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PATH-INDEPENDENT H-INTEGRAL FOR INTERFACE CORNERS UNDER
THERMAL LOADINGS

CHYANBIN HWU, TAI-LIANG KUO AND CHUN-CHIH HUANG

It is well known that the path-independent H-integral is an appropriate tool for calculating the mixed
mode stress intensity factors for the interface corners between dissimilar elastic materials. To extend the
applicability of the H-integral from the mechanical loading condition to the thermal loading condition,
a modified H-integral is proposed in this paper. This modified H-integral possesses an extra domain
integral which needs the input of temperature field. Moreover, this domain integral contains singular
functions that come from the strain components of the auxiliary system, and a special treatment should
be made for the accurate computation of stress intensity factors. The near-tip solutions and auxiliary
solutions of displacements, stresses, and temperature required in the calculation of H-integral are all pro-
vided in this paper. The validity and versatility of the proposed approach are then shown by carrying out
several numerical examples such as cracks under mixed-mode thermal loadings, interface cracks/corners
under uniform heat flow or uniform temperature change, and an electronic package, in which the chip
has a heat generation rate, placed at a constant temperature ambiance.

1. Introduction

Many engineering objects, for example electronic packages, engines of power vehicles, solar panels,
and so on, are operated in thermal environments. Temperature changes, heat flux on the object sur-
face, and heat generation in the interior can deform the object and induce stress when restrictions on
deformation are imposed, such as a clamped boundary condition or a perfect-bonded condition along an
interface between dissimilar materials. Interface corners commonly appear in these engineering objects
and failures initiate from these critical regions due to discontinuities of geometry and material properties.
Hence, methods of fracture analysis for estimating the potential of failure and the mode of fracture
of interface corners in elastic materials subjected to thermal loading are of great importance. Orders
of stress singularity and stress intensity factors are two commonly used parameters when we perform
fracture analyses within the category of linear elastic fracture mechanics.

This paper provides an accurate, efficient, and systematic solution technique to calculate these two
parameters for interface corners between dissimilar elastic materials subjected to thermal loading.

Studies of fracture analysis of interface cracks subjected to thermal loadings include [Erdogan 1965;
Brown and Erdogan 1968; Hwu 1990; 1992; Ikeda and Sun 2001; Banks-Sills and Dolev 2004; Nagai
et al. 2007]. Relatively few studies have dealt with interface corners; they include [Munz and Yang
1992; 1993; Banks-Sills and Ishbir 2004; Hwu and Lee 2004; Nomura et al. 2009]. To understand the
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mechanical behavior of anisotropic elastic materials under thermal environments, Stroh formalism [Stroh
1958; Ting 1996; Hwu 2010] for two-dimensional linear anisotropic thermoelasticity has been employed
in many works [Clements 1973; Hwu 1990]. By this formalism, analytical closed-form solutions for the
orders of heat flux/stress singularity and near-tip solutions of multimaterial anisotropic wedges under
thermal loadings have been obtained in [Hwu and Lee 2004]. To understand the fracture behavior of
interface corners, a unified definition of stress intensity factors for connecting cracks, corners, interface
cracks, and interface corners was proposed in [Hwu and Kuo 2007]. In that work, in order to avoid the
oscillatory singular problems of interface corners a path-independent H-integral [Bueckner 1973; Stern
1976] was suggested to calculate the stress intensity factors. Based on these works, in this paper the
H-integral is further modified to be suitable for the thermal loading condition.

The modified H-integral contains an additional domain integral that is not included in the H-integral
for pure mechanical loading. The integrand in this domain integral contains singular functions that come
from the strain components in the auxiliary system. Considerable numerical error will be induced if we
perform this domain integral via normal numerical methods, for example, Simpson’s rule and Gaussian
quadrature. To deal with this problem, the domain integral is separated into two parts. One is the
near-tip part, to be integrated analytically, and the other is the adjacent part, to be calculated numerically.
A similar approach has been proposed by [Banks-Sills and Ishbir 2004; Nomura et al. 2009].

Several numerical examples are analyzed for the purpose of verification: a center crack under mixed-
mode thermal loading, a center interface crack under uniform heat flow, edge interface cracks under
uniform temperature change, and interface corners under uniform temperature change. In addition, an
example about electronic packages is analyzed to show the feasibility and practicability of the modified
H-integral.

