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STRESS SMOOTHING HOLES IN PLANAR ELASTIC DOMAINS

SHMUEL VIGDERGAUZ

The actual elastostatic problem of optimizing the stress state in a two-dimensional perforated domain
by proper shaping of holes is considered with respect to minimization of the global variations of the
boundary hoop stresses. This new criterion radically extends the rather restrictive equistress principle
introduced by Cherepanov and results in a favorable response of the structure to an external load, with
neither local stress concentrations nor underloading of other parts of the boundary. Mathematically, the
variations provide an integral-type assessment of the local stresses which requires less computational
effort than direct minimization of the stress concentration factor. The proposed criterion can thus be
easily incorporated in the numerical optimization scheme previously developed by the author in the
closely related context of energy optimization. It includes an efficient complex-valued direct solver and
a standard evolutionary optimization algorithm enhanced with an economical shape parametrization tool.
The effectiveness of the proposed scheme is illustrated through numerical simulations.

1. Introduction and motivation

Thin and flat construction elements with holes enjoy frequent application in engineering. The holes may
cause significant stress concentration and crack initiation, which occur when the resultant maximum
hoop stresses σh along the hole boundaries L exceeds the material-specific constant σ0:

K(L)≡max |σh(t)|> σ0, t ∈ L . (1-1)

This weakening effect of the holes can be efficiently reduced by their proper shaping to achieve a more
favorable stress state of the construction under the same given loading. Such an approach is all the more
promising as the hole area usually matters much more than its shape, which thus permits a certain design
freedom.

With (1-1), the commonly used criterion for assessing the elastic structure optimality is the minimum
of K(L) over the pool {L} of all admissible shapes L j of each hole:

max |σh(t)| ≡ K−−−−−−−−−→
{L}

min; t ∈ L; L =
N⋃

j=0
L j . (1-2)

The stress-minimizing holes (1-2) maximize the undamaging level of the acting load. The direct problem
of evaluating the factor K over given holes and the inverse problem of its possible minimization are
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amongst the main topics in elasticity. The related literature is abundant. In the next sections, some
relevant papers are commented on for comparison purposes.

Much less attention, however, has been paid to another criterion, according to which the hoop stresses
should have minimal possible variation along the holes:

V [σh(L)] −−−−−−−−−→
{L}

min . (1-3)

In accordance with the general theory of real-valued functions [Natanson 1955], the variation of the
stress function is defined as

V [σh(L)] = sup
∑

j

n∑
i=0

∣∣σh(t
( j)
i+1)− σh(t

( j)
i )

∣∣, (1-4)

where the supremum is taken over all possible partitions of L j with an arbitrary system of points
t ( j)
0 , t ( j)

1 , . . . , t ( j)
n ordered by a chosen direction of traversing. For a closed contour we require t ( j)

n = t ( j)
0 .

Since the variation is always nonnegative and reaches its zero global minimum only at constant-valued
functions, i.e.,

V [σh(L)] = 0⇐⇒ σh(L j )= C j ∀ j, (1-5)

this is an integral measure of how the function is everywhere close to uniformity.
When the constants {C j } are reasonably small, the uniform stress distribution (1-5) presents an ideal

response of the structure to an applied external load while avoiding both excessive local stress concen-
tration and underloading of other parts of the boundary at an acceptable stress level.

Though the criteria (1-2) and (1-3) for V [σh(L)] > 0 are implicitly connected through the evident
inequality

max σh(L)−min σh(L)≤ V [σh(L)], (1-6)

where the equality sign is attained at, for instance, any monotone function, it remains unclear whether
they go to their minima together or at each other’s expense.

The absolutely nontrivial and purely analytical example here consists of the equistress shapes (ESS)
[Cherepanov 1974; Vigdergauz 1976; Banichuk 1977] along which the hoop stresses are simultaneously
uniform [Cherepanov 1974] and globally minimal [Vigdergauz 1976]. In other words, an ESS is optimal
with respect to both criteria, which, for brevity, will be referred to as K and V , respectively.

However, these shapes exist only under the following restrictive conditions:

(A1) The elastic domain is infinite.

(A2) The absolute value of the ratio of deviatoric stresses to dilatational stresses externally applied at
infinity must be no greater than 1 or, equivalently, the principal remote stresses must have the same
sign. Under this requirement, the resultant stress field in the domain remains rather isotropic, thus
preserving the ellipticity of the optimization problem.

(A3) All the contours must be optimized simultaneously: no fixed holes are allowed.

If all this takes place, the constants C j are all equal, and are determined only by an external load
independently of the number of holes and their relative arrangement. They are found analytically in
parallel with the parametric representation of the ESS by solving the Dirichlet problem in a plane with
rectilinear slits. See [Milton 2002] and references therein.
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Whenever any of the conditions (A1)–(A3) is violated, an ESS most likely no longer exists.
A less restrictive piecewise constant distribution of the hoop stresses (M-equistressness) was proposed

in [Vigdergauz and Cherkaev 1986] and more comprehensively in [Vigdergauz 2006], as an immediate
extension of (1-5) to any loading at infinity. The M-equistress single hole under remote shear is semi-
analytically identified in [Vigdergauz 2006]; two closely spaced holes are numerically found in [Waldman
et al. 2003]. Physically, they contain four angular points t1, . . . , t4 across which the hoop stresses change
sign:

σh(t)=

{
C ′, t1 < t < t2, t3 < t < t4,

C ′′, t4 < t < t1, t2 < t < t3, C ′,C ′′ 6= 0, C ′C ′′ < 0,
(1-7)

so that V [σh(L)] = 2|C ′−C ′′|.
Less constrained optimal problems of this kind have received little or no attention in the literature.

