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ANALYTICAL SOLUTION FOR A CONCENTRATED FORCE
ON THE FREE SURFACE OF A COATED MATERIAL

ZHIGEN WU, YIHUA LIU, CHUNXIAO ZHAN AND MEIQIN WANG

Based on the general solution of the displacement method for isotropic plane problems, the analytical
solution for the plane problem of coated materials subjected to an arbitrary concentrated force on the free
surface has been derived explicitly by using the image point method. The displacement functions are
assumed to be the infinite series of the harmonic functions defined in the local coordinate systems with
their origins placed at different image points. The harmonic functions corresponding to the higher-order
image points can be deduced from those to the lower-order points by the recurrence formulae presented
in this paper, and the first two harmonic functions are the displacement functions for the solution of a
semi-infinite plane subjected to a concentrated force on the free surface. The theoretical formulae have
been confirmed by numerical, finite-element-based, results in a special coated material.

1. Introduction

With the wide application of film-coated and surface-treated materials in engineering structures, the stress
and failure analysis of coated materials have been the focus of attention. To obtain interfacial stresses for
the evaluation of the cohesive strength, there are commonly three approaches: analytical, numerical, and
experimental. In the last two decades, some numerical studies [Djabella and Arnell 1993; Hiroyuki et al.
1994b; Hiroyuki et al. 1994a; Kouitat-Njiwa and von Stebut 2003] and experimental methods [Masayuki
et al. 1994; Takuma et al. 2000] have been developed. However, accurate stress results at the interface
cannot be obtained easily by numerical or experimental methods for reasons of the thin coating or surface
layer. Therefore, an analytical solution for coated materials is desirable.

For coated materials with a thin surface layer, the analytical solution of the stress field cannot be de-
duced easily by the theoretical method due to the difficulty in satisfying boundary and interface conditions.
In recent years, the image point method has been applied to the construction of stress or displacement
functions and the analytical solutions of coated materials for some cases have been obtained. The image
point method is a technique that uses the superposition of known solutions to construct the solution of
other complicated problems, and the relevant stress or displacement functions are expressed in the form
corresponding to the loading point or image points. To our knowledge, this method was first employed
by Mindlin [1936], who dealt with the fundamental solution for a single force applied in the interior
of a semi-infinite solid, and the solution may be called a half-space nucleus of strain. Subsequently,
Mindlin and Cheng [1950] provided many fundamental solutions for nuclei of strain in the half-space
solid. Rongved [1955] found the theoretical solution of a point force acting in the interior of one of
the two jointed half-spaces. Dundurs and Hetényi [1965] presented the fundamental solution for a point
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force applied in the interior of one of the two elastic half-spaces jointed by a sliding contact interface.
Phan-Thien [1983] considered the case of an elastic half-space with a fixed boundary. Hasegawa et al.
[1992] investigated Green’s function for the axisymmetric problem of a bimaterial elastic solid. Recently,
Ma and Lin [2001; 2002b] researched Green’s functions for an isotropic elastic half-plane and bimaterial
subjected to forces and dislocations, and nearly all kinds of image singularities for both half-plane and
bimaterial were discussed in considerable detail. In these studies, one reflection face exists and the
image point is a single point as far from the face as the object point. If there are two parallel reflection
faces, the object point will lead to infinite image points by reciprocal reflections. Therefore, the image
point method can be also extended to solve the problem with two parallel faces, and the related stress or
displacement functions are constructed in the form of infinite series about the image points. For example,
by taking the two interfaces as reflection faces, Aderogba [2003] established a theorem to generate the
Airy stress function for trimaterials comprised of two semi-infinite planes separated by a thick layer due
to a point force applied in or near the intermediate layer. By adopting the interface and surface as the
reflection faces, Xu and Mutoh [2003a; 2003b] derived the analytical solutions for both two- and three-
dimensional problems of coated semi-infinite bodies subjected to a concentrated force on the surface.
By introducing two series image points, Li and Xu [2004; 2007] obtained the fundamental solutions for
a coated semi-infinite plane subjected to a concentrated force in the interior of the coating layer and
substrate as well as at the interface. Most recently, Yang and Xu [2009] deduced the three-dimensional
analytical solution of coated materials with concentrated forces in the interior of the coating layer.