2. Thermoelastic analysis of interface corners

In a fixed rectangular coordinate system xi , i = 1, 2, 3, let ui , σi j , εi j , T , and hi be, respectively,
the displacement, stress, strain, temperature, and heat flux. The heat conduction, energy equation,
strain-displacement relation, constitutive law, and equilibrium equations for the uncoupled steady state
thermoelastic problems can be written as [Nowacki 1962]

hi =−ki j T, j , hi,i = 0, εi j =
1
2 (ui, j +u j,i ), σi j =Ci jksεks−βi j T, σi j, j = 0, i, j, k, s = 1, 2, 3, (1)

where repeated indices imply summation, a comma stands for differentiation, and Ci jks , ki j , and βi j are,
respectively, the elastic constants, heat conduction coefficients, and thermal moduli. Ci jks are assumed
to be fully symmetric, that is, Ci jks = C j iks = Ci jsk = Cksi j , and are required to be positive definite due
to the positiveness of the strain energy. βi j and ki j are also assumed to be symmetric, that is, βi j = β j i

and ki j = k j i .
Consider an interface corner between two dissimilar anisotropic elastic materials (Figure 1) in which

a local polar coordinate system (r, θ) is specified at the corner tip. Assume a perfect bond along the
interface. The displacement, traction, temperature, and heat flux continuity across the interface θ = 0
can be written as [Hwu and Lee 2004]

u1(0)= u2(0), φ1(0)= φ2(0), T1(0)= T2(0), h∗1(0)= h∗2(0), (2a)
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Figure 1. A closed contour 0 and its domain V for the H-integral of an interface corner.

where u and φ are, respectively, the displacement vector and stress function vector; h∗ is the heat flux
in the direction normal to the interface; the subscripts 1 and 2 stand for the values related to materials
1 and 2; and the argument 0 denotes the value on the interface. The corner flanks are both assumed to
be traction-free which can be expressed by the stress function as

φ1(θ0)= φ2(θ2)= 0. (2b)

Four different thermal conditions on the corner flanks are considered in this paper:

isothermal-isothermal: T1,r (θ0)= T2,r (θ2)= 0,

insulated-insulated: h∗1(θ0)= h∗2(θ2)= 0,

insulated-isothermal: h∗1(θ0)= T2,r (θ2)= 0,

isothermal-insulated: T1,r (θ0)= h∗2(θ2)= 0.

(2c)

Note that the components of stress function vector, φi , i = 1, 2, 3, are related to the stresses σi j and
the surface traction ti by

σi1 =−φi,2, σi2 = φi,1, ti = σi j n j =
dφi

ds
, (3)

where ni is the normal of the surface and s is the tangential.

3. Near-tip solutions

The near-tip solutions satisfying all the basic equations (1) and boundary conditions (2) were obtained
in our previous study [Hwu and Lee 2004] as

v(r, θ)=−δ(1− δ)r−1−δ0(θ)v0, w(r, θ)= r1−δ
{−δ(1− δ)F(θ)v0+ E(θ)w0}, (4a)
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where

w(r, θ)=
{

u(r, θ)
φ(r, θ)

}
, v(r, θ)=

{
T,r (r, θ)
h∗(r, θ)

}
, w0 =

{
u0

φ0

}
, v0 =

{
T0,r

h∗0

}
. (4b)

In (4), δ is the singular order and 0(θ), F(θ), and E(θ) are the matrices related to the material properties
and corner angles and have different expressions for materials 1 and 2 (given in the Appendix). The
eigenvectors associated with the singular order δ are w0 and v0, and can be determined by

K (3)
e u0 = 0, φ0 = 0, v0 = 0, (5a)

where K (3)
e is a 3× 3 submatrix of Ke defined by

Ke =

[
K (1)

e K (2)
e

K (3)
e K (4)

e

]
, Ke = N̂1−δ

2 (θ2, θ1)N̂1−δ
1 (θ1, θ0), (5b)

and N̂ is the key matrix introduced in [Hwu et al. 2003]. In (4) and hereafter, the subscript k denoting
the values related to the k-th material is dropped to lighten the notation.

In (5a), the equalities K (3)
e u0 = 0 and φ0 = 0 come from the traction-free boundary condition set in

(2b), and v0 = 0 comes from the requirement that the temperature is not allowed to be singular near the
corner tip. From (4a) we see that if v0 6= 0, both temperature and heat flux will be singular if the stresses
are singular. If the stresses are singular and the strain energy cannot be unbounded, only the singular
orders located in 0< Re(δ) < 1 are considered in this paper.

With v0 = 0, the near-tip solutions (4a) become

v(r, θ)= 0, w(r, θ)= r1−δE(θ)w0, (6)

which are the solutions without considering thermal effects. Since the singular order δ may be distinct
or repeated, real or complex, combination of all the possible solutions associated with the most critical
singular order whose real part δR is maximal leads, as in [Hwu and Kuo 2007; Hwu and Ikeda 2008],
from (6) to

T (r, θ)= 0, hi (r, θ)= 0,

u(r, θ)=
1
√

2π
r1−δR V (θ) <<(1− δR + iεα)−1(r/ l)iεα >> 3

−1k,

φ(r, θ)=
1
√

2π
r1−δR3(θ) <<(1− δR + iεα)−1(r/ l)iεα >> 3

−1k.

