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A generalized plane strain micromechanical model is developed to predict the behavior of a unidirec-
tional fiber-reinforced composite subjected to combined thermal and mechanical loads. An appropriate
meshless local Petrov–Galerkin formulation is presented for the solution of the governing partial differ-
ential equations of the problem. To reduce computation time, a unit step function is employed as test
function. A direct method is presented for enforcement of the continuity of displacement and traction
at the fiber-matrix interface to model the fully bonded interface. Results of this study revealed that the
model provides highly accurate predictions with relatively small number of nodes. Numerical results
for glass/epoxy and SiC/Ti composites subjected to thermomechanical loading show that predictions
for both local and global responses of the composites are in good agreement with results of theoretical,
experimental and finite element methods.

1. Introduction

During the past decade, the idea of using meshless methods for the solution of boundary value problems
has received much attention and undergone significant progress. In meshless methods, no predefined
mesh of elements is needed between the nodes for the construction of a trial or test function. One of
the main objectives of such methods is to eliminate or alleviate difficulties inherent to meshing and
remeshing of the domain, or the locking and distortion of elements.

Various meshless methods such as the diffuse element method [Nayroles et al. 1992], the element-free
Galerkin (EFG) method [Belytschko et al. 1994], the reproducing kernel particle method [Liu et al. 1996],
the meshless local boundary integral equation (LBIE) method [Zhu et al. 1998], and the meshless local
Petrov–Galerkin (MLPG) method [Atluri and Zhu 1998] have been developed in the last two decades.
In some of them, such as EFG, a background mesh is required for integration of the weak form of
equations. By contrast, MLPG requires no mesh either for the interpolation of the solution variable
or for the integration of the weak form of equations. Some applications of this promising, efficient and
flexible method include solving Poisson’s equation [Atluri and Zhu 1998], elastostatic and elastodynamic
problems [Atluri and Zhu 2000; Long et al. 2006], plate bending [Gu and Liu 2001], fracture mechanics
[Ching and Batra 2001], and Navier–Stokes flow [Lin and Atluri 2001; Atluri and Shen 2002].

On the other hand, various techniques both analytical [Gramoll et al. 1991; Arsenault and Taya
1987; Yeh and Krempl 1993; Uemura et al. 1979; Brayshaw and Pindera 1994; Tsai and Chi 2008]
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and numerical have been used in the micromechanical analysis of heterogeneous materials. Though ap-
proaches based on the finite difference and boundary element methods can be found in the literature (see
[Adams and Doner 1967] and [Eischen and Torquato 1993], respectively), most numerical approaches
rely on the finite element method [Nimmer 1990; Nimmer et al. 1991; Wisnom 1990; Durodola and
Derby 1994; Shaw and Miracle 1996; Zhang et al. 2004; Dvorak et al. 1973; Zahl and McMeeking
1991; Aghdam et al. 2000; Aghdam and Khojeh 2003; Gentz et al. 2004; Zhao et al. 2007; Shen 1998;
Haktan Karadeniz and Kumlutas 2007], and have been used for predicting various elastic, elastoplastic
and thermoelastic characteristics of composites.

Some of these models include the effect of thermal stress on the mechanical behavior of composite
materials. In addition to [Durodola and Derby 1994; Shaw and Miracle 1996], we mention [Nimmer
1990; Nimmer et al. 1991; Wisnom 1990], where it was found that residual stresses at the interface
of the fiber and matrix are compressive and therefore they are beneficial for the transverse behavior
of the MMCs with weak interface. Shaw and Miracle [1996] used the finite element method to study
the effects of interfacial region on the thermal residual stress and transverse behavior of a SiC/Ti metal-
matrix composite. The influence of residual stresses on the yielding behavior of composite materials was
studied in [Dvorak et al. 1973; Zahl and McMeeking 1991; Aghdam et al. 2000; Aghdam and Khojeh
2003], while [Gentz et al. 2004] and [Zhao et al. 2007] studied the effects of the residual stresses on
the behavior of polymer-matrix composite. In addition, the overall coefficient of thermal expansion of
composite materials was studied using micromechanical finite element [Shen 1998; Haktan Karadeniz
and Kumlutas 2007], approximate closed-form models [Van Fo Fy 1965; Rogers et al. 1977; Chamis
1984], and experimental methods [Sideridis 1994].

More recently, Dang and Sankar [2007] employed the conventional MLPG method for the micro-
mechanical analysis of unidirectional composites. They used the penalty parameter method to enforce
the essential boundary conditions on the RVE. Their predictions show reasonably good agreement with
finite element results. However, the conventional MLPG formulation with Gaussian weight functions
and transformation technique in their paper seems to be time-consuming and computationally expensive
due to a domain integration in the weak formulation.