In the literature above, the image method was applied to isotropic materials. In fact, this method can
also be applied to anisotropic materials. For example, Willis [1970] and Barnett and Lothe [1974] consid-
ered Green’s functions for the two-dimensional deformation of an anisotropic elastic half-space subjected
to a line force and/or a line dislocation inside it. Ting [1992] discussed in detail the image singularities
of Green’s functions for an anisotropic elastic half-space and bimaterials subjected to line forces and line
dislocations based on Stroh’s formalism. It should be mentioned that the locations of image singularities
of Green’s functions for the half-plane depend on anisotropic elastic constants and there are at most nine
image points located at different positions with respect to the object point. Therefore, it is difficult to
apply the conventional image method to obtain the solution of the anisotropic problem with two reflection
faces directly. Nevertheless, recently, some particular mathematical approaches were employed by fewer
researchers to treat certain layered half-planes with complex material constants. For instance, by using
the Lekhnitskii formalism for anisotropic elastic materials and the Fourier-transformation technique, Ma
and Lin [2002a] obtained the analytical solutions for stresses in the anisotropic layered half-plane sub-
jected to concentrated forces and edge dislocations in the thin layer or in the half-plane. Applying the
Fourier transform method and the series expansion technique, an effective analytic methodology was
developed by Ma and Lee [2009] to construct the full-field explicit solutions for a transversely isotropic
magnetoelectroelastic layered half-plane subjected to generalized line forces and edge locations. In these
problems, the complete solutions consist of the simplest solutions for the infinite medium with applied
loadings, and the physical meaning of these simplest solutions is the image method.

In this paper, in order to obtain the explicit analytical solution for coated materials subjected to an
arbitrary concentrated force on the free surface, we make use of the general solution of the displacement
method as well as the image point method to construct the displacement functions in terms of infinite
series of harmonic functions. According to the free boundary and interface continuity conditions, the
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Figure 1. Analytical model of a coated material.

recurrence formulae for the harmonic functions are derived and all harmonic functions can be deter-
mined from the initial harmonic functions, which correspond to the first-order image point and are the
displacement functions for the semi-infinite plane subjected to a concentrated force on the free surface.

2. Analytical model

The coated material is modeled as a surface layer with thickness h bonded perfectly to a half-plane, as
shown in Figure 1. An arbitrary concentrated force is decomposed into a normal force Fx and a tangential
force Fy applied at the point O1 on the free surface of the surface layer. The surface layer and half-plane
materials are numbered I and II, respectively; their shear moduli and Poisson’s ratios are µI, µII, νI, and
νII. We place the origin O of the global coordinate system on the interface just beneath the loading
point O1 and the x-axis along the interface. By use of the reciprocal reflections of the loading point
O1 on the interface and free surface, infinite image points will be produced on the xy-plane, i.e., the
image points Ok (k = 1, 2, 3, . . .) in the upper half-plane and Ck (k = 1, 2, 3, . . .) in the lower half-plane.
Introducing the local coordinates (x, yk) and (x, ηk) with their origins located at Ok and Ck , respectively,
the relationships between the local and global coordinates can be expressed as

yk = y− (2k− 1)h, ηk = y+ (2k− 1)h, k = 1, 2, 3, . . . . (1)

The displacement and traction continuity conditions on the interface can be represented as

uI = uII, νI = νII, σyI = σyII, τxyI = τxyII, at y = 0, (2)

and the free surface condition can be written as

σyI = 0, τxyI = 0, at y = h, (3)

where subscript I and II refer to materials I and II, respectively.
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3. Derivation of theoretical formulae

The general solution of the displacement method for isotropic plane problems can be obtained from [Wu
and Liu 2008] as

2µu =
∂8

∂x
+ y

∂9

∂x
, 2µv =

∂8

∂y
+ y

∂9

∂y
− κ9, (4)

σx =
∂28

∂x2 + y
∂29

∂x2 +
κ − 3

2
∂9

∂y
, σy =

∂28

∂y2 + y
∂29

∂y2 −
κ + 1

2
∂9

∂y
,

τxy =
∂28

∂x∂y
+ y

∂29

∂x∂y
−
κ − 1

2
∂9

∂x
,

(5)

where8 and9 are the two displacement functions which are harmonic, µ is the shear modulus, κ= 3−4ν
for plane strain and (3− ν)/(1+ ν) for plane stress, and ν is Poisson’s ratio.

