
Journal of

Mechanics of
Materials and Structures

APPLICATION OF THE KIRCHHOFF HYPOTHESIS
TO BENDING THIN PLATES WITH DIFFERENT MODULI

IN TENSION AND COMPRESSION

Xiao-ting He, Qiang Chen, Jun-yi Sun, Zhou-lian Zheng and Shan-lin Chen

Volume 5, No. 5 May 2010

mathematical sciences publishers



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 5, No. 5, 2010

APPLICATION OF THE KIRCHHOFF HYPOTHESIS
TO BENDING THIN PLATES WITH DIFFERENT MODULI

IN TENSION AND COMPRESSION

XIAO-TING HE, QIANG CHEN, JUN-YI SUN, ZHOU-LIAN ZHENG AND SHAN-LIN CHEN

When materials that exhibit different mechanical behaviors in tension and compression must be analyzed,
Ambartsumyan’s bimodular model for isotropic materials can be adopted. It deals with the principal
stress state in a point, which is particularly important in the analysis and design of reinforced concrete
structures. However, due to the inherent complexity of the constitutive relation, it is difficult to solve
analytically for bending components with bimoduli except in particular simple problems. Here we pro-
pose a simplified mechanical model, based on the classical Kirchhoff hypothesis, used for the solution of
the bimodular thin plates in bending. We first use the Kirchhoff hypothesis to judge the existence of the
elastic neutral layers of bimodular thin plates in small-deflection bending. Based on the existent neutral
layers, we extend the solution from the case of pure bending into the case of lateral force bending. We
use the displacement variation method to illustrate the application of the proposed model, and compare
it with FEM results strictly based on Ambartsumyan’s materials model. The comparisons show that the
proposed mechanical model is valid and helpful for analyzing bending structures with bimodularity.

1. Introduction

Many studies have indicated that most materials, including concrete, ceramics, graphite, and some com-
posites, exhibit different tensile and compressive strains given the same stress applied in tension and
compression. These materials are known as bimodular materials [Jones 1976; 1977]. Overall, there are
two basic material models widely used in theoretical analysis within the engineering profession. One
of these models is the criterion of positive-negative signs in the longitudinal strain of fibers proposed
in [Bert 1977]. This model is mainly applicable to orthotropic materials, and is therefore widely used
for research on laminated composites [Bert and Gordaninejad 1983; Reddy and Chao 1983; Srinivasan
and Ramachandra 1989; Ganapathi et al. 2004; Patel et al. 2004; 2005a; 2005b; Baykara et al. 2005;
Khan et al. 2009; Maceri and Vairo 2009]. Another model is the criterion of positive-negative signs
of principal stress proposed by Ambartsumyan [1965; 1969; 1982]. This model is mainly applicable to
isotropic materials [Kamiya 1974; 1975a; 1975b; El-Tahan et al. 1989]. In civil engineering, the principal
stress state is a key point in the analysis and design of some bending components like beams, columns,
plates, and shells. Shear stresses and the resulting diagonal tension must also be carefully considered
in the design of reinforced concrete. This paper will focus on discussion of the latter model based on
principal direction.
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The bimodular materials model proposed by Ambartsumyan asserts that Young’s modulus of elasticity
depends not only on material properties, but also on the stress state of that point. There are only a
few applications of the constitutive equation to stress analyses of components because of the inherent
complexity in analysis of bimodular materials, that is, the elastic constants involved in the governing
equations, which depend on the stress state of that point, are not correctly indicated beforehand. In other
words, except in particularly simple problems it is not easy to estimate a priori the stress state in a point
in the deformed body. In some complex problems, it is necessary to resort to FEM based on an iterative
strategy [Zhang and Wang 1989; Ye et al. 2004]. Because the stress state of the point in question is
unknown in advance, we have to begin with a single modulus problem, thus gaining the initial stress
state to form a corresponding elasticity matrix for each element. Generally, direct iterative methods
based on an incrementally evolving stiffness have been adopted by many researchers; they include an
improved algorithm in which the shear stress and shear strain are set to zero to formulate the elastic
matrix [Zhang and Wang 1989; Liu and Zhang 2000; He et al. 2009], an improved algorithm keeping
Poisson’s ratio constant while modifying the elastic matrix [Ye 1997], the initial stress technique [Yang
et al. 1999], and the smoothing function technique [Yang and Zhu 2006; Yang and Wang 2008].