We study them here using only the V-criterion, with no additional prerequisites like, say, the piecewise
constancy (1-7) of σh . The numerical results obtained (Section 5) show that this approach, among other
things, reliably reproduces equi- and M-equistressness. In this connection, we note that, as mentioned
above, any nonzero variation corresponds to at least an immense variety of monotone functions with
the same extrema; thus, the fact that the V-criterion identifies just the independently found piecewise
constant M-distributions (when they exist) strongly counts in its favor.

On the other hand, the equistressness (1-5) for a general geometry and the M-equistressness (1-7) for
a single hole were first derived as a stationary point of the variation of the strain energy integral over
the solid phase with moving boundaries [Cherepanov 1974]. In contrast, we formulate the V-criterion
as an essential relaxation of equistressness rather than variationally. Nevertheless, the fact that the stress
variation is bounded from below by zero allows one to formulate the V-related shaping of the holes as
a global optimization problem (Section 3). A possible relation between energy minimization and the
V-criterion deserves a separate study, which is currently beyond our scope.

In the general unrestricted case, the ESS serve as an absolute benchmark to measure the effectiveness
of a shape optimization which may be performed now only separately for the concentration factor (1-2)
and for the variation of the stresses (1-3).

Though both criteria have comparable practical implications, they generalize the ESS in diverging
directions. More importantly in the current context, they substantially differ in computational complexity.
Indeed, a typical numerical optimization strategy involves two main ingredients: the solution of a given
direct problem which has to be repeated many times, and a minimization scheme. The direct solver as-
sesses the fitness of each candidate for optimization by a chosen criterion. The stress concentration factor
(1-2), due to its local nature, must be evaluated here with high accuracy to avoid spurious oscillations
around the true value, which frequently occur in numerical stress analysis. By contrast, the integral-
type criterion (1-3) may be assessed less accurately because the sums (1-4) permit, at least partially, the
compensation of numerical errors in the stress computation. The results displayed in Section 5 illustrate
that minimization of the variation of the stresses effectively smooths them also outside of limitations
(A1)–(A3). It works as an oscillation filter within the numerical optimization scheme composed here as
follows:
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Figure 1. The problem schematic: a two-dimensional elastic region with holes. The
outer boundary L0 may recede to infinity.

• The direct solver employs complex-valued Kolosov–Muskhelishvili (KM) potentials [Muskhelish-
vili 1963], which result in a specially derived system of linear algebraic equations involving no
singularities and, hence, providing a fast and accurate assessment of any admissible hole shape.

• The minimization process is based on a standardized configured genetic algorithm (GA) which
includes the above-described solver for fitness evaluation in a gradientless search of the global opti-
mum. Of importance here is the novel encoding scheme, where each optimized shape is presented
separately by a sequence of the first N Laurent coefficients of the function mapping it conformally
onto a unit circle. As a whole, the proposed scheme was validated previously [Vigdergauz 2008;
2010] in the closely related context of the minimization of the strain energy.

Our contribution, therefore, is twofold: the relaxation of the equistress principle and its efficient
numerical implementation.

The paper is organized as follows. In Section 2, the two-dimensional boundary value elastostatic
problem for a multiply connected region and the hoop stresses variations is formulated in complex-
variable terms. On this basis, Section 3 poses the optimization problem and illustrates its peculiarities by
the example of the equistress and the M-equistress shapes. Section 4 described the components of the
numerical optimization scheme and how they are combined together. In Section 5, numerical results for
a selection of benchmark problems are detailed and discussed to illustrate the validity of our approach
and its limitations. Finally, some concluding remarks are made in Section 6.

2. Problem setup and governing equations

Consider, in the complex plane E : z = x + iy ∈ E , a linearly elastic, homogeneous, and isotropic solid S
which contains a finite number N of nonintersecting holes S j with boundaries L j , j = 1, . . . , N , as shown
in Figure 1. The infinite region outside the outer boundary L0 is denoted by S0, so S+

⋃N
j=0 S j = E .

Each curve L j , j = 0, . . . , N , is supposed to be closed and piecewise smooth, with area F j . When it
exists, the outer boundary L0 is subject to given external stresses

σnn(t) and σnτ (t), t ∈ L0, (2-1)
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in a local system of curvilinear orthogonal coordinates (n, τ ), while the boundaries of the holes are taken
to be traction-free:

σnn(t)≡ 0, σnτ (t)≡ 0, t ∈ L j , j = 1, . . . , N . (2-2)

The load-induced stress tensor {σ(z)} at any point of the elastic domain is expressed by the complex-
valued Kolosov–Muskhelishvili (KM) functions 8(z),9(z) holomorphic in S (see [Muskhelishvili 1963]
for these and other formulas in this section):

σxx(z)+ σyy(z)= 4 Re8(z), z ∈ S, (2-3a)

σyy(z)− σxx(z)+ 2iσxy(z)= 2[z8′(z)+9(z)]. (2-3b)

In conformity with the loading conditions (2-1)–(2-2) the KM potentials are linearly linked along the
boundary L =

⋃N
j=0 L j of the solid S by

2
∂t
∂t

Re8(t)+ t8′(t)− σnn(t)− iσnτ (t)=−9(t), t ∈ L0; (2-4a)

2
∂t
∂t

Re8(t)+ t8′(t)=−9(t), t ∈ L j , j = 1, . . . , N . (2-4b)

The second potential 9(z) is isolated in the right-hand side of (2-4) for future use (see Section 4.1).
When the elastic domain is infinite, the outer boundary L0 does not exist and the nonzero conditions
(2-4a) are replaced by the given far-field principal stresses σ∞xx = P , σ∞yy = Q, σ∞xy = 0, which dictate
the asymptotics

