
Journal of

Mechanics of
Materials and Structures

TIME-HARMONIC ELASTODYNAMIC GREEN’S FUNCTION
FOR THE HALF-PLANE

MODELED BY A RESTRICTED INHOMOGENEITY OF QUADRATIC TYPE

Tsviatko V. Rangelov and George D. Manolis

Volume 5, No. 6 June 2010

mathematical sciences publishers



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 5, No. 6, 2010

TIME-HARMONIC ELASTODYNAMIC GREEN’S FUNCTION
FOR THE HALF-PLANE

MODELED BY A RESTRICTED INHOMOGENEITY OF QUADRATIC TYPE
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We derive closed-form solutions for point-force generated motions in a continuously inhomogeneous
half-plane, which represent the complete elastic wave-train in the interior domain obeying traction-free
boundary conditions at the horizontal surface. More specifically, a special type of material inhomo-
geneity is studied, where the shear modulus varies quadratically with respect to the depth coordinate.
Furthermore, the material density profile varies proportionally to the aforementioned profile, while Pois-
son’s ratio remains fixed at one-quarter. Limit forms for the Green’s functions are derived for both zero
frequency and for the equivalent homogeneous medium. Next, a series of numerical results serve to
validate this mechanical model, and to show the differences in the wave motion patterns developing in
media that are inhomogeneous as compared to a reference homogeneous background. These singular
solutions are useful within the context of boundary element formulations for the numerical solution of
problems involving nonhomogeneous continua, which find applications in fields as diverse as composite
materials, geophysical prospecting, petroleum exploration and earthquake engineering.

1. Introduction and problem statement

Detailed knowledge of wave motions produced by point forces in the elastic half-plane [Achenbach
1973] are of paramount importance in mechanics, since they form the backbone of any integral equation
formulation whose numerical treatment yields boundary element method solutions to a wide range of
boundary-value problems in elastodynamics [Kausel and Manolis 2000].

We examine here a restricted class of inhomogeneous media, where the elastic parameters and the
density all vary proportionally with depth, which makes possible a decoupling of the equations of motion
for the boundless continuum into pseudopressure and shear wave components in a transformed domain.
Although somewhat unlikely, there are situations where this type of inhomogeneity has actually been
observed. As an example, we mention the geological profile of the Sofia region in Bulgaria [Bonchev
et al. 1982], which was measured from in-situ data. This profile seems to imply both a proportional
variation of the shear modulus and of the density, plus a constant Poisson’s ratio value of one-quarter,
for a nearly thirty kilometer thickness of the local deposits as measured from the surface.

Let (x1, x2) be Cartesian coordinates in R2 and denote the lower half-plane by R2
−
= {(x1, x2) : x2 < 0};

see Figure 1. Consider the following boundary-value problem defined in the frequency domain, where
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x1(0, 0) h(0)=1

h(x)

Figure 1. Elastic half-plane with quadratically varying material properties in the depth
coordinate as described by the profile function h(x).

all dependent variables have an eiωt type dependence on time:

La(G)≡ (Cikpq Gi p,q), j − ρω
2Gik =−δ(x − ξ)εik, where x, ξ ∈ R2

−
, (1)

T a(G)≡ C j2pq Gi p,q = 0 on x2 = 0, (2)

G→ 0 for x2→−∞. (3)

Here Green’s tensor G satisfies the Sommerfeld radiation condition along lines parallel to {x2 = 0},
i.e., {(x1, x2), x1 → ±∞}. Furthermore, x = (x1, x2) and ξ = (ξ1, ξ2) are source/receiver points in
the continuum; C jkpq = h(x2)C0

jkpq is the elasticity tensor; ρ = h(x2)ρ0, with ρ0 > 0, is the material
density; and h(x2) = (ax2 + 1)2, with a ≤ 0, is the material profile, implying a quadratic variation
with depth. In terms of the quantities defined for the corresponding homogeneous background, we have
C0

jkpq = µ0(δ jkδpq + δ j pδkq + δ jqδkp), where µ0 > 0 is the shear modulus, δ jk is Kronecker’s delta, and
ω > 0 is the frequency. Finally, δ is Dirac’s delta function, ε = εik is the unit tensor, commas denote
partial differentiation with respect to the spatial coordinates and summation is implied over repeated
indices.