Analytical solutions are available in a few cases, all involving beams and columns. By taking the
isolated body and then considering its static equilibrium, Yao and Ye derived the analytical solution of
a bending-compression column with different moduli in tension and compression [2004a], and then the
analytical solution of the bimodular retaining wall [2004b]. In the context of a bimodular beam in lateral
force bending, they proposed the assumption that shear stress makes no contribution to the position of
the neutral axis [Yao and Ye 2004c], deriving from it the analytical solution of a lateral force bending
beams with different moduli in tension and compression.

In [He et al. 2007a], to simplify the derivation, we proposed that the bimodular beams may be turned
into classical beams by the equivalent section method. Under the condition that the stress varies contin-
uously along the direction perperdicular to neutral axis, we obtained the approximate analytical solution
of a bimodular deep beam under uniformly-distributed loads [2007b], and the approximate elasticity
solution of a bimodular bending-compression column [2008].

All these solutions involve beams and columns; up to now, analytical solutions based on bimodular
plates have not been found. The key problem lies in how to construct a simplified mechanical model to
solve this problem analytically.

In this paper, we use the Kirchhoff hypothesis to judge the existence of the elastic neutral layers of
bimodular thin plates in small-deflection bending. Based on the existent neutral layers, we extend the
solution from the case of pure bending, which strictly satisfies the constitutive model proposed by Am-
bartsumyan, to the case of lateral force bending. We use the displacement variation method to illustrate
the application of the proposed model, and compare with FEM results.

2. Mechanical model

2.1. Bimodular material model. Ambartsumyan [1982] linearized the bimodular materials model by
two straight lines whose tangents at the origin are discontinuous, as shown in Figure 1. The basic
assumptions of this model are as follows:

• The body under study is continuous, homogeneous, and isotropic.
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       (a) E+ > E− (b) E+ < E−

Figure 1. Constitutive model of bimodulus materials proposed by Ambartsumyan.

• Small deformation is assumed.

• The Young’s modulus and Poisson’s ratio of the materials are E+ and µ+ when the materials are in
tension along a certain direction and E− and µ− when they are in compression.

• When the three principal stresses are uniformly positive or uniformly negative, the three basic equa-
tions are essentially the same as those of classical theory; when the signs of the three principal
stresses are different, the differential equations of equilibrium and the geometrical equations are the
same as those of classical materials theory, with the exception of the physical equations.

• µ+/E+ = µ−/E−, to ensure that the flexibility matrix is symmetric.

In a spatial problem, let the stress and strain components in the principal coordinates α, β, and γ
be, respectively, {σI } =

(
σα σβ σγ

)T
and {εI } =

(
εα εβ εγ

)T
. The constitutive model proposed by

Ambartsumyan is 
εα

εβ

εγ

=
a11 a12 a13

a21 a22 a23

a31 a32 a33


σα

σβ

σγ

 ,
where ai j (i, j = 1, 2, 3) denote the flexibility coefficients determined by the polarity of the signs of
the principal stresses. For instance, if σα > 0, σβ < 0, and σγ > 0, the flexibility coefficients in the
physical relation should be a11 = a33 = 1/E+, a22 = 1/E−, a21 = a31 = a13 = a23 = −µ

+/E+, and
a12 = a32 =−µ

−/E−. The rest of the physical equations may be deduced analogously.
Because the stress state of the point in question is unknown in advance, we have to begin with a single

modulus problem, thus gaining the initial stress state to form a corresponding elasticity matrix for each
element. This method is only available for the numerical iterative technology based on FEM. For the
analytical solution of such a problem, however, we will find that, since the physical equations originally
built on the principal stress direction α, β, γ are rebuilt on general coordinates x, y, z via coordinate
conversion, many nonlinear items concerning the principal stress and its direction cosine are generated
in the physical equations. Therefore, solving becomes very difficult and it is necessary to simplify the
mechanical model to obtain the approximate analytical solution.