In this study, a micromechanical model based on the generalized plane strain assumption is developed
to study the behavior of unidirectional composites subjected to thermomechanical loading. An appro-
priate meshless local Petrov–Galerkin (MLPG) formulation is presented for the generalized plane strain
case in the presence of thermal loading. This formulation is used to solve the governing equations of the
system. A unit step function is considered as the test function, which leads to the elimination of domain
integration in the absence of body forces and therefore, to the reduction in the computational cost. A
direct interpolation method is introduced for the enforcement of the displacement continuity and traction
reciprocity conditions at the fiber-matrix interface based on the fully bonded interface assumption. These
continuity conditions are imposed directly on the discretized equation.

The method presented is used to predict the thermal residual stress in SiC/Ti metal-matrix composites
resulting from the manufacturing process, and the effects of these stresses on the total stress distribution
due to the mechanical loading of the SiC/Ti composite. Comparison of the predictions for the overall
coefficient of thermal expansion and the displacement and stress components show excellent agreement
with other experimental, finite element and approximate closed-form analyses. Numerical analysis sug-
gests that the model can provide highly accurate results with a relatively small number of nodes.
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2. Analysis

2.1. Micromechanical model. The micromechanical analysis of a unidirectional fiber-reinforced com-
posite subjected to a combined normal and thermal loading can be modeled using a generalized plane
strain assumption [Wisnom 1990] instead of a 3D elasticity model. In the generalized plane strain con-
dition displacement occurs in all three directions, except that strain components are not functions of the
x3 coordinate (fiber direction) and the normal strain in the x3-direction is constant (Figure 1). Therefore,
the displacement fields within the domain based on the generalized plane strain assumption should be
considered as

u1 = u1(x1, x2), u2 = u2(x1, x2), u3 = ε0x3, (1)

where u1, u2 and u3 are the displacements in x1, x2 and x3 directions, respectively, and ε0 is an unknown
normal constant strain in x3-direction to be determined. Using the displacement field (1), the strain-
displacement relations based on the linear theory of elasticity can be obtained as

ε11 =
∂u1

∂x1
, ε22 =

∂u2

∂x2
, ε33 =

∂u3

∂x3
= ε0, ε12 =

1
2

(
∂u1

∂x2
+
∂u2

∂x1

)
, ε13 = 0, ε23 = 0. (2)

Using (2), one can conclude that the out-of-plane shear stresses vanish: σ13 = σ23 = 0. The governing
equilibrium equations of the problem in the x1- and x2-directions in the absence of shear stresses σ13 and
σ23 can be considered as

σi j, j + bi = 0 on �, i, j = 1, 2, (3)

in which σi j, j is the partial derivative of the stress component σi j with respect to x j , bi is the body
force in xi -direction and � is the solution domain. Note that the equilibrium equation in the x3 (fiber)
direction in the absence of body force b3 is automatically satisfied as σ13 = σ23 = 0 and the σ3 stress are
independent of the x3 coordinate.

2.2. Solution domain. In most micromechanical models, a periodic arrangement of fibers is assumed
in the composite and therefore, the smallest repeating area of the cross section of the composite known
as the representative volume element (RVE) is considered as the solution domain. It is assumed further
that the global behavior of the composite is the same as that of the RVE. Here a quarter of the fibers
and corresponding matrix in a square array of fiber arrangement is selected as the RVE, as shown on the
right in Figure 1.
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a
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Figure 1. Left: real and idealized composite cross section (square array distribution).
Right: the corresponding RVE.
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2.3. Boundary and interface conditions. The boundary conditions must be set in such a way that the
compatibility of the unit cell with neighboring cells in the infinite composite could be satisfied. For the
thermomechanical loading of the composite in the absence of shear loading, the bottom edge of the RVE
(x1-axis) were not allowed to move in the x2-direction and the left edge (x2-axis) not allowed to move in
the x1-direction (Figure 1). The right edge can have an equal amount of the displacement in x1-direction
and the top edge can have an equal displacement in x2-direction, so the nodes on right edge must be
coupled in the x2-direction. Similarly, the nodes on the top edge must be coupled in the x1-direction.
Therefore, appropriate boundary conditions on the various edges of the RVE can be considered as

at x1 = 0 : u1(0, x2)= 0, σ12 = 0,

at x1 = a : u1(a, x2)= ū1, σ12 = 0,
1
b

∫ x2=b

x2=0
σ1dx2 = σ̄1,

at x2 = 0 : u2(x1, 0)= 0, σ12 = 0,

at x2 = b : u2(x1, b)= ū2, σ12 = 0,
1
a

∫ x1=a

x1=0
σ2dx1 = σ̄2,

1
ab

∫∫
�

σ3dx1dx2 = σ̄3,

(4)

