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CONICAL INDENTATION OF THICK ELASTIC SPHERICAL SHELLS

NKEM OGBONNA AND ALAN NEEDLEMAN

Indentation of spherical shells by a rigid conical indenter is analyzed. Because the shape change as-
sociated with overall bending provides a main deviation from the corresponding indentation behavior
of a half-space, finite deformation analyses are carried out. The shell material is characterized by a
hypoelastic relation that reduces to isotropic linear elasticity for small strains and is an elastic relation at
finite strains for fixed principal directions. Axisymmetric deformations are assumed. For indentation of
shells there is a complex interaction between the indentation response and the overall structural response
of the shell. The aim of the analyses is to give insight into the range of indentation depths for which
the indentation response dominates so that an indentation analysis can be used to extract the elastic
properties. Shells having various thicknesses are analyzed. It is found that for spherical shells with
thickness to radius ratios less than or equal to 0.4 and for sufficiently shallow indentation depths, the
scaling of the indentation load with contact area has the same form as that for indentation into a half-
space but with a different scaling constant.

1. Introduction

Indentation is a convenient method for investigating the mechanical properties of solids that are difficult
to characterize by other mechanical testing methods. It is relatively nondestructive and is routinely used
to measure the elastic stiffness and hardness of a wide variety of solids at a variety of scales; see, for
example, [Doerner and Nix 1986; Oliver and Pharr 1992; Oliver and Pharr 2004]. Indentation has also
been explored for determining the yield strength and strain hardening index of thin films [Cheng and
Cheng 1998; Ma et al. 1998].

An indentation test is typically performed on a flat surface of a solid. An indenter of prescribed
geometry is pressed into the solid under prescribed load and the depth of penetration and/or the size of
the contact are measured. For depth-sensing indentation tests, the mechanical properties are determined
directly from load and displacement measurement. Various indenter profiles are used: the most common
ones include a cone (Rockwell test), a sphere (Brinell test), a rectangular pyramid (Vickers test) and a
triangular pyramid (Berkovich test).

Much is known about indentation of solids, particularly elastic and elastic-plastic solids [Johnson
1985; Barber and Ciavarella 2000]. For indentation of a conical indenter into an isotropic linear elastic
solid that can be appropriately idealized as being a half space, there is no characteristic dimension other
than the indentation depth. Hence, from dimensional considerations,

P
Eh2 = K ,
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where P is the indentation force, E is Young’s modulus, h is the indentation depth and K is a constant.
The value of K depends on the shape of the cone cross section, the cone angle and Poisson’s ratio, and
can be determined from the solution of an elasticity problem. With K known, measuring the indentation
force and depth enables E to be directly determined. A recent comprehensive overview of indentation
into a planar linear elastic solid has been given in [Poon et al. 2008]. Much of the interest in indentation
of linear elastic solids has been associated with characterizing the unloading response of elastic-plastic
solids that have been indented [Oliver and Pharr 2004].

Some solids, such as natural and biological materials, may not have flat surfaces available for inden-
tation. For example, the outer surface of the human eye is dome-shaped and, in order to determine intra-
ocular pressure, doctors usually subject it to an indentation test using an instrument called a tonometer.
The growing interest in natural materials, which often involve shell-type structures, as potential renewable
resources for high performance and cost effective structural applications provides another motivation for
examining the indentation behavior of solids with curved surfaces.

There is a literature on the deformation of thin elastic shells subject to point type loads that can give
rise to complex deformation patterns; see for example [Vaziri and Mahadevan 2008]. However, the
focus here is on relatively thick shells for which the deformation pattern remains axisymmetric when
subject to conical indentation. We also neglect any effect of adhesion which can play an important
role in contact of elastic solids as shown in [Johnson et al. 1971]. In this paper, we explore the extent
to which simple scaling relations can be used to extract elastic moduli of isotropic elastic solids from
indentation of spherical shells by a rigid conical indenter. In particular, we consider indentation of a rigid
conical indenter with a circular cross-section into a thick walled isotropic linear elastic spherical shell.
Indentation of a cone into a solid sphere has been considered in [Fu 2007]. A fundamental difference
between indentation of a cone into a half space and its indentation into a spherical shell is that for the
shell geometry there are characteristic lengths other than the indentation depth h. For a spherical shell
with internal radius Ri and external radius Ro,

P
Eh2 = C

(
h
Ri
,

Ri

Ro

)
,

so that extracting the value of Young’s modulus E from a measurement of indentation force and depth is
not necessarily as straightforward as for a half space. Although our interest is in linear elastic material
response, we carry out finite deformation analyses because for shells a main deviation from linearity is
associated with a change in shape due to bending.

