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INFLUENCE OF DIFFERENT INTEGRAL KERNELS ON THE SOLUTIONS OF
BOUNDARY INTEGRAL EQUATIONS IN PLANE ELASTICITY

Y. Z. CHEN, X. Y. LIN AND Z. X. WANG

A modified integral kernel is introduced for boundary integral equations (BIE). The formulation for the
modified kernel is based on a representation in pure deformable form of the fundamental solution of
concentrated forces. It is found that the modified kernel can be applied to any case, even if the loadings
on the contour are not in equilibrium in an exterior boundary value problem. The influence of different
integral kernels on solutions of BIE, particularly in the Neumann problem and Dirichlet problem, are
addressed. Numerical examples are presented to prove the assertion proposed. Properties of solutions
from the usage of the modified integral kernel are studied in detail. The influence of different integral
kernels on the degenerate scale are discussed and numerical results are provided. It is found that the
influence of the constants involved in the integral kernels is significant. For the cases of the elliptic and
rectangular contour, the influence on the degenerate scale is studied with numerical results.

1. Introduction

The boundary integral equation (BIE) is widely used in elasticity. The fundamentals of BIE are found
in [Rizzo 1967; Cruse 1969; Jaswon and Symm 1977; Brebbia et al. 1984]. Recent development of the
boundary element method is summarized in [Cheng and Cheng 2005].

There are still some problems in the study of BIEs. The first is the regularity condition in the ex-
terior boundary value problem (BVP) [Brebbia et al. 1984]. Generally, Betti’s reciprocal theorem or
the Somigliana identity is used for the formulation of the BIE. In the exterior BVP, if a mutual work
difference integral (MWDI) on a sufficient large circle vanishes, the regularity condition is satisfied.
However, this condition has not been studied clearly. Once the BIE in plane elasticity is formulated for
the exterior region, one must meet the MWDI (the terms D∗1i(C R)(ξ) and D∗2i(C R)(ξ) in Equations (8) and
(17)). If the MWDI vanishes, the regularity condition at infinity is satisfied. In fact, the MWDI is the
difference of two works: the work done by the fundamental field on the physical stress field and vice
versa. Therefore, the properties of the MWDI depend on the representation of the fundamental field and
the properties of the physical stress field. A general expression for the MWDI from the two stress fields
was obtained in [Chen 2003]. This will be the theoretical basis of the present study.

In fact, it has been proved that if the loadings applied on the contour in the exterior BVP are not in
equilibrium, instead of using the usual integral kernel U∗2i j (ξ, x) (see (14)) one should use a modified one
U∗1i j (ξ, x) (see (6)). The two integral kernels have a difference of a constant. Clearly, the two different
integral kernels will influence the properties of solutions obtained.

Keywords: boundary integral equation, exterior boundary value problem, regularity condition, numerical method, degenerate
scale problem.
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The second problem in this field is the degenerate scale problem [He et al. 1996; Chen et al. 2002; 2005;
Vodicka and Mantic 2008; Chen and Shen 2007]. In the degenerate scale problem, an improper solution
in the Dirichlet problem for BIE exists if the used size is near the critical value. Clearly, the degenerate
scale for the individual problem must depend on the used integral kernel, (for example, U∗1i j (ξ, x) or
U∗2i j (ξ, x)). This problem has also not been investigated in detail.

This paper complements the usual integral kernel U∗2i j (ξ, x) (see (14)) with a modified one, U∗1i j (ξ, x)
(see (6)). The formulation for the modified kernel is based on a representation in pure deformable form
of the fundamental solution of concentrated forces. The two kernels U∗1i j (ξ, x) and U∗2i j (ξ, x) have a
difference of a constant. It is found that U∗1i j (ξ, x) can be used to any case, even if the loadings on
the contour are not in equilibrium in an exterior BVP. The influence of the different integral kernels on
solutions of the BIE, particularly in the Neumann problem and the Dirichlet problem, are addressed. The
properties of solution using U∗1i j (ξ, x) are discussed in detail. Numerical examples are presented to prove
the assertion proposed. The influence of the used integral kernels on the degenerate scale is discussed
and numerical results are provided. It is found that the influence of the constant in the integral kernels
on the degenerate scale is significant. For the cases of elliptic and rectangular contours, the influence is
studied with numerical results.

