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EFFECTIVE MEDIUM THEORIES FOR WAVE PROPAGATION IN
TWO-DIMENSIONAL RANDOM INHOMOGENEOUS MEDIA

JIN-YEON KIM

Two effective medium models for two-dimensional scalar wave propagation in random inhomogeneous
media are examined in a single theoretical framework. It is shown how the hypotheses and self-consistency
conditions in these models are mathematically formulated. As a special case, a two-phase composite in
which circular cylindrical inclusions are embedded in a continuous matrix is considered. Numerical
calculations are performed for such composites with different combinations of constituent properties
in the frequency range up to ka = 10, where geometric optic behavior starts appearing. The models
mutually deviate when the motion of inclusions is relatively large, such as at the resonance scattering of
the inclusions. Otherwise, deviations in the low-frequency regime (ka < 1) are negligible and those at
high frequencies are also strikingly small. The same facts are observed for two composites having very
different constituent properties and in the high-frequency limit.

1. Introduction

Theoretical prediction of the effective properties of inhomogeneous materials is of fundamental impor-
tance in materials research since virtually every material is inhomogeneous at smaller scales. For the
prediction of the dynamic effective properties of such materials, analysis of the interaction of propagating
waves with inhomogeneities, that is, the multiple scattering of waves, is needed. However, except for
some simple cases in which multiple scattering effects are sufficiently small, the complete treatment of
such a problem is quite difficult for the mathematical and physical reasons described in [Frisch 1968],
and thus an approximate solution is sought.

There are two typical approaches to this approximation: the direct and indirect. In the direct approach,
the multiple scattering solution for a set of scatterers is first found and then the solution is averaged
(the effective field) for all possible configurations of the scatterer distribution. This approach, however,
ends up with an infinite hierarchy of integral equations in which each order contains more statistical
information than those preceding [Lax 1952]. This infinite hierarchy shows that an exact solution of
the problem is prohibitively veiled. To truncate the infinite hierarchy, the rigorous perturbation method
[Karal and Keller 1964] can be used, but this approach is limited to the case of weak scattering [Frisch
1968]. In the case of strong scattering, the quasicrystalline approximation (QCA) of [Lax 1952] is often
used as an explicit closure approximation while the alternatives are methods based on the stochastic
variational principles [Willis 1981; Weaver 1985]. The QCA is relevant to the cases where the total field
can be approximated by the sum of single and double scattering fields and thus often fails in a dense
scatterer system [Kim 2010].
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One of the indirect approaches, the so-called effective medium theory (EMT), also known as the self-
consistent theory, is a group of approximation methods that are formulated in a few steps of thought
experiment. One distinctive point in this theory is that multiple scattering is seen to occur in the effective
medium [Kim et al. 1995; Choy 1999]. In most effective medium type formulations, the single scattering
approximation is adopted and thus the correlations between scatterers are neglected. However, by solving
the associated scattering problem in the effective medium, the average multiple scattering effect is taken
into account in an implicit way. In spite of the fact that this hypothesis is not theoretically justifiable,
the EMT has been successfully applied to predicting the effective properties (not the effective fields) of
inhomogeneous materials. A few variants have been set forward which are based on slightly different
hypotheses. One is the coherent potential approximation in solid-state physics [Soven 1967; Velicky
et al. 1968], which has been regarded as a reliable theory in predicting alloy properties. A quasistatic
version for predicting mechanical properties of composites has been proposed by Berryman [1979; 1980].
A dynamic generalization of this theory has been made for two and three-dimensional problems [Kim
et al. 1995; Kim 1996]. As shown in [Kim et al. 1995], this theory was very successful in predicting
the effective wave speed and attenuation in random particulate composites for wide ranges of frequency
and volume fraction. A second variant is the dynamic extension [Sabina and Willis 1988; Bussink et al.
1995; Kanaun and Levin 2003; Kanaun et al. 2004] of the static self-consistent theories of [Budiansky
1965; Hill 1965]. The major difference between these two theories lies in how the roles of constituents
are treated, which will be discussed later in this paper. While the direct approach faces a dead end in that
the QCA incorporated with an exact pair-correlation function [Varadan et al. 1985] often fails to predict
correct effective dynamic properties [Kim 2010] and an analysis of higher order scattering is extremely
difficult, opportunities seem to exist in the indirect approaches that offer a tractable scheme on which a
more rigorous formalism can be easily built [Martin 2006].