2.2. Existence of neutral layers. In the small-deflection bending of thin plates, let the stress components
be σx , σy , σz , τxy , τyz , and τzx and the strain components be εx , εy , εz , γxy , γyz , and γzx . The components
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of displacement at a point, in the x and y directions, are denoted by u and v, respectively. Due to lateral
loading, deformation takes place; the midsurface at any point has deflection w. From the Kirchhoff
hypothesis we deduce that

εx =
1
E
(σx −µσy), εy =

1
E
(σy −µσx), γxy =

2(1+µ)
E

τxy, (1)

(u)z=0 = 0, (v)z=0 = 0, (2)

(εx)z=0 = 0, (εy)z=0 = 0, (γxy)z=0 = 0. (3)

The last line says that the midsurface remains unstrained under bending: there is no normal strain in
tension and compression and no shear strain. Therefore, we may think of the midsurface as the neutral
layer of thin plates in bending. From (1) and (3), we have

(σx)z=0 = µ(σy)z=0, (σy)z=0 = µ(σx)z=0, (τxy)z=0 = 0. (4)

Substituting the second expression in (4) into the first one, we have

(σx)z=0 = µ
2(σx)z=0. (5)

Under the condition (σx)z=0 6= 0, µ2
= 1 may be obtained. However, it is obvious that µ2

= 1 fails to
satisfy the physical meaning which isotropic materials should have. Only under the condition (σx)z=0= 0,
(5) holds. Similarly, we also obtain (σy)z=0= 0. Therefore, (σx)z=0= 0 and (σy)z=0= 0 are the conditions
which the stress components should satisfy in the neutral layer.

The above conclusion is obtained based on the Kirchhoff hypothesis, that is, it is a classical single
modulus problem. But here we consider different moduli in tension and compression of materials. How-
ever, from the viewpoint of phenomenalism, a bending thin plate, either with a single modulus or with a
bimodulus, will uniformly generate a deflected shape under a lateral force, where the lower layer of the
plate is in tension and the upper layer is in compression. Therefore, the neutral layer in tension free and
compression does exist, like the case of classical plate, and is determined by the conditions

σx = 0, σy = 0. (6)

For materials without consideration of the bimodulus, the neutral layer is exactly the midsurface of the
plate. When considering the bimodularity of materials, however, the neutral layer is no longer located
in the midsurface of the plate. It will be located in a certain layer depending on tensile and compressive
Young’s modulus of elasticity and Poisson’s ratio of the materials. Next, we will determine the unknown
neutral layer.

3. Bimodular plates in bending

3.1. Pure bending. Having demonstrated that a neutral layer exists when the bimodular plate is in pure
bending, we now consider such a plate in which the xy plane parametrizes the unknown neutral layer.
Bounded by the unknown neutral layer, the full cross sections in the x and y directions are divided into
tensile and compressive sections, as shown in Figure 2, where t is the thickness of the plate, t1 and t2
are the thicknesses in tension and compression, respectively, and Mx and My are the bending moments
in the x and y directions, respectively.
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Figure 2. Bimodular thin plate under pure bending.

Because the normal stresses in the x and y directions coincide with the principal stresses in the α and
β directions, according to the materials model proposed by Ambartsumyan, the constitutive relations of
the plate in tension and compression should be, respectively,

σ+x =
E+

1− (µ+)2
(εx +µ

+εy), σ+y =
E+

1− (µ+)2
(εy +µ

+εx), (7)

and

σ−x =
E−

1− (µ−)2
(εx +µ

−εy), σ−y =
E−

1− (µ−)2
(εy +µ

−εx), (8)

where E± and µ± are defined on page 757. Considering the conclusions of Section 2.2, we may express
the stress components in terms of deflection w as