2. Problem formulation

The problem we analyze is indentation of a linear elastic spherical shell by a rigid conical indenter
allowing for the possibility of finite shape changes. The finite element implementation is based on
a convected coordinate Lagrangian formulation of the field equations, with the initial unstressed state
taken as reference. All field quantities are taken to be functions of convected coordinates, yi , which
serve as particle labels, and time, t . With attention confined to quasi-static deformations and with body
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forces neglected, the rate form of the principal of virtual work is∫
V
[τ̇ i jδEi j + τ

i j u̇k
,iδuk, j ] dV =

∫
S

Ṫ iδui d S. (2-1)

Here, V and S are the volume and surface, respectively, of the body in the reference configuration
and (˙) = ∂()/∂t at fixed yi . The contravariant components of the Kirchhoff stress, τ i j , are given by
τ i j
= Jσ i j , where J is the ratio of current to reference volume of a material element and σ i j are the

contravariant components of the Cauchy (or true) stress on the deformed convected coordinate net.
The nominal traction components, T i , and the Lagrangian strain components, Ei j , are given by

T i
= (τ i j

+ τ k j ui
,k)ν j , (2-2)

Ei j =
1
2(ui, j + u j,i + uk

,i uk, j ), (2-3)

where u j are the components of the displacement vector on base vectors in the reference configuration,
( ),i denotes covariant differentiation in the reference frame and ν j are the surface normal components
in the reference configuration.

The material is described by a constitutive relation of the form

τ̂ i j
= L i jkl Ėkl, (2-4)

where τ̂ i j is the Jaumann derivative of the Kirchhoff stress and

L i jkl
=

E
1+ ν

[
1
2

(
Gik G jl

+Gil G jk)
+

1
1− 2ν

Gi j Gkl
]
, (2-5)

with Gi j being the contravariant components of the metric tensor in the current configuration. The
relation in (2-4) and (2-5) is a hypoelastic relation but does reduce to isotropic linear elasticity for small
strains and is an elastic relation at finite strains for fixed principal directions.

Figure 1 is a sketch of the indenter and the definition of the angle β. The contact radius a is defined as
the actual contact radius accounting for sink in. The corresponding indentation depth h is then defined
by

h = a tanβ (2-6)

The spherical shell has internal radius Ri and external radius Ro so that the shell thickness is t = Ro−Ri .
Axisymmetric deformations are assumed. Figure 2 shows the region analyzed and finite element mesh
used for a shell with t/Ro = 0.4.

Figure 1. A sketch of the indenter geometry.
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Figure 2. The finite element mesh for a spherical shell with t/Ro = 0.4. Each quadri-
lateral consists of four “crossed” triangular linear displacement elements. Left: the full
mesh. Right: the fine mesh region.

Perfect sticking is assumed as soon as the shell comes into contact with the indenter, so that the rate
boundary conditions are

u̇1 = 0 u̇2 =−U̇ on Scontact, (2-7)

where Scontact denotes the portion of the shell surface in contact with the indenter and U is the imposed
displacement of the rigid indenter. Note that U is not equal to h as defined here where h is the depth
associated with the contact radius. Initially, Scontact is the single point y1

= 0, y2
= Ro. As additional

points come into contact, Scontact expands.
The symmetry conditions on the y2

−axis are

u̇1 = 0 Ṫ 2
= 0 on y1

= 0. (2-8)

Symmetry is also assumed about the y1
−axis so that

u̇2 = 0 Ṫ 1
= 0 on y2

= 0, (2-9)

and the remaining external surfaces are traction free so that Ṫ 1
= Ṫ 2

= 0.
The finite element discretization of (2-1) is based on linear displacement triangles arranged into

“crossed” triangle quadrilaterals and the deformation history is calculated in an incremental manner.
Calculations are carried out for four values of the thickness to radius ratio, t/Ro, 0.1, 0.2, 0.4 and
0.6. Different finite element meshes are used for each value of t/Ro. For t/Ro = 0.6, a 155× 220
quadrilateral mesh is used with a uniform 100×100 quadrilateral mesh in a region t/Ro = 0.1×1θ = 9◦

near the indenter. Here, R =
√
(y1)2+ (y2)2 and θ = tan−1(y2/y1). This mesh has 34100 quadrilaterals

and 68592 degrees of freedom after static condensation is used to eliminate the central node in each
quadrilateral. The mesh for t/Ro = 0.4, shown in Figure 2, has 140× 220 quadrilaterals, giving 62322