in which a is the length and b is the width of the RVE, ūi is the unknown constant displacement in
the xi -direction and σ̄i is the applied transverse stress in the xi -direction. The matrix is assumed to be
perfectly bonded to the fibers throughout the analysis. This requires satisfaction of the continuity of
displacements and reciprocity of traction at the fiber-matrix interface:

u f
= um, t f

+ tm
= 0, (5)

where superscript f and m denote fiber and matrix, respectively, and u and t are the displacement and
traction vectors on the interface. Solution of the governing equilibrium equation (3) together with the
boundary conditions (4) in conjunction with the continuity of displacements and tractions at the interface
(5) provides details of the distribution of various stress and strain components within the RVE.

3. Solution procedure

In this study, an appropriate Meshless Local Petrov–Galerkin (MLPG) formulation is presented for the
generalized plane strain analysis of unidirectional composites subjected to thermomechanical loading.
The MLPG solution procedure mainly includes three steps. 1- Approximation of the field variable u(x)
over randomly located nodes in the domain. 2- Converting the strong form of governing equations to the
local symmetric weak form. 3- Numerical discretization of the weak form of the equations. In the first
step the field variable must be approximated over the randomly distributed nodes and the trial functions
must be constructed. One of the well-known methods for this purpose is the moving least squares (MLS)
approximation technique [Atluri and Shen 2002] which is briefly described in the following section.

3.1. Moving least square (MLS) approximation. To approximate the distribution of the function u(x)
over a number of randomly located nodes within the domain by the MLS method, the unknown trial
approximant uh(x) of the function u(x) is defined as

uh(x)= pT(x)a(x), x ∈�x, (6)
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where pT (x)= [p1(x), p2(x), . . . , pm(x)] is a complete monomial basis of order m and a(x) is a vector
of unknown coefficients. For example, in a two-dimensional domain the complete monomial linear basis
is pT (x)= [1, x1, x2], and the quadratic basis is pT (x)= [1, x1, x2, x2

1 , x1x2, x2
2 ]. In order to obtain the

coefficients vector a(x), the weighted discrete norm

J (a(x))=
N∑

I=1

wI (x)
(

pT(xI )a(x)− û I )2 (7)

should be minimized with respect to a(x). In (7) the û I are fictitious nodal values of the field variable
to be determined, wI is a weigh function and N is the number of nodes in the neighborhood of x where
the weight function vanishes: wI (x) 6= 0. In this study, quadratic spline functions are used:

wI (x)=

{
1− 6(dI /rI )

2
+ 8(dI /rI )

3
− 3(dI /rI )

4 for 0≤ dI ≤ rI ,

0 for dI ≥ rI ,
(8)

where dI = |x − xI | is the distance from the sampling point x to the node xI and rI is known as the
radius of the domain of influence for the weight function wI (x) [Atluri and Shen 2002]. After obtaining
a(x), one can determine from (6) the nodal interpolation form of uh(x):

uh(x)=
N∑

I=1

φ I (x)û I x ∈�x, (9)

where φ I (x) is the so-called shape function of the MLS approximation corresponding to node I and is
defined as

φ I (x)=
m∑

j=1

p j (x)[A−1(x)B(x)] j I , (10)

the matrices A(x) and B(x) being defined by

A(x)=
N∑

I=1

wI (x) p(xI ) pT(xI ), (11)

B(x)= [w1(x) p(x1), w2(x) p(x2), . . . , wN (x) p(xN )]. (12)

Note that the shape functions derived from the MLS approximation are not orthonormal (that is, it need
not be the case that φ I (xJ ) = δI J and uh(xI ) = û I ). Therefore, the enforcement of essential bound-
ary conditions in the MLPG method has some difficulties and in the MLPG method, usually a penalty
parameter or the Lagrange method is used for enforcement of the essential boundary conditions.

