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ON SMALL AZIMUTHAL SHEAR DEFORMATION OF FIBRE-REINFORCED
CYLINDRICAL TUBES

MOHAMED A. DAGHER AND KOSTAS P. SOLDATOS

The problem of azimuthal shear deformation of a transversely isotropic elastic circular cylindrical tube
is considered and studied in the small deformation regime. The preferred direction of the transverse
isotropy is assumed to lie on the plane of the tube cross-section and is due to the existence of a single
family of plane spiral fibres. Consideration of the manner that either the tube material or the fibres may
be constrained gives rise to four different versions of the problem which are all susceptible to an exact
closed form solution when fibres are perfectly flexible. Particular attention is paid to the special case of
straight fibres aligned along the radial direction of the tube cross-section, where comparisons are made
between the aforementioned solution obtained when fibres are perfectly flexible and a corresponding
solution obtained when fibres posses bending stiffness. It is found that the conventional linear elasticity
considerations associated with the perfectly flexible fibre assumption cannot adequately account for the
effects of material anisotropy. In contrast, effects of material anisotropy can be accounted for when
fibres posses bending stiffness, by taking into consideration the action of couple-stress and therefore
asymmetric stress. Moreover, an intrinsic material length parameter which appears naturally in the
associated governing equations may be chosen as a representative of the fibre thickness in this case.
It is also seen that deformation patterns of fibres possessing bending stiffness as well as corresponding
stress distributions developed within the tube cross-section fit physical expectation much closer than
their perfectly flexible fibre counterparts.

1. Introduction

The classical version of the problem of azimuthal shear deformation of an elastic circular cylindrical tube
of infinite extent is due to Rivlin [1949] and, in several forms and variations, has been considered and
studied afterwards by several investigators. This refers to a particular, plane-strain type of finite strain
which is applied on the cross-section of an incompressible isotropic hyper-elastic circular cylindrical tube
of infinite extent. Accordingly, under the action of an appropriate set of boundary conditions, the tube
cross-section is subjected to pure azimuthal shear strain during which it remains circular while its inner
and outer radii do not change. A comprehensive review of the relevant literature was presented recently
in [Kassianidis et al. 2008], which introduced further and dealt with a new version of this problem;
namely the case in which the incompressible material of the tube exhibits some kind of anisotropy. In
some detail, the tube cross-section was considered to be reinforced by a single family of unidirectional
extensible fibres; this consideration furnished the tube material with properties of transverse isotropy.
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Most recently, a second family of plane extensible fibres was placed on the tube cross-section [Dorf-
mann et al. 2010], thus assuming that the anisotropy of the material of interest proceeds beyond the
relatively simple symmetries of transverse isotropy. As already implied, the directions of preference
considered in either this latter paper or [Kassianidis et al. 2008] were assumed capable to extend or
contract considerably, allowing thus the incompressible material of the tube to withstand the imposed
conditions of pure azimuthal shear deformation.

A relevant problem was also considered recently in [Soldatos 2010], as an application of a study having
as principal purpose to investigate the influence that some new, second gradient effects have on finite plane
deformations of ideal fibre-reinforced hyper-elastic solids. That problem dealt with azimuthal shear strain
of an incompressible hyper-elastic circular cylindrical tube having its cross-section reinforced by a single
family of inextensible fibres (see also [Soldatos 2009a]); recall that an incompressible material which
is further reinforced by one or more families of inextensible fibres is known as ideal fibre-reinforced
material (see [Spencer 1972], for example). The new development in [Soldatos 2009a; 2010] made clear
that pure azimuthal shear strain is not possible when the incompressible material of the tube contains
an inextensible direction of transverse isotropy. Unlike [Kassianidis et al. 2008] where extension or
contraction of fibres is assumed possible, a single family of inextensible fibres causes change of both
the inner and outer tube radii in a manner that preserves the area of the tube cross-section. It is noted in
passing that, since the cross-sectional area remains also unchanged under conditions of pure azimuthal
shear strain, the latter kind of deformation [Rivlin 1949; Kassianidis et al. 2008; Dorfmann et al. 2010]
becomes essentially a particular case of the outlined “area-preserving” azimuthal shear strain of a circular
cylindrical tube.

The new, second gradient deformation effects that [Soldatos 2010] is mainly interested on are relevant
with the ability of fibres to resist bending. However, the described “area-preserving” azimuthal shear
deformation was found attainable by the ideal fibre-reinforced material considered in [Soldatos 2010]
regardless of whether the inextensible fibres involved possess bending stiffness or not (in the latter case
fibres are assumed perfectly flexible). The analysis in [Soldatos 2009a; 2010] revealed further that, if the
inextensible fibres involved are initially straight and aligned along the radial direction of the tube cross-
section, they remain straight during deformation and force the tube to undergo area-preserving azimuthal
shear strain by changing their slope only. Some link was therefore observed between the strength of fibres
in extension or contraction and their ability to resist bending. It was accordingly concluded that, if the
direction of transverse isotropy is due to the existence of strong fibres, the tube should be expected
to resist the conditions of pure azimuthal shear deformation. Instead, tendency will be observed for
creation of a deformation pattern that couples azimuthal shear strain and radial stretching. Moreover,
fibre bending stiffness should be dominant in the formation of such a pattern.

It is instructive at this point to mention that the principal problem met in nature is essentially the
problem in which the transversely isotropic material of the tube is completely unconstrained. Hence,
by employing the concept of the ideal fibre-reinforced material, the references [Soldatos 2009a; 2010]
dealt essentially with a first approximation to the solution of the finite azimuthal shear strain problem
of a fibre-reinforced cylindrical tube. Many materials are of course nearly incompressible and, similarly,
many kinds of natural or structural fibres are nearly inextensible. Hence, in many cases of interest, either
the incompressible material considered in [Kassianidis et al. 2008] or a compressible material reinforced
by inextensible fibres yields a realistic and plausible simplification of the principal problem. Either case
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is regarded as an intermediate step between the latter problem and that considered in [Soldatos 2009a;
2010] for a corresponding doubly constrained material. Further progress in the subject should therefore
consider to dismiss one or both of the material constraints involved in these two references.

Dismissal of the fibre inextensibility constraint leads to the comprehensive relevant study presented
already in [Kassianidis et al. 2008] where attention was focused on the particular case of pure azimuthal
shear deformation only. In this context, dismissal of either the material incompressibility constraint only
or both of the constraints involved in [Soldatos 2009a; 2010] produces two additional versions of the
problem. Solution to either of those two versions in the finite strain regime seems to be a more difficult
task as compared with the solutions achieved in all three of these references. Nevertheless, the outlined
hierarchical manner of approaching difficult problems met in finite elasticity assists enormously the effort
of achieving basic understanding of associated complicated issues.

Another plausible way for achieving basic understanding of some of those issues is by restricting
initially attention to the small deformation regime within which the material is regarded as linearly
elastic. There exists in fact an extensive literature of linear anisotropic elasticity solutions, most of
which are associated or can become relevant to the mechanics of fibre-reinforced solids. In this context,
the present study adds a new contribution to that literature by focusing attention to the linear elasticity
counterpart of each one of the aforementioned four versions of the azimuthal shear strain problem of a
transversely isotropic circular cylindrical tube. Based on the outlined history of the problem considered,
this investigation aims therefore to identify which of the four versions of the problem anticipate that
within the small strain regime (i) existence of possible coupling between azimuthal shear strain and radial
stretching can cause change of the inner and outer radii of the tube; and/or (ii) the initial deformation
pattern is or may still be interpreted as that of pure azimuthal shear strain, in the sense that the tube inner
and outer radii do not tend to changed during deformation. Moreover, (iii) the particular case of straight
fibres aligned along the radial direction of the tube cross-section is treated separately and, in the light of
the relevant studies initiated in [Soldatos 2009a; 2010], comparisons are made between corresponding
solutions and results obtained when fibres are either perfectly flexible or possess bending stiffness.

Under these considerations, section 2 formulates the problem of axially symmetric plane strain of a
transversely isotropic, linearly elastic, annular disc (the tube cross-section) subjected to external boundary
conditions that may cause pure azimuthal shear strain. It is noted that the formulation detailed in section 2
is based on symmetric elasticity considerations which concur with the assumption that fibres are perfectly
flexible. For the case that the direction of transverse isotropy is due to fibres of a certain spiral shape,
section 3 outlines next the exact, closed form solution obtained for each one of the aforementioned four
versions of the azimuthal shear strain problem; namely, the case in which (i) the material of the tube
is completely unconstrained and therefore compressible, (ii) the material is assumed incompressible but
the fibres can extent or contract, (iii) the material of the tube is compressible but the fibres are assumed
inextensible, and (iv) the material of the tube is incompressible and the fibres are inextensible (ideal fibre-
reinforced material). Section 4 deals separately with the particular case of perfectly flexible straight fibres
aligned along the radial direction of the tube cross-section. This case, along with its counterpart that
considers fibres resistant in bending, was discussed also separately in [Soldatos 2010] for the purposes
of the area-preserving finite azimuthal shear strain problem introduced and studied there.

