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Dedicated to the memory of Marie-Louise Steele and to Charles Steele.

Flat-jack tests have been employed for decades for the assessment of stresses and Young moduli in
possibly deteriorated concrete dams and masonry structures. We propose a procedure for such tests
that includes several innovations: identification of Young moduli and shear modulus in the presence
of orthotropy, of pre-existing normal and shear stresses, and of tensile and compressive strength and
fracture energy; use of full-field displacement measurements by digital image correlation (instead of
extensometers); computer simulations performed once-and-for-all and productive of results which are
subsequently processed out by proper orthogonal decomposition and its truncation; and identification
of parameters in situ, soon after the tests, by portable computer with software able to perform inverse
analyses by mathematical tools newly introduced into this context. The proposed procedure is validated
by means of pseudoexperimental numerical exercises, by employing comparatively, as central computa-
tional tools, artificial neural networks and a trust region algorithm implying only first-order derivatives
(with respect to the sought parameters) of the discrepancy function to minimize.

1. Introduction

Many concrete dams built up several decades ago in developed countries are at present deteriorated, with
possible consequent decrease of safety margins with respect to limit states or collapses. A relatively
frequent cause of damage in dam concrete is the physicochemical process called alkali-silica reaction:
after a dormant period of several years from casting, a substantial decay of mechanical properties and
an expansion generating self-stresses may occur slowly along a period of, say, thirty or forty years, with
nonuniform distribution over the dam volume and sometimes without external visible manifestations of
aging; see, for example, [Swamy 1992; Ahmed et al. 2003; Comi et al. 2009]. Such possible occurrences
clearly require a rather large number of diagnostic analyses on a possibly damaged dam.

Structural diagnostic procedures of a mechanical nature employed in state-of-the-art dam engineering
can be classified as follows (see [Maier et al. 2004], for instance): (a) quasi-nondestructive experiments
by flat jacks on the dam surface [Fedele and Maier 2007]; (b) in depth coring or overcoring tests (similar to
those which are traditional in geomechanics), usually with extraction of specimens for the laboratory (and,
hence, destructive) [Goodman 1989; Fedele et al. 2005; Leite and Corthesy 2001]; (c) overall dynamical
inverse analyses based on excitations by vibrodynes or by ambient vibrations and measurements by
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accelerometers [Loh and Wu 2000]; (d) statical overall inverse analyses under loading due to ad hoc
changes of water level in the reservoir, with measurements of consequent displacements by means of
pendulums, collimators and/or interferometric radar [Fedele et al. 2006]; (e) same as (d), but with loading
provided by seasonal, in-service variation of reservoir level (such alternative is much more economical
than (d), however it requires more complex inverse analyses taking into account thermal effects as well
[Ardito et al. 2008]).

Diagnostic procedures (c), (d) and (e) lead to the assessment of Young modulus only. Method (b)
is clearly destructive and expensive. The limitations of procedure (a), traditionally applicable only to
the estimation of the Young modulus and normal stresses, have been recently mitigated, so far only
theoretically, in [Fedele et al. 2005] by recourse to test simulations and inverse analysis.

A step ahead in the development of structural diagnosis based on flat-jack tests and inverse analysis
is provided in this paper, where the following novelties are presented and proposed to the engineering
practice: (i) less destructive geometric configuration of the slots; (ii) use of digital image correlation
(DIC) as full-field displacement measurement technique which economically provides much more exper-
imental data than extensometers; (iii) assessment of inelastic parameters additional to elasticity and of
the existing stress state (assumed as uniform, locally); (iv) parameter identification performed in a fast
and inexpensive fashion (possibly in situ, using a portable computer) by a numerical procedure resting on
proper orthogonal decomposition (POD), radial basis functions (RBF) interpolations and a trust region
algorithm (TRA) or by an alternative procedure based on an artificial neural network (ANN).

Section 2 is primarily devoted to the operative sequence of the procedure to be carried out in situ,
namely in selected locations on the dam surface. The computational procedures proposed for the esti-
mation of elastic moduli and stresses are described, with some details and numerical validations, in the
successive two sections: the techniques centered on POD–RBF–TRA in Section 3, and those based on
POD–ANN in Section 4. In Section 5 preliminary research results are presented on the identification of
plastic and fracture parameters. Section 6 is primarily devoted to prospects of further research.

2. Experimental procedure and its modeling

2.1. Constitutive models. Simple traditional constitutive models, still popular nowadays in dam engi-
neering practice, have been adopted for the present investigation and validation exercises on the proposed
parameter identification methods. Let the x-axis be horizontal on the dam free surface, assumed vertical
for simplicity, let the z-axis be orthogonal to that surface, and, hence, axis y vertical as well. Anisotropy,
specifically orthotropy with transversal isotropy in the horizontal plane, may be generated in dam concrete
by the casting process, especially in roller compacted concrete, more and more frequently adopted in the
last decade. In this case linear elasticity can be described as follows:
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νHV = νVH
EH

EV
, GH =

EH

2(1+ νH)
. (2)

The material parameters in (1) are the horizontal and vertical Young moduli, EH and EV; the in-plane (hor-
izontal) and out-of-plane shear moduli, GH and GV; and the Poisson ratios νH, νVH and νHV, constrained
by the relationships (2) due to the symmetry of the elastic compliance matrix and to the in-plane elastic
energy balance (same as in the isotropic case), respectively. Therefore only five of these parameters
are independent. The identification procedures developed in Section 3 and 4 will concern the three
parameters EH, EV and GV, which are the ones reasonably expected to play the main role in the system
response in the hypothesis of transversal isotropy (in the horizontal plane) for the dam concrete. We
assume a priori that νH = νVH = 0.2; the other parameters in (1) depend on the previous ones through (2).

Isotropy reduces to two the independent elastic parameters, say E and G (since EV = EH = E , GV =

GH = G, νH = νHV = νVH = E/(2G)− 1). The isotropy hypothesis will be used in Section 5 when focus
is set on the identification of inelastic parameters.