In elastodynamics, the problem defined by (1)–(3) is a model of an isotropic elastic medium in R2
−

with a point force at ξ and traction-free boundary conditions. Poisson’s ratio is fixed at a value of
ν = 0.25, while the shear modulus µ and the density ρ depend in the same manner on depth coordinate
x2. A fundamental solution to (1) of this problem in R2

−
was derived in [Manolis and Shaw 1996] for

a 6= 0, while a solution of (1)–(3) defining a Green’s function for the homogeneous half-plane, i.e., for
a = 0, has been obtained in M. Kinoshita’s M.Sc. thesis, quoted in [Kobayashi 1983]. A corresponding
Green’s function in the Laplace domain for a homogeneous half-plane can be found in [Guan et al. 1998],
while an approximate such function using an image source across the free surface was derived earlier
in [Kontoni et al. 1987]. Finally, the transient Green’s function due to a suddenly applied load in the
homogeneous half-plane, namely Lamb’s problem, can be found in [Kausel 2006], a compilation of
fundamental solutions in elastodynamics.
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2. Solution outline

By following the procedure as outlined in references given above, we will now derive the unique solution
to the problem (1)–(3), which corresponds to a Green’s function G for the inhomogeneous half-plane
with a quadratic variation of the material parameters. Let the matrix-valued function u be a fundamental
solution to equation (1):

La(u)=−δ(x − ξ)ε, where x, ξ ∈ R2
−
, (4)

while w is a smooth matrix-valued function such that

La(w)= 0, where x, ξ ∈ R2
−
, (5)

T a(w)=−T a(u) on x2 = 0, (6)

where superscript a in the operators corresponds to the degree of inhomogeneity. Then, by using super-
position, the complete Green’s function is simply G = u+w.

The fundamental solution u can be expressed as in [Manolis and Shaw 1996] in the form

u(x, ξ, ω)= h−1/2(ξ2)U (x, ξ, ω)h−1/2(x2), (7)

where U is a fundamental solution for the corresponding homogeneous case, i.e.,

L0(U )=−δ(x − ξ)ε, with x, ξ ∈ R2
−
. (8)

Finally, the traction matrix corresponding to displacements u on free surface x2 = 0 is

T a
1k(u)= µ0h−1/2(ξ2)(−aU1k +U1k,2+U2k,1),

T a
2k(u)= µ0h−1/2(ξ2)(−3aU2k +U1k,1+ 3U2k,1).

(9)

The homogeneous matrix-valued function U in R2 can be found in [Eringen and Şuhubi 1974] as

U jk =
i

4µ0

[
δ jk H (1)

0 (k2r)+
1
k2

2
∂2

jk
(
H (1)

0 (k2r)− H (1)
0 (k1r)

)]
. (10)

Here the wave numbers corresponding to pressure and shear body waves are respectively k1=
√
ρ0/3µ0ω

and k2=
√
ρ0/µ0ω, while the radial distance between source and receiver is r =

√
(x1− ξ1)2+ (x2− ξ2)2

and H (1)
0 (z) is the Bessel function of third kind (or Hankel function) and zero order.

In order to simplify the calculations, we fix the source point along the vertical axis as ξ = (0, ξ2), ξ2< 0.
As will be shown later on, Green’s function G actually depends on x1− ξ1 and separately on x2 and ξ2

because the corresponding profile function h is independent of x1; thus the assumption ξ1 = 0 is not
restrictive.

3. Solution methodology

The first step is to recover a general solution w to (5), in the form

w(x, ξ, ω)= h−1/2(x2)W (x, ξ, ω). (11)
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Then, the two corresponding differential operators for the homogeneous and inhomogeneous cases are
related as

La(w)= h1/2(x2)L0(W ), (12)

where

La(w)= h−1/2Ca
jkpq

(
Wi p,qk + h−1(h1/2

, j Wi p,q − h1/2
,q Wik, j − h1/2

,qk Wi p)
)
+ ρω2h−1/2Wi j

= h1/2(C jkpq Wi p,qk + ρ0ω
2Wi j )= h1/2L0(W ).

Thus, if W solves (5) with a = 0, then w also solves (5) for a < 0 and we seek a solution W = {W jk}

in the general Rayleigh form [Achenbach 1973; Rajapakse and Wang 1991] as a transformation between
distance x1 and wave number η:

W jk =
1

2π

∫
R

S jkeiηx1dη, (13)

where the kernel function S jk depends on eβx2 , η, ω, a, and the parameter β is found as solution of an
algebraic system of equations to be developed.

Remark 1. It is not possible to proceed for the inhomogeneous case as in [Kinoshita 1983] for a homo-
geneous material. The algebraic transformation produces a function

ũ(x, ξ, ω)= h−1/2(−ξ2)U (x, ξ, ω)h−1/2(x2)

that is not well defined for all ξ2< 0 and is infinite if h(−ξ2)= 0, corresponding to a value ξ2= 1/a, a< 0.
Thus, we cannot use superposition as u(x, ξ, ω)+ ũ(x, ξ, ω), for which T1k = 0, T2k = 0 on x2 = 0, but
can only use u(x, ξ, ω) and then add a Rayleigh form to satisfy the boundary conditions.

