos θl, (13)
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where aG and cG are the axial and lateral distances, respectively, of proof mass center (G) with reference
to the end point of the beam neutral axis at x = l, and u0,l and wl are the axial and lateral deformations
of the beam at x = l.

Finally, the kinetic energy of the proof mass may be written as

Tmass =
1
2 m(Ẋ2

G + Ẏ 2
G)+

1
2 JG,y θ̇

2
l . (14)

Strain energy. The strain energy of the composite beam associated with the longitudinal and lateral
deformations is

V = 1
2

∫
Vp

T1,p S1 dVp +
1
2

∫
Vs

T1,s S1 dVs

=
1
2

∫
Vp

c11,p(S1)
2 dVp +

1
2

∫
Vp

e31h−1
p vS1 dVp +

1
2

∫
Vs

c11,s(S1)
2 dVs,

(15)

where Vs is the volume of the shim material and Vp is the volume of the piezoelectric material.
Substituting (3) into (15), the strain energy for the symmetrically laminated composite beam may be

expressed in terms of a line integral as

V = 1
2

∫ l

0
Ru

(
∂u0
∂x

)2
dx + 1

2

∫ l

0
Rw
(
∂2w
∂x2

)2
dx − 1

2

∫ l

0
γ
∂2w
∂x2 vdx, (16)

where

Ru = 2c11,p2Ap + c11,s As, Rw = c11,p Ip + c11,s Is, γ = 2e31 Ap z̄ ph−1
p , Ap =

1
2 b(h− hs),

As = bhs, Ip =
1

12 b(h3
− h3

s ), Is =
1
12 bh3

s , z̄ p =
1
4(h+ hs).

Electrical energy. The electrical energy in the two layers of piezoelectric material may be written as

We =
1
2

∫
Vp

E3 D3dV = 1
2

∫ l

0
γv
∂2w
∂x2 dx + 2

(1
2

c0v
2
)
, (17)

where c0 = ε33blh−1
p .

Energy dissipation. Energy loss in a vibrating piezoelectric structure can be handled mathematically if it
is in a form of proportionality damping. The proportionality damping accounts for both the environmental
damping due to the viscosity of the surrounding medium and the internal structural damping. Within the
context of Lagrange equations, the Rayleigh dissipation function is an effective way of bringing damping
into consideration. The energy loss function may be assumed as

U = 1
2

∫ l

0
αum̄u̇2

0 dx + 1
2

∫ l

0
αwm̄ẇ2 dx + 1

2

∫ l

0
βu Ru

(
∂ u̇0
∂x

)2
dx + 1

2

∫ l

0
βwRw

(
∂2ẇ
∂x2

)2
dx, (18)

where αu , αw, βu , and βw are proportionality constants. Their values are not determined individually.
Instead, a combined damping ratio associated with a particular mode is measured and used in simulations
for a specific setup.



THEORETICAL AND EXPERIMENTAL STUDIES OF BEAM BIMORPH. . . 433

Work done on resistor. The rate of electrical work done by the resistor per unit voltage is

Q̇ R =

{
−i for piezoelectric layers in parallel,
−2i for piezoelectric layers in series,

(19)

where i is the current passing through the resistor.
The work done by the resistor per unit voltage is then

Q R =

{
−q for piezoelectric layers in parallel,
−2q for piezoelectric layers in series,

(20)

where q is the charge flowing through the resistor.

3. Governing equations of the electromechanical system

In this section, a finite element procedure for obtaining a set of ordinary differential equations for the
piezoelectric power harvesting system is presented.

Beam finite elements. The three-node beam element used in this paper has three axial nodal displace-
ments, ue

1, ue
2, and ue

3, three lateral displacements, we
1, we

2, and we
3, and three angles of rotation, θ e

1 , θ e
2 ,

and θ e
3 . To facilitate the formation of element matrices, a local axial coordinate originating at the first

node of a beam element is used. For a straight beam, the local axial coordinate is related to the body-fixed
coordinates by ξ = x − xe

1 and 0≤ ξ ≤ le, where xe
1 is the axial coordinate of the first node of element

e and ξ is the local coordinate for element e. The longitudinal and lateral displacements of a material
point within a beam finite element may be determined by the shape function and nodal variables from
the equations

ue = [N1(ξ)][De
1]{q

e
u}, we = [N2(ξ)][De

2]{q
e
w}. (21)

(see [Yu and Cleghorn 2002]). For convenience in assembly of component equations, the global nodal
displacement vector is rearranged in the following manner:

{r} =
{
u1 w1 θ1 u2 w2 θ2 . . . uN N wN N θN N

}T
. (22)

The longitudinal and lateral nodal displacements are related to the global displacement vector through
transformation matrices [T e

u ] and [T e
w] as follows:

{qe
u} = [T

e
u ]{r}, {q

e
w} = [T

e
w]{r}. (23)

Expressions for kinetic, strain, and dissipation and electric energies in nodal displacements. If Ne

beam finite elements are used for the piezoelectric structure, the kinetic energy (excluding the rotary
inertia), the strain energy, the Rayleigh dissipation energy function, and the electrical energy for the
dynamical system may be written in terms of the nodal displacements and the voltage across a single
layer of piezoelectric material may be written as

T = 1
2 {ṙ}

T
[M]{ṙ}+ ẇb{ṙ}T {B}+ 1

2 m̄lẇ2
b, U = 1

2 {ṙ}
T
[C]{ṙ},

V = 1
2 {r}

T
[K ]{r}− 1

2 γv{r}
T
{2}, We =

1
2 v{r}

T
{2}+ 2

(1
2 c0v

2), (24)
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where

[C] =
N E∑
e=1

[
[T e

u ]
T [αu[Me

u] +βu[K e
u]
]
[T e

u ]

]
+

N E∑
e=1

[T e
w]

T [αw[Me
w] +βw[K

e
w]
]
[T e
w],

[M] =
N E∑
e=1

[
[T e

u ]
T
[Me

u][T
e

u ]+[T
e
w]

T
[Me

w][T
e
w]
]
+[Mmass], [K ] =

N E∑
e=1

[
[T e

u ]
T
[K e

u][T
e

u ]+[T
e
w]

T
[K e

w][T
e
w]
]
,

{B} =
N E∑
e=1

[T e
w]

T
{Be

w}+ {Bmass}, {2} =

N E∑
e=1

[T e
w]

T
{2e

w},

[Me
u] = [D

e
1]

T
[∫ le

0
m̄[N1]

T
[N1]dξ

]
[De

1], [Me
w] = [D

e
2]

T
[∫ le

0
m̄[N2]

T
[N2]dξ

]
[De

2],

[K e
u] = [D

e
1]

T
[∫ le

0
Ru[N

′

1]
T
[N
′

1]dξ
]
[De

1], [K
e
w] = [D

e
2]

T
[∫ le

0
Rw[N

′′

2 ]
T
[N
′′

2 ]dξ
]
[De

2],

{2} = [De
2]

T
{∫ le

0
[N
′′

2 ]
T dξ

}
, {Be

w} = [D
e
2]

T
[∫ le

0
m̄[N2]

T dξ
]
,

[Mmass] =

[
0 0
0 [M̄mass]

]
, [M̄mass] =

 m 0 −mcG

0 m maG

−mcG maG J̄y

 ,
{Bmass} =

{
0 0 . . . 0 m maG

}T
, J̄y = ma2

G +mc2
G + JG,y .

Governing equations. The Lagrangian for the electromechanical system may now be written as

L = T − V +We =
1
2 {ṙ}

T
[M]{ṙ}− 1

2 {q}
T
[K ]{r}+ γ{r}T {2}v+ 2

( 1
2 c0v

2). (25)

Two sets of governing equations for the electromechanical system can be derived from the following
Lagrange equations:

d
dt

∂L
∂{ṙ}T

+
∂U
∂{ṙ}T

−
∂L
∂{r}T

= 0, d
dt
∂L
∂v̇
−
∂L
∂v
= Q R. (26)

Substituting (25) into (26), the equations of motion of the piezoelectric structure and the equation of the
electrical power generation are written as

[M]{r̈}+ [C]{ṙ}+ [K ]{r}− γ[2]v =−{B}ẅb, γ[2]T {r}+ 2c0v = Q R. (27)

When the electrical output from the piezoelectric structure is connected to a resistor load and the two
piezoelectric layers are connected in parallel, the voltage is related to the rate of charge as v = Rq̇.
Incorporating the above electrical boundary condition and the first relation in (20) into (27), the gov-
erning equations for the coupled electromechanical system may be rewritten in terms of the mechanical
displacements and the electric charge, for a sinusoidal base motion, wb = A sin(ωt +φ), as follows:[
[M] 0

0 0

]{
{r̈}
q̈

}
+

[
[C] −γR[2]
0 R

]{
{ṙ}
q̇

}
+

 K 0

[2]T
γ

2c0

1
2c0

{{r}
q

}
= Aω2 sin(ωt +φ)

{
{B}
0

}
. (28)
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Equation (28) is valid for two piezoelectric layers connected in parallel. The voltages across the two
piezoelectric layers are each equal to the voltage across the resistor.

In the case where the two piezoelectric layers are connected in series, the voltage across the resistor
is twice the voltage across each piezoelectric layer, that is, v = Rq̇/2. In the case of a series connection,
one obtains the following governing equations for the electromechanical system:[
[M] 0

0 0

]{
{r̈}
q̈

}
+

[
[C] −[2]γ R

2
0 R

]{
{ṙ}
q̇

}
+

 K 0

[2]T
γ
c0

2
c0

{{r}
q

}
= Aω2 sin(ωt +φ)

{
{B}
0

}
. (29)

Handling mechanical boundary conditions. If the base is considered rigid, the piezoelectric beam is
clamped to the base. The axial displacement, the lateral displacement, and the angle of rotation of the
beam with respect to the base are zero. The boundary conditions at the clamping end can be easily
handled using the elimination method or the penalty method [Bathe 1995]. In this paper, the elimination
method is employed. It is noted that other boundary conditions, such as elastically restrained edges
simulating less than rigid constraints between the base and the beam, can also be handled in the frame
work of the finite element formulation.

Deleting the first three equations and the first three nodal variables in the remaining equations in (28),
the governing equations for the electromechanical system, which satisfy all electrical and mechanical
boundary conditions for the parallel connection of the two piezoelectric layers, may now be written as[
[M̃] 0

0 0

]{
{¨̃r}
q̈

}
+

[
[C̃] −γR[2̃]
0 R

]{
{ ˙̃r}
q̇

}
+

 K̃ 0

[2̃]T
γ

2c0

1
2c0

{{r̃}
q

}
= Aω2 sin(ωt +φ)

{
{B̃}
0

}
, (30)

where matrices with a tilde on top are the result of their corresponding matrices with the first three rows
and columns deleted, and vectors with a tilde are the result of their corresponding vectors with the first
three elements deleted.

Similarly, Equation (29) for the series connection of the two piezoelectric layers can also be mod-
ified to satisfy the boundary condition at the clamped end. The governing equations for the coupled
electromechanical system may be written as[
[M̃] 0

0 0

]{
{¨̃r}
q̈

}
+

[
[C̃] −[2̃]γR

2
0 R

]{
{ ˙̃r}
q̇

}
+

 K̃ 0
[2̃]T

γ
c0

2
c0

{{r̃}
q

}
= Aω2 sin(ωt +φ)

{
{B̃}
0

}
. (31)

Equation (30) for the coupled electromechanical system can be written in a unified manner as

[Mem]{ẍem}+ [Cem]{ẋem}+ [Kem]{xem} = {Fem} sin(ωt +φ), (32)

where the subscript em in the above equations stands for electromechanical. Other quantities are defined
as follows for the two piezoelectric layers in parallel:

[Mem]=

[
[M̃] 0

0 0

]
, [Cem]=

[
[C̃] −γR[2̃]
0 R

]
, [Kem]=

 K̃ 0

[2̃]T
γ

2c0

1
2c0

, {xem}=

{
{r̃}
q

}
, {Fem}=Aω2

{
{B̃}
0

}
.
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For the two piezoelectric layers in series, the electromechanical mass matrix and the load vector are iden-
tical to those given above. However, the electromechanical damping matrix and the electromechanical
stiffness matrix are different and are given as:

[Cem] =

[
[C̃] −[2̃]γR

2
0 R

]
, [Kem] =

 K̃ 0

[2̃]T
γ
c0

2
c0

 .
Steady-state solution. A steady-state solution to (32) may be sought in the following manner:

{xem} = {X}c cos(ωt +φ)+{X}s sin(ωt +φ), (33)

where {X}c and {X}s are constant vectors.
Substituting (33) into the governing differential equations and comparing the coefficients associated

with the cosine and sine harmonics, one obtains the following set of inhomogeneous algebraic equations
for the two unknown vectors:[

[Kem] − [Mem]ω
2

[Cem]ω

−[Cem]ω [Kem] − [Mem]ω
2

]{
{X}c
{X}s

}
=

{
0
{Fem}

}
. (34)

Once {X}c and {X}s are determined, the amplitudes for the mechanical variables (nodal displacements)
and the electrical variable can be computed. A postprocessing scheme can be employed to obtain the
amplitudes for the current, voltage and power. It is noted that there are two ways to determine the power
output: the peak power and the average power. For the sinusoidally varying current and voltage across
an electrical load, the average power is one half of the peak power.

For a piezoelectric system under sinusoidal base motion, (34) can be used to obtain the mechanical
and electrical responses provided that the damping ratio accounts for the loss of energy in the form of
structural damping. For small scale vibration, the air resistance is negligible.

4. Validation of the proposed model

The model proposed in this paper is validated by comparing the simulation results obtained using the
model with the experimental results of two piezoelectric bimorph beam power harvesters. One design,
with the two piezoelectric layers connected in series and a proof mass simplified as a point mass, is
available in the literature. The other design, with the two piezoelectric layers connected in parallel and a
proof mass which cannot be simplified as a point mass, is built and tested in this paper for investigating
the effect of the mass moment of inertia and mass center offset.

A cantilever piezoceramic structure carrying a point mass. The first system, sketched in Figure 3, is a
piezoceramic harvester developed in [Erturk and Inman 2009]. The dimensions of the proof mass in the

 Point Mass 

Bimorph PZT Beam Structure 
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Figure 3. Sketch of the piezoelectric structure carrying a small point mass.
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plane of base motion are relatively small and thus it is treated as a point mass. The two piezoelectric
layers are connected in a series manner to power a resistive load.

To validate the finite element model described in this paper, simulations were conducted for four
different meshing schemes. The bimorph piezoelectric beam consists of a shim core of brass and two
layers of piezoceramic materials. Parameters for the piezoelectric power harvester are given in Table 1
for reference. The proof mass is treated as a point mass, that is, the effects of the mass moment of inertia
and the mass center offset are ignored in this paper and in [Erturk and Inman 2009]. An electrical load
of R = 470 k� was used. The peak powers, peak voltages, and optimal frequencies, obtained using
one, two, four, and seven beam finite elements, are given in Table 2. Here the optimal frequencies
are the frequencies at which a maximum power (or voltage) is generated for a given resistive load and
base excitation amplitude. It can be seen that the results converge rapidly if four or more elements are

Parameters Symbol Values

Piezoelectric structure
Length (mm) l 50.8
Width (mm) b 31.8
Damping ratio ζ 0.027

Shim material (brass)
Thickness (mm) ts 0.14
Modulus of elasticity (GPa) Es 105
Shim density (kg/m3) ρs 9000

Piezoelectric material (PZT-5A)
Thickness of each piezoelectric layer (mm) tp 0.26
Modulus of elasticity (GPa) E p 66
Density (kg/m3) ρp 7800
Piezoelectric constant (pm/V) d31 190
Piezolayer permittivity (F/m) ε33 1500ε0

Proof mass
Mass (g) m 12.0
Mass moment of inertia (kg m2) JG 0
Mass center x-location (mm) aG 0
Mass center z-location (mm) cG 0

Base motion (harmonic)
Acceleration magnitude (m/s2) A 1 g or 9.81
Frequency range for testing (Hz) ω or f 30–70

Table 1. Parameters for a bimorph piezoelectric harvester carrying a small proof mass
[Erturk and Inman 2009]. The finite element model has Ne = 7 elements, except for con-
vergence studies, where different numbers of finite elements were used. The resistance
R of the resistor is variable. The two piezoelectric layers are connected in series.
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Number of beam
elements used

Peak power (mW) Peak voltage (V) Optimal frequency (Hz)

1 18.470 93.170 48.040
2 18.479 93.194 48.050
4 18.470 93.170 48.050
7 18.470 93.170 48.050

Table 2. Convergence studies for a bimorph beam of [Roundy et al. 2004] for R = 470 k�.

used. Based on this, seven beam finite elements are used for all simulations in this paper. Use of an
unnecessarily large number of elements is not desired for bimorph beams of small length-to-width ratios
(about 1.6 for the bimorph beam used in [Erturk and Inman 2009]).

For R = 470 k�, the experimental peak powers of [Erturk and Inman 2009] were digitized and plotted
against the simulation results obtained using the procedure proposed in this paper. It can be seen from
Figure 4 that the simulation results are in good agreement with the data of [Erturk and Inman 2009].

A cantilever piezoelectric power harvester with a nonpoint mass. The second power harvester, designed,
fabricated, and tested in this paper, is shown in Figure 5. In this design, the mass moment of inertia and
mass center offset of the proof mass contribute significantly to the structural natural frequencies and
the electrical power generation. Thus the mass cannot be treated as a point mass. The power harvester
is tested on a vibration shaker. The shaker is made to vibrate sinusoidally with a peak acceleration
amplitude of 0.5 g and adjustable excitation frequencies (20–120 Hz). The entire experimental setup,
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Figure 4. Comparison of simulated peak power outputs with the experimental data in
[Erturk and Inman 2009] for R = 470 k�.
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Figure 5. Photograph of the piezoelectric structure carrying a large proof mass.

  

Figure 6. Photograph of the entire experimental setup.

consisting of the shaker, the piezoelectric harvester, a resistor load, a digital oscilloscope, and a data
acquisition system, is shown in Figure 6.

The average power outputs for frequencies between 20 Hz and 120 Hz were measured and computed
using the procedure described in the previous section for six different electric loads (20, 70, 150, 250, 350,
and 500 k�). Two proof mass models, the comprehensive mass model and the point mass model, were
used in the simulations. The comprehensive model takes into consideration the mass, mass moment
of inertia, axial offset, and vertical offset of the mass center with respect to the bimorph beam and
mass interface. The point mass model takes into consideration only the mass concentrated at the beam-
mass interface. In an impact test, the damping ratio was found to be 0.024 for the experimental setup.
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This damping ratio is used for all simulations. According to Figure 7, for all six resistive loads, the
comprehensive model yields a good match with the experimental data while the point mass model leads
to significant discrepancy between the calculated results and the experimental data in terms of resonant
frequencies and the generated power.
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 Figure 7. Comparisons of simulated average power outputs with experimental data for
ranges of excitation frequencies and electrical loads.
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5. Effects of the dimension and geometry of the proof mass on power output

To reduce the overall dimensions, heavy materials such as tungsten are commonly used to make the proof
mass for a cantilever-based bimorph piezoelectric structure. However, this reduction does not validate
the use of a point model. In this section, the effects on power generation when different proof masses
are attached are investigated for the piezoelectric system described in Table 3. The system is excited by
sinusoidal base motion with a 0.5 g acceleration magnitude and variable frequencies.

Four different configurations of proof masses of parallelepiped shapes, as shown in Figure 8, are
studied. These mass shapes and attachments are used in typical designs in the literature. All masses have
a dimension of 5 mm in the y-direction. The first three masses have their mass centers located at the
beam neutral axis. There is only a horizontal offset between the proof mass center and the structure-mass

Parameters Symbol Values

Piezoelectric structure
Length (mm) l 21.85
Width (mm) 3.2
Damping ratio (1st mode) ζ 0.024

Shim material (brass)
Thickness (mm) ts 0.102
Modulus of elasticity (GPa) Es 100
Shim density (kg/m3) ρs 8.4

Piezoelectric material (PZT-5E)
Thickness of each piezoelectric layer (mm) tp 0.139
Modulus of elasticity (GPa) E p 62
Density (kg/m3) ρp 7800
Piezoelectric constant (m/V) d31 0.320× 10−9

Piezolayer permittivity (F/m) ε33 3.364× 10−8

Proof mass
Mass (kg) m 0.975× 10−3

Mass moment of inertia (kg m2) JG 0.406× 10−8

Length (mm) a 5
Width (mm) b 5
Height (mm) c 5

Base motion (harmonic)
Acceleration magnitude (m/s2) A 4.905
Frequency range for testing (Hz) ω or f 20–120

Table 3. Parameters for an experimental bimorph piezoelectric harvester carrying a
large proof mass on top. The resistance R of the resistor is variable. The finite element
model has Ne = 7 elements. The two piezoelectric layers are connected in parallel.
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Figure 8. Four different proof masses and configurations. All parallelepiped proof
masses have a thickness of 5 mm in the y-direction.

interface. The fourth mass is placed on top of the beam, and therefore has both a horizontal and a vertical
offset between the proof mass center and the structure-mass interface. From the mass matrix composition
in the governing equations, the vertical offset, cG , couples the axial deformation and vertical bending.
The presence of a nonzero vertical offset requires that the axial deformation be considered. Overall, the
point mass model, in which the mass moment of inertia and the mass center offset are ignored, tends to
overpredict the structural natural frequencies. As a result, when the piezoelectric structure is connected
to a resistive load, the resonant frequency of the electromechanical system is shifted upwards.

The results shown in Figure 9 indicate that the fundamental natural frequencies vary considerably
with the characteristic dimension of the four masses. The point mass model yields acceptable results
only when the overall dimensions of the proof mass in the x-z plane are small. This is especially
true for the third and fourth shapes, which have a square aspect ratio; the proof masses shrink to a
point if the characteristic dimensions (lengths and heights) reduce to zero. However, for the first shape,
the characteristic dimension of the proof mass is the length with a fixed height of 5 mm; the natural
frequencies do not quite converge to those for a point mass. For the second proof mass shape, the point
mass model does not yield satisfactory results even if the characteristic dimension (height) approaches
zero.

Accurate predictions of power generation from a beam-mass cantilever piezoelectric system depend
strongly on the reliable prediction of the structural natural frequencies. Errors in predicting the structural
natural frequencies will result in errors in power generation. The simulated power outputs in the fre-
quency range 0–200 Hz are shown in Figure 10 for parallel connection and a resistive load of R = 70 k�
for the piezoelectric structure defined in Table 3. It can be seen clearly from the simulation results that
the proof mass dimension and geometry shift the occurrence of peak powers considerably. It is noted
that for the fourth shape, the second spike corresponding to the second resonant frequency appears at
180 Hz from the comprehensive model.

According to the above simulations and analysis, the mass moment of inertia, axial offset, and vertical
offset of the mass center due to the nonnegligible dimension and the geometry of the proof mass have
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Figure 9. Effects of proof masses and configurations on structural natural frequencies.

significant effects on the resonant frequency of the piezoelectric beam power harvesters and the output
power. The comprehensive finite element model presented in this paper can readily take the effects of
the proof mass dimension and geometry into consideration and thus is able to accurately predict the
performance of piezoelectric power harvesters. However, it can be very difficult to consider those effects
in analytical models or equivalent circuit models. As a result, the comprehensive finite element model is
more advantageous than the simplified analytical model in simulating piezoelectric power harvesters.

For the block type proof mass photographed in Figure 5, the resonant frequencies predicted by the
comprehensive model are in excellent agreement with the experimental resonant frequencies for a wide
range of resistive loads. However, the point mass model overpredicts the resonant frequencies by 18%.
As for the peak powers and voltages, the errors of predicted values using the point mass model vary with
the resistive loads. At 70 k�, the point mass model underpredicts the peak power by 9.5%. It should
be pointed out here that, for proof masses of complex configurations, the predictions of the point mass
model may be completely unacceptable.
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Figure 10. Effects of proof masses on output powers for R = 70 k�.

Conclusions

A comprehensive model, along with a point mass model, is developed in this paper to simulate the
mechanical motion and electrical power of piezoelectric bimorph energy harvesters. The mass moment of
inertia and bending-axial stretching coupling effects due to a nonsymmetric proof mass configuration are
considered in the comprehensive model. The simulation results from the point mass and comprehensive
models are compared with independent data available in the literature for a series connection between
the two PZT layers and newly obtained experimental data for a parallel connection. Excellent agreement
was achieved between the theoretical predictions from the comprehensive model and the measurements
for both sets of experiments. It is found that the point mass model produces significant errors for both
the resonant frequencies and electrical powers. Sensitivity studies conducted using the comprehensive
model show that the effects of mass, mass moment inertia, and mass center offset of a proof mass on the
electrical power harvesting are significant and must all be taken into consideration in simulations.
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SHAKEDOWN WORKING LIMITS FOR CIRCULAR SHAFTS AND HELICAL
SPRINGS SUBJECTED TO FLUCTUATING DYNAMIC LOADS

PHAM DUC CHINH

Under quasiperiodic fluctuating dynamic loads, a structure made of elastic plastic material may fail by
incremental collapse (ratcheting) or alternating plasticity (fatigue). For the kinematic hardening materials
considered, the only two crucial material parameters needed are the initial and ultimate yield stresses,
but not the generally deformation-history-dependent hardening curve between them. With the high-cycle
loading we suggest taking the fatigue limit as the initial yield stress, and taking the stress corresponding
to a certain allowable amount of plastic deformation from the empirical Ramberg–Osgood curve (or the
particular cyclic yield strength corresponding to the amount 0.2% of plastic deformation) as the ultimate
yield stress in our shakedown analysis of structures. The approach is practical and well founded within
our shakedown theory, while the small deformation assumption framework of the classical plasticity
theory is kept. As illustrations, we derive explicit expressions of the working load limits for the circular
shaft and helical spring, which are based on the shakedown analysis and can be used for safety design of
the structures with given loading conditions.