σ+x =−
E+z

1− (µ+)2

(
∂2w

∂x2 +µ
+
∂2w

∂y2

)
, σ+y =−

E+z
1− (µ+)2

(
∂2w

∂y2 +µ
+
∂2w

∂x2

)
, 0≤ z ≤ t1, (9)

and

σ−x =−
E−z

1− (µ−)2

(
∂2w

∂x2 +µ
−
∂2w

∂y2

)
, σ−y =−

E−z
1− (µ−)2

(
∂2w

∂y2 +µ
−
∂2w

∂x2

)
, −t2 ≤ z ≤ 0. (10)

Since the stress formulas in the whole thickness of the plate are different, it is necessary to integrate in
subsection to obtain the bending moments and normal forces along the x and y directions. Using (9) and
(10) we may compute these quantities as follows:

Nx=

∫ t1

0
σ+x dz+

∫ 0

−t2
σ−x dz=−

E+t2
1

2[1−(µ+)2]

(
∂2w

∂x2 +µ
+
∂2w

∂y2

)
+

E−t2
2

2[1−(µ−)2]

(
∂2w

∂x2 +µ
−
∂2w

∂y2

)
=0,

Ny=

∫ t1

0
σ+y dz+

∫ 0

−t2
σ−y dz=−

E+t2
1

2[1−(µ+)2]

(
∂2w

∂y2 +µ
+
∂2w

∂x2

)
+

E−t2
2

2[1−(µ−)2]

(
∂2w

∂y2 +µ
−
∂2w

∂x2

)
=0,

(11)

Mx=

∫ t1

0
σ+x z dz+

∫ 0

−t2
σ−x z dz=−

E+t3
1

3[1−(µ+)2]

(
∂2w

∂x2 +µ
+
∂2w

∂y2

)
−

E−t3
2

3[1−(µ−)2]

(
∂2w

∂x2 +µ
−
∂2w

∂y2

)
,

My=

∫ t1

0
σ+y z dz+

∫ 0

−t2
σ−y z dz=−

E+t3
1

3[1−(µ+)2]

(
∂2w

∂y2 +µ
+
∂2w

∂x2

)
−

E−t3
2

3[1−(µ−)2]

(
∂2w

∂y2 +µ
−
∂2w

∂x2

)
.

(12)
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From (11), we obtain
E+t2

1

1−µ+
=

E−t2
2

1−µ−
. (13)

Combining t1+ t2 = t , we solve for the thicknesses of the plate in tension and compression as follows:

t1 =

√
E−(1−µ+)√

E+(1−µ−)+
√

E−(1−µ+)
t, t2 =

√
E+(1−µ−)√

E+(1−µ−)+
√

E−(1−µ+)
t. (14)

Thus, the position of the unknown neutral layer of the plate in pure bending is finally determined analyt-
ically.

3.2. Lateral force bending. While the plate is in lateral force bending, for example, under the uniformly
distributed loads, q , as shown in Figure 3, not only the torsional stress, τxy , but also the transverse shear
stresses, τzx and τzy , as well as the extrusion stress, σz , exist in the plate. However, according to the
conclusion in Section 2.2, the neutral layer does exist if the thickness of the plate is small compared with
the deflection of the plate. Therefore, the torsional stresses in the plate in tension and compression may
be expressed in terms of the deflection w as, respectively,

τ+xy =−
E+z

1+µ+
∂2w

∂x∂y
, 0≤ z ≤ t1, (15a)

τ−xy =−
E−z

1+µ−
∂2w

∂x∂y
, −t2 ≤ z ≤ 0. (15b)

The twist moment Mxy may be computed as

Mxy =

∫ t1

0
τ+xyz dz+

∫ 0

−t2
τ−xyz dz =−1

3

(
E+t3

1

1+µ+
+

E−t3
2

1+µ−

)
∂2w

∂x∂y
. (16)

Under uniformly distributed loads, q, the differential equation of equilibrium for bending of thin plates
is

∂2 Mx

∂x2 + 2
∂2 Mxy

∂x∂y
+
∂2 My

∂y2 + q = 0. (17)

 

Figure 3. Bimodular thin plate under lateral force bending.
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Substituting (12) and (16) into (17), we obtain{
E+t3