Thus, in order to find S= S jk we use the Fourier transform = with respect to the x1 coordinate, defined,
together with its inverse, by

f̃ (η, x2)= =x1→η f =
∫

R
f (x1, x2)e−iηx1dx1,

f (x1, x2)= =
−1
η→x1

f̃ =
1

2π

∫
R

f̃ (η, x2)eiηx1dη,
(14)

where η is the transform parameter. By applying the Fourier transform to W , we turn (1) with a = 0 into

L0(=x1→η(W ))= 0, (15)

which in matrix form reads as
(M(η, β)+ ρ0ω

2 I2)S = 0, (16)

where I2 is the 2× 2 unit matrix and

M(η, β)=

(
−3µ0η

2
+µ0β

2
+ ρ0ω

2 2iµ0ηβ

2iµ0ηβ −µ0η
2
+ 3µ0β

2
+ ρ0ω

2

)
. (17)

For every fixed value of η, a nonzero solution to (16) exists if det M(η, β)= 0, which gives the following
biquadratic equation for β:

3µ2
0β

4
− 2µ0(3µ0η

2
− 2ρ0ω

2)β2
+ ρ2

0ω
4
+ 3µ0ω

4
− 4µ0η

2ρ0ω
2
= 0. (18)
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If we set γ 2
j = η

2
− k2

j , equation (18) simplifies to

β4
− (γ 2

1 + γ
2
2 )β

2
+ γ 2

1 γ
2
2 = 0, (19)

and the solutions are β2
j =±γ

2
j . In order to satisfy the radiation condition of (3), only the positive root

is retained:

β j = γ j =

√
η2− k2

j . (20)

Since the matrix M(η, β j ), for j = 1, 2, has rank 1, there are two eigenvectors, namely

ν1
=

(
η

−iβ1

)
, ν2

=

(
iβ2

η

)
, (21)

and every solution of (16) has the standard form

S = S jk =

2∑
m=1

Ck
k ν

m
j eβm x2 . (22)

Recapitulating, the matrix form of (11) using indicial notation is

w jk(x, ξ, ω)= h−1/2(x2)W jk(x, ξ, ω), (23)

and the remaining step is to determine functions Ck
m(η, ξ2, a) such that the boundary condition for zero

tractions in (6) is satisfied. The traction field corresponding to displacement field w on x2 = 0 is

T a
1k =

1
2π

∫
R
µ0
[
η(−a+ 2β1)Ck

1 + i(−aβ2+ 2η2
− k2

2)C
k
2
]
eiηx1dx1,

T a
2k =

1
2π

∫
R
µ0
[
i(3aβ1− 2η2

+ k2
2)C

k
1 + η(−3a+ 2β2)Ck

2
]
eiηx1dx1.

(24)

To determine the traction field corresponding to displacement field u on x2 = 0, we use the representation
of H (1)

0 based on a Fourier transform with respect to x1 (see [Gradshteyn and Ryzhik 1980, formulas
6.6773,4 and Section 8.42]):

H (1)
0 (rk j )=

i
2π

∫
R

1
β j

e(ξ2−x2)β j eiηx1dη. (25)

Employing (7) and (10) for u and for U , respectively, we obtain

T a
jk(u)=

i
2π

∫
R

D jkeiηx1dη. (26)
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where the matrix components D jk are

D11 =
h−1/2(ξ2)

2k2
2

[
(−aβ2− 2η2

+ k2
2)e

ξ2β2 + η2(a/β1+ 2)eξ2β1
]
,

D21 =
iηh−1/2(ξ2)

2k2
2β1

[
β1(−3a− 2β2)eξ2β2 + η2(3aβ1+ 2η2

− k2
2)e

ξ2β1
]
,

D12 =
iηh−1/2(ξ2)

2k2
2β2

[
(−aβ2− 2η2

+ k2
2)e

ξ2β2 +β2(a+ 2β1)eξ2β1
]
,

D22 =
iηh−1/2(ξ2)

2k2
2

[
η2(3a/β2+ 2)eξ2β2 + (−3aβ1− 2η2

+ k2
2)e

ξ2β1
]
.

(27)

Combining equations (24) and (26), we obtain a system of two linear equations in C1
m,C2

m , which appear
as kernels of integral equations when substituted in the boundary condition of (6). The determinant of
this system is

1a
=
µ2

0

4π2

∣∣∣∣∣ η(−a+ 2β1) i(−aβ2+ 2η2
− k2

2)

i(3aβ1− 2η2
+ k2

2) η(−3a+ 2β2)

∣∣∣∣∣ , (28)

which evaluates to

1a
=
µ2

0

4π2

[
3(η2
−β1β2)a2

−
(
(β1+β2)k2

2 + η
2β1
)
a−10], (29)

where 10
= 4η2β1β2− (2η2

− k2
2)

2 is a Rayleigh function [Kobayashi 1983].
The functions C1

m,C2
m are unique solutions of (6), since for every η ∈ R, a < 0, ω > 0, ρ0 > 0, µ0 > 0

the condition 1a
6= 0 holds true. Possible combinations of values of parameter |η| as compared to the

two wave numbers k1, k2 yield the following cases:

(i) If |η|< k1, then Im1a
=−

(
(|β1| + |β2|)k2

2 + η
2
|β1|

)
a > 0.