Substituting (4) and (5) into (2) and (3), respectively, one has

08I =8II, 0

(
∂8I

∂y
− κI9I

)
=
∂8II

∂y
− κII9II,

∂28I

∂y2 −
κI+1

2
∂9I

∂y
=
∂28II

∂y2 −
κII+1

2
∂9II

∂y
,

∂8I

∂y
−
κI−1

2
9I =

∂8II

∂y
−
κII−1

2
9II, at y = 0,

(6)

where 0 = µII/µI, and

∂28I

∂y2 + h
∂29I

∂y2 −
κI+ 1

2
∂9I

∂y
= 0,

∂8I

∂y
+ h

∂9I

∂y
−
κI− 1

2
9I = 0, at y = h. (7)

In order to solve the displacement functions 8I, 9I, 8II, and 9II, assume that these functions can be
written in series form as

8I =

∞∑
k=1

[Ak(x, yk)+φk(x, ηk)] , 8II =

∞∑
k=1

Bk(x, yk),

9I =

∞∑
k=1

[ak(x, yk)+ψk(x, ηk)] , 9II =

∞∑
k=1

bk(x, yk),

(8)

where Ak , φk , ak , ψk , Bk , and bk are harmonic functions with respect to x and yk or ηk . Considering
the remote stress condition (the stresses should vanish at infinite), all functions on the right in (8) must
be singular at their corresponding origins. Since there is no stress singularity in the material II, the
displacement functions of the material II cannot contain any term related to the image points in the lower
half-plane.

From (1), it is easy to find that

∂

∂y
=

∂

∂yk
,

∂

∂y
=

∂

∂ηk
. (9)
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Substituting (8) into (6) and using (9), one obtains, at y = 0,

0φk(x, ηk)= Bk(x, yk)−0Ak(x, yk),

0

[
∂φk(x, ηk)

∂ηk
− κIψk(x, ηk)

]
=
∂Bk(x, yk)

∂yk
− κIIbk(x, yk)−0

[
∂Ak(x, yk)

∂yk
− κIak(x, yk)

]
,

∂2φk(x, ηk)

∂η2
k

−
κI+1

2
∂ψk(x, ηk)

∂ηk
=
∂2 Bk(x, yk)

∂y2
k

−
κII+1

2
∂bk(x, yk)

∂yk
−
∂2 Ak(x, yk)

∂y2
k

+
κI+1

2
∂ak(x, yk)

∂yk
,

∂φk(x, ηk)

∂ηk
−
κI− 1

2
ψk(x, ηk)=

∂Bk(x, yk)

∂yk
−
κII− 1

2
bk(x, yk)−

∂Ak(x, yk)

∂yk
+
κI− 1

2
ak(x, yk). (10)

These equations are of the form L(x, ηk) = R(x, yk) (L and R being the left and right sides of the
equation, respectively). Because (10) is valid only on the interface where the local coordinate values
satisfy yk =−ηk =−(2k− 1)h, we have the interchange laws

∂L
∂ηk
=−

∂R
∂yk

,

∫
L dηk =−

∫
R dyk . (11)

Applying (11) to (10), we obtain

Bk(x, yk)=
0(κI+ 1)
0κI+ 1

Ak(x, yk)+0

[
κ2

I (0− 1)
2(0κI+ 1)

−
0κI− κII

2(0+ κII)

] ∫
ak(x, yk) dyk,

bk(x, yk)=
0(κI+ 1)
0+ κII

ak(x, yk),

(12)

φk(x, ηk)=−
κI(0− 1)
0κI+ 1

Ak(x, yk)+

[
κ2

I (0− 1)
2(0κI+ 1)

−
0κI− κII

2(0+ κII)

] ∫
ak(x, yk) dyk,

ψk(x, ηk)=
2(0− 1)
0κI+ 1

∂Ak(x, yk)

∂yk
−
κI(0− 1)
0κI+ 1

ak(x, yk), at yk =−ηk .