3.2. MLPG formulation. The MLPG method is based on the local weak form of the equations over the
local subdomain �s that is located inside the global domain �. The generalized local weak form (3)
over the local subdomain of node I , �I

s , can be written as∫
�I

s

(σi j, j + bi )vi d�s −β

∫
0 I

su

(ui − ūi ) d0 = 0, (13)
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where ui and vi are the trial and test (weight) functions, respectively, 0 I
su is the part of the boundary of

subdomain of node I i.e., ∂�I
s , over which the essential boundary conditions are specified and β is a

large number which is known as penalty parameter and is employed in order to impose essential boundary
conditions. Using the identity σi j, jv j = (σi jv j ), j −σi jvi, j and applying the divergence theorem, the local
symmetric weak form of (13) can be written as∫

∂�I
s

σi j n jvi d0−
∫
�I

s

(σi jvi, j − bivi ) d�−β
∫
0 I

su

(ui − ūi )vi d0 = 0, (14)

where n j is the unit outward normal of the ∂�I
s . In general �I

s could have arbitrary shape and ∂�I
s

consists of three parts: ∂�I
s = L I

s ∪0
I
st ∪0

I
su , in which L I

s , 0 I
st and 0 I

su are parts of the local boundary
that are located totally inside the global domain, coincides with the global traction boundary and coincides
with the global essential boundary, respectively. We can rewrite (14) in terms of L I

s , 0 I
st , and 0 I

su as∫
�I

s

(σi jvi, j ) d�−
∫

L I
s

tivi d0−
∫
0 I

su

tivi d0+β
∫
0 I

su

uivi d0

=

∫
0 I

st

t̄ivi d0+β
∫
0 I

su

ūivi d0+
∫
�I

s

bivi d�, (15)

where ti = σi j n j is the reaction vector on the boundary of the subdomain and t̄i is the natural boundary
condition on 0 I

st . Unlike the conventional Galerkin method in which the trial and test functions are
chosen from the same space, the Petrov–Galerkin method uses the trial and test functions from different
spaces. In this study, in order to reduce the computational

time, the test functions vi are chosen such that the domain integral on �I
s is eliminated. This can be

accomplished by using the unit step function as the test function in each subdomain as

vi (x)=
{

1 for x ∈�I
s ,

0 for x /∈�I
s .

(16)

It is clear that the partial derivatives of the unit step function are identically zero, and therefore, the
corresponding domain integral in (15) is eliminated. The final form of the local symmetric weak form
can be written as

−

∫
L I

s

ti d0−
∫
0 I

su

ti d0+β
∫
0 I

su

ui d0 =
∫
0 I

st

t̄i d0+β
∫
0 I

su

ūi d0+
∫
�I

s

bi d�. (17)

Note that by ignoring the body forces, any domain integration is eliminated from (17).

3.3. Numerical discretization. Assuming a linear isotropic elastic behavior for both the fiber and matrix
and the generalized plane strain condition, the compact form of the stress-strain relations in the presence
of temperature change 1T for each phase in the RVE can be written as

σ i
= Diε+ D̂iε0−

ˆ̂Di1T,

σ i
33 = ( D̂

i )T ε+ (1− νi )C iε0−
E iαi

1− 2νi 1T,

 i = f,m, (18)

where f and m denote the fiber and the matrix, σ = {σ11 σ22 σ12}
T is the stress tensor, σ33 is the axial

stress in the fiber direction, ε = {ε11 ε22 2ε12}
T is the strain tensor, ε0 is the constant strain in the fiber
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direction, Di , D̂i , ˆ̂Di are defined by

Di
= C i

1−νi νi 0
νi 1−νi 0
0 0 (1−2νi )/2

 , D̂i
= νi C i


1
1
0

 , ˆ̂Di
=

E iαi

1−2νi


1
1
0

 . (19)

Here E is the elastic modulus, ν is the Poisson’s ratio, α is the coefficient of thermal expansion of the
constituents, and

C i
=

E i

(1− 2νi )(1+ νi )
.

Furthermore, the traction, ti = σi j n j on the boundary of the support domain, ∂�I
s , in the matrix form

can be obtained using (19) as

t = Nσ = N Dε+ N D̂ε0− N ˆ̂D1T . (20)

By substituting (20) into (18) and using the MLS approximation (9), we obtain the discretized local weak
form of governing equations (17):

−

N∑
J=1

∫
L I

s

N DB J ûJ d0−
N∑

J=1

∫
0 I

su

SN DB J ûJ d0+β
N∑

J=1

∫
0 I

su

S8J ûJ d0 =
∫
�I

s

bd�+
∫
0 I

st

t̄ d0

+ ε0

(∫
L I

s

N D̂d0+
∫
0 I

su

N D̂d0
)
−1T

(∫
L I

s

N ˆ̂Dd0+
∫
0 I

su

N ˆ̂Dd0
)
+β

∫
0 I

su

ūd0, (21)

in which

B J
=

[
φ J
,1 0 φ J

,2
0 φ J

,2 φ
J
,1

]T

, 8J
=

[
φ J 0
0 φ J

]
, N =

[
n1 0 n2

0 n2 n1

]
, S=

[
S1 0
0 S2

]
, (22)

with (n1, n2) the outward unit normal vector to the boundary of the local subdomain ∂�I
s and S the

essential boundary conditions index (if ui is prescribed on 0u , the index Si is equal to 1; otherwise
Si = 0). Also, φ J

,i is the partial derivative of φ J (x) with respect to the xi ; details can be found in [Atluri
and Shen 2002].