In this paper, a comparative theoretical and numerical study is conducted for the effective medium
models of Kim [1996] and Kanaun and Levin [2003], which are called here EMT-1 and EMT-2, respec-
tively. Following [Kanaun and Levin 2003], a theoretical formalism is elaborated and a clear physical
meaning is given in each step of the derivations. Horizontally polarized shear (SH) waves propagat-
ing in a two-phase composite, in which circular cylindrical inclusions are randomly distributed in a
continuous matrix, are considered. Numerical calculations are performed for composites with different
combinations of constituent properties in a wide frequency range. Although SH wave propagation in a
two-dimensional composite with circular inclusions is considered here for the computational simplicity,
similar conclusions are expected for other types of waves and inclusions.

2. Preliminaries

Let us consider an infinite elastic medium that contains a large number (N ) of two-dimensional elastic in-
clusions. The inclusions occupy a region � that consists of discrete subregions �i , so that �=

∑N
i=1�i .

Let µ1 and ρ1 be the shear modulus and the mass density of the host medium and µ2 and ρ2 be those of
the inclusions. The shear modulus µ and mass density ρ of the entire medium may be written:

µ(r)= µ1+1µ2(r), ρ(r)= ρ1+1ρ2(r), (1)

where r is the position vector, 1µ= (µ2−µ1), 1ρ = (ρ2−ρ1), and 2(r) is a step function, 2(r)= 1 if
r ∈� and 2(r)= 0 if r /∈�. Now suppose that a time-harmonic source, S(r, t)= s(r)e−iωt , occupying
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the region �s in the host medium, is generating an antiplane body force. The antiplane time-harmonic
displacement field u(r)e−iωt in this medium satisfies the following equation of motion:

∇ · [µ(r)∇u(r)] + ρ(r)ω2u(r)= s(r). (2)

The Green’s function for the homogeneous matrix that satisfies the boundary condition at infinity is the
solution of the following equation:

µ1∇
2G(r − r ′)+ ρ1ω

2G(r − r ′)=−δ(r − r ′), (3)

G(r − r ′)= i
4µ1

H0(k1|r − r ′|), (4)

where δ is the Dirac delta function in the two-dimensional space, H0(x) is the Hankel function of the
first kind and order zero, and k1 = ω/c1 is the wavenumber associated with the shear wave speed c1. A
two-dimensional Fourier transform pair is defined

f (k)= (2π)−2
∫

f (r)ei k·rd r, f (r)=
∫

f (k)e−i k·rdk, (5)

where k denotes the wave vector with components (kx , ky), d r = dxdy, and dk = dkx dky . Forward
Fourier transformation of Equation (3) yields the following relation between the operator A(k1) and the
Green’s function in the wavenumber domain: (µ1k2

1 − ρ1ω
2)G(k1)= A(k1)G(k1)= 1, where k1 is the

wave vector associated with the wavenumber k1.
Substituting (1) into (2), one obtains µ1∇

2u + ρ1ω
2u = s − [∇ · (1µ∇u)+1ρω2u]2. Using the

Green’s function in (3), one gets the integral equation for the total field

u(r)= uin(r)+
∫
�

1µ(r ′)∇G(r − r ′) · ε(r ′)+1ρ(r ′)ω2G(r − r ′)u(r ′)d r ′, (6)

where the first term, given as uin(r) =
∫
�s

G(r − r ′)s(r ′)d r ′, is the incident wave, the second term
represents the scattered waves, and ε = ∇u is the strain vector field in the inclusion. The prime sign in
the integral in (6) is used to denote the field quantities in the inclusions and the derivatives in the integral
are accordingly differentiation with respect to the primed variables. Assuming that the source is located
at infinity (far from the region of interest), the incident wave is regarded as a plane wave:

uin(r)=Uei ki
1·r , (7)

where ki
1/k1 is the unit vector in the direction of incidence and the Fourier transform of (7) is

uin(k1)= (2π)−2Uδ(k1− ki
1). (8)