8(z)= Bz+ O(|z|−2), 4B = P + Q, z→∞; (2-5a)

9(z)= 0z+ O(|z|−2), 20 = Q− P. (2-5b)

The identities (2-4a)+(2-4b) or (2-4a)+(2-5) form a boundary value problem to be solved for KM poten-
tials, which in turn define the resultant stresses through (2-3). Using the traction-free condition (2-4b)
and the coordinate invariance of the stress tensor trace in the left side of (2-3a) we obtain, along each
inner hole,

σττ (t)= 4 Re8(t), t ∈ L j , j = 1, . . . , N , (2-6)

and, in like manner, when the outer boundary is present,

σττ (t)= 4 Re8(t)− σnn(t), t ∈ L0. (2-7)

Here σττ (t) denotes the hoop stresses abstractly written in Section 1 as σh . In view of (2-6), (2-7), their
total variation is written as

V [σττ (L)] =
N∑

j=0

V [σττ (L j )] = 4
N∑

j=0

V [Re8(L j )− δ j,0σnn(L j )] (2-8)

where δ j,0 stands for the Kronecker delta.
At a fixed external load, the stresses and hence their boundary variations depend only on a number of

the holes, their shape, size and mutual arrangement. As it will be shown later, the hole shapes admit an
effective finite parametrization, which significantly facilitates the numerical shape optimization technique
with respect to the V-criterion.
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3. Problem formulation

We are now in a position to define more precisely the problem (1-3) of minimizing the variation of the
hoop elastic stresses in complex-variable terms:

Given relative locations and areas of a number of traction-free holes in a two-dimensional
thin elastic domain, find the hole shapes L j that minimize the hoop stresses variation
(1-3)+(2-8) under a load specified either along a fixed outer boundary by (2-1)+(2-4a)
or at infinity by (2-5).

Except for the novel criterion, this is a standard shape optimization problem in elasticity.
As already noted, the global minimum (1-5) of the variation criterion V is reached, for instance, at

the equistress holes in an infinite plate; they are derived in the current terms as follows.
Substitution of (1-5) into (2-6) gives at the inner traction-free holes

Re8(t)= C j , j = 1, . . . , N . (3-1)

The identities (3-1) and the bulk-type asymptotics (2-5a) form the elementary Dirichlet problem in the
holomorphic function 8(z) with the unique solution

8(z)= constant= B, z ∈ S; C j = B, j = 1, . . . , N ; (3-2)

which is valid for any hole shapes and locations. By (3-2), the traction-free condition (2-4a) then simpli-
fies to the boundary-value problem in the second KM potential 9(z)

9(t)=−2B
∂t
∂t
, t ∈ L j , j = 1, . . . , N , (3-3)

with shear-type asymptotics (2-5b) at infinity. In contrast to (3-1), this problem may have a solution only
for specifically shaped holes along which the right-hand side of (3-3) is the boundary value of a function
holomorphic in S. The bulk-type asymptotics (2-5) provides a necessary condition for solvability of the
problem. Indeed, taking the absolute values of both sides of (3-3) and using the evident fact that∣∣∣∣∂t

∂t

∣∣∣∣≡ 1, t ∈ L , (3-4)

for any arc L in the complex plane, we have∣∣9(t)∣∣= 2
∣∣∣∣B ∂t
∂t

∣∣∣∣= 2|B|. (3-5)

Since the modulus of a holomorphic function is a real subharmonic function of z [Courant 1950], it obeys
the maximum principle and hence achieves its maximum only at the domain boundary L . Particularly∣∣9(z =∞)∣∣= |0| ≤ 2|B| (3-6)

or, in equivalent form, 1≡ 0/(2B), which implies

|1| =

∣∣∣∣∣σ∞yy − σ
∞
xx

σ∞yy + σ
∞
xx

∣∣∣∣∣≤ 1, (3-7)

a quantitative expression of the solvability condition (A2) discussed in Section 1.
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In themselves, the equistress shapes are found parametrically by the conformal mapping of the opti-
mized infinite domain into a plane with parallel slits [Cherepanov 1974] where the transformed boundary
conditions (3-3) are met. For further references, we reproduce here the equations for the upper side of the
right hole in the case of two identical ESS disposed symmetrically about the y-axis [Cherepanov 1974]:

y(ξ)
C
= (1+ γ )

(
E
(
θ,
√

1− ξ 2
0
)
+ d0 F

(
θ,
√

1− ξ 2
0
)
− R(ξ)

)
x(ξ)

C
= x0+ (1− γ )(ξ − ξ0)

 for 0< ξ0 ≤ ξ ≤ 1, (3-8)

where

θ = arcsin
1
ξ

√
ξ 2− ξ 2

0

1− ξ 2
0
, x0 = (1− γ )ξ0+ (1+ γ )

(
E
(
π

2
, ξ0

)
− (1+ d0)F

(
π

2
, ξ0

))
,

d0 =−
E
(
π

2
,
√

1− ξ 2
0

)
F
(
π

2
,
√

1− ξ 2
0

) , R(ξ)= ξ−1
√
(1− ξ 2)(ξ 2− ξ 2

0 ).

Here F and E are the elliptic integrals of the first and second kind, respectively, C denotes a nonessential
scaling factor up to which the two-hole geometry is described by the single dimensionless parameter λ,
the ratio of the half interdistance x0 to the square rooted area F1 = F2 of either of the holes:

λ=
x0√
F1,2

, 0< λ <∞. (3-9)

With decreasing distance x0, and, hence, increasing interaction between the holes, the resultant optimal
shape (3-8) evolves from an ellipse to a kidney-like shape, as illustrated in [Cherepanov 1974].