2. Influence of different kernels on the solutions of exterior BIE

2.1. Formulation of kernels U∗1
i j (ξ, x) and U∗2

i j (ξ, x) and the relevant BIEs. The following analysis
depends on the complex variable function method in plane elasticity [Muskhelishvili 1953]. In this
method, the stresses (σx , σy, σxy), the resultant forces (X, Y ), and the displacements (u, v) are expressed
in terms of the two complex potentials φ(z) and ψ(z) such that

σx + σy = 4 Reφ′(z), σy − σx + 2iσxy = 2[z̄φ′′(z)+ψ ′(z)], (1)

f =−Y + i X = φ(z)+ zφ′(z)+ψ(z), (2)

2G(u+ iv)= κφ(z)− zφ′(z)−ψ(z), (3)

where z = x + iy denotes a complex variable, G is the shear modulus of elasticity, κ = (3− ν)/(1+ ν)
for the plane stress problems, κ = 3− 4ν for the plane strain problems, and ν is Poisson’s ratio. In
the present study, the plane strain condition is assumed throughout. In the following, we occasionally
rewrite the displacements u and v as u1 and u2; σx , σy , and σxy as σ11, σ22, and σ12; and x and y as x1

and x2, respectively.
It is emphasized that we only consider the exterior BVP. Also, the remote tractions σ∞x , σ∞y , and σ∞xy

are assumed to tend to zero.
The formulation of the BIE is introduced below. If the concentrated forces (Px , Py) are applied at the

point z = t (Figure 1a), the relevant complex potentials are defined by

φ(α)(z)= F ln(z− t), ψ(α)(z)=−κ F̄ ln(z− t)− Ft̄
z−t

(4)

(see [Muskhelishvili 1953]), where

F =−
Px + i Py

2π(κ + 1)
. (5)
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In (4), the subscript (α) denotes the fundamental solution initiated by concentrated forces.
Note that the relevant complex potentials shown in (4) are expressed in a pure deformable form [Chen

and Lin 2008].
A direct substitution from the complex potentials shown in (4) in the proper place will lead to the

following kernel [Chen and Lin 2008]:

U∗1i j (ξ, x)=
1

8π(1− ν)G

(
−(3− 4ν) ln(r)δi j + r,ir, j − 0.5δi j

)
, (6)

which is used in a BIE mentioned below.
Without losing generality, we can introduce the BIE for the region between the elliptic contour 0 and

a large circle CR (Figure 1b). The observation point ξ is assumed on the elliptic contour ξ ∈ 0. For the
plane strain case, the suggested BIE can be written as follows [Brebbia et al. 1984]:

1
2 ui (ξ)+

∫
0

P∗i j (ξ, x)u j (x)ds(x)=
∫
0

U∗1i j (ξ, x)p j (x)ds(x)+ D∗1i(CR)(ξ) (i = 1, 2, ξ ∈ 0), (7)

where D∗1i(CR)(ξ) is a MWDI on a large circle CR and is defined by

D∗1i(CR)(ξ)=−

∫
CR

P∗i j (ξ, x)u j (x)ds(x)+
∫

CR
U∗1i j (ξ, x)p j (x)ds(x) (i = 1, 2, ξ ∈ 0). (8)

In (8), CR denotes the sufficient large circle with radius R.
In addition, the kernel P∗i j (ξ, x) is defined by [Brebbia et al. 1984]

P∗i j (ξ, x)=−
1

4π(1− ν)
1
r
{
(r,1n1+ r,2n2)

(
(1− 2ν)δi j + 2r,ir, j

)
+ (1− 2v)(nir, j − n jr,i )

}
, (9)

where the Kronecker delta δi j is defined as δi j = 1 for i = j , δi j = 0 for i 6= j , and

r,1 =
x1−ξ1

r
= cosα, r,2 =

x2−ξ2
r
= sinα, n1 =− sinβ, n2 = cosβ, (10)

where angles α and β are indicated in Figure 1.
Even the physical field is caused by a nonequilibrium force on the elliptic contour. We have proved

in [Chen and Lin 2008] that D∗1i(CR)(ξ)= 0 (i = 1, 2):

D∗1i(CR)(ξ)=−

∫
CR

P∗i j (ξ, x)u j (x)ds(x)+
∫

CR
U∗1i j (ξ, x)p j (x)ds(x)= 0 (i = 1, 2, ξ ∈ 0). (11)

Therefore, (7) can be reduced to

1
2 ui (ξ)+

∫
0

P∗i j (ξ, x)u j (x)ds(x)=
∫
0

U∗1i j (ξ, x)p j (x)ds(x) (i = 1, 2, ξ ∈ 0). (12)

Note that the displacements u j (x) on the left side of (12) should be expressed in pure deformable form.
In addition, if the same concentrated forces (Px , Py) are applied at the point z = t (Figure 1a), the

relevant complex potentials can be defined alternatively by [Muskhelishvili 1953]

φ(α)(z)= F ln(z− t), ψ(α)(z)=−κ F̄ ln(z− t)− Ft̄
z−t
+ F̄ . (13)

The complex potentials shown in (13) differ from those in (4) by a constant F̄ in the function ψ(α)(z).