(ii) If |η| = k1, then Im1a
=−

(
|β2|k2

2a+ (2η2
− k2

2)
2
)
> 0.

(iii) If k1 < |η| ≤ k2, then Re1a
= 3η2a2

−β1(k2
2 + η

2)a+ (2η2
− k2

2) > 0.

(iv) If k2 < |η|, then 1a >10 > 0.

An application of Cramer’s rule yields the matrix functions

Ck
m =1

a
mk/1

a, (30)

where the subdeterminants 1a
mk are given by

1a
11 =

∣∣∣∣∣−D11 iµ0(−aβ2+ 2η2
− k2

2)

−D21 µ0η(−3a+ 2β2)

∣∣∣∣∣ , 1a
21 =

∣∣∣∣∣ µ0η(−a+ 2β1) −D11

iµ0(3aβ1− 2η2
+ k2

2) −D21

∣∣∣∣∣
1a

12 =

∣∣∣∣∣ µ0η(−a+ 2β1) −D12

iµ0(3aβ1− 2η2
+ k2

2) −D22

∣∣∣∣∣ , 1a
22 =

∣∣∣∣∣−D12 iµ0(−aβ2+ 2η2
− k2

2)

−D22 µ0η(−3a+ 2β2)

∣∣∣∣∣ .
(31)

Finally, the radiation boundary condition in (3) holds true because of the presence of the multiplier
h−1/2(x2) for u and h−1/2(x2)ex2β under the integral sign on η for w in (13).
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Remark 2. This method can be applied for complex wave numbers (k j = k j R + ik j I with k j R > 0,
k j I > 0) and the structure of Green’s function remains the same. This is because the representations for
the fundamental solution of (10) and for the Bessel function (25) are valid for complex numbers as well.
However, the proof that 1a

6= 0 in this case is quite complicated.

Remark 3. The same method can be applied to obtain a transient Green’s function in the inhomogeneous
half-plane for the equations of motion defined in the time domain as

La(G)≡ (C jkpq Gi p,q), j − ρGik,t t =− f (t)δ(x − ξ)εik, (32)

where f (t) ∈ L1
loc(R

1) and f = 0 for t < 0. More specifically, f (t)= H(t)F(t), with H(t) the Heaviside
function and |F(t)| ≤ Aect for t→∞. The transient Green’s function is obtained by applying Laplace’s
transformation to (32) and using a Kelvin function representation of the type K0(z)= (iπ/2)H

(1)
0 (i z).

Formally, the Green’s function in the Laplace domain is obtained by replacing frequency ω with the
Laplace transform parameter written as a purely imaginary number is and then applying the inverse
Laplace transform. This path was followed for the homogeneous case, i.e., a = 0 and with F(t)= 1, in
[Guan et al. 1998].

Remark 4. Green’s function G(x, ξ, ω, a) converges in the weak sense to G(x, ξ, ω, 0) for a→ 0, i.e.,
for every ϕ(ξ) ∈ C∞0 (R

2
−
) we have∫

R2
G(x, ξ, ω, a)ϕ(ξ) dξ →

∫
R2

G(x, ξ, ω, 0)ϕ(ξ) dξ for a→ 0.

Also, Green’s function G(x, ξ, ω, a) converges in the weak sense to G(x, ξ, 0, a) for ω→ 0, i.e., for
every ϕ(ξ) ∈ C∞0 (R

2
−
) we have∫

R2
G(x, ξ, ω, a)ϕ(ξ) dξ →

∫
R2

G(x, ξ, 0, a)ϕ(ξ) dξ for ω→ 0.

More details for this elastostatic case can be found in the Appendix.

4. Recovery of the homogeneous case

In order to check that it is possible to recover the homogeneous half-plane solution by setting the inho-
mogeneity parameter a to zero (and, correspondingly, h(x2)= h(ξ2)= 1 for the profile function) in the
solution derived above, we start with the results presented in [Kobayashi 1983]. In that case, (24) reads
as

T 0
1k =

1
2π

∫
R
µ0[2ηβ1Ck

1 + i(2η2
− k2

2)C
k
2 ]e

iηx1dx1,

T a
2k =

1
2π

∫
R
µ0[i(−2η2

+ k2
2)C

k
1 + 2ηβ2Ck

2 ]e
iηx1dx1.