The stress field pre-existing to the test and sought for by the identification procedure can be reasonably
assumed to be a plane stress state (σz = τzx = τzy = 0), assumed as uniform over the whole volume affected
by the test, hence governed by the three components σH (= σx), σV (= σy) and τHV (= τxy).

For the plastic behavior of concrete the classical Drucker–Prager model is adopted here (perfect plas-
ticity with nonassociated flow rule), depicted in Figure 1a. Fracture is supposed to be first-mode only
and reducible to a cohesive crack model with linear softening, as shown in Figure 1b in terms of normal
stress σ versus opening displacement v. The assumptions above on the inelastic behavior of concrete
lead to the following mathematical model formulation

F = t − p tanβ − d ≤ 0, d =
(
1+ 1

3 tanβ
)

ft (3)

(see [Lubliner 1990; Jirasek and Bazant 2001], for instance). The meanings of the symbols in these
formulas and in the figure are as follows: F is the yield function in the plane (Figure 1a) of the average
normal stress p (compression positive) and of the equivalent shear t (I1 being the first invariant of
the stress tensor, J2 the second invariant of the deviatoric stress tensor); the angles β and ψ represent
internal friction and dilatancy of plastic flow, respectively; the cohesion d and the uniaxial strength ft

are related to each other by (3)2, as a consequence of (3)1. The dilatancy ψ is assumed to be ψ = 40◦, a
value frequently adopted in overall analyses of concrete dams in engineering practice. Thus the inelastic
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Figure 1. Material models and parameters relevant to diagnostic purposes: (a) Drucker–
Prager no-hardening plasticity; (b) cohesive crack model with linear softening.
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Figure 2. Sequence of steps in the parameter identification procedure: (a) positioning
and (b) cutting of the slots (recording of displacements over the large ROI); (c) jacks
inserted and pressurized (recording of displacements over the large ROI); (d) depressur-
ization of jacks and change of ROI; (e) vertical jack pressurized to higher pressure level
(displacements recorded over the smaller ROI).

parameters to estimate turn out to be three only: the internal friction β, the tensile strength ft , and
the fracture energy G f . The uniaxial compressive strength fc can be computed after model calibration
through the following relationship, consequence of (3) for F = 0:

fc =
d

1− 1
3 tanβ

=

(
1+ 1

3 tanβ
)

ft

1− 1
3 tanβ

. (4)

2.2. The test and its simulation. The sequence of operative steps of the proposed diagnostic procedure
based on flat-jack tests is outlined below with reference to Figure 2.

(a) In the selected place on the structure surface, the position of two future orthogonal slots (T-shaped
geometry) is marked and a first photograph is taken by the DIC instrument over the region of interest
(ROI) which is depicted in Figure 2a. In the DIC jargon (see [Hild and Roux 2006; Avril et al. 2008],
for example), ROI is the area over which full-field measurements are performed; zone of interest (ZOI)
is the image subset used by the image matching routine as a correlation window: comparing photos
taken before and after the deformation, every ZOI of the initial image can be located in the deformed
image through its “signature” in terms of gray-level values characterizing the pixel subset in point, as
schematically illustrated in Figure 3. The displacement of the center point of a ZOI is computed as
average of the displacements of the pixels inside the subset. A suitable grid is defined over the ROI,
grid-nodes displacements being measurable by means of subsequent DIC photos.

(b) The two slots are cut (Figure 2b) and a second photo is shot by the DIC equipment so that, as men-
tioned, the displacements due to the release of the pre-existing stresses in the cut can be measured at all
grid nodes and can be dealt with as accurately representative of the displacement full-field over the ROI.

(c) Two flat-jacks are inserted and pressurized by a piston-pumped liquid up to a pre-established
pressure (Figure 2c). This pressure should correspond to a compromise between the needs to generate
large enough, well measurable displacements in the ROI and to avoid nonnegligible inelastic strains.
Again a DIC photo is taken over the ROI in order to capture the new displacement full-field.

(d) The horizontal jack is removed from its slot and the vertical one is depressurized. The original ROI
employed in the preceding steps is replaced by a smaller ROI appropriate for focusing on one of the two
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Figure 3. Schematic visualization of the DIC measurement procedure. The functions
f and g are gray-level values; x , y are pixel coordinates in the ROI, and δx , δy are the
displacement coordinates of the ZOI central point.

zones, located near the tips of the vertical slot, where inelastic deformations are expected (Figure 2d). A
reference photo is taken of this ROI.

(e) The single flat-jack placed in the vertical slot is highly pressurized in order to generate plastic strains
and a quasi-brittle fracturing process near the tips of the loaded slot where stress concentrations occur
(Figure 2e). A sequence of DIC photos is taken to capture the nonlinear evolution of the displacements
over the ROI, due to such pressure loading. The crack propagation is assumed as confined to the central
vertical plane and to be stable, despite the softening in the cohesive crack behavior. Such localized
fracture can be regarded as quasi-nondestructive in engineering terms. A possible provision to be adopted
which can be beneficial in phase (e) for inelastic material characterization is the following one: two
additional vertical slots (shown in Figure 2f) are cut in order to practically remove the influence on the
fracture process of the horizontal stress; this, however, would make the test slightly more destructive.
This variant is not investigated herein.

Based on these DIC measurements, the parameters identifications are performed according to the
following sequence of phases (see caption of Figure 2): (I) elastic moduli, on the basis of experimental
data concerning transition from stage (b) to (c); (II) stresses, on the basis of the elastic moduli estimates
achieved in phase (I) and of data acquired at stages (a) and (b); (III) inelastic parameters, on the basis
of data concerning the transition from stage (d) to the various deformation stages represented in the
sequence of DIC photos taken in phase (e).