The seeming ease of obtaining the globally optimal solution (3-8) is completely due to the conditions
(A1)–(A3) listed in Section 1, which make it possible to preliminary find the first KM potential 8(z) in
the geometry-independent form (3-2). Other examples of the ESS such as a circular hole under uniform
pressure are too trivial to be considered.

Now it becomes clear how the loading inequality (3-6) works. Indeed, consider a single traction-free
hole under remote shear [Vigdergauz and Cherkaev 1986]: then B = 0 and 0 = 1. The nonzero equistress
condition (3-1) then makes no sense in view of the mean value theorem for a harmonic function Re8(z)
[Courant 1950], by which

R̂e8(t)= C1 = Re8(∞)= B ≡ 0, t ∈ L1, (3-10)

where the hat denotes the function’s mean value along L1. In contrast, the weakened M-equistress
condition (1-7) is compatible with (3-10) provided that C ′=−C ′′ and arg tk= (2k−1)iπ/4 (k=1, 2, 3, 4),
as dictated by the problem’s rotational symmetry. Again, as above, substitution of (1-7) into the boundary
condition (2-4a) and conformal mapping help to find the shape and the stress constant C ′ [Vigdergauz
and Cherkaev 1986], this time only numerically. The optimal shape looks like a slightly rounded square.
A more efficient semianalytical approach [Vigdergauz 2006] is given in Section 5 for comparison.

The general case, however, does not lend itself to solution by this approach and the whole situation
calls for a numerical treatment based on a novel analytical approach.
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4. Numerical scheme

Particularly relevant to the present purposes, is the scheme previously developed in [Vigdergauz 2008;
2010], in the similar context of the energy-related shape optimization. For completeness and reader’s
convenience, its basic features are briefly outlined below.

4.1. Direct solver. It is shown in the previous section that the ESS allow one to find the KM potentials
(a) sequentially rather than in parallel, and (b) in closed form.

Actually, however, 8(z),9(z) can be separated for any set of hole shapes, though in a quite different
manner and only numerically. As compared to the standard practice, this option halves the computational
complexity of the direct problem. Crucial here is that, in contrast to 8(z), the second potential 9(z)
enters the boundary conditions (2-4) with neither conjugates nor derivatives. This offers a way of solving
(2-4) as a regular boundary-value problem in only 8(z) and, when needed, to find 9(z) by simple
integration thereafter.

Indeed, since the Cauchy-type integral of the holomorphic function 9(z), z ∈ S, over L vanishes
identically in each complementary region S j , j = 0, . . . , N [Ahlfors 1978], we have from (2-4)∫

L

2 Re8(t) dt + t8′(t) dt
t − z

=

∫
L0

σnn(t)+ iσnτ (t)
t − z

dt, ∀z ∈ S j , j = 0, . . . , n. (4-1)

Here L is traversed in the positive direction with respect to the elastic domain S.
Evidently, a Taylor-like expansion of the Cauchy kernel 1/(t− z) around arbitrary finite points a j ∈ S j ,

j = 1, . . . , n, namely

1
t − z

=
1

t − a j
+

∞∑
k=1

(z− a j )
k

(t − a j )k+1 , |z− a j |< ε, j = 1, . . . , N , (4-2)

is absolutely convergent at least for a sufficiently small ε. Similarly, at infinity,

1
t − z

=−
1
z
−

∞∑
k=1

tk

zk+1 , |z|> R, (4-3)

for a sufficiently large R.
Next, substitution of (4-2) and (4-3) into (4-1) and equating like powers on both side yields the infinite

set of identities (k = 1, 2, . . . )∫
L

2 Re8(t) dt + t8′(t) dt
(t − a j )k

=

∫
L0

σnn(t)+ iσnτ (t)
(t − a j )k

dt; j = 1, . . . , N , (4-4a)∫
L

(
2 Re8(t) dt + t8′(t)

)
tk−1dt =

∫
L0

(
σnn(t)+ iσnτ (t)

)
tk−1dt. (4-4b)

By the principle of analytical continuation [Ahlfors 1978], these identities are valid not only near the
points {a j } but everywhere outside S. Therefore, taken together, they are equivalent to the initial boundary
conditions (2-4). Finally, the Laurent series of 8(z) around the same points a j and at infinity,

8(z)=
n∑

j=1

∞∑
k=2

d(k)j

(z− a j )k
+

∞∑
k=2

d(k)0

zk , z ∈ S, (4-5)
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transforms (4-4) into an infinite set of linear algebraic equations

AEx = D, A = {Akl}, D = {Dk}, (4-6)

for the unknowns Ex = {d(k)j }, with j = 0, . . . , N and k = 2, . . . . The coefficients of the system involve
regular rather then singular integrals and hence are computationally more advantageous than the con-
ventional integral equation schemes [Muskhelishvili 1963]. For certain geometries, they are displayed
in Section 5. When S is infinite, the integrals along the outer contour L0 are discarded together with the
coefficients {d(k)0 }, while the right-hand side of the system is a linear combination of specific integrals
over all holes with the loading coefficients B and 0 from (2-5) as detailed in [Vigdergauz 2008; 2010].
In both cases, the system involves only the first KM potential 8(z) and hence has a halved size when
truncated for numerical purposes to a finite number Nsyst. The number of the unknowns may be further
reduced for a problem with symmetry as shown for specific cases in Section 5.