1. Introduction

The design of machine elements made of elastic plastic materials, including shafts and springs [Lubliner
1990; Beer and Johnston 1992; Parmley 2000; Okopny et al. 2001; Akiniwa et al. 2008], requires the
determination of plastic collapse loads for the structures. A plastic load limit is reached when an entire
section of a determinate structure yields plastically, or full plastic yielding happens at a number of
sections within an indeterminate structure to make it a mechanism. Many practical machine elements are
subjected to fluctuating dynamic loads, whether periodic [Gavarini 1969] or quasiperiodic [Pham 1992;
2008]. Under such fluctuating dynamic loads, a structure would not collapse instantaneously according
to the classical plastic limit theory, thanks to the inertia effect, but would fail incrementally (ratcheting
mode) or by alternating plasticity (fatigue mode). The problem can be solved in the framework of
shakedown theory [Koiter 1963; Gokhfeld and Cherniavski 1980; König 1987; Bree 1989; Pham 1992;
2003; 2005; 2007; 2008; Pham and Stumpf 1994; Pham and Weichert 2001; Weichert and Maier 2002].

Machines and structures are often made of elastic plastic materials that can be described by various
sophisticated kinematic hardening models [Prager 1949; Armstrong and Frederick 1966; Ohno and Wang
1993; Pham 2007; Chaboche 2008], in which the hardening curve is generally nonlinear and depends on
the plastic deformation history. However it was established in [Pham 2007; 2008] that for the shakedown
safety assessment of a structure, the only plastic parameters needed are the initial and ultimate yield

Keywords: shakedown, dynamic high-cycle loading, ratcheting, fatigue, circular shaft, helical spring.
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stresses, not the particular hardening curve between them. Further development of the theory and its
practical implementation will be demonstrated as it applies to shaft and spring structures in this study.

2. Circular shaft

Consider a circular shaft along the central axis z (0 ≤ z ≤ L), attached to a fixed support at one end
(z = 0), as presented in Figure 1. When the shaft is subjected to torsion, every cross-section remains
plane and undistorted. That implies the kinematic assumption for the tangential angular displacement in
the shaft’s circular cross-section:

uϕ = C(z)r, (1)

where C is a function of z, and r is the radial distance from the neutral axis of the shaft. The respective
shear strain is

γ =
∂uϕ
∂z
=

dC
dz

r = C1(z)r. (2)

As the torque M(L) is applied to the free end (z = L) of the shaft, the shaft will twist, with its cross-
section at z rotating through an angle ϕ(z), which, in the elastic range, is related to the elastic moment
Me(z) via the differential relation

dϕ
dz
=

Me

G Jp
, (3)

where G is the elastic shear modulus and Jp is the polar moment of inertia, which for a circular hollow
shaft of constant cross-section, with inner and outer radii R1 and R2, has the expression

Jp =
π

2
(R4

2 − R4
1). (4)

The elastic shear stress in the shaft is

τ e
ϕ =

Me

Jp
r, R1 ≤ r ≤ R2 . (5)

The shaft is made of an elastic plastic kinematic hardening material with initial and ultimate yield
stresses τ i

Y and τ u
Y [Pham 2007; 2008].

As the torque increases, the maximal shear stress at the outer radius R2 from (5) reaches the initial
yield value τ i

Y , and the moment over the whole section achieves the initial yield value

M i
Y = τ

i
Y

Jp

R2
. (6)

L

R1 2R

z

M, M

 

 
Figure 1. Conventions for a circular shaft.
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The whole section of the shaft yields plastically at the ultimate yield moment

Mu
Y =

∫ R2

R1

rτ u
Y 2πr dr = τ u

Y
2π
3
(R3

2 − R3
1). (7)

Mu
Y is considered the plastic collapse limit for the shaft subjected to static torque.
Assume that the free end of the shaft is subjected to the quasiperiodic dynamic torque

M(L)= Mp(t)+Mq(t) sin[ω(t)t], (8)

where Mp(t), Mq(t) and ω(t), with an underlined time variable, are slowly-varying functions of time
(so their time derivatives can be neglected in comparison with the functions themselves), varying within
the limits

M−p ≤ Mp(t)≤ M+p , |M
−

p | ≤ M+p , 0≤ Mq(t)≤ M+q , 0≤ ω(t)≤ ω+< ωI =
π

2L

√
G
m
, (9)

Here ωI is the principal natural frequency of the shaft (in twisting vibration), and m is the shaft’s mass
density.

We need to determine the collapse load limits for the shaft in the space of external load parameters
M−p ,M+p ,M+q , ω

+.
The equilibrium equation for the problem is

d M
dz
= m Jp

d2ϕ

dt2 . (10)

The elastic moment solution of the problem (10)+(3) with boundary conditions (8) and ϕ(0)= 0 is

Me
= Mp +Mq

cos(
√

m/Gωz)
cos(
√

m/GωL)
sin(ωt) . (11)

The shakedown kinematic theorem [Pham 2007; 2008], applied to the problem and expressed through
the shakedown safety factor ks (at ks < 1 the structure collapses, at ks > 1 it is safe, and ks = 1 determines
the shakedown boundary in the space of external load parameters), has the form

k−1
s =max {I, A}, (12)

where I and A describe respectively the incremental and alternating plasticity collapse modes:

I = sup
τ e
ϕ ;γ

∫ L
0

∫ R2
R1

maxt(τ
e
ϕγ)2πr dr dz∫ L

0

∫ R2
R1
τ u

Y |γ|2πr dr dz
= sup

Me;C1

J−1
p
∫ L

0

∫ R2
R1

maxt MeC1r3 dr dz

τ u
Y

∫ L
0

∫ R2
R1
|C1|r2 dr dz

= sup
C1

∫ L
0 maxt

[
Mp +Mq

cos(
√

m/Gωz)
cos(
√

m/GωL)
sin(ωt)

]
C1(z)

∫ R2
R1

r3 dr dz

Jpτ
u
Y

∫ L
0 |C1(z)|

∫ R2
R1

r2 dr dz

= sup
C1

∫ L
0

[
M+p +M+q

cos(
√

m/Gω+z)
cos(
√

m/Gω+L)

]
C1(z) dz

Mu
Y

∫ L
0 |C1(z)| dz

=
1

Mu
Y

[
M+p +

M+q
cos(
√

m/Gω+L)

]
, (13)
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A = sup
z,r,t1,t2

τ e(z, r, t1)− τ e(z, r, t2)
2τ i

Y

= sup
z,r

[
M+p −M−p + 2M+q

cos(
√

m/Gω+z)
cos(
√

m/Gω+L)

]
r

2τ i
Y Jp

=
1

2M i
Y

[
M+p −M−p +

2M+q
cos(
√

m/Gω+L)

]
. (14)

Here γ is the compatible plastic strain increment of the type (2), and τ e is the elastic stress from (5) and
(11). To obtain the last equality in (13), we applied a theorem on the norm of a linear functional. The
optimal field C1(z) in (13) is proportional to δ(z), the Dirac delta function, which means the incremental
collapse mode (13) happens at the section z = 0. The alternating plasticity collapse mode (14) takes
place at z = 0 and r = R2.

Two-surface models for kinematic hardening materials involving the initial and ultimate yield stresses
have been used widely in literature; see, among others, [Halphen and Nguyen 1975; Mandel 1976;
Weichert and Gross-Weege 1988; Polizzotto et al. 1991; Stein et al. 1992; Corigliano et al. 1995; Pham
and Weichert 2001; Nguyen 2003; Pham 2005]. Our model leaves unspecified the hardening curve,
which generally depends on the plastic deformation history, but assumes it satisfies the positive hysteresis
postulate (

∮
α dε p

≥ 0 for any closed cycle, where α is the back stress and ε p the plastic deformation).
This postulate seems to be supported by the experimental data in the literature [Pham 2007].

For our particular problem, the plastic deformation does change proportionally at every point within
the structure over loading cycles; hence the expressions (12)–(14) are exact, not just an upper bound, for
the shakedown safety factor ks . For more details, consult [Pham and Stumpf 1994].

From the relations (12)–(14), the safety criterion against incremental plastic collapse (ratcheting) of
the shaft can be represented as

M+p +
M+q

cos(
√

m/Gω+L)
≤ Mu

Y (i.e., I ≤ 1), (15)

while the safety against alternating plasticity collapse (fatigue) requires

M+p −M−p +
2M+q

cos(
√

m/Gω+L)
≤ 2M i

Y (i.e., A ≤ 1). (16)

At M+q = 0, (15) reduces to the known criterion for safety of the shaft against static plastic collapse
stated in (7).

The shear initial yield stress τ i
Y appearing in the expression (6) for the initial yield moment M i

Y in (14)
and (16), which is responsible for the alternating plasticity mode, is generally not the convenient one
corresponding to the amount 0.2% of plastic deformation, but may take its value as small as the fatigue
stress limit τ f

Y , since (16) determines the alternating plasticity collapse at the high-number of loading
cycles (about 106–107 cycles). For particular loading processes with smaller numbers of cycles, τ i

Y (and
hence M i

Y ) may be given larger values, up to the ultimate shear yield stress τ u
Y (corresponding to Mu

Y ),
and can be taken from the fatigue curve for the particular material making the shaft.

Similarly, the shear ultimate yield stress τ u
Y appearing in the expression (7) for the ultimate yield

moment Mu
Y in (13) and (15), which is responsible for the incremental mode, is generally not that de-

termined from a monotonic loading experiment, but may be smaller and can be taken from ratcheting
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experiments on high number of cycles corresponding to those met in particular loading conditions of
the material. The ratcheting (ultimate yield) stress may also be taken as that corresponding to a certain
amount of allowable plastic deformation. Fatigue and ratcheting are observed widely in experiments on
the mechanical properties of materials.

We need the experimental ratcheting curve (yield stress versus number of cycles) for a material, like
the known fatigue curve, for application in our shakedown safety assessment procedure, in particular for
the incremental mode.

Introduce the dimensionless parameters and variables

a =
M−p
M+p

, f =
M i

Y

Mu
Y
=

3(R4
2 − R4

1)τ
i
Y

4R2(R3
2 − R3

1)τ
u
Y

, P =
M+p
Mu

Y
, Q =

M+q
Mu

Y
, W =

√
m
G
ω+L

2
π
. (17)

Then (15) and (16) can be represented as

P +
Q

cos(Wπ/2)
≤ 1 (i.e., I ≤ 1), (18)

P(1− a)+
2Q

cos(Wπ/2)
≤ 2 f (i.e., A ≤ 1). (19)

The incremental collapse curve I = 1, through the W -Q relation, can be written as

Q = (1− P) cos(Wπ/2), (20)

while the alternating plasticity collapse curve A = 1 is

Q =
(

f − P(1− a)/2
)

cos(Wπ/2). (21)

Comparing (20) and (21), one sees that, at

P >
2(1− f )

1+ a
, (22)

the curve (20) lies under the curve (21); thus, according to (12), the collapse mode is incremental, while at

P <
2(1− f )

1+ a
(23)

the curve (21) is lower; hence the collapse mode is alternating plasticity.
As numerical illustrations, we present in Figure 2 the shakedown curve (20) and (21) in the W -Q

coordinate plane for these particular cases (the domain under the curve is the safety domain):

• a = 0, f = 1
2 , P = 1

4 , fatigue mode (A = 1): Q = 3
8 cos(Wπ/2);

• a = 1, f = 1
3 , P = 7

10 , ratcheting mode (I = 1): Q = 3
10 cos(Wπ/2);

• a = 1, f = 1
2 , P = 3

4 , ratcheting mode (I = 1): Q = 1
4 cos(Wπ/2);

• a = 1
2 , f = 1

3 , P = 1
2 , fatigue mode (A = 1): Q = 5

24 cos(Wπ/2).

On approaching the principal natural frequency of the structure (W→ 1), the safety limit on Q reduces
to 0.
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Figure 2. Shakedown curves (and modes) in the plane of external torque’s frequency-
amplitude parameters, at various values of a, f, P .
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Figure 3. Incremental (I = 1) and alternating plasticity (A = 1) lines in the plane of
external torque’s amplitudes’ parameters, at a = 1, W = 1

3 (left) and at a = 1
2 , W = 2

3
(right).

Alternatively, the incremental collapse line I = 1 from (18) and the alternating plasticity collapse line
A = 1 from (19) are plotted in Figure 3 in the P-Q coordinate plane for these two cases:

• a = 1, W = 1
3 , corresponding to I = P + 2

√
3

Q = 1, A = 4
√

3
Q = 1;

• a = 1
2 , W = 2

3 , corresponding to I = P + 2Q = 1, A = 1
2 P + 4Q = 1.

The shakedown domain is what lies under both the incremental (ratcheting) I = 1 and alternating
plasticity (fatigue) A = 1 lines. At the intersect of the lines, the collapse mode changes from one mode
to the other

3. Helical spring

Consider a cylindrical coiled spring Figure 4 with small angle of lifting of coil α� 1 and the central
axis z (0≤ z ≤ L , not counting the two irregular short ends) along the wire making the spring; D is the
pitch diameter of spring; R1 and R2 are inner and outer radii of the circular hollow wire. One end of the
spring is fixed, while the other end is subjected to the dynamic quasiperiodic fluctuating load

F = Fp(t)+ Fq(t) sin[ω(t)t], (24)
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Figure 4. Conventions for a helical spring.

where Fp(t), Fq(t), ω(t) with underlined time variable are slowly-varying functions of time, which vary
within the limits

F−p ≤ Fp(t)≤ F+p , |F
−

p | ≤ F+p , 0≤ Fq(t)≤ F+q , 0≤ ω(t)≤ ω+< ωI , (25)

ωI is the principal natural frequency of the spring. We have to determine the collapse load limits for the
spring in the space of external load parameters F−p , F+p , F+q , ω

+.
The elastic shear stress on a cross-section of the spring’s wire is composed of the two parts: the

torsional shear stress (Me and Fe are the torque and cutting load acting on the section, r is the radial
distance from the section’s center)

τ e
ϕ =

Me

Jp
r =

Fe

2Jp
Dr, (26)

and the cutting shear stress

τ e
x =

Fe

π(R2
2 − R2

1)
. (27)

Comparing (26) and (27), one sees that under the condition

R� D, (28)

we have
|τ e

x | � |τ
e
ϕ |, (29)

and the component τ e
x can be disregarded as a small contribution (compared to τ e

ϕ). The effect of the two
irregular short ends of the spring is also disregarded (they are considered as rigid).

The elastic moment on the wire’s sections in response to load (24) is

Me
= Fp

D
2
+ Fq

D
2

cos(
√

m/Gωz)
cos(
√

m/GωL)
sin(ωt) . (30)

Then, similar to the problem of the previous section, the shakedown kinematic theorem applied to the
problem has the particular form

k−1
s =max {I, A}, (31)
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with

I =
P
g
+

Q
g cos(Wπ/2)

, A = P
1− a

2
+

Q
cos(Wπ/2)

, (32)

where

P =
F+p
F i

Y
, Q =

F+q
F i

Y
, W =

√
m
G
ω+L

2
π
, a =

F−p
F+p

,

g =
Fu

Y

F i
Y
=

4R2(R3
2 − R3

1)τ
u
Y

3(R4
2 − R4

1)τ
i
Y
, F i

Y = τ
i
Y
π

DR2
(R4

2 − R4
1), Fu

Y = τ
u
Y

4π
3D

(R3
2 − R3

1).

(33)

The expressions (31)–(32) are similar to those in (12)–(14), with F+p , F−p , F+q , F i
Y , Fu

Y replacing
M+p , M−p , M+q , M i

Y , Mu
Y , respectively; hence the shakedown analysis follows the same line.

As already stated in our previous works, the initial yield stress should be taken as small as the fatigue
limit for the shakedown safety in the general path-independent spirit of the shakedown theorems. The
ultimate yield stress is expected to be the lowest limit from those obtained in multicycle loading experi-
ments rather than that obtained in the standard monotonic loading experiment. However the high-cycle
ultimate yield strength as well as the monotonic one are often attained at the large plastic deformations,
which fall far outside the small deformation assumption framework of the classical plasticity theory and
the shakedown theorems. Also the design requirement of many structures would not allow excessive
global configuration changes due to the large plastic deformations. Hence we suggest taking for the
ultimate yield stress (of the quasistatic or low-cycle processes) - the yield stress corresponding to some
allowable small amount of plastic deformation from the standard monotonic loading experiment, such as
that from the broadly used Ramberg–Osgood empirical formula (the unnecessary for our purpose elastic
part of the relationship is dropped)

σY = K (ε p)n, (34)

where σY is the yield strength, ε p the plastic deformation, K the strength coefficient, and n the strain
hardening exponent. The best known one is the yield strength σ (0.2)Y corresponding to 0.2% of plastic
deformation; this is considered as the first significant amount of irreversible strain:

σ
(0.2)
Y = K (0.002)n. (35)

Note that though a local plastic deformation at the amount 0.2% may be insignificant for the global
geometry of a structure because of the global compatible strain constraint, when a global incremental
mechanism I = 1 is formed with σ u

Y = σ
(0.2)
Y , a significant global compatible plastic strain increment arises

leading to a significant configuration change of the structure. Still, Equations (34) and (35), obtained
from the monotonic loading experiment, are the only first approximations for our ultimate yield stress
σ u

Y of multicycle loading processes, which should be established from high-cycle loading experiments
(such as those in the fatigue tests). Ideally we need the stress-controlled cyclic loading experiments
leading to certain allowable amount of plastic deformation. For cyclic softening materials, we may rely
on the strain-controlled cyclic loading experiments, as those presented in [Tucker et al. 1979; Roessle and
Fatemi 2000; Li et al. 2009]. From the multicycle tests they got the Ramberg–Osgood type relationship

σY c = K ′(ε p)n
′

, (36)
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Alloy steel K ′ n′ σY f σ
(0.2)
Y c σ

(0.2)
Y σY b εY b

SAE 1141* 1127 0.124 433 591 814 925 0.88
SAE 1038 1009 0.208 248 364 410 649 1.10
SAE 1541 1622 0.194 228 424 475 783 0.80
SAE 1090 1310 0.174 350 545 735 1090 0.15
08 Si2Mn 524 0.110 195 248 400 414 1.02
20 Si2Mn 772 0.180 152 241 262 441 0.96
40 Si2Mn 1434 0.140 403 600 883 931 1.02
60 Si2Mn 1358 0.120 381 648 789 1000 0.41

* Aluminum fine grain

Table 1. Strength properties of some alloy steels. K ′ is the cyclic strength coefficient,
n′ the cyclic strain hardening exponent, σY f the fatigue limit, σ (0.2)Y c the cyclic yield
strength (0.2%); σ (0.2)Y the yield strength (0.2%), σY b the ultimate yield strength, and
εY b the corresponding ultimate plastic strain. All strength parameters are given in MPa,
except the dimensionless parameters n′ and εY b.

where σY c is the cyclic yield stress amplitude, ε p is the cyclic plastic deformation amplitude, K ′ is
the cyclic strength coefficient, and n′ is the cyclic strain hardening exponent. The most significant
strength parameter might be the cyclic yield strength σ (0.2)Y c corresponding to the amount 0.2% of plastic
deformation, which we could adopt as the ultimate yield stress σ u

Y for the incremental collapse mode

σ
(0.2)
Y c = K ′(0.002)n

′

. (37)

It designates the critical point, beyond which the excessive global compatible plastic deformation incre-
ments of the structure are expected. Because the small plastic deformation assumption is kept, application
of the classical plasticity theory and our path-independent shakedown theorems is legitimate.

The cyclic yield strength σ (0.2)Y c , cyclic strength coefficient K ′, cyclic strain hardening exponent n′, as
well as the fatigue limit σY f , yield strength σ (0.2)Y , ultimate yield strength σY b and corresponding ultimate
plastic strain εY b for a number of alloy steels are given in [Tucker et al. 1979; Roessle and Fatemi 2000;
Li et al. 2009], some of which are presented in Table 1. All the strength parameters are given in MPa,
except the dimensionless parameters n′ and εY b. Note that the ultimate yield strength σY b generally is
reached at the large amount of plastic deformation εY b, and the cyclic yield strength σ (0.2)Y c may be much
different from the yield strength σ (0.2)Y .

As numerical illustrations of Equations (31)–(33) we choose SAE-1090 steel, a = 3
4 , W = 2

3 , and the
following situations:

• The alternating plasticity collapse mode A = 1 with τ i
Y =

1
2σ

i
Y =

1
2σY f = 175 MPa,

• The incremental collapse mode I = 1 with τ u
Y =

1
2σ

u
Y =

1
2σ

(0.2)
Y c = 272.5 MPa,

• The incremental collapse mode (I =) I ′ = 1 with τ u
Y =

1
2σ

u
Y =

1
2σ

(0.2)
Y = 367.5 MPa,

• The incremental collapse mode (I =) I ′′ = 1 with τ u
Y =

1
2σ

u
Y =

1
2σY b = 545 MPa.
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Figure 5. Alternating plasticity line A= 1; Incremental lines I = 1 (σ u
Y = σ
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Y c ), I ′ = 1

(σ u
Y = σ

(0.2)
Y ), and I ′′= 1 (σ u

Y = σY b) in the plane of external load’s amplitude parameters.

The results of calculations are presented in the plane of dimensionless load amplitude parameters Q-P
in Figure 5. The shakedown working domain is bounded above by the lower envelope of the ratcheting
(incremental) and fatigue (alternating plasticity) lines. On the boundary of the domain, the collapse mode
changes from the ratcheting one at small values of Q to the fatigue one at sufficiently high values of Q.

One should keep in mind that, in the light of shakedown analysis, the alternating plasticity (fatigue)
mode is local, while the incremental (ratcheting) mode is global [Pham 2000].

4. Conclusion

Our shakedown theory has been applied to determine the working load limits for some typical elements
of machines subjected to quasiperiodic dynamic loads. In the static limit, the results reduce to those
plastic limit ones often used in design of the structures. It is clear that for dynamic loading, the load
amplitude limits may decrease significantly, especially when the frequency of the acting load approaches
the natural frequencies of a structure. The two distinct nonshakedown collapse modes: the incremental
and alternating plasticity ones are separated.

In shakedown safety analysis for elastic plastic kinematic hardening materials, the only plastic pa-
rameters required are the initial and ultimate yield stresses. However for high-cycle loadings, which
are usual for structures under working dynamic fluctuating loads, the initial and ultimate yield stresses
should not be taken as the convenient and usual ones from monotonic loading experiments, but may be
much lower and are to be taken from the fatigue and ratcheting curves experimentally constructed for the
materials under high-cycle loadings (up to 106–107 cycles). Application of shakedown theorems should
be kept within the framework of the small plastic deformation assumption. Here, in particular, we take
the fatigue limit as the initial yield stress, and the cyclic yield strength (corresponding to 0.2% of plastic
deformation) as the ultimate yield stress for the shakedown safety assessment of the structures subjected
to dynamic high-cycle loading.

Though used here to analyze only simple shaft and spring structures as illustrations, our approach
involving two nonshakedown modes (and the corresponding recommendations) applies to general elastic
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plastic kinematic hardening structures. The approach is supported by the shakedown theorems in [Pham
2007; 2008].
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WAVE PROPAGATION IN CARBON NANOTUBES:
NONLOCAL ELASTICITY-INDUCED STIFFNESS

AND VELOCITY ENHANCEMENT EFFECTS

C. W. LIM AND Y. YANG

We establish the physics and understanding of nonlocal nanoscale wave propagation in carbon nanotubes
(CNTs) based on nonlocal elastic stress field theory. This is done by developing an analytical nonlocal
nanotube model based on the variational principle for wave propagation in CNTs. Specifically, we
successfully derive benchmark governing equations of motion for analyzing wave propagation based on
an analytical nonlocal shear deformable model. The physical insights of the analytical nonlocal stress
model are presented through examples. Analytical solutions with significant observation of wave propa-
gation have been predicted and the prediction compares favorably with molecular dynamic simulations.
Qualitative comparisons with other non-nonlocal approaches, including the strain gradients model, the
couple stress model and experiments, justify the stiffness enhancement conclusion as predicted by the
new nonlocal stress model. New dispersion and spectrum relations derived using this analytical nonlocal
model bring an important focus onto the critical wavenumber: stiffness of CNTs and wave propagation
are enhanced below the critical wavenumber, while beyond that a sharp decrease in wave propagation is
observed. The physics of nanoscale wave propagation in nanotubes are further illustrated by relating the
nanoscale and the phase velocity ratio.

1. Introduction

The discovery of carbon nanotubes (CNTs) in the early 1990s [Iijima 1991] created enormous interest
among physicists, chemists and engineers, thanks to their unusual mechanical, electrical, electronic,
chemical and thermal conductivity properties [Iijima 1991; Treacy et al. 1996; Ajayan and Zhou 2001;
Ball 2001; Baughman et al. 2002].

There are many cross disciplinary research works in analytical and computational approaches for
CNTs which consider their physical, electrical, chemical and engineering characteristics. There have
been comparatively fewer experimental studies on CNTs because at such length scale it is extremely
difficult to control, operate precisely and test the specimen. Furthermore, many experimental reports dis-
agree considerably in the measurement of various properties under slightly different test environment. To
complement such shortages, a number of continuum and discrete models for CNTs have been proposed.

Molecular dynamic (MD) simulation is the most common computational approach for analyzing CNTs.
Using this method, every molecule is single-walled or double-walled CNTs is modeled as a discrete
point mass the web of thousands or millions of point masses are constituted in a structured configuration

Keywords: critical wavenumber, nanotube, nonlocal elasticity, wave propagation.
Work supported by a grant from Research Grants Council of the Hong Kong Special Administrative Region, Project Ref. CityU
117406.
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through intermolecular bonds and forces [Brenner et al. 2002; Liew et al. 2004a; Liew et al. 2004b; Liew
et al. 2005; Kitipornchai et al. 2005]. Although MD has been successful to a certain extent and in a
number of cases of study, it is bounded by computational, memory and other hardware constraints. This
approach has been restrictive in many cases when very many molecules are required in a nanostructural
model. Any premature breakdown of computation due to either algorithmic flaw itself or external power
interruption may require the jobs to be restarted or repeated. Hence, the MD analysis has been common
for moderate configurations of CNTs and restrictive for complicated CNTs.