When the perfectly flexible radial fibres considered in section 4 are replaced with radial fibres that
posses bending stiffness the linear theory of elasticity is required to account further for possible effects of
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couple-stress and therefore asymmetric stress. Moreover, micromechanics considerations reveal that, due
to the natural appearance of an intrinsic material length parameter which is of the fibre thickness scale,
the manner in which fibres are supported on the tube boundaries can also be accounted for, with use of
appropriate boundary conditions. This is the case discussed and resolved completely in section 5, where
the principal governing differential equation of the problem is solved exactly with use of the power-series
method as well as the successive approximate method introduced in [Soldatos and Hadjigeorgiou 1990];
see also [Shuvalov and Soldatos 2003]. Relevant numerical results are presented in section 6, where the
differences between conventional linear elasticity and the new developments introduced in section 5 are
also discussed in detail. Finally, section 7 summarises the main results, observations and conclusions
drawn in this investigation.

2. Problem formulation for perfectly flexible fibres

Consider a circular cylindrical hollow tube defined by

B0 ≤ r ≤ B1, 0≤ θ ≤ 2π, −∞≤ z ≤∞, (2-1)

where r, θ and z are appropriate cylindrical polar coordinate parameters and the nonnegative constants
B0 and B1 represent the inner and outer radii of the tube, respectively. It is assumed that the tube is made
of a transversely isotropic linearly elastic material and that the preferred direction of transverse isotropy
lies on the plane of the tube cross-section. Accordingly, the preferred material direction is described as
follows (e.g., [Kassianidis et al. 2008]):

θ = G(r)+ θ0, G(B0)= 0, G(B1)= θ1− θ0 ≥ 0, (2-2)

where 0 ≤ θ0 ≤ 2π and θ1 − θ0 is fixed regardless of the value of θ0. Here, the scalar function G(r)
defines the direction of transverse isotropy which is due to the existence of a single family of plane fibres
making an angle α(r) with the radial direction. It is convenient to assume that 0 ≤ α(r) < π/2 and,
hence, that the family of fibres (the a-curves) have the form shown in Figure 1.

Figure 1. Left: schematic representation of the tube cross-section and associated nota-
tion. Right: illustration of normal in-plane stress components in both the local and polar
coordinate systems.
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The unit tangent a and the unit normal n of this family of material curves form the base of a local
rectangular curvilinear coordinate system. In components, these unit vectors are represented as

a = (ar , aθ )T , n= (−aθ , ar )
T , (2-3)

where
ar =

[
(rG ′(r))2+ 1

]−1/2 aθ = rG ′(r)
[
(rG ′(r))2+ 1

]−1/2
, (2-4)

and a prime denotes differentiation with respect to r . It follows that

tanα = rG ′(r), (2-5)

and, therefore, G ′(r)≥ 0.
The material of the tube is assumed to be linearly elastic and, hence, the plane strain version of Hooke’s

law has the form taa

tnn

tan

=
C11 C12 0

C12 C22 0
0 0 C66

 eaa

enn

2ean

 , tzz = C12eaa +C23enn, (2-6)

where taa, tnn, tan, tzz and eaa, enn, ean represent the nonzero components of the stress and the strain
tensors respectively, in the aforementioned curvilinear local coordinate system (see also Figure 1, right);
C11,C12,C22,C23 and C66 are appropriate nonzero elastic moduli (e.g., [Jones 1998]) which are assumed
constant in what follows. In polar coordinates, (2-6)1 takes the formtrr

tθθ
trθ

=
C̄11 C̄12 C̄16

C̄12 C̄22 C̄26

C̄16 C̄26 C̄66

 err

eθθ
2erθ

 , (2-7)

where trr , tθθ , trθ and err , eθθ , erθ are the corresponding polar components of the stress and strain tensors,
respectively. In general, it is α 6= 0 and, hence, the stiffness matrices [C] and [C̄] appearing in (2-6)1

and (2-7) are related according to
[C̄] = [T ]−1

[C][T ]−T , (2-8)

where (e.g., [Jones 1998])

[T ] =

 cos2 α sin2 α sin 2α
sin2 α cos2 α − sin 2α
−1
2 sin 2α 1

2 sin 2α cos 2α

 , (2-9)

and a superscript −T denotes the inverse of a transposed matrix. It is noted for later use, that both matrices
[C] and [C̄] are required to be positive definite, in order for the strain-energy of the system to be positive
(e.g., [Ting 1996]).

For the axially symmetric plane deformations of interest, the strain components appearing in (2-7) are

err = u′(r), eθθ =
u(r)

r
, 2erθ = v

′(r)−
v(r)

r
, (2-10)

where u(r) and v(r) are the cross-sectional radial and the azimuthal displacement components, respec-
tively. The set of available equations is completed with the equations of equilibrium. In the present case,
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these take the form

r t ′rr + trr − tθθ = 0, (r2trθ )′ = 0,
∂tzz

∂z
= 0, (2-11)

and, since plane strain assumes that stresses are independent of z, equation (2-11)3 is satisfied identically.
The description of the azimuthal strain problem considered is completed by associating to it appropri-

ate sets of boundary conditions. Accordingly, the boundary conditions imposed in the azimuthal direction
of the tube inner and outer boundaries are

v(B0)= 0, v(B1)= ψ. (2-12)

Since the inner boundary is assumed restrained from rotation, the azimuthal displacement ψ , which
is imposed on the tube outer boundary, is assumed to be the cause of the axially symmetric plane-
strain deformation of interest. If positive (negative), the known displacement ψ causes an anticlockwise
(clockwise) rotation on the outer boundary of the tube cross-section; the azimuthal boundary traction is
considered unknown on both boundaries and should therefore be determined from the analysis.

Anticipation of possible coupling between azimuthal shear strain and radial stretching is associated
with the ability of the inner and outer tube radii to change during deformation, thus leading to the
additional boundary conditions

trr (B0)= trr (B1)= 0. (2-13)

However, when pure azimuthal shear strain becomes the principal deformation of interest, the tube radii
remain unchanged during deformation and, hence, the natural boundary conditions (2-13) are replaced
by the geometrical boundary conditions

u(B0)= u(B1)= 0. (2-14)

3. Spiral fibres

For simplicity, it is now considered that α is constant and, hence, the fibres have the form of a logarithmic
spiral; namely, a curve described by the function

G(r)= tanα ln
r
B0
. (3-1)

With this relatively simple choice of G(r), the components of the stiffness matrix [C̄] become indepen-
dent of the polar distance, r . It is seen next that, as a consequence, an exact closed form solution of the
problem is possible regardless of whether the material of the tube is unconstrained or is subjected to any
combination of the aforementioned incompressibility and inextensibility constrains.

In what follows, equations are made nondimensional with use of the main nondimensional quantities

r∗ =
r
B0
, β =

B1

B0
, u∗ =

u
ψ
, v∗ =

v

ψ
,

t∗i j =
B0ti j

ψC̄66
(i, j = r, θ), C̄∗i j =

C̄i j

C̄66
(i, j = 1, 2, 6). (3-2)
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It is also noted that the additional nondimensional quantities

p∗ =
B0 p
ψC̄66

, T ∗ =
B0T
ψC̄66

(3-3)

will be employed latter in sections 3.2, 3.3 and 3.4 in order to represent nondimensional forms of the
arbitrary pressure and tension, respectively, introduced there. It is however noted that, for convenience,
asterisks are dropped in all equations met next in sections 3 and 4. Hence, the form of the in-plane
equilibrium equations (2-11)1,2 remains unchanged under the implied nondimensional analysis while the
corresponding nondimensional form of the boundary conditions (2-12), (2-13) and (2-14) is, respectively,

v(1)= 0, v(β)= 1, (3-4)

trr (1)= trr (β)= 0, (3-5)

u(1)= u(β)= 0. (3-6)

3.1. Unconstrained material. Use of the kinematic equations (2-10) and the Hooke’s law (2-7) yields
the nondimensional Navier-type form of the equilibrium equations (2-11)1,2 as follows:

C̄11r(ru′)′− C̄22u+ C̄16r2v′′− C̄26(rv′− v)= 0,

C̄16(r2u′)′+ C̄26(ru)′+ r2v′′+ rv′− v = 0. (3-7)

This is a system of two second-order simultaneous, Euler-type ordinary differential equations (ODEs)
which admit solutions of the form u(r)= c1rn, v(r)= c2rn .

