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CLAUS DENCKER CHRISTENSEN AND ESBEN BYSKOV

A new, enhanced asymptotic expansion applicable to stability of structures made of nonlinear elastic
materials is established. The method utilizes “hyperbolic” terms instead of the conventional polynomial
terms, covers full kinematic nonlinearity and is applied to nonlinear elastic Euler columns with two
different types of cross-section. Comparison with numerical results show that our expansion provides
more accurate predictions of the behavior than usual expansions.

The method is based on an extended version of the principle of virtual displacements that covers
cases with auxiliary conditions, such as inextensibility. Membrane locking and similar problems are also
handled by the method.

Part I. Theory

1. Introduction

The asymptotic expansions for elastic postbuckling and imperfection sensitivity originally introduced in
[Koiter 1945] may be applied to any linearly elastic structure that experiences bifurcation instability in its
geometrically perfect realization. There is, however, an inherent problem with these expansions, in that
they employ polynomial terms, which means that the predictions of carrying capacities are inaccurate
because the term of highest order approaches plus or minus infinity depending on its sign. This is,
of course, not a desirable situation; it may be mended by exploiting some of the ideas introduced in
[Christensen and Byskov 2008]. In particular, the concept of enhancing asymptotic expansions by using
hyperbolic instead of polynomial terms is central here.

A set of explicit expressions for the coefficients of asymptotic elastic postbuckling and imperfection
sensitivity analysis, applicable to linearly elastic structures with moderately large strains, linear loads
and linear prebuckling was first proposed in [Budiansky and Hutchinson 1964]. Soon afterward, Fitch
[1968] modified this to include nonlinear prebuckling. Later Byskov et al. [1996] extended the previous
expansions to include loads which are nonlinear to fourth order in the displacements, and introduced
Lagrange multiplier terms to fourth order in the displacements. The Lagrange multiplier terms provide
a way to impose constraints on the structure, such as inextensibility, and a way of handling numerical
phenomena such as membrane locking.

Here, we concentrate on two main subjects. The first is the development of a general asymptotic
method akin to the one in [Byskov et al. 1996], but with strains, constraints and loads that may be
arbitrarily nonlinear in the displacements. The constitutive relation is taken to be nonlinear elastic. Our
second focus is the application of the enhanced asymptotic expansion developed in [Christensen and
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Byskov 2008], where we utilized the expansion to study postbuckling and imperfection sensitivity of
the so-called Shanley–Hutchinson model column; see, e.g., [Hutchinson 1974]. In the present study this
expansion is applied to the more realistic case of a nonlinear elastic Euler column.

2. Principle of virtual displacements

Consider a structure which, when it is geometrically perfect, experiences bifurcation at a certain critical
load level λc. In order to investigate the behavior of the perfect structure and the influence of small
geometric imperfections for situations in the vicinity of the critical load, we follow ideas from [Koiter
1945] and [Budiansky 1974], and use the perfect structure as a basis for the group of structures that only
differ from the perfect one by an initial geometric imperfection. Regard the initial geometric imperfection
as a small stress-free displacement û, which is not necessarily forced to obey the kinematic boundary
conditions and does not depend on the actual stress and deformation state in the structure. A full nonlinear
modified principle of virtual displacements including Lagrange multiplier terms, as previous used in
[Byskov et al. 1996], for example, and nonlinear elasticity, may in general be written

P(u, λ, û)= σ (1ε) · δ1ε(u, û)− δ
[
η ·C(u, û)

]
− λδ1B(u, û)= 0, (1)

where u is defined as an extended field of additional displacements that may include both derivatives
of the basic displacements with respect to position and Lagrange multipliers, ε is the strain measured
on the perfect structure, σ the nonlinear elastic stress, λ is a scalar load parameter, B is a nonlinear
loading functional based on the perfect structure, C contains the appropriate constraints with associated
Lagrange multiplier fields η, and 1 indicates the difference between nondeformed and deformed states.
Finally, following the notation in [Budiansky and Hutchinson 1964], a dot ( · ) signifies a generalized
inner product over the entire structure.

For later purposes, let u include n components u and define

u = {u1, u2, . . . , un
} = ui . (2)

According to these definitions,

1ε = ε(u+ û)− ε(0+ û), 1B = B(u+ û)− B(0+ û). (3)

The principle of virtual displacements depends linearly on the virtual displacements δu and may be
written as

P = δul · pl = 0, (4)

where

pl = σ (1ε) ·
∂ε(u+ û)
∂ul −

∂ [η ·C]
∂ul − λ

∂B(u+ û)
∂ul . (5)

Note that pl does not depend on δu.

3. Perturbation expansion

Let the load be controlled by the scalar load parameter λ. When λ is close to its classical critical value
λc, the displacement field u, the scalar load parameter λ, and the principle of virtual displacements
P(ui , λ, ûi ) may be expanded in perturbation series around the prebuckling solution in the spirit of,
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for instance, [Budiansky and Hutchinson 1964; Budiansky 1974; Byskov et al. 1996]. Let us choose a
characteristic buckling amplitude ξ , which vanishes at the critical point, as our perturbation parameter.
Further, let ξ denote a characteristic amplitude of the imperfection shape ũ:

û = ξ ũ. (6)

It is our purpose to establish a formula for the maximum value of λ for a given value ξ of the imper-
fection amplitude.

Following [Budiansky 1974] we may imagine that in the space (ξ , ξ, λ) the values of λ form a surface
and assume that the following relation is valid for small values of ξ , ξ and |λ− λc|:

ξ = αξγ (7)

where the coefficient α and the exponent γ both are scalars, and the value α = 0 implies the traditional
postbuckling path.

By choosing values of α and γ appropriately we may reach any point in the (ξ , ξ)-plane, in particular
the point associated with λmax, as indicated in Figure 1. In our search for the above mentioned maximum
value of λ we select the value γ = 2 and determine the value of α by inserting (7) into the equations for
the boundary value problem for the geometrically imperfect structure after having made an asymptotic
expansion in terms of the characteristic buckling amplitude ξ . We shall assume that a perturbation
expansion for the equilibria on which (7) holds may be written

λ

λc
= 1+

1λ

λc
= 1+ ā1ξ + ā2ξ

2
+ ā3ξ

3
+ O(ξ 4). (8)

λ

ξ

ξ̄ ξ̄ = α2ξ
γ 2

ξ̄ = α1ξ
γ 1

λmax(ξ)

Figure 1. Prebuckling and equilibrium paths on which ξ = αξγ close to bifurcation.
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Any such solution to the principle of virtual work includes parts of the prebuckling displacements u0,
where subscript 0 indicates the prebuckling path. In anticipation of this we write the solution close to
prebuckling as

u = u0(λ)+1u = ū0(λ)+ ξ ū1+ ξ
2ū2+ ξ

3ū3+ O(ξ 4). (9)

The perturbation coefficients āi and ūi may be split into a part independent of α and a part which
depends on α and vanishes when α = 0:

āi = ai + aαi , ūi = ui + uαi . (10)

Now P may be expanded in terms of ξ through its dependence on λ and u:

P = P0(λ)+1P = P0(λ)+ ξ P1+ ξ
2 P2+ ξ

3 P3+ O(ξ 4)= 0. (11)

4. Asymptotic problems

Since the prebuckling path is a solution to the principle of virtual displacements (1), the prebuckling
term of (11) is identically zero, i.e., P0(λ)≡ 0. Therefore the matched asymptotic expansion (11) may
be rewritten as

1P = P(u0+1u, λ)− P(u0, λ)= ξ P1+ ξ
2 P2+ ξ

3 P3+ O(ξ 4)= 0, (12)

where we demand that (12) is fulfilled exactly for all values of the expansion parameter ξ and obtain the
higher-order asymptotic stability problems according to the order in ξ :

first-order problem P1 = 0 (13)

second-order problem P2 = 0 (14)

third-order problem P3 = 0 (15)

4.1. First-, second- and third-order problems. In order to solve the asymptotic problems (13)–(15), the
three high-order operators Pi (i = 1, 2, 3) must be expressed in terms of the expansion coefficients of the
basic variables, i.e., ūi and āi . Prebuckling fields may be considered known at bifurcation and derivatives
with respect to the scalar load parameter λ are defined:

( )′ ≡
d( )
dλ

. (16)

In the following, subscript c or superscript c designates prebuckling values taken at bifurcation. From
(12) it is evident that Pi are the coefficient fields of an expansion in ξ of the prebuckling solution given
in Appendix B subtracted from the full postbuckling solution. In Appendix A this approach has been
utilized to provide the higher-order problems Pi provided that P has continuous derivatives at least up til
fourth order with respect to ūi . This ensures that the indices (i, j, k) in the below expressions for P1, P2

and P3 may be swapped freely:
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P1 = Pc
,i · ū

i
1, (17)

P2 = Pc
,i · ū

i
2+

1
2 Pc

,i j · [ū
i
1ū j

1] + ā1λc(δBc
,i + Pc

,i j u
j
c
′
) · ūi

1+αũ(Pc
,û), (18)

P3 = Pc
,i · ū

i
3+ Pc

,i j · [ū
i
2ū j

1] +
1
6 Pc

,i jk · [ū
i
1ū j

1ūk
1] + ā2λc(δBc

,i + Pc
,i j u

j
c
′
) · ūi

1 (19)

+ ā1λc
[
(δBc

,i + Pc
,i j u

j
c
′
) · ūi

2+
1
2(δBc

,i j + Pc
,i jkuk

c
′
) · [ūi

1ū j
1]
]

+ (ā1λc)
2(δBc

,i j u
j
c
′
+

1
2 Pc

,i jk[u
j
c
′
uk

c
′
] +

1
2 Pc

,i j u
j
c
′′)
· ūi

1

+αũ ·
[
ā1λc(δ1Bc

,û+ Pc
,i ûui

c
′
)+ Pc

,i ûūi
1
]
,

where, according to (4),

P,i ...k = δul · pl,i ...k =
∂n P

∂ui . . . ∂uk and P,û = δul · pl,û =
∂ P
∂ ûi (20)

and it is utilized that
P,λi ...k = δBi ...k = δul · B,li ...k . (21)

4.2. Stability operators. In the first- to third-order problems, (17)–(19), a number of scalar operators
may be identified, which we call the stability operators. These operators are given directly by the loading
conditions, the strain measure, the stress-strain relation, the constraints, and the imperfection shape. In
the following, the subscript of the operators indicates their degree.

Operators not acting on the imperfection shape. The following stability operators always enter the sta-
bility problems. Below the displacement fields, uα, uβ , uγ and uδ may be any displacement field:

Pc
1(uα)= pc

l · [u
l
α],

Pc
2(uα, uβ)= pc

l,i · [u
l
αui

β],

Pc
3(uα, uβ, uγ )= pc

l,i j · [u
l
αui

βu j
γ ],

Pc
4(uα, uβ, uγ , uδ)= pc

l,i jk · [u
l
αui

βu j
γ uk

δ],

(22)

Bc
1(uα)= Bc

,l · [u
l
α],

Bc
2(uα, uβ)= Bc

,li · [u
l
αui

β],

Bc
3(uα, uβ, uγ )= Bc

,li j · [u
l
αui

βu j
γ ],

Bc
4(uα, uβ, uγ , uδ)= Bc

,li jk · [u
l
αui

βu j
γ uk

δ].