(7)

In (7) the angular brackets << >> stand for a diagonal matrix in which each component is varied according to
the subscript α, for example, << zα>> = diag[z1, z2, z3]; δR and εα are, respectively, the real and imaginary
parts of the most critical singular order δc determined by (5a) with 0< Re(δ) < 1; l is a length parameter
which may be chosen arbitrarily as long as it is held fixed when specimens of a given material pair are
compared; V (θ) and 3(θ) are eigenfunction matrices related to E(θ)w0; 3=3(0), detailed expressions
for which can be found in [Hwu and Kuo 2007; Kuo and Hwu 2010]; and k is a vector containing different
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modes of stress intensity factors and is defined by

k =


KII

KI

KIII

= lim
r→0
θ=0

√
2πr δR3 <<(r/ l)−iεα

>> 3
−1


σrθ

σθθ

σ3θ

 . (8)

4. Path-independent H-integral for thermoelastic problems

According to the definition of stress intensity factors (8), to calculate their values we need to know
the stresses near the tips of interface corners. However, due to the singular and possibly oscillatory
behaviors of the near-tip stresses, it is not easy to get convergent values for the stress intensity factors
directly from the definition (8). To overcome this problem, several path-independent integrals have been
proposed for crack problems such as the J-integral [Rice 1968], the L-integral [Choi and Earmme 1992],
the M-integral [Im and Kim 2000], and the H-integral [Bueckner 1973; Stern 1976; Sinclair et al. 1984;
Chen 1985]. For corner problems that are usually in the status of mixed-mode intensity, the H-integral
was suggested by [Hwu and Kuo 2007] for two-dimensional interface corners, and modified by [Kuo
and Hwu 2010] for three-dimensional interface corners, which are valid for pure mechanical loading
conditions. For interface corners under thermal loadings, the H-integral was modified by [Banks-Sills
and Ishbir 2004; Nomura et al. 2009]. However, some important details that should be clarified were
not interpreted in their works, such as the near-tip temperature field and the reason why the thermal
effect disappears in near-tip solutions of displacements and stresses. Their H-integral cannot calculate
the mixed-mode stress intensity factors via one expression. To have a complete picture of the H-integral
for thermoelastic problems, in this section we first prove the path-independence property for the proposed
modified H-integral, then provide a special treatment for the extra domain integral added in the modified
H-integral.

4.1. Path-independence of the modified H-integral. If an elastic body is subjected to two different
thermal loading systems (indicated by a hat or its absence), the constitutive laws shown in (1) give∫

V
σ̂i jεi j dV =

∫
V
(Ci jks ε̂ksεi j −βi j T̂ εi j )dV, (9a)∫

V
σi j ε̂i j dV =

∫
V
(Ci jksεks ε̂i j −βi j T ε̂i j )dV . (9b)

Subtracting (9a) from (9b) and using the symmetry property of elastic constants, we get a conservative
integral for thermoelastic problems,∫

V
(σ̂i jεi j − σi j ε̂i j )dV +

∫
V
βi j (T̂ εi j − T ε̂i j )dV = 0. (10a)

If one prefers the use of stresses instead of strains, (10a) can be rewritten as∫
V
(σ̂i jεi j − σi j ε̂i j )dV +

∫
V
αi j (T̂σi j − T σ̂i j )dV = 0, (10b)

where αi j are the thermal expansion coefficients which are related to the thermal moduli βi j by

βi j = Ci jksαks . (11)
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By using the strain-displacement relation (1)3, the symmetric property of stresses, Cauchy’s formula
ti = σi j n j , and Gauss’s divergence theorem

∫
V (. . . ), j dV =

∫
0
(. . . )n j d0,the first domain integral in

(10a) can be further reduced to a path integral, and consequently the following relation can be obtained∫
0

(t̂i ui − ti ûi )d0+
∫

V
βi j (T̂ εi j − T ε̂i j )dV = 0. (12)

In (12), 0 can be any positively oriented closed contour in a simply connected region. If 0 is selected
to be −0ρ +01+0R +02 and V (= VR − Vρ) is the domain enclosed by 0 (see Figure 1), due to the
traction-free condition on the corner flanks, that is, ti = t̂i = 0 along 01 and 02, (12) now leads to∫

0ρ

(t̂i ui − ti ûi )d0+
∫

Vρ
βi j (T̂ εi j − T ε̂i j )dV =

∫
0R

(t̂i ui − ti ûi )d0+
∫

VR

βi j (T̂ εi j − T ε̂i j )dV, (13)

which means that the following modified H-integral is path-independent:

H =
∫
0R

(uT t̂ − ûT t)d0+
∫

VR

βi j (T̂ εi j − T ε̂i j )dV . (14)

The superscript T denotes a transpose; 0R is a counterclockwise integral path with arbitrary shape which
emanates from the lower corner flank (θ = θ0) and terminates on the upper flank (θ = θ2); u and t are the
displacement and traction vectors of the actual system, which can be obtained through any method, for
example, finite element analyses, boundary element analyses, or even experimental measurement, while
û and t̂ are those of the auxiliary system with singular order 2− δ.