Accordingly, the general solution of equations (3-7) is found to be

u(r)= γ1 Ā1r−1
+ Ā2rη+ Ā3r−η,

v(r)= Ā4r + Ā1r−1
+ γ2 Ā2rη+ γ3 Ā3r−η, (3-8)

where Ā1, Ā2, Ā3 and Ā4 are arbitrary constants of integration, the constants γ1, γ2 and γ3 are given in
the Appendix and

η2
=

C̄22− C̄2
26

C̄11− C̄2
16

. (3-9)

It can be shown that, due to the positive definiteness of [C̄], both the numerator and the denominator
appearing in the right-hand side of (3-9) are positive and, therefore, η is always a real constant. Use of
Hooke’s law yields further the associated in-plane nondimensional stress components as follows:

trr = Ā1 F1r−2
+ Ā2 F2rη−1

+ Ā3 F3r−η−1,

tθθ = Ā1 F4r−2
+ Ā2 F5rη−1

+ Ā3 F6r−η−1,

trθ = Ā1
(
γ1(C̄26− C̄16)− 2

)
r−2, (3-10)

where the constants Fk (k = 1, 2, . . . , 6) are given explicitly in the Appendix.
The form of the solution (3-8) makes immediately understood that change of both the inner and outer

radii of the tube is generally always possible in this case, in which the material of the tube is completely
unconstrained. For, if the particular set of boundary conditions (3-4) and (3-5) is considered, all four of
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the arbitrary constants appearing in (3-8) and (3-10) acquire the unique nonzero values given explicitly
in equations (A-3); hence, u(r) 6= 0 for all 1≤ r ≤ β. In this case, the radial displacement of the inner
and outer boundary of the tube is determined by setting r = 1 and r = β in (3-8)1, respectively.

If, on the other hand, the set of boundary conditions (3-4) and (3-6) is taken instead into consideration,
the alternative set of unique nonzero values associated with the aforementioned arbitrary constants — see
equations (A-5) — suggests that, although u(r) 6= 0 for 1< r <β and, therefore, there is coupling between
azimuthal shear and radial stretching in the interior of the tube, the boundary radii of the tube can be
kept unchanged during deformation. Conditions of pure azimuthal shear can therefore also be observed
in this case, although these require simultaneous action of appropriate nonzero normal tractions on the
tube inner and outer boundaries; those tractions are determined by setting r = 1 and r = β in (3-10)1.

It should be finally noted that in the particular case that α = 0 (radial fibres), equations (3-7) become
uncoupled and, as a result, azimuthal shear strain and radial stretching become completely uncoupled
deformations. It will be seen in what follows that this result is valid regardless of whether the material
is constrained or not and, hence, this particular case, in which the fibres are aligned along the radial
direction of the tube cross-section, is discussed separately in Section 4.

3.2. Incompressible material. Incompressibility is a kinematic constraint which requires an arbitrary
hydrostatic pressure p(r) to be superimposed on the stress field; p(r) does no work in any deformation
which is compatible with the incompressibility constraint (tr e= 0). In this case, Hooke’s law (2-7) is
modified and its in-plane part takes the nondimensional form (e.g., [Spencer 1972; 1984])trr

tθθ
trθ

=
C̄11 C̄12 C̄16

C̄12 C̄22 C̄26

C̄16 C̄26 1

 err

eθθ
2erθ

− p

1
1
0

 , (3-11)

where, as already mentioned, the appearing quantities are all nondimensionalized according to (3-2) and
(3-3) before asterisks are dropped. The nondimensional form of the corresponding Navier-type governing
equations then becomes

C̄11r(ru′)′− C̄22u+ C̄16r2v′′− C̄26(rv′− v)− r2 p′ = 0,

C̄16(r2u′)′+ C̄26(ru)′+ r2v′′+ rv′− v = 0, (3-12)

and are accompanied by the incompressibility constraint err + eθθ = 0, which yields the additional
equation

u′+
u
r
= 0. (3-13)

Solution of (3-13) yields u(r) which is then inserted into (3-12)2. The latter yields thus an inhomo-
geneous Euler ODE which is solved in the standard manner for the determination of v(r). Solution of
(3-12)1 becomes next possible for p(r) and, hence, the general solution of the system of simultaneous
ODEs (3-12) and (3-13) is found to be

u(r)= Ã1r−1, v(r)= Ã2r+ Ã3r−1, p(r)= Ã4−
1
2

(
Ã1(C̄11− C̄22)+2 Ã3(C̄16+ C̄26)

)
r−2, (3-14)
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where Ã1, Ã2, Ã3 and Ã4 are arbitrary constants of integration. Use of the constitutive equation (3-11)
yields further the associated in-plane nondimensional stress components:

trr =
( 1

2 Ã1(2C̄12− C̄11− C̄22)+ Ã3(C̄26− C̄16)
)
r−2
− Ã4,

tθθ =
(
−

1
2 Ã1(2C̄12− C̄11− C̄22)− Ã3(C̄26− C̄16)

)
r−2
+ Ã4,

trθ =
(

Ã1(C̄26− C̄16)− 2 Ã3
)
r−2. (3-15)

By considering the particular set of boundary conditions (3-4) and (3-5), Ã1, Ã2 and Ã3 take unique
nonzero values — see (A-7) — while Ã4 = 0. Hence, u(r) 6= 0 for all 1≤ r ≤ β and a change of both the
inner and outer radii of the tube is generally again possible in this case. It is also noted that, despite the
nonzero values of both Ã1 and Ã3, trr = tθθ = 0 throughout the tube cross-section. Finally, if α = π/4,
then C̄16 = C̄26 and, therefore, u(r) = 0 throughout the tube cross-section, thus causing conditions of
pure azimuthal shear strain in this particular case.

Conditions of pure azimuthal shear strain are also possible for α 6= 0, if only one of the two boundary
conditions (3-6) is satisfied along with (3-4). Due to the form of (3-14)1, the unused of the geometri-
cal boundary conditions (3-6) is satisfied automatically and should therefore be replaced by its natural
boundary condition counterpart detailed in (3-5). If, for instance, the set of mixed boundary conditions

u(1)= trr (β)= 0, (3-16)

is chosen to replace (3-6), while (3-4) still hold, then Ã1 = 0 and, therefore, u(r) = 0 throughout the
tube cross-section ( Ã2, Ã3 and Ã4 are given by (A-8)). Nevertheless, a nonzero normal traction should
act in this case in the radial direction of the tube inner boundary; this is determined by setting r = 1 in
(3-15)1. Similar arguments hold true if (3-16) are replaced by trr (1)= u(β)= 0. Pure azimuthal shear
strain is observed again in this case, though a normal traction should be applied radially on the outer
tube boundary.

In the particular case that α = 0, equation (3-12)2 becomes uncoupled from the set of equations (3-12)1

and (3-13). Hence, azimuthal shear strain and radial stretching become again completely uncoupled
deformations. Moreover, since the incompressibility constraint is associated with radial stretching only,
the azimuthal strain problem becomes identical with its unconstrained material counterpart; this is the
case discussed separately in Section 4.

3.3. Inextensible fibres. The constraint of fibre inextensibility (aT ea = 0) requires an arbitrary tension
T (r) to be superimposed on the stress field; this acts along the fibre direction and does no work in any
deformation which conforms with this constraint. In this case Hooke’s law takes the nondimensional
form (e.g., [Spencer 1972; 1984])trr

tθθ
trθ

=
C̄11 C̄12 C̄16

C̄12 C̄22 C̄26

C̄16 C̄26 1

 err

eθθ
2erθ

+ T

 cos2 α

sin2 α

sinα cosα

 , (3-17)

where the appearing quantities are again nondimensionalized according to (3-2) and (3-3) before aster-
isks are dropped. The nondimensional form of the corresponding Navier-type governing equations then
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becomes

C̄11r(ru′)′− C̄22u+ C̄16r2v′′− C̄26(rv′− v)+ r(rT )′ cos2 α− rT sin2 α = 0,

C̄16(r2u′)′+ C̄26(ru)′+ r2v′′+ rv′− v+ 1
2 sin 2α(r2T )′ = 0. (3-18)

These are accompanied by the inextensibility constraint err cotα+ eθθ tanα+ 2erθ = 0 which, with use
of (2-10), yields the additional equation

u′ cotα+
u
r

tanα+ v′−
v

r
= 0. (3-19)

Equation (3-18)2 can immediately be integrated once. A subsequent elimination of v(r) and T (r)
from the resulting equations yields an inhomogeneous second-order Euler-type ODE for u(r) which can
be solved in the standard manner. The general solution of the system of simultaneous ODEs (3-18) and
(3-19) can then be obtained with relative ease, to yield

u(r)=
Â1

γ̂1(1−m2)
r−1
+ Â2rm

+ Â3r−m,

v(r)= Â4r −
Â1 cot 2α
γ̂1(1−m2)

r−1
− Â2β1rm

− Â3β2r−m,

T (r)=
2 Â1

sin 2α

(
1+

C̄16− C̄26− 2 cot 2α
γ̂1(1−m2)

)
r−2

+
2 Â2

sin 2α

(
β1(m− 1)−mC̄16− C̄26

)
rm−1

+
2 Â3

sin 2α

(
mC̄16−β2(m+ 1)− C̄26

)
r−m−1, (3-20)

where Â1, Â2, Â3, Â4 are arbitrary constants of integration, the constants β1, β2, γ̂1 and γ̂2 are given
explicitly in the Appendix and

m2
=
γ̂2

γ̂1
. (3-21)