(33)

Also, in place of u(x1, x2− ξ2) we use u(x1, x2− ξ2)+ ũ(x1, x2+ ξ2), where ũ(x1, x2+ ξ2) is a smooth
matrix-valued function defined in reference to (10) as

ũ jk(x1, x2+ ξ2)=
i

4µ0

[
δ jk H (1)

0 (k2r̃)+
1
k2

2
∂2

jk
(
H (1)

0 (k2r̃)− H (1)
0 (k1r̃)

)]
, (34)
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with r̃ =
√

x2
1 + (x2+ ξ2)

2 the distance between source and receiver. Furthermore, the integral represen-
tation for the Hankel function corresponding to (25) is

H (1)
0 (r̃ k j )=

i
2π

∫
R

1
β j

e(ξ2+x2)β j eiηx1dη. (35)

Thus, the traction vector on the free surface x2 = 0 for the complete displacement field u+ ũ that replaces
(26) is

T 0
jk(u+ ũ)=

i
2π

∫
R

D̂ jkeiηx1dη. (36)

with the new definitions

D̂11 = 0, D̂21 =
iη

2k2
2β1

[
−2β1β2eξ2β2 + (2η2

− k2
2)e

ξ2β1
]
,

D12 =
iη

2k2
2β2

[
−(2η2

− k2
2)e

ξ2β2 + 2β1β2eξ2β1
]
, D̂22 = 0.

(37)

The new subdeterminants 1̄0
mk are now

1̂0
11 =

∣∣∣∣ 0 iµ0(2η2
− k2

2)

−D̂21 2µ0β2

∣∣∣∣ , 1̂0
21 =

∣∣∣∣ 2µ0β1 0
−iµ0(2η2

− k2
2) −D̂21

∣∣∣∣ ,
1̂0

12 =

∣∣∣∣−D̂12 iµ0(2η2
− k2

2)

0 2µ0β2

∣∣∣∣ , 1̂0
22 =

∣∣∣∣ 2µ0β1 −D̂12

−iµ0(2η2
− k2

2) 0

∣∣∣∣ ,
(38)

and the solution for the matrix functions is

Ĉk
m = 1̂

0
mk/1

0. (39)

Finally, the reconstruction of the complete Green’s function that replaces (22) is

Ŝ = Ŝ jk =

2∑
m=1

Ĉk
mν

m
j eβm x2, (40)

whose components can be explicitly written as

Ŝ11 =
iηµ0

10

[
(2η2
−k2

2)e
x2β2−2β1β2ex2β1

]
D̂21, Ŝ21 =

β1µ0

10

[
(2η2
−k2

2)e
x2β2−2η2ex2β1

]
D̂21,

Ŝ12 =
β2µ0

10

[
−2η2ex2β2+(2η2

−k2
2)e

x2β1
]

D̂12, Ŝ22 =
iηµ0

10

[
−2β1β2ex2β2+(2η2

−k2
2)e

x2β1
]

D̂21.

(41)

Remark 5. The half-plane Green’s function derived above can be used for solving general types of
boundary-value problems in the half-plane enclosing singularities such as cracks, holes, cavities, etc.
This can be done using boundary element method formulations [Manolis and Beskos 1988], and the
advantage here is that a free surface (x2 = 0) discretization is unnecessary.
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5. Numerical example

As an example, we consider the lower part of an original full plane, keeping in mind that in the upper
half-plane the material function h has a line of degeneracy (see Figure 1). A numerical study will be run
for this inhomogeneous half-plane and its equivalent homogeneous limit form (a = 0→ h(x2) = 1.0)
using the Green’s functions derived herein. We start with the following source/receiver configuration:

(ξ1, ξ2)= (0.0,−30.0 m), (x1, x2)= (30.0 m, 0.0). (42)

The background homogeneous material corresponds to firm soil and has the following values for the
pressure (P) and shear (S) wave speeds and for the density:

c1 = 621.0 m/sec, c2 = 359.0 m/sec, ρ = 2100.0 kg. (43)

The inhomogeneity parameter is assigned a value of a =−0.001 m−1, which implies that the inhomo-
geneous profile at the level of the source is stiffer by a factor of 1.07 (i.e., about 7%) compared to the
reference value µ0 = 270.0×106 N/m2 at the free surface level. The travel times for the P and S waves to
reach the receiver starting from the source are t1 = r/c1 = 42.4/621= 0.07 sec, t2 = 42.4/359= 0.12 sec,
respectively, in the reference homogeneous background material. Choosing a total time T = 2.0 sec for
the dynamic phenomenon to develop fully yields a frequency value f = 1.0/T = 0.50 Hz, which is
rounded-off to 0.64 Hz so it corresponds to �= 4.0 rad/sec. This interval is swept in 40 increments of
1ω = 0.1 rad/sec starting from zero, where the static solution G(x, ξ, 0, a) is used (see Remark 4).

