
Journal of

Mechanics of
Materials and Structures

ADVANTAGES OF FORMULATING EVOLUTION EQUATIONS
FOR ELASTIC-VISCOPLASTIC MATERIALS IN TERMS

OF THE VELOCITY GRADIENT INSTEAD OF THE SPIN TENSOR

M. B. Rubin and O. Papes

Volume 6, No. 1-4 January–June 2011

mathematical sciences publishers



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 6, No. 1-4, 2011

msp

ADVANTAGES OF FORMULATING EVOLUTION EQUATIONS
FOR ELASTIC-VISCOPLASTIC MATERIALS IN TERMS

OF THE VELOCITY GRADIENT INSTEAD OF THE SPIN TENSOR

M. B. RUBIN AND O. PAPES

Dedicated to Charles and Marie-Louise Steele, who advanced the field of mechanics with their wise editorial leadership

Evolution equations for tensors that characterize elastic-viscoplastic materials are often formulated in
terms of a Jaumann derivative based on the spin tensor. Typically, numerical integration algorithms for
such equations split the integration operation by first calculating the response due to rate of deformation,
followed by a finite rotation. Invariance under superposed rigid body motions of algorithms, incremental
objectivity and strong objectivity are discussed. Specific examples of steady-state simple shear at con-
stant rate and steady-state isochoric extension relative to a rotating coordinate system are used to analyze
the robustness and accuracy of different algorithms. The results suggest that it is preferable to reformulate
evolution equations in terms of the velocity gradient instead of the spin tensor, since strongly objective
integration algorithms can be developed using the relative deformation gradient. Moreover, this relative
deformation gradient can be calculated independently of the time dependence of the velocity gradient
during a typical time step.

1. Introduction

Evolution equations with finite rotations occur naturally in continuum mechanics when history-dependent
variables are expressed in terms of the present deforming configuration. Researchers in continuum
mechanics typically focus attention on integrating rotations and use a representation of the rotation
tensor attributed to Euler and Rodrigues; see, e.g., [Argyris 1982; Simo and Vu-Quoc 1988; Argyris
and Poterasu 1993; Govindjee 1997; Becker 2006; Rubin 2007]. One of the objectives of this paper is
to discuss fundamental and practical reasons for considering evolution equations based on the velocity
gradient instead of on the spin tensor.

To be more specific, it is recalled that within the context of the three-dimensional theory the velocity
gradient L separates into a symmetric rate of deformation tensor D and a skew-symmetric spin tensor
W , such that

L = D+W , D = 1
2(L+ LT ), W = 1

2(L− LT ). (1-1)

Within the context of hypoelastic formulations of the elastic response for elastic-viscoplastic materials
it is common to propose a constitutive equation for the time rate of change of Cauchy stress T . For
example, a typical constitutive structure based on the Jaumann derivative of stress suggests that

W
T = Ṫ −W T − T W T

= K̂W (T , D), (1-2)
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where a superposed dot denotes material time differentiation and the function K̂W (T , D) characterizes
elastic and inelastic rates of deformation.

Integration of (1-2) over the time period t1 ≤ t ≤ t2 with time increment 4t = t2 − t1 is usually
performed in two steps. First, the initial value T (t1) of stress is augmented by an increment of stress that
is determined by the quantity K̂W and then the result is rotated with an orthogonal tensor associated with
the spin W . This procedure can be formalized by introducing a proper orthogonal tensor 3W defined by
the evolution equation and initial condition

3̇W =W3W , 3W (t1)= I, (1-3)

and by introducing the auxiliary tensor TW defined by

T =3W TW3
T
W , (1-4)

which satisfies the evolution equation and initial condition

˙TW =3
T
W K̂W (T , D)3W , TW (t1)= T (t1). (1-5)

In particular, this procedure requires two approximations, one for the integral of the stress (1-5) and
another for the integral of the rotation (1-3). Hughes and Winget [1980] developed an approximate
solution of (1-2), which will be discussed in Section 2. Also, for constant spin, (1-3) can be solved
exactly in terms of the exponential map; see, e.g., [Govindjee 1997].

The Jaumann derivative is one of a number of stress rates which is properly invariant under superposed
rigid body motions (SRBM) and which has been used in the literature to develop evolution equations
for stress. For example, Dienes [1979] used the skew-symmetric tensor associated with the material
derivative of the rotation tensor R in the polar decomposition (see [Malvern 1969], for instance) of
the total deformation gradient F. Also, Rashid [1993] used the skew-symmetric tensor associated with
the material derivative of the rotation tensor Rr in the polar decomposition of the relative deformation
gradient Fr .