It can be shown that, due to the positive definiteness of the matrix [C] and the fact that 0 ≤ α < π/2,
both the numerator and the denominator in the right-hand side of (3-21) are positive and, therefore,
the constant m is always real. Use of (3-17) yields next the associated in-plane nondimensional stress
components as follows:

trr =
Â1

γ̂1(1−m2)
H1r−2

+ Â2 H2rm−1
+ Â3 H3r−m−1,

tθθ =
Â1

γ̂1(1−m2)
H4r−2

+ Â2 H5rm−1
+ Â3 H6r−m−1,

trθ = Â1r−2, (3-22)

where the constants Hk (k = 1, 2, . . . , 6) are given explicitly in (A-10).
If the set of boundary conditions (3-4) and (3-5) is associated with this solution, all four arbitrary

constants appearing in (3-20) and (3-22) take unique nonzero values (see (A-11)); hence, u(r) 6= 0
for all 1 ≤ r ≤ β. It follows that a solution anticipating that both the inner and the outer tube radii
change is again possible in this case. If, on the other hand, the alternative set of boundary conditions
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(3-4) and (3-6) is instead considered, the corresponding set of unique nonzero values associated to those
constants — see (A-13) — suggests that conditions of pure azimuthal shear strain can instead also be
observed. Nevertheless, although the boundary radii of the tube do not change during the observed pure
azimuthal shear deformation, it is again u(r) 6= 0 for 1< r < β and, therefore, there is again coupling
between azimuthal shear strain and radial stretching in the interior of the tube. It is again anticipated that
appropriate nonzero normal tractions should be applied on the tube inner and outer boundaries; these are
determined by setting r = 1 and r = β in (3-22)1.

In the case α = 0, radial stretching and azimuthal shear strain become again uncoupled deformations.
The fibre inextensibility constraint becomes associated with radial stretching in this case, so the azimuthal
shear strain problem becomes again identical with its unconstrained material counterpart; see Section 4.

3.4. Ideal fibre-reinforced material. In this case, the material is assumed to be incompressible and also
reinforced by inextensible fibres. Hence, Hooke’s law takes the nondimensional form (e.g., [Spencer
1972; 1984]) trr

tθθ
trθ

=
C̄11 C̄12 C̄16

C̄12 C̄22 C̄26

C̄16 C̄26 1

 err

eθθ
2erθ

+
T cos2 α− p

T sin2 α− p
T sinα cosα

 , (3-23)

where the appearing quantities are all nondimensionalized according to (3-2) and (3-3), before aster-
isks are dropped. The nondimensional form of the corresponding Navier-type governing equations then
becomes

C̄11r(ru′)′− C̄22u+ C̄16r2v′′− C̄26(rv′− v)+ r2(T ′ cos2 α− p′)+ rT cos 2α = 0,

C̄16(r2u′)′+ C̄26(ru)′+ r2v′′+ rv′− v+ 1
2 sin 2α(r2T )′ = 0, (3-24)

and are accompanied by both constraint equations (3-13) and (3-19), thus forming a system of four
simultaneous ODEs for a total of four unknown functions, namely u, v, p and T .

Solution of Equation (3-13) yields u(r), which is then inserted into (3-19) for the determination of v(r).
With the form of u(r) and v(r) becoming thus known, T (r) and p(r) are next obtained by consecutively
solving (3-24)2 and (3-24)1, respectively. Hence, the general solution of the system of simultaneous
ODEs (3-24), (3-13) and (3-19) is found to be

u(r)= A1r−1,

v(r)= A2r − A1r−1 cot 2α,

p(r)= A3+
1
2

(
A4− A1(C̄11− C̄22− 2(C̄16+ C̄26) cot 2α)

)
r−2,

T (r)= A4r−2, (3-25)

where A1, A2, A3, A4 are arbitrary constants. Use of (3-23) yields next the associated in-plane nondi-
mensional stress components as follows:

trr =
( 1

2 A1(2C̄12− C̄11− C̄22+ 2(C̄16− C̄26) cot 2α)+ 1
2 A4 cos 2α

)
r−2
− A3,

tθθ =
(
−

1
2 A1(2C̄12− C̄11− C̄22+ 2(C̄16− C̄26) cot 2α)− 1

2 A4 cos 2α
)
r−2
+ A3,

trθ =
(

A1(2C̄66+ C̄26− C̄16)+
1
2 A4 sin 2α

)
r−2. (3-26)
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If the solution (3-25) is associated with the set of boundary conditions (3-4) and (3-5), A1, A2 and
A4 take unique nonzero values — (A-15) — while A3 = 0. Hence, u(r) 6= 0 for all 1 ≤ r ≤ β and a
change of both the inner and outer radii of the tube is again possible; it is also noted that, despite of
the nonzero values of A1 and A4, trr = tθθ = 0 throughout the tube cross-section. On the other hand,
pure azimuthal shear strain deformation is not possible in this case. For, simultaneous satisfaction of the
boundary conditions (3-4)1 and (3-6)1 yields u(r)= v(r)= 0 throughout the tube cross-section.

It is again seen that in the particular case that α = 0, radial stretching and azimuthal shear strain
become again uncoupled problems, while both constraints involved associate themselves with radial
stretching. Hence, the azimuthal shear strain problem becomes again identical with its unconstrained
material counterpart which is discussed in the next section.

4. Perfectly flexible radial fibres

Interest is now focused in the particular case in which the fibres are straight and aligned along the
radial direction of the tube cross-section. This corresponds to the choice G(r) = α = 0 and, since the
local and the polar coordinate systems coincide, the elastic behaviour of the material is described by
(2-6), provided that the appearing local in-plane stress and strain components are replaced by their polar
counterparts appearing in (2-7). It is already seen that, when α = 0, radial stretching and azimuthal shear
strain become completely uncoupled deformations regardless of whether the material is constrained or
not. Restricting, for instance, attention to the unconstrained material case discussed in Section 3.1, one
finds that equations (3-7) become uncoupled when α = 0 and, hence, the resulting azimuthal shear strain
problem is completely described by the Euler differential equation

r2v′′+ rv′− v = 0. (4-1)

This second-order ODE can describe pure azimuthal shear deformation only and, hence, it is associated
with the pair of boundary conditions (3-4) only. Solution of this boundary value problem yields

v(r)=
β

β2− 1

(
r − r−1) , (4-2)

and Hooke’s law (2-6)1 reveals further that the nondimensional azimuthal shear stress

trθ =
2β

β2− 1
r−2, (4-3)

is the only nonzero stress component associated with this deformation.
Interestingly enough, when the tube material is constrained in the manner suggested in Section 3,

every single one of the problems discussed in sections 3.2, 3.3 and 3.4 provides precisely the same
description for the pure azimuthal shear strain problem, namely (4-1) and (3-4); hence, in each case,
it yields precisely the same solution with the outlined above on the basis of the unconstrained material
version of the problem. It also becomes evident that, since material anisotropy does not enter the outlined
problem description, the obtained solution (4-2) and (4-3) is identical to its isotropic material counterpart.
However, it is already known [Soldatos 2009a; Soldatos 2010] that pure azimuthal shear deformation of
a radially reinforced tube made of ideal fibre reinforced material (see Section 3.4) is not possible in the
finite deformations regime. In contrast, finite pure azimuthal shear strain is indeed possible if the tube
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material is incompressible but the radial fibres involved are free to extend or contract [Kassianidis et al.
2008]. Moreover, the material incompressibility constraint affects in a clear and obvious manner the
relevant finite elasticity solution obtained in this latter reference, whereas this fact is not observed in the
present case of small deformations (Section 3.2). It is instead observed that conventional linear elasticity
theory cannot adequately account for the effects that material anisotropy and/or either of the constraints
of material incompressibility and fibre inextensibility have on the azimuthal shear deformation problem
considered when the tube is reinforced along the radial direction of its cross-section. In what follows, the
infinitesimal strain problem described by (4-1) and (3-4), as well as its relatively simple solution given
by (4-2) and (4-3), will therefore be mainly associated with the case discussed in Section 3.1, where the
material is assumed completely unconstrained.

5. Radial fibres with bending stiffness

When the perfectly flexible fibres considered in the previous sections are replaced with fibres possess-
ing bending stiffness, the theory is required to account further for possible action of couple-stress and
therefore asymmetric stress [Spencer and Soldatos 2007]. The linearized version of the relevant hyper
elasticity theory presented in that paper is considered for a study of the effects that fibre bending stiffness
has on the azimuthal shear strain problem discussed in the preceding section. For convenience, the
restricted part of that linearized theory, which requires use of only one additional elastic modulus, is
employed here.

5.1. Problem formulation. The form of Hooke’s law presented in Section 2 for α = 0, before the nondi-
mensional quantities (3-2) were introduced, is now suitable only for description of the symmetric part of
the stress tensor. Hence,  trr

tθθ
t(rθ)

=
C11 C12 0

C12 C22 0
0 0 C66

 err

eθθ
2erθ

 , (5-1)

where t(rθ) denotes the symmetric part of the shear stress component trθ , the matrix [C] is identical to
its counterpart involved in (2-6) and the appearing strain components are given according to (2-10).