In reference to the one-sided Fourier transform of (14), this is performed numerically using the fast
Fourier transform. More specifically, we use the positive side of the horizontal axis going up to four
times the distance of the receiver from the epicenter, i.e., for X = 120.0 m. For better accuracy, we
develop a two-sided transform by projecting symmetric values of the functions to be inverted along the
negative X -axis. More specifically, for N = 1024 data points, the wave number spectrum −H ≤ η≤+H
is set up according to the following formulas:

1x = 2X/N = 0.23437 m, 1η = 2π/N1x = 0.02618 m−1, H = π/1x = 13.404 m−1. (44)

We note in passing that it is possible to introduce viscoelastic material behavior using the Kelvin model
with complex values for the material parameters [Flugge 1967], which is compatible with the static
solution at zero frequency.

Figures 2 and 3 plot both amplitude and phase angle of the Green’s functions G inhom(x, ξ, ω) and
Ghom(x, ξ, ω), respectively. The general structure of the Green’s functions is

G I J (x, ξ, ω)=UI J (x, ξ, ω)+WI J (x, ξ, ω), I, J = 1, 2, (45)

where UI J (x, ξ, ω) is the full space solution and WI J (x, ξ, ω) the Rayleigh-type correction. We note
again that in the approach used in [Kinoshita 1983], the component WI J (x, ξ, ω) restores traction-free
conditions at the free horizontal surface through addition to the full-plane solution UI J (x, ξ, ω) plus its
image UI J (x,−ξ, ω). This latter operation results in a zeroing of the off-diagonal components and a
doubling of the diagonal ones for the full-space solution.

We first observe in Figures 2 and 3 that the introduction of inhomogeneity results in a small decrease
of a few percentage points in the amplitude of the full-space components UI,J (x, ξ, ω), since the elastic
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Figure 2. Inhomogenous half-plane (a =−0.0010) fundamental solution components:
amplitude (left column) and phase angle (right column) versus frequency. From top to
bottom, the graphs show G11, G12, G21 and G22.
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Figure 3. Homogenous half-plane fundamental solution components at surface source
S: amplitude (left column) and phase angle (right column) versus frequency. From top
to bottom, the graphs show G11, G12, G21 and G22.
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Figure 4. Inhomogeneous half-plane (a =−0.0010) Rayleigh-type fundamental solu-
tion components W11, W12, W21, and W22, at a frequency ω = 1.0 rad/sec: real and
imaginary parts versus distance along the surface.

waves are moving upwards in a medium with decreasing stiffness that is still larger than that of the
equivalent homogeneous medium (but becomes equal to it at the surface). The same behavior holds true
regarding the phase angle, i.e., there are some small differences between the two cases.. The situation is
somewhat different regarding the Rayleigh-type correction. Starting with the homogeneous medium, this
correction is substantial for the (1, 2) and (2, 2) components, and less so for the other two. The same
trend holds for the inhomogeneous medium, but the correction is not a smoothly decreasing function
of frequency as before. Instead, there are peaks at discrete frequency values such as ω = 1.5, 2.5, 3.5
rad/sec. These local peaks are also manifested in the phase angle, with the exception when values that
are nearly zero, as is the case with the (1, 1) and (1, 2) components.

In order to further investigate the behavior of the WI,J (x, ξ, ω) components, Figures 4 and 5 show
the variation of the Rayleigh-type solutions (both real and imaginary parts) along the free surface at a
fixed value of the external frequency equal to ω = 1.0 rad/sec for both inhomogeneous and equivalent
homogeneous media. At first we note that in these solutions, either the real part (for the off-diagonal
components) or the imaginary part (for the diagonal components) is zero. Next, these solutions decay
slowly with increasing distance from the epicenter and show a sinusoidal type variation. The role of
inhomogeneity is primarily seen in the magnitude of the nonzero components, in that they are quite
more pronounced compared to the homogeneous medium case.
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Figure 5. Homogenous half-plane Rayleigh-type fundamental solution components
W11, W12, W21, and W22, at a frequency ω = 1.0 rad/sec: real and imaginary parts
versus distance along the surface.

We note in closing that approximate solutions using just one positive image source [Kontoni et al.
1987] lead to a doubling of the diagonal components of the displacement field and a zeroing of the off-
diagonal ones in order to erase their corresponding traction contributions from the free surface. The use
of a negative image source accomplishes the reverse. Thus, it is not possible to reproduce the correct
traction conditions at the surface for all four components simultaneously, unless additional sources such
as dipoles are added in the form of the Rayleigh integral [Kinoshita 1983].