The same material response as that characterized by (1-2) can be obtained using different stress rates
as long as the term on the right-hand side of (1-2) is modified appropriately. For example, the Oldroyd
rate (see, e.g., [Holzapfel 2000]) can be used to obtain the evolution equation

L
T = Ṫ − LT − T LT

= K̂L(T , D), (1-6)

where the function K̂L is defined by

K̂L(T , D)= K̂W (T , D)− DT − T D. (1-7)

Next, it is recalled that the relative deformation gradient Fr can be defined in terms of the total
deformation gradient by the expression

Fr (t)= F(t)F−1(t1). (1-8)

Moreover, it can be shown that Fr satisfies the evolution equation and initial condition

Ḟr = L Fr , Fr (t1)= I . (1-9)
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It then follows that the solution of (1-6) can be written in the form

T = Fr TL FT
r , (1-10)

where the auxiliary tensor TL satisfies the evolution equation and initial condition

˙T L = F−1
r K̂L(T , D)F−T

r , TL(t1)= T (t1). (1-11)

Since the material response characterized by (1-2) can be formulated using different invariant stress
rates, there is no fundamental advantage of one properly invariant formulation over another. However,
from a practical point of view, details of the approximate integration algorithms for {3W , TW } or {Fr , TL}

may present advantages due to accuracy or invariance under SRBM.
Another important consideration was discussed in [Rashid 1993]. In computer codes for integrating the

equations of motion in continuum mechanics the positions of material points are known at the beginning
of the time step and are determined at the end of the time step. For implicit integration algorithms the
final positions are determined by iteration, whereas for explicit integration algorithms they are determined
by estimations based on the positions, velocities and accelerations during the time step. Rashid argued
that the time dependences of the rate of deformation tensor D and spin tensor W during the time step
are never known. This means that integration of the Jaumann formulation necessarily requires approx-
imations associated with the specification of the time dependences of D and W as well as additional
approximations due to the specific integration algorithms for both the rotation (1-3) and stress (1-5).

In contrast, the value Fr (t2) of the relative deformation gradient at the end of the time step is a unique
function of the positions at the beginning and end of the time step and therefore is known. This means that
the evolution equation (1-9) can be integrated exactly without assuming an approximation of the velocity
gradient. Consequently, the only approximation associated with the Oldroyd formulation appears in the
specified integration algorithm for the auxiliary stress value TL in (1-11). For this reason the Oldroyd
seems to have a practical advantage over the Jaumann formulation.

Eckart [1948] seems to be the first to have proposed an evolution equation directly for elastic defor-
mation for large deformations of elastically isotropic elastic-plastic materials. In particular, using [Flory
1961] it is possible to introduce a symmetric unimodular tensor B′e,

det B′e = 1, (1-12)

which is a pure measure of elastic distortional deformation. Then, for elastic-viscoplastic response B′e
can be determined by the evolution equation

Ḃ′e = L B′e+ B′e LT
−

2
3(D · I)B

′

e−0Ap, Ap = B′e−
3

B′−1
e · I

I, (1-13)

where 0 and Ap characterize the rate of relaxation due to plasticity. This equation must be integrated
subject to the initial condition

B′e = B′e(t1) for t = t1. (1-14)

This idea was used in [Leonov 1976] for polymeric liquids, and in [Simo 1992; Rubin 1994] for elastic-
plastic and elastic-viscoplastic solids. Besseling [1968] and Rubin [1994] proposed generalizations of
(1-13) for elastically anisotropic response and a number of physical aspects of constitutive equations for
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plasticity have been discussed in [Rubin 1994; Rubin 1996; Rubin 2001]. Also, a simple integration
algorithm for (1-13) was discussed in [Rubin and Attia 1996].

Again, using [Flory 1961], it can be shown that the unimodular part F′r of the relative deformation
tensor Fr defined by

F′r = (det Fr )
−1/3 Fr , det F′r = 1, (1-15)

satisfies the evolution equation and initial condition

Ḟ′r = L F′r −
1
3(D · I)F

′

r , F′r (t1)= I . (1-16)

Consequently, the solution of (1-13) can be written in terms of the auxiliary unimodular symmetric tensor
B′e defined by

B′e = F′r B′e F′Tr , det B′e = 1, (1-17)

with B′e satisfying the evolution equation and initial condition

˙B′e =−0F′−1
r Ap F′−T

r , B′e(t1)= B′e(t1). (1-18)

In general, 0 is a nonlinear function of state variables that can include hardening. Also, it is noted that
for an elastically isotropic hyperelastic material the Cauchy stress can be obtained from derivatives of a
strain energy function that depends on the dilatation J = det F and the two nontrivial invariants of B′e.

An outline of the paper is as follows. Section 2 summarizes the Hughes–Winget algorithm [Hughes
and Winget 1980], Section 3 discusses invariance under SRBM and the notion of incremental objectivity.
Section 4 presents integration algorithms for a simple elastic-viscoplastic material. The robustness and
accuracy of these algorithms are discussed in Section 5 for the example of steady-state simple shear and
in Section 6 for the example of steady-state isochoric extension relative to a rotating coordinate system.
Finally, Section 7 presents conclusions.

Above and in the following, boldfaced symbols denote tensors, ei is a right-handed orthonormal triad
of fixed rectangular Cartesian base vectors, the components of all tensors are referred to ei and ⊗ denotes
the tensor product. Also, A · B = tr(ABT ) denotes the inner product between two second-order tensors
{A, B} and a⊗ b denotes the tensor product between two vectors {a, b}.