(23)

It is easily shown that pc
l,i ...k is not influenced by the imperfection since û = ξ ũ = αξ 2ũ vanishes

at the critical load. Thus Pc
i and Bc

i only depend indirectly on the geometric imperfection through the
displacements they operate on.

Operators acting on the imperfection shape. These operators enter only when imperfections are present
(α 6= 0) and operate directly on the imperfection shape, ũ:

P̄c
2(uα, ũ)= pc

l,û · [u
l
α ũ] and P̄c

3(uα, uβ, ũ)= pc
l,i û · [u

l
αui

β ũ], (24)

B̄c
2(uα, ũ)=1Bc

,l û · [u
l
α ũ] = Bc

,li · [u
l
αũi
] (25)
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5. Bifurcation

The first-order problem (13) is referred to as the eigenvalue problem at bifurcation as it is used to de-
termine the critical load λc and its associated bifurcation mode ū1, which is not necessarily identical to
the traditional buckling mode u1 because imperfections may interact. Insert P1 as given by (17) in the
first-order problem (13) to furnish

0= Pc
2(ū1, δu), (26)

where the first postcritical constant ā1 does not enter. Thus, ū1 is simply determined as an eigenfield of
(26) at the critical load, fixed by the characteristic amplitude ξ . As (26) is independent of the imperfection
because the characteristic amplitude is only an expansion parameter, the first postcritical displacement
field does not depend on the imperfection, and (10) yields

ū1 = u1 and uα1 = 0. (27)

6. Higher-order problems

The main purpose of the higher-order problems (14) and (15) which are sometimes called the postcritical
problems, is to provide a relation between the expansion parameter ξ , which usually is identified as
some characteristic buckling mode amplitude, and the load level characterized by the value of the load
parameter λ. In order to do this, we need the values of the constants ā1, ā2, . . . , which determine the
initial displacement-load relation after the classical critical load has been reached. Therefore, the higher-
order displacement fields ū2, . . . , must be found. Interest is, however, usually focused on determining
the first nonvanishing postcritical constant. In the case of an unsymmetric structure, or a symmetric
structure loaded unsymmetrically, the first postbuckling constant a1 = 0 does not vanish, and we shall
not need more than the buckling field u1. On the other hand, when the structure as well as the load is
symmetric ā1 becomes zero, and we need to determine the higher order displacement field u2 and the
higher-order postbuckling constant ā2. When ā1 = 0 computation of â2 is simplified because in this case
certain terms vanish from the higher order problems.

6.1. First postcritical problem. The first postcritical problem (14) determines the second order displace-
ments ū2 and the first-order postcritical constant, ā1, when the first-order displacement field has been
determined by the buckling problem. Introduce P2 in (14) to obtain

0= Pc
2(ū2, δu)+ 1

2P
c
3(u1, u1, δu)+ ā1λc

(
Bc

2(u1, δu)+Pc
3(u
′

c, u1, δu)
)
+αP̄c

2(ũ, δu). (28)

First postcritical constant. To determine the first postcritical constant ā1 introduce δul
= ūl

2 in the buck-
ling problem (26) and subtract it from the first postcritical problem (28) with δul

= ul
1 and exploit that,

as shown in Appendix C, pc
l,i = pc

i,l and eliminate the unknown postcritical displacement field ūi
2 from

the problem. The solution takes the form

ā1 = a1+ aα1 = a1+αρ1, (29)

where we for later use define a1 and ρ1 by

a1 =
aN

1

aD
1

1
λc

and ρ1 =
ρN

1

aD
1

1
λc
, (30)
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with

aN
1 =−

1
2P

c
3(u1, u1, u1), ρN

1 =−P̄
c
2(ũ, u1), (31)

and

aD
1 = Bc

2(u1, u1)+Pc
3(u
′

c, u1, u1). (32)

Postcritical displacement field. When ā1 has been determined ū2 is found as a particular solution of
the first postcritical problem (28) where ū2 only enters linearly. It appears from (28) that the complete
solution for this problem takes the form

ū2 = c1u1+ ūpartic
2 . (33)

In principle the arbitrary constant c1 may be chosen freely. Each specific choice will only lead to a dif-
ferent interpretation of the expansion parameter ξ . Conversely, c1 is fixed when ξ has been chosen. Often
some orthogonality condition between the buckling displacement u1 and the postcritical displacement
ū2 is enforced in order to exclude domination of the buckling field on the postcritical field in (33); see,
e.g., [Fitch 1968; Budiansky 1974; Byskov et al. 1996]. Since ū1 does not depend on the imperfection,
and because ā1 depends linearly on α, u2 and uα2 may be found separately from (28), where we note that
uα2 depends linearly on α. The variational equation for u2 is

0= Pc
2(u2, δu)+ 1

2P
c
3(u1, u1, δu)+ a1λc

(
Bc

2(u1, δu)+Pc
3(u
′

c, u1, δu)
)

(34)

and the equation for uα2 = αv2 becomes

0= Pc
2(v2, δu)+ P̄c

2(ũ, δu)+ ρ1λc
(
Bc

2(u1, δu)+Pc
3(u
′

c, u1, δu)
)
. (35)

Note that α does not enter (35), and therefore v2 does not depend on α.

6.2. Second postcritical problem. The sole purpose of the second postcritical problem (15) is to deter-
mine the second postcritical constant ā2. Utilize P3 in (15) to provide a problem depending on ā2, ū3

and lower-order fields alone:

0= Pc
2(ū3, δu)+Pc

3(ū2, u1, δu)+ 1
6P

c
4(u1, u1, u1, δu)+ ā2λc

(
Bc

2(u1, δu)+Pc
3(u
′

c, u1, δu)
)

+ ā1λc
(
Bc

2(ū2, δu)+Pc
3(u
′

c, ū2, δu)+ 1
2B

c
3(u1, u1, δu)+ 1

2P
c
4(u
′

c, u1, u1, δu)
)

+ (ā1λc)
2 (Bc

3(u
′

c, u1, δu)+ 1
2P

c
4(u
′

c, u′c, u1, δu)+ 1
2P

c
3(u
′′

c , u1, δu)
)

+α
(
P̄c

3(u1, ũ, δu)+ ā1λc(B̄c
2(ũ, δu)+ P̄c

3(u
′

c, ũ, δu))
)
. (36)

Second postcritical constant. The second postcritical constant ā2 is determined by a procedure similar to
the one used to calculate the first postcritical constant ā1. Let δul

= ūl
3 in the buckling problem (26) and

subtract it from the second postcritical problem (36) with δul
= ul

1 to eliminate the unknown postcritical
displacement field ūi

3 from the problem:

ā2λc = (a2+ aα2 )λc = (a2+ ρ2α+ ρ3α
2)λc =

(aN
2 + ρ

N
2 α+ ρ

N
3 α

2)

aD
1

. (37)
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Here, aD
1 is determined earlier by (32) and aN

2 , a2, ρN
i and ρi are parameters that do not depend on α:

aN
2 =−P

c
3(u2, u1, u1)−

1
6P

c
4(u1, u1, u1, u1)

− a1λc
(
Bc

2(u2, u1)+Pc
3(u
′

c, u2, u1)+
1
2B

c
3(u1, u1, u1)+

1
2P

c
4(u
′

c, u1, u1, u1)
)

− (a1λc)
2 (Bc

3(u
′

c, u1, u1)+
1
2P

c
4(u
′

c, u′c, u1, u1)+
1
2P

c
3(u
′′

c , u1, u1)
)
, (38)

ρN
2 =−P

c
3(v2, u1, u1)

− a1λc
(
Bc

2(v2, u1)+Pc
3(u
′

c, v2, u1)
)

− ρ1λc
(
Bc

2(u2, u1)+Pc
3(u
′

c, u2, u1)+
1
2B

c
3(u1, u1, u1)+

1
2P

c
4(u
′

c, u1, u1, u1)
)

− 2ρ1a1λ
2
c
(
Bc

3(u
′

c, u1, u1)+
1
2P

c
4(u
′

c, u′c, u1, u1)+
1
2P

c
3(u
′′

c , u1, u1)
)

−
(
P̄c

3(u1, u1, ũ)+ a1λc(B̄c
2(u1, ũ)+ P̄c

3(u
′

c, u1, ũ))
)
, (39)

ρN
3 =− ρ1λc

(
Bc

2(v2, u1)+Pc
3(u
′

c, v2, u1)
)

− (ρ1λc)
2 (Bc

3(u
′

c, u1, u1)+
1
2P

c
4(u
′

c, u′c, u1, u1)+
1
2P

c
3(u
′′

c , u1, u1)
)

− ρ1λc(B̄c
2(u1, ũ)+ P̄c

3(u
′

c, u1, ũ)). (40)

In the actual computation of a2, ρ2 and ρ3 it may be exploited that several patterns of stability operators
appear more than once.

7. Asymptotic problems to lowest order

As mentioned earlier, we are often only interested in determining the lowest-order postcritical effects
with the implication that solving the asymptotic problems is simplified a great deal.

7.1. Postbuckling of a symmetric structure. Here, a1 equals zero. In order to predict the initial post-
buckling behavior for these structures, the second postbuckling constant a2 must be found. However,
when a1 = 0 the formulas (28) and (37) for determining u2 and a2 simplify considerably, becoming

0= Pc
2(u2, δu)+ 1

2P
c
3(u1, u1, δu) (41)

and

a2λc =
−Pc

3(u2, u1, u1)−
1
6P

c
4(u1, u1, u1, u1)

Bc
2(u1, u1)+Pc

3(u′c, u1, u1)
. (42)

8. Determination of stability operators

The stress field σ may be given by the displacements ui and ũi . However, for simplicity the stress field σ
is often given as a function of the additional strain field 1ε of (3), which itself is a function of ui and ũi .

The scalar stability operators given in (22) which determine the asymptotic coefficients āi and ūi

depend on strain terms, Lagrange multiplier terms and load terms through the principle of virtual dis-
placements.

8.1. Operators of the principle of virtual displacements. Together with the load operators Bc
i given

in (23) the general operators below are used both for calculating the postbuckling equilibrium and the
asymptotic effects of initial imperfections. As was the case for the stability operators, uα , uβ , uγ and uδ
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may be any relevant displacement field:

Ec
1(uα)= ε

c
,lu

l
α,

Ec
2(uα, uβ)= εc

,li u
l
αui

β,

Ec
3(uα, uβ, uγ )= εc

,li j u
l
αui

βu j
γ ,

Ec
4(uα, uβ, uγ , uδ)= εc

,li jkul
αui

βu j
γ uk

δ ,

(43)

Cc
1(uα)= (η ·C)

c
,lu

l
α,

Cc
2(uα, uβ)= (η ·C)c,li u

l
αui

β,

Cc
3(uα, uβ, uγ )= (η ·C)c,li j u

l
αui

βu j
γ ,

Cc
4(uα, uβ, uγ , uδ)= (η ·C)c,li jkul

αui
βu j

γ uk
δ .

(44)

The derivatives of the stress field with respect to the strain field are

σ = σi , D = σ,ε = Di j , D′ = σ,εε = D′i jk and D′′ = σ,εεε = D′′i jkl, (45)

where i , j , k and l may take on any natural number between 1 and the number of stress components.
The operators Di j , D′i jk and D′′i jkl are symmetric in their indices for nonlinear elastic materials; thus the
indices may be swapped freely. Now use the fact that the initial imperfection û does not depend on any
displacement component and that û = 0 at the classical critical load to evaluate the stability operators
given in (22). Finally, introduce the operators from (43) to provide the scalar stability operators.