To complement MD simulations, continuum elastic models of CNTs have been developed and applied
in a number of studies since the middle of 1990s. The early models involve the classical beam, tube or
shell models coupled with appropriate molecular potentials to study the mechanical characteristics such
as static bending and buckling [Yakobson et al. 1996; Ru 2000a; Ru 2000b; Parnes and Chiskis 2002; Han
et al. 2005] and dynamic vibration and wave propagation [Zhang et al. 2005; Yoon et al. 2005; Natsuki
et al. 2005; Wang et al. 2006a; Wang and Varadan 2006] of CNTs. The study of wave propagation
in CNTs has attracted intensive attention in research because many crucial physical properties such as
electrical conductance, optical transition and some dynamic behavior of CNTs are very sensitive to the
presence of wave [Zhang et al. 2005]. Among the early studies, the continuum shell model was developed
by Natsuki [Natsuki et al. 2005] to predict wave propagation in single-walled CNT embedded in an elastic
medium. [Wang and Varadan 2006] applied the elastic beam theory to study the wave characteristics of
single-walled and double-walled CNTs base on both thin and thick beam models.

Another continuum model applicable to the analysis of CNTs is the nonlocal elasticity stress field
theory which was first proposed in [Eringen and Edelen 1972; Eringen 1972a; 1972b; 1983; 2002].
According to this theory, the stress at a point within a continuous domain with nanoscale effects is
dependent not only on the strain at that point but it is also significantly influenced by the stress of all points
in the domain through a nonlocal modulus in an integral sense. With such consideration, the nonlocal
forces at long-range between molecules and lattice lead to the nonlocal stress-strain equation with higher-
order strain gradients. Because of its simplicity and superiority, the analysis of wave propagation in CNTs
using the nonlocal stress approach was recently reported [Wang and Hu 2005; Wang 2005; Wang et al.
2006c; Lu et al. 2007; Heireche et al. 2008; Liew et al. 2008]. In particular, [Lu et al. 2007] derived the
equation of motion for a nonlocal Timoshenko beam to investigate the wave propagation characteristics
in single-walled and double-walled CNTs. Other nonlocal shell models were also employed for further
research in a number of studies [Wang 2006; Wang et al. 2006b; Wang and Varadan 2007; Xie et al.
2007a; Xie et al. 2007b; Wang et al. 2008; Hu et al. 2008].

Virtually all published works [Wang and Hu 2005; Wang 2005; Wang et al. 2006c; Lu et al. 2007;
Heireche et al. 2008; Liew et al. 2008; Wang 2006; Wang et al. 2006b; Wang and Varadan 2007; Xie
et al. 2007a; Xie et al. 2007b; Wang et al. 2008; Hu et al. 2008] in wave propagation using the nonlocal
stress approach regarded the nanoscale to only affect the constitutive relation for nonlocal stress and strain.
Without rigorous validation, the classical equilibrium equations or equations of motion for beam and shell
models were adopted completely for all nonlocal static and dynamic problems. Such directly extended
nonlocal models, termed the partial nonlocal stress models, results in two fundamental suspicions that:
(a) in many cases of study the nanoscale effect is surprisingly missing in the ultimate analytical solution,
for instance the bending of a cantilever nanotube with point force at its end; and (b) the no-existence of
any higher-order boundary conditions associated with the higher-order differential equation of motion
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[Lim 2008; 2009; 2010]. The second statement above simply implies that the partial nonlocal stress
models derives a higher-order equation of motion but, unfortunately, without the corresponding higher-
order boundary conditions which is obviously inconsistent. In [Lim 2008; 2009; 2010] we successfully
established a new analytical nonlocal stress model and proved that stiffness of a nanobeam is strength-
ened with the presence of a nonlocal nanoscale. By deriving the exact nonlocal strain energy density,
higher-order governing differential equation with the corresponding higher-order boundary conditions
was derived via the variational principle. New predictions for bending of nanobeams were presented and
discussed.

Applying the identical nonlocal stress model but without making any assumptions on the static and
dynamic conditions a priori, a new higher-order dynamics differential equation of motion are derived via
exact variational principle here. Consistent higher-order boundary conditions and insightful predictions
using this new model are presented. Implications of the defective formulation and intriguing conclusions
in wave propagation in CNTs using the partial nonlocal stress models are also discussed in detail. The
CNTs considered here are shear deformable using the thick-walled tube model in order to better reflect
the nature of CNTs. Benchmarked analytical dispersion relations are derived and the contribution of
nonlocal nanoscale in the governing equation of motion is highlighted. Qualitative comparisons [Nix
and Gao 1998; Lam et al. 2003; Park and Hao 2006; 2008; Ma et al. 2008; Li and Chou 2004; Was
and Foecke 1996; McFarland and Colton 2005] with other non-nonlocal approaches towards the end
of the paper including molecular dynamics simulation, strain gradients model, couple stress model and
experiments justify that the stiffness enhancement conclusion as predicted by the new nonlocal stress
model.

2. Nonlocal elasticity stress field theory and nonlocal stress models

Basic nonlocal constitutive equations and nonlocal stress. The nonlocal elastic stress field theory first
proposed by Eringen concerns the state of stress at a reference point r ′ within a domain. The nonlocal
stress depends not only on the strain at that location but also on the strains at all other points within the
domain in a diminishing influence away from the central location. This phenomenon was first observed
in atomic theory of lattice dynamics and also from experiment observation on phonon dispersion. In the
absence of the nonlocal effects of strains at points r 6= r ′, the nonlocal field theory reverts to the local
or classical elasticity theory [Eringen 1983; 2002]. For homogeneous and isotropic solids with nonlocal
effects, the nonlocal elastic field theory is governed by

σi j,i + ρ( f j − ü j )= 0, σi j (r)=
∫

V
α(|r ′− r|, τ )σ ′i j (r

′) dV (r ′), (1)

σ ′i j (r
′)= λekk(r ′)δi j + 2µei j (r ′), ei j (r ′)=

1
2

(
∂u j (r ′)
∂ r ′i

+
∂ui (r ′)
∂ r ′j

)
, (2)

where σi j (r) is the nonlocal stress tensor, ρ the mass density, f j the body force density, and u j the
displacement vector at a reference point r in the body, at time t , while ü j , the second derivative of u j

with respect to time t , is the acceleration vector at r . The indices i, j run over the sets {1}, {1, 2} or
{1, 2, 3} depending on the dimension.
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z

x 

Figure 1. Cylindrical nanotube and coordinate system.

Equation (2)1 shows the classical constitutive relation of Hooke’s low where the classical or local
stress tensor at r ′, denoted as σ ′i j (r

′), is related to the linear strain tensor ei j (r ′) at any point r ′ in the
body at time t , with λ and µ being Lamé constants, and δi j being Kronecker delta. It is clear that the
classical or local constitutive relation (2)1 has to be replaced by the nonlocal constitutive relative (1)2,
according to which σi j (r) at r depends not only on the classical local stress σ ′i j (r

′) at that particular
point but also on a nonlocal modulus α(|r ′− r|, τ ), where |r ′− r| is the Euclidean distance between r ′

and r and τ is a dimensionless length scale defined by

τ =
e0a
L
, (3)

a being the internal characteristic length such that the lattice parameter, C-C bond length, or granular
distance, L an external characteristic length such as the crack length or wavelength, and e0 is a material
constant obtainable experimentally or through other molecular or continuum models.

Due to the difficulty in deriving an analytical solution, it is possible in an approximate sense to convert
the integrodifferential equation (1)2 to a general partial differential equation [Eringen 1983; 2002]. Fur-
thermore, when only the uniaxial stress and strain are considered for a nanotube, the classical Hooke’s
law for uniaxial stress in one dimension is replaced by a nonlocal stress relation (loc. cit.) as

σ(x)− (e0a)2
d2σ(x)

dx2 = Eε(x), (4)

where E is the Young’s modulus and σ(x) and ε(x) are the normal stress and strain in the axial direction
of the nonlocal nanotube. For limiting nanoscale e0a→ 0, the nonlocal effect can be neglected and the
nonlocal stress σ approaches that of the corresponding classical stress σ ′ = Eε(x). It is noted that (4) is
a one-dimensional ordinary differential equation.

Figure 1 shows the shear deformable nanotube in Cartesian coordinate while x and z are the axial and
transverse coordinates respectively. According to the classical elastic theory for a long tube, the bending
moment Mxx in the transverse direction and strain are denoted by

Mxx =

∫
zσ d A, ε =−z

dϕ
dx
, (5)

where z is the normal coordinate measured from the midplane, ϕ(x, t) is the rotation angle of cross
section at point x and time t , and A is the cross sectional area. Multiplying (4) by z, integrating over the
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ρA
d2w

dt2

Qc Qc+ Q′c dx

dx

Mc Mc+M ′c dx
ρ I

d2ϕ

dt2

Figure 2. Geometry of a nanobeam, coordinate system and sign convention.

cross section and substituting Equations (5) yield the nonlocal bending moment relation as

Mxx − (e0a)2
∂2 Mxx

∂x2 =−E I
∂ϕ

∂x
(6)

while I =
∫

z2 d A is the second moment of area over the cross section.
For simplicity and standardization, the following dimensionless terms

x̄ =
x
L
, z̄ =

z
L

(7)

are introduced, where L can be taken as the length of the nanotube. The dimensionless solutions of (4)
and (6) can be expressed as [Lim 2009; 2010]

σ̄xx =

∞∑
n=1

τ 2(n−1)ε〈2(n−1)〉
xx =−z̄

∞∑
n=1

τ 2(n−1)ϕ〈2n−1〉, M xx =−

∞∑
n=1

τ 2(n−1)ϕ〈2n−1〉, (8)

where σ̄xx = σxx/E , M xx = Mxx L/E I and 〈 〉 denotes partial differentiation with respect to x̄ . Therefore,
the exact solution for the nonlocal constitutive equation of nanotube described above are expressed in
infinite series in terms of strain gradients for nonlocal stress and displacement gradients for nonlocal
moment in (8).

Dynamic equations of motion. For a thick nanotube represented by the classical shear deformable model,
the effect of shear and rotation on the nanotube cross section is significant and they should be considered.
The classical dynamic governing equations of motion for transverse motion and rotational motion are
respectively [Hagedorn and Dasgupta 2007]

d Qc

dx
= ρA

d2w

dt2 ,
d Mc

dx
− Qc =−ρ I

d2ϕ

dt2 , (9)

where subscript ‘c’ represents classical terms, ρ, Qc, Mc, w(x, t) are the mass density, shear force on
the nanotube cross section, bending moment and deflection of the nanotube in the z-direction as shown
in Figure 2.
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The classical dimensionless expressions of (9) are

E I
L3

d Qc

dx̄
=
ρAL
T 2

d2w

dt2 , Qc−
d Mc

dx̄
=
ρL2

ET 2

d2ϕ

dt2 , (10)

where T is the period of vibration, t = t/T is dimensionless time, Mc = Mc L/E I is the dimensionless
classical bending moment and Qc = Qc L2/E I is the dimensionless classical shear force on the cross
section. In the presence of a nonlocal elastic stress field, it has been a common practice to directly replace
the classical Mc in the equation of motion above and in Figure 1 with the nonlocal moment M xx defined
in (8) [Wang and Hu 2005; Wang 2005; Wang et al. 2006c; Lu et al. 2007; Heireche et al. 2008; Liew et al.
2008; Wang 2006; Wang et al. 2006b; Wang and Varadan 2007; Xie et al. 2007a; Xie et al. 2007b; Wang
et al. 2008; Hu et al. 2008; Lim and Wang 2007]. Such models are termed the partial nonlocal models.
For bending of a nanotube, it has been shown through a rigorous derivation via the variational principle
that such direct replacement in the partial nonlocal derivation is not only unjustified but also results in
intriguing solutions with respect to physical intuition, modeling and numerical simulation using other
non-nonlocal approaches such as strain gradient, coupled stress, molecular dynamic simulation, etc., as
well as experiments considering nanoscale effects. It will be verified herein that this statement can also
extended to wave propagation in shear deformable carbon nanotubes.

Unlike virtually all previous analyses using nonlocal stress modeling, a true nonlocal nanotube requires
that the equilibrium conditions and dynamic equations of motion should be consistently derived through
consideration of a nonlocal stress field. For a thick nanotube, the correct governing equations can be
derived from the virtual work variational principle by considering strain energy and kinetic energy. The
strain energy density of a nanotube consists of two parts: the normal deformation strain energy density
[Lim 2009; 2010]

un = u1+ u2+ u3, (11)

where

u1 =
1
2 Eε2

xx , u2 =
1
2 E

∞∑
n=1
(−1)n+1τ 2n(ε〈n〉xx )

2
, u3 = E

∞∑
n=1

(
τ 2(n+1)

n∑
m=1

(−1)m+1ε〈m〉xx ε
〈2(n+1)−m〉
xx

)
, (12)

and the shear deformation strain energy on the nanotube cross section

us =
1
2 Gγ 2

xz, (13)

where G is the shear modulus and γxz is the shear strain when γxz = ∂w/∂ x̄−ϕ. Details of the derivation
of un are given in the Appendix. The total strain energy of the deformed nanotube with volume V is

U =
∫
v

(un + us) dV . (14)

The kinetic energy K of a nanotube is

K =
ρ

2

∫ L

0

(
A
(dw

dt

)2
+ I

(dϕ
dt

)2
)

dx=
ρAL3

2T 2

∫ 1

0

((dw
dt

)2
+

I
AL2

(dϕ
dt

)2
)

dx̄ . (15)
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The first term in the integral contributes to the translational kinetic energy while the second term con-
tributes to the rotational kinetic energy. Define the total energy functional F as

F =U − K . (16)

Substituting Equations (11)–(15) into (16) yields the variation of the energy functional F as

δF = δ(U − K )

= δ

∫ 1

0

∫
V

(
1
2 Eε2

x +
1
2 E

∞∑
n=1
(−1)n+1τ 2n(ε〈n〉x )

2

+ E
∞∑

n=1

(
τ 2(n+1)

n∑
m=1

(−1)m+1ε〈m〉x ε〈2(n+1)−m〉
x

)
+

1
2 Gγ 2

xz

)
dV dt

−δ
ρAL3

2T 2

∫ 1

0

∫ 1

0

((
∂w
∂t

)2
+

I
AL2

(
∂ϕ
∂t

)2
)

dx̄ dt

= δ

∫ 1

0

∫
V

(
−

1
2 Ez

(
∂ϕ
∂ x̄

)2
−

1
2 Ez

∞∑
n=1

(−1)n+1τ 2n(ϕ〈n+1〉)
2

+ Ez2
∞∑

n=1

(
τ 2(n+1)

n∑
m=1

(−1)m+1ϕ〈m+1〉ϕ〈2n−m+1〉
)
+

1
2 G
(
∂w
∂ x̄
−ϕ

)2
)

dV dt

−δ
ρAL3

2T 2

∫ 1

0

∫ 1

0

((
∂w
∂t

)2
+

I
AL2

(
∂ϕ
∂t

)2
)

dx̄ dt

=

∫ 1

0

∫
V

(
−Ezϕ〈1〉δϕ〈1〉− Ez

∞∑
n=1

(−1)n+1τ 2nϕ〈n+1〉 δϕ〈n+1〉

+ Ez2
∞∑

n=1

(
τ 2(n+1)

n∑
m=1

(−1)m+1(δϕ〈m+1〉ϕ〈2n−m+1〉
+ϕ〈m+1〉 δϕ〈2n−m+1〉))

+
1
2 G
(
2w〈1〉 δw〈1〉− 2w〈1〉δϕ− 2ϕ δw〈1〉+ 2ϕ δϕ

))
dV dt

−
ρAL3

2T 2

∫ 1

0

∫ 1

0

(
2ẅ δẅ+ 2I

AL2 ϕ̈ δϕ̈
)

dx̄ dt . (17)

Integrating (17) by parts for each term in the integrand, we obtain

δF = E I
L

∫ 1

0

∫ 1

0

(
AGκL2

E I

(
∂w
∂ x̄
−ϕ

)
−

∞∑
n=1
(2n− 3)τ 2(n−1)ϕ〈2n〉

−
ρL2

ET 2
∂2ϕ
∂t2

)
δϕ dx̄ dt

+

∫ 1

0

∫ 1

0

(
AGκL

(
∂2w
∂ x̄2 −

∂ϕ
∂ x̄

)
−
ρAL3

T 2
∂2w
∂t2

)
δw dx̄ dt

+
E I
L
[ϕ δϕ]10+

E I
L

∞∑
n=1

(
(−1)n+1τ 2n

n+1∑
m=0

ϕ〈n+1+m〉 δϕ〈n−m〉
∣∣∣1
0

)
+

E I
L

∞∑
n=1

τ 2(n+1)
n∑

m=1

(
2n+1−m∑

i=0
(−1)m+i+1ϕ〈2+m+i〉δϕ〈2n+1−m−i〉

∣∣∣1
0

+

m−1∑
i=0

(−1)m+i+1ϕ〈2n+2−m+i〉 δϕ〈1+m−i〉
∣∣∣1
0

)
, (18)
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Using the definition of nonlocal bending moment in (8)2, the variation of the energy functional in (18)
can be rewritten as

δF =
∫ 1

0

∫ 1

0

(
E I
L

(
Q−M 〈1〉xx +2

∞∑
n=1

τ 2n M 〈2n+1〉
xx −

ρL2

ET 2
∂2ϕ
∂t2

)
δϕ+

(E I
L
∂Q
∂ x̄
−
ρAL3

T 2
∂2w
∂t2

)
δw

)
dx̄ dt

+
E I
L

[(
Q−M 〈1〉xx − 2

∞∑
n=1

τ 2n M 〈2n+1〉
xx

)
δϕ+

(
−M xx + 2

∞∑
n=1

τ 2n M 〈2n〉
xx

)
δϕ〈1〉

−

(
τ 2 M 〈1〉xx + 2

∞∑
n=1

τ 2(n+1)M 〈2n+1〉
xx

)
δϕ〈2〉+

(
2τ 4

∞∑
n=1

τ 2(n−1)M 〈2n〉
xx

)
δϕ〈3〉

−

(
τ 4 M 〈1〉xx + 2

∞∑
n=1
τ 2(n+2)M 〈2n+1〉

xx

)
δϕ〈4〉+

(
τ 6 M 〈2〉xx + 2

∞∑
n=1
τ 2(n+3)M 〈2(n+1)〉

xx

)
δϕ〈5〉 · · ·

]1

0
, (19)

where

Q =
AGκL2

E I

(
∂w
∂ x̄
−ϕ

)
(20)

is the dimensionless form of the shear force Q =
∫

A Gγxz d A= AGκ(∂w/∂x−ϕ) on the cross section of
the nanotube [Hagedorn and Dasgupta 2007], and κ is the shear correction factor due to shear deformation
in nanotube.

The variational principle requires the variation of energy function to be zero at an extremum:

δF = δ(U − K )= 0. (21)

Because w, ϕ, ϕ〈1〉, ϕ〈2〉, ϕ〈3〉, . . . are arbitrary functions whose variations do not vanish, the variational
principle requires that their multipliers be zero. From the first two terms in the integrand in (19), the
governing equations of motion for a shear deformable nanotube are

E I
L
∂Q
∂ x̄
=
ρAL3

T 2

∂2w

∂t2 , Q−
∂M xx

∂ x̄
+ 2

∞∑
n=1

(τ )2n ∂
(2n+1)M xx

∂ x̄ (2n+1) =
ρL2

ET 2

∂2ϕ

∂t2 (22)

the second of which can be rewritten as

Q−
∂Mef

∂ x̄
=
ρL2

ET 2

∂2ϕ

∂t2 , (23)

where

Mef = M xx − 2
∞∑

n=1

τ 2n M 〈2n〉
xx =

∞∑
n=1

(2n− 3)τ 2(n−1)ϕ〈2n−1〉 (24)

is defined as the effective dimensionless nonlocal moment Mef. The remaining terms in (19) constitute
the higher-order boundary conditions which have been unavailable in all other research papers of nonlocal
wave propagation [Wang and Hu 2005; Wang 2005; 2006; Wang et al. 2006b; 2006c; 2008; Lu et al.
2007; Heireche et al. 2008; Liew et al. 2008; Wang and Varadan 2007; Xie et al. 2007a; 2007b; Hu et al.
2008]. These equations of motion and the corresponding higher-order boundary conditions are new and
their physical interpretation and consequence will be discussed at length in due course.
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Equations (22) and (23) represent the transverse equation of motion and rotational equation of motion,
respectively, and they are expressed in terms of nonlocal stress resultants. These two equations can also
be expressed in terms of dimensionless deflection w and angle of rotation ϕ as

GκL
(
∂2w
∂ x̄2 −

∂ϕ
∂ x̄

)
−
ρL3

T 2
∂2w
∂t2 = 0, (25)

AGκL2

E I

(
∂w
∂ x̄
−ϕ

)
−

∞∑
n=1

(2n− 3)τ 2(n−1)ϕ〈2n〉
−
ρL2

ET 2
∂2ϕ
∂t2 = 0. (26)

Equations (25) and (26) are obtained from the first two terms in the integration in (18). Alternatively,
(25) and (26) can be obtained by substituting (8)2 and (20) into (23) and (24).

Wave propagation in a shear deformable carbon nanotube. For analyzing the effect of τ on wave
propagation in a carbon nanotube, terms of order O(τ 6) in the equations of motion are omitted. The
corresponding expressions for (25) and (26) are

GκL
(
∂2w
∂ x̄2 −

∂ϕ
∂ x̄

)
=
ρL3

T 2
∂2w
∂t2 , (27)

AGκL2

E I

(
∂w
∂ x̄
−ϕ

)
+
∂2ϕ
∂ x̄2 − τ

2 ∂
4ϕ
∂ x̄4 − 3τ 4 ∂

6ϕ
∂ x̄6 =

ρL2

ET 2
∂2ϕ
∂t2 . (28)

For wave propagation, the functions of deflection w(x̄, t) and rotation ϕ(x̄, t) are expressed as

w(x, t)=W ei(k̄ x̄−ω̄t), (29)

ϕ(x, t)=8ei(k̄ x̄−ω̄t), (30)

where k is wavenumber, ω is angle frequency and the dimensionless forms of these two variables are
k̄ = kL and ω̄ = ωT . Hence (27) and (28) can be reduced to linear system(

ρL3

T 2 ω̄
2
−

Gκ
L

k̄2
)

W − i Gκ
L

k̄8= 0, (31)

i AGκL2

E I
k̄3W +

(
ρL2

ET 2 ω̄
2
−

AGκL2

E I
− k2
− τ 2k̄4

+ 3τ 4k̄6
)
8= 0, (32)

or, in matrix form, as

Ax = 0, (33)

where the elements of the matrix A are

a11 =
ρL3

T 2 ω̄
2
−

Gκ
L

k̄2, a12 =−i Gκ
L

k̄, a21 = i AGκL2

E I
k̄3,

a22 =
ρL2

ET 2 ω̄
2
−

AGκL2

E I
− k2
− τ 2k̄4

+ 3τ 4k̄6,

(34)

and the vector of generalized displacements is

x =
{
W 8

}T
. (35)
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For nontrivial solutions of W and 8 in (33), we must have |A| = 0 in (34), which yields the characteristic
equation

ρ2L5

ET 4 ω̄
4
−

GLκρ
ET 2

(
k̄2
+

AL4

I

)
ω̄2
+

(Gκ
L
−
ρL3

T 2

)
(1+ τ 2k̄2

− 3τ 4k̄4)k̄2
= 0. (36)

This is a quartic equation whose roots are

ω̄1,2,3,4 =±

√
−b1±

√
b2

1−4a1c1

2a1
, (37)

where a1, b1 and c1 are defined in terms of k̄ as

a1 =
ρ2L5

ET 4 , b1 =−
GLκρ
ET 2

(
k̄2
+

AL4

I

)
, c1 =

(Gκ
L
−
ρL3

T 2

)
(1+ τ 2k̄2

− 3τ 4k̄4)k̄2. (38)

Equations (37) and (38) give the spectrum relation between ω and k based on this new analytical non-
local shear deformable nanotube model. Using the partial nonlocal nanotube model, the corresponding
relation is identical to (37) except that a1, b1, c1 be replaced by a2, b2, c2, given by [Liew et al. 2008]

a2 =
ρ2L5

ET 4 , b2 =−
GLκρ
ET 2

(
k̄2
+

AL4

I

)
, c2 =

(Gκ
L
−
ρL3

T 2

)
(1− τ 2k̄2

+ τ 4k̄4)k̄2. (39)

Obviously the only difference between the solutions of this new analytical nonlocal stress model and the
existing partial nonlocal stress model [Liew et al. 2008] is contributed by c1 and c2. The difference leads
to different characteristics of the two dispersion relations and spectrum relations for wave propagation
in CNTs as discussed in great details in the following section.

3. Results and discussion

Effects of nanoscale on dispersion relation. We now present some numerical examples to illustrate the
contrast between the analytical nonlocal shear deformable nanotube model (ANT) and the partial nonlocal
shear deformable nanotube model (PNT) for wave propagation in a nonlocal nanotube with respect to
the classical shear deformable tube model (CT). In these examples, the nanotubes are considered as
homogeneous and isotropic with geometric and materials properties as in [Liew et al. 2008]: diameter
d = 5 nm, thickness t = 0.34 nm, length L = 10 nm, Young’s modulus E = 0.72 TPa, Poisson’s ratio
υ = 0.254, density ρ = 2.3 g/cm3, vibration period T = 4× 10−13 s and shear correction factor κ = 10

9 .
The dispersion relation between the dimensionless phase velocity c̄ and the dimensionless wave num-

ber k̄ (where c̄ = ω̄/k̄) with various τ is illustrated in Figure 3 for shear deformable nanotube models
based on the PNT solution in (37) and (39) and the ANT solution in (37) and (38). The classical wave
propagation solution for the classical shear deformable nanotube without nonlocal effects can be deduced
by substituting τ = 0 in (38) or (39).