6. Conclusions

In this work, we derived a new point-force solution in the continuously inhomogeneous half-plane with
quadratic-type variation of all material parameters in terms of the depth coordinate. The solution com-
prises a complete elastic wave-train propagating outwards from the loaded area that satisfies traction-free
boundary conditions along the horizontal surface. As such, solutions of this type are useful as kernel
functions in boundary element method formulations of problems of engineering importance in elastody-
namics and related fields of mechanics, with the added advantage that no free surface discretization is
necessary.
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Appendix: Elastostatic Green’s functions for the half-plane

We derive here the Green’s functions for the inhomogeneous half-plane as the external frequency of
vibration tends to zero, i.e., the equivalent elastostatic forms. More specifically, based on the continuity
of the Fourier transform as =η→x1(limω→0 g(η, ω))= limω→0 =η→x1(g(η, ω)), it is sufficient to find the
limit for ω→ 0 of (22), (30) for the case a < 0 and of (39), (40) for a = 0.

To this purpose, we employ L’Hospital rule and re-define the wave numbers k j = q jω in terms of the
two wave slowness q1 =

√
ρ0/3µ0, q2 =

√
ρ0/µ0. Next, we define the following limit forms:

(β j )
′

ω =−
q2

j√
η2− q2

jω
2
ω, with lim

ω→0

(β j )
′
ω

ω
=−

q2
j

|η|
,

(β1β2)
′

ω =−
(q2

1 + q2
2 )η

2
− q2

1 q2
2ω

2√
(η2− q2

1ω
2)(η2− q2

2ω
2)

ω, with lim
ω→0

(β1β2)
′
ω

ω
=−(q2

1 + q2
2 ),

(A1)

(eξ2β j )′ω =−
ξ2q2

j eξ2β j√
η2− q2

jω
2
ω, with lim

ω→0

(eξ2β j )′ω

ω
=−

ξ2q2
j eξ2|η|

|η|
,

(ex2β j )′ω =−
x2q2

j ex2β j√
η2− q2

jω
2
ω, with lim

ω→0

(ex2β j )′ω

ω
=−

x2q2
j ex2|η|

|η|
,

(A2)

where primes denote derivatives with respect to ω. For the limit of the determinant in (29) we have

1a,0
= lim
ω→0

1a
=−

η2
|η|µ2

0a
4π2 , (A3)

since

lim
ω→0

10
= 0.

For the coefficients appearing in (30), we set Da,0
jm = limω→01

a
jm , and by using (A1), (A2) and (27) we

obtain the expressions

Da,0
11 =

h−1/2(ξ2)

4q2
2

[
a
(

q2
1 + q2

2

|η|
+ ξ2(q2

2 − q2
1 )

)
+ 2q2

2 + 2ξ2|η|(q2
2 − q2

1 )

]
eξ2|η|,

Da,0
21 =

iηh−1/2(ξ2)

4q2
2 |η|

[
3aξ2(q2

1 − q2
2 )+ 2q2

1 + 2ξ2|η|(q2
1 − q2

2 )
]
eξ2|η|,

Da,0
12 =−

iηh−1/2(ξ2)

4q2
2 |η|

[
aξ2(q2

1 − q2
2 )+ 2q2

1 + 2ξ2|η|(q2
1 − q2

2 )
]
eξ2|η|,

Da,0
22 =

h−1/2(ξ2)

4q2
2

[
3a
(

q2
1 + q2

2

|η|
+ ξ2(q2

1 − q2
2 )

)
+ 2q2

2 + 2ξ2|η|(q2
1 − q2

2 )

]
eξ2|η|.

(A4)
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Also, by using (A3) , (A4) and (31) we recover

1
a,0
11 =

∣∣∣∣∣−Da,0
11 iµ0(−a|η| + 2η2)

−Da,0
21 µ0η(−3a+ 2|η|)

∣∣∣∣∣ , 1
a,0
21 =

∣∣∣∣∣ µ0η(−a+ 2|η|) −Da,0
11

iµ0(3a|η| − 2η2) −Da,0
21

∣∣∣∣∣
1

a,0
12 =

∣∣∣∣∣ µ0η(−a+ 2|η|) −Da,0
12

iµ0(3a|η| − 2η2) −Da,0
22

∣∣∣∣∣ , 1
a,0
22 =

∣∣∣∣∣−Da,0
12 iµ0(−a|η| + 2η2)

−Da,0
22 µ0η(−3a+ 2|η|)

∣∣∣∣∣ .
(A5)

Finally, the coefficients for the inhomogeneous case in (30) become

Ck,a,0
m = lim

ω→0
Ck

m =
1

a,0
mk

1a,0 . (A6)

For completeness, we focus now on the homogeneous half-plane solution. First,

(10)
′

ω = 4η2(β1β2)
′

ω− 4(2η2
− q2

2ω
2)q2

2ω, with lim
ω→0

(10)
′
ω

ω
= 4η2(q2

1 + 3q2
2 ). (A7)

Next we set D̂0
jm = limω→0 D̂ jm , 1̂0

jm = limω→0 1̂ jm , and by employing (A1), (A2) and (36) we obtain
the following limits for the coefficients:

D̂0
11 = 0, D̂0

12 =−
iη

4q2
2 |η|

[
2q2

1 + 2|η|ξ2(q2
1 − q2

2 )
]
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2 |η|

[
2q2

1 + 2|η|ξ2(q2
1 − q2

2 )
]
eξ2|η|, D̂0

22 = 0.
(A8)

Because of (A7), the limit of (38) does not exist as ω→ 0, but the limit of the coefficients Ŝ jm does. By
setting

S̄11 =
iηµ0

10

[
(2η2
− k2

2)e
x2β2 − 2β1β2ex2β1

]
, S̄21 =

β1µ0

10

[
(2η2
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]
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2)e

x2β1
]
.