The antisymmetric part of trθ is caused by the action of a relevant couple-stress component, mr z ,
arising when fibres resist bending. In terms of a notation similar to that adopted in [Soldatos 2009b], this
couple-stress component is given according to

mr z = d f k f
θ , k f

θ = v
′′(r), (5-2)

where d f is the aforementioned additional elastic modulus (fibre bending stiffness) and k f
θ represents

the in-plane curvature component of the fibre in the linear elasticity regime. The antisymmetric part of
the shear stress component is then expressed as

t[θr ] =−t[rθ] = 1
2 m′r z =

1
2 d f v′′′(r). (5-3)

It thus becomes immediately understood that radial stretching and azimuthal shear strain remain com-
pletely uncoupled deformations regardless of whether the material is constrained or not. Hence, the
azimuthal equation of equilibrium (2-11)2, which is again the only governing equation to be considered,
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yields
d f

2C66
(r2v

′′′′

+ 2rv′′′)− (r2v′′+ rv′− v)= 0, (5-4)

and makes obvious that the existing material anisotropy is indeed accounted for in this case.
Equation (5-4) is a fourth-order ODE for the azimuthal displacement component v(r) and a unique

determination of its solution requires specification of four boundary conditions. Two of them are evi-
dently (2-12) while two more boundary conditions can be deduced from the relevant discussion detailed
in [Soldatos 2009b]. Accordingly, the outer boundary (r = B1) is assumed free of couple-stress, thus
leading to the additional boundary condition

mr z(B1)= 0, (5-5)

while the inner boundary (r = B0) may be assumed either restrained against rotation or free of couple
stress. It follows that the last of the four boundary conditions sought is one of the following alternatives:

either v′(B0)= 0 or mr z(B0)= 0. (5-6)

It is observed that unlike its perfectly flexible fibres counterpart in (4-1), Equation (5-4) depends on
the tube material properties. In this regard, the notation

d f

C66
= 2l(B1− B0), (5-7)

introduces an intrinsic material length parameter l, which may be considered relevant to the fibre thick-
ness. It is evident that when l = 0, (5-4) reduces to its perfectly flexible fibres counterpart. The role of
nonzero values of l will become clearer in what follows.

5.2. Nondimensional form of governing equations. The Navier-type governing differential equation
(5-4) and the boundary conditions associated to it are next nondimensionalized with use of the nondi-
mensional quantities introduced in (3-2) and the additional nondimensional parameter

λ=
l

B0
=

d f

2C66 B0(B1− B0)
. (5-8)

Nevertheless, asterisks are again dropped for convenience and, hence, all relevant quantities appearing
without an asterisk in the remaining of this section, as well as Section 6, are those defined in (3-2).
Accordingly, with use of (5-2), the nondimensional version of the present boundary value problem is
found to be

λ(β − 1)(r2v
′′′′

+ 2rv′′′)− (r2v′′+ rv′− v)= 0,

v(1)= 0, v(β)= 1, v′′(β)= 0, (5-9)

and
either v′(1)= 0 or v′′(1)= 0. (5-10)

It is worth noting that, with simultaneous consideration of (5-9)2, either condition in (5-10) resembles the
boundary condition imposed at the end of an elastic slender beam which is clamped or simply supported,
respectively, at β = 1.
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With l = 0 in the case of perfectly flexible fibres, the conventional (symmetric) theory of linear elastic-
ity (Sections 2–4) implied that the tube cross-section contains an infinite number of fibres. By associating
the intrinsic length parameter l with the fibre thickness, the nonsymmetric stress theory employed in this
section implies that the number of fibres as well as their density within the cross-section may be accounted
for. Accordingly, if a fibre in the present plane strain case is thought of as a slender rectangle of length
B1− B0, then its area may be represented by the product l(B1− B0) and, hence, the finite number of
fibres, N f , that can be fitted into the tube cross-section is estimated to be

N f
=

2πB0

l
=

2π
λ
. (5-11)

It follows that the value of total fibre area is 2πB0(B1 − B0) and this is independent of the fibre
thickness. It is also of interest to note that, by dividing the total fibre area by the tube cross-sectional
area, the fibre area fraction is estimated to be

S f
=

2B0

B1+ B0
=

2
β + 1

, (5-12)

and depends solely on the value of β. It is, therefore, seen that the value of β is indicative of the density
(sparsity) of the fibre distribution within the tube cross-section. This result is illustrated in Table 1, where
the total fibre area is calculated as a percentage of the area of the tube cross-section. It is finally noted
that (5-11) implies λ ≤ 2π . With l � B0 and, therefore, λ � 1 in many practical applications, this
inequality may be perceived as a natural consequence of the fact that thickness of common structural
fibres is much smaller than the inner tube radius. However, since B0 may in principle be smaller than
l even if the fibre thickness is of the order of 10µ, values of λ > 1 are also anticipated by the present
theory. In this context, the right-hand-side of (5-8) suggests that different physical interpretations of λ
and/or l might also be possible, particularly when O(λ)= 1.

β 1 1.5 2 2.5 3 4 5 7.5 10 20 50 100
S f % 100 80 66.7 57.1 50 40 33.3 23.5 18.2 9.5 3.9 2

Table 1. Estimated total area of radial fibres with bending stiffness as a percentage of
the area of the tube cross-section.

Solution of the boundary value problem (5-9) and (5-10) is next achieved analytically, via the power
series method, and computationally, with use of the successive approximation method (SAM) introduced
in [Soldatos and Hadjigeorgiou 1990] (see also [Shuvalov and Soldatos 2003; Ye 2003; Soldatos 2003]).

5.3. Power series solution. Application of the power series method is based on the following Taylor-type
series expansion of the solution sought around r = 1:

v(r)=
∞∑

n=0

an(r − 1)n, (5-13)

where the constant coefficients an (n = 0, 1, 2, . . . ) are to be determined. Introduction of (5-13) into
(5-9)1, followed by nullification of the coefficients of like powers of r−1, leads to the recurrence
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relations

a4 =
a1+ 2a2− 2λ(β − 1)3!a3

λ(β − 1)4!
,

a5 =−
a0+ 4a1+ 6a2− (6λ(β − 1)+ 1)3!a3

λ(β − 1)5!
,

an+4 =
(n− 1)(n+ 1)!
λ(β − 1)(n+ 4)!

an +
(2n+ 1)(n+ 1)!
λ(β − 1)(n+ 4)!

an+1

−

(
(n+ 1)!
(n− 1)!

−
1

λ(β − 1)

)
(n+ 2)!
(n+ 4)!

an+2−
2(n+ 1)
(n+ 4)

an+3, n ≥ 2, (5-14)

where a0, a1, a2 and a3 are arbitrary constants. Use of the boundary conditions (5-9)2 and (5-10)1 yields

a0 = 0, a1 = 0, (5-15)

while use of (5-9)2 and (5-10)2 yields

a0 = 0, a2 = 0. (5-16)

In both cases, the values of the remaining constants are then determined numerically with use of the
boundary conditions (5-9)3,4, after the series expansion (5-13) is truncated to an appropriate number of
terms that guarantee convergence of the obtained numerical results to a desired accuracy.

5.4. Successive approximation solution. Application of the well established successive approximation
method introduced in [Soldatos and Hadjigeorgiou 1990] requires initially the conversion of (5-9)1 into
a system of four simultaneous first-order linear ODEs. In matrix form, these may be arranged as

{X (r)}′ = [D(r)]{X (r)}, {X (r)}T = {v, v′, v′′, v′′′}, (5-17)

where the nonzero elements of the matrix [D(r)] are

D12 = D23 = D34 = 1, D43 = r D42 =−r2 D41 =
1

λ(β − 1)
, D44 =−

2
r
. (5-18)

For sufficiently thin tubes, an approximate solution is obtained by replacing the variable r appearing
in (5-18) with the nondimensional cross-sectional middle-radius parameter R = (β + 1)/2. The resulting
approximate system of four simultaneous linear ODEs with constant coefficients may then be written in
the form

{X (r)}′ = [D(R)]{X (r)}, (5-19)

and its general solution can be expressed as follows:

{X (r)} = [K (r)]{X (1)}, 1≤ r ≤ β. (5-20)

Here {X (1)} denotes the value that the vector {X} takes at the inner boundary of the tube, while the
elements of the exponential matrix [K (r)] = exp[(r − 1)D(R)] can be evaluated analytically in the
manner detailed in [Ye 2003].