Note that in the following the fields in brackets have the same number of dimensions as the corre-
sponding field of stiffnesses, which is one for each Ec. When evaluating the bracket each Ec is treated
as a tensor with a separate index. The order of the Ec-fields in the bracket is unimportant, since the
corresponding field of stiffnesses is symmetric.

Pc
1(uα)= σc ·Ec

1(uα)− C
c
1(uα)− λcBc

1(uα),

Pc
2(uα, uβ)= Dc · [Ec

1(uβ)E
c
1(uα)] + σc ·Ec

2(uα, uβ)− Cc
2(uα, uβ)− λcBc

2(uα, uβ),

Pc
3(uα, uβ, uγ )= D′c · [Ec

1(uγ )E
c
1(uβ)E

c
1(uα)]

+ Dc ·
(
Ec

2(uβ, uγ )Ec
1(uα)+Ec

1(uβ)E
c
2(uα, uγ )+Ec

1(uγ )E
c
2(uα, uβ)

)
+ σc ·Ec

3(uα, uβ, uγ )− Cc
3(uα, uβ, uγ )− λcBc

3(uα, uβ, uγ ). (46)

In the stability problems, the fourth stability operator P4 operates at least twice on the buckling dis-
placement field, u1. Exploit this to show that

Pc
4(u1, u1, uα, uβ)=D′′c · [Ec

1(u1)
2Ec

1(uα)E
c
1(uβ)]

+ D′c ·
(
Ec

2(u1, u1)Ec
1(uα)E

c
1(uβ)+Ec

2(uα, uβ)Ec
1(u1)

2

+ 2Ec
1(u1)Ec

1(uα)E
c
2(u1, uβ)+ 2Ec

1(u1)Ec
1(uβ)E

c
2(u1, uα)

)
+ Dc ·

(
Ec

2(u1, u1)Ec
2(uα, uβ)+ 2Ec

2(u1, uα)Ec
2(u1, uβ)+Ec

3(u1, u1, uα)Ec
1(uβ)

+Ec
3(u1, u1, uβ)Ec

1(uα)+ 2Ec
3(u1, uα, uβ)Ec

1(u1)
)

+ σc ·Ec
4(u1, u1, uα, uβ)− Cc

4(u1, u1, uα, uβ)− λcBc
4(u1, u1, uα, uβ). (47)
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8.2. Scalar operators associated with imperfections. Let operators evaluated at the initially perfect ref-
erence before loading be indicated by superscript I . Then, operators associated with imperfections may
be written

E I
1 (ũ)= ε

I
,l ũ

l and D I
2(uα, ũ)= ηαC I

,i ũ
i
; (48)

thus, the stability operators introducing imperfection given by (24) become

P̄c
2(uα, ũ)= Pc

2(uα, ũ)− Dc · [E I
1 (ũ)Ec

1(uα)] +D
I
2(uα, ũ),

P̄c
3(uα, uβ, ũ)= Pc

3(uα, uβ, ũ)− D′c · [E I
1 (ũ)Ec

1(uα)E
c
1(uβ)] − Dc · [E I

1 (ũ)Ec
2(uα, uβ)],

(49)

and
B̄c

2(uα, ũ) = Bc
2(uα, ũ). (50)

The asymptotic coefficients given earlier by the buckling, the first postcritical and the second postcrit-
ical problem are simple to compute when the above given stability operators have been computed for the
specific structure.

9. Load-carrying capacity of imperfect structures

The asymptotic equilibrium path of both perfect and imperfect structures where ξ = αξ 2 may be written

λ

λc
= 1+ (a1+ ρ1α)ξ + (a2+ ρ2α+ ρ3α

2)ξ 2
+ O(ξ 3). (51)

In reality the imperfection amplitude ξ is constant for each load case and introduction of α = ξ/ξ 2

provides an expression which links the load parameter λ to the characteristic buckling amplitude ξ for
given ξ :

λ

λc
=
(
1+ a1ξ + a2ξ

2
+ O(ξ 3)

)
+
ξ

ξ

(
ρ1+ ρ2ξ + O(ξ 2)

)
+

(
ξ

ξ

)2

(ρ3+ O(ξ))+ O((ξ/ξ)3). (52)

9.1. Enhanced asymptotic expansion through the origin. Structures for which ξ is a characteristic
buckling amplitude are subject to the simple boundary condition λ(ξ = 0)= 0. The asymptotic expansion
(52) does not fulfill this condition. An expression which does fulfill λ(ξ = 0) = 0 and matches (52)
asymptotically may be constructed as

λ

λc
=
(
1+ a1ξ + a2ξ

2
+ O(ξ 3)

)
+

(
ξ/ξ

1+m1ξ/ξ

)(
ψ1+ψ2ξ + O(ξ 2)

)
+

(
ξ/ξ

1+m1ξ/ξ

)2

(ψ3+ O(ξ))+ O
((

ξ/ξ

1+m1ξ/ξ

)3 )
. (53)

An asymptotic match of (53) with (52) provides the constants ψi as

ψ1 = ρ1, ψ2 = ρ2 and ψ3 = ρ3+m1ρ1, (54)

while the condition λ(ξ = 0)= 0 furnishes for m1 the expression

m2
1+ 2ρ1m1+ ρ3 = 0. (55)
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Remark. Our enhancement is not the only possible one. For instance, Koiter [1945] establishes one in
a more physically intuitive way than ours, which is of a more mathematical origin and nature. Koiter’s
method, which results in modifying the load term in the expression for the potential energy or principle
of virtual work by multiplication by the load parameter, has been applied elsewhere, as in [Byskov and
Hutchinson 1977] and [Koiter 2009]. After a simple rearrangement of terms, Koiter’s expression, valid
for linear elasticity and linear prebuckling, is

λ

λc
=
ξ + b1ξ + b2ξ

2

ξ + ξ
(56)

which at first appears to be different from our expression. An expansion in terms of ξ reveals, however,
that the structure of the two formulas is the same for small values of ξ . At the same time, our choice
seems justified by the remarkably accurate results for large values of the rotation θ0 shown in Figure 11.

9.2. Asymptotic maximum load of imperfect structures. The maximum load-carrying capacity of the
imperfect structure may be determined asymptotically from either the traditional asymptotic expansion
(52) or from the enhanced asymptotic expansion (53) with the same asymptotic accuracy. The asymptotic
procedure for determining maximum load is, however, simpler for the traditional asymptotic expansion
(52) and we shall later tie our enhanced expansion to it, but for larger imperfections abandon it in favor
of the enhanced expansion.

The asymptotic maximum load of the imperfect structure is found where the derivative of λ/λc, given
by (51), with respect to the buckling amplitude ξ becomes zero:

d(λ/λc)

dξ
= (a1− ρ1αm)+ 2(a2− ρ3α

2
m)ξm + O(ξ 2

m)= 0, (57)

where subscript m indicates quantities related to the asymptotic maximum load and where we have used

dα
dξ
=−2

α

ξ
, (58)

a consequence of (7).
An asymptotic match in (57) reveals that

αm = c1+ c2ξm + O(ξ 2
m) or ξ = c1ξ

2
m + c2ξ

3
m + O(ξ 4

m), (59)

where the constants are readily found to be

c1 =
a1

ρ1
and c2 = 2

a2ρ1− a1ρ3

ρ2
1

. (60)

Insert the asymptotic expansion (59) for αm in (51) to obtain a relation between the maximum load,
λm , and the buckling amplitude at maximum load, ξm :

λm

λc
= 1+ 2a1ξm +

(
a2+ ρ1c2+ ρ2c1+ ρ3c2

1
)
ξ 2

m + O(ξ 3
m). (61)

In order to determine the maximum load for imperfect structures from (61), an asymptotic expression
for ξ at maximum load must be found from (59). Since a1= 0 implies c1= 0, the asymptotic investigation
is split into two cases, one for unsymmetric (a1 6= 0) and one for symmetric (a1 = 0) structures.
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Maximum load of unsymmetric structures. The asymptotic expression for the buckling amplitude ξm at
maximum load becomes

ξm = l1ξ
1
2 + l2ξ + O(ξ

3
2 ) with l1 =

√
ρ1

a1
and l2 =

a1ρ3− a2ρ1

a2
1

. (62)

The asymptotic expansion for ξm , given by (62), may be inserted in (61) to provide the exact initial
asymptotic dependency of the maximum load on the imperfection amplitude and shape when a1 6= 0:

λm

λc
= 1+ cm

1
2
ξ

1
2 + cm

2
2
ξ + O(ξ

3
2 )= 1− 2

√
a1ρ1 ξ

1
2 +

(
a2ρ1

a1
+ ρ2+

ρ3a1

ρ1

)
ξ + O(ξ

3
2 ) , (63)

with

cm
1
2
=−2

√
a1ρ1 and cm

2
2
=

(
a2ρ1

a1
+ ρ2+

ρ3a1

ρ1

)
, (64)

where we note that the maximum only exists when a1ρ1 > 0.

Maximum load of symmetric structures. At maximum load the asymptotic expression for the buckling
amplitude ξm becomes

ξm = q1ξ
1
3 + O(ξ

2
3 ) with q1 =

( ρ1

2a2

)1
3
. (65)

Insert the asymptotic expansion for ξm , given by the imperfection amplitude ξ (65) in (61) to provide
the exact asymptotic dependency of the maximum load on the imperfection amplitude and shape when
a1 = 0 and get

λm

λc
= 1+ cm

2
3
ξ

2
3 + O(ξ) with cm

2
3
= 3a

1
3
2

(ρ1

2

)2
3
. (66)

Note that the maximum only exists when a2 < 0.
For a symmetric structure the third postbuckling constant a3 will also vanish and one more term may

be added to the asymptotic expansion (66) of the maximum load when a1 = 0 without further expansion
of the stability problems.

It is easily shown that the third degree term, t3, of (51) takes the form

t3 = kiα
iξ 3, summed over i ≥ 1. (67)

Thus, the expression for the maximum load associated with ξm simplifies to the exact asymptotic
expansion

λm

λc
= 1+ 3a2ξ

2
m +

2a2ρ2

ρ1
ξ 3

m + O(ξ 4
m), (68)

where it has been exploited that both a1 and a3 vanish.
Use ξm as given in (65) to obtain the asymptotic expression for the maximum load as a function of

the imperfection shape and amplitude:

λm

λc
= 1+ cm

2
3
ξ

2
3 + cm

3
3
ξ + O(ξ

4
3 ) with cm

3
3
= ρ2, (69)

where cm
2
3

follows from (66)b.
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Enhanced maximum load prediction. Because the above asymptotic expansion of the maximum load
eventually approaches plus or minus infinity, it often deviates considerably from the real maximum load,
even for relatively small imperfection amplitudes; this is the basic reason for our enhanced expansion
(53). Due to the fact that the load parameter is zero before loading is applied, the maximum load
of any imperfect structure must be greater than or equal to zero. Since we concentrate on structures
whose maximum load decreases with the imperfection amplitude ξ , but is always greater than zero,
an enhanced maximum load prediction of the asymptotic method may be obtained by matching the
asymptotic maximum load prediction given above with an expression that approaches zero with ξ .