(13)

Equations (12) and (13) show that the four harmonic functions Bk , bk , φk , and ψk can be calculated
by using the other two ones, Ak and ak . In (13), yk = −ηk means that yk on the right side should be
replaced by −ηk to obtain φk and ψk .

Substituting the values of 8I and 9I from (8) into (7), using the relation (9), and considering the
symmetric relations of the image points Ok+1 and Ck about the free surface, we have

∂2 Ak+1(x, yk+1)

∂y2
k+1

+ h
∂2ak+1(x, yk+1)

∂y2
k+1

−
κI+ 1

2
∂ak+1(x, yk+1)

∂yk+1

=−

[
∂2φk(x, ηk)

∂η2
k

+ h
∂2ψk(x, ηk)

∂η2
k

−
κI+ 1

2
∂ψk(x, ηk)

∂ηk

]
,

∂Ak+1(x, yk+1)

∂yk+1
+ h

∂ak+1(x, yk+1)

∂yk+1
−
κI− 1

2
ak+1(x, yk+1)

=−

[
∂φk(x, ηk)

∂ηk
+ h

∂ψk(x, ηk)

∂ηk
−
κI− 1

2
ψk(x, ηk)

]
, at y = h, (14)
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and

∂2 A1(x, y1)

∂y2
1

+ h
∂2a1(x, y1)

∂y2
1

−
κI+ 1

2
∂a1(x, y1)

∂y1
= 0,

∂A1(x, y1)

∂y1
+ h

∂a1(x, y1)

∂y1
−
κI− 1

2
a1(x, y1)= 0, at y = h.

(15)

Equation (14) is in the form L(x, yk+1)= R(x, ηk). On the free surface y = h, the local coordinate
values satisfy yk+1 =−ηk =−2kh; thus we can get the interchange laws in the form

∂L
∂yk+1

=−
∂R
∂ηk

,

∫
L dyk+1 =−

∫
R dηk . (16)

Applying (16) to (14), one has

Ak+1(x, yk+1)= κIφk(x, ηk)+ 2h
∂φk(x, ηk)

∂ηk
+ 2h2 ∂ψk(x, ηk)

∂ηk
−
κ2

I − 1
2

∫
ψk(x, ηk) dηk,

ak+1(x, yk+1)=−2
∂φk(x, ηk)

∂ηk
− 2h

∂ψk(x, ηk)

∂ηk
+ κIψk(x, ηk), at ηk =−yk+1.

(17)

From (17), we find that the harmonic functions Ak+1 and ak+1 can be obtained from φk and ψk . In
(17), ηk =−yk+1 means that ηk on the right side should be replaced by −yk+1 to obtain Ak+1 and ak+1.
Equation (17) shows that the harmonic functions corresponding to the order k+ 1 can be deduced from
the ones to the order k. Therefore, if the functions A1 and a1 are given, all functions on the right in (8)
can be derived by using (12), (13), and (17).

To determine the functions A1 and a1, one should consider simultaneously (15) and the condition of a
concentrated force applied at the point O1 on the free surface. It is not difficult to find that the solutions
for the normal and tangential concentrated forces on the free surface of a semi-infinite plane satisfy these
conditions. Considering the parallel translation of the coordinate system, the functions A1 and a1 for the
normal and tangential forces can be found, respectively, as

A1(x, y1)=
Fy

2π

[(
κI− 1

2
y1− h

)
ln(x2

+ y2
1)+ (κI− 1)x arctan

y1

x

]
,

a1(x, y1)=
Fy

2π
ln(x2

+ y2
1), for normal force,

(18)

A1(x, y1)=
Fx

π

[(
κI+ 1

2
y1− h

)
arctan

y1

x
−
(κI+ 1)

4
x ln(x2

+ y2
1)

]
,

a1(x, y1)=
Fx

π
arctan

y1

x
, for tangential force.