CONICAL INDENTATION OF THICK ELASTIC SPHERICAL SHELLS 447

degrees of freedom after static condensation and the uniform mesh is 80×100 in a t/Ro = 0.1×1θ = 9◦

region near the indenter. The corresponding values for t/Ro = 0.2 are 100× 220, 44642 and an 80× 100
uniform mesh in a t/Ro = 0.1×1θ = 9◦ uniform region and for t/Ro = 0.1, 100× 200, 40602 and an
90× 100 uniform mesh in a t/Ro = 0.15×1θ = 9◦ uniform region.

3. Results

For indentation of a rigid conical indenter into a flat surface we have (see [Sneddon 1948; Johnson 1985])

P
Ea2 =

π

2
1

(1− ν2)
tanβ. (3-1)

Alternatively, expressed in terms of the contact depth h = a tanβ,

P
Eh2 =

π

2
1

(1− ν2)

1
tanβ

=
π

2
1

(1− ν2)
cotβ. (3-2)

The relation (3-2) is sometimes expressed in terms of the displacement of the rigid indenter, here termed
U , for example in [Poon et al. 2008]. For indentation of a rigid cone into a linear elastic half-space
h = (2/π)U ; see [Bower et al. 1993], for example.

With β = 20◦, (3-2) gives P/(Eh2) = 4.74. A finite element calculation using the formulation in
Section 2 but for indentation into a flat surface gave P/(Eh2)= 4.90.

For spherical shells, calculations were carried out for t/Ro = 0.1, 0.2, 0.4, 0.6. In all calculations,
Poisson’s ratio ν, was taken to be 0.3 and, unless otherwise stated, the indenter angle β is fixed at 20◦.
The calculations were carried out for prescribed increasing displacement U .

The relation between h and U for the spherical shells analyzed is shown in Figure 3. For U/Ro

sufficiently small, the half-space relation provides an accurate characterization and for h/Ro = 0.4 and
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Figure 3. Variation of the indentation depth h associated with the current contact radius
a versus the displacement of the rigid indenter U .
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Figure 4. Variation of normalized contact force P/E R2
o (left) and normalized contact

pressure P/Eh2 with the change in shell thickness under the indenter (i.e., at y1
= 0)

for spherical shells with t/Ro = 0.1, 0.2, 0.4, 0.6.

0.6 that relation is approximately satisfied up about U/Ro = 0.02. For U/Ro greater than about 0.02
there are significant deviations with the deviation increasing with decreasing shell thickness.

Curves of contact force normalized by Young’s modulus E and the outer sphere radius Ro, P/E R2
o ,

plotted against 1t/t , are shown in Figure 4. The quantity 1t/t is the change in thickness divided by the
original thickness of the shell at y1

= 0 and is convenient for representing the indentation depth. There
is a clear dependence of the indentation force on the shell thickness, with the thinner shells requiring a
smaller contact force for a given indentation depth. The indentation force at a given value of 1t/t does
not quite scale with t2; for example, at 1t/t = 0.08, the indentation force with t/Ro = 0.6 is 7.8 times
that for t/Ro = 0.2 and 30.4 times that for t/Ro = 0.1.

However, when the contact depth h = a tanβ is used to normalize the indentation force there is a range
where the value of P/Eh2 is nearly the same for all four values of the shell thickness. The oscillations
are a numerical artifact due to the contact radius increasing by an element length when a new node
comes into contact with the indenter whereas the contact force increases smoothly. When only a few
nodes are in contact with the indenter, the contact area is too small for an accurate value of P/Eh2 to be
obtained. A finer finite element mesh would permit accurate values of P/Eh2 to be obtained for smaller
indentation depths 1t/t . At larger values of indentation depth, a reasonably accurate estimate of P/Eh2

can be obtained. For example, 1t/t = 0.035, the value of P/Eh2 lies between 5.9 and 6.1 for all four
values of t/Ro. The mean value of P/Eh2 for t/Ro = 0.1 and 0.2 is 5.9. The mean values of P/Eh2

are a bit higher and, furthermore, clearly increase with increasing indentation depth for 1t/t greater
than about 0.05. The value of normalized contact force, P/Eh2, for the spherical shells is significantly
greater than for indentation into a flat surface for the same material and the same indenter angle, ≈ 6
versus the numerically obtained value of 4.9 for indentation of a flat surface.