The traditional polynomial asymptotic expression for maximum load is determined by (63) for a 6= 0
and by (66) or (69) when a = 0. In the enhanced approach each asymptotic term is chosen to be a
hyperbolic function approaching a constant at infinity. Often only the first asymptotic term is determined
and therefore the enhanced asymptotic expansion is required to approach zero even if only one asymptotic
term is used. The second term in the enhanced asymptotic expansion is required to match the second
traditional asymptotic term, if present. A third enhancing term is included to force the expansion to
approach zero at infinity. Its presence does, however, not interfere with the asymptotic correctness of
the expansion because its dependence on the expansion parameters is beyond the limit of the original
expansion. We establish the enhanced asymptotic expansion for the two separate cases:

Enhanced expansion, a 6= 0:

λm

λc
= 1+ cm

1
2

(
ξ

1+ (cm
1
2
)2ξ

)1
2

+ cm
2
2

(
ξ

1+ (cm
1
2
)2ξ

)
+ cm

2
2

cm
1
2

(
ξ

1+ (cm
1
2
)2ξ

)3
2

+ O(ξ
3
2 ) (70)

Enhanced expansion, a = 0:

λm

λc
= 1+ cm

2
3

(
ξ

1+ (−cm
2
3
)

3
2 ξ

)2
3

+ cm
3
3

(
ξ

1+ (−cm
2
3
)

3
2 ξ

)
− cm

3
3
(−cm

2
3
)

1
2

(
ξ

1+ (−cm
2
3
)

3
2 ξ

)4
3

+ O(ξ
3
2 ) (71)

Part II. Application: the Euler column

10. Introduction to the Euler column

A vast number of analytical asymptotic and numerical studies have been performed on the postbuckling
and imperfection sensitivity of the linear elastic Euler column (see [Kuznetsov and Levyakov 2002], for
example), while the effects of nonlinear elasticity on the behavior of Euler columns have been studied
less frequently; but see, for instance, [Tvergaard and Needleman 1982].

In the following, the formulas derived above are applied to the pin-ended Euler column (see Figure 2 on
the next page), taking into account the effect of nonlinear elasticity as well as full nonlinear kinematics.
Two different cross-sections, one symmetric and one asymmetric, of the column are investigated in
order to show the ability of our method to handle both kinds of structures. Furthermore, the influence
and possible simplifications caused by introduction of inextensibility is examined. In Appendix D the
problem of stability of the geometrically perfect column is solved for nonlinear elasticity, considering
extensibility as well as inextensibility. It turns out that the extensible and inextensible case yield the same
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or

x, v

z, w

θ0
Both cross-sections:

Area A
Moment of inertia I
Same buckling load

σ

1 Ec
t

σc

In our examples:
σ

σu
=
ε

εu

(
1+

(
ε

εu

)n)− 1
n

ε

λPc

Figure 2. The nonlinear elastic Euler column.

critical load, while the first and second postbuckling constants are only identical or close to identical
when the material model is linear. Thus, to solve stability problems for nonlinear elastic structures it is
imperative to model extensibility.

11. Geometry and constitutive relation of the Euler column

In solving the stability problems we shall employ fully nonlinear strain measures and a fully nonlinear
elastic stress-strain relation. The column is not regarded as inextensible but the usual Bernoulli–Euler
beam theory simplifications are implemented, with the following nondimensional cross-sectional con-
stants:

A0 ≡

∫
A0

d A, Z0 ≡

∫
A0

z d A = 0

I j ≡

∫
A0

zj+1d A, i j ≡

(π
L

)j+1 I j

A0
� 1 (i = 1, 2, 3),

(72)

where A0 is the initial area of the columns cross-section and it important to note that all i j vanish
compared to unity according to the Bernoulli–Euler beam theory.

For convenience we introduce the nondimensional material stiffnesses

e′c = i1 Ec
t,ε/Ec

t and e′′c = i3 Ec
t,εε/Ec

t , (73)

where we note that Ec
t,ε/Ec

t and Ec
t,εε/Ec

t may be very large. Thus, the constants e′c and e′′c are not
necessarily small compared to unity.

11.1. Cross-sections. In order to demonstrate the capability of our method to predict the postbuckling
behavior of geometrically perfect columns as well as describing the load-displacement relation of geo-
metrically imperfect columns, either with symmetric or asymmetric cross-sections consider the two types



AN ENHANCED ASYMPTOTIC EXPANSION FOR THE STABILITY OF NONLINEAR ELASTIC STRUCTURES 939

of cross-sections shown in Figure 2. In both cases, which were studied in [Tvergaard and Needleman
1982], we let the area A and the moment of inertia I1 of the cross-sections be identical for the two
columns. In order to obtain the same critical load, given by the value of i1 and material expense of the
two types of column, the height and width of the triangular cross-section must be

hT =

√
3
2 h, bT =

√
2
3 b, (74)

where h and b are the height and width of the rectangular cross-section, respectively, hT and bT denote
the equivalent quantities of the triangular cross-section, and

i1 =
1
12

(
hπ
L

)2

. (75)

The higher-order nondimensional moments i2 and i3 are, of course, not the same for the nonsymmetric
and symmetric cross-sections.

Triangular cross-section. Only the second dimensionless moment of inertia i2 is needed since a1 6= 0
when the material is nonlinear:

i2 =

√
3
2

90

(
hπ
L

)3

. (76)

Rectangular cross-section. Here, both i2 and i3 are necessary because a1 = 0:

i2 = 0, i3 =
1

80

(
hπ
L

)4

. (77)

11.2. Strain-displacement relation. According to Bernoulli–Euler beam theory the only nonvanishing
strains are in the axis direction and may be given as

ε(x)= ε(x)+ zκ(x), (78)

where ε is the fiber strain, ε the strain of the neutral axis, and κ denotes the curvature strain. In the
following we consider full kinematic nonlinearity, and thus

ε =
√
(1+ v̇)2+ ẇ2− 1, κ = θ̇ =

ẅ(1+ v̇)− v̈ẇ
(1+ v̇)2+ ẇ2 , (79)

where a dot over a quantity denotes differentiation with respect to x , and the coordinates x and z and the
displacements v and w are defined in Figure 2.

11.3. Stress-strain relation. Obviously, the choice of stress-strain relation influences the postbifurcation
constants through the nondimensional derivatives with respect to strain at critical load defined in (73),
i.e., through e′c and e′′c , which both equal zero in linear elasticity. Provided that buckling takes place under
decreasing stiffness in compression, e′c may be any positive value and e′′c any value at all, independently
of each other and of i1 and i3 respectively:

e′c ∈ ]0;∞[, e′′c ∈ ]−∞;∞[. (80)
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To investigate the stability behavior of a structure for realistic cases, we shall assume that the column
obeys the nonlinear elastic constitutive relation

σ

σu
=
ε

εu

(
1+

(
ε

εu

)n
)−1/n

, (81)

where E is Young’s modulus, σu < 0 is the ultimate stress in compression, εu = σu/E < 0 is the strain
corresponding to σu assuming linear elasticity, and n is a hardening parameter. High values of n imply
nearly linear elastic behavior up till σu , while low values of n induce nonlinear elastic behavior even at
small stresses compared to σu .

n = 1
n = 2
n = 10
n ∼∞

(σ/σu)

(ε/εu)21.751.51.2510.750.50.250

1

0.75

0.5

0.25

0

Figure 3. Stress-strain relation for different levels of the strain hardening parameter n.
For n→∞ the constitutive model approaches linear elasticity-perfect plasticity.

11.4. Expansion parameter. Let the expansion parameter ξ be identified as the rotation of the column
at x = 0:

ξ ≡ θ(0). (82)

12. Geometrically perfect Euler column

Appendix D contains the detailed calculations and derivations which lead to the determination of the
asymptotic coefficient fields and critical load. In particular, we note that

λc = 1, σc = i1 Ec
t . (83)

12.1. Unsymmetric elastic triangular cross-section. When the cross-section of the column is nonsym-
metric and the material model is nonlinear elastic at the same time, the first postbuckling constant a1

does not vanish. Under these conditions it is only necessary to determine the buckling displacement field
u1 and a1. The asymptotic displacement field is

w = w1ξ + O(ξ 2)= (L/π) sin(πx/L)ξ + O(ξ 2),

v = v1ξ + O(ξ 2)= 0+ O(ξ 2),
(84)
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and the asymptotic load parameter is

λ

λc
= 1+ a1ξ + O(ξ 2)= 1−

4e′ci2

3π i2
1(1+ e′c)

ξ + O(ξ 2), (85)

which is in exact agreement with the result obtained in [Tvergaard and Needleman 1982] for the non-
symmetric cross-section.

12.2. Symmetric as well as linear elastic unsymmetric cross-sections. When the cross-section of the
column is symmetric or when the material is linear elastic, the first postbuckling constant a1 vanishes.
Then, it is necessary to determine the second postbuckling constant a2 to investigate postbuckling behav-
ior. To the lowest order the asymptotic loads and displacements are

w = w1ξ +w2ξ
2
+ O(ξ 3)= (L/π) sin(πx/L)ξ + O(ξ 3),

v = v1ξ + v2ξ
2
+ O(ξ 3)=−

1
4

(
(1+ e′c)x + (1− e′c)

L
2π

sin(2πx/L)
)
ξ 2
+ O(ξ 3),

(86)

and the asymptotic load parameter is

λ

λc
= 1+ a2ξ

2
+ O(ξ 3)= 1+

i1− 3(e′c)
2
+ e′′c

8i1(1+ e′c)
ξ 2
+ O(ξ 3). (87)

12.3. Comparison with known results: the elastica. The load-carrying capacity in initial and advanced
postbuckling of the linear elastic pin-ended Euler column has received much attention since the original
study in [Euler 1744] of the so-called elastica and has been investigated in [Britvec 1973; Kuznetsov
and Levyakov 2002], among other works, for a full nonlinear strain measure.

Excluding material nonlinearity from our initial postbuckling loads (87) provides the linear elastic
postbuckling constants a1 = 0 and a2 =

1
8 , which agree exactly with the elastica solution in [Britvec

1973]. It may be worth noticing that, according to the kinematically moderately linear theory, a2 as
well as a1 vanishes which underlines the importance of applying a general full nonlinear stability theory
to obtain accurate postbuckling constants. On the other hand, the fact that the results for the second
postbuckling constant differ between the two theories should not, in general, discredit the moderately
nonlinear theory. The relative difference in predicted load is, after all, only ξ/8 (around 9.8% at the very
large end rotation 45◦).

12.4. Postbuckling behavior assuming nonlinear elasticity. As is evident from the expressions (85) and
(87), introduction of nonlinear elasticity requires, apart from more constitutive parameters, i.e., e′c and e′′c ,
a detailed knowledge of the cross-section geometry through i2 and i3. Because the expressions are only
valid for small i1 compared to unity the ratio between h and L must be limited. Since the absolute value
of εu usually is less than one tenth of a per cent, the order of i1 lies in the same range. In Figures 4–7
results for the Euler column are shown for the constitutive relation given by (81). The critical load, the
first and second postbuckling constants are plotted as functions of the ratio between i1 and the absolute
value of εu in the range [0; 2] (where εc/εu ∈ [0; 1] as indicated at the top of Figures 4–6).