1

3[1− (µ+)2]
+

E−t3
2

3[1− (µ−)2]

}
∇

4w = q. (18)

Equation (18) is the governing differential equation of the neutral layer. If we let

D∗ =
E+t3

1

3[1− (µ+)2]
+

E−t3
2

3[1− (µ−)2]
, (19)

where D∗ is the flexural rigidity of the bimodular plate, (18) may be written in a familiar form:

D∗∇4w = q. (20)

Note that the transverse shear stresses τzx and τzy and the extrusion stress σz acting on the sections in
tension and compression have not been determined. Due to the lack of longitudinal loads and the body
force being zero, the first two expressions of the differential equations of equilibrium in tension may be
written as

∂τ+zx

∂z
=−

∂σ+x

∂x
−
∂τ+yx

∂y
,

∂τ+zy

∂z
=−

∂σ+y

∂y
−
∂τ+xy

∂x
. (21a)

Substituting (9) and (15a) into (21a) and considering τ+yx = τ
+
xy as well as the stress boundary conditions

at the bottom of the thin plate,
(τ+zx)z=t1 = 0, (τ+zy)z=t1 = 0, (22a)

we obtain

τ+zx =
E+

2[1− (µ+)2]
(z2
− t2

1 )
∂

∂x
∇

2w, τ+zy =
E+

2[1− (µ+)2]
(z2
− t2

1 )
∂

∂y
∇

2w, 0≤ z ≤ t1. (23a)

The third expression of the differential equations of equilibrium in tension is

∂σ+z

∂z
=−

∂τ+xz

∂x
−
∂τ+yz

∂y
. (24a)

Substituting (23a) into (24a) and considering τ+xz = τ
+
zx and τ+yz = τ

+
zy as well as the stress boundary

conditions at the bottom of the plate,
(σ+z )z=t1 = 0, (25a)

we obtain

σ+z =
E+

2[1− (µ+)2]

(
t2
1 z− z3

3
−

2
3

t3
1

)
∇

4w, 0≤ z ≤ t1. (26a)

Similarly, the first two expressions of the differential equations of equilibrium in compression may be
written as

∂τ−zx

∂z
=−

∂σ−x

∂x
−
∂τ−yx

∂y
,

∂τ−zy

∂z
=−

∂σ−y

∂y
−
∂τ−xy

∂x
. (21b)

Substituting (10) and (15b) into (21b) and considering τ−yx = τ
−
xy as well as the stress boundary conditions

at the top of the thin plate,
(τ−zx)z=−t2 = 0, (τ−zy)z=−t2 = 0, (22b)
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we obtain

τ−zx =
E−

2[1− (µ−)2]
(z2
− t2

2 )
∂

∂x
∇

2w, τ−zy =
E−

2[1− (µ−)2]
(z2
− t2

2 )
∂

∂y
∇

2w. − t2 ≤ z ≤ 0. (23b)

The third expression of the differential equations of equilibrium in compression is

∂σ−z

∂z
=−

∂τ−xz

∂x
−
∂τ−yz

∂y
. (24b)

Substituting (23b) into (24b) and considering τ−xz = τ
−
zx and τ−yz = τ

−
zy as well as the stress boundary

conditions at the top of the plate,
(σ−z )z=−t2 =−q, (25b)

we obtain

σ−z =
E−

2[1− (µ−)2]

(
t2
2 z− z3

3
−

2
3

t3
2

)
∇

4w, −t2 ≤ z ≤ 0. (26b)

Thus, all stress components have been expressed in terms of w, as shown in (9), (10), (15), (23a), (23b),
(26a), and (26b).

Using (23a) and (23b), we may compute the transverse shear forces Qx and Q y as follows:

Qx =

∫ t1

0
τ+xz dz+

∫ 0

−t2
τ−xz dz =−D∗ ∂

∂x
∇

2w, Q y =

∫ t1

0
τ+yz dz+

∫ 0

−t2
τ−yz dz =−D∗ ∂

∂y
∇

2w. (27)

Thus, the bending moments, the torsional moment and the transverse shear forces have been expressed
in terms of w, as shown in (12), (16), and (27).