2. Summary of the Hughes–Winget algorithm

Hughes and Winget [1980] developed an expression for the value 3W (t2) of a rotation tensor based on the
skew-symmetric part of an approximate incremental displacement gradient. Specifically, they introduced
a mapping from the position y1 at the beginning of the time step to the position y2 at the end of the time
step and a mapping to the position yα at an intermediate configuration by the expressions

y2
= y2( y1), yα = (1−α) y1

+α y2. (2-1)

Then, the incremental displacement δ, and displacement gradient G relative to this intermediate config-
uration are defined by

δ = y2
− y1, G = ∂δ/∂ yα = (∂ y2/∂ y1

− I)(∂ y1/∂ yα). (2-2)
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Moreover, with the help of (2-1) it follows that

∂ yα/∂ y1
= (1−α)I +α(∂ y2/∂ y1). (2-3)

Next, using the definition of the relative deformation gradient Fr (t2) at the end of the time step

Fr (t2)= ∂ y2/∂ y1, (2-4)

the tensor G can be expressed in the form

G =
(
Fr (t2)− I

)(
I +α{Fr (t2)− I}

)−1
. (2-5)

Thus, for α = 1
2 as specified in [Hughes and Winget 1980], the tensor G is given by

G = 2
(
Fr (t2)− I

)(
Fr (t2)+ I

)−1
. (2-6)

Next, using the lemma quoted in [Hughes and Winget 1980],

A(A+ B)−1 B = B(A+ B)−1 A, (2-7)

for all square nonsingular matrices A, B, A+ B. Taking A= FT
r and B = I it follows that

FT
r (F

T
r + I)−1

= (FT
r + I)−1 FT

r , (FT
r − I)(FT

r + I)−1
= (FT

r + I)−1(FT
r − I), (2-8)

so that
GT
= 2(FT

r + I)−1(FT
r − I)= 2(FT

r − I)(FT
r + I)−1. (2-9)

Thus, the symmetric part γ and skew-symmetric part ω of G are given by

γ = 1
2(G+ GT )=

(
Fr (t2)− I

)(
Fr (t2)+ I

)−1
+
(
FT

r (t2)− I
)(

FT
r (t2)+ I

)−1
,

ω = 1
2(G− GT )=

(
Fr (t2)− I

)(
Fr (t2)+ I

)−1
−
(
FT

r (t2)− I
)(

FT
r (t2)+ I

)−1
.

(2-10)

Now, the Hughes–Winget algorithm for the value 3W (t2) of the rotation tensor 3W at the end of the
time step is given by

3W (t2)=
(
I + 1

2ω
)(

I − 1
2ω
)−1
. (2-11)

3. Invariance under superposed rigid body motions and incremental objectivity

Under SRBM the material point x at time t moves to the position x+ at time t+, such that

x+ = c(t)+ Q(t)x, t+ = t + c, QQT
= I, det Q =+1, Q̇ =�Q, �T

=−�(t), (3-1)

where c is an arbitrary constant, c(t) is an arbitrary function of time characterizing superposed translation,
Q(t) is an arbitrary proper orthogonal tensor characterizing rotation and �(t) is the associated spin tensor.
Moreover, under SRBM the quantities {F, Fr , F′r , D, W , 3W , T , B′e, 0} transform to {F+, F+r , F′+r ,
D+, W+, 3+W , T+, B′+e , 0+}, respectively, by the relations

F+ = Q F, F+r = Q Fr , F′+r = Q F′r ,

D+ = Q D QT , W+ = QWQT
+�, 3+W = Q3W ,

T+ = QT QT , B′+e = Q B′e QT , 0+ = 0.

(3-2)
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Since the rates in (1-2) and (1-6) transform under SRBM by

W
T+ = Q

W
T QT ,

L
T+ = Q

L
TQT , (3-3)

it follows that the evolution equations (1-2) and (1-6) are properly invariant under SRBM provided that
the functions K̂W and K̂L satisfy the restrictions

K̂W (QTQT , Q D QT )= Q K̂W (T , D)QT , K̂L(QTQT , Q D QT )= Q K̂L(T , D)QT , (3-4)

for all proper orthogonal Q. Moreover, the evolution equation (1-13) is properly invariant under SRBM.
Using these results together with the definitions (1-4), (1-10) and (1-17), it can also be shown that the

auxiliary tensors {TW , T L , B′e} transform to {T+W , T+L , B′+e }, so they are unaffected by SRBM:

T+W = TW , T+L = T L , B′+e = B′e. (3-5)

Hughes and Winget [1980] introduced the notion of an algorithm being incrementally objective.
Specifically, they proved that the expressions (2-10) and (2-11) are incrementally objective in the sense
that they correctly produce zero strain increment (γ = 0) and the correct rotation tensor (3W = Fr ) when
the deformation during the time step is a pure rotation with Fr being an orthogonal tensor (FT

r Fr = I).
It can also be shown that (2-10) and (2-11) correctly produce zero incremental spin (ω = 0) and the
correct rotation (3W = I) when the deformation during the time step is a pure stretch with Fr being a
symmetric tensor.

Rashid [1993] extended this notion of incremental objectivity by demanding that the integrator com-
putes a stretching part that is independent of the input rotation when the incremental motion involves
both stretch and rotation. Actually, the notion of strong objectivity, as discussed in [Papes and Mazza
2009], requires the estimates of all variables at the end of the time step to satisfy the same invariance
properties under SRBM as their exact values. In this regard, it is noted that the tensors {γ ,ω} are not
properly invariant under SRBM since they retain an unphysical dependence on the arbitrary rotation
tensor Q:

γ+ = Q
[(

Fr (t2)Q− I
)(

Fr (t2)Q+ I
)−1
+
(

QT FT
r (t2)− I

)(
QT FT

r (t2)+ I
)−1]QT ,

ω+ = Q
[(

Fr (t2)Q− I
)(

Fr (t2)Q+ I
)−1
−
(

QT FT
r (t2)− I

)(
QT FT

r (t2)+ I
)−1]QT .