The different dispersion relations based on ANT, PNT and CT are indicated in Figure 3. For the disper-
sion relation based on the CT model, the phase velocity increases linearly for k̄ < 15 approximately, while
a constant c̄ is observed at higher wavenumbers. For PNT models, there exists a critical wavenumber
k̄cri below which the dispersion relation is close to linear and similar to the classical CT solution. Past
k̄cri, linearity fails, and eventually the velocity starts dropping as the wavenumber becomes sufficiently
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Figure 3. Dispersion relation obtained from shear deformable nanotube model.

high. For ANT models, there is also a critical wavenumber below which the phase velocity exceeds the
PNT and CT values. For instance, for k̄ = 5 and τ = 0.1, the phase velocity is c̄ = 0.18 according to
ANT, c̄ = 0.17 for CT and c̄ = 0.16 for PNT. In other words, nonlocality in nanotubes has a stiffening
effect (increase in phase velocity) according to ANT, relative to the classical solutions, but the opposite
effect according to PNT. Past the critical wavenumber, the ANT-predicted phase velocity drops sharply,
differing significantly from the of CT and PNT solutions. Thus, according to ANT, wave propagation in
shear deformable nanotubes decay rapidly after the wavenumber exceeds critical value.

Figure 4 plots the dimensionless angle frequency ω̄ versus the wavenumber k̄ for various τ based on
the different nanotube models. For the classical model, the predicted frequency keeps increasing with

Figure 4. Spectrum relation obtained from shear deformable nanotube model.
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Figure 5. Effect of scale parameter (τ ) on the ratio of the phase velocity predicted by
our models (ANT and PNT) to the classical (CT) solution, for the shear deformable
nanotube model.

the wavenumber. For PNT, it flattens out for wavenumbers beyond the critical value k̄cri. For ANT, the
frequency at first increases as in the first two models but then drops sharply.

As we saw in connection with Figure 3, ANT predicts stiffening below the critical wavenumber, while
the opposite is predicted by PNT. This can also be observed in the frequency/wavenumber relation: for
k̄ = 4 and τ = 0.1, the predicted frequency is ω̄ = 0.8 according to ANT, ω̄ = 0.7 according to PNT, and
ω̄ = 0.75 according to CT.

The presence of a frequency maximum under ANT and the subsequent decay are mainly due to the
strong nanoscale effect contributed by the nonlocal (long-range) stress between molecules and lattice
at high wavenumbers. The critical wavenumber decreases from 14 to 5 as the nanoscale parameter τ
increases from 0.05 to 0.15. It implies for stronger nanoscale effect, the decay wave propagation in
nanotube is more ready to be induced at lower a wavenumber.

The influence of a small scale effect on the dispersion relations is further illustrated in Figure 5, which
plots the velocity ratio relative to the classical solution as a function of τ , for different values of k̄. We
see in this figure that the phase velocity according to the ANT and PNT nonlocal models are very close
to the classical solutions for τ < 0.03; thus wave propagation in the nanotube is hardly influenced by
nanoscale effects in this range. A sharp reduction in wave propagation velocity then occurs for larger
τ . A critical point τcri is seen on each ANT and PNT, which decreases as the wave number increases.
Thus, ANT predicts the values 0.6, 1.2, and 2 for τcri when k̄ = 50, 20, and 10, respectively. This is
consistent with the expectation that propagation at a higher wavenumber requires more kinetic energy.
The contribution due to the presence nanoscale τ is decreasingly sufficient to sustain such status of wave
propagation and hence a smaller τcri corresponds to a higher wavenumber.

As stated in (3), τ is dimensionless quantity representing the small scale parameter e0a. According to
Eringen’s theory of nonlocal elasticity [Eringen and Edelen 1972; Eringen 1972a; 1972b; 1983; 2002],
the internal characteristic length a of material is a simple lattice parameter such as the granular distance
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or bond length. For CNTs, this value could be considered as the C-C bond length, or a = 0.142 nm on
average [Wang 2005; 2006; Wang et al. 2006b; 2006c; 2008; Lu et al. 2007; Heireche et al. 2008; Liew
et al. 2008; Wang and Varadan 2007; Xie et al. 2007a; 2007b; Hu et al. 2008]. The material constant e0 is
a parameter that indicates the small scale effect on the material properties [Eringen 2002] and it was stated
as e0 = 0.39 in [Eringen 1983; 2002]. This result should be further confirmed by experiment or other
approaches such as MD or matching the dispersion relation of atomic lattice dynamics. Furthermore, the
value of e0 is not a constant for different materials and small scale nanostructures. For research of wave
propagation in CNTs, the value of e0 could possibly be in the range 0 < e0a < 210 nm [Wang 2005].
In this paper, 0 ≤ τ ≤ 5 is assumed for comparison between ANT and PNT. For a specific CNT with
L = 10 nm, this implies 0 < e0a < 50 nm. As shown in Figure 5, wave propagation decays very fast
when τ > τcri, which means e0a could not be too high and its specific range depends on L .

It is also clear from Figure 5 that the phase velocity ratios of PNT are never beyond unity while the cor-
responding ANT solutions are different for small τ below the critical value. Thus stiffness enhancement
of nanotube by the presence of nanoscale effect via ANT is further confirmed in this example.

Comparison with molecular dynamic simulation. The MD approach is considered as an authoritative
means to analyze CNTs and extensive research based on MD simulation on the mechanics properties of
CNTs has been published [Liew et al. 2004a; 2004b; 2005; 2008; Kitipornchai et al. 2005; Wang and
Hu 2005; Wang et al. 2006b; 2008; Hu et al. 2008]. Other approaches or models are often compared
with MD to verify the solutions. For this reason and to further confirm the validity of the ANT solutions,
we present in Figure 6 a comparison of the various dispersion relations with MD results [Liew et al.
2008] for a (5, 5) CNT. In this example, the parameters and properties of nanotube are the same as in
the previous subsection, except that we take the Young’s modulus to be E = 0.897 TPa, the diameter
d = 0.96 nm and τ = 0.00355.

As shown in Figure 6, all solutions seem to agree well for k̄ < 1 with respect to the classical solutions.
Consistent with the previous example, the MD simulation also predicts the presence of a critical wave
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Figure 6. Dispersion relation obtained from different models.
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velocity for sufficiently high wavenumber. In this case, wave velocity decreases for k̄ > k̄cri. In addition,
the ANT and MD solutions both predict k̄cri ≈ 4 and they agree more as compared to PNT which predicts
k̄cri ≈ 6. The classical model fails to predict the existence of any critical wavenumber at all.

The comparison should be interpreted in the following manner. The classical solutions without
nanoscale effects should be viewed as the demarcation between the various models. As the wavenumber
increases (smaller wavelength) which indicates more prominent nanoscale influence, on one side of the
demarcation shows increasing wave velocity or equivalently higher stiffness (wave propagates faster in
a more stiff medium) while on the other side of the demarcation shows decreasing wave velocity and
hence decreasing stiffness. It is clear that the analytical nonlocal stress and MD approaches both predict
comparable solutions while the partial nonlocal stress model predicts otherwise. This comparison with
MD solutions concludes that the analytical nonlocal stress model is consistent with MD solutions. It
should be noted that for very high wavenumber, the curves do not agree well. At such length scales
which attain sub-nano ranges, one full wavelength only covers a limited number of molecules and the
medium may not be continuous. In such sub-nano ranges, the validity of all continuum CNT models has
to be further investigated.

In conclusion, it is confirmed that the ANT model predicts more agreeable solutions with respect to
MD simulations in terms of critical values as well stiffness and wave velocity enhancement as compared
to PNT.

4. Further discussion on the analytical nonlocal and partial nonlocal modeling

Equations (22) and (23) express the governing equations of motion for a shear deformable nanotube
which is derived from the variational principle. Comparing with the classical tube dynamic conditions in
(9), consequently, it is concluded that the transverse equation of motion is identical for both the classical
model and the nonlocal stress model, or

Qc = Q (40)

while for the bending moment equation of motion, the classical bending moment Mc should be replaced
by the effective nonlocal bending moment Mef defined in (24) for a nanotube with nonlocal effects.

In virtually all published works in wave propagation based on the partial nonlocal stress model [Wang
and Hu 2005; Wang 2005; Wang et al. 2006c; Lu et al. 2007; Heireche et al. 2008; Liew et al. 2008;
Wang 2006; Wang et al. 2006b; Wang and Varadan 2007; Xie et al. 2007a; Xie et al. 2007b; Wang
et al. 2008; Hu et al. 2008], the dynamic equations of motion were derived by directly replacing the
classical bending moment condition in (9)2 with the nonlocal bending moment defined in (6). The direct
replacement yields

Q−
∂M xx

∂ x̄
=
ρL2

ET 2

∂2ϕ

∂t2 (41)

which was not consistent with the variational principle. By retaining terms of O(τ 4) in (23) in order
to analyze the effect of nanoscale τ , a truncated dynamic equation is obtained as expressed in (28).
Similarly, by substituting the expression (8)2 for the nonlocal moment M xx in into (40) and retaining
terms of O(τ 4), we obtain

AGκL2

E I

(
∂w

∂ x̄
−ϕ

)
+
∂2ϕ

∂ x̄2 + τ
2 ∂

4ϕ

∂ x̄4 + τ
4 ∂

6ϕ

∂ x̄6 =
ρL2

ET 2

∂2ϕ

∂t2 . (42)
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Comparing (23) and (40), or equivalently comparing (28) and (42) for terms O(τ 4), it is concluded that
the partial nonlocal stress model predicts different nonlocal responses for bending and wave propagation
as what have been illustrated in the previous examples.

Equations (22) and (23) in terms of nonlocal stress resultants, or (25) and (26) in terms of displacement
and rotation, are novel governing dynamic equations of motion for a nanotube with nonlocal effect
derived using an exact variational principle. These two equations govern the exact dynamic motion for a
nonlocal shear deformable nanotube. These are new equations of motion first derived here and they are
fundamentally distinct with respect to virtually all previous works. Verification and application of this
new analytical model for analyzing the wave propagation in nanotubes have been demonstrated in the
previous sections.

The conclusion of stiffness strengthening effect of nanotubes with increasing nanoscale effect is con-
sistent qualitatively with other published research works via other non-nonlocal elasticity approaches.
Some noted instances including the strain gradient theory [Nix and Gao 1998; Lam et al. 2003]; a
modified couple stress theory at microscale [Park and Hao 2006; 2008, Ma et al. 2008]; computational
atomistic modeling for free vibration of a carbon nanotube [Li and Chou 2004] which concluded that
the fundamental frequencies of the classical solution could be significantly lower than the atomistic
simulation solutions by 40% to 60%; as well as experimental studies on monolithic films [Was and
Foecke 1996], on harness of nanoindentation of crystalline materials [Nix and Gao 1998], on significant
increased bending stiffness of a nano-cantilever [Lam et al. 2003; McFarland and Colton 2005]. It is
noted that some of the analyses above [Park and Hao 2006; 2008, Ma et al. 2008] considered only effects
at microscale instead of nanoscale. It is not a concern here as to whether it is still valid at nanoscale.
In this paper, the formulations are all non-dimensionalized and hence the presence of a small-scale τ
indicates the deviation expected from the classical theory when size effect is present, irrespective of the
actual size of τ . The paper concludes that the presence of τ induces a minute structure with higher
stiffness and the conclusion is consistent with the prediction of the modified couple stress theory [Park
and Hao 2006; 2008, Ma et al. 2008].

5. Conclusions

An analytical nonlocal stress model for wave propagation in CNTs has been established through consis-
tent variational principle. The CNTs are simulated as shear deformable nanotubes with size dependent
nonlocal effects. New dynamic equations of motion for wave propagation in CNTs have been derived
and new wave propagation behaviors that nonlocal stress enhances stiffness and wave velocity in CNTs
have been predicted.

Analytical expressions for the dispersion relation which relates wavenumber and phase velocity and the
spectrum relation (frequency versus wavenumber) are presented through the analytical nonlocal stress
approach. It has been shown that there exist critical points for the dispersion relation and spectrum
relation by the analytical nonlocal models and these points depend on the nanoscale parameter. For
wavenumber beyond these critical values, wave propagation is decreased sharply. Furthermore, the
analytical nonlocal model confirms that the nanoscale effect promotes wave propagation in nanotube
for wavenumber below the critical points. The phenomenon is verified by comparison with molecular
dynamic simulation.
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Appendix

The strain energy density of a nanotube due to normal deformation un as presented in (10) and (11) [Lim
2009; 2010] can be derived as follows. From (8)1, un can be expressed as

un =

∫ εxx

0
σxx dεxx = E

∞∑
n=1

τ 2(n−1)
∫ εxx

0
ε〈2(n−1)〉

xx dεxx .

Since we have∫ εxx

0
εxx dεxx =

1
2ε

2
xx ,∫ εxx

0
ε〈2〉xx dεxx =

∫ εxx

0
ε〈1〉xx dε〈1〉xx =

1
2(ε
〈1〉
xx )

2,∫ εxx

0
ε〈4〉xx dεxx =

∫ εxx

0
ε〈1〉xx dε〈3〉xx = ε〈1〉xx ε

〈3〉
xx |

εxx
0 −

∫ εxx

0
ε〈3〉xx dε〈1〉xx = ε〈1〉xx ε

〈3〉
xx −

∫ εxx

0
ε〈2〉xx dε〈2〉xx

= ε〈1〉xx ε
〈3〉
xx −

1
2(ε
〈2〉
xx )

2,∫ εxx

0
ε〈6〉xx dεxx =

∫ εxx

0
ε〈1〉xx dε〈5〉xx = ε〈1〉xx ε

〈5〉
xx |

εxx
0 −

∫ εxx

0
ε〈5〉xx dε〈1〉xx = ε〈1〉xx ε

〈5〉
xx −

∫ εxx

0
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2,

or, concisely,∫ εxx

0
ε〈2(n−1)〉

xx dεxx = ε
〈1〉
xx ε
〈2(n−1)−1〉
xx − ε〈2〉xx ε

〈2(n−1)−2〉
xx + · · ·+ (−1)n−1ε〈n−2〉

xx ε〈n〉xx + (−1)n 1
2(ε
〈n−1〉
xx )2

=

n−2∑
m=1

(
(−1)m+1ε〈m〉xx ε

〈2(n−1)−m〉
xx

)
+ (−1)n 1

2(ε
〈n−1〉
xx )2,

which is valid for n ≥ 3, we conclude that the strain energy un at a point is un = u1+ u2+ u3, where the
ui are given by (13).
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DYNAMIC COMPRESSIVE RESPONSE OF COMPOSITE CORRUGATED CORES

BENJAMIN P. RUSSELL, ADAM MALCOM, HAYDN N. G. WADLEY AND VIKRAM S. DESHPANDE

The dynamic out-of-plane compressive response of E-glass composite corrugated sandwich cores have
been measured for impact velocities ranging from quasistatic to 175 ms−1. Laboratory scale sandwich
cores of relative density ρ̄ ≈ 33% were manufactured from 3D woven E-glass and stitched to S2-glass
face-sheets via a double line of Kevlar yarn. Two variants of the sandwich cores were investigated:
sandwich cores with the empty spaces between the corrugations filled with a PVC foam, and unfilled
corrugations. The stresses on the rear faces of the dynamically compressed sandwich cores were mea-
sured using a direct impact Kolsky bar. The compression tests on both the corrugated cores and the
parent strut wall material confirmed that these relatively high relative density corrugated cores failed by
microbuckling of the strut wall material under quasistatic loading. Moreover, the foam filling did not
have any significant effect on the measured responses. The peak stresses of both the strut wall material
and corrugated cores increased approximately linearly with strain rate for applied strain rates less than
about 4000 s−1. This increase was attributed to the strain rate sensitivity of the composite matrix material
that stabilised the microbuckling failure mode of the E-glass composite. At higher applied strain rates
the response was reasonably rate insensitive with compressive crushing of the glass fibres being the
dominant failure mode. A simple model utilising the measured dynamic properties of the strut wall
material accurately predicts the measured peak strengths of the filled and unfilled corrugated cores.

1. Introduction

Lightweight materials and structures utilised in transportation systems are sometimes subjected to dy-
namic loads due to impact events or the impingement of shock waves created by nearby explosions. The
development of multifunctional materials and structures that provide dynamic load mitigation capabilities
in addition to their normal structural requirements are therefore important to a number of fields such as
crash protection, petro-chemical safety, infrastructure protection and many military applications. There
has been much interest in sandwich structures for use in dynamic loading scenarios and several theoretical
and experimental studies on metallic materials have shown there to be significant advantages of sandwich
structures over monolithic structures of equivalent mass, see for example [Xue and Hutchinson 2003;
Fleck and Deshpande 2004; Wei et al. 2008; Dharmasena et al. 2008].

There are two effects that combine to endow sandwich panels with their superior resistance to shock
front loading: (i) an increased flexural strength and (ii) fluid-structure interaction (FSI) effects, which
mean that a smaller fraction of the shock impulse is transmitted into sandwich panels compared with
monolithic plates of equal mass per unit area (areal density). This FSI effect for explosively created
shocks in water was assessed experimentally in [Dharmasena et al. 2009; 2010]. Water shock tube

Keywords: composite lattice cores, impact testing, dynamic loads, material rate-dependence.
Work supported by the Office of Naval Research under ONR grant number N00014-07-1-0764 (Dr. David Shifler, Program
manager).
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methods developed in [Deshpande et al. 2006] were used in [Mori et al. 2008] to enable the dynamic
deflections of sandwich panels to be observed using Moire interferometry. The increased flexural strength
of sandwich panel systems is achieved by the use of stiff, strong, fracture resistant face sheets separated
by a lightweight core. Significant research is therefore underway to explore the design of lightweight
sandwich panel cores that are sufficiently strong that they do not completely crush under an impulsive
load.

Much of this effort in sandwich panel core design for dynamic applications has concentrated on
highly ductile metallic lattice core and face sheet structures. For example, Radford et al. [2007], Ferri
et al. [2006] and Tilbrook et al. [2007] have investigated the dynamic response of stainless steel square-
honeycomb cores, I-cores and prismatic Y-frames and corrugated cores respectively. These studies have
demonstrated that inertial stabilisation significantly delays the onset of buckling in these lattice cores;
consequently, the dynamic strength exceeds the quasistatic strength by nearly a factor of four at impact
velocities around 50 ms−1. Moreover, the experiments of [Radford et al. 2007] and [Tilbrook et al. 2007]
have demonstrated that the peak stress on the impacted (front) face increases approximately linearly with
impact velocity while the distal (rear) face stress remains approximately constant; i.e., plastic shock wave
effects play a significant role at these impact velocities. These features of the dynamic compression of
cellular cores results in pressure transmitted to the back face of fully back supported sandwich panels
exposed to underwater shocks [Wadley et al. 2008].

There is a natural progression to adopt material systems which intrinsically have high specific strength
and stiffness. Composite polymer systems reinforced with strong fibres such as carbon, glass and aramids,
offer such properties. Indeed, they find extensive use within sandwich configurations in specialist auto-
motive and aerospace markets. Some recent studies have reported the static performance of composite
sandwich cores. These include an investigation of the compressive response of Z-pinned reinforced foam
cores in [Marasco et al. 2006], the compressive and shear response of carbon fibre square honeycomb
cores in [Russell et al. 2008], the compressive response of carbon fibre pyramidal truss cores in [Finnegan
et al. 2007] and titanium coated SiC monofilaments such as those investigated in [Moongkhamklang et al.
2008]. Experimental and theoretical work on the static properties of composite corrugated cores has also
been recently reported in [Kazemahvazi and Zenkert 2009] and [Kazemahvazi et al. 2009]. However, to
date there is a scarcity of data in the literature on the dynamic properties of composite sandwich cores.

In this study we report the dynamic performance of composite corrugated cores. The related in-
vestigation of metallic corrugated cores in [Tilbrook et al. 2007] demonstrated that three effects give
an enhanced strength to such cores under dynamic loading. These effects are: (i) material strain rate
effects; (ii) inertial stabilisation of the core struts against elastic buckling and (iii) plastic shock wave
effects that localise deformation near the impacted face and result in the stresses on the impacted face
exceeding those on the on the face distal from the impact. However, the role that these effects play in the
dynamic compression of composite corrugated cores is as yet unclear. Moreover, based on theoretical
work on the dynamic compression of unidirectional composites in [Slaughter et al. 1996] and experiments
in [Lankford 1995] we also anticipate that dynamic stabilisation of the microbuckling failure mode in
composites will play a role in setting the dynamic performance of composite corrugated cores. We thus
focus here on investigating the dynamic properties of the core material — this entails constraining the
back face of the core. This boundary condition is very different from that in a sandwich plate or beam test
but enables us to investigate the inherent properties of the core, absent the particular structural context.
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The outline of the paper is as follows. First, the manufacturing techniques employed for making
laboratory scale E-glass corrugated cores are detailed. Next, the quasistatic and dynamic out-of-plane
compressive response of foam-filled and unfilled corrugated cores and the strut wall material are reported.
The dynamic measurements are conducted using a direct impact Kolsky bar, and high speed photogra-
phy is employed to observe the dynamic deformation modes. Based on these measurements and visual
observations we finally report a simple model to relate the dynamic responses of the corrugated cores to
the measured properties of the strut wall material.

2. Materials and manufacturing

Foam-filled composite corrugated sandwich cores, as sketched in Figure 1, were manufactured from
3D woven fabric (3WEAVE fabric, 3tex Inc.) and Divinycell H130 PVC foam (DIAB Inc., Desoto, TX
75115, USA). The 2.8 mm thick face sheets comprised a single layer of S2-glass (areal mass of dry fabric
3.29 kg m−2) while the corrugated core was made from two layers of E-glass (areal mass of each layer
1.83 kg m−2), refer to Table 1 for details of these fabrics. Each of the 3D fabric layers comprised three

E-glass S2-glass
weft (x f ) warp (y f ) z yarn (z f ) weft (x f ) warp (y f ) z yarn (z f )

weight 48.8% 50.3% 0.9% 48.0% 48.5% 3.6%
tows 3 2 — 3 2 —

Table 1. Details of the 3D woven glass fabrics manufactured by 3Tex: E-glass of areal
mass 1.83 kg m−2 and S2-glass of areal mass 3.29 kg m−2. The coordinate system for
the fabrics is illustrated in Figure 1, right.
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Figure 1. Left: Sketch of the corrugated core test specimens with all leading dimensions
and materials used for the various components labelled. Right: Sketch illustrating the
3D fibre lay-ups in the specimens and the geometry of the test coupon used to investigate
material properties of the corrugated core strut material. The coordinate systems referred
to in the text are included in the figure and all dimensions are in mm.
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tows in the weft direction, two tows in the warp direction and a z-yarn, all of the same fibre material.
The fibre orientations in the core and face sheets are illustrated in Figure 1, right.

The corrugated core comprised struts of length l = 16± 1 mm, thickness t = 3.5± 0.5 mm, spaced at
H = 23.9± 1 mm. The resulting sandwich core thickness is h = 13.1± 1 mm and has a relative density
(defined here as the volume fraction of space occupied by corrugated core) ρ̄ ≈ 33%; see Figure 1,
left. The variations in the dimensions are due to manufacturing variability and denote the as-measured
maximum and minimum dimensions for all specimens tested in this study.

Fabrication process. The fabrication process is illustrated in Figure 2. The E-glass fabric was conformed
around equilateral triangular prisms of Divinycell H130 PVC foam to form corrugations. The apexes
of these corrugations were stitched to the S2-glass face sheets with Kevlar 29, size 69 thread, using a
approximately 6 stitches per cm of a dual straight stitch. This whole assembly was then vacuum bagged
and resin infiltrated with SC-11M epoxy (Applied Poleramic Inc., Benicia, CA 94510, USA). The SC-
11M epoxy was supplied by Applied Poleramic Inc. (Benicia, California). It is a two component, two-
phase (rubber toughened) system developed for shock loading applications and vacuum assisted resin
transfer moulding manufacturing techniques. After mixing, the epoxy system had a viscosity of 900 cps,
sufficient to permit vacuum assisted infiltration of a 500 mm× 500 mm corrugated glass core panel in 30
minutes. The panels were then cured at 72◦C for 6 hours. Test specimens approximately 53 mm× 53 mm
with the corrugated core arranged as shown in Figure 1, left, were then cut from these panels using a
diamond cutting wheel.

In order to investigate the effect of the Divinycell foam core, specimens were also manufactured
without the foam filling. Subsequently, the specimen with and without the foam filling will be referred
to as the filled and unfilled specimens, respectively. In order to ensure that the unfilled specimens had
the same corrugation geometry and had undergone an identical process cycle to the filled specimens, the
foam filling was removed from the fully cured specimens by melting with a hot bar. This method resulted
in minimal damage occurring to the corrugations and faces. The areal densities of the sandwich cores
(not inclusive of faces) were 5.79 and 4.66 kg m−2 for the filled and unfilled geometries respectively.
Additionally, sandwich specimens of the same dimensions as the corrugated cored specimens (53 mm×
53 mm) were fabricated using just the Divinycell H130 PVC foam core.

S2-glass face

E-glass double layer

PVC foam prism

Dual Kevlar

straight stitch S2-glass face

core stitched to face

with kevlar

foam prisms inserted

to form topology

Figure 2. Sketch of the process used to assemble the dry (uninfused) corrugated cores.
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3. Experimental protocol

The quasistatic and dynamic compressive responses of the filled and unfilled corrugated cores were
measured along with the corresponding compressive responses of the parent infused E-glass material
comprising the struts of the corrugated core.