682 Y. Z. CHEN, X. Y. LIN AND Z. X. WANG

Comparing (4) with (13), an additional pair of complex potentials φ(z)= 0 and ψ(z)= F̄ is presented
in (13). Clearly, this pair causes no stresses anywhere, and represents a rigid translation. Therefore, it is
said that the complex potentials in (13) are expressed in an impure deformable form.

A direct substitution from the complex potentials in (13) in the proper place will lead to the following
kernel [Chen and Lin 2008]:

U∗2i j (ξ, x)=
1

8π(1− ν)G

(
−(3− 4ν) ln(r)δi j + r,ir, j

)
. (14)

The two kernels have the relation

U∗2i j (ξ, x)−U∗1i j (ξ, x)=
1

16π(1− ν)G
δi j . (15)

The kernel U∗2i j (ξ, x) is found in [Brebbia et al. 1984]. Similarly, from the kernel U∗2i j (ξ, x) in (14),
we obtain the BIE

1
2 ui (ξ)+

∫
0

P∗i j (ξ, x)u j (x)ds(x)=
∫
0

U∗2i j (ξ, x)p j (x)ds(x)+ D∗2i(CR)(ξ) (i = 1, 2, ξ ∈ 0), (16)

where D∗2i(CR)(ξ) is a MWDI on a large circle and is defined by

D∗2i(CR)(ξ)=−

∫
CR

P∗i j (ξ, x)u j (x)ds(x)+
∫

CR
U∗2i j (ξ, x)p j (x)ds(x) (i = 1, 2, ξ ∈ 0). (17)

It was proved in [Chen and Lin 2008] that when the physical field is caused by a nonequilibrium force
on the elliptic contour, we have D∗2i(CR)(ξ) 6= 0 for i = 1, 2 (so the BIE (16) cannot be reduced further),
while in the opposite case — when the physical field is caused by an equilibrium force on the elliptic
contour — we have D∗2i(CR)(ξ)= 0 for i = 1, 2, and then the BIE (16) can be reduced to the form

1
2 ui (ξ)+

∫
0

P∗i j (ξ, x)u j (x)ds(x)=
∫
0

U∗2i j (ξ, x)p j (x)ds(x) (i = 1, 2, ξ ∈ 0). (18)

Note that in the exterior BVP, the BIE using the kernel U∗1i j (ξ, x), shown by (6), can always be used, even
if the applied loadings on the elliptic contour are not in equilibrium. However, in the exterior BVP, the
BIE using U∗2i j (ξ, x), shown by (14), can only be used when the applied loadings on the elliptic contour
are in equilibrium.

2.2. General properties of the solutions of BIEs. As claimed previously, the kernel U∗1i j (ξ, x) can al-
ways be used, without regard to the loading condition on the elliptic contour. Therefore, for the exterior
BVP we suggest the BIE (12), which we repeat here for convenience:

1
2 ui (ξ)+

∫
0

P∗i j (ξ, x)u j (x)ds(x)=
∫
0

U∗1i j (ξ, x)p j (x)ds(x) (i = 1, 2, ξ ∈ 0). (19)

The problem of the equivalence of the solution of the BIE and an elasticity solution is studied below.
As stated previously, the physical stress field is assumed in pure deformable form. Therefore, if the
functions ui (ξ), u j (x), and p j (x) in (12) are boundary values of an elasticity solution expressed in pure
deformable form, these functions must satisfy the BIE in (12); if ui (ξ), u j (x), and p j (x) in (12) are
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Figure 1. (a) A concentrated force applied at point z = t , or the loading condition for
the α-field. (b) Some loadings having resultant forces applied on the elliptic contour, or
the loading condition for the β-field or physical stress field. (c) A rectangular notch.

boundary values of an elasticity solution expressed in an impure deformable form, they must not satisfy
the BIE shown by (12).