4.2. Shape encoding algorithm. The key issue in numerical applications of the proposed solver is how
to effectively parametrize hole shapes, both for evaluating the contour integrals (4-4) in the system coef-
ficients and optimizing the shapes over the same parameters. A workable approach here is a conformal
mapping of the domain D outside a unit circle ρ = exp iθ , 0≤ θ ≤ 2π , |ρ| = 1, onto the infinite domain
E j ≡ E − S j performed separately [Vigdergauz 2008; 2010] for each shape L j , j = 0, . . . , N , by N+1
functions with a finite Laurent expansion in D:

ω j (ζ )

C
= ζ +

M∑
m=1

b( j)
m

ζm with |ζ | ≥ 1, j = 0, . . . , N , (4-7)

where C is the scaling coefficient at which

ω j (ρ)= t ∈ L j , j = 0, . . . , N . (4-8)

Taken as design variables, the mapping coefficients b( j)
m , with m = 1, . . . ,M and j = 0, . . . , N , offer a

number of substantial advantages over the commonly used nodal point shape representation, as detailed
in [Vigdergauz 2010]. First, the conformal mapping-based description (4-8) is continuous rather than
discrete, and hence even a small number M of them gives a wide variety of smooth closed shapes as
compared to tens and hundreds of nodal points required for the same purpose. This is all the more so
because the b(m)j are bounded by the successively narrowed intervals

−
1
√

m
≤ b( j)

m ≤
1
√

m
, j = 0, . . . , N , m = 1, 2, . . . (4-9)

(see [Ahlfors 1978]), which are the necessary condition for the nonnegativeness of the area F j inside L j :

F j = π

(
1−

M∑
m=1

m
∣∣b( j)

m

∣∣2), j = 0, . . . , N . (4-10)

As a result, high-order coefficients are mostly responsible for forming large local curvatures and have
little impact on the integral-type criterion (2-8) of minimum stress variation. Second, with the identities

ρ = ρ−1, dρ = ρ dθ, dt = iω′j (ρ)ρ dθ, dt =−iω j (ρ)′ρ
−1 dθ, t ∈ L j , (4-11)
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the integration path L j is continuously transformed into the unit circumference ρ, thus making the
numerical integration easier and independent of the parameter M . In numerical simulation (Section 5)
we use the simplest trapezoid rule with Nint equal subintervals.

In a multiply connected case, the parametrization (4-7)–(4-11) also does better numerically than the
canonical simultaneous mapping [Courant 1950] of an infinite plane ζ with N slits or holes by a holo-
morphic function ω(ζ ). Indeed, the boundary condition in ζ [Muskhelishvili 1963]

−
2
ζ 2ω

′(ζ )Re8(ζ)+ω(ζ )8′(ζ )+ω′(ζ )9(ζ )= 0, ζ ∈ l, (4-12)

is more complicate than its unmapped counterpart (2-4b) and, most likely, may not be simplified be-
yond the nice exception of the equistressness. Further, the proposed approach easily meets any given
arrangement of the holes by displacing the separate maps (4-7) in the physical plane E :

ω j (z)→ ω j (z)+ h j , j = 1, . . . , N . (4-13)

Here the h j are complex-valued constants. This can hardly be done by an ordinary mapping of the whole
domain S as exemplified in Section 3, where the implicit relation in (3-8) between the ESS interdistance
x0 and the auxiliary parameter λ is not invertible analytically to give λ as a function of ξ0. This is all the
more true for fixed shapes. When they exist, they are necessarily involved into the usual mapping, and
should be restored through a nonlinear boundary condition imposed on the holomorphic function ω(ζ ),
while separate mapping simply does not touch them. Finally, we note that the parametrization works well
up to closely spaced holes (see Section 5) with a relatively small number M of the Laurent terms in (4-7).

4.3. Fitness evaluation. Once the hoop stresses σττ (t) are found through 8(z), the fitness of the cor-
responding set of the holes can be next evaluated with respect to the minimum variation criterion
(2-8)+(1-4). Of course, for numerical implementation, the supremum in (1-4) is replaced by the sum
over only one selection of q closely spaced points 0= x1 < x2 < · · ·< xq = 2π along each hole contour.
We select the points x p in the form

x p = π(1+β(q)p ), p = 1, . . . , q, (4-14)

where the β(q)p are the roots of the Chebyshev polynomials of the second kind

Uq(x)=
q∏

p=1

(
x −β(q)p

)
, β(q)p = arccos

pπ
q + 1

, (4-15)

widely used in approximation theory. In the current context, their especially relevant property stems from
the fact that the Un(x) are known [Abramowitz and Stegun 1964] to minimize the integral∫ 1

−1
Pq(x) dx −−−−−−−−−→

{Pq }

∫ 1

−1
Uq(x) dx (4-16)

among all polynomials Pq(x) of same degree q and same leading coefficient. On the other hand, the
variation of a differentiable function f (x) in an interval takes the form [Natanson 1955]

V b
a ( f )=

∫ b

a
| f ′(x)| dx, (4-17)
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in conformity with the general definition (1-4). Comparison of (4-17) with (4-16) shows that Vq+1(x) :
V ′q+1≡Uq(x), q ≥ 1, are the polynomials of the minimum variation in [−1, 1]. The numerical simulation
(Section 5) indicate that the usage of (4-14) adds some 6 to 8 percent to the accuracy of the results obtained
with the same number of uniformly distributed approximation points.

Finally (4-17) gives

V b
a ( f )=

∫ b

a

∣∣ f ′(x)
∣∣ dx ≥

∣∣∣∣ ∫ b

a
f ′(x) dx

∣∣∣∣= ∣∣ f (b)− f (a)
∣∣, (4-18)

where the equality holds if and only if f ′(x) has constant sign on [a, b]. This means that V-optimization
seeks to smooth the stresses distribution by making it monotonous on the irreducible part of the con-
tour. We have already noted that the proposed criterion, in fact, does even more. Amongst monotone
distributions it tends to find a piecewise constant one, as exemplified in Section 5.