Since the plane wave satisfies the wave equation without a source in a finite domain, the following
holds: A(k1)uin(k1)= 0. Using the far-field asymptotic expression of the Green’s function, the far-field
scattering pattern is obtained as an integral of the displacement and strain in the inclusion:

usc
∼

√
2

πk1r
ei(k1r−π/4) f (k1), f (k1)=−

1
8

∫
�

[1µi k1 ·∇u(r ′)−1ρω2u(r ′)] exp(−i k1 · r ′)d r ′. (9)
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Due to the generalized optical theorem for the scattering in an absorbing medium [Kim 2003a; 2003b;
Kim and Lee 2009; 2010], the total cross section is

γ =−
4
k ′1

Re[ f (ki
1)], (10)

where f (ki
1) is the forward scattering amplitude and k ′1 is the real part of the complex wavenumber

k1. Equation (10) states that the total power loss during the process of scattering is proportional to the
forward scattering amplitude.

3. The models

EMTs commonly require the following three steps: first, finding the approximate average displacement
and strain fields in a representative inclusion by solving the single scattering problem in the effective
medium with yet-unknown properties; second, embedding the inclusions with these average fields in
a homogeneous medium (the original or the effective medium) in which averaging over composition
and geometry is to be performed; finally, obtaining expressions for the effective properties applying a
self-consistency condition. The second step is often called the self-consistent embedding and the self-
consistency condition requires the equivalence of the average field to a plane wave that is assumed to
propagate in the effective medium. Different EMTs use different averaging schemes in which the roles
of the constituent materials are treated differently.

In order to obtain the approximate average fields, both the EMT-1 and EMT-2 start with:

Hypothesis 1. Every inclusion in the composite behaves as an isolated inclusion embedded in a homo-
geneous medium having the effective properties of the composite. The field acting on this inclusion is a
plane wave propagating in the effective medium [Kim et al. 1995; Kanaun and Levin 2003].

By this hypothesis, the original multiple scattering problem defined in the host medium is reduced to a
single scattering problem defined in the effective medium. The integral equation (6) for the scattering
by a single representative inclusion in the effective medium is written

ū(r)= ūin(r)+
∫
�i

1µ2∇Ḡ(r − r ′) · ε(r ′)+1ρ2ω
2Ḡ(r − r ′)u(r ′)d r ′, (11)

where the overbar ( ¯ ) is used to denote material properties and physical quantities in the effective medium.
For example, the incident wave is ūin(r)=Uei k̄i

·r , where k̄i
is the wave vector of the incident wave

in the effective medium, k̄ = |k̄i
| is the wavenumber associated with the effective shear wave speed c̄,

1µ2= (µ2−µ̄), and1ρ2= (ρ2− ρ̄). The region�i is now the area occupied by the single representative
inclusion. Its location is not prescribed yet since it is a random variable and later the scattered field
obtained from (11) is averaged over all possible locations. Averages are also performed over the shape
and orientation of the inclusions. If the effective medium is presumed to be isotropic and homogeneous,
the location of �i is permitted to be everywhere in the medium, which states the translational invariance.

To realize this averaging process, let us consider a plane wave incident on the representative inclusion
located at r i in the global coordinate system, and place the origin of a local coordinate system (x1, y1)

at the mass center of the inclusion. Then, the displacement and strain fields described in the global
coordinate system are related to those fields in the local coordinate system (“u(r1) and “ε(r1)) in response
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to the incident wave with unit magnitude (“u
in
(r1)=Uei k̄i

·r1):

ū(r)= “u(r1)e−i k̄i
·r1 ūin(r)≡ 3̄u(r1)ūin(r), r ∈�i , (12)

ε(r)= “ε(r1)e−i k̄i
·r1 ūin(r)=∇“u(r1)e−i k̄i

·r1 ūin(r)≡ 3̄ε(r1)ūin(r), r ∈�i , (13)

where r1 = r − r i is the position vector in the local coordinate system. The discrete random functions
3̄u and 3̄ε appear as the transition operators that relate the displacement and strain fields in the remote
inclusion to the incident wave. Note that these operators are independent of the locations r i of the remote
inclusion.