In order to use the path-independence property of the modified H-integral to calculate the stress inten-
sity factors, we can first select 0R to be a circular path which passes the region dominated by the singular
field. Along the circular path, we have

t = φ,θ/r and d0 = r dθ;

and hence (14) can be rewritten as

H =
∫ θ2

θ0

(uT φ̂,θ − ûTφ,θ )dθ +
∫

V
βi j (T̂ εi j − T ε̂i j )dV, (15)

in which u, φ, εi j , and T are the near-tip solutions given in (7), and û, φ̂, ε̂i j , and T̂ are the auxiliary
solutions, which can be obtained by

û(r, θ)= r δR−1V̂ (θ) <<r−iεα
>> ĉ, φ̂(r, θ)= r δR−13̂(θ) <<r−iεα

>> ĉ, T̂ (r, θ)= 0. (16)

Since the temperature fields in both the near-tip and auxiliary solutions are zero, the H-integral passing
through the singular field will be exactly the same as that for the pure mechanical loading problems.
Since the relation between the stress intensity factors k and the H-integral is obtained from the results
of the H-integral passing through the singular field, it can now be written by referring to the relation
obtained for the pure mechanical loading problem [Hwu and Kuo 2007], that is,

k =
√

2π3 <<(1− δR + iεα)l iεα
>> H∗−1h, (17a)
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where

H∗ =
∫ θ2

θ0

[3̂′T (θ)V (θ)− V̂ T (θ)3′(θ)]dθ, h =


H1

H2

H3

 . (17b)

In (17b), the prime ′ denotes differentiation with respect to θ ; Hi , i = 1, 2, 3, are the values of H
calculated from (14) using the auxiliary solutions given in (16) with ĉi = 1 and ĉ j = 0, i 6= j . Since
the path-independence property has been proved through (13), the integral path calculating Hi can be
chosen arbitrarily and u, t , and T of the actual system can be provided through any method, such as
finite element analysis.

4.2. Special treatment of the extra domain integral. The difference between the modified H-integral
(14) and the H-integral for the pure mechanical loading problem is the additional domain integral in the
second term of (14). By selecting the auxiliary temperature field T̂ = 0, the domain integral becomes

−

∫
VR

Tβi j ε̂i j dV . (18)

From the auxiliary solutions given in (16), we see that the auxiliary strain ε̂i j has a strong singularity as
r δ−2, where 0< Re(δ) < 1. This term will cause tremendous numerical error and hence should be treated
with special attention. Banks-Sills and Ishbir [2004] proposed that the domain VR can be separated into
two parts: one is close to the corner tip, Vρ in Figure 1, which can be integrated analytically, and the
other adjacent part, V = VR − Vρ in Figure 1, can be calculated numerically. However, in their study no
analytical solution has been provided for the near-tip solution of temperature field, and hence no further
analytical solution was provided for the integration. In [Nomura et al. 2009], this domain integral was
calculated analytically for a circular integral path in which the circular sector domain is divided into
several small elements whose temperature is assumed to be constant in each element. In the present
study, the analytical integration is further simplified by using the near-tip solution of the temperature
field.

Based upon the analytical solutions given in (4a) we see that the near-tip solution of the temperature
field can be obtained by integrating (4a)1 with respect to r , which will lead to

T (r, θ)= (1− δh)r−δhγ (θ)c1+ c2, (19)

where γ (θ) is a function related to 0(θ) of (4a); c1 and c2 are the coefficients to be determined via the
actual temperature field which can come from analytical solution or numerical analysis. Here, δh is the
singular order of heat flux, which is located in the region of −1 < Re(δh) < 0 and will not induce a
singularity in temperature or stresses.

According to the thermal conditions on the corner flanks (2c), the singular orders of heat flux have
been obtained from the following relations [Hwu and Lee 2004]:

isothermal-isothermal: K (2)
T = 0, insulated-insulated: K (3)

T = 0,

insulated-isothermal: K (1)
T = 0, isothermal-insulated: K (4)

T = 0,
(20)

where K (i)
T , i = 1, 2, 3, 4, are the components of KT , which is a 2×2 matrix related to the heat conduction

coefficients and corner angles.
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To evaluate (18) analytically for the part of Vρ , the auxiliary strain ε̂i j obtained from (16) can be
expressed as