Bifurcation load. In Figure 4 the nondimensional critical load, σc/σu , of the column is plotted for both
nonlinear and initially linear elastic behavior. It is not surprising that the difference in critical load



942 CLAUS DENCKER CHRISTENSEN AND ESBEN BYSKOV

between nonlinear and linear elasticity increases with increasing cross-section, given by i1, relative to
the “ultimate” strain εu .

n = 1
n = 2
n = 10
n ∼∞

(σ/σu)

(i1/|εu |)21.751.51.2510.750.50.250

1

0.75

0.5

0.25

0

Figure 4. Bifurcation load of nonlinear elastic Euler columns with an ultimate stress.

Triangular cross-section. Figure 5 shows the first postbuckling constant a1 of the triangular cross-section
for nonlinear elasticity. Only at extremely small values of i1/|εu|, i.e., for very slender columns, or
extremely high values of n with relatively low values of i1/|εu| is a1 according to the nonlinear elastic
theory close to vanishing as it does according to linear elastic theory. The fact that nonlinear stress-strain
relations deviate faster from initial linearity for lower values of n reflects in that a1 initially deviates
more rapidly from zero with increasing values of εc/εu (and thus i1/|εu|) the lower the value of n. When
εc/εu approaches unity (i1/|εu| approaches 2) high n yields the largest absolute values of a1 because of
the sudden large drop in tangent modulus near εu .

n = 10
n = 2
n = 1

a1
√
|εu |

(i1/|εu |)21.751.51.2510.750.50.250

0

−0.05

−0.1

−0.15

−0.2

Figure 5. First postbuckling constant a1 for triangular cross-section.
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n = 10
n = 2
n = 1

a2|εu|

(i1/|εu|)21.751.51.2510.750.50.250

0

-0.05

-0.1

-0.15

-0.2

Figure 6. Second postbuckling constant a2 for rectangular cross-section.

Rectangular cross-section. Results for the second postbuckling constant a2 of the rectangular cross-
section in nonlinear elastic postbuckling are shown in Figure 6. When i1/|εu| → 0, i.e., for extremely
slender columns, the buckling stress is very low, and therefore the second postbuckling constant a2 of
nonlinear elasticity approaches that of linear elasticity. In linear elasticity a2|εu| is usually of the order
10−4. However, as i1/|εu| is increased a2 rapidly grows negative and reaches a global minimum. The
higher the value of n the lower the minimum (the minimum for n = 10 falls outside the bounds of this
plot), and as n→∞ the minimum value of a2 becomes −∞ and is reached for i1/|εu| = 2 where εc = εu).
Thus, assuming material linearity only furnishes reliable values of a2 for extremely slender columns.

The large deviation of a2|εu| in Figure 6 from its linear elastic counterpart helps to demonstrate that
the linear elastic value of a2, assuming full nonlinear kinematics differs very little from the value obtained
under the assumption of moderately nonlinear kinematics compared to the effects of nonlinearity of the
stress-strain curve. Therefore, as discussed earlier, the simplifications of moderately nonlinear geometry
should not necessarily be discarded.

12.5. Comparison with numerical results. An immediate and important consequence of including non-
linear elastic effects is that both symmetric (except for extremely slender columns) and nonsymmetric
cross-sections may become imperfection sensitive in contrast to the predictions of linear elasticity. It
follows that nonlinear material effects may not be handled safely by assuming that the correct nonlinear
elastic bifurcation load shown in Figure 4 predicts the real load-carrying capacity.

The two cross-section types, triangular and rectangular are, as mentioned earlier, constructed to occupy
the same amount of material for the same critical load. However, as is clear from Figure 7, the postbuck-
ling paths of the cross-sections are not identical as the column with triangular cross-section experiences
asymmetric buckling (in contrast to its linear elastic counterpart), while the column with rectangular
cross-section buckles symmetrically. This agrees with the findings in [Tvergaard and Needleman 1982].

Figure 7 shows an example of the load parameter, λ, plotted against the end rotation of the column
for both the triangular and the rectangular cross-sections where |εu| = 0.002, n = 2, i1/|εu| = 0.2
(h/L = 0.022) which yields a1

√
|εu| = −0.0538 for the triangle and a2|εu| = −0.117 for the rectangle.
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Rectangle, FEA
Rectangle, asymptotic

Triangle, FEA
Triangle, asymptotic

λ
Pc

PE

θ00.0250.0150.005−0.005−0.015−0.025

1

0.975

0.95

0.925

0.9

0.875

Figure 7. Initial postbuckling behavior for rectangular and triangular cross-sections,
|εu| = 0.002, n= 2, i1/|εu| = 0.2. The classic Euler load of linear elasticity is denoted PE .

The asymptotic results for initial postbuckling are verified by a finite element analysis. While the
symmetric asymptotic analysis including both the postbuckling constants a1 (= 0) and a2 matches the
finite element analysis results nicely in the range θ0 ∈ [−0.025; 0.025] the precision of the nonsymmetric
analysis which is only carried out to the first postbuckling constant a1 rapidly deteriorates mainly because
of the heavy nonlinearities introduced through the material law.

The column with rectangular cross-section always exhibits imperfection sensitivity although not as
distinct as with the triangular cross-section because it experiences symmetric postbuckling.

According to the asymptotic analysis the triangular cross-section column is initially stable in post-
buckling when forced to bifurcate in the opposite direction of the w-axis (see Figure 2), in the direction
of the cross-section axis z while it is imperfection sensitive when buckling in the direction of the w-axis.
On the other hand, the finite element analysis shows that the initial postbuckling stability is soon negated
by a decrease in load-carrying capacity which is not detected by the asymptotic analysis. Therefore and
because the accuracy of the asymptotic approach decreases soon after bifurcation it may be an obvious
idea to include the next asymptotic term a2 for nonsymmetric structures as well as for symmetric ones.

13. Imperfect Euler column

In principle the geometric imperfection may be of any shape. Here, in the spirit of Koiter, we restrict
ourselves to columns subject to an initial imperfection in the shape of the buckling displacement field u1

and characterized by the imperfection amplitude ξ :

ŵ = ξw1, v̂ = ξv1 = 0. (88)
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The asymptotic equilibrium path of the imperfect column close to bifurcation may be examined
through the stability problems derived earlier by calculating the imperfection shape parameters ρ1, ρ2

and ρ3. However, since the second postbuckling constant a2 was not determined for the nonsymmetric
perfect column, ρ2 and ρ3 may not be determined exactly and are therefore excluded for nonsymmetric
perfect columns.

13.1. Asymptotic imperfection shape parameters. In Appendix E the asymptotic stability problems for
imperfect structures are solved in details. For small values of i1 The asymptotic imperfection parameters
are given as

ρ1λc =
−1

1+ e′c
(89)

for all columns, while ρ2 and ρ3 are only determined for symmetric columns:

ρ2λc = 0, ρ3λc = (ρ1λc)
2
−

e′c
2
−

5
9 e′′c

2(1+ e′c)3
. (90)

For various values of the hardening parameters n the dependence on the slenderness i1/|εu| of the two
nonvanishing imperfection shape parameters ρ1 and ρ3 are shown in Figure 8. For infinitely slender
columns, i.e., for i1/|εu| → 0, the imperfection parameters ρ1 and ρ3 approach their linear elastic
counterparts ρ1 = −1 and ρ3 = −1, respectively. When i1/|εu| increases the absolute values of ρ1

and ρ3 decrease towards zero, though for ρ3 the sign changes for large n. The larger the value of the
hardening parameter, the faster decrease of |ρ1| and |ρ3|. In general, this means that the equilibrium of
a geometrically imperfect nonlinear elastic column is closer to the equilibrium of its perfect realization

n = 1
n = 2
n = 10

ρ1

(i1/|εu |)21.510.50

0

−0.25

−0.5

−0.75

−1

n = 1
n = 2
n = 10

ρ3

(i1/|εu |)21.510.50

1

0.75

0.5

0.25

0

−0.25

−0.5

Figure 8. Left: The first imperfection shape parameter ρ1. Right: The third imperfec-
tion shape parameter ρ3 for symmetric columns.
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than it is for a linear elastic column. The initial imperfection sensitivity, described by the maximum
load, depends both on the initial postbuckling path and the three imperfection shape parameters. The
nonlinear elastic effect of smaller imperfection parameters partly neutralizes the more rapid decrease in
postbuckling load capacity shown for the perfect Euler column.

13.2. Asymptotic maximum load. As mentioned above, the expression for the asymptotic maximum
load depends on whether the perfect structure is symmetric or not.

Nonsymmetric column. The asymptotic maximum load of the nonsymmetric column may be computed
from (63):

λm

λc
= 1+ cm

1
2
ξ

1
2 + O(ξ 1) (91)

where the constant cm
1
2

, shown in Figure 9, is given by

cm
1
2
=−

4
1+ e′c

√
i2

3π i2
1

e′c, (92)

where λc and a1 are determined for the perfect column and ρ1 is given by (89).

n = 1
n = 2
n = 10

(i1/|εu |)

cm
1
2
|εu |

1
4

21.510.50

0

-0.25

-0.5

-0.75

Figure 9. The maximum load constant, cm
1
2

, for nonsymmetric columns.

Symmetric column. The asymptotic maximum load of the symmetric column is determined from (69):

λm

λc
= 1+ cm

2
3
ξ

2
3 + O(ξ

4
3 ), (93)

where the constant cm
2
3

, shown in Figure 10, is given by

cm
2
3
=

3
2(1+ e′c)

(
i1− 3(e′c)

2
+ e′′c

4i1

)1
3

. (94)
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n = 1
n = 2
n = 10

cm
2
3
|εu |

1
3

(i1/|εu |r)21.510.50

0

-0.5

-1

-1.5

Figure 10. The maximum load constant cm
2
3

for symmetric columns.

While λc and a2 are associated with the perfect column, ρ1 is given by (89). Note that even though
ρ2 and ρ3 do not affect the maximum load directly in this case, then the fact that ρ2 vanishes enables us
to show that the remainder O(ξγ ) is of order ξ

4
3 and not of order ξ 1.

13.3. Comparison with numerical results. Here, results of the usual asymptotic and the enhanced as-
ymptotic expansion, both taking imperfections into account, are compared with numerical results ob-
tained by a full nonlinear finite element analysis for the same symmetric column that was used for
comparison of perfect column results. Equilibria for the imperfection levels ξ = 0.0025, 0.01, 0.04 are
plotted in Figure 11 for a regular expansion with one and two terms, as well as the enhanced asymptotic
expansion of (53), which is forced to obey the condition λ(ξ = 0)= 0. The one-term asymptotic expansion
is the traditional lowest order asymptotic method developed in [Koiter 1945] which only depends on ρ1

in (52), while ρ2 is ignored. The two-term asymptotic expansion takes also ρ2 into account by (52). For
the structure in question the relevant constants are

ρ1 =−0.90, ρ3 = 0.57, m1 = 1.39, ψ3 =−0.681. (95)

It appears from Figure 11 that, as expected, independent of the imperfection amplitude the enhanced
solution through (0, 0) yields the best approximation to the numerical solution, especially for small values
of the characteristic buckling amplitude, θ0. Though both the one- and the two-term solutions diverge
close to zero, the two-term solution provides accurate results for much smaller buckling amplitudes than
the one-term solution. While the one-term solution provides reliable estimates of the equilibrium path
only for very small imperfection levels, the two-term solution approximates loads around the maximum
well even for moderate imperfection amplitudes, although the shape of the equilibrium path is badly
approximated for smaller amplitudes of the buckling mode (small values of ξ ). As seen from the plot,
the estimates of the equilibrium paths given by the enhanced asymptotic expansion lie very close to the nu-
merical results for any limited buckling amplitude and even for relatively large imperfection amplitudes.
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Through (0, 0)
2 term approximation
1 term approximation

FEA

ξ̄ = 0.04

ξ̄ = 0.01

ξ̄ = 0.0025

ξ̄ = 0.0

λ
Pc

PE

θ00.070.060.050.040.030.020.010

1.2

1

0.8

0.6

0.4

0.2

0

Figure 11. Comparison of equilibrium paths for geometrically imperfect column with
rectangular cross-section, |εu| = 0.002, n = 2, i1/|εu| = 0.2. The classic Euler load of
linear elasticity is denoted PE .