Now consider scattering of a set of imaginary inclusions whose internal fields are given by (12) and
(13) and whose properties and positions are those of the inclusions (µ2 and ρ2, and r i ). These inclusions
are embedded in the original host medium in which a plane incident wave is propagating. The integral
in (6) can be written

u(r)= uin(r)+
∫
�

[1µ∇G(r − r ′) · 3̄ε(r1)+1ρω
2G(r − r ′)3̄u(r1)]ūin(r ′)d r ′. (14)

Taking an ensemble average on (14) for all possible sets of {r1, r2, . . . , r N }, one obtains

〈u(r)〉 = uin(r)+
∫
�

[1µ∇G(r − r ′) · 〈3̄ε〉+1ρω
2G(r − r ′)〈3̄u〉]ūin(r ′)d r ′. (15)

Note that the averages over shape and orientation do not appear since the inclusions are assumed to be
identical cylinders with the same volume (�i ). Due to the translation invariance the averages of the
transition operators are taken over a representative inclusion �i

〈3̄u〉 =
1
�t

∫
�t

3̄u d r = N
�t

∫
�i

“u(r1)e−i k̄i
·r1d r1 = v2〈3̄u(k̄)〉�i , (16)

〈3̄ε〉 =
1
�t

∫
�t

3̄ε d r = N
�t

∫
�i

∇“u(r1)e−i k̄i
·r1d r1 = v2〈3̄ε(k̄)〉�i , (17)

where v2 is the volume fraction of the inclusion phase, �t represents the entire domain covering the
matrix and all inclusions, and 〈 〉�i denotes volume averaging over �i . Substituting (16) and (17) into
(15) yields

〈u(r)〉 = uin(r)+ v2

∫
�

[1µ∇G(r − r ′) · 〈3̄ε(k̄)〉�i +1ρω
2G(r − r ′)〈3̄u(k̄)〉�i ]ū

in(r ′)d r ′. (18)

For self-consistency, a second hypothesis is introduced:

Hypothesis 2. The average field (the average displacement in (18)) is equal to the incident plane wave
propagating in the effective medium.

That is,
ūin(r)= 〈u(r)〉, (19)

which leads to

〈u(r)〉 = uin(r)+ v2

∫
�

[1µ∇G(r − r ′) · 〈3̄ε(k̄)〉�i +1ρω
2G(r − r ′)〈3̄u(k̄)〉�i ]〈u(r

′)〉d r ′, (20)
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since (20) is a convolution integral, Fourier transformation of (20) yields

〈u(k1)〉 = uin(k1)+ v2[1µi k1 · 〈3̄ε(k̄)〉�i +1ρω
2
〈3̄u(k̄)〉�i ]G(k1)〈u(k1)〉. (21)

Applying the operator A(k1) on (21), it turns out that the average displacement spectrum in (21) is the
solution of the operator equation

Ā(k1)〈u(k1)〉 = 0, Ā(k1)= A(k1)− v21µi k1 · 〈3̄ε(k̄)〉�i − v21ρω
2
〈3̄u(k̄)〉�i , (22)

the operator for the effective medium. Due to (19), the Fourier transform of the average field is replaced
with that of the plane incident wave in the effective medium, 〈u(k1)〉 = ūin(k̄), requiring a necessary
condition, k1 = k̄. Then, the expressions for the effective operator and the effective shear modulus and
mass density in the EMT-2 formulation are

Ā(k̄)= A(k̄)− v21µi k̄ · 〈3̄ε(k̄)〉�i − v21ρω
2
〈3̄u(k̄)〉�i , (23)

µ̄= µ0− v21µi k̄ ·
〈3̄ε(k̄)〉�i

k̄2
, ρ̄ = ρ0+ v21ρ〈3̄u(k̄)〉�i . (24)

These are the formulae derived in [Kanaun and Levin 2003]. Note that the signs in the expressions
for Ā and µ̄ are different from Equations (3.16) and (3.17) of that reference due to the different time-
dependence: e−iωt in this paper versus eiωt in their paper.

In the EMT-1, an additional hypothesis is introduced:

Hypothesis 3. In the effective medium not only the discrete inclusions but also the surrounding medium
acts as a scatterer because its properties differ from those of the effective medium, and these two scattering
processes are independent.