This situation can be seen from the following example. It is known that there are three particular
elasticity solutions:{

u(1)1

u(1)2

}
=

{
b(1)1

b(1)2

}
=

{
1
0

}
, σ

(1)
i j = 0 and p(1)i = 0,{

u(2)1

u(2)2

}
=

{
b(2)1

b(2)2

}
=

{
0
1

}
, σ

(2)
i j = 0 and p(2)i = 0,{

u(3)1

u(3)2

}
=

{
b(3)1

b(3)2

}
=

{
−yt

xt

}
, σ

(3)
i j = 0 and p(3)i = 0 (t = xt + iyt ∈ 0).

(20)

Clearly, the stress fields shown by (20) represent translations or rotation for the body. It has been proved
that substituting those displacements on the contour into the left-hand term of (12) yields

1
2 ui (ξ)+

∫
0

P∗i j (ξ, x)u j (x)ds(x)
∣∣∣∣
ui→b(k)i

= b(k)i 6= 0 (k = 1, 2, 3). (21)

Substituting the tractions p j (x) on the contour shown by (20) into right-hand term of (12) yields∫
0

U∗1i j (ξ, x)p j (x)ds(x)
∣∣∣∣

p j→p(k)j =0
= 0. (22)

Comparing (21) and (22), which are the left and right sides of (12) respectively, proves the assertion.
In the Neumann problem, the boundary tractions p̃ j (x) ( j = 1, 2) are given beforehand. Therefore,

in the case of the kernel U∗1i j (ξ, x), from (12) we can obtain the BIE

1
2 ui (ξ)+

∫
0

P∗i j (ξ, x)u j (x)ds(x)= gi (ξ) (i = 1, 2, ξ ∈ 0), (23)



684 Y. Z. CHEN, X. Y. LIN AND Z. X. WANG

where

gi (ξ)=

∫
0

U∗1i j (ξ, x) p̃ j (x)ds(x) (i = 1, 2, ξ ∈ 0). (24)

In (24), p̃ j (x) ( j = 1, 2) are the boundary tractions which are given beforehand.
It is known that the BIE in (23) possesses the invertible property; that is, it can be solved for any

right-hand term gi (ξ). However, the obtained u j (x) ( j = 1, 2) belong to some boundary values of
displacements in an elasticity solution expressed in pure deformable form.

Similarly, in the Dirichlet problem, the boundary displacements ũ j (x) ( j = 1, 2) are given beforehand.
Therefore, in the case of the kernel U∗1i j (ξ, x), from (12) we can obtain the BIE∫

0

U∗1i j (ξ, x)p j (x)ds(x)= hi (ξ) (i = 1, 2, ξ ∈ 0), (25)

where

hi (ξ)=
1
2 ũi (ξ)+

∫
0

P∗i j (ξ, x)ũ j (x)ds(x) (i = 1, 2, ξ ∈ 0). (26)

In (26), ũi (ξ) (i = 1, 2) and ũ j (x) ( j = 1, 2) are the boundary displacements, which are given beforehand.
It is known that the BIE shown by (25) processes the invertible property only if the degenerate scale

has not been reached [Vodicka and Mantic 2008]. In other words, the BIE shown by (25) can be solved
for any right-hand term hi (ξ) only if the degenerate scale has not been reached. However, the obtained
p j (x) ( j = 1, 2) belong to some boundary values of tractions in an elasticity solution. Generally, those
tractions, p j (x) ( j = 1, 2), may have a resultant force along the contour.

2.3. Numerical investigation of the kernels U∗1
i j (ξ, x) and U∗2

i j (ξ, x) in the case of nonequilibrium
loadings on the contour. In order to examine the behavior of the kernels U∗1i j (ξ, x) and U∗2i j (ξ, x), the
relevant BIEs are repeated:

1
2 ui (ξ)+

∫
0

P∗i j (ξ, x)u j (x)ds(x)=
∫
0

U∗1i j (ξ, x)p j (x)ds(x) (i = 1, 2, ξ ∈ 0), (27)

1
2 ui (ξ)+

∫
0

P∗i j (ξ, x)u j (x)ds(x)=
∫
0

U∗2i j (ξ, x)p j (x)ds(x) (i = 1, 2, ξ ∈ 0). (28)

In all the problems studied subsequently, one knows a closed-form solution beforehand. Substituting
the results from the known solution, say for p j (x) ( j = 1, 2), into the right-hand term of (12) will yield
a BIE for u j (x) ( j = 1, 2). The displacements u j (x) ( j = 1, 2) can be obtained from the BIE, and then
compared with those from the closed-form solution. In the solution of the BIE, the scale used is assumed
to be sufficient large to avoid the used scale coinciding with the degenerate scale.

In the examples below, the ellipse has major semiaxis a and minor semiaxis b (Figure 1b). The plane
strain condition and ν = 0.3 are assumed. The elliptic contour is divided into 120 intervals. For the BIE
solution, constant displacement and traction are assumed for each interval.