(3-6)

Consequently, the approximation (2-11) for 3W is also not properly invariant:

3+W 6= Q3W . (3-7)

Moreover, it is natural to consider the approximation of incremental strain

1t D ≈ γ . (3-8)

However, this expression is also not properly invariant since

1t D+ 6= Q(1t D)QT . (3-9)
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4. Integration algorithms for a simple elastic-viscoplastic material

In the remainder of this paper attention will be focused on an elastic-viscoplastic material which is
characterized by the equations (1-13), (1-14), (1-17) and (1-18) with the simplification that the scalar
0 is constant. In this section three algorithms are discussed which yield approximate solutions of these
evolution equations. Sections 5 and 6 will discuss examples to test the accuracy and robustness of these
algorithms.

Algorithm 1. This algorithm is based on the formulation (1-17) and (1-18). This formulation has the
simplicity that any approximation of B′e that is unaffected by SRBM will yield a solution for B′e that
transforms appropriately under SRBM. To motivate an approximate solution of (1-18) consider the value
determined by the fully implicit equation

B′e(t2)= B′e(t1)−1t 0
(

B′e(t2)−
3

B′−1
e (t2)· I

C ′−1
r (t2)

)
, C ′−1

r (t2)= F′−1
r (t2)F′−T

r (t2). (4-1)

Next, use is made of the approximation that B′−1
e (t2) · I ≈ 3 to deduce that

B′e(t2)=
1

1+1t 0
(
B′e(t1)+1t 0C ′−1

r (t2)
)
. (4-2)

However, this expression does not ensure that B′e(t2) is unimodular. Motivated by [Rubin and Attia
1996], the expression (4-2) is used to obtain an equation for the deviatoric part B′′e (t2) of B′e(t2) of the
form

B′′e (t2)=
1

1+1t 0

(
B′e(t1)+1t 0C ′−1

r (t2)− 1
3

[(
B′e(t1)+1t 0C ′−1

r (t2)
)
· I
]
I
)
. (4-3)

Then, the final value B′e(t2) can be obtained using the procedure discussed in [Rubin and Attia 1996] to
determine the scalar α, in the expression

B′e(t2)=
1
3α I + B′′e (t2), (4-4)

by the condition that B′e(t2) is unimodular.

Algorithm 2. Typically, for elastic-viscoplastic response an equation like (1-13) is integrated in two
steps. First, the elastic trial value B′∗e (t) is determined by the evolution equation (which is (1-13) with
0 = 0) and initial condition

Ḃ′∗e = L B′∗e + B′∗e LT
−

2
3(D · I)B

′∗

e , B′∗e (t1)= B′e(t1). (4-5)

Then, the value B′e(t2) at the end of the time step is determined by relaxing the elastic trial value B′∗e (t2)
at constant total deformation with the help of an approximation of the evolution equation (1-13).

In particular, using the formulation (1-17) and (1-18) it is easy to see that the exact solution of (4-5)
is given by

B′∗e (t2)= F′r (t2)B
′

e(t1)F
′T
r (t2), (4-6)

so that the solution of (1-13) can be written in the form

B′e(t2)= B′∗e (t2)− F′r (t2)
(∫ t2

t1
0F′−1

r Ap F′−T
r dt

)
F′Tr (t2). (4-7)
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An elastic trial of the type (4-6) was used in [Simo 1992] for a nonunimodular tensor and in [Simo and
Hughes 1998, p. 315] updating a unimodular tensor. In approximating the integral in (4-7) it is important
to ensure that the approximation remains properly invariant under SRBM. Here, the values of {Ap, F′r }
are approximated by their values at the end of the time step and use is made of the fully implicit form

B′e(t2)= B′∗e (t2)−1t 0
(

B′e(t2)−
3

B′−1
e (t2) · I

I
)
. (4-8)

Again, since this result does not ensure that B′e(t2) is unimodular, the solution is determined by the
deviatoric part B′′e (t2) of B′e(t2) given by

B′′e (t2)=
1

1+1t 0
B′′∗e (t2), (4-9)

where B′′∗e (t2) is the deviatoric part of the elastic trial B′∗e (t2)

B′′∗e (t2)= B′∗e (t2)−
1
3

(
B′∗e (t2) · I

)
I . (4-10)

Then, the final value B′e(t2) is obtained using the procedure discussed in [Rubin and Attia 1996] to
determine the scalar α in the expression

B′e(t2)=
1
3α I + B′′e (t2), (4-11)

which has the same invariance properties under SRBM as the exact value of B′e(t2).