The integral equations for the fields in a representative volume for the matrix (�m) and in a representative
inclusion (�i ) are

ū(r)= ūin(r)+
∫
�m

1µ̄1∇Ḡ(r − r ′) · ε1(r ′)+1ρ̄1ω
2Ḡ(r − r ′)u1(r ′)d r ′, (25)

ū(r)= ūin(r)+
∫
�i

1µ̄2∇Ḡ(r − r ′) · ε2(r ′)+1ρ̄2ω
2Ḡ(r − r ′)u2(r ′)d r ′, (26)

where subscripts 1 and m and 2 and i denote the matrix and the inclusions, respectively, and1µ̄p=(µp−µ̄)

and 1ρ̄p = (ρp − ρ̄) for p = 1, 2. The displacement and strain fields in the representative volumes (�m

and �i ) may be obtained in the same way as in (12) and (13).
In the EMT-1, a schizoid medium, a medium that has estimates of the yet-unknown effective properties

µ̂ and ρ̂, is used for self-consistent embedding, in which the inclusions and the matrix are embedded and
insonified by a plane wave. Then, (14) is written

û(r)= ûin(r)+
∑

p=1,2

∫
�p

[1µ̂p∇Ĝ(r − r ′) · 3̄p
ε (r1)+1ρ̂pω

2Ĝ(r − r ′)3̄p
u (r1)]û(r ′)d r ′, (27)

where variables with a caret are those of the estimate of the effective medium and 1µ̂p = (µp − µ̂)

and 1ρ̂p = (ρp− ρ̂) for p = 1, 2. Following the steps described above, (27) is averaged over the entire
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domain:

〈û(r)〉= ûin(r)+
∑

p=1,2

vp

∫
�p

[1µ̂p∇Ĝ(r−r ′)·〈3̄p
ε (k̄)〉�p+1ρ̂pω

2Ĝ(r−r ′)〈3̄p
u (k̄)〉�p ]〈û(r

′)〉d r ′. (28)

Fourier transformation of (28) yields

〈û(k̂)〉 = ûin(k̂)+
∑

p=1,2

vp[1µ̂pi k̂ · 〈3̄p
ε (k̄)〉�p +1ρ̂pω

2
〈3̄p

u (k̄)〉�p ]Ĝ(k̂)〈û(k̂)〉. (29)

Upon applying the operator Â(k̂) on (29), the equation takes the form[
Â(k̂)−

∑
p=1,2

vp
(
1µ̂pi k̂ · 〈3̄p

ε (k̄)〉�p +1ρ̂pω
2
〈3̄p

u (k̄)〉�p

)]
〈û(k̂)〉 = 0, (30)

where Â(k̂) is the estimate of the effective operator. By the definition of the effective operator,

Ā(k̂)≡ Â(k̂)−
∑

p=1,2

vp
(
1µ̂pi k̂ · 〈3̄p

ε (k̄)〉�p +1ρ̂pω
2
〈3̄p

u (k̄)〉�p

)
. (31)

Then, the formulae for the effective shear modulus and mass density are

µ̄= µ̂−
∑

p=1,2

vp1µ̂pi k̂ ·
〈3

p
ε (k̄)〉�p

k̂2
, ρ̄ = ρ̂−

∑
p=1,2

vp1ρ̂p〈3
p
u (k̄)〉�p . (32)

Finally, the self-consistency is that the estimates of the effective shear modulus and density in (32) are
the true effective shear modulus and density, that is, µ̂= µ̄ and ρ̂ = ρ̄. This statement is, in fact, identical
to the hypothesis that the plane wave in the effective medium is coincident with the mean field. Then,
two conditions that should be satisfied by the effective medium are∑

p=1,2

vp1µpi k̄ · 〈3p
ε (k̄)〉�p = 0,

∑
p=1,2

vp1ρ p〈3
p
u (k̄)〉�p = 0. (33)

Kim [1996] obtained the same expressions based more on physical intuition. Adding together the two
equations in (33), one gets ∑

p=1,2

vp〈 f̄ p(k̄
i
)〉�p = 0. (34)

This implies that the effective medium in the EMT-1 is defined as the one in which the spatial and volume-
fraction averaged forward scattering amplitude vanishes. In other words, since the scattered energy is
proportional to the forward scattering amplitude (10), the effective medium is the medium in which
there is no scattering on the average of the mean field by the constituents. This endows a full physical
meaning to the effective medium and its properties in the EMT-1 formulation. One can find the origin
of this idea in the solid-state physics problems [Soven 1967; Velicky et al. 1968]; it has also been used
in electromagnetic problems [Stroud and Pan 1978; Niklasson et al. 1981].