4.4. Evolutionary optimization scheme. With the mapping terms (4-7), the optimization problem is
finally reformulated as follows

V [σθθ (L)] −−−−−−−→
{b( j)

m }

min
(
b̂( j)

m , m = 1, . . . ,M, j = 0, . . . , N
)
. (4-19)

Put another way, the search space for each shape L j is reduced to a M-dimensional rectangular paral-
lelepiped with edges of length 2/

√
m, m = 1, . . . ,M , as defined by bilateral inequalities (4-9). They form

a set of linear constraints on the definition domain of the nonlinear minimized function V (b(0)1 , . . . , b(N )M ),
thus completing the problem formulation.

Our previous experience [Vigdergauz 2008; 2010] suggests that the computational process of shape
optimization (4-19)+(4-9) can be effectively conducted by evolutionary genetic algorithms (GAs), which
have been well-accepted in the last two decades (see, for instance, [Goldberg and Sastry 2010] and
references therein). They perform a gradientless optimization in a large search space by mimicking
the Darwinian process of natural selection over successive generations through crossover and mutation
operations. The efficient direct solver and the time-saving shape encoding numerically simplify the
parametrized optimization problem (4-19), allowing the use of an ordinary genetic algorithm configura-
tion, as detailed in our papers just cited. A set {L} of shapes is stochastically generated into a “chromo-
some” encoding M × (n+1) mapping parameters (4-7) as signed 16-bit integers rm

j , in conformity with
(4-9):

b(m)j =
rm

j

I
√

m
with I = 215

− 1, −I ≤ rm
j ≤ I, j = 0, . . . , n, m = 1, 2, . . . . (4-20)

The proposed direct solver permits evaluating the fitness of the chromosome that is the stresses variation
for the decoded shapes L(b(m)j ). An initial family of Nchr chromosomes is then subject to genetic opera-
tions of recombination, crossover and mutation performed over the integers {rm

j } rather then over {b(mj )}.
In doing so, the best individuals with the minimal fitness have the highest chance of surviving in the
offspring which in turn is passed to the fitness evaluation stage, and the cycle continues until the search
is terminated. The number Niter of iterations should be taken sufficiently large to ensure close proximity
of the solution to the global minimum. As is customary in iterative optimization, we indirectly estimate
the proximity by the inner stability of the process when the obtained minimum remains unchanged
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through a number of successive evolutionary steps. In general, the efficiency of GAs strongly depends
on the parameters involved, which, when chosen poorly, may slow convergence or even result in failure.

Of course, the scheme above described is not the only possible way to solve the shape optimization
problem at hand. For instance, Waldman et al. [2003] combine the finite element analysis with the
specially designed gradientless scheme of shape optimization by the M-equistress criterion (1-7) when
the elastic material is added at regions of high stress and/or removed where the hoop stress is low. In
contrast to our approach, this procedure needs an initial guess for the shapes to start with. As a result, a
given mutual arrangement of the holes is generally not preserved after optimization. Besides, the authors
use a time-consuming remeshing between iterations to avoid mesh distortion. Qualitatively, their results
fully agree with ours, though quantitative discrepancies are rather significant for two closely spaced
optimal holes in a plane under shear dominating far load. The details are discussed in Section 5.3.

5. Numerical results

As already noted, the evaluation of the variation under the proposed optimization scheme depends on
a number of parameters such as the probabilities of the GA operations, the truncated system size Nsyst,
and the numbers Nint, M , and q of, respectively, integration points, mapping terms, and Chebyshev
polynomial roots. All must be pre-adjusted to obtain stable and reliable solutions. We do it here using
a rare opportunity of comparing the numerical results with the corresponding closed solution (3-8) for
two equistress holes (Section 5.1). Further, in order to validate the approach, we numerically simulated
a number of yet unsolved two-dimensional cases.

5.1. Two equistress holes in an infinite plate under unibiaxial tension (B = 1, 0= 0). Here our aim is
to identify the ESS numerically with the minimum variation criterion (2-8) instead of using the equistress
principle (3-1)+(3-2) as a prerequisite.

Let two identical holes be located symmetrically with respect to the Cartesian axes. Then 8(z) is
even and takes conjugate values at complex conjugate points [Muskhelishvili 1963]:

8(z)=8(−z), 8(z)=8(z), z ∈ S+ L (5-1)

With this in view, the Laurent expansion (4-5) simplifies to

8(z)=
∞∑

k=2

d(1)k

(
1

(z− a1)k
+

(−1)k

(z+ a1)k

)
, z ∈ S+ L , a1 ∈ S1; Im d(1)k , k = 2, 3, . . . , (5-2)

and the system (4-6) takes the form

Akl = 2l
∫

L1

Re(ρl+1(t, c))ρk(t, c) dt + l(l + 1)
∫

L1

tρl+2(t, c)ρk(t, c) dt, (5-3a)

Dk =−4B
∫

L1

ρk(t, c) dt, k = 0, 1, 2, (5-3b)

ρ0(t, z)≡ 1
t−z
+

1
t+z

, z ∈ S1, (5-3c)

ρk(t, c)≡
1
k!
∂kρ0(t, z)
∂zk

∣∣∣
z=a1
=

1
(t − a1)k+1 +

(−1)k

(t + a1)k+1 , (5-3d)
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Figure 2. Two holes under remote bulk loading: the V-optimal hoop stresses σττ (θ) as
a function of the mapping size M at λ= 0.2.