The finite element (FE) model here adopted for the subsequent computer simulations of the tests is
depicted in Figure 4a as for the overall geometry and in Figure 4b as for the mesh. The FE discretization
exhibits the following features: 97,600 tetrahedral elements with linear shape functions for displacements;
57,280 degrees of freedom; boundary conditions with vanishing displacements on the borders separating
the domain from the surrounding volume supposed to be not perturbed by the test. It is worth noting that
the ROI for DIC measurements is significantly reduced in moving from the identification of elastic moduli
and stresses to the estimation of inelastic parameters: in fact for the latter inverse analyses concerning
less uniform and more localized strains field, it is useful to exploit a higher density of the available DIC
pixels.
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Figure 4. Finite element model for test simulations: (a) overall geometry and (b) mesh.

The simplicity of both the constitutive models and of the FE discretization for the numerical exer-
cises presented in the two subsequent sections is motivated by the following circumstances: the present
purpose is limited to a first numerical validation of novel procedures; consistency is pursued here with
the assumptions and approximations at present adopted for real-life structural analyses of large concrete
dams in view of inevitable uncertainties of several data.

A further simplification of test modeling concerns the flat-jacks: their configurations adopted at present
would suggest to model the two steel laminae and the circumferential welds. Here uniform compressive
traction is assumed throughout the concrete walls of the slot. Such assumption is reasonable: first,
because it represents an acceptable approximation to the present purposes; second, because a new kind
of flat jack based on textile laminae supported by a circumferential rod, now under investigation, is likely
to be adopted in the future, thus making the assumption above more realistic.

For the numerical validation of the novel diagnostic procedures the adopted jack dimensions and test
geometry are similar to those which are at present usual in traditional applications, consistent with usual
sizes of aggregate in concrete. Clearly, larger dimensions with equal procedures can be adopted for dam
concrete when the average aggregate size turns out to be larger.
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3. Identification of elastic moduli and stresses by a POD–RBF–TRA procedure

3.1. The inverse analysis procedure. As usual in diagnostic inverse analyses, the domain in space over
which the search for the material parameters can be confined should be preliminarily chosen according to
expert judgment. For the present purposes, at first with reference to the estimation phase (I), the “feasible
domain” is defined within the three-dimensional space of the elastic parameters in Table 1 by means of
lower and upper bounds. Adopting the step values specified in this table, a grid with M = 1089 nodes is
generated over the feasible domain.

For each of these sets of parameters the test simulation provides, by the FE model of Figure 4, the
displacements measurable by DIC (over the ROI shown in Figure 2) relevant to the operative steps from
(a) to (c), namely the displacements due to slot cutting and jack pressurization up to p = 5 MPa in the
elastic range. The relative large size of the ROI makes immaterial, for identification by elastic modeling,
the possible initial development of inelastic strains, localized near the slot tips, as the jack pressure
approaches the maximum value (p = 5 MPa).

The DIC instruments here considered measure (and provide in digitalized form) N = 2086 displace-
ment components (along horizontal and vertical axis on the dam surface, Figure 2a) at the nodes of the
FE model (Figure 4) which coincide with the DIC grid nodes contained in the ROI (Figure 3).

The POD–RBF procedure. The clearly massive and heavy sequence of direct analyses based on the
parameter vectors pi (i = 1, . . . ,M) corresponding to grid nodes has been carried out by a commercial
FE code (ABAQUS). Let the results be gathered in an N ×M matrix U : its i-th column ui is a vector,
or snapshot, containing the N pseudoexperimental data belonging to the (now elastic) response to the
pressure loading of the system with elastic moduli gathered in vector pi .

Clearly, since the differences among the system responses arise only from variations of the sought
parameters within the preselected domain in their space, the snapshots turn out to be correlated: they
can be represented by “almost parallel” vectors in their space of N = 2086 dimensions. This correla-
tion suggests the use of approximation, or compression, in the information contained in the snapshot
matrix U = [u1 · · · uM ] relevant to the elastic behavior of the system, by recourse to a proper orthogonal
decomposition (POD) and truncation based on it.

The mathematical theory and computational procedures related to POD have origins remote in time
and in application fields, and are now presented in a vast and still growing literature, of which we mention
[Chatterjee 2000; Wu et al. 2003; Ostrowski et al. 2008]. Here only the specific procedure selected and
applied to the present purposes is outlined, without analytical details.

Starting from the matrix U defined above, preliminarily obtained from M test simulations by FEM,
the symmetric, positive semidefinite or definite matrix D = U T U is generated. Its (real, nonnegative)

phase (I) phase (II)
EH/GPa EV/GPa GV/GPa EH/GPa EV/GPa GV/GPa σH/MPa σV/MPa τHV/MPa

min 10 15 4 10 15 4 −6 −7 −2.5
step 1 1 1 5 5 4 1 1 0.5
max 20 25 12 20 25 12 −2 −1 −0.5

Table 1. Grid in parameter space for phases (I) and (II) of the identification procedure.
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eigenvalues λi and the relevant normalized eigenvectors vi are computed and employed to obtain the
orthonormal basis

8=
[
81 · · · 8M

]
, with 8i = Uviλ

−1/2
i . (5)

In view of orthonormality, the M × M matrix A encoding the amplitudes a of the snapshots u is
characterized by the relations

A=
[

a1 · · · aM
]
=8T U, U =8A. (6)

The correlation among the snapshots (earlier noticed and reasonably expected for measurable re-
sponses to tests at varying parameters over the domain) make negligible many amplitudes ai in the new
basis 8. It was mathematically proved (see e.g., [Nabney 2002; Liang et al. 2002]) that the eigenvalues
λi quantify the negligibility of such amplitudes. By preserving only the M largest eigenvalues, with
M� M , an approximation U is achieved of the N ×M snapshot matrix U by means of a truncated basis
8 (N ×M) and the relevant truncated M ×M amplitudes A, namely

U =8 A∼= U, whence A=8T U . (7)

The approximation in (7)1 is regarded as acceptable and negligible in subsequent developments, so
that the amplitudes in A are henceforth computed by (7)2.