Equation (21) can be written in the standard form of linear algebraic equations in terms of ûJ as

N∑
J=1

K IJ ûJ
= fI , (23)

where

K IJ =−

∫
L I

s

N DB J d0−
∫
0 I

su

SN DB J d0+β
∫
0 I

su

S8J d0, (24)

fI =

∫
0 I

st

t̄ d0+ ε0

(∫
0 I

s

N D̂d0+
∫
0 I

su

N D̂d0
)

−1T
(∫

0 I
s

N ˆ̂Dd0+
∫
0 I

su

N ˆ̂Dd0
)
+β

∫
0 I

su

ūd0+
∫
�I

s

bd�. (25)

It is worth mentioning that the stiffness matrix K IJ in the present method is banded and asymmetric.
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3.4. Material discontinuity. In order to treat the material discontinuity at the fiber and matrix interface,
two sets of nodes are assigned on the interface at the same location with different material properties.
One set is dedicated to the fiber denoted as I f while the other set is related to the matrix denoted by I m .
Furthermore, a non-penetration rule is imposed to the influence domain of the nodes. This rule states
that any point related to the matrix area cannot be influenced by the nodes in the fiber region and the
fiber interface nodes, I f and vise versa. This rule confines the influence domain of a node within the
domain of the material of the same node. Finally, the displacement continuity and traction reciprocity
conditions in (5) must be satisfied for the nodes on the interface as

uI f
= uI m

, t I f
+ t I m

= 0. (26)

The discretized form of these equations for all interface nodes can be rewritten as

N f∑
J=1

(8J (xI f )ûJ ) f
=

Nm∑
J=1

(8J (xI m )ûJ )m, (27)

N f∑
J=1

(N DB J ûJ
+ N D̂ε0− N ˆ̂D1T ) f

=

Nm∑
J=1

(N DB J ûJ
+ N D̂ε0− N ˆ̂D1T )m, (28)

where N f is the total nodes in the fiber and Nm is the total nodes in the matrix. In order to impose
conditions (27) and (28) to the global stiffness and force matrix (23), the rows of the global stiffness and
force matrix that are related to the interface nodes are replaced by the discretized form of the displacement
and traction continuity equations (27) and (28). This leads to a direct implementation of the fiber-matrix
interface conditions to the global system of equations.

4. Numerical results and discussion

The fabrication process of the composite materials, in particular metal-matrix composites (MMCs), takes
place at high temperatures. Subsequently, when they are cooled down to room temperature, residual
stresses are generated in the composite due to the mismatch between the coefficients of thermal expansion
of the fiber and matrix. The generated residual stresses influence the overall thermomechanical properties
of the composite. In the numerical results, the silicon carbide – titanium (SiC/Ti) metal-matrix composite

Composite system Constituent E (GPa) ν α (10−6/◦C)

SiC/Ti SiC (fiber) 409 0.2 4.5
Ti (matrix) 107 0.35 10

glass/epoxy glass (fiber) 72 0.2 5
epoxy (matrix) 3.5 0.35 52.5

[Shaw and Miracle 1996] Ti (fiber) 113.8 0.3 9.8
[Nimmer et al. 1991] SiC (matrix) 414 0.3 4.86

Table 1. Material properties of the fiber and matrix (E = Young’s modulus; ν =
Poisson’s ratio; α = coefficient of thermal expansion).
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and glass/epoxy polymer-matrix composite are studied. The composite constituents are assumed to be
isotropic and homogeneous with the linear thermoelastic properties as shown in Table 1. To examine the
efficiency and accuracy of the method, another analysis is carried out in the commercial finite element
code ANSYS [2002].

In this session, the previously discussed micromechanical model with MLPG formulation is used
to predict the process induced thermal residual stress in the SiC/Ti metal-matrix composite with 35%
fiber volume fraction. The SiC/Ti composite is manufactured at the temperature of about 910◦C that is
assumed to be stress free temperature of this composite. At room temperature (25◦C) the composite is
subjected to a temperature change of about 1T =−885◦C.

4.1. Pure thermal loading. The first step is to examine the rate of convergence of the method through a
mesh sensitivity analysis. To this end, a 35% fiber volume fraction SiC/Ti composite system is subjected
to a uniform thermal load of 1T =−885◦C. Figure 2 shows the rate of convergence of the MLPG and
ANSYS for the transverse displacement in the right side (x1 = a) of the RVE in the x1 direction. The
results suggest that about 300 nodes are sufficient to provide final convergence in MLPG, while some
800 nodes are needed for convergence in FE analysis. Therefore, in order to maintain convergence, 350
and 1000 nodes, respectively, are used for all MLPG and FE results.