Specimen configurations. To measure the quasistatic and dynamic compressive responses of the infused
E-glass material comprising the struts of the corrugated core, rectangular specimens of height L = 12 mm
were cut out from the filled sandwich core as shown in Figure 1, right. These 12 mm high specimens
were sufficiently stocky that under compression, Euler buckling was not the operative collapse mode
and the measured responses were representative of the material rather than structural behaviours. These
specimens were then compressed along the x3m direction in order to determine the axial compressive
response of the strut material. As seen in the figure, some foam remained attached to the sides of the cut
out rectangular specimens: since this foam had a negligible contribution to the axial compressive response
of the specimen, we did not attempt to scrape it off so as to avoid any damage to the underlying composite.

The compressive tests on the sandwich specimens were conducted on the 53 mm× 53 mm sandwich
specimens sketched in Figure 1, left. Initial compression experiments on these specimens exposed a
failure mode that involved the breaking of the Kevlar stitches and lateral spreading of the corrugated
core as shown in Figure 3a. This failure mode, while active towards the edges of a large corrugated core
sandwich panel, will not be the dominant mode over the central section. We thus sought to avoid this
failure mode and investigate the compressive response of the corrugated core, absent lateral spreading.
This was accomplished by using the lateral steel confinement set-up as shown in Figure 3b. It is worth
noting here that this confinement set-up restricted the compression of the sandwich core to a nominal
compressive strain of less than 70%.

Quasistatic compression. The quasistatic compression tests were conducted in a screw-driven test ma-
chine at a nominal applied strain rate of 10−3 s−1. The applied load was measured using the load cell of
the test machine and used to obtain the applied stress while the through-thickness compressive strains

(a) (b)

Lateral confinement

Figure 3. (a) Sketch illustrating the failure of the Kevlar stitches resulting in the lat-
eral spreading of the corrugated core in a compression test. (b) Sketch of the lateral
confinement used to prevent the failure mode illustrated in (a).
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were obtained from laser extensometer measurements. Unloading-reloading cycles were also conducted
in order to extract the compressive modulus of the specimens.

Dynamic compression. The dynamic out-of-plane compressive responses of the corrugated sandwich
core, the strut material specimens and the H130 foam were measured from a series of direct impact tests
in which the forces on the face distal from the impact were measured via a strain-gauged Kolsky bar
[1949]. The specimens were placed centrally on the stationary Kolsky bar and the striker bar fired at the
specimen from a gas gun as sketched in Figure 4 for the corrugated core specimens and strut material
specimens respectively. The force transmitted by the specimen was measured as function of time for a
range of impact velocities of the striker bar.

The kinetic energy of the projected striker governs the level of compression attained and the imposed
transient velocity at the impacted end of the specimen. We wished to compress the specimens at an
approximately constant velocity and chose the striker masses accordingly. It was therefore necessary
to impact the samples with an initial momentum that was large compared to the change in momentum
due to the dynamic resistive forces offered by the samples. The impact experiments were performed at
velocities ranging from 25 ms−1 to 150 ms−1. In the experiments on sandwiches conducted at low velocity
(v0 ≤ 50 ms−1) a striker of mass M = 2.5 kg was employed, while a striker of mass M = 0.75 kg sufficed
for the high velocity v0 > 50 ms−1 experiments. For the materials test, a striker of mass M = 0.1 kg was
sufficient for all velocities: high-speed photographs taken during these experiments confirm that these
striker masses are sufficient to provide almost constant velocity compression for nominal compressive
strains of up to 40%.

The striker was given the required velocity by firing it from a gas gun of barrel length of 4.5 m. No
sabot was employed as the cylindrical strikers had a diameter equal to the inner diameter of the gun

v0

m

Confinement Rig

Kolsky Bar
Test

SpecimenProjectile

L = 12 mm

(a)

(b)

Aluminium 6082-T6

D
 =

 7
6
.2

 m
m

D
 =

 2
8
.5

 m
m

v0

m
Maraging Steel

E-glass

Foam

Figure 4. Sketches of the Kolsky bar setup arrangements for dynamic testing of the (a)
corrugated core specimens and (b) the E-glass test coupons cut from the struts of the
corrugated cores.
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barrel and also equal to the diameter of the Kolsky bar. The bursting of copper shim diaphragms formed
the breech mechanism of the gun. The impact experiments were performed at velocities ranging from
approximately 10 ms−1 to 150 ms−1. The velocity of the projectile was measured at the exit of the barrel
using laser-velocity gates and the impacted end of the Kolsky bar was placed 100 mm from the open end
of the gun barrel.

The set-up of the Kolsky pressure bar is standard. A circular cylindrical bar of length 2.0 m was used.
The pressure history on the impacted end of the bar was measured by diametrically opposed axial strain
gauges placed approximately 10 diameters from the impact end of the bar. The elastic strain histories in
the bars were monitored using the two 120� TML foil gauges of gauge length 1 mm in a half-Wheatstone
bridge configuration. A strain bridge amplifier of cut-off frequency 500 kHz was used to provide the
bridge input voltage and a digital storage oscilloscope was used to record the output signal. The bridge
system was calibrated dynamically over the range of strains measured during the experiments and was
accurate to within 3%. Two separate Kolsky bars were used for testing the corrugated core specimens
and the material test coupons (Figure 1, right), as follows:

(i) a 76.2 mm diameter bar from aluminium alloy (AL-P6082T6, yield strength 310 MPa) was used in
the corrugated core tests, while

(ii) a 28.5 mm, diameter bar from maraging steel (yield strength exceeding 1000 MPa) was used in the
material coupon tests.

These two different diameter bars were used so as to ensure that the difference between the cross-sectional
areas of the specimens and the Kolsky bars were kept to a practical minimum. The longitudinal elastic
wave speed was measured at 5092 ms−1 in the aluminium alloy bar, and 4906 ms−1 in the maraging
steel bar. Taking into account that the strain gauges are placed approximately 10 bar diameters from
the impacted end, this gives a time-window of 487µs and 781µs in the aluminium and steel Kolsky
bars, respectively before elastic reflections from the distal end of the bar complicated the measurement
of stress.

The response time and accuracy of the measurement system were gauged from a series of calibration
tests. We report the result of one such representative test on the maraging steel Kolsky bar. A maraging
steel striker of diameter 28.4 mm and length 460 mm was fired at the Kolsky bar at a velocity v0 =

6.6 ms−1. The measured stress versus time response measured by the strain gauges on the Kolsky bar is
plotted in Fig.5. With time t = 0 corresponding to the instant of impact, the stress pulse arrives at the gauge
location at t = 58µs. Elastic wave theory predicts that the axial stress in the bar is ρcv0/2= 131 MPa,
where ρ and c are the density and longitudinal elastic wave speed of steel respectively. The measured
peak value of the stress is within 1% of this prediction. However, the measurement system has a finite
response time, with the stress rising to this peak value in approximately 13µs (see the insert in Figure 5).
This rise time places an operational limit on measuring the dynamic response of the specimens. It
becomes significant at the higher velocities because significant compression of the specimen is achieved
within the first 5µs. The measured stress in the calibration test drops back to zero at t = 273µs; due to
the reflection of the elastic wave from the distal end of the striker bar.

In a number of the experiments, high-speed photographic sequences were taken using a Phantom V12
camera, thereby allowing observation of the deformation process.
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Figure 5. Stress versus time history measured in the D = 28.5 mm maraging steel Kol-
sky bar during a calibration test in which a 460 mm long steel striker (D = 28.5 mm) was
fired at the Kolsky bar at v0 = 6.6 ms−1. The theoretical prediction based on 1D elastic
wave theory is included, along with a magnified graph of the stress pulse’s onset.

4. Quasistatic response

The measured compressive responses of the corrugated core strut wall material are plotted in Figure 6,
left. The material test coupons were compressed along the x3m direction (refer to Figure 1, right), which
corresponds to the x f fibre direction of the fabric. Results from three repeat tests are shown to indicate
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Figure 6. The measured quasistatic stress versus strain responses of the E-glass compos-
ites comprising the struts of the corrugated cores (left) and the filled, unfilled corrugated
cores and the H130 Divinycell foam cores (right). The compressive response of the
E-glass composite was measured along the x f direction (see Figure 1, right).
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the variability in the measured responses: this scatter is mainly a result of manufacturing variability that
resulted in variations in the amount of infused matrix from specimen to specimen. The average mea-
sured peak strength was approximately σs = 100 MPa while the compressive modulus of the specimens
was determined to be about Es = 15 GPa. Photographs of two representative deformed specimens at a
nominal compressive strain of approximately 3% are shown in Figure 7a: a clear microbuckle is visible,
confirming that the peak strength measured in these quasistatic experiments is set by the microbuckling
strength of the E-glass composites.

Measurements of the quasistatic compressive responses of the filled and unfilled corrugated cores are
plotted in Figure 6, right, along with the compressive response of the H130 Divinycell foam. Following
an initial linear elastic response, a nonlinear response sets in at about 22 MPa and 23 MPa for the filled
and unfilled cores respectively. However, while the unfilled core then displays a softening response the
filled core exhibits a moderate hardening. The H130 foam is much weaker than the corrugated cores
with a plateau strength around 2.5 MPa.

A montage of photographs showing the deformation of the filled and unfilled corrugated cores is
included in Figure 7b. The first microbuckle develops in both cores at a compressive strain of about
3% and is reminiscent of the microbuckle observed in the compressive test performed on the strut wall
material (Figure 7a). This suggests that the onset of nonlinearity in the compressive responses of the cores
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Unfilled CoreFilled Core
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ε = 0.21
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Figure 7. (a) Two representative photographs (at a compressive strain of about 3%)
showing the microbuckle failure of the E-glass composite during the quasistatic com-
pression of the test coupons. (b) A montage of photographs showing the sequences of
deformation during the quasistatic compression of the filled and unfilled corrugated core
test specimens.
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is a result of the microbuckling of the E-glass composite material. Additional microbuckles subsequently
appear in adjacent struts and the struts then begin to shear over. This shearing process is impeded by
the H130 foam in the filled core which results in the mild hardening observed in Figure 6, right. By
contrast, the shearing of the unfilled core is unimpeded, resulting in a softening response after the onset
of microbuckling in the struts.

The peak strength σp of the unfilled corrugated core is expected to be set by either the Euler buckling
or microbuckling of the struts and given in terms of the core geometry and strut wall material properties
by [Côté et al. 2006]

σp =


π2

6

( t
l

)3 h
H

Es if σs
Es
>
π2

12

( t
l

)2
,

2 t
l

h
H
σs, otherwise.

(1)

This expression clearly shows that the peak strength of the corrugated core investigated here is set by the
microbuckling of the struts. Note that this does not involve any modelling of the microbuckle stress σs

itself but rather takes as an input, the experimentally measured value. Inserting the strut geometry and
material parameters in (1) predicts that σp = 24 MPa and is in good agreement with the measurements.

Foam support is expected to enhance the Euler buckling strength of the struts of the corrugated core
[Cartié and Fleck 2003]. Given that the strength of the unfilled corrugated core is set by the microbuckling
strength of the E-glass composite struts, it is not surprising that the initial “yield” strength is unaffected
by the foam filling we anticipate that the peak strength of an E-glass corrugated core with significantly
more slender struts (i.e., lower relative density) will be enhanced with a foam filling.

5. Dynamic response

Strut wall material. The measured dynamic compressive responses of the L = 12 mm high E-glass
specimens cut from the strut walls is plotted in Figure 8, left, for impact velocities in the range 25 ms−1

≤

v0 ≤ 150 ms−1. In the figures the compressive responses are plotted in terms of the nominal stress as
measured at the distal end of the specimen (i.e., the nonimpacted end of the specimen) versus the applied
nominal strain v0t/L , where t is the time measured after the initiation of deformation. The measured
peak stress σ f is seen to increase from about 200 MPa for v0 = 25 ms−1 to 400 MPa at v0 = 150 ms−1.
It is worth noting here that the peak stress is achieved at t ≈ 12µs for v0 ≥ 50 ms−1: this time is
approximately equal to the response time of the Kolsky bar apparatus (see Figure 5) and thus while the
peak stress measurements reported here are accurate, the data cannot be used to extract the dynamic
modulus of the E-glass composite.

Given the measured Young’s modulus Es and the density (2550 kg m−3) of the E-glass composite, we
anticipate that the longitudinal elastic wave speed for the E-glass composite is approximately 4000 ms−1.
Thus, within the 12µs required to achieve peak stress, about 4 elastic reflections take place in the L =
12 mm specimen. It is therefore reasonable to assume that the specimen is in axial equilibrium at the
instant that the peak stress is measured, and that the measured peak strength is a material property
independent of the specimen dimensions. Given this, we summarise the measured peak strengths σ f as
a function of the applied nominal strain rate ε̇ ≡ v0/L in Figure 8, right. The measurements are well-
fitted by a bilinear curve with the peak strength increasing linearly with strain rate for ε̇ ≤ 4000 s−1 and
reasonably rate-independent at higher values of ε̇.
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glass material coupons for a range of impact velocities. Right: Summary of the measured
peak stresses E-glass specimens as a function of applied strain rate. The compressive
response of the E-glass composite was measured along the x f direction (see Figure 1,
right).

Recall that the peak strength under quasistatic loading is set by the microbuckling failure stress. In-
creasing the applied strain rate results in stabilisation of the microbuckle failure mode resulting in the
peak strength increasing with ε̇. This stabilisation can be due to either (i) inertial stabilisation of the
buckling or (ii) matrix strain rate effects. Theoretical work by Fan and Slaughter [1997] suggests that
inertial effects become significant for strain rates greater than about 4000 s−1. We therefore expect that
this measured rate sensitivity is due to matrix strain rate effects. The increase in the microbuckling
strength due to matrix strain rate effects can be understood as follows. An approximate expression for
the microbuckling strength in terms of the matrix shear strength τy is, according to [Argon 1972],

σc =
τy

φ̄
, (2)

where φ̄ is the fibre misalignment angle. Thus, the enhanced matrix shear strength at higher strain
rates is expected to also increase the microbuckling strength σc. The measurements indicate that the
measured peak strength rises to a maximum of about 400 MPa. This maximum peak strength is not
set by microbuckling of the fibres but rather by the compressive crush strength of glass fibres. This is
rationalised as follows. The volume fraction of fibres in the direction of the loading is about 20%, which
implies that the corresponding fibre stress is about 2 GPa [CES 2009]. This is equal to the compressive
crush strength of glass, confirming that the maximum compressive strength of the E-glass composites at
high strain rates is governed by the compressive crush strength of the constituent glass fibres.
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Figure 9. The measured dynamic stress versus nominal strain responses of the filled
and unfilled corrugated core specimens. The stresses are measured on the rear faces of
the specimen distal from the impacted face.

Corrugated cores. The measured dynamic compressive responses of the filled and unfilled corrugated
cores are plotted in Figure 9 using axes of the compressive stress σ versus nominal strain v0t/h, where
time t = 0 corresponds to the instant that the striker bar impacts the specimen. Recall that the stress σ
is measured on the rear face of the specimen distal from the impacted face. The responses of the filled
and unfilled specimens are almost identical with the measured peak stress of approximately 90 MPa over
the velocity range 25 ms−1

≤ v0 ≤ 175 ms−1. Again we note that the peak stress is observed to occur
at time t in the range 15µs− 18µs. This is similar to the response time of the Kolsky bar apparatus
(Figure 5) and so these measurements again cannot be used to infer the dynamic compressive moduli of
the specimens.

Montages showing the sequence of deformation of the filled and unfilled corrugated cores impacted at
v0= 50 ms−1 and 150 ms−1 are included in Figures 10 and 11, respectively. While the deformation modes
of the corrugated cores impacted at 50 ms−1 look similar to those observed under quasistatic deformation
(Figure 7b), a marked difference is seen when v0 = 150 ms−1. At this high velocity, deformation is more
localised near the impacted face with the corrugated core “stubbing” against the impacted face. This
deformation mode was also observed in metallic corrugated cores by [Tilbrook et al. 2007]. Given this
highly localised deformation near the impacted face we anticipate that the stresses on the impacted face
are higher than the stresses measured at the distal end, i.e., the specimen is not in axial equilibrium in line
with the finite element calculations of [Tilbrook et al. 2007]. These differences between the stresses on
the impacted and distal surfaces cannot be measured in this direct Kolsky bar set-up as the inertia of the
impacted face-sheet dominates the measurements; see [Tilbrook et al. 2007] for further discussion. We
emphasise that this localised deformation mode was observed only for v0 ≥ 150 ms−1; at the lower impact
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Figure 10. Deformation sequences in the filled (left) and unfilled (right) corrugated core
specimens impacted at a velocity v0 = 50 ms−1. Impact occurs on the top face of the
specimens in the photographs.

velocities the deformation was reasonably uniform through the core, suggesting that the specimens were
in axial equilibrium at lower impact velocities.

The measured peak stresses on the rear face of the filled and unfilled corrugated cores specimens (i.e.,
distal from the impacted face) are plotted in Figure 12 as a function of the impact velocity v0 and applied
strain rate ε̇c ≡ v0/h (upper scale). The dependence of the peak strengths of the corrugated cores on strain
rate is similar to the parent strut wall material (Figure 8, right), with the peak stress increasing with strain
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Figure 11. Deformation sequences in the filled (left) and unfilled (right) corrugated core
specimens impacted at a velocity v0 = 150 ms−1. Impact occurs on the top face of the
specimens in the photographs.

rate for ε̇c < 4000 s−1 and being reasonably rate insensitive at higher values of ε̇c. This clearly indicates
that there exist two regimes of deformation: (i) microbuckling of the strut wall for ε̇c < 4000 s−1 and (ii)
compressive crushing of the glass fibres at higher strain rates. We proceed to report a simplified analysis
for relating the peak strengths of the corrugated cores to the measured E-glass properties (Figure 8, right).
This is made possible by the fact that (i) Euler buckling is not the operative failure mode over the entire
range of impact velocities investigated here and (ii) except at the highest impact velocity (v0 ≥ 150 ms−1)
the specimens are in axial equilibrium. The peak strength of the corrugated core as a function of the
applied strain rate ε̇c is then specified from (1) as

σP(ε̇c)= 2
( t

l

)( h
H

)
σ f (ε̇), where ε̇ = ε̇c

(h
l

)2
. (3)

The strut material strength as a function of strain rate, σ f (ε̇), is given in Figure 8, right. The predictions
of Equation (3) are plotted in Figure 12. Two bounds on the predictions are shown based on the measured
variations of the specimen dimensions (Figure 1, left). These predictions adequately bound the measured
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also included.

dynamic peak strengths of the filled and unfilled corrugated cores, indicating that over the range of
impact velocities investigated here, the strain rate sensitivity of the high relative density corrugated cores
is governed by the rate sensitivity of the parent strut wall material and is not significantly affected by
inertial stabilisation against elastic buckling as observed in the low relative density metallic corrugated
cores investigated by [Tilbrook et al. 2007]. The exceptions are data points at 25 ms−1, that fall outside
of the bounds of the analytical prediction. The discrepancy here is attributed to the simplicity of the
model which assumes an empirically based bilinear relationship of strength with strain rate which is not
expected to be accurate near the transition in the strain rate response.

Recall that in the present study, the struts of the corrugated core are sufficiently stubby as to not fail by
Euler buckling, even under quasistatic loading. This meant that the dynamic tests were unable to reveal
strength enhancements due to microinertial effects but rather only displayed strength enhancements due
to material strain rate effects. Tests on corrugated cores with significantly more slender struts would
enable us to investigate the microinertial effects in composite cores: current manufacturing methods
preclude this at present but this is suggested as a topic for future investigation.
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6. Concluding remarks

E-glass corrugated sandwich cores of relative density ρ̄ ≈ 33% were manufactured by wrapping 3D
woven E-glass fabric over triangular prismatic PVC foam inserts and then stitching the assembly to S2-
glass face sheets. The entire assembly was then infused with an epoxy resin. The foam inserts were
scraped out of some of the specimens and the dynamic out-of-plane compressive stresses on the rear
faces of the filled and unfilled corrugated core specimens measured at impact velocities ranging from
quasistatic to 175 ms−1 using a direct impact Kolsky bar.

The corrugated cores had stubby struts and failed by microbuckling of these struts under quasistatic
compression. The foam filling had only a minor effect, stabilising the postpeak strut failure response
of the corrugated core. Under dynamic loading, the deformation of the specimens was reasonably
uniform through the core thickness for impact velocities less than about 150 ms−1; at higher impact
velocities deformation was localised near the impacted face, suggesting that the specimens were not in
axial equilibrium and shock effects came into play. Foam filling had nearly no effect on the measured
dynamic properties of the corrugated cores with the peak stresses of both the strut wall material and
corrugated cores increasing approximately linearly with strain rate for applied strain rates less than about
4000 s−1. This increase was attributed to the strain rate sensitivity of the composite matrix that stabilised
the microbuckling failure mode of the E-glass composite. At higher applied strain rates the response
was reasonably rate insensitive with compressive crushing of the glass fibres being the dominant failure
mode. A simple model utilising the measured dynamic properties of the strut wall material accurately
predicts the measured peak strengths of the filled and unfilled corrugated cores.
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EFFECTS OF SURFACE DEFORMATION ON THE COLLECTIVE BUCKLING
OF AN ARRAY OF RIGID BEAMS ON AN ELASTIC SUBSTRATE

HAOJING LIN, ZIGUANG CHEN, JIASHI YANG AND LI TAN

We analyze the collective buckling of a row of rigid beams with their lower ends built into an elastic
substrate. The beams interact among themselves through the deformation of the substrate. The present
analysis is more sophisticated than previous ones in that the lower ends of the beams are allowed to move
vertically and horizontally, in addition to rotation. From the linear theory of elasticity and rigid body
statics, an eigenvalue problem is formulated and solved. Calculations showed that periodic deformations
resulted atop the compliant substrate after restrictions on the beam base displacements were released.
Consequently, the refined model found good match with the height measurements from Atomic Force
Microscope (AFM). Our work suggests that both the compliant substrate and the interaction of neighbor-
ing beams through the deformation of the substrate dominate the collective buckling. Furthermore, these
results contribute toward the understanding, design and application of soft nanostructures produced by
soft lithography in a variety of fields.

1. Introduction

Periodic arrays of 100 nm thick and wide beams and walls composed of elastic polymers can be manu-
factured on a surface of the same material by soft lithography [Xia and Whitesides 1998], nanoimprint
lithography [Chou et al. 1995; 1996] and other techniques. Thermal, electrical or magnetic features can
also be added to the structures [Liu et al. 2010] such that they are useful in a variety of fields like optical
gratings, sensor arrays, actuators, and nanofabrication. Due to the deformability of the soft structures
and the substrates, structural instability is a common issue in soft lithography. This results in buckling or
collapsing of the structures [Xia and Whitesides 1998; Chou et al. 1995; 1996; Delamarche et al. 1997;
Schmid and Michel 2000; Evans et al. 2007], which seriously affects their functionality and limits their
applications.

The buckling of soft nanostructures has aspects that are different from conventional structural engi-
neering and it has recently caught wider attention. What is unique is that the substrate of the structures
is very compliant so that neighboring structures interact through the deformation of the substrate. The
results from the buckling analysis in conventional structural engineering are usually for a single beam
[Greenhill 1881; Timoshenko 1936]. Some of the structural engineering results are relevant for the
buckling of soft nanostructures, e.g., the buckling of a beam under its own weight [Greenhill 1881]; the
buckling of a beam resting on an elastic foundation [Timoshenko 1936]; and the lateral torsional buckling
of a high aspect ratio beam [Alfutov 2000]. The results from structural engineering on the buckling of
elastic beams were used in [Hui et al. 2002] for the buckling of a single beam and the contact of two
beams on a buckled surface in soft lithography, but the substrate deformation and the beam interaction

Keywords: buckling, nanostructures, beams, soft lithography.
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through the substrate were not considered. Therefore the results in [Hui et al. 2002] can only provide
limited understanding of the situation.

A major progress in the buckling analysis of periodic soft nanostructures was made in our recent work
[Lin et al. 2007]. Due to the inclusion of the most basic and important mechanism into our theoretical
model, i.e., neighboring beams interact through the deformation of the substrate, we were able to describe
the most basic collective buckling behavior of the soft structures and obtain results qualitatively matching
experimental findings. The model in [Lin et al. 2007] was later generalized and applied to the case of
a two-dimensional array of rigid beams on an elastic foundation [Chen et al. 2008], a nonuniform one-
dimensional array of rigid beams [Li et al. 2010], and a one-dimensional array of elastic beams [Feng
and Li 2009; Lin et al. 2010].

In [Lin et al. 2007; Chen et al. 2008; Li et al. 2010; Feng and Li 2009; Lin et al. 2010], the beam
bottoms in the substrate were allowed to rotate which is the major deformation, but their vertical and
horizontal displacements were neglected. While this could describe the collective buckling of beam
arrays, the restriction on beam bottom displacements renders the system too stiff. Therefore there remains
an issue on the effect of horizontal and vertical displacements of the beam bottoms.

In this paper we generalize the analysis in [Lin et al. 2007] by removing the restrictions on the beam
bottom displacements. The bottoms of the beams can move in both horizontal and vertical directions.
The results show periodic deformations atop the compliant substrate and such behaviors closely match
with the experimental evidence.