These developments often turn out to be computationally heavy but need to be done once-and-for-all
as preparatory work generating matrices 8 and A: these condense (“compress”) the information on the
system behavior contained in the much larger matrix U and can be accommodated in a small computer
to be employed “in situ”.

The snapshot u corresponding to any “new” parameter vector p (new because not included as node
in the preselected grid over the feasible domain in the parameter space) now can be assessed through
(7) by means of its “amplitude” M-vector ā( p). This amplitude can be expressed by means of radial
basis function (RBF) interpolation (see, e.g., [Wu 1995; Buhmann 2003; Hassing et al. 2010]) using the
known amplitude vectors āi ( pi ) corresponding to grid-nodes vectors pi , i = 1, . . . ,M :

āk( p)=
M∑

i=1

bk
i g( p, pi )= gT( p)bk k = 1, . . . ,M, (8)

where āk( p) is the k-th component of ā( p), the bk
i are the interpolation coefficients and g( p, pi ) are

the radial functions; the vectors gT( p) and bk gather functions and coefficients, respectively. The cubic
RBFs

g( p, pi )= ‖ p− pi‖
3 (9)

where ‖ · ‖ is the Euclidean norm, are adopted here for the interpolation above. For each component k,
Equation (8), enforced at the j -th node ( j = 1, . . . ,M) of the parameter grid, takes the form [ā j ( p j )]k =

gT( p j )bk . Assembling all M equations of this type, the following linear system is obtained, with the
coefficients bk

i as unknowns:

Gbk
= [ k-th row of matrix Ā ]T , k = 1, . . . ,M, (10)

where G = (G j i ) with G j i = g( p j , pi ). All the M linear equation systems to be solved share the same
coefficient matrix (which is independent of k).
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When matrix B= [b1 . . . bk . . . bM
] is available, the interpolation, (8), provides the truncated amplitude

vector ā corresponding to any new parameter vector p: āk( p)= [ g( p)]T bk ; and, hence, (7) leads to the
snapshot u of the N measurable quantities, namely to an approximation consistent with the preceding
POD process. Formally:

u( p)∼=8 ā( p)=8 BT g( p) (11)

where the M−vector g contains the values of the considered RBFs at the parameter node p.
Clearly, (11) may replace with substantial savings test simulations (direct analyses) by FE computer

codes or by other computing tools. This circumstance becomes very meaningful and practically advan-
tageous in inverse analysis of the present kind.

In the present context parameter identification means minimization of a traditional discrepancy func-
tion ω of the residuals R (differences between experimental data us and their computed counterparts uc).
Traditionally, the function ω is formulated as quadratic form with the inverse of the covariance matrix C
of the experimental measures:

min p ω ( p)=min p
{

RT ( p)C−1 R ( p)
}

(12)

where
R ( p)= us − uc ( p) . (13)

In view of the “pseudoexperimental” approach of the present investigation, it is assumed herein C = I
(identity matrix) without methodological limitations.

In order to numerically solve the problem formulated by (12), the popular trust region algorithm (TRA)
is employed in this section and it is outlined below (for details see e.g., [Coleman and Li 1996; Conn
et al. 2000]).

The Jacobian J , the gradient ∂ω/∂ p of the objective function ω and an approximation of the Hessian
H read, respectively:

J ( p)=
∂R
∂ p

,
∂ω

∂ p
= J T R , H ( p)=

∂2ω

∂ pT ∂ p
' J T J . (14)

In each iteration, say the j-th one starting from the current point p j , the following two-variable math-
ematical programming problem has to be solved:

min
α,β

{
1
2 sT

j J T J s j +

(
∂ω

∂ p

)T
s j ,

∥∥s j
∥∥≤1 j

}
, (15)

where
s j = α J T

j R j −β(J T
j J j )

−1 ∂ω

∂ p . (16)

In (15) 1 j defines the “trust region” to be possibly adjusted after check according to criteria specified
e.g., in [Nocedal and Wright 1999; Conn et al. 2000].

The iteration j of the first-order TRA described by (15) and (16) requires a multiplicity of first deriva-
tives specified in (14) and numerically approximated here by forward finite differences. Therefore a high
number of direct analyses are necessary in each application of TRA to the present inverse problem.

As for TRA and similar sequential mathematical programming technique, the computational burden
is increased by possible nonconvexity (namely by possible local minima) of the objective function
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ω ( p) which may require different initializations (even if once-and-for-all for a specific kind of tech-
nical situations). In parameter identification problems where lack of discrepancy function convexity is
expected, genetic algorithms may be an advantageous alternative (not examined herein) to mathematical
programming, and the preliminary POD–RBF procedure above becomes very desirable for practical
applications in view of the high number of required direct analyses. Computational savings may arise
from POD–RBF also for sensitivity analysis of many measurable quantities (see [Kleiber et al. 1997],
for example); however, we will not consider this topic further.

In the present diagnostic method the inevitably sequential estimation of parameters (elastic-stresses-
inelastic, Section 2, Figure 2) implies an increase of the parameter space dimensionality and hence a
growth (exponential at equal density) of the number M of grid nodes (and snapshots).

The advantages achievable by the procedure POD–RBF–TRA proposed herein in association with
DIC and flat-jack tests for the identification, in sequence, of elastic moduli and stresses, are evidenced
by numerical examples in Section 3.2.

In the POD–RBF procedure just outlined, truncation represents a clearly important step. The choice
of number M of the preserved eigenvalues of matrix D (much below the number M of snapshots) can
be decided by various criteria (besides the one based on eigenvalues λi , here without a direct physical
meaning), two of which are particularly suitable to the present context: (i) meaningful difference between
a snapshot resulting from a test simulation by FE analysis and the corresponding snapshot computed by
POD–RBF with truncations; (ii) assessment of intrinsic accuracy of POD–RBF at varying the dimen-
sionality M of the new basis 8. The latter has been adopted in the present study and is outlined in what
follows.