Finally, when replacing t ∈ L1 by its map (4-7)+(4-8), we define the scaling factor C and the displacement
(4-13) (separately for each generated shape) to keep a given geometrical parameter λ from (3-9). By
virtue of symmetry, the mapping terms b(1)m , m = 1, . . . ,M are also real and the integration in (5-3) is
performed only along the upper half of L1 : 0≤ θ ≤ π .

Figure 2 depicts the convergence of the resultant hoop stresses on the optimized contour L1 to the
uniform distribution (3-2) at λ= 0.2 in dependence on the mapping problem size M , beginning with a
circle M = 0. As one would expect, the largest local deviation of the hoop stresses is observed near the
point x0, (θ = π) closest to the opposite hole. Figure 3 shows the optimally smoothed stresses at M = 9
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Figure 3. Two holes under remote bulk loading: the V-optimal hoop stresses for M = 9
in an enlarged scale.
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Figure 4. Two holes under remote bulk loading: the upper half of the right V-optimal
hole at λ= 0.2.

in an enlarged scale. The maximum relative error of σθθ is approximately 0.65%. We believe that the
error can be further reduced at the expense of increasing the computational cost but it is not our current
aim. Figure 4 depicts the numerically obtained optimal shape which is compared with the parametric
equations (3-8) taken at the computed value ξ0 ≈ 0.0024051725, λ(ξ0)= 0.2. The mutual deviations are
too small to be seen here. This closeness provides empirical grounds for adjusting the parameters listed
at the beginning of the section. Table 1 gives their calibrated values used in further calculations.

GA parameter Parameter value(s)

Gene Integer in [−32767; 32767]
Individual Interface shape
Population size 800
Number of genes, M up to 9
Initial population 800 random individuals
Selection Tournament
Elitism Four best individuals
Crossover 1-point
Crossover rate 0.90
Creep mutation By randomly changing a bit
Creep mutation rate 0.35
Jump mutation By adding a random integer,

typically in the range [−4; 4]
Jump mutation rate 0.35
Stopping criterion After 1200 iterations
Resolving system size K 36
Number of integration points Np 720 (in the interval [0, π])
Number q of sample points on contour 1440

Table 1. GA operator types, their probability rates and related parameters typically used
in further optimizations.
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5.2. A single V-optimal hole in infinite plate under remote shear (B = 0, 0 = 1). Here, the rotational
properties of the problem imply that 8(i z)=−8(z) and hence

8(z)=
∞∑

k=1

a(1)4k−2

z4k−2 ;
ω1(ζ )

C
= ζ +

M∑
m=1

b(1)4m−1

ζ 4m−1 , |ζ | ≥ 1, (5-4)

while the right-hand side of the system (4-6) takes the form

D0 =−200, Dk = 0, k = 1, 2, . . . (5-5)

In conformity with (3-10) and (5-4) we have

σθθ (eiπ/2ζ )=−σθθ (ζ ), σ̂θθ (ζ )= 0. (5-6)

Remarkably, for a single hole an M-term finite mapping expansion generates exactly a finite M ×M
system [Vigdergauz 2006]. This allows one to avoid additional truncation error by explicitly summing
the infinite tail of the series (5-4) through a finite difference scheme. As a result, the hoop stresses along
any hole are obtained as rational functions of the nonzero mapping terms b(1)4m−1, m = 1, . . . ,M . In
particular, for M = 1 we have [Vigdergauz 2006]

σθθ (ξ)=
4(1− 3b3) cos 2θ

(1− b3)(1− 6b3 cos 4θ + 9b2
3)
, b3 = b(1)3 . (5-7)

This makes the fitness evaluation equally easy and accurate for any criterion of optimality. Table 2
compares the computed V- and K-optima and the corresponding mapping terms for various M . The K-
related values, in parentheses, are taken from [Vigdergauz 2006]. It is seen that with increasing M , both
sets come closer and closer together; this is further illustrated in Figure 5. The V- and K-optimal stress

N b(1)3 b(1)7 b(1)11 b(1)15 b(1)19 b(1)23 Vmin Kmin

−0.07110 3.15744 3.117653
(−0.09000) (3.07165)

−0.09681 0.00444 2.96826 2.956837
(−0.11162) (0.00751) (2.90563)

−0.10987 0.00733 −0.00090 2.88768 2.8800311
(−0.12182) (0.01044) (−0.00200) (2.84110)

−0.11748 0.00918 −0.00165 0.00027 2.84435 2.8415915
(−0.12732) (0.01210) (−0.00293) (0.00076) (2.80824)

−0.12991 0.01055 −0.00221 0.00055 −0.00011 2.81818 2.8151719
(−0.13049) (0.01293) (−0.00340) (0.00112) (−0.00032) (2.78843)

−0.12498 0.01093 −0.00239 0.00064 −0.00017 0.00003 2.80387 2.8026223
(−0.13059) (0.01292) (−0.00338) (0.00116) (−0.00041) (0.00010) (2.77936)

Table 2. A single square symmetric hole under remote shear: conformal mapping co-
efficients and the V-criterion resulting from the GA optimization process for different
values of N . The K-related values are also shown for comparison, in parentheses.
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Figure 5. A single square symmetric hole under remote shear: tangential stress distribu-
tion along the V- and K-optimal holes (solid and dashed lines, respectively) for M = 23.
The local nonmonotonicity of the K-related curve is marked with an ellipse.

distributions at M = 23 are very similar except for a vicinity of the angular point (θ = π/4) where the
criteria work differently. As explained at the end of Section 4.3, the V-optimal stress distribution tends
to be monotonous while the K-criterion further diminishes the stress maximum with some sacrifice in
monotonicity. In any case, the difference between two maxima is hardly greater than the computational
errors. This favors in the V-criterion ability. We may conservatively conclude that again, as in the
equistress case, the K- and V-optimal single holes under pure shear are very similar to each other, if not
the same. Figure 6 depicts the evolution of the V-optimal shape with increasing M . One clearly sees the
smooth formation of an angular point with higher mapping coefficients.
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Figure 6. A single square symmetric hole under remote shear: the M-related evolution
of the V-optimal hole.
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Figure 7. An infinite plate with two identical holes under pure shear. The hole shapes
are symmetric about the x-axis and may have a finite number of angular points.