(19)

It is easy to demonstrate that (18) and (19) are all harmonic functions and satisfy (15) as well as the
condition of the concentrated force applied at the point O1. To this time, all harmonic functions appearing
on the right in (8) can be derived through the recurrence as shown in (12), (13), (17), and (18) or (19).
Therefore, the analytical solution for coated materials subjected to an arbitrary concentrated force on the
free surface is obtained explicitly.
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4. Numerical results

For a verification of the correctness of the above theoretical formulae, the stresses along the interface of
a coated material (Figure 2) have been numerically analyzed by ABAQUS based on the displacement
finite element method concerning the plane strain analysis. Since the thickness of the surface layer is
very thin, it can be considered as a thin film bonded to the free surface of a semi-infinite plane. In Figure
2, the height and width of the substrate are taken as one and two hundred times the thickness of the film,
respectively. Although half of the analytical model can be selected for the numerical calculation due
to the symmetry and anti-symmetry of the problem, the whole model was till treated for the numerical
analysis to obtain the accurate numerical results of the nodes at and near the symmetric axis y. The finite
element mesh, containing 6200 elements and 18841 nodes, is shown in Figure 3. The material constants
are EI = 546 GPa, EII = 206 GPa, and νI = νII = 0.3, respectively.

Tables 1–4 compare the theoretical and FEM results of the stress components along the interface for
the normal and tangential concentrated forces, respectively, where n = k means that the orders of the
image point from one to k are considered in the analytical solution. From these tables it can be observed
that the higher the order of the image point is considered, the better the theoretical results agree with the
FEM ones, and the convergence rates are all very rapid. From Table 1 it can be found that the maximum of
the stress component σy is about 0.513892 MPa for the theoretical result and 0.517178 MPa for the FEM
one at x = 0, and the relative error is 0.64%. Table 2 shows that the minimum of the stress component τxy

is about −0.166807 MPa for the theoretical result and −0.168955 MPa for the FEM one at x = 0.6 mm,
and the relative error is 1.27%. Table 3 indicates that the minimum of the stress component σy is about

mm 1

mm 100
mm 100mm 100

yF

xF

I  Material

II  Material
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Figure 2. Model for FEM calculation.

 

Figure 3. Mesh division for FEM (right: zoom near the loading point).
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σy /MPa
x/mm n = 1 n = 2 n = 3 n = 4 FEM

0.0 0.377616 0.470810 0.502243 0.513892 0.517178
0.2 0.348280 0.439538 0.470597 0.482151 0.486965
0.4 0.277906 0.363634 0.393600 0.404869 0.412302
0.6 0.199702 0.277057 0.305294 0.316106 0.324809
0.8 0.134947 0.202128 0.228126 0.238330 0.246878
1.0 0.088676 0.144976 0.168376 0.177853 0.185658
1.2 0.057885 0.103544 0.124148 0.132810 0.138807
1.4 0.037974 0.073918 0.091680 0.099476 0.105742
1.6 0.025168 0.052719 0.067721 0.074633 0.080256
1.8 0.016876 0.037494 0.049923 0.055961 0.061005
2.0 0.011439 0.026542 0.036652 0.041853 0.046368

2.31919 0.006252 0.015088 0.022140 0.026092 0.029827
2.69364 0.003101 0.007558 0.011908 0.014714 0.017624
3.13291 0.001306 0.003164 0.005508 0.007284 0.009394
3.64824 0.000355 0.000952 0.002031 0.003028 0.004437
4.25279 −0.000101 0.000031 0.000472 0.000978 0.001850

Table 1. Normal stress σy along the interface for the case of Fx = 0 and Fy = 1 N.

τxy /MPa
x/mm n = 1 n = 2 n = 3 n = 4 FEM

0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.2 −0.078466 −0.086408 −0.088172 −0.088660 −0.090259
0.4 −0.126963 −0.141976 −0.145389 −0.146345 −0.148621
0.6 −0.140036 −0.160574 −0.165427 −0.166807 −0.168955
0.8 −0.130309 −0.154459 −0.160467 −0.162210 −0.163999
1.0 −0.111587 −0.137409 −0.144241 −0.146276 −0.147799
1.2 −0.091997 −0.117795 −0.125111 −0.127359 −0.128753
1.4 −0.074835 −0.099318 −0.106796 −0.109176 −0.110524
1.6 −0.060862 −0.083188 −0.090546 −0.092981 −0.094314
1.8 −0.049829 −0.069566 −0.076578 −0.078995 −0.080316
2.0 −0.041206 −0.058242 −0.064744 −0.067084 −0.068366

2.31919 −0.031160 −0.044170 −0.049661 −0.051781 −0.052963
2.69364 −0.023304 −0.032496 −0.036728 −0.038501 −0.039528
3.13291 −0.017365 −0.023419 −0.026333 −0.027663 −0.028471
3.64824 −0.012977 −0.016778 −0.018529 −0.019392 −0.019936
4.25279 −0.009781 −0.012140 −0.013028 −0.013478 −0.013750

Table 2. Shear stress τxy along the interface for the case of Fx = 0 and Fy = 1 N.