Thermal loading. The coefficient of thermal expansion (CTE) of the composite can be obtained by ap-
plying a pure thermal loading on the RVE. The CTE αi = εi/1T in the direction xi is the quotient
of the macroscopic total thermal strain εi in that direction by the applied thermal load 1T . Figure 3
shows the longitudinal (α3) and transverse (α1 = α2) CTE versus fiber volume fraction for a unidirec-
tional glass/epoxy composite. Included in the figures are also predictions obtained by other approximate
closed-form solutions [Van Fo Fy 1965; Rogers et al. 1977; Chamis 1984], FEM [Haktan Karadeniz and
Kumlutas 2007] method and experimental measurements [Sideridis 1994]. It can be seen in the figures
that predictions of the MLPG method are in the close agreement with the FEM and experiment for both
longitudinal and transverse CTE. However, there are some discrepancies between the results of various
approximate closed-form solutions in the transverse CTE of the glass/epoxy composite, mainly due to
their various simplifying assumptions.

0 500 1000 1500
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1
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*1
0
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Figure 2. Convergence of u1 displacement on the right side (x1 = a) of the RVE.
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Figure 3. Longitudinal (left) and transverse (right) coefficients of thermal expansion of
glass/epoxy composite. “FEM” and “Chamberlain” stand for the values in [Haktan Ka-
radeniz and Kumlutas 2007] and “Experiment” for those in [Sideridis 1994].

Table 2 shows the CTE of SiC/Ti composite system predicted by MLPG, FE and approximate closed-
form solutions [Van Fo Fy 1965; Rogers et al. 1977; Chamis 1984]. Again, very good agreement is
seen between the results of MLPG and FE model while some differences exist in the predictions of
approximate methods (loc. cit.), particularly in the transverse CTE.

We next consider the predicted manufacturing thermal residual stresses within the RVE of the SiC/Ti
composite with 35% FVF induced by cooldown from 900◦C to 25◦C. Table 3 shows the stress components
on the matrix side of the fiber-matrix interface at the point on the bottom edge of the RVE with coordinates
(R, 0). It also shows the results of ADINA finite element code presented in [Nimmer et al. 1991].
Discrepancies in the range from 5% to 10% are observed between the results there and ours. One
possible reason for the discrepancies is that, in their FE analysis, Nimmer et al. regarded certain matrix
properties as temperature-dependent, while we took them as temperature-independent in this study.

CTE model Fiber volume fraction
20% 35% 50% 60% 70%

[Van Fo Fy 1965] 9.5400 8.7912 7.8989 7.2576 6.5916
[Rogers et al. 1977] 8.3242 7.2080 6.1938 5.5678 4.9777

α1 = α2 [Chamis 1984] 9.7013 8.5327 7.2717 6.5074 5.8390
[ANSYS 2002] 9.1705 8.3116 7.4112 6.7912 6.1264

MLPG 9.1663 8.3058 7.4021 6.7815 6.0987

[Van Fo Fy 1965] 7.3124 6.2984 5.6405 5.3168 5.0545
α3 [ANSYS 2002] 7.4092 6.3981 5.7212 5.3812 5.1385

MLPG 7.4006 6.3929 5.7164 5.3805 5.1322

Table 2. Coefficients of thermal expansion (×106/◦C) of SiC/Ti metal-matrix compos-
ite, as predicted by approximate closed-form solutions (first three rows), FEM [ANSYS
2002] and the MLPG proposed here.
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model Radial stress Hoop stress Axial stress Effective stress
σ1 (MPa) σ2 (MPa) σ3 (MPa) σeff (MPa)

MLPG −329.8 559.7 395.3 819.8
FEM [Nimmer et al. 1991] −314.2 509.8 371.90 760.5

discrepancy 4.96% 9.78% 6.29% 7.80%

Table 3. Thermal residual stress components on the matrix side of the interface at the
point (R, 0).

σ1 max at σ2 max in σ3 in σ3 max in σ3 min in

model interface matrix near fiber near matrix near matrix near
on interface on interface on interface on interface on

x1-axis diagonal line x1-axis diagonal line x1-axis

MLPG −305.1 488.5 −779.8 354.2 310.4
FEM [Shaw and Miracle 1996] −288 466 −782 354 316

discrepancy 5.93% 4.82% −0.28% 0.056% −1.77%

Table 4. Thermal residual stress (MPa) in SiC/Ti with 30% FVF system cool down from
800◦C to 25◦C.