Example 1. We propose the complex potentials

φ(z)= q0 A ln z, ψ(z)=−κq0 Ā ln z, where A = A1+ i A2, (29)



INTEGRAL KERNELS AND BOUNDARY INTEGRAL EQUATIONS IN PLANE ELASTICITY 685

where q0 is a unit loading. From the complex potentials shown by (29) and (2), it can be seen that the
following resultant forces are applied:

{X + iY }re =−2π(κ + 1)q0 A, (30)

on the contour. In this case, the exact solution for the displacements and stresses on the boundary contour
can be easily obtained from (1), (3) and (29).

In this example, the examination is performed from the viewpoint of the Neumann problem. The
loadings applied on the contour, p j ( j = 1, 2), are computed from the complex potentials in (29),
and are then substituted into the right-hand term of (18). Standard numerical techniques are used to
solve (18), and the boundary displacements u j ( j = 1, 2) can be evaluated immediately. The calculated
boundary displacements using the kernels U∗1i j (ξ, x) and U∗2i j (ξ, x), and those from the exact solution
are expressed by

u1 =
q0

2G(1+ ν)
f1(θ), u2 =

q0

2G(1+ ν)
f2(θ), (at the points x = a cos θ, y = b cos θ). (31)

For the case of b/a = 0.25, a = 40, A1 = 1, and A2 = 0.5, the results calculated using the kernels
U∗1i j (ξ, x) and U∗2i j (ξ, x), and the exact results from the closed-form solution are shown in Figure 2,
where f1(θ)ex and f2(θ)ex are from the exact solution, or from the complex potentials (29) directly;
f1(θ)∗1 and f2(θ)∗1 are from the usage of the kernels U∗1i j (ξ, x); and f1(θ)∗2 and f2(θ)∗2 are from the
usage of the kernels U∗2i j (ξ, x).

It is found from Figure 2 that the results computed for f1(θ)∗1 and f2(θ)∗1 using the kernel U∗1i j (ξ, x)
are very accurate, coinciding with the results from the exact solution (denoted by f1(θ)ex and f2(θ)ex).
However, the results computed for f1(θ)∗2 and f2(θ)∗2 using the kernel U∗2i j (ξ, x) are very different from

0 30 60 90 120 150 180 210 240 270 300 330 360

2

4

6

8

10

12

14

16

18

a=40 A
2
=0.5

f
2
(θ)

*2

f
2
(θ)

*1

f
2
(θ)

ex

f
1
(θ)

*2

f
1
(θ)

*1

N
o
n
-d

im
e
n
s
io

n
a
l 
d
is

p
la

c
e
m

e
n
ts

θ (degree)

f
1
(θ)

ex

A
1
=1b/a=0.25

Figure 2. Nondimensional displacements for an exterior problem with nonequilibrium
loadings on contour: f1(θ)ex and f2(θ)ex from the exact solution, f1(θ)∗1 and f2(θ)∗1

from the kernel U∗1i j (ξ, x), from f1(θ)∗2 and f2(θ)∗2 using U∗2i j (ξ, x), with b/a = 0.25,
a = 40, A1 = 1, and A2 = 0.5 in (29) (see Figure 1b and (31)).
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Figure 3. Nondimensional displacements for an exterior problem with nonequilibrium
loadings on contour: f1(θ)ex and f2(θ)ex from the exact solution, f1(θ)∗1 and f2(θ)∗1

from the kernel U∗1i j (ξ, x), and f1(θ)∗2 and f2(θ)∗2 from U∗2i j (ξ, x), with b/a = 0.25,
a = 4, A1 = 1, and A2 = 0.5 in (29) (see Figure 1b and (31)).

those from the exact solution. It is also found that the results computed for f1(θ)∗2 and f2(θ)∗2 have a
constant difference from f1(θ)ex and f2(θ)ex.

Similarly, in the case of b/a = 0.25, a = 4, A1 = 1, and A2 = 0.5, the results calculated using
the kernels U∗1i j (ξ, x) and U∗2i j (ξ, x) and the exact results from the closed-form solution are shown in
Figure 3. Similar phenomena as in the previous case can be observed.