In Figure 12 the dependence of the maximum load on the imperfection amplitude ξ is illustrated
for the traditional polynomial 1-term asymptotic expansion given by (93), for the enhanced hyperbolic

Enhanced, 1 asymptotic term
1 asymptotic term

FEA

λm
Pc

PE

ξ̄0.350.30.250.20.150.10.050

1

0.8

0.6

0.4

0.2

0

Figure 12. Comparison of maximum load prediction for rectangular cross-section,
|εu| = 0.002, n= 2, i1/|εu| = 0.2. The classic Euler load of linear elasticity is denoted PE .
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asymptotic expansion suggested in (71) and for numerical finite element calculations. For the actual
column the relevant constants are

cm
2
3
=−6.83, cm

3
3
= 0. (96)

and thus only one nonvanishing asymptotic term exists for both the enhanced and the traditional asymp-
totic method. Comparison between numerical results and the traditional 1-term polynomial asymptotic
expansion shows good agreement only for very small values of ξ . The enhanced expansion provides rel-
atively accurate approximations of the maximum load even at large values of the imperfection amplitude
ξ . In part, this is due to the fact that the enhanced method utilizes that the maximum load does not drop
below zero by letting the maximum load approach zero for large values of ξ . For this column numerical
studies show that the maximum load has a lower limit which is higher than zero, yet the enhanced method
provides excellent results.

14. Conclusion

In the body of the text a generally applicable asymptotic expansion valid for determination of postbifur-
cation behavior and imperfection sensitivity of structures under the assumption of full kinematic and
elastic nonlinearity has been established. The asymptotic prediction of equilibria for imperfect structures
has been enhanced such that the boundary condition that the buckling amplitude vanishes with the load
for any imperfection is fulfilled.

The above comparisons with numerical results indicate that exploitation of additional boundary condi-
tions and limit states imposed on the asymptotic expansion may lead to modified, but still asymptotically
correct, expressions for imperfect structures which provide stable and relatively accurate results even for
larger values of the imperfection amplitude.

Appendix A. Asymptotic coefficient fields Pi

Consider the function P(ui , λ) of a field of n variables, u(ξ):

u(ξ)= {u1(ξ), u2(ξ), . . . , un(ξ)} = ui (ξ), (A-1)

where P(ui , λ) depends linearly on the scalar load parameter λ(ξ), and where we shall assume that the
partial derivatives of P with respect to ui are continuous at least to third order to ensure that the order
of differentiation is unimportant.

A.1. Expansion of P at bifurcation. Suppose ξ = 0 at the bifurcation and expand in series in ξ around
the singular point:

λ/λc = 1+ ā1ξ + ā2ξ
2
+ ā3ξ

3
+ O(ξ 4),

u(ξ)= uc+ ξ ūT
1 + ξ

2ūT
2 + ξ

3ūT
3 + O(ξ 4),

P (u(ξ), λ(ξ))= Pc+ ξ PT
1 + ξ

2 PT
2 + ξ

3 PT
3 + O(ξ 4),

(A-2)

where c designates prebifurcation values taken at the critical point. In the following we exploit that P
depends linearly on λ to eliminate higher-order derivatives with respect to λ when the derivatives of P
with respect to ξ are obtained.
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We define a generalized displacement field consisting of u and the imperfection û:

U ∈ {u, û} = {u, αũξ 2
}, (A-3)

where (6) and (7) are introduced. Then,

∂ P
∂ξ
=
∂ P
∂U i

∂U i

∂ξ
+
∂ P
∂λ

∂λ

∂ξ
,

∂2 P
∂ξ 2 =

∂ P
∂U i

∂2U i

∂ξ 2 +
∂2 P

∂U i∂U j

∂U i

∂ξ

∂U j

∂ξ
+
∂ P
∂λ

∂2λ

∂ξ 2 + 2
∂2 P
∂λ∂U i

∂λ

∂ξ

∂U i

∂ξ
,

∂3 P
∂ξ 3 =

∂ P
∂U i

∂3U i

∂ξ 3 + 3
∂2 P

∂U i∂U j

∂2U i

∂ξ 2

∂U j

∂ξ
+

∂3 P
∂U i∂U j∂U k

∂U i

∂ξ

∂U j

∂ξ

∂U k

∂ξ

+
∂ P
∂λ

∂3λ

∂ξ 3 +
∂2 P
∂λ∂U i

(
∂2λ

∂ξ 2

∂U i

∂ξ
+
∂λ

∂ξ

∂2U i

∂ξ 2

)
+ 3

∂3 P
∂λ∂U i∂U j

∂λ

∂ξ

∂U i

∂ξ

∂U j

∂ξ
.

(A-4)

Now the coefficient fields PT
i are expressible in terms of ūT

i and āi and the imperfection shape ũ as

PT
1 =

∂ P
∂ξ

∣∣∣∣
c
= Pc

,i ū
T i
1 + ā1λc Pc

,λ,

PT
2 =

1
2
∂2 P
∂ξ 2

∣∣∣∣
c
= Pc

,i ū
T i
2 + ā2λc Pc

,λ+ ā1λc Pc
,λi ū

T i
1 +

1
2 Pc

,i j ū
T i
1 ūT j

1 +αũ(Pc
,û),

PT
3 =

1
6
∂3 P
∂ξ 3

∣∣∣∣
c
= Pc

,i ū
T i
3 + ā3λc Pc

,λ+ ā2λc Pc
,λi ū

T i
1 + ā1λc(Pc

,λi ū
T i
2 +

1
2 Pc

,λi j ū
T i
1 ūT j

1 )

+ Pc
,i j ū

T i
2 ūT j

1 +
1
6 P,i jk ūT i

1 ūT j
1 ūT k

1 +αũ(ā1λc Pc
,λû+ Pc

,i ûūT i
1 ),

(A-5)

where

( ),i,...,k =
∂n( )

∂ui , . . . , ∂uk . (A-6)

A.2. Perturbation expansion close to the precritical path. Let a perturbation expansion of the function
P around the precritical path, indicated by subscript 0, be given:

u(ξ)= u0(ξ)+ ξ ū1+ ξ
2ū2+ ξ

3ū3+ O(ξ 4),

P(u(ξ))= P0(ξ)+ ξ P1+ ξ
2 P2+ ξ

3 P3+ O(ξ 4),
(A-7)

and an expansion of the precritical path in ξ :

u0(ξ)= uc+ ξu0
1+ ξ

2u0
2+ ξ

3u0
3+ O(ξ 4),

P0 (u(ξ))= Pc+ ξ P0
1 + ξ

2 P0
2 + ξ

3 P0
3 + O(ξ 4).

(A-8)

It is now possible to determine the asymptotic coefficient fields Pi when the precritical path is es-
tablished. Insert the precritical path (A-8) in the perturbation expansion (A-7) and match it with the
expansion of P (A-2) to provide

ūi = ūT
i − u0

i , (A-9)
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which yields

P1 = PT
1 − P0

1 = Pc
,i ū

i
1,

P2 = PT
2 − P0

2 = Pc
,i ū

i
2+ ā1λc Pc

,λi ū
i
1+

1
2 Pc

,i j (ū
i
1ū j

1 + 2ūi
1u0 j

1 )+αũ(Pc
,û),

P3 = PT
3 − P0

3 = Pc
,i ū

i
3+ ā2λc Pc

,λi ū
i
1+ ā1λc(Pc

,λi ū
i
2+

1
2 Pc

,λi j (ū
i
1ū j

1 + 2ūi
1u0 j

1 ))

+ Pc
,i j (ū

i
2ū j

1 + ūi
2u0 j

1 + u0 j
2 ūi

1)

+
1
6 P,i jk(ūi

1ū j
1ūk

1+ 3ūi
1u0 j

1 u0k
1 + 3ūi

1ū j
1u0k

1 )

+αũ(ā1λc Pc
,λû+ Pc

,i û(ū
i
1+ u0i

1 )),

(A-10)

The prebuckling fields established in Appendix B are introduced to provide the specific expressions
for Pi in (17)–(19).

Appendix B. Expansion of u0 in ξ

A traditional expansion of u0 around Bifurcation in λ yields

u0 = uc+ (λ− λc)u′c+
1
2(λ− λc)

2u′′c + O((λ− λc)
3). (B-1)

Insertion of λ given by (8) in (B-1) provides the desired expansion in ξ as

u0 = uc+ ξu0
1+ ξ

2u0
2+ O(ξ 3), (B-2)

where

u0
1 = a1λcu′c u0

2 = a2λcu′c+
1
2(a1λc)

2u′′c . (B-3)

Appendix C. Symmetry of pl,i

Differentiation of pl given by (5) provides

pl,i = σ · ε,li + σ,i · ε,l − (η ·C),li − λB,li . (C-1)

The stress field is a function of the strain field alone, i.e., σ (ε), so differentiation of the stress field
with respect to the displacement field yields

σ,i =
∂σ

∂ε
ε,i = Dε,i , (C-2)

where D is the field of tangent stiffnesses.
Because P and therefore also pl has continuous derivatives of at least to fourth order with respect to u,

the constituent functions of pl must be equally differentiable. This ensures that the order of differentiation
may be switched without altering the result. Thus

pl,i = σ · ε,li + Dε,i · ε,l − (η ·C),li − λB,li
= σ · ε,il + Dε,l · ε,i − (η ·C),il − λB,il = pi,l,

(C-3)

which proves that pl,i is symmetric and that the indices may be interchanged freely, i.e., pl,i = pi,l .
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Appendix D. Perfect Euler column: asymptotic coefficients

D.1. Prebuckling. The straightforward prebuckling solution for the Euler column is

w0(x)= 0, v̈0(x)= 0, (D-1)

where dots over a quantity denote differentiation with respect to x .

D.2. Principle of virtual displacements and operators. The principle of virtual displacements as given
in (1) depends on strains, stresses, constraints and load.

The Bernoulli–Euler beam theory assumes the only influential strains to be the strains in the direction
of the x-axis, here denoted ε:

ε = ε+ zκ, (D-2)

where

ε =
√
(1+ v̇)2+ ẇ2− 1, κ = θ̇ =

ẅ(1+ v̇)− v̈ẇ
(1+ v̇)2+ ẇ2 , (D-3)

and the corresponding stresses σ(ε) may depend on the strains to any degree of nonlinearity.
The load operator B is taken to be linear in the displacements:

B(u)=−Pcv(L). (D-4)

In the present application no Lagrange constraints are enforced.