It is noted that the EMT-1 is a possible dynamic generalization of the theory of Berryman [1979;
1980] and the EMT-2 of [Budiansky 1965; Hill 1965]. It is shown in the Appendix that the EMT-1 yields
the same static effective density and shear modulus as the EMT-2 [Kanaun and Levin 2003], and their
effective shear moduli are of course identical to those of [Budiansky 1965; Hill 1965; Sabina and Willis
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1988]. It is interesting to note that even though these static theories ([Budiansky 1965; Hill 1965] versus
[Berryman 1979; 1980]) treat the role of the matrix differently, they yield identical equations for the
effective properties.

A parameter which remains unspecified so far in the EMT-1 is the shape and size of the representative
volume for the matrix (�m). It is shown also in the Appendix that a natural and meaningful choice is to
use the same shape and size of the inclusions, that is, �m =�i . In the numerical calculations in the next
section, �m is taken to be a circular cylinder with the radius a.

4. Results and discussion

Numerical calculations are performed for two-phase composites having different combinations of con-
stituent properties. The mechanical properties of the constituent materials are listed in Table 1 and the
composites considered and their characteristics are given in Table 2. As shown in the third column of
Table 2, these four composites are all distinctive in their ratios of densities and shear moduli. These
distinctive combinations are selected to see how the two model predictions are different for composites
with different dynamic characteristics. The effective wave speed and coherent attenuation are calculated
for frequencies up to k1a = 10 for these composites and for different volume concentrations up to 60%
of the inclusion phase.

In Figures 1–4, the results from the EMT-1 and EMT-2 are compared. The effective wave speed is
normalized with the shear wave speed in the matrix and the coherent attenuation is also presented in a
normalized form, 4πIm[k̄]/Re[k̄], which is called the specific attenuation capacity. It is quite surprising
that both the wave speed and attenuation predicted by the two models generally agree very well for all
composites considered. They are almost identical at frequencies where k1a < 1 and are also very close
to each other at high frequencies. This is quite contrary to the expectation [Kanaun et al. 2004] that these
two models would predict substantially different results in the wave speed and coherent attenuation since
the matrix phase is treated quite differently in these two models, as a continuous phase in the EMT-2 as
opposed to an equivalent inclusion in the EMT-1. Relatively large deviations are seen at the frequencies
where the attenuation has a peak due to the rigid-body resonance of the inclusions (see Figures 2 and 3)
and at some high frequencies where numerous elastic resonances occur (see Figure 4). Excessive motion
will be set up in the inclusions at the resonance frequencies and the motion in the matrix will accordingly
be large. Therefore, the relatively large deviations at and near resonance frequencies are due to the
amplification effect of the resonance scattering.

To confirm what has been observed in Figures 1–4, these theories are further compared for two com-
posites with extremely different constituent properties, one with hard and heavy inclusions (µ2/µ1 = 100

Material Density (kg/m3) Shear modulus (GPa) Wave speed (m/s)

Aluminum 2720 38.7 3772
Steel 7800 80.9 3220
Graphite 1310 21.0 4004
Titanium 4510 41.4 3030
SiC (SCS-6) 3200 182.0 7542

Table 1. Elastic properties of constituent materials.
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Materials ρ2/ρ1 µ2/µ1 Remarks

Steel/aluminum 2.9 2.1 ρ2 > ρ1, µ2 > µ1

Graphite/aluminum 0.48 0.54 ρ2 < ρ1, µ2 < µ1

SiC/titanum 0.71 4.4 ρ2 < ρ1, µ2 > µ1

Steel/SiC 2.44 0.45 ρ2 > ρ1, µ2 < µ1

Table 2. Ratios of density and shear moduli.
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Figure 1. Average wave speed and coherent attenuation in a graphite/aluminum com-
posite with 60% graphite fibers. The continuous line represents the EMT-1, and the
dashed line the EMT-2.
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Figure 2. Average wave speed and coherent attenuation in a SiC/Ti composite with 35%
SiC fibers. The continuous line represents the EMT-1, the dashed line the EMT-2, and
the open squares are from an ultrasonic measurement in the frequency range 5–15 MHz.
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Figure 3. Average wave speed and coherent attenuation in a steel/SiC composite with
35% steel fibers. The continuous line represents the EMT-1, and the dashed line the
EMT-2.
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Figure 4. Average wave speed and coherent attenuation in a steel/aluminum composite
with 25% steel fibers. The continuous line represents the EMT-1, and the dashed line the
EMT-2.