2. Mechanics model

Consider the structure shown in Figure 1, which consists of an array of rigid beams on an elastic substrate.
Each beam represents the cross section of a wall that extends uniformly in the direction perpendicular to
the plane of the paper. There is no displacement and no variation in this direction. A unit thickness of the
structure in the direction perpendicular to the paper is taken. We have a so-called plane-strain problem
in elasticity. Weight has often been considered as the cause of buckling [Hui et al. 2002; Sharp et al.
2004]. Other effects including van der Waals, Coulomb, or capillary forces could also contribute to the
situation [Evans et al. 2007; Chuang et al. 2005; Hsia et al. 2005]. We will consider weight below as the

b b 

i�1 

h 

i W i+1 

Rigid beams 

Elastic substrate 

2a 

Figure 1. A system of rigid beams on an elastic substrate.
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Figure 2. End displacements and end forces of a typical beam.

only load and the substrate deformability as the only interaction. Effectively other possible forces either
modify the load or the interaction coefficients in our model. The weight of the beams is considered as
the resultant of a uniformly distributed load. The intensity of the load is given by q per unit length of
the beams. Let the height and width of the beams be h and 2a, and the spacing between the center lines
of two neighboring beams be b (see Figure 1). We have q = ρg2a. The weight W = ρg2ah acts at
the center of the beam. The beams are assumed to be rigid, as in [Lin et al. 2007; Chen et al. 2008; Li
et al. 2010]. In contrast with these works (and also with [Feng and Li 2009] and [Lin et al. 2010]), here
we allow the bottoms of the beams to move in both the horizontal and vertical directions, in addition to
rotation. The substrate is modeled as an elastic half-space.

For the bottom of a typical beam, with index i , let the vertical and horizontal displacements be ui

and vi , the vertical and horizontal forces Pi and Fi , the rotation ϕi , and the moment Mi (see Figure 2).
For simplicity we construct the two vectors

ui =


ui

vi

ϕi

 , fi =


Pi

Fi

Mi

 , (1)

whose components are shown in Figure 2. Within the linear theory of elasticity, by superposition, we
can write

ui =

∞∑
j=1

Ai j f j u Ai(i−1) fi−1+ Ai i fi + Ai(i+1) fi+1, (2)

where the Ai j are 3×3 matrices whose columns representing the substrate deformation at the i-th location
due to a unit load at the j-th location only, the loads at all other locations being zero. The Ai j can be
derived from the theory of elasticity; see the Appendix. Equation (2) can be inverted to yield

fi =

∞∑
j=1

Bi j u j u Bi(i−1)ui−1+ Bi i ui + Bi(i+1)ui+1 (3)

where the columns of Bi j represent the load at the i-th location due to a unit deformation at the j-th
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Figure 3. Free body diagram of a buckled beam.

location only, the deformations at all other locations being zero. In (3) and (4) we have made an approx-
imation by considering interactions between a beam and its two immediate neighbors, which is known
to be accurate enough for what we are interested [Li et al. 2010]. Long distance interactions among
nonneighboring beams are neglected.

When the i-th beam buckles, its free body diagram is shown in Figure 3, where the vertical load W
and the corresponding vertical reaction with the same magnitude exist in both the unbuckled and buckled
states. The rest are possible additional loads due to buckling. The equilibrium of the beam requires that

∞∑
j=1

(
[Bi j ]11u j + [Bi j ]12v j + [Bi j ]13ϕ j

)
= 0,

∞∑
j=1

(
[Bi j ]21u j + [Bi j ]22v j + [Bi j ]23ϕ j

)
= 0,

−W
h
2
ϕi +

∞∑
j=1

(
[Bi j ]31u j + [Bi j ]32v j + [Bi j ]33ϕ j

)
= 0.

(4)

Equations (4)1 and (4)2 say that the additional horizontal and vertical forces due to buckling are zero,
while (4)3 is the moment equation about the bottom of the beam. In (4), [Bi j ]11 represents the (1,1)
element of the 3× 3 matrix Bi j , and the rest are similar. In (4) we have a system of linear homogeneous
equations. The trivial solution with all ui = 0 is the unbuckled state. We are interested in nontrivial
solutions of (4) representing buckled states. Then (4) is an eigenvalue problem. We look for values of
W h/2 corresponding to which nontrivial solutions of ui exist.

3. Numerical results and discussion

As an example, we still consider the same twenty beams as in [Lin et al. 2007] with the same geometric
and material parameters. The system (4) is solved numerically on a computer. Within three significant
digits, the numerical results for the eigenvalues W h/2 are those in Table 1. They are the same as those
in [Lin et al. 2007], where the beam bottom horizontal and vertical displacements were not allowed.
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8.96 9.00 9.05 9.13 9.23 9.34 9.48 9.63 9.80 9.98
10.16 10.36 10.55 10.74 10.92 11.08 11.23 11.35 11.43 11.49

Table 1. Numerically calculated eigenvalues W h/2 for the 20-beam system, in nN.

The buckled states determined from the eigenvectors are different from the previous analysis and are
shown in Figure 4, left, where they are also ranked according to the magnitude of the eigenvalues. Even
though the buckled states near the bottom and top of the figure have a one-to-one correspondence with
the results of [Lin et al. 2007], the ones near the middle of the figure differ from the corresponding ones in
that reference by having both rotation rearrangements and surface deformations. The latter change is the
new finding by relaxing restrictions on displacement of beam bases. We enlarged the calculated surface
topographies in Figure 4, right, to view the details of such change. Among the twenty instability modes,
all the substrates have a periodic, wave-like feature where topography fluctuates between landmarks
like hilltops and valleys. The periodicity of the fluctuation gradually increases from 400 nm in mode
#1 to more than 4000 nm in mode #20. In contrast, amplitude variance is more complex. Figure 5, left,
indicates the contrast between two fluctuating surfaces with minimum and maximum amplitudes, where a
6-fold difference in the magnitude of the amplitude is observed between mode #13 and #1. Qualitatively,
this proves that more energy is needed to cause instability such as in mode #13.

In Figure 5, right, we superposed beam locations atop the fluctuating surface topographies. It is clear
that the multibeam-like buckling feature is mostly concentrated in valleys. In other words, the beams
having a larger tendency to rotate will result in more significant displacements on bases, giving rise
to noticeable up- or downhill portions in topography. More interestingly, since the buckled features
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Figure 4. Theoretical results of collective buckling. Left: Buckled beams and substrate
deformation. Right: surface fluctuations in each individual buckling mode. Both graphs
show modes ranked by the magnitude of their eigenvalues.
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Figure 5. Theoretical results of collective buckling. Left: surface topographies of buck-
ling modes with the maximum (#13) and minimum (#1) fluctuations. Right: comparison
of beam displacements and rotations atop a flat surface (model in [Lin et al. 2007]) and
a fluctuating surface (current model).

are all localized in the valleys of the fluctuated surfaces, open surfaces will reside on hilltops of those
fluctuations. This latter statement could help us to understand the following experimental results more
accurately than before.

To give us a visual picture of the buckling in soft nanostructures, we used the easy-to-perform process
of embossing/imprinting lithography [Chou et al. 1996; Xia and Whitesides 1998] and created periodic
nanostructures atop an elastic poly(dimethylsiloxane) (PDMS) substrate. The soft nanostructure was
formed by spin-coating the PDMS precursor mixture on a rigid mold and baking at an elevated tem-
perature for an extended period of time. To obtain a uniform pattern on PDMS, it is necessary to treat
the rigid mold (Si or SiO2 with grating lines with a pitch size of 200 nm, a linewidth of 100 nm and a
depth of 150 nm) with O2 plasma, followed by a perfluorosilane treatment in toluene (0.2 M, 5 min). The
soft nature of the PDMS material, plus the high aspect ratio of the copied nanostructures from the mold,
suggest an appearance of collective buckling, as we mentioned before.

We used atomic force microscopy (AFM) to evaluate the topography of the buckled lines. The ad-
vantages of AFM are that it is a high-resolution imaging tool, which allows us to survey the overall
buckling of soft structures at the nanometer scale; and that the noncontact nature of the AFM tapping
mode eliminates any contact forces between the tip and the underlying nanostructure.

Figure 6, left, shows the topography of the rigid stamp with one-dimensional grating features. The
resulting PDMS copies show extensive surface buckling features, displayed in by Figure 6, middle, where
both multibeam and multimode buckling phenomena are in evidence, and which we discuss in more detail
shortly.

The first case of instability in Figure 4 (mode #1, two-beam pairing) has been observed by several
researchers [Delamarche et al. 1997; Xia and Whitesides 1998; Hui et al. 2002; Chuang et al. 2005]
during nanofabrication, and is often used as a classic picture for nanostructure buckling. In those findings,
a rigid substrate backing or a thick PDMS sample are often selected to limit large deformation to the
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Figure 6. AFM topographical images and cursor plots of a rigid mold and fabricated
PDMS structures from embossing/imprinting. Left: original mold with a pitch of 200 nm
and a depth of 150 nm. Middle: multibeam and multimode buckling features, with
superimposed sketches showing rotations of individual beams in selected areas: col-
lective buckling follows mode #12 in the upper area and mode #13 in the lower area, as
predicted by Figure 4. A branching angle of 45◦ is evident in boundaries between two
different buckled patches. Right: cursor plot of bucked features in the middle figure, and
comparison with theoretical calculations.

stamp material [Schmid and Michel 2000], so minimum energy impact is ensured for the occurrence
of pairing. In contrast, when no precautions are taken with the stamp material or when substantial
deformation occurs in the nanostructuring process, multibeam buckling modes at higher energy levels
should be expected; the fluctuation of those energy impacts could even generate multiple buckling modes.

We saw a good match of these predictions in our experimental data, as exemplified in Figure 6. For
example, selected areas of Figure 6, middle, match with predicted buckling modes #12 and #13; these
modes are sketched underneath the corresponding areas in the figure. A branching angle of 45◦ between
the two neighboring buckling modes suggests a shear or rotation nature of these impacts, validating our
approximation of buckling in elastic beams with rotation of rigid ones.

In Figure 6, top right, we see the cursor plot of AFM measurements for one of the buckling features,
indicating a depth value of 128–132 nm for those landmarks. We saw a mismatch between this number
with our previous analysis in [Lin et al. 2007]. When the restriction on beam displacements is not
released, as in that earlier reference, the feature depth in buckled beams is expected to depend mainly on
the rotation of beams. When minimal rotation is assumed, the depth should be close to the depth of the
rigid mold (h = 150 nm).

The middle portion of Figure 6, right, illustrates the buckled beams in such a condition, where beams
are resting on a flat ground and the height difference, i.e., 140–145 nm, between the top center of the
multibeam and the open area is calculated. Clearly, our experimental data suggest otherwise; and the
number obtained is more than 13% smaller than what we have estimated. While difficult to explain from
our previous modeling results in [Lin et al. 2007], this could be justified by taking beam displacements
into consideration. Figure 6, bottom right, shows the buckled beams without the restriction on beam
displacements. Surface fluctuation from the base lowered the height of the multibeam and simultaneously
increased the level of hilltops in open areas. Accordingly, the new calculation leads to a value for the
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beam depth of 128–130 nm, much closer to the observed one. Overall, this analysis supplies the refined
model with good experimental evidence.

4. Conclusion

A mechanical model is developed for analyzing the collective buckling of an array of beams on an elastic
substrate; it includes the refinement of allowing the bottom of the beams to move both horizontally and
vertically, as well as rotating. Numerical results from the model show that periodic surface deformations
resulted atop the compliant substrate, which found a better match with the height measurements from
AFM. Our work suggests that both the compliant substrate and the interaction of neighboring structures
through the deformation of the substrate dominate the collective buckling. This makes the buckling of
periodic soft nanostructures unique and different from conventional structural engineering.
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Appendix: Calculation of Ai j

First consider the case of a vertical load on a half-space in plane-strain elasticity (see Figure 7). The
stress and displacement fields are given in [Timoshenko and Goodier 1970]:

σr =−
2P
π

cos θ
r

, σθ = 0, τrθ = 0,

u =− 2P
πE

cos θ ln r
d
−
(1−v)P
πE

θ sin θ, (5)

v =
(1+v)P
πE

sin θ − (1−v)P
πE

θ cos θ + 2P
πE

sin θ ln r
d
, (6)

1
2

(
∂v
∂r
−

1
r
∂u
∂θ
+
v
r

)
=

2P
πE

sin θ
r

(7)
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Figure 7. A half-space under a vertical load.
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In obtaining (5)–(7), the following conditions are imposed at θ = 0 and r = d for determining the
displacement field uniquely:

u = 0, v = 0, ∂v
∂r
= 0. (8)

The value of d serves as a common reference point. From (5)–(7) we calculate

[Ai(i−1)]11 =−v(b, π/2)=−
(1+v)P
πE

−
2P
πE

ln b
d
,

[Ai(i−1)]21 = u(b, π/2)=−(1−v)P
2E

,

[Ai(i−1)]31 =
1
2

(
∂v
∂r
−

1
r
∂u
∂θ
+
v
r

)
r=b,θ=π/2

=
2P
πEb

,

[Ai i ]11 = u|r=a,θ=0 =−
2P
πE

ln a
d
, [Ai i ]21 = 0, [Ai i ]31 = 0,

[Ai(i+1)]11 = v(b,−π/2)=−
(1+v)P
πE

−
2P
πE

ln b
d
,

[Ai(i+1)]21 =−u(b,−π/2)= (1−v)P
2E

,

[Ai(i+1)]31 =
1
2

(
∂v
∂r
−

1
r
∂u
∂θ
+
v
r

)
r=b,θ=−π/2

=−
2P
πEb

.

Next consider the case of a tangential load (see Figure 8). The stress field is given in [Timoshenko
and Goodier 1970], and can be integrated to obtain the displacement field:

σr =−
2F
π

sin θ
r
, σθ = 0, τrθ = 0,

u =− 2F
πE

sin θ ln r
d
+
(1−v)F
πE

(θ cos θ − sin θ), (9)

v =−
2F
πE

cos θ ln r
d
−

2F
πE

cos θ − (1−v)F
πE

θ sin θ + 2F
πE

r
d
, (10)

1
2

(
∂v
∂r
−

1
r
∂u
∂θ
+
v
r

)
=−

2F
πE

cos θ
r
+

2F
πE

1
d
. (11)
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Figure 8. A half-space under a tangential load.
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From (9)–(11) we calculate

[Ai(i−1)]12 =−v(b, π/2)=−
(1−v)F

2E
−

2F
πE

b
d
,

[Ai(i−1)]22 = u(b, π/2)=− 2F
πE

ln b
d
−
(1−v)F
πE

,

[Ai(i−1)]32 =
1
2

(
∂v
∂r
−

1
r
∂u
∂θ
+
v
r

)
r=b,θ=π/2

=
2F
πE

1
d
,

[Ai i ]12 = 0, [Ai i ]22 = v|r=a,θ=0 =−
2F
πE

ln a
d
−

2F
πE
+

2F
πE

a
d
,

[Ai i ]32 =
1
2

(
∂v
∂r
−

1
r
∂u
∂θ
+
v
r

)
r=a,θ=0

=−
2F
πE

1
a
+

2F
πE

1
d
,

[Ai(i+1)]12 = v(b,−π/2)=−
(1−v)F

2E
+

2F
πE

b
d
,

[Ai(i+1)]22 =−u(b,−π/2)=− 2F
πE

ln b
d
−
(1−v)F
πE

,

[Ai(i+1)]32 =
1
2

(
∂v
∂r
−

1
r
∂u
∂θ
+
v
r

)
r=b,θ=−π/2

=
2F
πE

1
d

The last case is shown in Figure 9. The stress field is given in [Timoshenko and Goodier 1970], and
can be integrated to obtain the displacement field:

σr =
2M
π

sin 2θ
r2 , σθ = 0, τrθ =−

M
π

1+ cos 2θ
r2 ,

u =−
2M
πE

sin 2θ
r
−

4vM
πEd

sin θ, (12)

v =−
(1− v)M
πE

cos 2θ
r
−

4vM
πEd

cos θ +
2vM
πEd2 r +

(1+ v)M
πE

1
r
, (13)

1
2

(
∂v

∂r
−

1
r
∂u
∂θ
+
v

r

)
=

2M
πE

cos 2θ
r2 +

2vM
πEd2 . (14)
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Figure 9. A half-space under a load couple.
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From (12)–(14) we calculate

[Ai(i−1)]13 =−v(b, π/2)=−
(1− v)M
πE

1
b
−

2vM
πEd2 b−

(1+ v)M
πE

1
b
,

[Ai(i−1)]23 = u(b, π/2)=−
4vM
πEd

,

[Ai(i−1)]33 =
1
2

(
∂v

∂r
−

1
r
∂u
∂θ
+
v

r

)
r=b,θ=π/2

=−
2M
πE

1
b2 +

2vM
πEd2 ,

[Ai i ]13 = 0, [Ai i ]23 = v|r=a,θ=0 =−
(1− v)M
πE

1
a
−

4vM
πEd

+
2vM
πEd2 a+

(1+ v)M
πE

1
a
,

[Ai i ]33 =
1
2

(
∂v

∂r
−

1
r
∂u
∂θ
+
v

r

)
r=a,θ=0

=
2M
πE

1
a2 +

2vM
πEd2 ,

[Ai(i+1)]13 = v(b,−π/2)=
(1− v)M
πE

1
b
+

2vM
πEd2 b+

(1+ v)M
πE

1
b
,

[Ai(i+1)]23 =−u(b,−π/2)=−
4vM
πEd

,

[Ai(i+1)]33 =
1
2

(
∂v

∂r
−

1
r
∂u
∂θ
+
v

r

)
r=b,θ=−π/2

=−
2M
πE

1
b2 +

2vM
πEd2

For plane-strain problems the following change in material constants is needed:

E→
E

1− v2 , v→
v

1− v
.

These fields and interaction coefficients are for beams on a semi-infinite half space. In reality the
soft beams are built on a plate with a finite thickness. To compensate for the effect of the finite plate
thickness, when comparing with experimental results, we varied d in the above equations and finally
chose d = 1000a in our calculations for best agreement with experimental results.
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IMPROVED HYBRID ELEMENTS FOR STRUCTURAL ANALYSIS

C. S. JOG

Hybrid elements, which are based on a two-field variational formulation with the displacements and
stresses interpolated separately, are known to deliver very high accuracy, and to alleviate to a large
extent problems of locking that plague standard displacement-based formulations. The choice of the
stress interpolation functions is of course critical in ensuring the high accuracy and robustness of the
method. Generally, an attempt is made to keep the stress interpolation to the minimum number of terms
that will ensure that the stiffness matrix has no spurious zero-energy modes, since it is known that the
stiffness increases with the increase in the number of terms. Although using such a strategy of keeping
the number of interpolation terms to a minimum works very well in static problems, it results either in
instabilities or fails to converge in transient problems. This is because choosing the stress interpolation
functions merely on the basis of removing spurious energy modes can violate some basic principles that
interpolation functions should obey. In this work, we address the issue of choosing the interpolation
functions based on such basic principles of interpolation theory and mechanics. Although this procedure
results in the use of more number of terms than the minimum (and hence in slightly increased stiffness)
in many elements, we show that the performance continues to be far superior to displacement-based
formulations, and, more importantly, that it also results in considerably increased robustness.

1. Introduction

Ever since the pioneering work of Pian et al. [1984; 1986], it is known that hybrid stress-based for-
mulations, which are based on a two-field variational formulation involving displacement and stresses,
are much less susceptible to locking than standard displacement-based formulations. In fact, Simo et
al. [Simo et al. 1989, p. 70], while discussing their interpolation procedure for membrane stresses state,
“. . . the interpolation procedure is closely related to the mixed formulation for plane stress proposed by
Pian and Sumihara (which appears to be optimal).” As discussed in [Jog and Kelkar 2006], conventional
shell elements suffer from a number of shortcomings such as the need to develop reduced constitutive
models, the need for transition elements while interfacing with brick elements, significant reformula-
tion for thick shells etc. Thus, recently, there has been a significant effort towards the development of
three-dimensional solid-shell elements with only displacement degrees of freedom. However, since a
kinematic assumption is being made in their development, even these elements would need a significant
reformulation for thick shells.

Since no kinematic assumption is being made in the development of hybrid elements, since the treat-
ment is full three-dimensional with no plane-stress or any other such assumption being made (which
allows for easy implementation of material nonlinearities), since there are no stabilization parameters
that need to be adjusted as in some “strain-based” formulations, and since they are relatively much

Keywords: hybrid finite elements, linear/nonlinear, static/transient, structural analysis.
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more immune to locking, and converge more rapidly than standard displacement-based elements, hybrid
elements can be used very effectively (with no modification of the formulation) to model problems as
diverse as beams/plates/shells on one hand, and problems involving “chunky” geometries on the other.
Even from a user viewpoint, since the stress degrees of freedom are condensed out at an element level,
the formulation ultimately involves only displacement degrees of freedom, so that the same input data
(nodal coordinates, connectivity, boundary conditions etc.) that is used for conventional displacement-
based elements can be used for the hybrid formulation also. The drawback of hybrid elements that is
often mentioned is the need to invert a small matrix to construct the element stiffness matrix. However,
since the element stiffness matrices can be constructed independent of each other, this process can be
easily parallelized. Even without parallelization, this cost is negligible compared to the cost of solving
the global set of equations, and, as already mentioned, this is considerably less in the case of hybrid
elements due to the coarser meshes that are required to achieve a given level of accuracy.

Needless to say, the choice of the stress interpolation functions is critical in ensuring the accuracy
of hybrid elements. Almost all works, such as [Punch and Atluri 1984; Lee and Rhiu 1986; Rhiu and
Lee 1987], choose the stress interpolation function based on removal of spurious zero-energy modes so
that the element stiffness matrix is full-rank (apart from rigid-body modes). It is well-known that the
minimum number of stress-interpolation terms to ensure a full-rank element stiffness matrix is equal to
the number of displacement degrees of freedom minus the number of rigid-body modes. It is also well
known that adding more terms to the stress interpolation adds more stiffness. In the light of these two
facts, efforts have naturally focused on keeping the number of stress interpolation terms to a minimum;
henceforth, we will call such an interpolation with the minimum number of terms as a minimal stress
interpolation. While such a strategy works extremely well for static problems, it was found recently in
[Jog and Motamarri 2009] that it can result in instabilities on transient problems.

The cause of these problems is that the minimal stress interpolation in most (but not all) elements
violates some basic tenets that interpolation functions should obey. To give a simple example, [Lee and
Rhiu 1986; Rhiu and Lee 1987] discuss the interpolations for a 9-node quadrilateral element; the authors
recommend dropping the term η2 from the stress interpolation for the normal stress τ ξξ , where (ξ, η) de-
note the natural coordinates, since the kinematic mode which this term suppresses is non-communicable.
Thus, the interpolation for τ ξξ uses the set {1, ξ, η, ξη, ξη2

}, and in a similar manner, the interpolation for
τ ηη uses the set {1, ξ, η, ξη, ξ 2η}. Although the use of this interpolation yields excellent results on static
problems, it results in instabilities on transient problems [Jog and Motamarri 2009]. The instabilities do
not arise immediately (in fact, the results at small times match quite well with the expected results), but
gradually creep in as the simulation progresses, and finally pollute the entire solution. The exclusion of
η2 and ξ 2 in the interpolations for τ ξξ and τ ηη violates one of the basic principles that an interpolation
function should obey, namely, that all terms starting from the lowest and upto the highest order should be
included, and is the cause of the aforementioned instability. Another problem that commonly occurs in a
minimal interpolation is that a β term is shared, or in other words, some stress components are coupled.
As we will show, this can cause spurious stresses to arise even in static problems.

The focus of this work is to formulate a set of rules for the selection of the stress interpolation functions,
so that problems of the type mentioned above do not occur, thus increasing the robustness of the resulting
hybrid elements. Of course, adherence to these rules can result in an increase in the number of terms
in the stress interpolation, and hence to a (slight) stiffening of the elements. But as we show by means
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of several challenging examples (including nonlinear static and transient problems), the performance of
the resulting hybrid elements continues to be far better than the displacement-based elements. To give
an analogy, in a displacement-based formulation, reduced integration yields better results in many cases
as compared to full integration, but can lead to spectacular failures as well. Thus, just as full integration
results in elements that are stiffer but more robust, the rules enumerated here (which, besides the require-
ment that the element be free of spurious zero-energy modes, are based on some basic principles that
interpolation functions should satisfy) result in stress interpolations with more terms than the minimal
one for several elements, but are more robust in the sense that they do not result either in instabilities or
in spurious stresses. We also mention that since we are usually using more terms than the mimimal one,
the satisfaction of the inf-sup conditions [Xue et al. 1985] is not affected.

2. Choice of stress interpolation functions

In this section, we discuss the choice of stress interpolation functions for some three-dimensional hybrid
elements in the light of our experience with static and transient simulations. If d is the number of
displacement degrees of freedom, and r is the number of rigid body modes, then it is known that to obtain
a formulation free of spurious energy modes, the number of chosen stress interpolation modes s must be
at least d−r [Punch and Atluri 1984]. As mentioned in the Introduction, since each additional mode adds
more stiffness, an attempt is usually made to keep the number of stress modes to a minimum, i.e., s= d−r .
However, it was shown in [Jog and Motamarri 2009] that some higher-order hybrid elements that satisfy
this requirement, and are free of zero-energy modes, can still give rise to instabilities in transient problems.
It was shown that if the normal stresses are obtained by differentiating the displacement field, then these
instabilities do not arise. It is possible to interpolate the normal stresses in this manner, and such that
the requirement s = d − r , and the requirement that the element matrix be free of spurious modes are
still satisfied (see [Jog and Motamarri 2009] for examples). However, this involves dropping some of the
lower-order terms in the shear interpolation, and this results in bad performance even on static problems.
Thus, in order to obtain a robust element, one necessarily needs s > d − r at least for some elements.
Since static solutions can be considered as steady-state solutions to transient problems, one should use
the same stress interpolations in static and transient simulations. To conclude, although using more
stress modes than the minimal one does result in a slight stiffening, it is essential from the viewpoint of
increased robustness of the element.

Based on this discussion, we propose the following set of rules (besides the obvious one that there be
no spurious zero-energy modes) for choosing the stress interpolation functions in a hybrid formulation:

(1) The normal stress components should be obtained simply by differentiating the displacement in-
terpolation functions. For example, in a three-dimensional hexahedral element, the interpolations
for τ ξξ , τ ηη and τ ζ ζ are obtained by differentiating the displacement interpolation functions with
respect to ξ , η and ζ respectively.