The operators Cc
i , Bc

i and Ec
i . Use (23), (43) and (44) to show that for this column the operators associated

with the principle of virtual displacements are as follows:

Constraints: Cc
i ≡ 0 (D-5)

Loads: Bc
1(uα)=−Pcvα(L), Bc

i = 0, i 6= 1 (D-6)

Strains: The strain operator may be split up in parts that are independent of the cross-sectional variable z:

Ec
i = Ecε

i + zEcκ
i . (D-7)

The stretch ratio at critical load sc is

1
sc
=

1
1+ v̇c

= 1− v̇c+ O(v̇2
c )= 1+ i1(1− nc)+ O(i2

1), (D-8)

where 0≤ nc ≤ 1 and nc = 0 for linear elasticity. Thus the strain operators are

Ecε
1 (uα)= v̇α, Ecε

2 (uα, uβ)= ẇαẇβ
1
sc

(D-9)

and

Ecκ
1 (uα)= ẅα

1
sc
, Ecκ

2 (uα, uβ)=−
(
(ẇα v̇β)

·
+ (ẇβ v̇α)

·
) 1

s2
c
. (D-10)

Provided that we only determine the second postbuckling constant a2 when the column is symmetric
Ec

3 enters solely as Ec
3(uα, u1, u1) and Ec

4 as Ec
4(u1, u1, u1, u1) after u1 has been determined. It is later
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shown that v1 ≡ 0, and thus we get

Ecε
3 (uα, u1, u1)=−(v̇αẇ1ẇ1)

1
s2

c
,

Ecε
4 (u1, u1, u1, u1)=−3(ẇ1ẇ1ẇ1ẇ1)

1
s3

c
,

(D-11)

and

Ecκ
3 (uα, u1, u1)=−2(ẇαẇ1ẇ1)

· 1
s3

c
, Ecκ

4 (u1, u1, u1, u1)= 0. (D-12)

Stability operators Pc
i . The relevant stability operators Pc

1–Pc
4 are provided by (46) and (47):

Pc
1(uα)=

∫ L

0
(−λc Pcv̇α) dx + λc Pcvα(L),

Pc
2(uα, uβ)=

∫ L

0

(
Ec

t Av̇α v̇β +
Ec

t I1

s2
c
ẅαẅβ −

σc A
sc
ẇαẇβ

)
dx .

(D-13)

Again, we only determine the second postbuckling constant a2 when the column is symmetric. Thus
Pc

3 enters solely as Pc
3(uα, u1, u1) and Pc

4 as Pc
4(u1, u1, u1, u1) after u1 has been determined. Utilize

v1 ≡ 0 in (D-9) and (D-11) to provide

Pc
3(uα, u1, u1)=

∫ L

0

((
Ec

t,ε

s2
c
−

2Ec
t

s3
c

)
I1v̇αẅ

2
1+

(
Ec

t

sc
+
σc

s2
c

)
Av̇αẇ2

1−
2Ec

t

s3
c

I1ẇ1v̈αẅ1+
Ec

t,ε

s3
c

I2ẅαẅ
2
1

)
dx,

Pc
4(u1, u1, u1, u1)=

∫ L

0

(
Ec

t,εε

s4
c

I3ẅ
4
1 +

(
6Ec

t,ε

s3
c
−

24Ec
t

s4
c

)
I1ẇ

2
1ẅ

2
1 + 3

(
Ec

t

s2
c
+
σc

s3
c

)
Aẇ4

1

)
dx . (D-14)

D.3. Expansion parameter and boundary conditions. Let the expansion parameter ξ be the rotation of
the column end, i.e.,

ξ = θ(0), tan θ(0)=
ẇ(0)

1+ v̇(0)
. (D-15)

The solution to the boundary value problem of the geometrically perfect column must fulfill (D-15)b.
Insert (D-15)a in the asymptotic expansion (9) of u and match the right-hand side of (D-15)b with the
left-hand side to reveal the rather obvious boundary conditions

ẇ1(0)= 1, ẇ2(0)= v̇1(0). (D-16)

D.4. Buckling. The buckling equation (26) using the stability operator (D-13) with the operators of
(D-9) inserted provides

0=
∫ L

0

(
Ec

t Av̇1δv̇+
Ec

t I1

s2
c
ẅ1δẅ−

λc Pc

sc
ẇ1δẇ

)
dx . (D-17)

Fulfill (D-17) for all admissible δv and δw to get

Ec
t Av̈1 = 0,

....
w 1+

scλc Pc

Ec
t I1

ẅ1 = 0, (D-18)
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respectively. Apply the kinematic boundary conditions at the pinned ends to obtain the eigenmode
solution of (D-18). The amplitude of the eigenmode is determined by condition (D-16)a:

v1 = 0, w1 =
L
π

sin(πx/L). (D-19)

Normalize the applied force as follows to make λc = 1:

Pc/A = σc = Ec
t
(
i1+ O(i2

1)
)
H⇒ λc = 1. (D-20)

D.5. First postbuckling problem.

First postbuckling constant. As mentioned earlier, in the case of a nonsymmetric structure, we shall limit
ourselves to determining the first postbuckling constant a1 and refrain form determining the second, a2.
From (29) with (D-14) inserted we get

aN
1 =−

∫ L

0

1
2s3

c
Ec

t,ε I2ẅ
3
1dx = Ec

t AL
2e′ci2

3π i1s3
c
. (D-21)

Utilize the necessary coefficient from the expansion of the prebuckling path, namely

v̇′c(x)=−
σc

Ec
t
=−i1, (D-22)

to determine

aD
1 =−

σc

Ec
t

∫ L

0

((
Ec

t,ε

s2
c
−

2Ec
t

s3
c

)
I1ẅ

2
1 +

(
Ec

t

sc
+
σc

s2
c

)
Aẇ2

1

)
dx

=−
1
2 Ec

t ALi1
(
1+ e′c+ O(i1)

)
. (D-23)

As i1� 1, introduction of the nondimensional quantities defined in (72) and (73) yields

a1 =−
4e′ci2

3π i2
1(1+ e′c)

. (D-24)

From (D-24) it is clear that only when the cross-section is nonsymmetric (i2 6= 0) and the material
model is nonlinear will the first postbuckling constant a1 differ from zero.

Postbuckling displacement field. The postbuckling displacement field, which is only determined when
a1 = 0 (implying e′ci2 = 0), may be determined from the variational equation (41) together with the
boundary conditions (D-16). Utilize the stability operators (D-13)–(D-14) and get

0=
∫ L

0

(
Ec

t Av̇2δv̇+
1
s2

c
Ec

t I1ẅ2δẅ−
1
sc
σc Aẇ2δẇ

)
dx

+
1
2

∫ L

0

(
1
s2

c
Ec

t,ε I1ẅ
2
1δv̇+

(
1
sc

Ec
t +

1
s2

c
σc

)
Aẇ2

1δv̇+
1
s3

c
2Ec

t I1
...
w1ẇ1δv̇

)
dx . (D-25)

Gather terms in (D-25) and introduce u1 from (D-19) and sc from (D-8) to reach the differential
equations

v̇2 =−
1
2

(
(1− nci1) cos2 πx

L
+ e′c

(
1+ 2(1− nc)i1

)
sin2 πx

L

)
+ O(i2

1),
...
w2+

(
π

L

)2
ẇ2 = 0, (D-26)
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and the static boundary conditions

ẅ2(0)= 0, ẅ2(L)= 0. (D-27)

Use the kinematic boundary conditions (D-27) at the pinned ends along with the conditions (D-16).
When i1� 1 the second postbuckling displacement field becomes

v2 =−
1
4

(
(1+ e′c)x + (1− e′c)

L
2π

sin 2πx
L

)
+ O(i1), w2 = 0. (D-28)

D.6. Second postbuckling constant. For symmetric cross-sections (a1 = 0, e′ci2 = 0) the numerator of
the second postbuckling constant aN

2 may be found from (42). Utilize the operator expressions (D-13)–
(D-14) to obtain

aN
2 =−

∫ L

0

((
1
s2

c
Ec

t,ε −
2
s3

c
Ec

t

)
I1v̇2ẅ

2
1 +

(
1
sc

Ec
t +

1
s2

c
σc

)
Av̇2ẇ

2
1 −

2
s3

c
Ec

t I1ẇ1v̈2ẅ1

)
dx

−
1
6

∫ L

0

(
1
s4

c
Ec

t,εε I3ẅ
4
1 + 6

(
1
s3

c
Ec

t,ε −
4
s4

c
Ec

t

)
I1ẅ

2
1ẇ

2
1 + 3

(
1
s2

c
Ec

t +
1
s3

c
σc

)
Aẇ4

1

)
dx . (D-29)

Since the terms proportional to Ec
t A vanish, it is essential to include the first-order terms of i1 in u2

(D-26) and 1/sc (D-8). After some derivations (D-29) yields

aN
2 =−

1
16 Ec

t AL
(
i1− 3(e′c)

2
+ e′′c

)
+ O(i2

1)+ e′c O(i1)+ e′′c O(i1). (D-30)

The denominator of a2 is identical to the denominator of a1, which is given by (D-23). Utilize that
i1� 1 to truncate terms of order 1, e′c and e′′c respectively to the lowest order of i1. Then, the second
postbuckling constant becomes

a2 =
i1− 3(e′c)

2
+ e′′c

8i1(1+ e′c)
. (D-31)

Note that the term i1 in the numerator of a2 is not necessarily small compared to the other terms e′c
and e′′c . When the column exhibits linear or near linear material behavior at buckling, the absolute value
of the nonlinear material constants e′c and e′′c decrease and the i1-term becomes important.

D.7. Nonlinear elastic inextensible Euler column. When the Euler column is constrained to be inex-
tensible, it is easily shown that

C1
= η1 ·

(
v̇+ 1

2 v̇
2
+

1
2ẇ

2)
= 0, C2

= η2 · (sin θ − ẇ)= 0, B =−Pcv(L), (D-32)

and
ε = 0, κ = θ̇ . (D-33)

Furthermore, when prebuckling is given by

v0 = w0 = θ0 = η
2
0 = 0, η1

0 = λPc, (D-34)

the operators associated with the principle of virtual displacements may be found from (23) and (43) and
(44) together with (D-32)–(D-33).
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Constraints: Inextensibility requires

C1c
1 (uα)= λc Pc · v̇α,

C1c
2 (uα, uβ)= η1

β · v̇α + η
1
α · v̇β + λc Pc · (v̇α v̇β + ẇαẇβ),

C1c
3 (uα, u1, u1)= η

1
α · ẇ

2
1,

C1c
4 (u1, u1, u1, u1)= 0

(D-35)

and
C2c

1 (uα)= 0,

C2c
2 (uα, uβ)= η2

β · (θα − ẇα)+ η
2
α · (θβ − ẇβ),

C2c
3 (uα, u1, u1)= 0,

C2c
4 (u1, u1, u1, u1)=−4η2

1 · θ
3
1 ,

(D-36)

where it is utilized that v1 = η
1
1 ≡ 0 has been established before Ci

3 and Ci
4 are used.