−0.143830 MPa for the theoretical result and −0.143788 MPa for the FEM one at x = 0.6 mm, and the
relative error is 0.03%. In Table 4, the maximum of the stress component τxy is about 0.101641 MPa for
the theoretical result and 0.102782 MPa for the FEM one at x = 1.2 mm, and the relative error is 1.11%.
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σy /MPa
x/mm n = 1 n = 2 n = 3 n = 4 FEM

0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.2 −0.069656 −0.076721 −0.078337 −0.078804 −0.077114
0.4 −0.111162 −0.124505 −0.127639 −0.128552 −0.127132
0.6 −0.119821 −0.138045 −0.142507 −0.143830 −0.143788
0.8 −0.107958 −0.129342 −0.134879 −0.136558 −0.137641
1.0 −0.088676 −0.111488 −0.117807 −0.119778 −0.121405
1.2 −0.069462 −0.092198 −0.098999 −0.101193 −0.102991
1.4 −0.053163 −0.074696 −0.081694 −0.084038 −0.085851
1.6 −0.040268 −0.059879 −0.066827 −0.069253 −0.071031
1.8 −0.030376 −0.047714 −0.054414 −0.056860 −0.058592
2.0 −0.022878 −0.037874 −0.044183 −0.046595 −0.048302

2.31919 −0.014500 −0.026062 −0.031579 −0.033851 −0.035506
2.69364 −0.008354 −0.016731 −0.021256 −0.023285 −0.024818
3.13291 −0.004091 −0.009919 −0.013416 −0.015124 −0.016489
3.64824 −0.001295 −0.005342 −0.007950 −0.009318 −0.010482
4.25279 −0.000429 −0.002494 −0.004460 −0.005532 −0.006493

Table 3. Normal stress σy along the interface for the case of Fx = 1 N and Fy = 0.

τxy /MPa
x/mm n = 1 n = 2 n = 3 n = 4 FEM

0.0 −0.022910 −0.025870 −0.026507 −0.026780 −0.028217
0.2 −0.007212 −0.009495 −0.010030 −0.010127 −0.011164
0.4 0.027875 0.027507 0.027271 0.027240 0.027283
0.6 0.061111 0.063535 0.063761 0.063833 0.064659
0.8 0.081337 0.086962 0.087769 0.087976 0.089110
1.0 0.088676 0.097452 0.098904 0.099268 0.100444
1.2 0.087486 0.099000 0.101107 0.101641 0.102782
1.4 0.081859 0.095488 0.098213 0.098918 0.100030
1.6 0.074469 0.089522 0.092791 0.093660 0.094766
1.8 0.066781 0.082613 0.086326 0.087346 0.088465
2.0 0.059502 0.075575 0.079624 0.080775 0.081943

2.31919 0.049356 0.065027 0.069393 0.070705 0.071945
2.69364 0.039863 0.054403 0.058853 0.060276 0.061562
3.13291 0.031491 0.044462 0.048753 0.050214 0.051528
3.64824 0.024433 0.035721 0.039673 0.041093 0.042405
4.25279 0.018685 0.028395 0.031935 0.033254 0.034533

Table 4. Shear stress τxy along the interface for the case of Fx = 1 N and Fy = 0.

Tables 1–4 illustrate that the analytical results really converge to FEM ones and that enough accuracy
of the analytical solution can be achieved only considering the first four image points for this coated
material. Figures 4 and 5 provide the numerical calculations based on the analytical solution (n = 4) for
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Figure 4. Analytical solutions of stress components at different values of y for the case
of Fx = 0 and Fy = 1 N: σy (left) and τxy (right).
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Figure 5. Analytical solutions of stress components at different values of y for the case
of Fx = 1 N and Fy = 0: σy (left) and τxy (right).

the stress components at different locations for the cases of Fx = 0 and Fy = 1 N as well as Fx = 1 N
and Fy = 0, respectively.