Example 2. All the conditions used in Example 1 are still used in this example. However, in this
example, the examination is performed from the viewpoint of the Dirichlet problem. The displacements
on the contour, u j ( j = 1, 2), are computed from the complex potentials shown by (29), and the obtained
displacements u j ( j = 1, 2) are substituted into the left-hand term of (12) (or (18)). Standard numerical
technique is used to solve (12) (or (18)), and the boundary tractions p j ( j = 1, 2) can be evaluated
immediately. The calculated boundary tractions are expressed by

p1 = q0g1(θ), p2 = q0g2(θ) (at the points x = a cos θ, x = b cos θ). (32)

For the case of b/a = 0.25, a = 40, A1 = 1, and A2 = 0.5, the results calculated using the kernels
U∗1i j (ξ, x) and U∗2i j (ξ, x), and the exact results from the closed-form solution are shown in Figure 4,
where g1(θ)ex and g2(θ)ex are from exact solution, or from the complex potentials (29) directly, g1(θ)∗1

and g2(θ)∗1 are from the usage of the kernels U∗1i j (ξ, x), and g1(θ)∗2 and g2(θ)∗2 are from the usage the
kernels U∗2i j (ξ, x).

It is found from Figure 4 that the results computed for g1(θ)∗1 and g2(θ)∗1 using the kernel U∗1i j (ξ, x)
are very accurate, which coincides with the results from the exact solution (denoted by g1(θ)ex and
g2(θ)ex). However, the results computed for g1(θ)∗2 and g2(θ)∗2 using the kernel U∗2i j (ξ, x) are very
different from those from the exact solution (denoted by g1(θ)ex and g2(θ)ex).
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Figure 4. Nondimensional tractions for an exterior problem with nonequilibrium load-
ings on contour: g1(θ)ex and g2(θ)ex from the exact solution, g1(θ)∗1 and g2(θ)∗1 from
the kernel U∗1i j (ξ, x), and g1(θ)∗2 and g2(θ)∗2 from U∗2i j (ξ, x), with b/a = 0.25, a = 40,
A1 = 1, and A2 = 0.5 in (29) (see Figure 1b and (32)).

Similarly, in the case of b/a = 0.25, a = 4, A1 = 1, and A2 = 0.5, the results calculated using
the kernels U∗1i j (ξ, x) and U∗2i j (ξ, x) and the exact results from the closed-form solution are shown in
Figure 5. Similar results as in the previous case have been found. Particularly, in this case, the deviation
of the result using the kernel U∗2i j (ξ, x) can reach a higher value. For example, in the case of θ = π
we have g1(θ)ex =−1.195 from the exact solution, g1(θ)∗1 =−1.200 using the kernel U∗1i j (ξ, x), and
g1(θ)∗2 =−2.842 using the kernel U∗2i j (ξ, x); see Figure 5.
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Figure 5. Nondimensional tractions for an exterior problem with nonequilibrium load-
ings on contour: g1(θ)ex and g2(θ)ex from the exact solution, g1(θ)∗1 and g2(θ)∗1 from
the kernel U∗1i j (ξ, x), and g1(θ)∗2 and g2(θ)∗2 from U∗2i j (ξ, x), with b/a = 0.25, a = 4,
A1 = 1, and A2 = 0.5 in (29) (see Figure 1b and (32)).
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2.4. Numerical investigation of the kernels U∗1
i j (ξ, x) and U∗2

i j (ξ, x) in the case of equilibrium load-
ings on the contour. As mentioned previously, in the case of equilibrium loadings on the contour, the
solutions obtained from the two kinds of BIE shown in (12) and (18) must be the same. This conclusion
is also examined in the following examples.

Example 3. In this example, we propose the complex potentials

φ(z)= q0
A
z
, ψ(z)= q0

B
z
, where A = A1+ i A2, B = B1+ i B2, (33)

where q0 is a unit loading. From the complex potentials in (33) we see that the loadings applied on the
contour must be in equilibrium [Muskhelishvili 1953].

Similarly, in the Neumann problem, the calculated boundary displacements using the kernel U∗1i j (ξ, x)
or U∗2i j (ξ, x) and those from the exact solution are expressed by

u1 =
q0

2G(1+ ν)
f1(θ), u2 =

q0

2G(1+ ν)
f2(θ) (at the points x = a cos θ, x = b cos θ). (34)

For the case of b/a = 0.25, a = 40, A1 = 1, A2 = 0.5, B1 = 1, and B2 = 0.5 the calculated results using
the kernels U∗1i j (ξ, x) and U∗2i j (ξ, x) and the exact results from the closed-form solution are shown in
Figure 6, where f1(θ)ex and f2(θ)ex are from exact solution, or from the complex potentials (33) directly;
f1(θ)∗1 and f2(θ)∗1 are from the usage of the kernels U∗1i j (ξ, x), while f1(θ)∗2 and f2(θ)∗2 are from the
usage of U∗2i j (ξ, x).