ε̂11 = i T
1 û,1, ε̂22 = i T

2 û,2, ε̂33 = 0,

ε̂12 =
1
2 (i

T
2 û,1+ i T

1 û,2), ε̂23 =
1
2 i T

3 û,2, ε̂13 =
1
2 i T

3 û,1,
(21a)

where
û,1 = r δR−2(cos θe1− sin θe2), û,2 = r δR−2(sin θe1+ cos θe2),

i T
1 =

[
1 0 0

]
, i T

2 =
[
0 1 0

]
, i T

3 =
[
0 0 1

]
,

(21b)

and
e1 = V̂ (θ) <<(δR − 1− iεα)r−iεα

>> ĉ, e2 = V̂ ′(θ) <<r−iεα
>> ĉ. (21c)

Substituting (19) and (21) into (18), and letting dV = r drdθ for Vρ , we get∫
VR

Tβi j ε̂i j dV = Iρ +
∫

VR−Vρ
Tβi j ε̂i j dV, (22a)

where Iρ is the integral that has been integrated analytically with respect to r in the near-tip domain Vρ
whose result is

Iρ = ρδR

∫ θ2

θ0

e0(ρ, θ)dθ, (22b)

in which

e0(ρ, θ)= β
∗

1
T
(θ)V̂ (θ) <<(δR − 1− iεα)gα(ρ, θ)>> ĉ+β∗2

T
(θ)V̂ ′(θ) << gα(ρ, θ)>> ĉ, (22c)

and

gα(ρ, θ)=
{

c1(1− δh)ρ
−δh

δR − δh − iεα
γ (θ)+

c2

δR − iεα

}
ρ−iεα , (22d)

β∗1 (θ)= cos θ β1+ sin θ β2, β∗2 (θ)=− sin θ β1+ cos θ β2, β1 =


β11

β12

β13

, β2 =


β21

β22

β23

. (22e)

In (22a)–(22c), ρ is the radius of a small circle ahead of the corner tip. Since 0 < δR < 1 and
−1< Re(δh) < 0, from the results of (22a)–(22e) we see that the singular problem of (18) has been
solved through the analytical integration Iρ . To have a proper choice of ρ, the convergent test about ρ
should be done in a numerical calculation, which will be illustrated by an example shown in the next
section. Since the singular problem in the near-tip domain occurs from approaching zero distance, that
is, r→ 0, whether to obtain the analytical integration with respect to θ is not the main concern of our
study. Therefore, due to the complexity of γ (θ) and V̂ (θ) in e0(ρ, θ), the analytical integration of Iρ
shown in (22b) is only for the variable r not including θ .

5. Numerical examples

To provide a stable and efficient computing approach for the general mixed-mode stress intensity factors
under thermal loadings, the path-independent H-integral proposed in the literature [Hwu and Kuo 2007]
has been modified by adding an extra domain integral as shown in (14). This integral is applicable to
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cracks, interface cracks, corners, and interface corners, and the materials containing the cracks/corners
can be any kinds of anisotropic materials, including degenerate materials such as isotropic materials. The
stress intensity factors calculated through the H-integral include the pure mode and mixed mode, and also
the factors associated with lower singular orders [Kuo and Hwu 2010]. The main feature of the present
approach is that one unified H-integral can deal with several different kinds of thermal problems which
are generally discussed separately. Thus, to provide an enhanced comparison, several different kinds of
materials and cracks/corners considered in the literature are shown in the following examples. In order to
show that the modified H-integral is path-independent, the data shown below will be presented by stress
intensity factors with different radius of integral path.

All the examples presented in this section consider the state of plane strain. The physical quantities of
the actual system, u, t , and T , needed for the calculation of the H-integral in (14) are obtained from the
commercial finite element software ANSYS. A two-dimensional 4-node thermal element PLANE55 is
adopted to perform the thermal analyses, and then the temperature results are read into a two-dimensional
4-node structural solid element PLANE42 and treated as the body force to proceed with the stress anal-
yses. Since the numerical output will depend on element meshes, the convergent test needs to be done
before performing all the following examples. In our numerical implementation, the number of elements
for the most refined mesh is 29574 for modeling the electronic package, and 7484 for modeling the
interface crack. For convenience, the H-integral path doesn’t need to pass through nodal points, while
the integration points can be arbitrary points whose numerical data are produced by extrapolating the
results of their surrounding nodal points [Lancaster and Salkauskas 1981; Nomura et al. 2009] and
then integrated by Gaussian quadrature. Note that although the path-independence property of the H-
integral has been proved theoretically in Section 4, when using the H-integral to calculate the stress
intensity factors we still have to avoid taking the numerical results overly close to the corner tip due to
the incorrect stress information in the neighborhood of the corner tip provided by finite element analysis.
Also note that although the solution techniques proposed in this paper are applicable to the most general
two-dimensional problems, such as the generalized plane strain and generalized plane stress, due to the
limitation of two-dimensional elements provided by the finite element software ANSYS only the plane
strain condition is considered in our examples.