On the other hand, to maintain the accuracy of the analytical solution, the different orders of image
points should be needed for the various matches of material constants. Given νI = νII = 0.3 and EI =

546 GPa, Figure 6 displays the required image point order to obtain the results with the relative error
below 2.5%. It can be found that the larger the difference of the material constants is, the more image
points are needed.

5. Conclusions

In this paper, we derived the analytical solution for the plane problem of the coated material subjected
to an arbitrary concentrated force on the free surface by using the general solution of the displacement
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Figure 6. Image point order required for various Young’s modulus ratios.

method as well as the image point method. This solution is given explicitly as the summation of the
harmonic functions corresponding to each image point, and the harmonic functions corresponding to the
higher-order image points can be determined from those to the lower-order ones through the recurrence.
The numerical results verified the correctness and rapid convergence of the analytical solution obtained
in this paper. The enough accurate theoretical results can be obtained only by considering image points
of the first several order.

References

[Aderogba 2003] K. Aderogba, “An image treatment of elastostatic transmission from an interface layer”, J. Mech. Phys. Solids
51:2 (2003), 267–279.

[Barnett and Lothe 1974] D. Barnett and J. Lothe, “An image force theorem for dislocations in anisotropic bicrystals”, J. Phys.
F Metal Phys. 4:10 (1974), 1618–1635.

[Djabella and Arnell 1993] H. Djabella and R. Arnell, “Finite element comparative study of elastic stresses in single, double
layer and multilayered coated systems”, Thin Solid Films 235:1-2 (1993), 156–162.

[Dundurs and Hetényi 1965] J. Dundurs and M. Hetényi, “Transmission of force between two semi-infinite solids”, J. Appl.
Mech. (ASME) 32 (1965), 671–674.

[Hasegawa et al. 1992] H. Hasegawa, V.-G. Lee, and T. Mura, “Green’s functions for axisymmetric problems of dissimilar
elastic solids”, J. Appl. Mech. (ASME) 59:2 (1992), 312–320.

[Hiroyuki et al. 1994a] K. Hiroyuki, I. Masahiro, T. Tohru, and K. Hiroki, “Approximate expression for stress distribution in
film subjected to indentation by spherical indenter : the case of a very thin film”, Trans. Soc. Mech. Eng. A 60:570 (1994),
416–420.

[Hiroyuki et al. 1994b] K. Hiroyuki, I. Masahiro, T. Tohru, and K. Hiroki, “Elasto-plastic finite-element analysis of stress
distribution in a film-substrate system indented by a spherical indenter in relation to evaluation of fracture strength of films”,
Trans. Soc. Mech. Eng. A 60:570 (1994), 409–415.

[Kouitat-Njiwa and von Stebut 2003] R. Kouitat-Njiwa and J. von Stebut, “Boundary element numerical analysis of elastic
indentation of a sphere into a bi-layer material”, Int. J. Mech. Sci. 45:2 (2003), 317–324.

[Li and Xu 2007] Y. Li and J.-Q. Xu, “Fundamental solution for bonded materials with a free surface parallel to the interface.
Part II: Solutions of concentrated force acting at the interior of the substrate and the case when the force acting at the interface”,
Int. J. Solids Struct. 44:10 (2007), 3317–3327.



886 ZHIGEN WU, YIHUA LIU, CHUNXIAO ZHAN AND MEIQIN WANG

[Li et al. 2004] Y. Li, J.-Q. Xu, and L. Fu, “Fundamental solution for bonded materials with a free surface parallel to the
interface. Part I: Solution of concentrated forces acting at the inside of the material with a free surface”, Int. J. Solids Struct.
41:24-25 (2004), 7075–7089.

[Ma and Lee 2009] C.-C. Ma and J.-M. Lee, “Theoretical analysis of generalized loadings and image forces in a planar magne-
toelectroelastic layered half-plane”, J. Mech. Phys. Solids 57:3 (2009), 598–620.

[Ma and Lin 2001] C.-C. Ma and R.-L. Lin, “Image singularities of Green’s functions for an isotropic elastic half-plane sub-
jected to forces and dislocations”, Math. Mech. Solids 6:5 (2001), 503–524.