Outside the nodes grid but still within the preselected domain, M̂ parameter vectors p̂ j are randomly
generated (here M̂ = 100), and corresponding snapshots of pseudoexperimental data are computed
through FE simulations of the same test. Random noise (here ±5µm) is added to each snapshot which
thus becomes û j ( j = 1, . . . , M̂). The amplitude vector corresponding to û j is computed using (7):

ā j ( p̂ j )=8T û j ( p̂ j ), j = 1, . . . , M̂ . (17)

Now an approximation to such amplitude vector has to be attainable by RBF interpolation through (8)
(employing the matrix B) in correspondence with some p:

āRBF( p)= B g( p). (18)

Such p can be singled out by defining (for each j-th off-grid node) a residual

R j ( p)= ā j ( p̂ j )− āRBF( p) (19)

and then by solving the problem

p∗j = value of p that minimizes RT
j ( p) R j( p). (20)

The j-th parameter vector p̂ j originally considered is now compared to its counterpart p∗j resulting
from minimization (20). Their difference can be regarded as representative of the RBF approximation in
this j -th numerical test. An overall quantification of such error for the whole set of M̂ off-grid nodes, i.e.,
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Figure 5. Errors, according to (21), in the elastic moduli due to the POD–RBF prelim-
inaries as a function of the adopted truncation index M .

the mean error according to (21) below, can be regarded as an assessment of the approximation induced
by the POD–RBF scheme:

(mean error)l =
1

M̂

M̂∑
j=1

∣∣∣∣∣( p̂ j )l − ( p∗j )l
( p̂ j )l

∣∣∣∣∣ (21)

where subscript l denotes the l-th component of the parameters vectors. Figure 5 shows the mean error
resulting for the elastic constants as a function of POD truncation index M .

3.2. Validation by computational examples. This subsection gathers a sequence of selected numerical
checks of potentialities and limitations of the (deterministic, least squares) diagnostic method presented
in what precedes.

(A) First, inverse analyses have been carried out comparatively by TRA only, with the following
provisions: (i) various initializations in order to check the well-posedness of the problem and, particularly,
absence of local minima; (ii) random perturbations of the (pseudo) experimental input data in order to
check their consequences on the estimates; (iii) same estimation procedure applied comparatively on the
basis of DIC data and on the basis of extensometric data which are traditionally acquired with standard
flat-jack tests.

The reference values of the parameters used in identification examples, carried out by TRA only,
concerning phase (I) and phase (II), are as follows:

elastic parameters: EH = 15GPa EV = 20GPa GV = 8GPa νH = νVH = 0.2

pre-existing stresses: σH =−3 MPa σV =−5 MPa τHV =−1 MPa

All three kinds of evaluations led to positive and encouraging results starting from these reference
values, with pseudomeasurements by DIC and by the FE model (Figure 4) same as those specified in
Section 2; pressure of 5 MPa in both jacks; random noises on input data over intervals of ±2.5µm and
then of ±5.0µm, with uniform probability distribution.

Figure 6 indicates satisfactory stability of the TRA identification with respect to realistic random errors
of DIC pseudoexperimental data considered. For comparison purposes, Figure 7a shows possible mea-
surements by extensometers (specifically, linear variable differential transducers) employed at present
in dam engineering. The elongation of 8+ 8 segments between marks are intended to be monitored
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Figure 6. Identification of elastic parameters by TRA with different random perturba-
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Figure 7. (a) Extensometric measurements and (b) consequent identification of elastic
parameters (normalized by the reference values) by TRA inverse analysis.

and affected by ±5.0µm random errors. Actually the considered noise and measurement number are
rather optimistic when compared to the current practice based on extensometers. A TRA inverse analysis
similar to the one leading to Figure 6 has been performed, but now on the basis of snapshots consisting
of the 16 extensometric measurements shown in Figure 7a. Lack of convergence turns out to occur with
extensometers in the comparative example illustrated by Figures 6b and 7b.

(B) The potentiality and accuracy of the whole procedure POD–RBF–TRA have been tested by numerical
exercises like those summarized here below.

With reference to phase (I) of the identification procedure, Table 1 specifies the uniform grid chosen
over the three-dimensional domain of the elastic parameters: the number of nodes amounts to M =
1089. Using this grid, the snapshots u (over the ROI) are computed by FE simulation as response
to jack pressurization at 5 MPa of the two slots, and the corresponding matrices 8 and B are generated
according to the POD–RBF procedure described in Section 3 (see page 187). Here the truncation adopted
is quantified by M = 3. On this basis, for any parameter vector p in the feasible domain, the corresponding
snapshot u can be obtained in a fast way by (11) once the vector g( p) is computed.
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Subsequently a set of M̂ = 100 off-grid parameter vectors p̂ j is randomly generated and the corre-
sponding snapshots û j (over the ROI) are computed through FE simulations analogous to the previous
ones. Such snapshots, after perturbation by random noise addition, are used as pseudoexperimental data
relevant to the transition from step (b) to step (c) of the test, Figure 2. For each p̂ j , the minimization
(12) is carried out, with û j (now noised) playing the role of us , vector uc( p) being expressible via (11)
on the basis of the chosen grid. Here the adopted noise value is ±5µm.
The j-th parameter vector p̂ j originally considered is now compared to its counterpart p∗∗j identified
through the minimization (12) and the accuracy of the estimation of each elastic parameter is assessed.
For the j-th identification, the error of the computed estimate ( p∗∗j )l takes the form

(error) jl =

∣∣∣∣∣( p̂ j )l − ( p∗∗j )l
( p̂ j )l

∣∣∣∣∣ , j = 1, . . . , 100, l = 1, . . . , 3. (22)

Figure 8a shows the results obtained for the three elastic moduli by means of the 100 inverse analyses
discussed above. In each histogram, the abscissa gives a range for the error of the estimate (in percent),
and the ordinate gives the percentage of cases in which the error lies in the corresponding interval. The
mean error, for the set of M̂ identifications, amounts to 1.02%, 0.99% and 1.87% for the moduli EH, EV

and GV, respectively.