(2) All the lower-order terms should be incorporated in the shear interpolation functions, e.g., a con-
stant term in the case of a 8-node hexahedral element, or trilinear terms in the case of a 27-node
hexahedral element. The higher-order terms in the shear interpolation are chosen so as to eliminate
any spurious zero-energy modes, so that the element stiffness matrix is full-rank (apart from rigid-
body modes). In addition, all the terms of the corresponding order of interpolation should also be
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included (although they may not suppress any zero-energy mode). For example, in the case of the 27-
node hexahedral element, only the higher-order terms (ζ 2ξ, ζ 2η) are required in the interpolation
for the shear component Sξη to suppress the zero-energy modes. However, all the terms of the
corresponding order (bilinear) of interpolation, namely (ζ 2, ζ 2ξ, ζ 2η, ζ 2ξη), should be included.
Using an interpolation that violates this rule results in the transient algorithm diverging after a few
time steps in the example discussed in Section 3H.

(3) The stress components should be allowed to vary independently of each other, i.e., there should be
no shared β terms between stress components. This is especially important in problems involving
either orthotropic materials where the three shear moduli Gxy , G yz and Gxz could be different, or in
materials with nonlinear constitutive relations where the shear stresses are not simply proportional
to the corresponding shear strains. Not enforcing this requirement can result in spurious stresses
even in linear problems, as we show below in the case of the 6-node wedge element.

(4) Finally, the stress interpolations should be such that the same results are obtained irrespective of
the order of node-numbering in the connectivity specification. As we shall see, this requirement is
difficult to satisfy in wedge elements.

We now discuss the choice of stress interpolation functions for several hybrid elements in the literature
in the light of the rules above. Once the stress interpolation functions are chosen, the stiffness matrices
are constructed as in [Jog and Kelkar 2006] and [Jog and Motamarri 2009] for the (nonlinear) static and
transient cases, respectively. In what follows S denotes the second Piola-Kirchhoff stress tensor, while
(u, v, w) denote the displacement components.

2A. Eight-node hexahedral element. We use the same interpolation for S as suggested by Pian and
Tong [Pian and Tong 1986] in the context of linear problems, i.e.,

Sξξ = β1+β2η+β3ζ +β4ηζ, Sηη = β5+β6ξ +β7ζ +β8ξζ, Sζ ζ = β9+β10ξ +β11η+β12ξη,

Sξη = β13+β14ζ, Sηζ = β15+β16ξ, Sξζ = β17+β18η.

This stress interpolation satisfies all the rules specified above. If the Jacobian matrix is given by

J =

∂x/∂ξ ∂y/∂ξ ∂z/∂ξ
∂x/∂η ∂y/∂η ∂z/∂η
∂x/∂ζ ∂y/∂ζ ∂z/∂ζ

≡
a1 b1 c1

a2 b2 c2

a3 b3 c3

 , (2-1)

then the transformation relation between the stress components expressed with respect to the natural and
Cartesian coordinate systems is given by 

Sxx

Syy

Szz

Sxy

Syz

Sxz


= T



Sξξ

Sηη

Sζ ζ

Sξη

Sηζ

Sξζ


, (2-2)

where
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T =



a2
1 a2

2 a2
3 2a1a2 2a2a3 2a1a3

b2
1 b2

2 b2
3 2b1b2 2b2b3 2b1b3

c2
1 c2

2 c2
3 2c1c2 2c2c3 2c1c3

a1b1 a2b2 a3b3 (a2b1+a1b2) (a2b3+a3b2) (a1b3+a3b1)

b1c1 b2c2 b3c3 (b2c1+b1c2) (b2c3+b3c2) (b1c3+b3c1)

a1c1 a2c2 a3c3 (a1c2+a2c1) (a3c2+a2c3) (a3c1+a1c3)


.

2B. Twenty-seven-node hexahedral element. We use the following “90β” interpolation:

Sξξ = β1+β2ξ +β3η+β4ζ +β5ξη+β6ηζ +β7ξζ +β8ξηζ

+β9ξη
2
+β10ξζ

2
+β11ξηζ

2
+β12ξη

2ζ +β13ξη
2ζ 2

+β14η
2
+β15ζ

2
+β16η

2ζ +β17ηζ
2
+β18η

2ζ 2,

Sηη = β19+β20ξ +β21η+β22ζ +β23ξη+β24ηζ +β25ξζ +β26ξηζ

+β27ξ
2η+β28ηζ

2
+β29ξ

2ηζ +β30ξηζ
2
+β31ξ

2ηζ 2

+β32ξ
2
+β33ζ

2
+β34ξ

2ζ +β35ξζ
2
+β36ξ

2ζ 2,

Sζ ζ = β37+β38ξ +β39η+β40ζ +β41ξη+β42ηζ +β43ξζ +β44ξηζ

+β45ξ
2ζ +β46η

2ζ +β47ξ
2ηζ +β48ξη

2ζ +β49ξ
2η2ζ

+β50ξ
2
+β51η

2
+β52ξ

2η+β53ξη
2
+β54ξ

2η2,

Sξη = β55+β56ξ +β57η+β58ζ +β59ξη+β60ηζ +β61ξζ +β62ξηζ

+β63ξζ
2
+β64ηζ

2
+β85ζ

2
+β88ζ

2ξη,

Sηζ = β65+β66ξ +β67η+β68ζ +β69ξη+β70ηζ +β71ξζ +β72ξηζ

+β73ξ
2η+β74ξ

2ζ +β86ξ
2
+β89ξ

2ηζ,

Sξζ = β75+β76ξ +β77η+β78ζ +β79ξη+β80ηζ +β81ξζ +β82ξηζ

+β83ξη
2
+β84η

2ζ +β87η
2
+β90ξη

2ζ.

(2-3)

The transformation to Cartesian components is carried out using (2-2).
The minimum number of interpolation terms required for this element is 75, and indeed such an

interpolation was developed in [Jog 2005] within a linear context. However, such an interpolation violates
Rules (1) and (3), and results in instabilities in some transient problems [Jog and Motamarri 2009]. Thus,
increased robustness necessitates using the 90β element above, although it is stiffer compared to the 75β
element (but note that it is still more flexible compared to the 8-node hexahedral element for a given
number of degrees of freedom). As per Rule (1), one constructs the interpolation for the normal stresses
simply by differentiating the displacement interpolation functions. To construct the shear-interpolation,
one first includes all the lower-order (i.e., trilinear) terms. Among the higher-order terms, the (β63, β64),
(β73, β74) and (β83, β84) terms are included to suppress the zero-energy modes

u = α1(1− 3η2)(1− 3ζ 2), v = 0, w = 0;

u = 0, v = α2(1− 3ξ 2)(1− 3ζ 2), w = 0;

u = 0, v = 0, w = α3(1− 3ξ 2)(1− 3η2).
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These modes can be suppressed by using only three β terms. However, this would violate Rule (3) that
the stress components be allowed to vary independently. The β85–β90 terms are included to comply with
Rule (2). According to this rule, along with the terms ζ 2ξ and ζ 2η which are required to suppress the zero-
energy modes in Sξη, one should also include the terms ζ 2 and ζ 2ξη; thus, the terms in the interpolation
for Sξη that one finally obtains are given by products of the set {1, ξ, η, ξη} with the set {1, ζ, ζ 2

}. Note
that in both the 8-node and 27-node hexahedral elements, the terms in the final interpolations for the
shear stresses Si j are the terms that are common in the interpolations for the normal stresses Si i and S j j .

2C. Six-node wedge element. The requirement imposed by Rule (4) is difficult to satisfy in the case of
wedge elements. In particular, if one formulates the stress modes in terms of natural coordinates as in the
case of hexahedral elements, and if one uses the minimum number of stress modes, then this requirement
is violated. To overcome this problem, Sze et al. [Sze et al. 2004a] proposed a novel idea of using a local
Cartesian system to express the stress interpolation functions. Their proposed interpolation with respect
to this local Cartesian system x ′-y′-z′ is

Sx ′x ′ = β1+β2ζ, Sy′y′ = β3+β4ζ, Sz′z′ = β5+β6ξ +β7η,

Sx ′y′ = β8+β9ζ, Sy′z′ = β10+β12x ′, Sx ′z′ = β11−β12 y′.

Quite unfortunately, it violates the requirement that the stresses be allowed to vary independently of
each other since β12 is shared between Sy′z′ and Sx ′z′ . If one considers a single element, with the local
and global coordinate systems coinciding, then the displacement field u = 0, v = xz, w = 0, within a
linear context, yields Syz = Gx , Sxz = 0, while the numerical strategy yields a nonzero Sxz due to its
coupling with Syz; thus, using a shared β results in a spurious Sxz component. One would surmise that
the situation can be corrected by using

Sx ′x ′ = β1+β2ζ, Sy′y′ = β3+β4ζ, Sz′z′ = β5+β6ξ +β7η,

Sx ′y′ = β8+β9ζ, Sy′z′ = β10+β12x ′, Sx ′z′ = β11+β13 y′.

However, numerical experiments show that such an interpolation fails to converge on the (nonlinear)
pinched hemisphere problem even with the use of a large number of load steps.

Hence, we finally use the following interpolation which, similar to hexahedral elements, uses the
natural coordinate system:

Sξξ = β1+β2ζ, Sηη = β3+β4ζ, Sζ ζ = β5+β6ξ +β7η,

Sξη = β8+β9ζ, Sηζ = β10+β11ξ +β12η, Sξζ = β13+β14ξ +β15η.

The transformation to Cartesian components is carried out using (2-2). Since the Sηζ and Sξη components
use interpolations that are symmetric in ξ and η, Rule (4) is satisfied.

Once again, we see that compliance with the 4 requirements results in an element with higher number
of β’s than the minimum, which is 12. Numerical experiments show that this element is only marginally
better than the displacement-based 6-node wedge element.

2D. Eighteen-node wedge element. The displacement shape functions are obtained as the product of the
standard 6-node (quadratic) triangle shape functions with the quadratic one-dimensional shape functions.
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The stress interpolation functions are

Sξξ = β1+β2ξ +β3η+β4ζ +β5ξζ +β6ηζ +β7ζ
2
+β8ξζ

2
+β9ηζ

2,

Sηη = β10+β11ξ +β12η+β13ζ +β14ξζ +β15ηζ +β16ζ
2
+β17ξζ

2
+β18ηζ

2,

Sζ ζ = β19+β20ξ +β21η+β22ξ
2
+β23ξη+β24η

2
+β25ζ

+β26ξζ +β27ηζ +β28ξ
2ζ +β29η

2ζ +β30ξηζ,

Sξη = β31+β32ξ +β33η+β34ζ +β35ξζ +β36ηζ +β37ζ
2
+β38ξζ

2
+β39ηζ

2,

Sηζ = β40+β41ξ +β42η+β43ζ +β44ξζ +β45ηζ,

Sξζ = β46+β47ξ +β48η+β49ζ +β50ξζ +β51ηζ.

(2-4)

The transformation to Cartesian components is carried out using (2-2). An 18-point (6 × 3) Gauss
quadrature rule is used to carry out the integrations.

Notes. • Removing the β37 term does not affect the rank of the element stiffness matrix (or, in other
words, this term does not suppress any zero energy modes). But excluding this term violates Rules (2)
and (4); i.e., the results become sensitive to the order of numbering in the connectivity list. Thus, again,
a slightly higher number of stress functions than the minimum are required to ensure robustness.

• Numerical experiments show that although the 21-node wedge element of [Jog 2005] performs
slightly better than the above 18-node wedge element on coarser meshes, the convergence of the latter
element with mesh refinement is more rapid. The reason is that derivatives of the bubble function intro-
duced in the 21-node element formulation are part of the shear interpolation shape functions, which tends
to make the 21-node stiffness matrix overstiff, especially in plate or shell structures. The development
of the 18-node wedge element is also simpler because there is no bubble function — no local Cartesian
system needs to be introduced as in the 21-node element to ensure insensitivity to node numbering.

• Even from a mesh-generation viewpoint, using the 18-node wedge element is advantageous since
it is a standard element that is offered by many meshing softwares.

2E. Tetrahedral elements. Since meshing is far easier with tetrahedral elements than with hexahedral
elements, the question naturally arises if tetrahedral elements can be improved using the hybrid element
methodology. Since the shape functions of the 4-node linear and 10-node quadratic tetrahedral elements
involve complete polynomials, the displacement-based and hybrid methodologies yield identical results
for these elements. Lo and Ling [2000] suggested an improvement for the 10-node tetrahedral element
based on an incompatible displacement field. Here, we shall investigate if an improvement in this element
is possible by introducing a bubble mode associated with a node in the interior (say, at the centroid) of
this element. Thus, let ξ , η, ζ be the standard volume coordinates, let α= 1−ξ−η−ζ , and let Nb= ξηζα

be the bubble mode associated with the eleventh node. The displacement shape functions are now

N1 = ξ(2ξ − 1)+ 32Nb, N5 = 4ξη− 64Nb, N9 = 4ηα− 64Nb,

N2 = η(2η− 1)+ 32Nb, N6 = 4ηζ − 64Nb, N10 = 4ζα− 64Nb,

N3 = ζ(2ζ − 1)+ 32Nb, N7 = 4ξζ − 64Nb, N11 = 256Nb.

N4 = α(2α− 1)+ 32Nb, N8 = 4ξα− 64Nb,
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The stress shape functions can be formulated directly with respect to the global Cartesian system as

Sxx = β1+β7ξ +β13η+β19ζ +β25 ∂Nb/∂x,

Syy = β2+β8ξ +β14η+β20ζ +β26 ∂Nb/∂y,

Szz = β3+β9ξ +β15η+β21ζ +β27 ∂Nb/∂z,

Sxy = β4+β10ξ +β16η+β22ζ,

Syz = β5+β11ξ +β17η+β23ζ,

Sxz = β6+β12ξ +β18η+β24ζ,

where, with J given by (2-1), we have∂Nb/∂x
∂Nb/∂y
∂Nb/∂z

= J−1

∂Nb/∂ξ

∂Nb/∂η

∂Nb/∂ζ

 .
Unfortunately, the improvement of the 11-node hybrid element over the displacement-based 10-node
tetrahedral element is marginal, so it is preferable simply to use the 10-node displacement-based element.

2F. Four-node axisymmetric element. With the Jacobian matrix given by

J =

[
∂r/∂ξ ∂z/∂ξ
∂r/∂η ∂z/∂η

]
,

we use the same shape functions for S as developed in [Jog and Annabatula 2006] for linear problems,
namely,Srr

Szz

Sr z

=
 J 2

11 J 2
21 2J11 J21

J 2
12 J 2

22 2J12 J22

J11 J12 J21 J22 J11 J22+ J12 J21


Sξξ

Sηη

Sξη

 and Sθθ = β6+β7(J12ξ + J22η),

where
Sξξ = β1+β4η, Sηη = β2+β5ξ, Sξη = β3.

2G. Nine-node axisymmetric element. With the Jacobian matrix as in the case of the 4-node axisym-
metric element, the shape functions are given bySrr

Szz

Sr z

=
 J 2

11 J 2
21 2J11 J21

J 2
12 J 2

22 2J12 J22

J11 J12 J21 J22 J11 J22+ J12 J21


Sξξ

Sηη

Sξη


and

Sθθ = β17+β18ξ +β19η+β20ξη+β21ξ
2
+β22η

2
+β23(J12ξ

2η+ J22ξη
2),

where
Sξξ = β1+β2ξ +β3η+β4ξη+β5η

2
+β6ξη

2,

Sηη = β7+β8ξ +β9η+β10ξη+β11ξ
2
+β12ξ

2η,

Sξη = β13+β14ξ +β15η+β16ξη.
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The higher-order terms in Sθθ are chosen to be of the same order as Srr . Although excluding them would
still ensure a full-rank stiffness matrix (modulo the rigid-body mode), including them ensures that one
gets an almost symmetrical solution in the thick sphere problem of Section 3F.

3. Numerical examples

In this section, we present several linear and nonlinear example problems, both static and transient, to
demonstrate the good performance of the hybrid elements. The displacement-based and hybrid n-noded
(where n is either 8 or 27) brick elements are denoted by Bn and Sn respectively, the displacement-based
and hybrid n-noded wedge elements (where n is either 6 or 18) are denoted by Bn and Wn respectively,
while the displacement-based and hybrid n-noded (where n is either 4 or 9) axisymmetric elements are
denoted by Bn and An respectively. The WSMP sparse matrix solver [Gupta 2000; 2002] is used. Full
integration is used to construct the element stiffness matrices in all cases. We use the expressions given by
Equation (30) of [Jog and Kelkar 2006] to compute the stiffness and load vectors in the case of pressure
loading for both the displacement-based and hybrid elements. For axisymmetric problems, with 1, 2 and
3 denoting the r , z and θ directions, the matrix R and vector (cof F)ñ0 in these expressions are

Rk
=

[
0 0 −Fk

33ñ0
2 Fk

33ñ0
1 Fk

22ñ0
1− Fk

21ñ0
2

Fk
33ñ0

2 −Fk
33ñ0

1 0 0 Fk
11ñ0

2− Fk
12ñ0

1

]
, (cof Fk)ñ0

=

[
Fk

22 Fk
33ñ0

1− Fk
21 Fk

33ñ0
2

−Fk
12 Fk

33ñ0
1+ Fk

11 Fk
33ñ0

2

]
,

where (ñ0
1, ñ0

2)= (∂z/∂ξ,−∂r/∂ξ) denotes the normal in the reference configuration, and k denotes the
iteration number.

As in [Jog and Kelkar 2006], to ensure a fair comparison of the results, meshes with the same number
of global degrees of freedom are used; e.g., on any given problem involving hexahedral elements, results
obtained using 8N eight-node brick elements are compared with those obtained using N twenty-seven-
node brick elements, with identical nodal coordinate data and boundary conditions used in both meshes.
In all problems, uniform meshes are used. In the case of the hybrid elements, the nodal stresses are
obtained by finding the nodal values in each element using the stress interpolation and then averaging,
while in the case of the displacement-based elements, the stresses are found by extrapolating the values
from the Gauss points, followed by averaging. A Saint Venant–Kirchhoff material model (default) or a
neo-Hookean material model with strain energy density and constitutive relation either given by

W (C)= 1
8λ(log det C)2+ 1

2µ(tr C − 3− log det C),

S(C)= 2
∂W
∂C
=
λ

2
(log det C)C−1

+µ(I −C−1),
(3-1)

or by

W (C)= c1( Ī1− 3)+ 1
2κ(J − 1)2,

S(C)=
(
−

2
3 c1 I1 I−1/3

3 + κ(I3− I 1/2
3 )

)
C−1
+ 2c1 I−1/3

3 I,
(3-2)

where C = FT F, I1 = tr C, I3 = det C, Ī1 = (I3)
−1/3 I1, and κ = λ + 2µ/3 is the bulk modulus,

is used in all the examples (the strains are recovered from the stresses as outlined in [Jog and Kelkar
2006]). Typically, on all the static nonlinear shell-type problems presented, convergence is achieved in
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Figure 1. Rollup of a beam. The beam is shown discretized using ten 27-node elements.

about a tenth of the number of iterations reported in [Sze et al. 2004b]. As expected, the results obtained
using the proposed hybrid elements are slightly stiffer compared to results obtained using elements with
minimal stress interpolations. This is the cost for the increased robustness; however, as we show, the
performance is still much better compared to displacement-based elements.

3A. Roll-up of a beam (elastica problem). An initially flat shell of length L = 10, width w = 1 and
thickness t = 0.1 is subjected to a bending moment as shown in Figure 1. The moment is applied through
a linearly varying distributed traction on the right face. The material properties are E = 12× 106 and
ν = 0. The shell solution for the tip displacements of the midsurface is

u = R sin X
R
, v = 0, w = R

(
1− cos X

R

)
, (3-3)

where R = E I/M is the radius of curvature. For M = 2πE I/L , the beam rolls up into a complete
circle. We apply the linearly varying traction corresponding to this value of the moment; note that,
since this traction remains normal to the surface as the beam deforms, we have to consider the loading
as deformation dependent. The deformed shapes obtained using the S27 and B27 elements, obtained
using approximately a total of 60 and 90 iterations, respectively, are shown in Figure 2, and should be
compared with the solution in Figure 4 of [Jog and Kelkar 2006], which was obtained using the minimum
number of stress interpolation terms, namely 75. It is evident from this figure that the 90β interpolation
used in this work does not result in any additional stiffening compared to the 75β interpolation, and
continues to perform much better compared to the displacement-based element which not only locks,
but also takes more number of iterations to converge. The small deviation from the exact solution seen
in the S27 element results could be because the load is not being applied in a manner consistent with the
three-dimensional exact solution (since this exact solution is not known), but rather in an approximate

Figure 2. Deformed geometries for the elastica problem obtained using the S27 (left)
and the B27 (right) elements.
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Pd

RR
αα

Figure 3. Shallow spherical cap subjected to an asymmetric point load P .

way. Sze et al. [2004b] report having to use more than 700 iterations to solve this problem using shell
elements from a commercial software.

3B. Shallow spherical cap subjected to an asymmetric point load. This example was solved in [Daniel-
son and Tielking 1993] using Fourier elements. The setup is shown in Figure 3. The geometric parameters
shown are R = 4.76 in, d = 0.328 in and α = 10.9◦, and the thickness is 0.01576 in. The material
parameters are E = 107 psi and ν = 0.3. Meshes nR×nα×nφ of 1×7×8 and 2×14×16 of higher and
lower-order wedge/hexahedral elements are used to discretize the structure. Wedge elements are used in
the layer closest to the apex, and hexahedral elements are used elsewhere. The load-deflection curves for
the displacement at the apex and under the point load are shown in Figure 4, and should be compared
with Danielson and Tielking’s Figures 8 and 9. The number of iterations required to converge at each
load step is about 4 or 5. As mentioned in their article, this problem is challenging because the shell
almost buckles as it folds through: the final deflection at P = 60 lb is more than an order of magnitude
greater than the linear solution.
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Figure 4. Load deflection curves for apex and loading point for the shallow spherical
cap problem.
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Figure 5. Pinched hemispherical shell with and without an 18◦ hole; only a quadrant is
modelled in both problems due to symmetry.

3C. Hemispherical shell subjected to alternating radial loads. A hemisphere with and without an 18◦

hole at the top is subjected to pinching loads; only a quadrant is modelled due to symmetry as shown
in Figure 5 with F = 1 and F = 200 for the linear and nonlinear cases respectively. The properties are
E = 6.825× 107, ν = 0.3, mean radius R = 10, and thickness h = 0.04. Meshes of 4× 4× 2, 8× 8× 2
and 16× 16× 2 eight-node brick elements, and 2× 2× 1, 4× 4× 1 and 8× 8× 1 twenty-seven-node
brick elements are used in the case where the hemisphere has a hole; meshes with the same number of
nodes per side are used for the full hemisphere case, with the layer around to the pole being modelled
by wedge elements. For the linear case, the results for the displacement at the point of application of the
forces, normalized against the solutions of 0.09355 and 0.0924, are presented in Table 1.

For the nonlinear case, the reference solutions for the displacements at points A and B are 4.067 and
8.178 in the case of the hemisphere with a hole, and 4.0754 and 8.1449 in the case of the hemisphere
without a hole [Sze et al. 2004b]. The normalized results are presented in Table 2. The solutions in all

Hemisphere with hole Hemisphere without hole
Nodes/side B27 S8 S27 B18/B27 W6/S8 W18/S27

5 0.00146 0.0896 0.5879 0.00109 0.0186 0.0437
9 0.02174 0.8645 0.9514 0.01157 0.4120 0.7846

17 0.25715 0.9942 0.9892 0.19478 0.9561 0.9849

Table 1. Normalized displacements for the pinched hemisphere problem: linear case.

Nodes Hemisphere with hole Hemisphere without hole
per Point A Point B Point A Point B
side B27 S8 S27 B27 S8 S27 B18/B27 W6/S8 W18/S27 B18/B27 W6/S8 W18/S27

5 .00669 .30582 .59848 .00334 .20494 .58447 .00494 .08113 .14896 .00267 .04395 .16284
9 .09463 .76729 .82610 .05130 .70661 .76408 .06869 .67206 .79258 .03619 .57386 .72805

17 .50568 .94674 .96256 .37750 .93283 .94663 .45291 .93293 .95312 .30843 .91480 .93710

Table 2. Normalized displacements for the pinched hemisphere problem: nonlinear case.
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cases are obtained using a single load step, and the number of iterations is approximately 9 for the hybrid
elements, while with the use of the finest mesh, the number of iterations required for the two problems
with the displacement-based approach is 21 and 18 respectively.

3D. Thick and thin shell subjected to line loading. This example has been solved in [Reese et al. 2000]
using an enhanced strain method. A hollow cylindrical shell of mean radius 9 mm is simply supported
at its bottom, and subjected to a uniform line load q at the top as shown in Figure 6. Two cases are
considered: (i) a moderately thick shell with t = 2 mm and q = 500 N/mm, and (ii) a thin shell with
t = 0.2 mm and q = 8.5/15 N/mm. As in that reference, only a quarter of the domain is modelled by
using meshes nr × nθ × nz of 1× 8× 4, 1× 16× 8 and 1× 32× 16 27-node hexahedral elements, and
2× 16× 8, 2× 32× 16 and 2× 64× 32 8-node hexahedral elements. The material model used is the
compressible neo-Hookean model given by (3-1) with λ = 24000 N/mm2 and µ = 6000 N/mm2 (the
value of λ is stated as 240000 N/mm2 in [Reese et al. 2000] due to a typographical error). The variation
of the vertical displacement at A with mesh refinement for the thick and thin shells is shown in Figure 7,
and should be compared with Reese’s Figure 2.