5.3. Two V-optimal holes in an infinite plate under remote shear (B = 0, 0 = 1). The corresponding
setup is shown in Figure 7. The only computational difference from the equistress case (Section 5.1) is
in the right-hand side (5-3b) of the resolving system (5-3). Now it has the form (5-5) [Vigdergauz 2008].

It is worth noting the following. Our previous experience [Vigdergauz 2008; 2010] shows that, by
contrast to (5-3b), the shear-type loading vector (5-5) results in low stability and accuracy of computing
the local stresses which are polluted with spurious oscillations. The reason is that the shear-type opti-
mal problem is no more elliptic as (3-2), and hence its solution looses some regular properties. For a
single hole (Section 5.2) it was compensated by an analytical summation of the infinite series in (5-4).
Here, as before, the numerically implemented V-criterion works equally well. Figure 8 illustrates this
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Figure 8. An infinite plate with two identical holes under pure shear: the V- and K-
optimal stresses (the dashed line) obtained by the same numerical scheme at λ= 0.2 are
compared to demonstrate the distinctive V-related smoothing effect.
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Figure 9. An infinite plate with two identical holes under pure shear: the upper half of
the right V-optimal hole at λ= 0.2.

conclusion, exemplifying the V-related filtering effect for two closely spaced holes at λ = 0.2 whose
shape is given in Figure 9. In contrast to the square symmetric V-optimal single hole, they are elongated
in the y-direction as was previously found by Waldman et al. [2003]. However, these authors further
obtained that the piecewise-constant hoop stresses for two holes under shear-dominating loading are
exactly the same as in the single hole case independently of the separation distance. In other words,
the shear-loaded optimal shapes also fully eliminate the holes interaction like in the equistress case. In
contrast, our stresses extrema max σθθ (θ)≈ 3.10 and min σθθ (θ)≈−2.85 on Figure 8 are higher than
the single-hole level σθθ (θ) ≈ 2.78843 (the right-bottom cell of Table 2) and differ in their absolute
values. The difference is too large to be attributed completely to numerical accuracy and, therefore, the
above-mentioned conclusion is not entirely supported in the quantitative analysis.

5.4. Two V-optimal holes in a circular disk under uniform pressure (σnn = P, σnτ = 0). As the last
example, we consider a uniformly compressed disk with two identical traction-free side holes. Here,
again, the symmetry relations (5-1) are obeyed, so that 8(z) is written as

8(z)=
∞∑

k=1

d(0)2k z2k
+

∞∑
k=1

d(1)k

(
1

(z− a1)k
−

(−1)k

(z+ a1)k

)
, (5-8)

z ∈ S+ L , a1 ∈ S1, Im d(0,1)k , k = 2, 3, . . .

In contrast to the equistress case (Section 5.1), the elastic domain is now finite and described by two
dimensionless parameters, namely the relative area f1,2= f1,2/πR2< 0.5 of the hole and its displacement
x0 < R from the center of the disk, where R is the disk radius.

Figure 10 depicts the identified V-optimal holes against their circular counterparts. Qualitatively, the
resultant shape is rather predictable because at given f1,2 and x0 the V-optimization strives to move
the hole away from the fixed outer boundary at the expense of the inner disk part. The corresponding
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Figure 10. A uniformly compressed disk with two V-optimal holes at x0 = 0.05 and
f1,2 = 0.2025. The circular holes of the same location and area (dashed lines) are also
shown for comparison.
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Figure 11. A uniformly compressed disk with two V-optimal holes at x0 = 0.05 and
f1,2 = 0.2025. The resultant tangential stress distributions (solid lines) versus their
counterparts for circular holes (dashed lines).

stress distributions are shown in Figure 11. As one might expect, the V-criterion not only smooths the
hoop stresses but also drastically reduces them as compared to the standard circular holes. The observed
deviations of the V-optimal distributions from the equistress value σθθ ≡ 2 measure the influence of the
disk’s circular boundary.

6. Concluding remarks

A new optimality criterion of smoothing the hoop stresses along holes in a perforated two-dimensional
elastic body has been proposed to extend the equistress principle (3-1) for the general case when neither
the equi- nor M-equistress shapes exist. For efficient numerical simulations, the criterion was combined
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with a complex variable-base direct solver and an economical shape encoding scheme as the main ingre-
dients of an evolutionary optimization process, each especially tailored for the problem at hand. Of them,
only the stresses variation criterion is really novel. Though related to the local stress distributions, it has
an integral form thus offering substantial numerical advantages. Within the proposed simulation approach
the V-criterion runs as a powerful filter of spurious oscillations of the hoop stresses thus permitting to
effectively smooth and reduce them at moderate computational cost. It is worthy to note again that the V-
optimal distribution tends to be piecewise constant what is absolutely a nontrivial solution. The results
presented demonstrate the promise of applying it to shape optimization in other fields of continuum
mechanics.
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