If the tube is thick, it is divided in N fictitious, successive and coaxial layers having the same constant
thickness, represented by the nondimensional thickness parameter h = (β − 1)/N , and the same material
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properties. Upon choosing a suitably large value of N , each individual layer becomes itself a sufficiently
thin elastic tube and, as a result, an approximate solution of the form (5-20) is considered satisfactory for
the study of its behaviour. The approximate solutions thus obtained for all fictitious layers are then suit-
ably connected by means of appropriate continuity conditions imposed on their fictitious interfaces, thus
providing an arbitrarily close solution to that of the exact system (5-17) — see [Shuvalov and Soldatos
2003]. For an illustration of the relevant algorithm, consider the j-th such individual fictitious layer
( j = 1, 2, . . . , N ), the nondimensional middle-radius parameter of which is given by

R( j)
= 1+ (h/2)(2 j − 1), (5-21)

giving thus rise to the exponential matrix

[K ( j)(r)] = exp[(r − R( j)
+ h/2)D(R( j))], R( j)

− h/2≤ r ≤ R( j)
+ h/2. (5-22)

By requiring continuity of the azimuthal displacement component, the in-plane rotation component
and the nonzero components of the stress and couple-stress tensors, one obtains the following continuity
conditions on the N − 1 fictitious interfaces:

{X ( j)(R( j)
+ h/2)} = {X ( j+1)(R( j+1)

− h/2)}, j = 1, 2, . . . , N − 1. (5-23)

Hence, with recursive use of (5-20), (5-22) and (5-23), the solution sought is constructed as follows:

{X (N )(R(N )+ h/2)} = [K (N )(R(N )+ h/2)]{X (N−1)(R(N−1)
+ h/2)}

= [K (N )(R(N )+ h/2)][K (N−1)(R(N−1)
+ h/2)]{X (N−2)(R(N−2)

+ h/2)}

= · · · = [K̄ ]{X (1)(R(1)− h/2)}, (5-24)

where

[K̄ ] =
[ 1∏

j=N

[K ( j)(R( j)
+ h/2)]

]
. (5-25)

With further use of the boundary conditions (5-9)2,3,4 and (5-10), Equation (5-24) leads to a linear al-
gebraic system (see [Soldatos and Ye 1995], for example), whose solution yields the distribution of
the azimuthal displacement component throughout the tube cross-section. Note that the solution of the
problem has been obtained by making use of algebraic manipulations involving 4× 4 matrices only.

6. Numerical results and discussion

Equations (4-2) and (4-3) make clear that a convenient way for presentation of numerical results when
fibres are perfectly flexible (λ= 0) is associated with the use of the nondimensional quantities

v̄(r)=
β2
− 1
β

v(r)= r − r−1, t̄rθ (r)=
β2
− 1
β

trθ (r)= 2r−2. (6-1)

It is observed that neither of these nondimensional quantities depends on the nondimensional radius
parameter β of the tube outer boundary. This observation suggests that both v̄ and t̄rθ maintain the same
distribution profile regardless of the tube thickness. This is of course not the case when fibres resist
bending but, for convenience in the presentation of numerical results, the azimuthal displacement and
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the shear stress distributions predicted in Section 5 are also nondimensionalized further in accordance
with (6-1). In this context the additional nondimensional stress parameter

t̄θr =
β2
− 1
β

tθr

is also employed where necessary. It should be emphasized that the profiles of the nondimensional
displacement and stress distributions employed do depend on β when fibres resist bending. For a straight-
forward interpretation of the presented numerical results, it is convenient to assume that ψ > 0 and, hence,
that the cause of the deformation is applied anticlockwise on the outer tube boundary.

Most of the numerical results shown next are related with relatively thick tubes and they are mainly
produced by solving equation (5-9)1 on the basis of the SAM outlined in Section 5.4. It is worth noting
that corresponding numerical results obtained on the basis of the power series method (Section 5.3) are
practically identical to those based on SAM and, hence, in line with the conclusions made in [Shuvalov
and Soldatos 2003], the two methods are found to be computationally equivalent. However, due mainly
to its slow convergence, the power series method seems to be computationally reliable for relatively thin
tubes only. In contrast, SAM converges faster and is computationally reliable for a much wider range
of the tube thicknesses. Very satisfactory convergence of SAM and accuracy of the obtained results was
achieved by choosing h/R( j) < 0.01 where h and R( j) are defined in Section 5.4; this fact is also in
agreement with similar observations made in previous studies that were based on SAM (e.g., [Soldatos
and Ye 1995]). It is convenient at this point to also note that numerical results shown in Figures 2–5
are obtained under the assumption that the geometric boundary condition (5-10)1 is applied at the fibre
root, r = 1, while corresponding results plotted in Figures 6-8 are obtained by assuming that the natural
boundary condition (5-10)2 is applied there.

Figure 2 depicts the first quadrant of the tube cross-section and, for different values of λ, shows the
deformation pattern of a fibre initially aligned along the horizontal radius of the tube cross-section having
its outer boundary at β = 2.5. It is recalled that λ= 0 represents the deformation pattern of a perfectly

0.5 1.0 1.5 2.0 2.5

r

0.5

1.0

1.5

2.0

2.5

r

Λ = Π

Λ = 0.1

Λ = 0.03

Λ = 0.005

Λ = 0

Figure 2. Deformation pattern of a fibre initially aligned along the horizontal radius of
the tube cross-section. The fibre is assumed clamped in the inner tube boundary.
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flexible fibre described by (4-2). As already mentioned, this pattern is identical to that attained by the
horizontal radius of a corresponding isotropic material; having no bending stiffness, a perfectly flexible
radial fibre just seems to follow passively the deformation pattern of an isotropic material. Corresponding
deformation patterns for a fibre that resists bending (λ 6= 0) are plotted in Figure 2 under the assumption
that the additional boundary condition (5-10)1 is applied on the tube inner boundary; hence, the fibre is
essentially assumed clamped there. It is observed that the slope of the perfectly flexible fibre is nonzero
at the inner boundary of the tube cross-section and is monotonically decreasing with increasing β. Hence,
a deformed perfectly flexible fibre is concave downwards. In contrast, in their deformed configuration,
fibres with bending stiffness are initially concave upwards and, hence, they resist the applied azimuthal
shear deformation. This resistance increases with λ and reflects on the slope of the deformed fibre which
is initially increasing from its zero value imposed on the inner tube boundary. Although the slope of the
fibre begins afterwards to decrease again when λ is small, the region of monotonically increasing slope
values becomes larger with increasing λ and, therefore, with increasing fibre bending resistance, in line
with physical expectation. For sufficiently large values of λ, the slope of the fibre deformation pattern
seems to become monotonically increasing throughout the tube cross-section (1≤ r ≤ 2.5) and, hence,
the whole fibre is concave upwards. It is finally noted that the deformed fibre pattern shown in Figure 2
for λ= π remains practically unchanged if λ is increased further.

The dimensionless azimuthal displacement v̄ is plotted in Figure 3 against r , for different values of β
and for λ= 0.1. As already mentioned, in the perfectly flexible fibres case (λ= 0), v̄ maintains the same
distribution profile regardless of the value of β. However, each one of the dashed lines (λ 6= 0) begins at
the tube inner boundary, as required by the boundary condition (5-9)2, and ends at some different point
of the solid line; namely, at the point β where the external azimuthal displacement ψ is applied on. It is
seen that, for λ 6= 0, v̄ is decreasing at the vicinity of the tube inner boundary with increasing β. This
is in line with the expectation that, upon increasing the tube outer radius, the effect of the external cause
of the deformation is decreasing at the root of the clamped fibre where the highest bending resistance is
observed.
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Figure 3. Nondimensional displacement v̄ as a function of r for different values of β
(λ= 0.1).
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Figure 4. Symmetric part of nondimensional shear stress t̄(rθ) and nondimensional cou-
ple stress m̄r z =

β2
−1

βψC66
mr z as a function of r for different values of λ (β = 2.5).

For different values of λ and for β = 2.5, Figure 4 shows the variation of the symmetric part of the
nondimensional shear stress t̄rθ and the nondimensional couple-stress m̄r z against r . It is recalled that
t̄rθ = t̄θr for the perfectly flexible fibre case (λ= 0); this fact is represented by the solid line in the figure.
As a result of the displacement boundary conditions (5-9)2 and (5-10)1, t̄(rθ) is zero at the inner tube
boundary; see also (5-1). It follows that the couple-stress m̄r z and, therefore, the antisymmetric part of
the shear stress, t̄[rθ ], are dominant at the vicinity of the inner tube boundary; in fact the couple-stress
takes naturally its maximum value at the inner tube boundary where highest fibre bending resistance is
observed. However, as distance from the inner tube boundary is increasing, the contribution of t̄(rθ) is
increasing while that of m̄r z and t̄[rθ ] is decreasing fast and becomes gradually negligible. As λ increases,
t̄(rθ) decreases within the inner part of the tube cross-section. This decrease of t̄(rθ) is compensated by
the increasing contribution of m̄r z while the outlined trend is reversed within the outer part of the tube
cross-section.