Loads: Bc
1(uα)=−Pcvα(L), Bc

i = 0, i 6= 1. (D-37)

Strains: Ec
1(uα)= zθ̇α, Ec

i = 0. (D-38)

Stability operators: The stability operators defined in (46) and (47) become

Pc
1(uα)=

∫ L

0

(
−λc Pcv̇α

)
dx + λc Pcvα(L),

Pc
2(uα, uβ)=

∫ L

0

(
Ec

t I1θ̇α θ̇β −
(
η1
β v̇α + η

1
α v̇β + λc Pc(v̇α v̇β + ẇαẇβ)

)
−
(
η2
β(θα − ẇα)+ η

2
α(θβ − ẇβ)

))
dx,

Pc
3(uα, u1, u1)=

∫ L

0

(
Ec

t,ε I2θ̇α θ̇
2
1 − η

1
αẇ

2
1
)

dx,

Pc
4(u1, u1, u1, u1)=

∫ L

0

(
Ec

t,εε I3θ̇
4
1 + 4η2

1θ
3
1
)

dx .

(D-39)

Buckling and postbuckling. Insert the stability operators in the stability problems (26) and (29) together
with (41) and (42) to provide the buckling solution

λc = 1, Pc =
π2 Ec

t I1

L2 , σc = i1 Ec
t ,

v1 = 0, w1 =
L
π

sin
πx
L
, θ1 = cos

πx
L
,

η1
1 = 0, η2

1 = Pc cos
πx
L
,

(D-40)

the first postbuckling constant a1 for nonsymmetric cross-sections

a1 =−
4e′ci2

3π i2
1
, (D-41)
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the postbuckling solution

v2 =−
1
4

(
x + L

2π
sin 2πx

L

)
, w2 = 0, θ2 = 0,

η1
2 =

1
2 Pc cos2 πx

L
, η2

2 = 0,
(D-42)

and the second postbuckling constant a2 for symmetric cross-sections

a2 =
i1+ e′′c

8i1
. (D-43)

Appendix E. Imperfect Euler column: asymptotic coefficients

The prebuckling, buckling and postbuckling solution may be taken from Appendix D and the strain
measure with respect to the perfect reference is given by (D-3).

E.1. Scalar stability operators connected with imperfection. The effects of initial imperfections are de-
termined by the imperfection shape parameters, ρi . The scalar general stability operators Pc

i determined
for the perfect column in (D-13) and (D-14), some of the additional general stability operators defined
by (46) and (47) and the scalar operators associated with imperfections defined by (49) are needed in
order to compute ρi .

Additional general stability operator. Most general stability operators needed to determine ρi were deter-
mined for the perfect structure in (D-13) and (D-14). Because the second postbuckling constant a2 only is
determined when a1 = 0 some general stability operators enter only the imperfection sensitivity analysis.
These stability operators are Pc

3(uα, u1, u′c) and Ec
4(u1, u1, u1, u′c). First we determine the additional

operators associated with the principle of virtual displacements needed to compute Pc
3(uα, u1, u′c) and

Ec
4(u1, u1, u1, u′c) from (43) when it is exploited that v1 = 0 and w0 = 0 and the strains are given by

(D-3):
Ecε

3 (uα, u1, u′c)=−(ẇαẇ1v̇
′

c)s
−2
c , Ecε

4 (u1, u1, u1, u′c)= 0,

Ecκ
3 (uα, u1, u′c)= 2(v̇αẇ1v̇

′

c)
·s−3

c , Ecε
4 (u1, u1, u′c, u′c)= 2ẇ2

1(v̇
′

c)
2s−3

c .
(E-1)

Thus, the additional general stability operators become

Pc
3(u
′

c, u1, uα)=−
∫ L

0

σc

Ec
t

((
Ec

t,ε

s2
c
− 3

Ec
t

s3
c

)
I1ẅ1ẅα +

Ec
t A
sc

ẇ1ẇα

)
dx,

Pc
4(u
′

c, u1, u1, u1)= 0,

Pc
4(u
′

c, u′c, u1, u1)=

∫ L

0

(
σc

Ec
t

)2 ((Ec
t,εε

s2
c
− 4

Ec
t,ε

s3
c
+ 6

Ec
t

s4
c

)
I1ẅ

2
1 +

(
Ec

t,ε

sc
− 2

Ec
t

s2
c
+ 2

σc

s3
c

)
Aẇ2

1

)
dx,

(E-2)

where we have used that v̇′c = −σc/Ec
t and v̈′c = 0 according to (D-22) and the buckling problem has

been utilized to eliminate terms.

Stability operators associated with imperfections. Use (48) to show that the operators associated with
imperfections are

E Iε
1 (ũ)= ˙̃v, E Iκ

1 (ũ)= ¨̃w, D I
2(uα, ũ)= 0, (E-3)
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when no constraints are enforced.
The only stability operators associated with imperfections needed to determine ρ1 and when a1 = 0,

as well as ρ2 and ρ3 are P̄c
2(uα, ũ), P̄c

3(u1, u1, ũ) and P̄c
3(u
′
c, u1, ũ). The third degree operators are only

determined for symmetric and/or linear elastic columns, thus I2 and/or derivatives of Et with respect to
ε vanish. From (49) we have

P̄c
2(uα, ũ)= Pc

2(uα, ũ)−
∫ L

0

(
Ec

t Av̇α ˙̃v+
Ec

t I1

sc
ẅα ¨̃w

)
dx,

P̄c
3(u1, u1, ũ)= Pc

3(u1, u1, ũ)−
∫ L

0

(
Et,ε I1

s2
c

˙̃vẅ2
1 +

Ec
t A
sc

˙̃vẇ2
1

)
dx,

P̄c
3(u
′

c, u1, ũ)= Pc
3(u
′

c, u1, ũ)−
∫ L

0

((
Et,ε

sc
−

Ec
t

s2
c

)
I1 ¨̃wẅ1v̇

′

c

)
dx .

(E-4)

E.2. Expansion parameter. Since the expansion parameter ξ is identified as the rotation of the column
end even for the imperfect structure, the condition (D-15) must apply. Similar to the asymptotic match
for the perfect structure (D-15) yields

˙̄w1(0)= 1, ˙̄w2(0)= ẇ2(0)+αω̇2(0)= ˙̄v1(0), (E-5)

where ω2 is associated with the shape of the imperfection.
Because u1 is independent of the imperfection and ẇ2(0) already fulfills the condition ẇ2(0)= v̇1(0),

the boundary condition on ω2 becomes

ω̇2(0)= 0. (E-6)

E.3. Imperfection in shape of the buckling displacements. When the shape of the imperfection is given,
the imperfect stability operators (E-4) may be evaluated. For simplicity, let the shape of the imperfection
be the buckling displacement field u1:

ŵ = ξw1 = ξ
( L
π

)
sin πx

L
, v̂ = ξv1 = 0. (E-7)

Thus, from the buckling problem Pc
2(uα, u1)= 0, and the stability operators associated with imper-

fections become

P̄c
2(uα, u1)=−

∫ L

0

Ec
t I1

sc
ẅαẅ1dx,

P̄c
3(u1, u1, u1)= Pc

3(u1, u1, u1)= 0,

P̄c
3(u
′

c, u1, u1)= Pc
3(u
′

c, u1, u1)−

∫ L

0

((
Et,ε

sc
−

Ec
t

s2
c

)
I1ẅ

2
1 v̇
′

c

)
dx .

(E-8)

First imperfection parameter. The first imperfection shape parameter ρ1 may be determined from (30)
with ũ = u1:

ρ1λc =
ρN

1

aD
1
, (E-9)
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where aD
1 has already been determined in (D-23) and

ρN
1 =−P̄

c
2(u1, u1)=

∫ L

0

Ec
t I1

sc
ẅ2

1dx = 1
2 Ec

t ALi1
(
1+ O(i1)

)
. (E-10)

Thus, as i1� 1,

ρ1λc '
−1

1+ e′c
. (E-11)

Imperfection displacement field for symmetric columns. The lowest degree displacement field which
depends on the imperfection is v2. The field v2 may be found as a linear solution of (35). Let v2 =

(vυ2 , w
υ
2 ), where vυ2 is affine with v and wυ2 with w, and insert stability the operators (E-2), (E-8) and

(D-13)–(D-14):

0=
∫ L

0

(
Ec

t Av̇υ2 δv̇+
1
s2

c
Ec

t I1ẅ
υ
2 δẅ−

1
sc
σc Aẇυ2 δẇ

)
dx −

∫ L

0

Ec
t I1

sc
ẅ1δẅdx

−

∫ L

0
ρ1λc

σc

Ec
t

((
Ec

t,ε

s2
c
− 3

Ec
t

s3
c

)
I1ẅ1δẅ+

Ec
t A
sc

ẇ1δẇ

)
dx . (E-12)

Gather terms of the same variational fields and introduce u1 to provide

Ec
t Av̇υ2 = 0,

( L
π

)2 ...
w
υ
2 + ẇ

υ
2 = k1 cos πx

L
, (E-13)

where the constant k1 is

k1 =−sc− ρ1λc

(
e′c
sc
−

3i1

s2
c
+ 1

)
= O(i1). (E-14)

Introducing the geometric boundary conditions and the expansion parameter condition (E-6) yields

vυ2 = 0, wυ2 = k1

(
L

2π
sin(πx/L)−

L
4
(1− cos(πx/L))− 1

2
x cos(πx/L)

)
. (E-15)

Second imperfection parameter for symmetric columns. The second imperfection parameter ρ2 may in
general be computed from (37). For symmetric columns, and when stability operators which equal zero
for the column are excluded, (37) provides

ρ2λc =
ρN

2

aD
1
, (E-16)

where aD
1 is given by (D-23), and

ρN
2 =−P

c
3(v2, u1, u1)− ρ1λcPc

3(u
′

c, u2, u1), (E-17)

where the operators are given by (D-14) and (E-2), respectively. The first operator depends linearly
on v̇υ2 = 0 for symmetric postbuckling behavior and the second operator depends linearly on w2 and
derivatives which are all zero. Thus, (E-16) and (E-17) yields

ρ2λc = 0 H⇒ ρ2 = 0. (E-18)
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Third imperfection parameter for symmetric columns. The third imperfection parameter ρ3 may in gen-
eral be calculated from (37). For symmetric columns, and when stability operators which equal zero for
the column are excluded, (37) provides

ρ3λc =
ρN

3

aD
1
, (E-19)

where aD
1 is given by (D-23) and the only nonvanishing contributions to ρN

3 are

ρN
3 =−ρ1λc

(
Pc

3(u
′

c,v2,u1)+ P̄c
3(u
′

c,u1, ũ)
)
−

1
2(ρ1λc)

2(Pc
4(u
′

c,u
′

c,u1,u1)+Pc
3(u
′′

c ,u1,u1)
)
. (E-20)

When the relevant displacement fields are introduced in the four operators given by (D-14), (E-2) and
(E-4), and u′′c given by

v̇′′c =−e′ci1, (E-21)

the expression to lowest degree in i1 for ρN
3 is

ρN
3 =−

1
2 Ec

t ALi1

(
−ρ1λc−

1
2(ρ1λc)

2
(

e′c
2
−

i2
1

i3
e′′c

))
(1+ O(i1)). (E-22)

Utilize the result of (E-22) with ρ1λc given by (E-11) and aD
1 in (E-19) to provide

ρ3λc ' (ρ1λc)
2
−

e′c
2
− (i2

1/ i3)e′′c
2(1+ e′c)3

(E-23)

when i1� 1. Since i3 is generally of order i2
1 , both terms in the numerator may become important.
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