It is found from Figure 6 that the results computed using the kernel U∗1i j (ξ, x) or U∗2i j (ξ, x) and those
from the exact solution are merged into the same curves.

Example 4. All the conditions used in Example 3 are still used in this example. However, in this example,
the examination is performed from the viewpoint of the Dirichlet problem. The displacements on the
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Figure 6. Nondimensional displacements for an exterior problem with nonequilibrium
loadings on contour: f1(θ)ex and f2(θ)ex from the exact solution, f1(θ)∗1 and f2(θ)∗1

from the kernel U∗1i j (ξ, x), and f1(θ)∗2, and f2(θ)∗2 from U∗2i j (ξ, x), with b/a = 0.25,
a = 4, A1 = 1, A2 = 0.5, B1 = 1, and B2 = 0.5 in (33) (see Figure 1b and (31)).
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Figure 7. Nondimensional tractions for an exterior problem with nonequilibrium load-
ings on contour: g1(θ)ex and g2(θ)ex from the exact solution, g1(θ)∗1 and g2(θ)∗1 from
the kernel U∗1i j (ξ, x), and g1(θ)∗2, and g2(θ)∗2 from U∗2i j (ξ, x), with b/a = 0.25, a = 4,
A1 = 1, A2 = 0.5, B1 = 1, and B2 = 0.5 in (33) (see Figure 1b and (32)).

contour, u j ( j = 1, 2), are computed from the complex potentials in (33), and the obtained displacements
u j ( j = 1, 2) are substituted into the left-hand term of (12) (or (18)). The calculated boundary tractions
are expressed by

p1 = q0g1(θ), p2 = q0g2(θ) (at the points x = a cos θ, x = b cos θ). (35)

For the case of b/a= 0.25, a= 40, A1= 1, A2= 0.5, B1= 1, and B2= 0.5 the results calculated using
the kernels U∗1i j (ξ, x) and U∗2i j (ξ, x) and the exact results from the closed-form solution are shown in
Figure 7, where g1(θ)ex and g2(θ)ex are from exact solution, or from the complex potentials (33) directly;
g1(θ)∗1 and g2(θ)∗1 are from the usage of the kernels U∗1i j (ξ, x), while g1(θ)∗2 and g2(θ)∗2 are from the
usage of U∗2i j (ξ, x).

It is found from Figure 7 that the results computed from the usage of kernel U∗1i j (ξ, x) or U∗2i j (ξ, x)
and those from the exact solution are merged into the same curves.

3. Numerical evaluations for degenerate scale problems for different kernels U∗g
i j (ξ, x)

Instead of the two kernels U∗1i j (ξ, x) and U∗2i j (ξ, x), a kernel U∗gi j (ξ, x) in a more general form is defined
as

U∗gi j (ξ, x)=
1

8π(1− ν)G

(
−(3− 4ν) ln(r)δi j + r,ir, j − sδi j

)
, (36)

where s can take any real value.
Clearly, a homogeneous equation for the degenerate scale problem using the kernel U∗gi j (ξ, x) can be

formulated: ∫
0d

U∗gi j (ξ, x)p j (x)ds(x)= 0 (i = 1, 2, ξ ∈ 0). (37)
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In the formulation, one wants to find a particular size such that (37) has a nontrivial solution for p j (x),
or p j (x) 6= 0. By using relevant solutions in the normal scale problem, the degenerate scale problem can
be solved [Chen et al. 2005; Vodicka and Mantic 2008].

In [Chen et al. 2009], after using two fundamental solutions in the normal scale, the degenerate scale
problem can be solved. In this paper, the method suggested in [Chen et al. 2009] is used to solve the
problems in the next two examples. Clearly, the degenerate scale must depend on the assumed constant
s in (36).

Example 5. In the example, the ellipse has major semiaxis a and minor semiaxis b (Figure 1b). In
computation, the plane strain condition and ν = 0.3 are assumed. The elliptic contour is divided into
120 intervals. For the BIE solution, the constant displacement and traction are assumed for each interval.
We vary s from −0.5 to 1.5 in steps of 0.5, and b/a from 0.1 to 1.0 in steps of 0.1, and list in Table 1
the two degenerate scales

ad1 = f1(s, b/a), ad2 = f2(s, b/a). (38)

We see that as the value of s increases from −0.5 to 1.5, the degenerate scale becomes smaller and
smaller.