We next discuss phase (II) of the diagnostic procedure, the estimation of the pre-existing stresses. The
preliminary POD–RBF procedure must concern not only the three stress components, but also the three
elastic moduli. The six-dimensional grid is specified in Table 1 and has M = 3375 nodes. To avoid too
high a value of M and consequent high computational burden for the preliminary POD–RBF, the steps
adopted for EH, EV and GV in phase (II) are much larger than those in phase (I), as shown in the table.
As for the truncation leading to the new basis 8, (7), the present choice is M = 4.

Similarly to what was described above for phase (I), M̂ = 100 off-grid parameter vectors are considered
and for each of them pseudoexperimental results are generated and utilized to perform an identification
by minimizing function ω of (12). It is worth noting that such minimization is to be performed not in the
six-dimensional parameter domain over which the grid is defined, but in its three-dimensional subdomain
of the stress parameters.
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to fall within each such interval. Estimates of elastic moduli (first three diagrams) and
stresses (remaining diagrams).
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Figure 8b provides a visualization of the accuracy checks now concerning the POD–RBF–TRA estima-
tion of the stresses σH σV τHV by means of N = 2086 measurements (over the ROI) of displacements, in
transition from step (a) to step (b) (see Figure 2), after having introduced as preliminary data the estimates
achieved for the elastic moduli by the preceding identification. The resulting mean error equals to: 0.65%,
0.96% and 1.51% for σH, σV and τHV, respectively.

The conclusion of the computations described (and other omitted for brevity) is rather encouraging:
the devised method centered on POD, RBF and TRA, confined to elastic behavior, turns out to provide
parameter estimations of both elastic moduli and pre-existing stresses which are expected to be fairly
satisfactory in practical applications.

4. Identification of elastic moduli and stresses by a POD–ANN procedure

4.1. The inverse analysis procedure. Soft-computing methods, particularly artificial neural networks
(ANN), are more and more frequently employed in engineering also to solve economically parameter
identification problems (see e.g., [Waszczyszyn 1999; Fedele et al. 2005]). To the present purposes a
conventional feed-forward neural network is adopted and optimized, in order to comparatively investigate
an alternative to the POD–RBF–TRA procedure presented in what precedes. To achieve computational
economies similar to those described in Section 3, POD is adopted again, and the compression of the
information contained in the set of preliminary test simulations turns out to be useful for the reduction
of the ANN input and for its useful “balance” with corresponding output.

The ANN is intended to provide the sought parameters p starting from the M-dimensional amplitude
vector ā which corresponds to the N -dimensional experimental data vector u (snapshot) in the truncated
basis 8 with M � M , if M is the number of snapshots preliminarily computed by a FE code, like in the
POD–RBF–TRA of Section 3. Since orthonormality is preserved in 8 after truncation, (7) gives rise to
the relationship

A=8T U . (23)

This equation can be specialized to the link between any snapshot uh (corresponding, through exper-
iment or its simulation, to a parameter vector ph) and its compacted amplitude āh , namely

āh ( ph)=8T uh ( ph) where h = 1, . . . ,M. (24)

The N ×M matrix 8 (where N is the number of experimental or pseudoexperimental data and M
the number of preserved eigenvalues of the matrix D = U T U) is computed once and for all by the same
POD procedure presented in Section 3. Equation (24) is essential for the generation of an ANN able to
routinely estimate, fast and possibly in situ, the parameters p on the basis of input ā representative of
measurements u through (24) again.

The kind of ANN adopted here is a traditional one and can be outlined as follows (details in [Bishop
1995; Hagan et al. 1996; Bishop 2006])

The chosen ANN category is usually called feed-forward multilayer perceptron. Its architecture con-
sists of a sequence of neurons layers (input, hidden, output). The transformation performed by each
neuron in each active layers (not in the input layer) on received signals consists of a linear combination
(by coefficients to be calibrated, called weights and biases, all gathered in a vector w) and a sigmoid
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transform. The vector w is computed by minimizing a function � that quantifies the discrepancy be-
tween expected parameters ph (targets) related to the amplitude āh through (24), and their counterparts
generated by the ANN to be trained and, hence, related to the vector w of the minimization variables.
Namely, the problem to solve for the ANN calibration is

min
w
�(w)=min

w

{ M∑
h=1

∥∥ ph (āh)− p′h (w, āh)
∥∥}. (25)

The preselected parameter nodes p in the grid over the domain chosen in the p-space, and the cor-
responding, preliminarily computed, snapshots u together with the associated amplitudes ā after POD,
provide, without additional computations, a set of M patterns (pairs of āh and corresponding targets ph).
These patterns are employed partly for ANN training as above (see (25)), and also partly for testing and
validating the ANN. These computational processes are carried out once-and-for-all in order to optimize
the architecture of the ANN for routine later use. ANN optimization is here intended, as usual, to avoid
overfitting and roughness in the parameter estimations.

The solution w∗ of problem (25) is achieved by the popular Levenberg–Marquardt algorithm, i.e.,
by first order mathematical programming in its back-propagation version, often employed for training
feed-forward ANNs; see [Haykin 1998; Waszczyszyn 1999; Bishop 2006], for example.

4.2. Validation by numerical examples. The chosen domain in the parameter space and grid are again
those specified in Table 1. Therefore the N ×M matrices U containing DIC pseudoexperimental data
preliminarily computed once-and-for-all by FE simulations (Figure 4) have dimensions N = 2086, M =
1089 and N = 2086, M = 3375 for the identification of elastic moduli and of stresses, respectively.

Also the two POD procedures are the same as in Section 3 but now they are intended to compress
the information contained in the snapshots in order to provide amplitudes in a new truncated basis 8 as
input for a suitably trained ANN. The set of snapshots is subdivided into three subsets for various roles
in ANN calibration: 70% for training; 15% for testing; 15% for validation. All pseudoexperimental data
in U are modified by random errors in the range ±5µm.