and ρ2/ρ1 = 10) in Figure 5, and another with soft and light inclusions (µ2/µ1 = 0.01 and ρ2/ρ1 = 0.1)
in Figure 6. Note that these are the numerical examples presented in [Kanaun and Levin 2003]. The
frequency range in the numerical simulations is extended to k1a = 50 to see if any large deviation occurs
at frequencies above k1a = 10. First of all, just as in Figures 1–4, the results from the two theories agree
excellently for both cases, which strongly reinforces the conclusion made from the results in Figures 1–4,
that the way the EMT-2 treats the matrix phase does not make any substantial difference. Secondly, both
the wave speed and attenuation of the EMT-1 converge monotonically to their frequency-independent
geometric optic limits: the wave speed of the matrix c1 and a constant attenuation, respectively. The
attenuation factors (of the EMT-1) divided by the inclusion volume fraction (Im[k̄a]/v2) calculated at
k1a = 50 and for different volume fractions turn out to be nearly a constant — the attenuation predicted
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Figure 5. Average wave speed and coherent attenuation in a composite with 30% hard
and heavy inclusions (µ2/µ1 = 100 and ρ2/ρ1 = 10). The continuous line represents the
EMT-1, and the dashed line the EMT-2.
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Figure 6. Average wave speed and coherent attenuation in a composite with 30% soft
and light inclusions (µ2/µ1 = 0.01 and ρ2/ρ1 = 0.1). The continuous line represents the
EMT-1, and the dashed line the EMT-2.

by the EMT-1 depends only on the volume fraction in the high-frequency limit. These are some expected
properties of composites in the high-frequency limit [Kanaun and Levin 2003]. However, it is noted that
these high-frequency limit values predicted by the EMT-1 could be inaccurate.

Finally, it should be pointed out that the comparisons given in Figures 5 and 6 are merely to demon-
strate the equivalence of the two models. In this high-frequency range, the multiple scattering is so strong
that waves quickly lose their mutual coherence, turning to a noise-like random field (called a diffuse field
[Sheng 1995]) in a few wavelengths of propagation, and only the mean energy density of this random
field is physically meaningful. Therefore, the calculated wave speed and attenuation of coherent waves in
this high-frequency range (above k1a = 10) are purely mathematical with no connection to measurable
physics. Furthermore, at these high frequencies, the intrinsic material absorption of constituents will
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be dominant over the coherent attenuation. All these figures show that major changes in the effective
properties occur at frequencies below k1a = 10 and thus it is believed that this is the frequency range
where a micromechanical theory is useful, not the high-frequency limit in which the effective properties
have no relation to the randomness of the composite. Note also that typical ultrasonic measurements are
usually limited to far below k1a = 10. Again, therefore, the calculation and discussion of the effective
properties of coherent waves in this high-frequency region are nonsensical. For all these reasons, regard-
less whether the EMT-1 is correct or incorrect in the high-frequency limit, it would be more sensible to
limit the useful and physically meaningful frequency range of the EMT-1 to below k1a = 10.

In Figure 2, the wave speed and attenuation calculated for the SiC/Ti composite are compared with
the experimental data (the open squares) in the range 5–15 MHz which corresponds to k1a = 0.35–1.05
[Kim 2010]. In this frequency range, the predictions from the two theories are indistinguishable, and the
experimental wave speed shows a nearly constant wave speed (c̄/c1 = 1.322–1.316). This is close to the
lower bound static wave speed, c̄/c1 = 1.32, which is the result of the well-isolated fiber arrangement in
this composite (see, for example, the micrograph in [Huang and Rokhlin 1995]). Therefore, as mentioned
earlier, the EMTs that implicitly assume an aggregated (or granular) microstructure [Yonezawa and Co-
hen 1983] are not suitable for predicting the effective wave speed of this composite. The low-frequency
wave speed in this composite can be better predicted by a model that assumes an isolated arrangement
of fibers [Kim 2004]. Every micromechanical model assumes a certain form of the microstructure and
as a natural result every model has its utility for the microstructure that it assumes. A blind comparison
between theories and experimental data, without considering the microstructure of the sample under
examination, will lead to a meaningless conclusion. The attenuation factors predicted by the EMTs are
in good agreement with the experimental results.