(A9)

we obtain
lim
ω→0

Ŝ11 = ( lim
ω→0

S̄11)D̂0
21, lim

ω→0
Ŝ21 = ( lim

ω→0
S̄21)D̂0

12,

lim
ω→0

Ŝ12 = ( lim
ω→0

S̄12)D̂0
12, lim

ω→0
Ŝ22 = ( lim

ω→0
S̄22)D̂0

21.

Thus, the final expressions completing the elastostatic homogeneous case are

lim
ω→0

S̄11 =
iµ0[x2|η|(q2
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(A10)
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[Eringen and Şuhubi 1974] A. C. Eringen and E. S. Şuhubi, Elastodynamics (2 vol.), Academic Press, New York, 1974.

[Flugge 1967] W. Flugge, Theory of viscoelasticity, Blaisdell, Waltham, MA, 1967.

[Gradshteyn and Ryzhik 1980] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, corrected and
enlarged ed., Academic Press, New York, 1980.

[Guan et al. 1998] F. Guan, I. D. Moore, and C. C. Spyrakos, “Two dimensional transient fundamental solution due to suddenly
applied load in a half-space”, Soil Dyn. Earthquake Eng. 17 (1998), 269–277.

[Kausel 2006] E. Kausel, Fundamental solutions in elastodynamics: a compendium, Cambridge University Press, Cambridge,
2006.

[Kausel and Manolis 2000] E. Kausel and G. D. Manolis (editors), Wave motion problems in earthquake engineering, WIT
Press, Southampton, 2000.

[Kinoshita 1983] M. Kinoshita, M.Sc. thesis, Department of Civil Engineering, Kyoto University, 1983. in Japanese; quoted in
[Kobayashi 1983].

[Kobayashi 1983] S. Kobayashi, “Some problems of the boundary integral equation method in elastodynamics”, pp. 775–784
in Boundary elements V, edited by C. A. Brebbia et al., Springer, Berlin, 1983.

[Kontoni et al. 1987] D. P. N. Kontoni, D. E. Beskos, and G. D. Manolis, “Uniform half-plane elastodynamic problems by an
approximate boundary element method”, Soil Dyn. Earthquake Eng. 6 (1987), 227–238.

[Manolis and Beskos 1988] G. D. Manolis and D. E. Beskos, Boundary element methods in elastodynamics, Unwin and Allen,
London, 1988.

[Manolis and Shaw 1996] G. D. Manolis and R. P. Shaw, “Green’s function for the vector wave equation in a mildly heteroge-
neous continuum”, Wave Motion 24:1 (1996), 59–83.

[Rajapakse and Wang 1991] R. K. N. D. Rajapakse and Y. Wang, “Elastodynamic Green’s functions of orthotropic half plane”,
J. Eng. Mech. (ASCE) 117:3 (1991), 588–604.

Received 4 Feb 2010. Revised 15 Sep 2010. Accepted 29 Sep 2010.

TSVIATKO V. RANGELOV: rangelov@math.bas.bg
Department of Mathematical Physics, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,,
acad. G. Bonchev str. bl. 8, 1113 Sofia, Bulgaria

GEORGE D. MANOLIS: gdm@civil.auth.gr
Department of Civil Engineering, Aristotle University, 54124 Thessaloniki, Greece

http://dx.doi.org/10.1016/S0267-7261(97)00037-7
http://dx.doi.org/10.1016/S0267-7261(97)00037-7
http://dx.doi.org/10.1016/0267-7261(87)90004-2
http://dx.doi.org/10.1016/0267-7261(87)90004-2
http://dx.doi.org/10.1016/0165-2125(96)00006-6
http://dx.doi.org/10.1016/0165-2125(96)00006-6
http://dx.doi.org/10.1061/(ASCE)0733-9399(1991)117:3(588)
mailto:rangelov@math.bas.bg
mailto:gdm@civil.auth.gr


JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
http://www.jomms.org

Founded by Charles R. Steele and Marie-Louise Steele

EDITORS

CHARLES R. STEELE Stanford University, U.S.A.
DAVIDE BIGONI University of Trento, Italy
IWONA JASIUK University of Illinois at Urbana-Champaign, U.S.A.

YASUHIDE SHINDO Tohoku University, Japan

EDITORIAL BOARD
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