Algorithm 3. Algorithms 1 and 2 integrate the evolution equation (1-13) including coupling of the rates
of deformation and spin {D, W} through the expressions for the velocity gradient L and the relative
deformation gradient Fr . For Algorithm 3 this evolution equation is reformulated in terms of the Jaumann
derivative which focuses on spin. Specifically, (1-13) can be written in the form

W
B′e = Â(B′e, D)−0Ap, Â(B′e, D)= DB′e+ B′e D− 2

3(D · I)B
′

e. (4-12)

Then, the solution is given by (4-9) and (4-10), where the elastic trial B′∗e (t2) is determined by the
evolution equation and initial condition

W
B′∗e = Â(B′∗e , D), B′∗e (t1)= B′e(t1). (4-13)

Next, using the Hughes–Winget algorithm the solution of (4-13) is approximated by

B′∗e (t2)=3W
(
B′e(t1)+1t Â(B′e(t1), D)

)
3T

W , (4-14)

where 3W is defined by (2-11). Furthermore, use is made of the approximation (3-8) to obtain the
deviatoric tensor

B′′∗e (t2)=3W
(
B̃′e−

1
3(B̃

′

e · I)I
)
3T

W , B̃′e = B′e(t1)+ γ B′e(t1)+ B′e(t1)γ −
2
3(γ · I)B

′

e(t1), (4-15)

which is then used in (4-9) to obtain the final value (4-11) for this algorithm.
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5. Example of steady-state simple shear at constant shear rate

The algebra required to obtain the solutions discussed in the example in this and the next sections is
rather heavy so use has been made of the symbolic program Maple to derive the results.

This section presents the example of steady-state simple shear at constant shear rate to analytically
analyze the robustness and accuracy of Algorithms 1, 2 and 3. For this problem the deformation gradient
F and the constant velocity gradient L are specified by

F = I + γ0t (e1⊗ e2), L = γ0(e1⊗ e2), (5-1)

where the constant scalar γ should not be confused with the tensor γ in (2-10). It then follows that the
relative deformation tensor associated with (5-1) is given by

Fr (t2)= I + κ(e1⊗ e2), F−1
r (t2)= I − κ(e1⊗ e2), κ =1t γ0. (5-2)

Moreover, since this deformation is isochoric, Fr is a unimodular tensor with

F′r = Fr . (5-3)

Exact solution. The initial value B′e(t1) is a steady-state solution of the evolution equation (1-13) pro-
vided that it satisfies the equation

L B′e(t1)+ B′e(t1)L
T
−

2
3(D · I)B

′

e(t1)−0Ap(t1)= 0. (5-4)

The exact solution of this algebraic equation can be written in the form

B′e(t1)= a2(e1⊗ e1)+ b2(e2⊗ e2)+ c2(e3⊗ e3)+ d(e1⊗ e2+ e2⊗ e1), (5-5)

where {a, c} take the forms

a =

√
1+ d2b2

b2 , c = b, (5-6)

and the constants {b, d} attain the values {be, de}, respectively, given by

be =
1

(1+ γ2)1/6
, de =

γ

(1+ γ2)1/3
. (5-7)

Solution of Algorithm 1. The initial value B′e(t1) is a steady-state solution of Algorithm 1 if B′e(t2) and
its deviatoric part B′′e (t2) are given by

B′e(t2)= F′−1
r (t2)B′e(t1)F

′−T
r (t2), B′′e (t2)= B′e(t2)−

1
3

(
B′e(t2) · I

)
I . (5-8)

More specifically, substitution of (5-8) into (4-3) and taking B′e(t1) in the form (5-5), with the condition
(5-6), yields a system of algebraic equations for {b, d}. These equations can be solved to obtain the
values {b1, d1}, given by

d1 = (γ + κ)b2
1− κ, (5-9)

where b1 is the positive real root of the equation

(1+ γ2
+ γ κ)b6

1+ κ
2b4

1− κ
2b2

1− 1= 0. (5-10)
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Solution of Algorithm 2. The initial value B′e(t1) is a steady-state solution of Algorithm 2 if B′′e (t2)
equals the deviatoric part B′e(t1), given by

B′′e (t2)= B′′e (t1)= B′e(t1)−
1
3

(
B′e(t1) · I

)
I . (5-11)

More specifically, substitution of (5-11) into (4-9) and taking B′e(t1) in the form (5-5), with the condition
(5-6), yields a system of algebraic equations for {b, d}. These equations can be solved to obtain the
values {b2, d2} given by

b2 =
1

(1+ γ2+ γ κ)1/6
, d2 =

γ

(1+ γ2+ γ κ)1/3
. (5-12)

Solution of Algorithm 3. The initial value B′e(t1) will be a steady-state solution of Algorithm 3 if B′′e (t2)
in (4-9) satisfies (5-11) with the deviatoric part B′′∗e (t2) of the elastic trial given by (4-15). The solution
of this system of equations has the form (5-5), where {a, b, c, d} obtain the values {a3, b3, c3, d3} given
by

a3 = b3

√
256+ 512γ2+ 512γ κ + 16(2− γ2)κ2− 16γ κ3+ κ4

256+ 16(2+ γ2)κ2+ 16γ κ3+ κ4 , b3 =

(
N3(γ, κ)

D3(γ, κ)

)1/6

,

d3 =
(512− 112κ2

+ κ4)b2
3− (80− κ2)κ2a2

3

512+ 256γ κ + 64κ2+ 2κ4 γ, c3 =

√
1
2(a

2
3 + b2

3)− γ d3. (5-13)

In these expressions the functions N3 and D3 are polynomials of their arguments that can be obtained
analytically by requiring B′e(t1) to be unimodular. Also, it is noted that the values of {a, c} no longer
satisfy the conditions (5-6) of the exact solution. Since this formulation uses the approximations (2-11)
and (3-8) it is not properly invariant under SRBM.