Shaw and Miracle [1996] used ANSYS finite element code to study the SiC/Ti composite with 30%
FVF cooled down from 800◦C to 25◦C. They used temperature-independent properties for fiber and
matrix and considered a thin interfacial coating layer between the fiber and matrix. Table 4 compares
their predictions for various thermal residual stresses with ours, showing reasonably good agreement.

Since the coefficient of thermal expansion of titanium is significantly higher than that of silicon carbide,
it experiences greater contraction during cooldown, and relatively large radial compressive stresses build
up at the fiber-matrix interface. The dimensionless displacements u1/a at the bottom (x2 = 0) and top
path (x2 = a) of the RVE induced during the cooling from 910◦C to 25◦C are shown in Figure 4. This
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Figure 4. Displacement u1 on the bottom path (x2 = 0) and top path (x2 = a) of the
RVE in SiC/Ti composite after cooling; 1T =−885◦C.



560 ISA AHMADI AND MOHAMAD AGHDAM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

11

x
1
/a

V
* 1
 ,
 V

* 2
 ,
 V

* e
ff

 

 

V
1
 (MLPG)

V
1
 (FEM)

V
2
 (MLPG)

V
2
 (FEM)

V
eff

 (MLPG)

V
eff

 (FEM)

Figure 5. Distribution of thermal residual stresses σ ∗1 , σ ∗2 and σ ∗eff on the bottom path 1
of the RVE, 1T =−885◦C.

figure includes the prediction of MLPG and ANSYS code. It is seen that the RVE contracts about 0.735%
in transverse direction after cooling. On the bottom path, the slope of displacement in the matrix (Ti)
is higher than that of fiber (SiC). It is clear that the MLPG method presented here is in appropriate
agreement with FEM in the prediction of displacement distribution within the RVE. Both MLPG and
FEM predict continuous displacement in the fiber-matrix interface. The contraction of the RVE in the
fiber direction predicted by MLPG and FEM is 0.7350% and 0.7355%, respectively.

The distribution of dimensionless normal residual stresses σ ∗1 and σ ∗2 and effective von Mises stress
σ ∗eff on the bottom path (x1-axis) of the RVE is shown in Figure 5. In this study the dimensionless stress
is defined as σ ∗ = σ/Ym , where Ym is the yield stress of Ti and taken Ym = 910 MPa. It is obvious that
along the bottom path, the σ1 stress is the radial stress and σ2 stress is the hoop stress.

As expected, because the CTE of Ti is higher than of SiC, on the bottom path the σ ∗1 stress is com-
pressive in both fiber and matrix and is continuous at the fiber-matrix interface. On the bottom path, the
σ ∗2 stress is compressive in fiber, is tensile in the matrix, and is discontinuous at fiber matrix interface.
As seen in Figure 5, although the effective stress induced through the cooling is large, it does not exceed
the yield stress of the matrix and no yielding occurs during the cooling. The figure suggests excellent
agreement between the MLPG predictions and the ANSYS results.

The distributions of the residual circumferential stress σ ∗θ , normal stress σ ∗n and shear stress σ ∗nθ at
the fiber-matrix interface are shown in Figure 6. At the interface, σ ∗θ is compressive in the fiber and is
tensile in the matrix. The tensile σθ stress in the matrix may cause micro cracks in the matrix normal
to the interface. The radial stress is compressive on entire interface and reaches its greatest value, about
−337 MPa, at θ = 0 and θ = 90◦. The compressive residual stress at the fiber-matrix interface has a
beneficial effect on the transverse behavior of the MMC with a weak interface [Nimmer 1990; Nimmer
et al. 1991; Wisnom 1990].

In order to illustrate the accuracy of our MLPG method over the entire domain, the spatial variation of
residual von Mises effective stress (σeff) predicted by the MLPG model and an FEM model are visualized
in Figure 7. It can be seen that the pattern of the stress distribution is completely similar in MLPG and
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FEM analysis. The effective stress in the fiber is uniform, about 527 MPa, and in the matrix varies from
less than 300 MPa to more than 750 MPa. The largest value of the effective stress occurs at the fiber-
matrix interface on the x1-axis and x2-axis. These locations are along the radial lines between closest
neighbor fibers. The lowest effective stress is in top-right corner (x1 = x2 = a) of the RVE which is
along the radial line between most distant neighbor fibers.