3.3. Application of the displacement variation method. For a variety of boundary conditions, the dis-
placement of plates along the thickness direction, w, may be taken as different expressions to satisfy the
given boundary conditions and then be determined via the differential (20). For example, for a rectangular
thin plate with four simply supported sides, the Navier solution may be adopted; for such a plate with
two opposite simply supported sides, the Levy solution may be adopted. However, in some cases, it
is convenient to use the displacement variation method to solve such a problem. For example, for a
rectangular thin plate with four sides fixed, the Galerkin approach may be adopted; for such a plate with
two opposite sides fixed, the Ritz approach may be adopted. In this paper, for the purpose of comparison
with the existent FEM results [Gao et al. 1998], we take a bimodular rectangular thin plate with two
long sides fixed as our object of study, as shown in Figure 4, where 2a and 2b are the short and long
sides, respectively, and the plate is under the action of normal uniformly distributed loads, q . Due to the
existence of free sides, we adopt the Ritz approach to solve this problem.

The displacement boundary conditions at the fixed sides is

(w)x=±a = 0,
(
∂w

∂x

)
x=±a
= 0, (28)

and the boundary condition at the free sides should satisfy

(w)y=±b,x 6=±a 6= 0,
(
∂w

∂y

)
y=±b,x 6=±a

6= 0. (29)
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Figure 4. A bimodular plate under normal uniformly distributed loads.

Therefore, after considering the symmetry of this problem, we take the formula of w as

w = C1wm = C1(x2
− a2)2

[( y
4b

)2
+ 1

]
, (30)

where C1 is an undetermined coefficient and it is obvious that the above formula can satisfy boundary
conditions (28) and (29). If we let the strain potential energy be U , from the Ritz approach, we have the
following formula:

∂U
∂C1
=

∫∫
qwm dx dy. (31)

Next, we will derive the formula for U in the case of different moduli in tension and compression.
In the small-deflection bending problem of a bimodular thin plate, according to the computational

hypotheses, the strain components εz, γyz, γzx may be neglected; therefore, the strain potential energy U
may be simplified as

U =
1
2

∫ a

−a

∫ b

−b

∫ t1

0
(σ+

x
εx+σ

+

y
εy+τ

+

xy
γxy)dx dy dz+1

2

∫ a

−a

∫ b

−b

∫ 0

−t2
(σ−

x
εx+σ

−

y
εy+τ

−

xy
γxy)dx dy dz, (32)

where t1 and t2 are the thickness of the plate in tension and compression, respectively, and may be
obtained from (14). The strain components εx , εy, γxy are

εx =−
∂2w

∂x2 z, εy =−
∂2w

∂y2 z, γxy =−2
∂2w

∂x∂y
z. (33)

Substituting (9), (10), (15), and (33) into (32), after integrating over z, we have

U =
E+t3

1

6[1− (µ+)2]

∫ a

−a

∫ b

−b

{
(∇2w)2− 2(1−µ+)

[
∂2w

∂x2

∂2w

∂y2 −

(
∂2w

∂x∂y

)2
]}

dx dy

+
E−t3

2

6[1− (µ−)2]

∫ a

−a

∫ b

−b

{
(∇2w)2− 2(1−µ−)

[
∂2w

∂x2

∂2w

∂y2 −

(
∂2w

∂x∂y

)2
]}

dx dy. (34)
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From (30), we may have

∂2w

∂x2 = 4C1(3x2
− a2)

[( y
4b

)2
+ 1

]
,

∂2w

∂y2 =
C1

8b2 (x
2
− a2)2,

∂2w

∂x∂y
=

C1

2b2 (x
3
− a2x)y. (35)

Substituting (35) into (34), after integrating we obtain

U =
{

E+t3
1

6[1− (µ+)2]
F++

E−t3
2

6[1− (µ−)2]
F−
}

C2
1 , (36)

where

F+= 8
315

a9

b3+

( 16
315
−µ+

136
105

)a7

b
+

4003
75

a5b, F−= 8
315

a9

b3+

( 16
315
−µ−

136
105

)a7

b
+

4003
75

a5b. (37)