Discussion. In these solutions the parameter γ is a normalized loading rate and the parameter κ is a
normalized time increment. Figure 1 plots the exact solution as a function of the loading rate γ . From
this figure it can be seen that the elastic distortional deformation is large for large values of γ . It can also
be shown that in the limit that κ approaches zero all three algorithms reproduce the exact steady-state
values (5-7) for all values of γ . However, for positive values of κ Algorithms 1 and 2 reproduce the
exact result that (c1 = b1, c2 = b2), whereas Algorithm 3 predicts that c3 is different from b3.
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Figure 1. Simple shear: Exact steady-state solution.
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Figure 2. Simple shear: Errors in the solutions predicted by Algorithms 1, 2 and 3 for
the normalized time increment κ = 0.1.

To compare the predictions of the algorithms with the exact solution it is convenient to define the errors

Ea =
a
ae
− 1, Eb =

b
be
− 1, Ec =

c
ce
− 1, Ed =

d
de
− 1, (5-14)

where {a, b, c, d} are the values predicted by each of the algorithms, with the values of {a, c} given
by (5-6) for Algorithms 1 and 2. Figure 2 shows these errors as functions of γ for the relatively large
normalized time increment κ = 0.1. From these results it can be seen that Algorithm 1 is slightly more
accurate than Algorithm 2 for Ea . On the other hand, Algorithm 2 is more accurate than Algorithm 1
for Ed . Also, both Algorithms 1 and 2 are more accurate than Algorithm 3. Overall, it is concluded that
both Algorithms 1 and 2 predict relatively robust results for the steady-state solution of simple shear at
constant rate of deformation.

6. Example of steady-state isochoric extension relative to a rotating coordinate system

In order to better understand the implications of an algorithm not being strongly objective, consider the
case of isochoric extension relative to a rotating coordinate system. Specifically, let e′i be an orthonormal
triad of vectors which rotates with constant angular velocity ω0 about the fixed e3 direction

e′1 = cos(ω0t)e1+ sin(ω0t)e2, e′2 =− sin(ω0t)e1+ cos(ω0t)e2, e′3 = e3. (6-1)

For this deformation field it is convenient to introduce the orthogonal tensor Q defined by

Q(t)= e′i ⊗ ei , ė′i =�e′i , �= Q̇ QT , �= ω0(−e1⊗ e2+ e2⊗ e1),

Q = cos(ω0t)(e1⊗ e1+ e2⊗ e2)+ (e3⊗ e3)+ sin(ω0t)(−e1⊗ e2+ e2⊗ e1),
(6-2)
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where the usual summation convention is used for repeated indices. Moreover, the deformation gradient
F and the velocity gradient L are specified by

F = Q
(
λ(e1⊗ e1)+ λ

−1/2(e2⊗ e2+ e3⊗ e3)
)
, λ= exp(γ0t), J = 1,

L = γ0Q
(
(e1⊗ e1)−

1
2(e2⊗ e2+ e3⊗ e3)

)
QT
+�,

(6-3)

where λ is the stretch of a material line element which in the reference configuration (at t = 0) was
oriented in the e1 direction, and γ0 is the constant logarithmic stretch rate. It then follows that the
relative deformation tensor associated with (6-3) is given by

Fr (t2)= Q(t2)
(
eκ(e1⊗ e1)+ e−κ/2(e2⊗ e2+ e3⊗ e3)

)
QT (t1), κ =1t γ0. (6-4)

Moreover, since this deformation is isochoric, the tensor Fr is unimodular as was the case in (5-3).

Exact solution. The tensor B′e(t) is a steady-state solution relative to the rotating basis e′i of the evolution
equation (1-13) provided that it satisfies the equation

�B′e+ B′e�
T
= L B′e+ B′e LT

−
2
3(D · I)B

′

e−0Ap. (6-5)

The exact solution of this algebraic equation can be written in the form

B′e(t)= a2(e′1⊗ e′1)+
1
a
(e′2⊗ e′2+ e′3⊗ e′3), (6-6)

where a takes the value ae given by

ae =

( 1+γ
1−2γ

)1/3
for γ < 1

2 . (6-7)

It can be seen from this solution that no steady-state solution of this form exists if the rate of extension
is too large (γ ≥ 1

2 ).

Solution of Algorithm 1. The values of {B′e(t1), B′e(t2)} correspond to a steady-state solution relative
to the rotating basis e′i of Algorithm 1 if they have the forms

B′e(t1)= Q(t1)B̂′e QT (t1), B′e(t2)= Q(t2)B̂′e QT (t2), B̂′e=a2(e1⊗e1)+
1
a
(e2⊗e2+e3⊗e3), (6-8)

where the stretch a needs to be determined. Next, using (1-17) and (6-4) it follows that

B′e(t2)= F′−1
r B′e(t2)F

′−T
r = Q(t1)

(
a2e−2κ(e1⊗ e1)+

eκ

a
(e2⊗ e2+ e3⊗ e3)

)
QT (t1). (6-9)

These expressions will satisfy (4-3) provided that a takes the value a1, which is the real positive root of
the equation (

γ − (γ + κ)e−2κ)a3
1 − κ(e

κ
− e−2κ)a1+

(
(γ + κ)eκ − γ

)
= 0 (6-10)

closest to unity. It can be shown that in the limit that κ→ 0 the real positive solution of (6-10) yields the
exact result (6-7) for all possible values of γ . For finite values of κ , a maximum value of γ exists beyond
which the real solution of (6-10) becomes negative. Thus, the maximum value of γ which produces a
physical solution is a function of the size of the time step though the value of κ .