For different values of λ and for β = 2.5, Figure 5, top, shows the distribution of the shear stresses t̄rθ
and t̄θr within the tube cross-section. It is seen that, maximum absolute shear stress occurs always at the
inner tube boundary, though t̄rθ and t̄θr take opposite values there for λ 6= 0; this is due to the fact that
t̄(rθ) = 0 at r = 1, as observed in Figure 4. The absolute value of maximum shear stress increases with
increasing the value of λ but, away from the fibre root, t̄rθ decreases gradually from its maximum positive
value while t̄θr increases sharply from its corresponding negative minimum value. This is due to the fact
that fibre bending resistance has not a dominant effect away from the inner tube boundary. Hence, the
stress tensor becomes nearly symmetric outside a certain layer in the vicinity of the inner tube boundary,
where negative t̄θr values of large magnitude are observed; the width of that layer is naturally increasing
with increasing the fibre bending stiffness. For different values of β and for λ= 0.1, Figure 5, bottom,
shows the distribution of t̄rθ and t̄θr within the tube cross-section. As already mentioned, t̄rθ maintains
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Figure 5. Distribution of shear stresses t̄rθ and t̄θr for β = 2.5 and different values of λ
(top), and for λ= 0.1 and different values of β (bottom).

again the same distribution profile in the perfectly flexible fibres case (solid line) regardless of the value
of β. The figure shows that, when fibres resist bending (λ 6= 0), t̄rθ is increasing while t̄θr is decreasing
near the tube inner boundary with increasing β. It is observed that, the thicker is the tube the nearer the
dashed lines approach the solid line at the outer tube boundary. Hence, for sufficiently thick tubes, the
effects of fibre bending resistance are essentially confined within the aforementioned layer formed in the
neighbourhood of the inner tube boundary; they are not felt in the vicinity of the outer tube boundary.
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Figure 6. Deformation pattern of a fibre initially aligned along the horizontal radius of
the tube cross-section; the fibre is assumed simply supported in the inner tube boundary.

When the geometrical boundary condition (5-10)1 is replaced by the natural boundary condition
(5-10)2, the numerical values and the physical trends of the results plotted in Figures 2, 4 and 5, top,
change dramatically and transform into those depicted in Figures 6, 7 and 8, respectively. Since the root
of the fibre is essentially subjected to a simply supported type of boundary condition, the slope of the
fibre is nonzero at r = 1; see Figure 6. However, the fibre still exhibits signs of bending resistance which,
according to Figure 7, seem to emerge slightly further away from the fibre root, as soon as nonzero values
of m̄r z become influential. Nevertheless, the total bending resistance of the fibre influences considerably
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Figure 7. Symmetric part of nondimensional shear stress t̄(rθ) and nondimensional cou-
ple stress m̄r z =

β2
−1

βψC66
mr z as a function of r for different values of λ (β = 2.5).
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Figure 8. Distribution of shear stresses t̄rθ and t̄θr for different values of λ (β = 2.5).

the value of the fibre slope at r = 1; see Table 2. As a result, the main difference between the values
of t̄rθ and t̄θr is again confined within the aforementioned layer near the inner tube boundary (Figure 8).
It is also seen (Figure 6) that the maximum possible deviation of the deformed fibre from the deformed
shape of its perfectly flexible counterpart is now naturally smaller than that observed in Figure 2.

λ 0 0.005 0.03 0.1 π

v′(1) 0.952 0.887 0.825 0.771 0.674

Table 2. The value of the boundary slope of a fibre supported according to (5-10)2.

It is worth observing in this regard that for large values of λ (e.g., λ = π in Figure 6) the shape of
the deformed fibre is approximately still that of a straight line (that shape remains practically unchanged
if the value of λ is increased further). A connection is therefore made between this observation and a
conclusion drawn in [Soldatos 2009a; 2010], according to which, in the case of an ideal fibre-reinforced
material, the inextensible radial fibres involved do not bend during azimuthal shear deformation; instead
they remain straight during deformation and they force the tube cross-section to undergo area-preserving
azimuthal shear strain, by changing their slope only. Nevertheless, small area-preserving and small pure
azimuthal shear strain are essentially identical deformations in the present case of interest. Hence, radial
fibres possessing high bending resistance (λ≥ π ) appear to remain practically straight during deformation
but they also extend in a manner that satisfies the conditions of pure azimuthal shear strain. If the fibres
were inextensible, they would necessarily force the inner and outer tube boundaries to move, as observed
in those same references, where the tube material was also assumed to be incompressible. However,
as already mentioned, linear elasticity cannot adequately account for the effects that the constraints, of
material incompressibility and/or fibre inextensibility have on the azimuthal shear deformation when the
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tube is reinforced along the radial direction of its cross-section. In this regard, recall that the relevant area
preserving azimuthal shear deformation observed in [Soldatos 2009a; 2010] for ideal fibre-reinforced
materials takes place only in the finite elastic deformation regime.

7. Closure

In dealing with the principal questions addressed in the Introduction, it has been found that, when spiral
fibres are perfectly flexible, both the inner and the outer radii of the tube exhibit a change for all four
versions of the azimuthal shear strain problem considered in Section 3; this change is caused by the
existence of coupling between azimuthal shear strain and radial stretching. Nevertheless, it has been
also observed that conditions of pure azimuthal shear are possible in all but one of the cases considered
and studied in Section 3, though different relevant conditions and/or requirements may apply to different
versions of the problem. The only version of the problem for which small pure azimuthal shear strain
is not possible is that of the ideal fibre-reinforced material discussed in Section 3.4. This result is in
complete agreement with the relevant conclusion made in [Soldatos 2009a; 2010] according which, a
tube made from an ideal fibre-reinforced material should instead be expected to undergo area preserving
azimuthal shear strain. It is however also noted that area preserving azimuthal shear strain for ideal
fibre-reinforced materials [Soldatos 2009a; 2010] is possible only within the finite elastic deformation
regime.

When the fibres are straight and aligned along the radial direction of the tube cross-section, radial
stretching and azimuthal shear strain become completely uncoupled deformations regardless of whether
the tube material is constrained or not, and regardless of whether fibres are perfectly flexible or resist
bending. In the perfectly flexible fibres case, the description and, hence, the solution of the problem
becomes identical to that met in isotropic elasticity. It is therefore observed that conventional linear
elasticity theory cannot adequately account for the effects that the material anisotropy and/or either of
the constraints of material incompressibility and fibre inextensibility have on the azimuthal shear strain
problem considered when the tube is reinforced along the radial direction of its cross-section.

On the other hand, effects of material anisotropy can be accounted for when fibres posses bending
stiffness, by taking into consideration the action of couple-stress and therefore asymmetric stress. It is
also seen that the natural appearance of an intrinsic material length parameter, which is representative
of the fibre thickness, provides ability for consideration of the manner in which the fibres are supported
on the tube boundaries. Hence, when the fibres are assumed clamped in the tube inner boundary, con-
siderable fibre bending resistance is observed within a certain layer in the neighbourhood of the inner
tube boundary; there, the fibres appear concave against the imposed deformation, which is in line with
physical expectations. It is also observed that the absolute maximum values of the couple-stress and the
shear stresses occur at the inner tube boundary where highest bending resistance is anticipated; these
values stay influential within the aforementioned layer near the inner tube boundary. When the fibres are
assumed simply supported at the inner tube boundary, their slope is naturally nonzero there. However,
the fibres still exhibit bending resistance which emerges slightly further away from the fibre root, as
soon as nonzero values of the couple-stress become influential. It is also seen that the maximum possi-
ble deviation of the deformed simply supported fibre from the deformed shape of its perfectly flexible
counterpart is naturally smaller than that observed in the clamped fibre case.
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It is also observed that, for large values of fibre bending stiffness, the deformed simply supported radial
fibre remains approximately straight. This observation is in line with a conclusion drawn in [Soldatos
2009a; 2010] according to which, in the case of an ideal fibre-reinforced material, the inextensible radial
fibres involved do not bend during azimuthal shear deformation; instead they remain straight during
deformation and they force the tube cross-section to undergo area-preserving azimuthal shear strain by
changing their slope only. Nevertheless, small area-preserving and small pure azimuthal shear strain
are essentially identical deformations. Hence, radial fibres possessing high bending resistance appear
to remain practically straight during deformation but they also extend in a manner that satisfies the
conditions of pure azimuthal shear strain. If the fibres were inextensible, they would necessarily force
the inner and outer tube boundaries to move, as observed in [Soldatos 2009a; 2010], where the tube
material was also assumed to be incompressible.