5. Conclusion

Two effective medium models [Kim 1996; Kanaun and Levin 2003] are formulated in a consistent math-
ematical procedure. The major difference between these two models lies in how the continuous matrix
phase is treated. In spite of the apparently significant difference in these formulations (especially in their
averaging schemes), the numerical results show minor discrepancies for all four distinctive composites
and in frequencies up to k1a = 10. This leads to the important conclusion that in the effective medium
formulation the self-consistent embedding and the use of the fields in the inclusion obtained by solving
the scattering problem in the effective medium are the core operations in which the effective properties
are actually determined. Therefore, how the matrix phase is treated must be of minor importance and
so could be details as to the representative volume for the matrix. This conclusion is fully supported by
two composites with extremely different constituents properties. Deviations appear at the frequencies
of inclusion resonances possibly due to their excessive motion. Both models are very efficient compu-
tationally compared to other models [Varadan et al. 1985] and take about the same computational cost.
In summary, the recent formulation (the EMT-2) of [Kanaun and Levin 2003] does not seem to make
an appreciable difference versus the earlier formulation (the EMT-1) of [Kim 1996]. This is analogous
to the coincidence between different EMTs in the static limit. The same facts found for electromagnetic
waves will be reported elsewhere. As to the question of which model is preferable, it is, of course, up to
the reader’s discretion to choose one between the two.
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Appendix: The EMT-1 in the long wavelength limit

Let us first consider scattering of a plane SH wave (uin
= exp(ik1x)) by a single elastic circular inclusion

having a radius a embedded in an infinite elastic matrix. The scattered and refracted fields may be
expressed by an infinite series of normal modes as [Eringen and Suhubi 1975]

usc
=

∞∑
n=0

An Hn(k1r) cos nθ, (A.1)

ure
=

∞∑
n=0

Bn Jn(k2r) cos nθ, (A.2)

where Jn(z) is the Bessel function of order n and Hn(z) the Hankel function of the first kind of order
n. Imposing the boundary conditions (continuities of axial displacement and axial shear stress), the
scattering coefficients are obtained:

An =−inεn
pJ ′n(ξ1)Jn(ξ2)− Jn(ξ1)J ′n(ξ2)

pH ′n(ξ1)Jn(ξ2)− Hn(ξ1)J ′n(ξ2)
, (A.3)

where εn is the Neumann factor, p = µ1k1/µ2k2, ξ1 = k1a, and ξ2 = k2a. In the long wavelength limit
(ξ1, ξ2→ 0), the scattering coefficients are

A0 =−
iπ
4

(
ρ2
ρ1
− 1

)
ξ 2

1 + O(ξ 4
1 ), (A.4)

An =
iπ

4nn!(n− 1)!

(
µ2−µ1
µ2+µ1

)
ξ 2n

1 + O(ξ 2n+1
1 ln ξ1), n ≥ 1. (A.5)

Hence, the first two terms in Equation (A.1) with A0 and A1 are the leading terms in this limit. The
forward scattering amplitude is approximated as

f p(ki
1)≈ A0− i A1. (A.6)

There are two ways to derive the quasistatic effective properties: one using (33) and the other using
(34). The second way, which is simpler and is essentially the method of Berryman [1979; 1980], is
adopted. Consider scattering by the representative volumes for the matrix (�m) and inclusion (�i ). It
is first assumed that these volumes are circular and have radii of a1 and a2. Using (A.4)–(A.6) together
with (34), the following two formulae are obtained:∑

p=1,2

vp

(
µp − µ̄

µp + µ̄

)
(k̄ap)

2
= 0,

∑
p=1,2

vp

(
ρp

ρ̄
− 1

)
(k̄ap)

2
= 0. (A.7)

Note that the overbar indicates that the scattering occurs in the effective medium. It is obvious that in
order for these formulae to be meaningful and consistent, the size of the matrix inclusion should be
equal to that of the original inclusions, so a1 = a2. This means that in the EMT-1 the size of the original
inclusion should be taken as the unit volume for all constituents in the composite. Then, one obtains the
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effective static properties:∑
p=1,2

vp

(
µp − µ̄

µp + µ̄

)
= 0,

∑
p=1,2

vp

(
ρp

ρ̄
− 1

)
= 0. (A.8)
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