Example 6. In the example, the rectangular notch has width 2a and height 2b (Figure 1c). For the same
ranges of s and b/a as in the previous example, we list in Table 2 the two degenerate scales

ad1 = g1(s, b/a), ad2 = g2(s, b/a). (39)

Again, as s increases from −0.5 to 1.5, the degenerate scale becomes smaller and smaller.

ad1 = f1(s, b/a)

b/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
s
−0.5 2.52541 2.41447 2.30954 2.21105 2.11897 2.03305 1.95295 1.87824 1.80853 1.74340

0 1.91291 1.82888 1.74940 1.67479 1.60504 1.53997 1.47929 1.42270 1.36990 1.32057
0.5 1.44896 1.38531 1.32511 1.26860 1.21577 1.16647 1.12051 1.07765 1.03765 1.00028
1 1.09754 1.04932 1.00372 0.96092 0.92090 0.88356 0.84875 0.81628 0.78598 0.75768
1.5 0.83135 0.79483 0.76029 0.72786 0.69755 0.66927 0.64290 0.61830 0.59535 0.57392

ad2 = f2(s, b/a)

b/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
s
−0.5 3.97868 3.49681 3.11489 2.80545 2.55005 2.33597 2.15411 1.99784 1.86219 1.74340

0 3.01371 2.64871 2.35942 2.12503 1.93158 1.76942 1.63166 1.51329 1.41054 1.32057
0.5 2.28278 2.00631 1.78718 1.60963 1.46310 1.34027 1.23593 1.14627 1.06844 1.00028
1 1.72913 1.51971 1.35373 1.21924 1.10825 1.01521 0.93617 0.86826 0.80930 0.75768
1.5 1.30975 1.15112 1.02540 0.92353 0.83946 0.76899 0.70912 0.65767 0.61302 0.57392

Table 1. The degenerate scale ad1= f1(s, b/a) and ad2= f2(s, b/a) for an ellipse notch
(see (38) and Figure 1b).
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ad1 = g1(s, b/a)

b/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
s
−0.5 2.40472 2.22301 2.07631 1.95320 1.84796 1.75521 1.67343 1.60015 1.53398 1.47394

0 1.82149 1.68385 1.57273 1.47948 1.39977 1.32951 1.26756 1.21206 1.16194 1.11646
0.5 1.37971 1.27546 1.19129 1.12066 1.06028 1.00706 0.96014 0.91809 0.88013 0.84568
1 1.04508 0.96612 0.90236 0.84886 0.80312 0.76281 0.72727 0.69542 0.66666 0.64057
1.5 0.79162 0.73180 0.68351 0.64298 0.60834 0.57780 0.55088 0.52676 0.50498 0.48521

ad2 = g2(s, b/a)

b/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
s
−0.5 3.61122 3.04801 2.66064 2.37149 2.14534 1.96172 1.80951 1.68074 1.57017 1.47394

0 2.73537 2.30876 2.01534 1.79632 1.62502 1.48593 1.37064 1.27310 1.18935 1.11646
0.5 2.07195 1.74881 1.52655 1.36065 1.23090 1.12554 1.03821 0.96433 0.90089 0.84568
1 1.56943 1.32466 1.15631 1.03065 0.93236 0.85256 0.78641 0.73045 0.68239 0.64057
1.5 1.18879 1.00338 0.87587 0.78068 0.70623 0.64578 0.59568 0.55329 0.51689 0.48521

Table 2. The degenerate scale ad1 = g1(d, b/a) and ad2 = g2(d, b/a) for a rectangular
notch (see (39) and Figure 1c).

4. Conclusions

From the our theoretical analysis and numerical examples we get the following conclusions. The kernel
U∗1i j (ξ, x) can be used for arbitrary loading on the contour. However, the kernel U∗2i j (ξ, x) can only be
used when the loading on the contour is in equilibrium. This is an effective way to examine a suggested
boundary integral equation (BIE) by using a known solution, particularly through a solution expressed
in complex potentials. In this case, since the solution is known beforehand, one can easily judge whether
the formulation used in the computation is correct or not.

In the case of using the kernel U∗1i j (ξ, x), the properties of solutions of the BIE are clearly studied. If
the degenerate scale has not been reached, the Dirichlet problem has a unique solution. Generally, the
computed tractions on the boundary may result in resultant forces along the contour. In the Neumann
problem, the computed displacements must belong to the boundary values of the displacement field
expressed in pure deformable form.

In the degenerate scale problem, the constant s involved in the integral kernel U∗gi j (ξ, x) has a signifi-
cant influence to the final results of the degenerate scale.
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