5.1. Comparison with existing solutions. In order to prove the path-independence property numerically,
to verify the correctness of the stress intensity factors calculated by the proposed H-integral and to show
the versatility of the present unified approach, six different kinds of cracks/corners under thermal loadings
are implemented and compared with the existing solutions presented in the literature. They are:

Case 1: A center crack under mode I thermal loading (Figure 2, left).

Case 2: A center crack under mixed-mode thermal loading (Figure 2, right).

Case 3: A center interface crack under uniform heat flow (Figure 3, left).

Case 4: Edge interface cracks under uniform temperature change (Figure 3, right).

Case 5: Edge interface corners under uniform temperature change (Figure 4, left).

Case 6: An interface corner under uniform temperature change (Figure 4, right).

Point A in Figures 2–4 stands for the corner or crack tip we are concerned with in these problems.
The geometry, loading, and material properties of these problems are collected in Table 1. The results of
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Case 1 (Figure 2, left) Center crack under mode I thermal loading, isotropic material
a = 4 mm w = 10a Tin = 0 ◦C Tout = 100 ◦C
E = 1 MPa ν = 0.3 α = 10−4 ◦C−1 k = 1 W/m ◦C

Case 2 (Figure 2, right) Center crack under mixed-modes thermal loading, orthotropic material (γ = 0◦),
anisotropic material (γ = 30◦)

a = 1 mm w = 30a q = 103 W/m2

E11 = 144.23 GPa E22 = E33 = 9.65 GPa G12 = 4.14 GPa α11 = 0.88× 10−6 ◦C−1

ν12 = ν13 = 0.301 ν23 = 0.49 G13 = 4.14 GPa α22 = 31× 10−6 ◦C−1

k11 = 4.48 W/m ◦C k22 = k33 = 3.21 W/m◦C G23 = 3.45 GPa α33 = 31× 10−6 ◦C−1

Case 3 (Figure 3, left) Center interface crack under uniform heat flow, isotropic bimaterials
a = 4 mm w = 20a q = 105 W/m2

E1 = 1000 GPa ν1 = 0.3 α1 = 10−6 ◦C−1 k1 = 100 W/m ◦C
E2 = 100 GPa ν2 = 0.3 α2 = 10−7 ◦C−1 k2 = 100 W/m◦C

Case 4 (Figure 3, right) Edge interface crack under uniform temperature change, isotropic bimaterials
a = 1 mm w = 100a Tc = 100 ◦C
E1 = 1000GPa ν1 = 0.3 α1 = 10−6 ◦C−1

E2 = 100GPa ν2 = 0.3 α2 = 10−7 ◦C−1

Case 5 (Figure 4, left) Edge interface corner under uniform temperature change, isotropic bimaterials
w = 1000 mm w1 = 461 mm w2 = 359 mm Tc =−100 ◦C
E1 = 72 GPa ν1 = 0.3 α1 = 18.95× 10−6 ◦C−1

E2 = 280 GPa ν2 = 0.26 α2 = 2.5× 10−6 ◦C−1

Case 6 (Figure 4, right) Interface corner under uniform temperature change, anisotropic bimaterials
a = 1.6 mm, d = 0.1 mm, h = 7.5 mm, w = 3 mm, β = 20◦, Tc =−20 ◦C,

CGSO =

 223 108 98.5 0 84 0
150 102 0 33.3 0

251 0 −6 0
78.8 0 6.6

sym. 68.8 0
82.7

 [GPa], Caragonite =

 87.8 26.3 36.6 0 18.75 0
87 26.3 0 10.35 0

87.8 0 18.75 0
42 0 0.7

sym. 60.27 0
42

 [GPa],

αGSO =

[
4.4 0 0
0 14 0
0 0 6.8

]
[10−6 ◦C−1], αaragonite =

[
22.5 0 0

0 17 0
0 0 22.5

]
[10−6 ◦C−1],

Table 1. Geometries, loading, and material properties of numerical examples.

the order of stress singularity δ, the order of heat flux singularity δh , the stress intensity factors KI and
KII versus the radius of path integral r/a, and the reference solutions are all shown in Table 2.

From this table we see that the results calculated by the present approach are not only path-independent
but also agree well with those presented in the literature for all different cases, for example, Case 1 [Sumi
and Katayama 1980; Maiti 1992; Mukhopadhyay et al. 1999], Case 2 [Hwu 1990], Case 3 [Banks-Sills
and Dolev 2004], Case 4 [Erdogan 1965], and Case 5 [Banks-Sills and Ishbir 2004]. In Case 6, due to
the limitations of two-dimensional elements of ANSYS only the plane strain condition is considered, and
hence in our example the thermal expansion coefficient α13 considered in the reference paper [Nomura
et al. 2009], which may induce deformation in the third direction, is neglected. With this neglect, as
shown in Table 2 our results are slightly different from those presented in [Nomura et al. 2009]. Table 3
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Figure 5. A sample electronic package.