The number of amplitude components and the number of neurons in the ANN hidden layer (after a
priori choice of an ANN with a single hidden layer architecture) are here established by the following
optimization procedure: the mean error is assessed as a function of the neuron number in the hidden
layer H and in the input layer I. The latter neuron number coincides with the dimensionality M of the
amplitude vector generated by the truncated POD.

Figure 9 shows the influence of H with I = 3 and I = 6 on the ANN devoted to estimation of elastic
parameters. The mean errors in Figure 9 are the averages in percentage of the differences between the
expected exact parameters (called targets) and their values resulting from ANN training and testing. As
a conclusion, the process of generating and checking the computational tool POD-ANN for later routine
estimation of the three elastic parameters, leads to the choice of I = 3 neurons in input layer and H = 6
in hidden layer.

As for the identification of stresses σH, σV and τHV by means of the DIC measurements in phase (b)
of the flat-jack test (Figure 2), the input layer of the second ANN must include three additional neurons
to receive the estimates of elastic parameters based on DIC data from phase (c), besides the neurons that
receive the amplitude M-vector generated by the truncated POD, (23)+(24), of the snapshot u provided
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Figure 10. Performance of POD–ANN procedure for parameter identification based on
pseudoexperimental DIC measurements affected by random noise of ±5.0µm. In the
abscissa, intervals of relative errors; in the ordinate, the percentage of errors found to fall
within each such interval. Estimates of elastic moduli (first three diagrams) and stresses
(remaining diagrams).

by DIC. Now M = 3375, consistently with Table 1, and, hence, matrix U has dimensions N × M =
2086× 3375. The design of the ANN for stresses, through considerations similar to those outlined above
for elastic properties (again with random noise ±5µm) here omitted for brevity, leads to the following
ANN architecture: 7–14–3. The set of 100 samples employed for the final accuracy checks of the
POD–RBF–TRA inverse analysis procedure developed in Section 3, has been used for similar checks on
the alternative procedure POD–ANN described in the present section. Results concerning elastic moduli
and stresses are presented in Figure 10. A comparison of these results with those achieved in Section 3
and illustrated in Figure 8 leads to the conclusion that both procedures POD–RBF–TRA and POD–ANN
associated with flat-jack test with T-geometry and to DIC full-field measurements are adequate to the
identification of orthotropic elasticity parameters and pre-existing plane-stress state. Computer efforts
and estimation accuracy are comparable.

5. Estimation of inelastic parameters

Inelastic parameters, not estimated by flat-jack tests in the state-of-the-art diagnostic methodology, are
the objectives of the operative steps (d) and (e) and of the identification phase (III) in the present method
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(Section 2.2 and Figure 2). A simplification which is adopted herein for inelastic parameter identification
consists of the following two assumptions: (i) elastic isotropy, consistently with the isotropy attributed
to the inelastic model; (ii) a pre-existing plane stress state in which σH is the only nonvanishing stress
component. The elastic modulus E and the stress σH are supposed to have been identified in the previous
phases of the procedure.

The concrete inelastic parameters to identify are internal friction angle β, tensile strength ft and
fracture energy G f ; the dilatancy ψ = 40◦ is regarded as assumed a priori.

The experimental data supposed to be provided by a DIC photo, now over the smaller area (ROI)
shown in Figure 2d-e, consist of N = 210× 2= 420 displacement components on the dam surface. The
reduction of the ROI implies a higher resolution in measuring the displacements due to inelastic strains
and quasi-brittle fracture which occur when pressure is increased beyond the elastic threshold. Here it
is assumed that the flat-jack pressure is increased up to the value of 10 MPa and that a sequence of 6
photos is taken at pressure levels p = 5, . . . , 10 MPa (with increments of 1 MPa).

The inverse problem, (12), is now reformulated so that the displacements monitored at distinct load
levels be all involved in the definition of the residual R and, hence, of the discrepancy function to
minimize. To this purpose vector u becomes a vector consisting of 6 subvectors, each one representing
the displacements of the ROI grid-nodes at one of the considered pressure levels. Therefore, henceforth
in this section, the term snapshot will denote a vector u with 6N = 2520 components. It is worth
noting that the response of the system, now nonlinear under the applied pressure, is influenced by the
effects (mainly the self-stresses) generated during the slot cutting, i.e during the operative step (b) of the
experimental procedure (see Section 2.2). Such effects are accounted for in the FE simulations of the
whole experimental procedure.

The FE model is substantially the same as the one employed for the preceding simulations, Figure 4a
and Figure 4b; only a local mesh refinement is carried out over a volume in the vicinity of the free surface
where the ROI is located, in order to accurately compute displacements at the ROI grid-nodes.

The expert-preselected domain for the three parameters sought is defined as follows:

1≤ ft ≤ 6 MPa, 50≤ G f ≤ 300 Nm−1, 40◦ ≤ β ≤ 80◦. (26)

In view of the novelty of flat-jack diagnostic tests and of inverse analyses based on them beyond the
elastic range, the identifiability of the three parameters β, ft and G f has been investigated by various
numerical exercises, some of which are outlined in what follows.

(A) Using the trust region algorithm (TRA) outlined in Section 3 (but here without POD preliminar-
ies), parameter identifications are carried out using the following reference values of the constitutive
parameters and the stress σH:

elastic parameters and stress: EH = 15GPa ν = 0.2 σH =−3 MPa

inelastic parameters: ft = 3 MPa β = 68◦ G f = 180 N/m

The input consists of all 2520 pseudoexperimental DIC data generated by a simulation with the FE model
of Figure 4, with the material model of Section 2; first inverse analysis is performed and illustrated in
Figure 11a, starting from input data perturbed by a random noise governed by uniform probability density
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Figure 11. Convergence of TRA applied to inelastic parameter identification with input
perturbed by random noise of (a) ±0.25µm and (b) ±0.5µm.

function over the interval ±0.25µm. With the same initialization and similar input perturbation amplified
to ±0.5µm the TRA consequence is shown in Figure 11b.

This computational exercise (and others not considered here) shows stability of the estimation proce-
dure with respect to (expected) experimental inaccuracies.