The right end of (31) may be computed as∫ a

−a

∫ b

−b
qwm dx dy =

∫ a

−a

∫ b

−b
q(x2
− a2)2

[( y
4b

)2
+ 1

]
dx dy = 98

45
qa5b. (38)

Substituting (36) and (38) into (31), we may obtain the formula for C1. After substituting it into (30),
we finally obtain the formula for w:

w =

98
15qa5b

E+t3
1

1− (µ+)2
F++

E−t3
2

1− (µ−)2
F−
(x2
− a2)2

[( y
4b

)2
+ 1

]
, (39)

where t1 and t2 are known and may be obtained from (14). The maximum deflection takes place at the
midpoints of the two free sides, that is, while x = 0 and y =±b, we have

wmax =

833
120qa9b

E+t3
1

1− (µ+)2
F++

E−t3
2

1− (µ−)2
F−
. (40)

4. Comparisons and discussions

4.1. Comparisons with FEM based on Ambartsumyan’s model. The bimodular problem attributes non-
linearity to materials. Since existent commercial FEM programs do not include the bimodular materials
model proposed by Ambartsumyan, it is necessary to work out a numerical program based on an iterative
technique. Because the stress state of the point in question is unknown in advance, we have to begin with
a single modulus problem, thus gaining the initial stress state to form a corresponding elasticity matrix
for each element. Generally, direct iterative methods based on an incrementally evolving stiffness have
been adopted by many researchers.

Based on an incrementally evolving stiffness, Gao et al. [1998] analyzed a bimodular thin plate by
the direct iterative method. In the FEM analysis, the elements of the plate should be layered along the
direction of the plate thickness and each layer may be considered as being in the same stress state.

A rectangular thin plate fixed at its two longer sides is under the action of normal uniformly-distributed
loads, as shown in Figure 5. For convenience, all the quantities are taken as dimensionless, specifically,
the plate thickness is 0.24, the length and width of the plate are 8 and 6, respectively, and the intensity of
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E+/E−: 1.4 1.25 1.0 0.85 0.75 0.5

Node 2 (a) 0.0330 0.0553 0.0628 0.0681 0.0738 0.0839
(b) 0.0450 0.0574 0.0646 0.0706 0.0757 0.0957

Node 4 (a) 0.1731 0.1863 0.2107 0.2281 0.2440 0.2856
(b) 0.1749 0.1858 0.2095 0.2288 0.2453 0.3001

Node 18 (a) 0.1665 0.1786 0.2034 0.2222 0.2431 0.2763
(b) 0.1672 0.1776 0.2002 0.2188 0.2345 0.2964

Node 32 (a) 0.1601 0.1778 0.2028 0.2205 0.2387 0.2737
(b) 0.1646 0.1749 0.1971 0.2154 0.2309 0.2918

Table 1. The deflection results of FEM and analytical formulas (×10−2). Results from
(a) [Gao et al. 1998] and (b) this paper.

the uniformly distributed loads is 1. Considering the values of different moduli in tension and compres-
sion, we fix the values E− = 1.4× 106 and µ− = 0.2, and set the values of E+ and µ+ only by changing
their ratio E+/E− = µ+/µ−. We plot the maximum deflections of the plate, which is obtained by FEM
and the analytical method presented in this paper, as shown in Figure 6. We also list some numerical
results based on analytical formulas (39) derived in this paper, as shown in Table 1. It is easily seen that,
if E+/E− > 0.6, the analytical solutions obtained in this paper agree well with the FEM results strictly
based on Ambartsumyan’s model.

In order to demonstrate the validity of the simplified model, we also list some results in the cases of
different layer numbers while E+/E− = 0.85, as shown in Table 2. From the table, we see that when the
whole plate is divided into two layers along the thickness direction, the numerical results are relatively
accurate compared with the other cases in which the plate is divided into a greater number of layers. For
the iterative results of the deflection, we see that more layering does little to improve the computational
accuracy. The simplified model proposed in this paper is founded just on the fact that the whole plate is
divided into two layers along the direction of plate thickness, one in tension and the other in compression.