The dependence of the indentation pressure on the angle β is shown in Figure 5 for a spherical shell
having t/Ro = 0.4. The evolution of the normalized contact force P/Eh2 is plotted against the contact
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Figure 5. Variation of normalized contact pressure, P/Eh2, with indenter angle β for
spherical shells with t/Ro = 0.4.

depth as measured by 1t/t . For β = 30◦, the mean value of P/Eh2 is 3.8, for β = 20◦ it is 5.9
and for β = 10◦ it is about 12. For the most flat cone geometry, β = 10◦, the mean value of P/Eh2

increases with 1t/t over the entire range for which a reliable estimate of P/Eh2 can be obtained. This
is not surprising since in the limit of a flat surface pressing against a spherical shell, the deformation is
dominated by overall shell bending. Nevertheless, for all three values of β, the dependence of P/Eh2

on tanβ follows the scaling in (3-2). The ratio cot 30◦/ cot 20◦ equals 0.631, while the corresponding
ratio of normalized contact force in Figure 5 is 0.644. Even for β = 10◦ we have cot 10◦/ cot 20◦ = 2.06,
while 12/5.9= 2.03.

Distributions of mean normal stress τ k
k /3, where τ k

k = Gkmτ
km , normalized by Young’s modulus E ,

are shown in Figure 6 for t/Ro = 0.6 and 0.2. These plots also show the deformed shape of the spherical
shells at 1t/t = 0.1. The mean normal stress is negative and a significant fraction of Young’s modulus
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Figure 6. Contours of τ k
k /3E at 1t/t = 0.1 for shells with t/Ro = 0.6 and t/Ro = 0.2.
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Figure 7. Contours of τ k
k /3E at 1t/t = 0.1 in the vicinity of the indentation for the

two cases shown in Figure 6: shells with t/Ro = 0.6 (left) and t/Ro = 0.2 (right).

E directly under the indenter. In fact, the stress is singular at the indenter tip and the peak value obtained
there depends on the finite element discretization. In both cases, the values of τ k

k are positive in a vicinity
near y1

= 0, y2
= Ri and in a vicinity near y1

= Ro, y2
= 0 which are indications of bending of the

spherical shell. As can also be seen in the figure, the inner surface of the initially spherical shell does not
quite remain spherical. The overall bending of the spherical shell gives rise to the deviation of P/Eh2

from its value for indentation into a flat surface.
The distributions of τ k

k /3E for these two cases in the vicinity of the indenter are shown in the bottom
row in Figure 7. Near the indenter these distributions are very similar to those for indentation into a flat
surface.

4. Concluding remarks

We have carried out finite deformation analyses of indentation of a rigid cone into linear elastic (actually
linear hypoelastic) spherical shells. Our results indicate that if the indenter is not too flat and if the shell is
not too thick, say t/Ro ≤ 0.4, there is a regime of indentation depths where the scaling of the normalized
contact force is of the same form as that for a flat surface. Hence, for isotropic elastic spherical shells in
this regime we can write

P
Sh2 = C cotβ or

P
Sa2 = C tanβ, (4-1)

with S = E/(1− ν2) and C ≈ 2 as opposed to π/2≈ 1.57 for indentation into a flat surface, as in (3-1)
and (3-2). Our results suggest that if the actual contact area (a = h cotβ) can be measured accurately,
indentation into elastic shells may be able to be used to obtain the material’s elastic stiffness even though
the load is not a “pure” indentation load but also includes the effects of overall shell deformation.

For a spherical shell with t/Ro ≤ 0.4, we find that C in (4-1) is only weakly dependent on the shell
thickness. For a sufficiently thin spherical shell a complex non-axisymmetric deformation pattern, for
example as discussed in [Vaziri and Mahadevan 2008], occurs and our axisymmetric analysis is no longer
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applicable. This lower limit for the applicability of (4-1) cannot be ascertained by an axisymmetric
analysis as carried out here. However, in the range where the scaling relation in (4-1) is applicable, a
relatively good estimate of the elastic stiffness can be obtained without carrying out a finite element
analysis. It is of interest to learn whether or not such simple scaling relations can be used to obtain an
estimate of elastic stiffness for shells in more general circumstances than considered here.
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