VELOCITY GRADIENT VERSUS SPIN TENSOR IN ELASTIC-VISCOPLASTIC EVOLUTION EQUATIONS 541

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.1 0.2 0.3 0.4

!

a
e

0.0

5.0

10.0

15.0

20.0

1

2

0.0 0.1 0.2 0.3 0.4
!

E
a
 (

%
)

!

Figure 3. Isochoric extension: exact solution (left) and errors in the solutions predicted
by Algorithms 1 and 2 for the normalized time increment κ = 0.1.

Solution of Algorithm 2. The values of {B′e(t1), B′e(t2)} correspond to a steady-state solution relative
to the rotating basis e′i of Algorithm 2 if they have the forms (6-8). Next, using these expressions, the
elastic trial value (4-6), and equating the estimate (4-9) with the deviatoric part B′′e (t2) of B′e(t2) in (6-8)
yields an algebraic equation for a which is solved to obtain the value a2 given by

a2 =

(
γ + κ − γ e−κ

γ + κ − γ e2κ

)1/3

. (6-11)

This solution has the same character as the solution of Algorithm 1.
Figure 3, left, plots the exact solution ae in (6-7) as a function of the normalized stretch rate γ . The

right half of the figure shows the error Ea in (5-14) predicted by Algorithms 1 and 2 for the normalized
time increment κ = 0.1. From this figure is it easy to see that Algorithm 1 is more accurate than
Algorithm 2. Moreover, we emphasize that both algorithms are strongly objective because the solutions
(6-10) and (6-11) are uninfluenced by rate of rotation ω0 of the axes e′i , which can be interpreted as a
superposed rate of rigid body rotation.

Discussion of Algorithm 3. To discuss Algorithm 3 it is convenient to introduce the two tensors

3̃= Q(t2)T3W Q(t1), γ̃ = Q(t1)T
(
γ B′e(t1)+ B′e(t1)γ

)
Q(t1). (6-12)

It then follows from (4-9), (4-15) and (6-8) that

B̃′e = Q(t1)
(
B̂′e+ γ̃−

2
3(γ · I)B̂

′

e
)

QT (t1),

B̂′e−
1
3(B̂

′

e · I)I =
1

1+1t 0
3̃
((

B̂′e+ γ̃ −
2
3(γ · I)B̂

′

e
)
−

1
3

[(
B̂′e+ γ̃−

2
3(γ · I)B̂

′

e
)
· I
]

I
)
3̃T .

(6-13)

Consequently, Algorithm 3 will admit solutions of the form (6-8) if the tensors {3̃, γ̃} are independent
of the value of the angular velocity ω0 and if they are diagonal tensors with respect to the fixed basis ei .
Specifically, it can be shown that

3̃ · (e1⊗ e2)=−3̃ · (e2⊗ e1)=−

4 cos κ
2

sinh2 κ

4
sin ωκ

γ

cosh κ − 8 sinh2 κ

4
sin2 ωκ

2γ
+ cos ωκ

γ
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and

γ̃ · (e1⊗ e2)= γ̃ · (e2⊗ e1)=

2(a3
+ 1) sinh 3κ

4
sin ωκ

γ

a
(

cosh κ
4
+ cosh 3κ

4
cos ωκ

γ

) . (6-14)

Not only are these quantities nonzero but they depend explicitly on the angular velocity ω0, which is a
direct consequence of the algorithm not being strongly objective.

7. Conclusions

Evolution equations based on the Jaumann derivative like (1-2) or (4-13) necessarily require three types
of approximations. One for the specification of the time dependence of the spin tensor W , one for
the integration algorithm of the evolution equation (1-3) for the rotation tensor 3W , and one for the
integration algorithm of the evolution equation for an auxiliary variable like TW in (1-5). In contrast,
when evolution equations are formulated in terms of the velocity gradient L, the evolution equations
(1-9) for the relative deformation gradient Fr and (1-16) for the unimodular part F′r of the relative
deformation tensor can be integrated exactly in terms of the positions of material points at the beginning
and end of the time step, independently of the time dependence of L during the time step. Consequently,
such integration algorithms have the advantage that approximations are limited to the algorithms for the
evolution equations of the auxiliary tensors like (1-11) for T L and (1-18) for B′e. Moreover, since these
auxiliary tensors are unaffected by SRBM it is simple to develop algorithms which are strongly objective
in the sense discussed in [Papes and Mazza 2009].

Focusing attention to the response of a simple elastic-viscoplastic material, examples of steady-state
simple shear at constant shear rate and steady-state isochoric extension relative to a rotating coordinate
system are considered to assess the robustness and accuracy of the three algorithms presented in Section 4.
Algorithms 1 and 2 are strongly objective, but Algorithm 3, which is based on the Hughes–Winget
algorithm, is only weakly incrementally objective and exhibits unphysical dependence on the arbitrary
rotation tensor Q in SRBM when the rate of deformation is nonzero. Algorithms 1 and 2 give robust and
relatively accurate predictions of these steady-state solutions for reasonably large time increments. From
a practical point of view, Algorithm 2 is perhaps the easiest to implement. It presents an improvement
over the simple formulation in [Rubin and Attia 1996] in that here the elastic trial value B′∗e (t2) is
evaluated exactly.