As can be seen, the displacement-based elements lock severely in the thin shell case, despite our use
of a higher-order element. The number of iterations is also substantially more for the displacement-based

t

30 mm

q N/mm

A
9 mm

Figure 6. Hollow cylinder subjected to line loading. Only a quarter of the domain is
modelled due to symmetry.
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Figure 7. Convergence study for the thick and thin shell examples.
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Figure 8. Deformed shape of the thin shell subjected to line load.

elements. Although the performance of the lower-order hybrid elements is slightly poorer compared to
their corresponding higher-order hybrid counterparts on coarse meshes, they converge very rapidly with
mesh refinement as seen from Figure 7; this is a trend observed in all the examples where a lower-order
hybrid element yields slightly poorer results compared to its higher-order counterpart on a coarse mesh.
For both the thick and thin shell cases, convergence for both the 8-node and 27-node hexahedral elements
is achieved in a single load step and approximately 8 iterations. In contrast, with the finest mesh of B27
elements, convergence is achieved in 5 load steps and a total of 34 iterations for the thick shell case,
and 20 load steps and a total of 120 iterations for the thin shell case! To give an idea of the extreme
deformation involved in this problem, the deformed shape of the thin shell is shown in Figure 8.

3E. Elastic wave propagation in a circular disk. A part of one face of a circular disk is subjected to
an axisymmetric pressure loading while the remainder of the boundary is free of tractions as shown in
Figure 9; compare [Cherukuri and Shawki 1996]. The parameters used are H = 1, R = 1.5, rp = 0.25,
t1 = 2µs, t2 = 5µs, t3 = 7µs, P = 105, while the material properties are E = 9.1× 106, ν = 0.2
and ρ = 2.0835× 10−4. A uniform mesh nr × nz of 30× 20 A9 elements is used to discretize the
domain, and the time step used is t1 = 0.1µs. The energy-momentum conserving algorithm of [Jog and
Motamarri 2009] is used to advance the solution in time. As opposed to the conditionally stable algorithm
in [Cherukuri and Shawki 1996], our time-stepping strategy is unconditionally stable, allowing one to
take larger time steps. As noted in this reference, the time required for a longitudinal wave to traverse
the thickness once is approximately 4.54µs. During the time of interest (60µs), multiple reflections
take place, and consequently the numerical strategy should be sufficiently robust to accurately predict
the displacements during and after these reflections.

z rp

H

R

1
t t2 t3 t

p

P

Figure 9. Elastic wave propagation in a circular disk.
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The radial and axial displacements obtained using the A9 element are shown in the top two graphs of
Figure 10; these should be compared with Figures 10 and 11 of [Cherukuri and Shawki 1996]. Similarly,
the radial, longitudinal, shear and hoop stresses are shown in the remaining graphs of Figure 10, which
should be compared with Figures 12–15 of the same reference.
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A

B D

C

Figure 11. An almost incompressible sphere subjected to internal pressure. Only the
part of the domain shown is modelled using axisymmetric elements.

3F. Thick almost incompressible sphere subjected to internal pressure. This example shows the rela-
tive immunity of hybrid elements to volumetric locking under finite deformations when the material is
an almost incompressible neo-Hookean material [Heisserer et al. 2008]. The inner radius of the sphere
is 10 mm and outer radius is 30 mm. Using symmetry, only a part of the domain is modelled using
axisymmetric elements as shown in Figure 11. Meshes of 2× 2, 4× 4 and 8× 8 A9 or B9 elements and
4×4, 8×8 and 16×16 A4 elements are used to discretize the domain. The neo-Hookean material model
given by (3-2) with c1 = 0.5 MPa, κ = 105 MPa (which corresponds to a Poisson ratio of 0.499995) is
used. The internal pressure is 1 MPa and the outer surface is traction free. The normalized results for
the radial displacement at the inner surface, obtained by using the reference solution of 5.50198336
[Heisserer et al. 2008] are presented in Table 3.

While the displacement-based element locks severely, the performance of the hybrid elements, and
especially the A9 element even with a very coarse mesh, is quite remarkable. As already mentioned,
adding the higher-order terms to Sθθ is critical in ensuring the symmetry of the solution at points A and
B, although these terms are not required to remove any zero-energy mode. This is yet another example
of an improvement of performance by using more (judiciously chosen) terms in the stress interpolation
than the minimum number based purely on elimination of zero-energy modes.

Now consider the linear counterpart of this problem. The inner radius and outer radii of the sphere
are now 1 and 5, respectively, and the internal pressure is of unit magnitude. The material properties
are E = 1000 and ν = 0.499. Uniform meshes of 4× 4, 8× 8 and 16× 16 A4, and 2× 2, 4× 4 and
8× 8 A9 meshes are used. The analytical solution for the radial displacement is 7.5556× 10−4. The

Point A Point B
Nodes/side B9 A4 A9 B9 A4 A9

5 0.00040 0.96029 1.01086 0.00040 0.91544 0.99578
9 0.00362 0.99719 1.00278 0.00362 0.97808 1.00094

17 0.05858 1.00076 1.00039 0.05858 0.99447 1.00016

Table 3. Normalized radial displacements at the inner surface in the thick-sphere prob-
lem: nonlinear case.
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Point A Point B
Nodes/side B9 A4 A9 B9 A4 A9

5 0.03035 0.80279 0.83023 0.03030 0.80482 0.80708
9 0.14847 0.92708 0.95947 0.14846 0.92369 0.95704

17 0.60879 0.97865 0.99528 0.60881 0.97677 0.99504

Table 4. Normalized radial displacement at the inner surface in the thick-sphere prob-
lem: linear case.

Nodes Radial stress Hoop stress
per Point C Point D Point C Point D
side B9 A4 A9 B9 A4 A9 B9 A4 A9 B9 A4 A9

5 −17.857 0.816 −0.601 −17.857 0.881 −0.465 19.579 0.162 3.122 19.579 1.118 3.061
9 −7.068 0.942 0.750 −7.068 0.930 0.772 8.028 0.800 1.201 8.028 0.990 1.179

17 −5.217 0.980 0.948 −5.217 0.977 0.952 6.965 0.952 1.048 6.965 0.993 1.043

Table 5. Normalized radial and hoop stresses in the thick-sphere problem: linear case.

normalized results obtained are presented in Table 4. Note again the severe locking in the displacement-
based elements, and the relative immunity of the hybrid elements.

The results for the radial and hoop stresses (in the spherical coordinate system) at points C and D
located at the mean radius as shown in Figure 11, normalized against the analytical values of −0.0292712
and 0.0267324, are presented in Table 5. Note that the even the sign of the radial stress (besides, of course,
the magnitude) for the finest B9 mesh is in error.

3G. Circular plate subjected to pressure. A thin circular plate clamped at its outer edge is subjected
to pressure loading as shown in Figure 12. This example has been solved using the p-FEM method
in [Yosibash et al. 2007]. The neo-Hookean material model given by (3-2) with c1 = 0.5 MPa and
κ = 2000 MPa (which corresponds to a Poisson ratio of 0.49975) is used. We solve this example using
both axisymmetric and wedge/hexahedral elements. This example provides an especially good test for
the wedge/hexahedral elements since the mesh is distorted (because of the circular domain that is being
modelled), the plate is thin, the material is almost incompressible, and the loading is of follower type so
that the stiffness matrix depends on the load. Meshes of 8× 1, 16× 1 and 32× 1 A9 (or B9) elements,
16×2, 32×2 and 64×2 A4 elements, 8×8×1 (nr ×nθ ×nz), 16×16×1 and 32×32×1 W18/S27 (or

r

1 mm

z

0.1 mm

p = 0.01 MPa

Figure 12. A thin circular plate clamped at its outer edge and subjected to pressure loading.
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Axisymmetric elements Wedge/hexahedral elements
Nodes/side B9 A4 A9 B18/B27 W6/S8 W18/S27

17 0.85562 0.99302 0.98709 0.85559 0.99018 0.98555
33 0.88409 0.99755 0.99524 0.88409 0.99649 0.99456
65 0.89663 0.99996 0.99847 0.89661 0.99956 0.99822

Table 6. Normalized vertical displacement at the center of the top surface of the thin
circular plate: nonlinear analysis.

B18/B27) elements, and 16× 16× 2, 32× 32× 2 and 64× 64× 2 W6/S8 elements are used. In the case
of wedge/hexahedral elements, only a quarter of the plate is modelled with wedge elements used in the
layer closest to the center, and hexahedral elements elsewhere. The displacements at the center of the
top surface normalized against the reference solution of 0.182647 [Yosibash et al. 2007] are presented
in Table 6.

Note that the results obtained using wedge/hexahedral elements, inspite of the mesh distortion, are
almost as good as those obtained using axisymmetric elements. The results for all the hybrid elements
are obtained within a total of only 12 iterations. In contrast, the displacement-based elements not only
converge very slowly, but also require approximately 280 iterations (spread over 50 load steps) to obtain
the solution.

Now consider the linear counterpart of the problem. A simply-supported circular plate of radius 10,
and with ν = 0.3, is subjected to a unit pressure load on the top surface. Two cases are considered (i)
E = 104, h = 1 (“thick plate”), and (ii) E = 1010, h = 0.01 (“thin plate”). The analytical solutions
for the center-point deflection are 0.70388 and 0.69563, respectively. The normalized results for the
center-point deflection are presented in Table 7.

Note the exceptionally high accuracy of the hybrid axisymmetric elements, even when the thick-
ness/radius ratio is as small as 1/1000. One of the interesting features of the stress solution in the
thin plate case is that while the A4, A9 and W18/S27 elements yield transverse shear stress values at the

Thick plate (h = 1)
Nodes/side B18/B27 W6/S8 W18/S27 B9 A4 A9

5 0.94419 0.88661 0.98465 0.97980 1.02418 1.00277
9 0.99256 0.98659 0.99551 0.99616 1.00749 0.99853

17 0.99551 0.99640 0.99580 0.99607 0.99753 0.99608

Thin plate (h=0.01)
Nodes/side B18/B27 W6/S8 W18/S27 B9 A4 A9

5 0.12700 0.63708 0.44493 0.95746 1.02555 1.00453
9 0.66715 0.87905 0.80732 0.98996 1.00898 0.99954

17 0.93986 0.96304 0.97489 0.99984 1.00020 0.99989

Table 7. Normalized center-point displacements in the simply-supported circular plate
problem: linear analysis.
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center of the plate that are close to zero, the B9 element yields values ranging from 175 to 2600, while
the other elements in the table, and the W21 of [Jog 2005] yield values of the order of 105!

3H. Large strain vibration of a long half cylinder. The base of a half-cylinder travelling with a uniform
initial velocity v is suddenly brought to rest as shown in Figure 13, left, due to which it vibrates from left
to right. This example was solved in [Bonet et al. 2001] using an averaged nodal deformation gradient
formulation. The neo-Hookean material model given by (3-2) is used, with c1 = 1.7855× 105 Pa and
κ = 1.667×106 Pa, and the density is 1000 kg/m3. Uniform meshes nr ×nθ ×nz of 4×8×40 W18/S27
(or B18/B27) and 8× 16× 80 W6/S8 elements, and a time step t1 = 0.0025 s is used. The deformed
centerline at various times is shown in Figure 14, left, and should be compared with Figure 4 of [Bonet
et al. 2001].

Although the solutions are shown for the W18/S27 mesh, almost identical solutions are obtained with
the W6/S8 and B18/B27 meshes. Moreover, almost identical solutions are also obtained with coarser
meshes of 2×4×20 W18/S27 (or B18/B27) and 4×8×40 W6/S8 elements, and a time step t1= 0.005 s,
showing convergence with respect to mesh refinement. Since the velocity is zero at the base, and since
the remaining surface is traction free, the total energy (kinetic+strain energy) should be conserved by the
numerical algorithm. As is seen from Figure 14, right, this is achieved by our numerical algorithm. We
would like to state that the use of an interpolation obtained by excluding Rule (2) fails to converge (after
a few time steps) on this problem showing the importance of this rule.

3I. Inflation of a square airbag. This example, in which a flat square isotropic membrane is gradually
inflated by a constant pressure until its magnitude reaches 5 kPa, has been solved using a wrinkling
model in [Jarasjarungkiat et al. 2009]. The geometry and material properties are shown in Figure 13,
right.

R=0.32 m

3.24 m

v=1.88 m/sy

z

M x

y
CC

A

uB rA

B

Figure 13. Left: geometry and initial conditions for the long half cylinder problem.
Right: geometry and material properties for the airbag problem. The thickness is
0.06 cm, the length AC is 120 cm, and E = 58.8 kN/cm2, v = 0.4.
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Figure 14. Long half cylinder problem, W18/S27 mesh: deformed centerline of the
semicircle at various times (left) and total energy as a function of time (right).

Figure 15. Top and isometric views of the inflated airbag.

Due to the presence of wrinkles, the stiffness matrix can become singular, and hence we solve this
problem using the transient algorithm described in [Jog and Motamarri 2009] with an appropriate amount
of damping to damp out the transients, and reach to a steady-state solution. A 50× 50× 1 mesh of 27-
node hybrid hexahedral elements is used to discretize a quarter of the domain due to symmetry. The total
pressure of 5 kPa is applied gradually in a linearly varying fashion over the time interval [0, 5], and then
maintained constant after that. The time step used in the transient analysis is t1 = 0.002. The values
of density ρ and damping parameter α used are 2700 kg/m3 and 106, respectively. The steady-state
solution is reached after 6 seconds, and is shown in Figure 15.

In contrast to solutions obtained using wrinkle models, the strategy above yields the details of the
wrinkles (including the wavelength and amplitude), and accurate values of stresses within the entire
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membrane. The values of the displacement wM , rA and u B (in cm) obtained using our method are
(21.45, 4.63, 16.63), while the values presented in [Jarasjarungkiat et al. 2009] are (21.669, 6.92, 12.37).
The reason for the significant difference in the displacement at point B is that, in reality, there is a sharp
ridge around that point (see Figure 15), which is smoothened out when one uses a wrinkle model, as in
Figure 6 of that reference.

4. Conclusions

The use of a minimal stress interpolation that does not satisfy the rules enumerated in this work, often
results in instabilities, non-convergence or spurious stresses. As shown by means of several examples,
stress interpolations obeying these rules result in increased robustness. Although the number of inter-
polation terms in some of the higher-order elements, such as the 27-node hexahedral and the 9-node
axisymmetric elements, is much more than the minimum required, their performance continues to be far
superior to the displacement-based elements, and in many problems superior to the 8-node hexahedral
and 4-node axisymmetric hybrid elements, respectively. More importantly, they result in far greater ro-
bustness, especially in transient simulations, where, as our numerical experiments show, stable solutions
are obtained even over very long time simulations. Another advantage is that the rules enumerated, since
they require the polynomials to be complete in some sense, result in a unique interpolation function
for the stresses. One of the interesting conclusions in the case of the 8-node and 27-node hexahedral
elements, the 18-node wedge element, and the 4-node and 9-node axisymmetric elements is that for a
robust formulation, the normal stress interpolations (except, of course, the hoop stress interpolation in
the case of axisymmetric elements) are obtained simply by differentiating the displacement field, while
the interpolations for the shear stress components Si j are composed of terms that are common to the
interpolations for the normal stresses Si i and S j j .

References

[Bonet et al. 2001] J. Bonet, H. Marriott, and O. Hassan, “An averaged nodal deformation gradient linear tetrahedral element
for large strain explicit dynamic applications”, Comput. Methods Appl. Mech. Engrg. 17 (2001), 551–561.

[Cherukuri and Shawki 1996] H. P. Cherukuri and T. G. Shawki, “A finite-difference scheme for elastic wave propagation in a
circular disk”, J. Acoust. Soc. Amer. 100:4 (1996), 2139–2155.

[Danielson and Tielking 1993] K. T. Danielson and J. T. Tielking, “Fourier continuum finite elements for large deformation
problems”, Comput. and Structures 49 (1993), 133–147.

[Gupta 2000] A. Gupta, “WSMP: Watson Sparse Matrix Package, II: direct solution of general sparse systems”, Research
Report RC 21888 (98472), IBM, 2000.

[Gupta 2002] A. Gupta, “Recent advances in direct methods for solving unsymmetric sparse systems of linear equations”, ACM
Trans. Math. Software 28:3 (2002), 301–324.

[Heisserer et al. 2008] U. Heisserer, S. Hartmann, A. Düster, and Z. Yosibash, “On volumetric locking-free behaviour of
p-version finite elements under finite deformations”, Comm. Numer. Methods Engrg. 24:11 (2008), 1019–1032.

[Jarasjarungkiat et al. 2009] A. Jarasjarungkiat, R. Wuchner, and K. U. Bletzinger, “Efficient sub-grid scale modeling of mem-
brane wrinkling by a projection method”, Comput. Methods Appl. Mech. Engrg. 198 (2009), 1097–1116.

[Jog 2005] C. S. Jog, “A 27-node hybrid brick and a 21-node hybrid wedge element for structural analysis”, Finite Elem. Anal.
Des. 41 (2005), 1209–1232.

[Jog and Annabatula 2006] C. S. Jog and R. Annabatula, “The development of hybrid axisymmetric elements based on the
Hellinger–Reissner variational principle”, Internat. J. Numer. Methods Engrg. 65 (2006), 2279–2291.



528 C. S. JOG

[Jog and Kelkar 2006] C. S. Jog and P. P. Kelkar, “Non-linear analysis of structures using high performance hybrid elements”,
Internat. J. Numer. Methods Engrg. 68:4 (2006), 473–501.

[Jog and Motamarri 2009] C. S. Jog and P. Motamarri, “An energy-momentum conserving algorithm for nonlinear transient
analysis within the framework of hybrid elements”, J. Mech. Mater. Structures 4:1 (2009), 157–186.

[Lee and Rhiu 1986] S. W. Lee and J. J. Rhiu, “A new efficient approach to the formulation of mixed finite element models for
structural analysis”, Internat. J. Numer. Methods Engrg. 23 (1986), 1629–1641.

[Lo and Ling 2000] S. H. Lo and C. Ling, “Improvement on the 10-node tetrahedral element for three-dimensional problems”,
Comput. Methods Appl. Mech. Engrg. 189 (2000), 961–974.

[Pian and Sumihara 1984] T. H. H. Pian and K. Sumihara, “Rational approach for assumed stress finite elements”, Internat. J.
Numer. Methods Engrg. 20 (1984), 1685–1695.

[Pian and Tong 1986] T. H. H. Pian and P. Tong, “Relations between incompatible displacement model and hybrid stress
model”, Internat. J. Numer. Methods Engrg. 22:1 (1986), 173–181.

[Punch and Atluri 1984] E. F. Punch and S. N. Atluri, “Development and testing of stable, invariant, isoparametric curvilinear
2- and 3-d hybrid-stress elements”, Comput. Methods Appl. Mech. Engrg. 47 (1984), 331–356.

[Reese et al. 2000] S. Reese, P. Wriggers, and B. D. Reddy, “A new locking-free brick element technique for large deformation
problems in elasticity”, Comput. and Structures 75:3 (2000), 291–304.

[Rhiu and Lee 1987] J. J. Rhiu and S. W. Lee, “A new efficient mixed formulation for thin shell finite element models”, Internat.
J. Numer. Methods Engrg. 24 (1987), 581–604.

[Simo et al. 1989] J. C. Simo, D. D. Fox, and M. S. Rifai, “On a stress resultant geometrically exact shell model, II: the linear
theory; computational aspects”, Comput. Methods Appl. Mech. Engrg. 73:1 (1989), 53–92.

[Sze et al. 2004a] K. Y. Sze, X. H. Liu, and S. H. Lo, “Hybrid-stress six-node prismatic elements”, Internat. J. Numer. Methods
Engrg. 61 (2004), 1451–1470.

[Sze et al. 2004b] K. Y. Sze, X. H. Liu, and S. H. Lo, “Popular benchmark problems for geometric nonlinear analysis of shells”,
Finite Elem. Anal. Des. 40 (2004), 1551–1569.

[Xue et al. 1985] W.-M. Xue, L. A. Karlovitz, and S. N. Atluri, “On the existence and stability conditions for mixed-hybrid
finite element solutions based on Reissner’s variational principle”, Internat. J. Solids Structures 21:1 (1985), 97–116.

[Yosibash et al. 2007] Z. Yosibash, S. Hartmann, U. Heisserer, and A. Duster, “Axisymmetric pressure boundary loading for
finite deformation analysis using p-FEM”, Comput. Methods Appl. Mech. Engrg. 196 (2007), 1261–1277.

Received 17 Feb 2010. Revised 28 Jun 2010. Accepted 1 Jul 2010.

C. S. JOG: jogc@mecheng.iisc.ernet.in
Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India



SUBMISSION GUIDELINES

ORIGINALITY
Authors may submit manuscripts in PDF format online at the Submissions page. Submission of a manuscript
acknowledges that the manuscript is original and has neither previously, nor simultaneously, in whole or in
part, been submitted elsewhere. Information regarding the preparation of manuscripts is provided below. Cor-
respondence by email is requested for convenience and speed. For further information, write to one of the
Chief Editors:

Davide Bigoni bigoni@ing.unitn.it
Iwona Jasiuk ijasiuk@me.concordia.ca
Yasuhide Shindo shindo@material.tohoku.ac.jp

LANGUAGE
Manuscripts must be in English. A brief abstract of about 150 words or less must be included. The abstract
should be self-contained and not make any reference to the bibliography. Also required are keywords and
subject classification for the article, and, for each author, postal address, affiliation (if appropriate), and email
address if available. A home-page URL is optional.

FORMAT
Authors can use their preferred manuscript-preparation software, including for example Microsoft Word or any
variant of TEX. The journal itself is produced in LATEX, so accepted articles prepared using other software will
be converted to LATEX at production time. Authors wishing to prepare their document in LATEX can follow the
example file at www.jomms.org (but the use of other class files is acceptable). At submission time only a PDF
file is required. After acceptance, authors must submit all source material (see especially Figures below).

REFERENCES
Bibliographical references should be complete, including article titles and page ranges. All references in the
bibliography should be cited in the text. The use of BibTEX is preferred but not required. Tags will be converted
to the house format (see a current issue for examples); however, for submission you may use the format of your
choice. Links will be provided to all literature with known web locations; authors can supply their own links
in addition to those provided by the editorial process.

FIGURES
Figures must be of publication quality. After acceptance, you will need to submit the original source files in
vector format for all diagrams and graphs in your manuscript: vector EPS or vector PDF files are the most
useful. (EPS stands for Encapsulated PostScript.)

Most drawing and graphing packages—Mathematica, Adobe Illustrator, Corel Draw, MATLAB, etc.—allow
the user to save files in one of these formats. Make sure that what you’re saving is vector graphics and not a
bitmap. If you need help, please write to graphics@mathscipub.org with as many details as you can about how
your graphics were generated.

Please also include the original data for any plots. This is particularly important if you are unable to save
Excel-generated plots in vector format. Saving them as bitmaps is not useful; please send the Excel (.xls)
spreadsheets instead. Bundle your figure files into a single archive (using zip, tar, rar or other format of your
choice) and upload on the link you been given at acceptance time.

Each figure should be captioned and numbered so that it can float. Small figures occupying no more than
three lines of vertical space can be kept in the text (“the curve looks like this:”). It is acceptable to submit a
manuscript with all figures at the end, if their placement is specified in the text by means of comments such as
“Place Figure 1 here”. The same considerations apply to tables.

WHITE SPACE
Forced line breaks or page breaks should not be inserted in the document. There is no point in your trying
to optimize line and page breaks in the original manuscript. The manuscript will be reformatted to use the
journal’s preferred fonts and layout.

PROOFS
Page proofs will be made available to authors (or to the designated corresponding author) at a Web site in PDF
format. Failure to acknowledge the receipt of proofs or to return corrections within the requested deadline may
cause publication to be postponed.

mailto:bigoni@ing.unitn.it
mailto:ijasiuk@me.concordia.ca
mailto:shindo@material.tohoku.ac.jp
http://www.jomms.org
mailto:graphics@mathscipub.org


Journal of Mechanics of Materials and Structures
Volume 5, No. 3 March 2010

Chaotic vibrations in a damage oscillator with crack closure effect
NOËL CHALLAMEL and GILLES PIJAUDIER-CABOT 369

Elastic buckling capacity of bonded and unbonded sandwich pipes under external
hydrostatic pressure KAVEH ARJOMANDI and FARID TAHERI 391

Elastic analysis of closed-form solutions for adhesive stresses in bonded single-strap
butt joints GANG LI 409

Theoretical and experimental studies of beam bimorph piezoelectric power
harvesters SHUDONG YU, SIYUAN HE and WEN LI 427

Shakedown working limits for circular shafts and helical springs subjected to
fluctuating dynamic loads PHAM DUC CHINH 447

Wave propagation in carbon nanotubes: nonlocal elasticity-induced stiffness and
velocity enhancement effects C. W. LIM and Y. YANG 459

Dynamic compressive response of composite corrugated cores
BENJAMIN P. RUSSELL, ADAM MALCOM, HAYDN N. G. WADLEY and
VIKRAM S. DESHPANDE 477

Effects of surface deformation on the collective buckling of an array of rigid beams
on an elastic substrate
HAOJING LIN, ZIGUANG CHEN, JIASHI YANG and LI TAN 495

Improved hybrid elements for structural analysis C. S. JOG 507

1559-3959(2010)5:3;1-F

JournalofM
echanics

ofM
aterials

and
Structures

2010
V

ol.5,N
o.3


	 vol. 5, no. 3, 2010
	Masthead and Copyright
	Noël Challamel and Gilles Pijaudier-Cabot
	Kaveh Arjomandi and Farid Taheri
	Gang Li
	Shudong Yu and Siyuan He and Wen Li
	Pham Duc Chinh
	C. W. Lim and Y. Yang
	Benjamin P. Russell and Adam Malcom and Haydn N. G. Wadley and Vikram S. Deshpande
	Haojing Lin and Ziguang Chen and Jiashi Yang and Li Tan
	C. S. Jog
	Guidelines for Authors
	Table of Contents