 

Figure 5. An FEM computation of a bimodular thin plate [Gao et al. 1998].
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Figure 6. The relation between the maximum deflections (node 4) and E+/E−. (The
solid line shows results for FEM, the dashed line for analytical solutions.)

From the analyses above, it may be seen that our simplified model may be valid for a bimodular thin
plate in bending.

4.2. Discussions.

Regression and advantage of the analytical solutions. We observe that in (14), (19), and (20), while
E+ = E− and µ+ = µ−, we have t1 = t2 = t/2, D = Et3/(12(1−µ2)), and D∇4w = q. Moreover,
the strain potential energy (34) derived in this paper can also be reduced to the classical formula. In fact,
all the analytical formulas for bimodular plates in bending may be reduced to the classical problem of
plates. These regressions show that the derivation process in this paper is reasonable.

In this paper, we introduce a new quantity, the flexural stiffnesses of bimodular thin plates, D∗. The
flexural stiffness we introduce plays an important role in solving for bimodular plates. The study above
indicates that the bimodularity of materials has great influence on the structural rigidity. In most cases,
the influence of the bimodularity of materials may be integrated into the flexural stiffness. By simple

Number of layers −w4 (×10−2) −w32 (×10−2) Number of iterations

2 0.2283 0.2203 3
4 0.2280 0.2206 4
6 0.2281 0.2205 4
8 0.2281 0.2205 5

10 0.2281 0.2205 6

Table 2. The results in cases of different number of layers when E+/E− = 0.85 [Gao
et al. 1998].
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substitution of the flexural stiffness, we can readily obtain the solutions for bimodular thin plates directly
from the classical solutions of plates for a variety of boundary conditions. Since solutions of the Kirchhoff
plate theories for a variety of boundary conditions are easily determined or are available in most textbooks
on mechanics of materials, the simplified model presented herein makes it easier to analyze bimodular
thin plates analytically.

Essence and limitations of the simplified model. In civil engineering, the principal stress state is a key
point in the analysis and design of bending components like beams, columns, plates, and shells. Shear
stresses and the resulting diagonal tensions must also be carefully considered in the design of reinforced
concrete. In this paper, the application of the Kirchhoff hypothesis tests the existence of the neutral layer
and realizes the subarea in tension and compression. The simplified mechanical model proposed in this
paper essentially regards the whole bending plate as a laminated structure consisting of only two layers,
one in tension and another in compression.

The results obtained in this paper are founded on the Kirchhoff hypothesis, which are for relatively
thin plates, and thus the results are not applicable to the analysis of bimodular thick plates. In thick
plates, the shearing stresses are important. Such bimodular thick plates should be treated by means of a
more general theory owing to the fact that some assumptions of the Kirchhoff hypotheses are no longer
appropriate.

5. Concluding remarks

Based on the classical Kirchhoff hypothesis, we propose a simplified mechanical model used in solving
bimodular thin plates in small-deflection bending. The following main conclusions can be drawn.

• The application of the Kirchhoff hypothesis tests the existence of the elastic neutral layers of bimod-
ular thin plates in small-deflection bending, and opens up possibilities for subareas in tension and
compression.

• The application of the Kirchhoff hypothesis may extend the solution from the case of pure bending,
which strictly follows the bimodular materials model proposed by Ambartsumyan, into the case of
lateral force bending.

• The flexural stiffnesses derived in this paper enables us to obtain easily the analytical solutions of
bimodular thin plates via the classical problems for a variety of boundary conditions.

This work will be helpful for predicting the mechanical behaviors of bimodular materials. In particular,
these results may be useful in analyzing concrete-like materials and fiber-reinforced composite materials
that contain cracks and are undergoing contact, whose macroscopic constitutive behavior depends on the
direction of the macroscopic strain, similarly to the case of bimodular materials [Zinno and Greco 2001;
Greco 2009].
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