The radial residual stress σ ∗r is compressive in the fiber and the circumferential (hoop) stress σ ∗θ is
compressive in the fiber and is tensile in the matrix. The axial stress σ ∗3 in the fiber and matrix is fairly
uniform and is compressive in the fiber and is tensile in the matrix. In the absence of axial load, the
net force from the integration of local distribution of σ3 over the entire face of the RVE is zero for any
temperature distribution. The axial stress σ3 on the fiber is almost uniform, with values between −793
and −782 MPa.
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Figure 8. Dimensionless stress σ ∗eff on the bottom path for uniaxial tensile load σ̄1 =

+0.5Ym with and without consideration of thermal residual stress.

4.2. Thermomechanical loading. In this section, the effect of thermal residual stress in the behavior of
SiC/Ti system with 35% FVF under transverse mechanical normal loading is studied.

Transverse uniaxial loading. First, it is supposed that the SiC/Ti composite system is subjected to an
external transverse tensile macro-stress σ̄1 = 0.5Ym = 455 MPa in the x1 direction. Figure 8 shows
the distribution of σ ∗eff stress on the bottom path of the RVE with and without considering the thermal
residual stress using the MLPG and the FE method. It is seen in the figure that in the presence of residual
stress, the von Mises effective stress on the bottom path is increased in the fiber and is decreased in the
matrix. Very close agreement is seen between the results of the present method and FEM analysis. It
is concluded that our MLPG method has appropriate accuracy in the prediction of thermomechanical
behavior of composite materials. The effect of the presence of thermal residual stress on the distribution
of the dimensionless normal σ ∗n and shear stress σ ∗nθ at the fiber-matrix interface are shown in Figure 9.
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Figure 9. Dimensionless stress σ ∗n and σ ∗nθ on the interface for uniaxial tensile load
σ̄1 =+0.5Ym , considering thermal residual stress.
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Figure 11. Dimensionless stress σ ∗n and σ ∗nθ on the interface for biaxial tensile load
σ̄1 = σ̄2 =+0.5Ym , -Effect of thermal residual stress.

The maximum value of the normal to interface stress σn is decreased in the presence of thermal residual
stress from 611.4 to 274.1 MPa. Therefore, thermal residual stresses have beneficial effect for metal-
matrix composite with weak interface bonding [Nimmer 1990; Nimmer et al. 1991; Wisnom 1990].

Transverse biaxial loading. The behavior of the SiC/Ti composite with 35% FVF under biaxial trans-
verse loading in presence of thermal residual stress is studied. For this case, the equal transverse normal
tensile σ̄1= σ̄2=+0.5Ym and compressive σ̄1= σ̄2=−0.5Ym stresses are applied to the SiC/Ti composite
system. Figure 10 shows the distribution of the dimensionless effective stress σ ∗eff on the bottom path of
the RVE in the biaxial transverse tension and compression in the presence of thermal residual stress. It is
seen that the von Mises effective stress in tension and compression does not have the same values. This
will cause asymmetric yielding behavior for SiC/Ti MMC in the transverse tension and compression. In
addition, it is seen that in the matrix the effective stress σ ∗eff for compressive transverse load is bigger
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than for the same tensile load. Therefore, it can be concluded that the smaller compressive transverse
load will cause yielding of SiC/Ti composite in comparison with the transverse tensile load.

The distributions of the dimensionless normal to fiber-matrix interface stress σ ∗n and shear stress on
interface σ ∗nθ are shown in Figure 11. The stresses on the interface have symmetry respect to θ = 45◦.
Thermal residual stresses change the location of maximum of σn from θ = 0 and θ = 90◦ to θ = 45◦. In
the presence of thermal residual stress the σn stress on x1- and x2-axis (θ = 0 and θ = 90◦) decreases
from 538.3 to 200.7 MPa and at the location θ = 45 is decreased from 499.1 to 321.9 MPa.

5. Conclusion

An appropriate meshless local Petrov–Galerkin method is presented for micromechanical modeling of
the unidirectional composites subjected to various thermomechanical loadings. Generalized plane strain
assumption in the context of theory of elasticity is used to obtain the governing partial differential equa-
tions of the problem. A direct method is introduced for the treatment of material discontinuity at the
fiber-matrix interface in which both the displacement continuity and traction reciprocity are satisfied.
This MLPG method together with the MLS approximation is employed to obtain a solution for the
governing equations over the selected RVE with appropriate boundary conditions. The computational
time is substantially reduced by employing the unit step function as the test function. The accuracy and
convergence rate of the method for micromechanical analysis of unidirectional composite is investigated.
The mesh sensitivity analysis revealed that in comparison with the finite element analysis, the method
presented provides highly accurate results with relatively small number of nodes. Comparison of the
coefficient of thermal expansion, displacement and stress components distribution with experimental,
numerical and analytical methods shows good agreement.
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