Appendix: Explicit form of auxiliary parameters and formulas

The constants γ1, γ2 and γ3 appearing in (3-8) are as follows:

γ1 =
2(C̄16+ C̄26)

C̄22− C̄11
, γ2 =−

(ηC̄16+ C̄26)

η− 1
, γ3 =−

(ηC̄16− C̄26)

η+ 1
. (A-1)

The constants Fk (k = 1, 2, . . . , 6) appearing in (3-10) are as follows:

F1 = γ1(C̄12− C̄11)− 2C̄16, F4 = γ1(C̄22− C̄12)− 2C̄26,

F2 = C̄12+ ηC̄11+ γ2C̄16(η− 1), F5 = C̄22+ ηC̄12+ γ2C̄26(η− 1),

F3 = C̄12− ηC̄11− γ3C̄16(η+ 1), F6 = C̄22− ηC̄12− γ3C̄26(η+ 1). (A-2)

For the set of boundary conditions (3-4) and (3-5), the arbitrary nonzero constants appearing in (3-8) are
found to be

Ā1 =
βF2 F3(β

2η
− 1)

Ā
, Ā2 =

βF1 F3(β
η−1
− 1)

Ā
, Ā3 =

−βηF1 F2(β
η+1
− 1)

Ā
,

Ā4 =
βF3(F2− γ2 F1)−β

2η+1 F2(F3− γ3 F1)+β
ηF1(γ2 F3− γ3 F2)

Ā
, (A-3)

where

Ā = β2 F3(F2− γ2 F1)(β
2η−2
+ 1)− F2(F3− γ3 F1)(β

2η+2
+ 1)+ 2βη+1 F1(γ2 F3− γ3 F2). (A-4)

For the set of boundary conditions (3-4) and (3-6), the corresponding nonzero constants are found to be

Ā1 =
−β(β2η

− 1)
Ā

, Ā2 =
γ1β(β

η−1
− 1)

Ā
, Ā3 =

βη(βη+1
− 1)

Ā
,

Ā4 =
β(γ1γ2− 1)−βηγ1(γ2− γ3)+β

2η+1(1− γ1γ3)

Ā
, (A-5)

where
Ā = β2γ1γ2(β

η−1
− 1)2− γ1γ3(β

η+1
− 1)2+ (β2

− 1)(β2η
− 1). (A-6)
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For the set of boundary conditions (3-4) and (3-5), the arbitrary constants appearing in (3-14) are
found to be

Ã1 =
2β(C̄16− C̄26)

(β2− 1)(C̄11+ C̄22− 2C̄12)
, Ã2 =

β

β2− 1
, Ã3 =

−β

β2− 1
. (A-7)

For the set of the boundary conditions (3-4) and (3-16), these constants are found to be

Ã2 =
β

β2− 1
, Ã3 =

−β

β2− 1
, Ã4 =

C̄16− C̄26

β(β2− 1)
. (A-8)

The constants β1, β2, γ̂1 and γ̂2 appearing in (3-20) are as follows:

β1 =
m cotα+ tanα

m− 1
, β2 =

m cotα− tanα
m+ 1

,

γ̂1 =
C22

2
sin 2α+

cos3 α

sinα
(cos4 α+ sin4 α),

γ̂2 =
C22

2
sin 2α+

sin3 α

cosα
(cos4 α+ sin4 α). (A-9)

The constants Hk (k = 1, 2, . . . , 6) appearing in (3-22) are as follows:

H1 = C̄12− C̄11+ 2C̄16 cot 2α+ cotα
(
C̄16− C̄26− 2 cot 2α+ γ̂1(1−m2)

)
,

H2 = mC̄11+ C̄12− C̄16β1(m− 1)+m cot2 α+ 1− cotα(mC̄16+ C̄26),

H3 = C̄12−mC̄11+ C̄16β2(m+ 1)+ 1−m cot2 α+ cotα(mC̄16− C̄26),

H4 = C̄22− C̄12+ 2C̄26 cot 2α+ tanα
(
C̄16− C̄26− 2 cot 2α+ γ̂1(1−m2)

)
,

H5 = mC̄12+ C̄22− C̄26β1(m− 1)+m+ tan2 α− tanα(mC̄16+ C̄26),

H6 = C̄22−mC̄12+ C̄26β2(m+ 1)+ tan2 α−m+ tanα(mC̄16− C̄26). (A-10)

For the set of boundary conditions (3-4) and (3-5), the arbitrary constants appearing in (3-20) are found
to be

Â1 =
βγ̂1 H2 H3(1−m2)(β2m

− 1)

Â
,

Â2 =
−βH1 H3(β

m−1
− 1)

Â
, Â3 =

−βm H1 H2(β
m+1
− 1)

Â
,

Â4 =
β
(
H2 H3(β

2m
− 1) cot 2α−βm−1 H1(H3β1− H2β2)− H1(β

2m H2β2− H3β1)
)

Â
, (A-11)

where

Â = H1(β
2m H3β1− H2β2)+ H2 H3(β

2
− 1)(β2m

− 1) cot 2α

−β2(2βm−1 H1(H3β1− H2β2)+ H1(β
2m H2β2− H3β1)

)
. (A-12)



ON SMALL AZIMUTHAL SHEAR DEFORMATION OF FIBRE-REINFORCED CYLINDRICAL TUBES 167

For the set of boundary conditions (3-4) and (3-6), these constants are found to be

Â1 =
βγ̂1(1−m2)(β2m

− 1)

Â
, Â2 =

−β(βm−1
− 1)

Â
, Â3 =

−βm(βm+1
− 1)

Â
,

Â4 =
βm(β1−β2)−β(β1− cot 2α)+β2m+1(β2− cot 2α)

Â
, (A-13)

where
Â = β1β

2(βm−1
− 1)2−β2(β

m+1
− 1)2+ (β2

− 1)(β2m
− 1) cot 2α. (A-14)

For the set of boundary conditions (3-4) and (3-5), the arbitrary nonzero constants appearing in (3-25)
are found to be

A1 =
β tan 2α
β2− 1

, A2 =
β

β2− 1
,

A4 =
β sec 2α tan 2α

β2− 1

(
C̄11+ C̄22− 2C̄12− 2(C̄16− C̄26) cot 2α

)
. (A-15)

References

[Dorfmann et al. 2010] A. Dorfmann, J. Merodio, and R. W. Ogden, “Non-smooth solutions in the azimuthal shear of an
anisotropic nonlinearly elastic material”, J. Eng. Math. 68:1 (2010), 27–36.

[Jones 1998] R. M. Jones, Mechanics of composite materials, Taylor & Francis, 1998.

[Kassianidis et al. 2008] F. Kassianidis, R. W. Ogden, J. Merodio, and T. J. Pence, “Azimuthal shear of a transversely isotropic
elastic solid”, Math. Mech. Solids 13:8 (2008), 690–724.

[Rivlin 1949] R. S. Rivlin, “Large elastic deformations of isotropic materials, VI: further results in the theory of torsion, shear
and flexure”, Philos. Tr. R. Soc. S. A 242:845 (1949), 173–195.

[Shuvalov and Soldatos 2003] A. L. Shuvalov and K. P. Soldatos, “On the successive approximation method for three-dimen-
sional analysis of radially inhomogeneous tubes with an arbitrary cylindrical anisotropy”, J. Sound Vib. 259:1 (2003), 233–239.

[Soldatos 2003] K. P. Soldatos, “Accurate stress analysis of laminated composite structures”, pp. 69–132 in Modern trends
in composite laminates mechanics, edited by H. Altenbach and W. Becker, Courses and lectures / International Centre for
Mechanical Sciences 448, Springer, 2003.

[Soldatos 2009a] K. Soldatos, “Azimuthal shear deformation of an ideal fibre-reinforced tube according to a second gradient
hyper-elasticity theory”, session GS–CM – Continuum Mechanics, ID 0017 in Proc. 7th EUROMECH Solid Mech. Conf.
(Lisbon, 2009), edited by J. Ambrósio et al., 2009.

[Soldatos 2009b] K. P. Soldatos, “Towards a new generation of 2D mathematical models in the mechanics of thin-walled
fibre-reinforced structural components”, Int. J. Eng. Sci. 47:11-12 (2009), 1346–1356.

[Soldatos 2010] K. Soldatos, “Second-gradient plane deformations of ideal fibre-reinforced materials: implications of hyper-
elasticity theory”, J. Eng. Math. 68:1 (2010), 99–127.

[Soldatos and Hadjigeorgiou 1990] K. P. Soldatos and V. P. Hadjigeorgiou, “Three-dimensional solution of the free vibration
problem of homogeneous isotropic cylindrical shells and panels”, J. Sound Vib. 137:3 (1990), 369–384.

[Soldatos and Ye 1995] K. P. Soldatos and J. Q. Ye, “Axisymmetric static and dynamic analysis of laminated hollow cylinders
composed of monoclinic elastic layers”, J. Sound Vib. 184:2 (1995), 245–259.

[Spencer 1972] A. J. M. Spencer, Deformations of fibre-reinforced materials, Clarendon Press, 1972.

[Spencer 1984] A. J. M. Spencer (editor), Continuum theory of the mechanics of fibre-reinforced composites, Courses and
lectures / International Centre for Mechanical Sciences 282, Springer, 1984.

[Spencer and Soldatos 2007] A. J. M. Spencer and K. P. Soldatos, “Finite deformations of fibre-reinforced elastic solids with
fibre bending stiffness”, Int. J. Non-Linear Mech. 42:2 (2007), 355–368.



168 MOHAMED A. DAGHER AND KOSTAS P. SOLDATOS

[Ting 1996] T. C. T. Ting, Anisotropic elasticity: theory and applications, Oxford Engineering Science Series 45, Oxford
University Press, New York, 1996.

[Ye 2003] J. Q. Ye, Laminated composite plates and shells: 3D modelling, Springer, 2003.

Received 12 May 2010. Accepted 17 Jul 2010.

MOHAMED A. DAGHER: pmxmd2@nottingham.ac.uk
Theoretical Mechanics, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, MG7 2RD,
United Kingdom

and

Department of Science and Engineering Mathematics, Faculty of Petroleum and Mining Engineering, Suez Canal University,
Suez, Egypt

KOSTAS P. SOLDATOS: kostas.soldatos@nottingham.ac.uk
Theoretical Mechanics, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, MG7 2RD,
United Kingdom

mathematical sciences publishers msp