Case
Singular order

r/a
KI (MPa × mm δR ) KII (MPa × mm δR )

δ δh Present Reference Present Reference

1 0.5 −0.5
0.3 0.01722 0.01739[1] 0

00.6 0.01722 0.01695[2] 0
0.8 0.01722 0.01722[3] 0

2 0.5 −0.5

(Orthotropic material)

0.3 0
0

−0.02699
−0.02693[4]0.6 0 −0.02702

0.8 0 −0.02700

(Anisotropic material)

0.3 0.01147
0.01150[4]

−0.03375
−0.03357[4]0.6 0.01148 −0.03375

0.8 0.01148 −0.03376

3∗ 0.5+ 0.076i −0.5
0.3 −1.611× 105

−1.636× 105 [5]
−8.890× 103

−8.908× 103 [5]0.6 −1.615× 105
−8.850× 103

0.8 −1.615× 105
−8.817× 103

4∗ 0.5+ 0.076i −0.5
0.3 −1.559

−1.526[6]
10.65

10.07[6]0.6 −1.577 10.69
0.9 −1.537 10.63

5∗∗ 0.111 −1
0.03 1.867× 103

1.848× 103 [7]
−317.6

–0.06 1.869× 103
−317.9

0.09 1.867× 103
−317.5

6∗∗∗ 0.482+ 0.041i –
0.6 3.540

3.278[8]
16.67

22.90[8]
0.8 3.572 16.47

δ: order of stress singularity; δh : order of heat flux singularity; δR : real part of stress singular order;
∗: reference length l is selected to be 2a; ∗∗: normalized factor a is replaced by w = 1000 mm in Figure 4, left;
∗∗∗: reference length l is selected to be 10µm and normalized factor a is replaced by d = 0.1 mm in Figure 4,

right; [1] [Sumi and Katayama 1980]; [2] [Maiti 1992]; [3] [Mukhopadhyay et al. 1999]; [4] [Hwu 1990];
[5] [Banks-Sills and Dolev 2004]; [6] [Erdogan 1965]; [7] [Banks-Sills and Ishbir 2004]; [8] [Nomura et al. 2009].

Table 2. Comparison of stress intensity factors.
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ρ/a
(r/a = 0.3) (r/a = 0.6)

KI(GPa×mm0.5) KII(GPa×mm0.5) KI(GPa×mm0.5) KII(GPa×mm0.5)

0.0001 −161.2 −9.093 −161.4 −8.942
0.001 −161.3 −9.075 −161.5 −8.925
0.005 −161.1 −8.910 −161.5 −8.880
0.01 −161.1 −8.890 −161.5 −8.850
0.05 −161.2 −8.878 −161.5 −8.813
0.1 −161.4 −8.952 −161.6 −8.801
0.2 −161.6 −8.861 −161.8 −8.710
0.3 −161.9 −8.672
0.4 −162.3 −8.236
0.5 −162.5 −7.856
0.6 −162.7 −7.381

Table 3. Effects of radius ρ on the stress intensity factors for Case 3.

shows the effects of the radius ρ of the small circle chosen for the analytical area integral of (22b). From
this table, we see that the effect of ρ is very trifling on the results of the stress intensity factors when
ρ/a ≤ 0.2, and this phenomenon is consistent with the results presented in [Banks-Sills and Ishbir 2004].
Note that the bigger ρ is, the more mesh and computation time we can save, and this vindicates to the
use of analytical integration in (22b).

5.2. Application to electronic packages. A typical example of electronic packages is shown in Figure 5.
This package consists of three different parts: silicon die, epoxy molding compound (EMC), and bis-
maleimide triazine (BT) substrate. Their mechanical properties are shown in Table 4. Due to the dis-
continuity of geometries and/or material properties, stress concentration usually occurs at the corners or
interface corners, such as points A, B, C, D, E, and F shown in Figure 5. To know which corner is the
most critical corner, we first calculate the orders of stress/heat flux singularity. Table 5 shows the results
of singular orders of these corners, in which the values of points A, B, and F are calculated from (5a)

Material E [GPa] ν α [10−6 ◦C−1] k [W/m ◦C]

Silicon die 131 0.3 2.8 300
EMC 16 0.25 8 14
BT substrate 26 0.11 15 0.95

Table 4. Material properties of the sample electronic package.

Singular order
Location

A B C D E F

δ 0.280 0 0.143 0.277 0.253 0
δh −0.979 −1 −1 −0.894 −0.699 −1

Table 5. Orders of stress/heat flux singularity of the sample electronic package.
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Figure 6. Stress intensity factors versus environmental temperature (top) and versus
heat generation rate (bottom).

and (20), for stress and heat flux singularity respectively. For points C, D, and E, whose corner edges
are not traction-free, related formulae can be found in [Hwu and Lee 2004]. From Table 5, we see that
point A is the most critical point.