[Ma and Lin 2002a] C.-C. Ma and R.-L. Lin, “Full-field analysis of a planar anisotropic layered half-plane for concentrated
forces and edge dislocations”, Proc. Royal Soc. London A Math. Phys. Eng. Sci. 458:2026 (2002), 2369–2392.

[Ma and Lin 2002b] C.-C. Ma and R.-L. Lin, “Image singularities of Green’s functions for isotropic elastic bimaterials sub-
jected to concentrated forces and dislocations”, Int. J. Solids Struct. 39:20 (2002), 5253–5277.

[Masayuki et al. 1994] T. Masayuki, I. Takeshi, K. Ken, and A. Masao, “Asymmetric three-point bending of a laminated beam
containing a delamination”, Trans. Soc. Mech. Eng. A 60:578 (1994), 2266–2272.

[Mindlin 1936] R. Mindlin, “Force at a point in the interior of a semi-infinite solid”, J. Appl. Phys. 7 (May 1936), 195–202.

[Mindlin and Cheng 1950] R. Mindlin and D. H. Cheng, “Nuclei of strain in the semi-infinite solid”, J. Appl. Phys. 21 (Sep-
tember 1950), 926–930.

[Phan-Thien 1983] N. Phan-Thien, “On the image system for the Kelvin-state”, J. Elasticity 13 (1983), 231–235.

[Rongved 1955] L. Rongved, “Force interior to one of two jointed semi-infinite solids”, pp. 1–13 in Proceedings of the 2nd
Midwestern Conference on Solid Mechanics, 1955.

[Takuma et al. 2000] M. Takuma, N. Shinke, T. Kubo, and A. Yonekura, “Evaluation on fracture characteristics of thin ceramic
film with scratch testing”, Trans. Soc. Mech. Eng. A 66:651 (2000), 2074–2078.

[Ting 1992] T. C. T. Ting, “Image singularities of green’s functions for anisotropic elastic half-spaces and bimaterials”, Quar-
terly J. Mech. Appl. Math. 45:1 (1992), 119–139.

[Willis 1970] J. Willis, “Stress fields produced by dislocations in anisotropic media”, Philos. Mag. 21 (May 1970), 931–949.

[Wu and Liu 2008] Z. Wu and Y. Liu, “Analytical solution for the singular stress distribution due to V-notch in an orthotropic
plate material”, Eng. Fract. Mech. 75:8 (2008), 2367–2384.

[Xu and Mutoh 2003a] J.-Q. Xu and Y. Mutoh, “Analytical solution for interface stresses due to concentrated surface force”,
Int. J. Mech. Sci. 45:11 (2003), 1877–1892.

[Xu and Mutoh 2003b] J.-Q. Xu and Y. Mutoh, “A normal force on the free surface of a coated material”, J. Elasticity 73
(2003), 147–164.

[Yang and Xu 2009] Z. Yang and J.-Q. Xu, “Three-dimensional solution of concentrated forces in semi-infinite coating materi-
als”, Int. J. Mech. Sci. 51:6 (2009), 424–433.

Received 4 Jan 2010. Revised 3 May 2010. Accepted 3 Jun 2010.

ZHIGEN WU: zhigenwu@126.com
Hefei University of Technology, School of Civil Engineering, Hefei, 230009, China

YIHUA LIU: liuyhfut@yahoo.cn
Hefei University of Technology, School of Civil Engineering, Hefei, 230009, China

CHUNXIAO ZHAN: zhcxhfut@yahoo.cn
Hefei University of Technology, School of Civil Engineering, Hefei, 230009, China

MEIQIN WANG: wang_meiqin@yahoo.cn
Hefei University of Technology, School of Civil Engineering, Hefei, 230009, China



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
http://www.jomms.org

Founded by Charles R. Steele and Marie-Louise Steele

EDITORS

CHARLES R. STEELE Stanford University, U.S.A.
DAVIDE BIGONI University of Trento, Italy
IWONA JASIUK University of Illinois at Urbana-Champaign, U.S.A.

YASUHIDE SHINDO Tohoku University, Japan

EDITORIAL BOARD
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