(B) In order to endorse the identification of inelastic parameters with the advantages of POD exhibited
by the methodology presented in the preceding sections, the extended POD–ANN procedure (Section 4)
is presented here below by means of a numerical exercise.

Clearly, in the present context, the ANN to design must be fed not only with the amplitude ā (in the
truncated basis 8; see (6)) of the new experimental data vector u, but also with the results of the preceding
identifications of the elastic modulus E (isotropic case) and of the pre-existing stress σH. Therefore a five-
dimensional parameter space has to be considered; by choosing in such space the preselected domain and
grid specified in Table 2, the number of grid nodes and the of corresponding snapshots (to be computed
by FE test simulations once-and-for-all) reach now 5346.

Only M = 6 eigenvalues of the matrix D = U T U of order M = 5346 are preserved in the POD
compression (i.e., after POD truncation). Therefore, each snapshot vector u containing N = 2520 com-
ponents is replaced by its amplitude ā of 6 components only; the ANN input layer consists of 6+ 2= 8
neurons the additional two being grid values of E and σH.

The 5346 available patterns (node parameters p emerging from Table 2 and compressed amplitudes ā
of the corresponding snapshot u) have been employed to train (using 3742 randomly selected patterns),
test (using 802 patterns) and validate (using 802 patterns) an ANN of the kind specified in Section 4,

E/GPa σH/MPa ft/MPa G f /(N/m) β/ ◦

min 10 −6 1 50 40
step 5 2 1 25 5
max 20 −2 6 300 80

Table 2. Grid in parameter space for phase (III) of the identification procedure.



DIAGNOSIS OF CONCRETE DAMS BY FLAT-JACK TESTS AND INVERSE ANALYSES 199

0

0,5

1

1,5

2

2,5

3

3,5

6 9 12 15 18 21 24

training set

testing set

training set

testing set

noise 0.25µm

noise 0.50µm

Figure 12. Influence of H , the number of neurons in the hidden layer, on the POD-ANN
procedure for estimating the inelastic parameters for I = 8 input neurons.

by the same procedure outlined there. The optimal architecture turned out to consist of a single hidden
layer with 12 neurons; see Figure 12.

The following numerical exercise (among others omitted for brevity) carried out by the POD–ANN
procedure above, not only tests it but also provides motivation for further developments in terms of
experimental techniques.

Over the five-dimensional domain specified by Table 2, a set of 100 points is randomly chosen. The
corresponding snapshots are computed by the same FE and constitutive material models described in
Section 2. Inverse analyses are performed, with perturbation noise of ±0.25µm and ±0.50µm, by
POD–ANN calibrated in what precedes. The resulting estimates of inelastic parameters are compared to
their “exact values” employed as input for the direct analyses which led to the snapshots. The differences
are shown in Figure 13, in a fashion similar to that of Figures 8 and 10 for comparisons.

Clearly, the scatter of the estimation error for the fracture energy G f is rather large. Such undesirable
circumstance can be explained as follows: when preexisting horizontal compression σH or tensile strength
ft are rather large within the selected domain, with the assumed jack pressure the fracturing process is
very limited and, therefore, fracture energy has small influence on the DIC measurable displacements;
hence, larger becomes the sensitivity of its estimate to perturbations (including experimental errors and
round-off errors in the numerical identification procedure).
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Possible remedies, consistent with desirable progress in dam monitoring practice, are the following
provisions: (i) an assessment of the crack opening displacement near the slot tip is extracted from the
DIC measurements and employed to control the pressure growth in the flat-jack; the test is performed
when the assessed displacement exceeds a pre-established threshold; (ii) two additional vertical slots are
cut as shown in Figure 2f in order to practically eliminate the horizontal compressive stress.

Provision (i) would imply that the jack pressure is no longer selected a priori, once and for all, but
becomes variable and represents an additional input into the ANN. The geometry change (ii) obviously
makes the test somewhat more costly and more destructive. Both of these prospects could be worth of
further investigations.

6. Closing remarks

The procedure resulting from this study on diagnostic analysis of concrete dams based on flat-jack tests,
exhibits the following main advantages with respect to the present practice and also with respect to recent
results achieved on the same subject (see e.g., [Fedele and Maier 2007]): (a) less damaging slots, due to
the T-shaped geometry adopted here; (b) more experimental data which can be economically acquired
by digital image correlation (DIC) and which regularize the inverse problem to solve; (c) assessment of
inelastic properties of concrete, besides the elastic ones and the stress state considered so far; (d) compu-
tational efforts concentrated in a preparatory stage of multiple test simulations (say by a finite element
commercial code) and much alleviated in applications, which can now be performed routinely in situ,
either by soft computing, specifically by means of artificial neural networks (ANN), or by a popular
mathematical programming procedure (TRA).

Besides obvious improvements of FE modeling and of constitutive models, meaningful further devel-
opments (which are partly in progress and partly desirable in the near future) can be listed as follows:
(i) experimental validation in real-life engineering circumstances, particularly, as for the operative aspects
of DIC measurements, on a concrete dam surface, after selection of suitable instruments and supports;
(ii) improved jacks, with suitable textile instead of steel sheet in order to reduce friction and weld effects,
and with larger radius complying with possible large size of aggregate in dam concrete; (iii) extension of
the present approach and methodology to inhomogeneous periodic materials such as masonry, on which
traditional flat-jack tests are frequently adopted to structural diagnosis purposes; (iv) transition from the
present deterministic batch estimation methodology to the stochastic one (methodologically like, e.g., in
[Fedele and Maier 2007] for a first step in this direction), with elaboration of both experimental data and
their random errors in order to reach estimates accompanied by their covariance matrices.

An inverse analysis performable in situ with economy and brevity by exploiting preliminary computa-
tional results (and their POD approximation) achieved in a computing center, as proposed in this paper,
turns out to be promising for structural diagnosis and for mechanical characterization, in dam engineering
as well as in other technologies.
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