To study the effects of thermal environment on the stress intensity factors, we now consider two
different thermal conditions: (1) the package is placed within an environmental temperature maintained
at a constant temperature Tc, and the chip (silicon die) has a heat generation rate of 10 W; (2) the package
is placed amid an environment with reference temperature Tref = 25 ◦C before the chip begins to generate
heat, convection with heat transfer coefficient 10 W/m2◦C is imposed on all the outer edges, and the chip
(silicon die) has a heat generation rate Q. It is assumed that this package doesn’t deform at 0 ◦C. By using
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the modified H-integral proposed in this paper, the stress intensity factors associated with the singular
order δ = 0.28 of point A are calculated by varying Tc for the first case and varying Q for the second
case. Figure 6 shows that both of the mode I and mode II stress intensity factors vary linearly with
environmental temperature Tc and heat generation rate Q.

6. Conclusions

In this investigation, the modified H-integral is proposed to calculate the stress intensity factors of in-
terface corners subjected to thermal loadings, and its required near-tip solutions and auxiliary solutions
of displacements, stresses, and temperature are all provided. Through several different material types,
corner types, and thermal loading types used in the numerical examples, the H-integral proves its va-
lidity and versatility in thermal problems. Moreover, the path-independence property of the modified
H-integral in thermal problems has been proved both theoretically and numerically. A special treatment
for the strongly singular function in the domain integral of the modified H-integral saves us a lot of
computational time and also raises the accuracy for the calculation of stress intensity factors.

Appendix: Explicit expressions of the near-tip solutions

Under thermal effects, the field solutions near the tip of multimaterial wedges has been shown in Equation
(53) of [Hwu and Lee 2004]. To explicitly show the r-dependent relation of the near-tip solutions by
using Equation (27) of the same reference, we may let the solutions along the wedge surface θ = θ0 be

v1(θ0)=−δ(1− δ)r−1−δv0, w1(θ0)= r1−δw0. (A-1)

Substituting (A-1) into [Hwu and Lee 2004, (53)], the near-tip solutions can be expressed as those shown
in (4a) and (4b), in which

0(θ)=

{
0∗1(θ) when θ0 ≤ θ ≤ θ1,

0∗2(θ)(KT )1 when θ1 ≤ θ ≤ θ2,

E(θ)=

{
E∗1(θ) when θ0 ≤ θ ≤ θ1,

E∗2(θ)(Ke)1 when θ1 ≤ θ ≤ θ2,

F(θ)=

{
F∗1 (θ) when θ0 ≤ θ ≤ θ1,

F∗2 (θ)(KT )1+ E∗2(θ)(Kc)1 when θ1 ≤ θ ≤ θ2,

(A-2)

where

0∗k (θ)=2k << τ̂
−δ
β (θ, θk−1)>> k2

−1
k , E∗k (θ)= N̂1−δ

k (θ, θk−1),

F∗k (θ)=
1

δ(1− δ)
{N̂1−δ

k (θ, θk−1)Uk −Uk << τ̂
1−δ
β (θ, θk−1)>> k} << τ̂

1−δ
β (θk−1, 0)>> k2

−1
k , k = 1, 2,

(A-3)
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and

(KT )1 = 0
∗

1(θ1), (Ke)1 = E∗1(θ1), (Kc)1 = F∗1 (θ1),

2k =

[
1 1
−ik0 ik0

]
k
, Uk =

[
ck c̄k

dk d̄k

]
,

N̂1−δ
k (θ, θ ′)=

[
Ak Ak

Bk Bk

][
<< µ̂

1−δ
α (θ, θ ′)>> k 0

0 << µ̂
1−δ
α (θ, θ ′)>> k

][
BT

k AT
k

BT
k AT

k

]
,

µ̂α(θ, θ
′)= cos(θ − θ ′)+ sin(θ − θ ′)µα(θ ′), µα(θ

′)=
µα cos θ ′− sin θ ′

µα sin θ ′+ cos θ ′
, α = 1, 2, 3,

τ̂β(θ, θ
′)= cos(θ − θ ′)+ sin(θ − θ ′)τβ(θ ′), τβ(θ

′)=
τβ cos θ ′− sin θ ′

τβ sin θ ′+ cos θ ′
, β = 1, 2,

(A-4)

In (A-2)–(A-4), subscript k (taking the values 1, 2) denotes the quantities related to the k-th wedge,
whereas subscript α and β denote the diagonal components of the diagonal matrix. i =

√
−1 is an

imaginary unit; a bar above a letter denotes complex conjugation; k0 is a real constant related to the heat
conduction coefficients ki j by

k0 =

√
k11k22− k2

12; (A-5)

µα and τβ are the elastic eigenvalues and thermal eigenvalues; and A, B and c, d are the elastic eigen-
vector matrices and thermal eigenvectors of the Stroh formalism of anisotropic elasticity; see [Ting 1996;
Hwu 2010].
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