Acknowledgements

This research was partially supported by Rubin’s Gerard Swope Chair in Mechanics and by the fund for
the promotion of research at the Technion. Rubin would also like to thank R. Settgast and R. Becker for
helpful discussions during the beginning stages of this research.

References

[Argyris 1982] J. Argyris, “An excursion into large rotations”, Comput. Methods Appl. Mech. Eng. 32 (1982), 85–155.

[Argyris and Poterasu 1993] J. Argyris and V. F. Poterasu, “Large rotations revisited application of Lie algebra”, Comput.
Methods Appl. Mech. Eng. 103 (1993), 11–42.



VELOCITY GRADIENT VERSUS SPIN TENSOR IN ELASTIC-VISCOPLASTIC EVOLUTION EQUATIONS 543

[Becker 2006] R. Becker, “A plasticity integration algorithm motivated by analytical integration of a generalized quadratic
function”, technical report UCRL-TR-21953, Livermore, CA, 2006, available at https://e-reports-ext.llnl.gov/pdf/331305.pdf.

[Besseling 1968] J. F. Besseling, “A thermodynamic approach to rheology”, pp. 16–53 in Proc. IUTAM Symp. on Irreversible
Aspects of Continuum Mechanics, edited by H. Parkus and L. I. Sedov, Springer, Vienna, 1968.

[Dienes 1979] J. K. Dienes, “On the analysis of rotation and stress rate in deforming bodies”, Acta Mech. 32 (1979), 217–232.

[Eckart 1948] C. Eckart, “The thermodynamics of irreversible processes, IV: the theory of elasticity and anelasticity”, Phys.
Rev. 73 (1948), 373–382.

[Flory 1961] P. Flory, “Thermodynamic relations for high elastic materials”, T. Faraday Soc. 57 (1961), 829–838.

[Govindjee 1997] S. Govindjee, “Accuracy and stability for integration of Jaumann stress rate equations in spinning bodies”,
Engrg. Comput. 14 (1997), 14–30.

[Holzapfel 2000] G. A. Holzapfel, Nonlinear solid mechanics: a continuum approach for engineering, Wiley, New York, 2000.

[Hughes and Winget 1980] T. J. R. Hughes and J. Winget, “Finite rotation effects in numerical integration of rate constitutive
equations arising in large-deformation analysis”, Int. J. Numer. Meth. Engrg. 15:12 (1980), 1862–1867.

[Leonov 1976] A. I. Leonov, “Nonequilibrium thermodynamics and rheology of viscoelastic polymer media”, Rheol. Acta 15
(1976), 85–98.

[Malvern 1969] L. E. Malvern, Introduction to the mechanics of a continuous medium, Prentice-Hall, Englewood Cliffs, NJ,
1969.

[Papes and Mazza 2009] O. Papes and E. Mazza, “Numerical implementation of an elasto-viscoplastic material law for FE
calculations of biological tissues at finite deformations”, technical report, 2009, available at http://www.zfm.ethz.ch/e/v/ncm/
handouts/Implementation_Rubin_Bodner.pdf.

[Rashid 1993] M. M. Rashid, “Incremental kinematics for finite element applications”, Int. J. Numer. Meth. Engrg. 36 (1993),
3937–3956.

[Rubin 1994] M. B. Rubin, “Plasticity theory formulated in terms of physically based microstructural variables, I: Theory”, Int.
J. Solids Struct. 31 (1994), 2615–2634.

[Rubin 1996] M. B. Rubin, “On the treatment of elastic deformation in finite elastic-viscoplastic theory”, Int. J. Plast. 12
(1996), 951–965.

[Rubin 2001] M. B. Rubin, “Physical reasons for abandoning plastic deformation measures in finite plasticity and viscoplastic-
ity theory”, Arch. Mech. 53:4-5 (2001), 519–539.

[Rubin 2007] M. B. Rubin, “A simplified implicit Newmark integration scheme for finite rotations”, Comput. Math. Appl. 53
(2007), 219–231.

[Rubin and Attia 1996] M. B. Rubin and A. Attia, “Calculation of hyperelastic response of finitely deformed elastic-viscoplastic
materials”, Int. J. Numer. Meth. Engrg. 39 (1996), 309–320.

[Simo 1992] J. C. Simo, “Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping
schemes of the infinitesimal theory”, Comp. Meth. Appl. Mech. Engrg. 99 (1992), 61–112.

[Simo and Hughes 1998] J. C. Simo and T. J. R. Hughes, Computational inelasticity, Springer, New York, 1998.

[Simo and Vu-Quoc 1988] J. C. Simo and L. Vu-Quoc, “On the dynamics in space of rods undergoing large motions: a
geometrically exact approach”, Comput. Methods Appl. Mech. Eng. 66 (1988), 125–161.

Received 15 Feb 2010. Revised 9 Jun 2010. Accepted 9 Jun 2010.

M. B. RUBIN: mbrubin@tx.technion.ac.il
Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, 32000 Haifa, Israel

O. PAPES: ondrej@papes.ch
Institute of Mechanical Systems, Department of Mechanical Engineering, ETH Zentrum, CH-8092 Zurich, Switzerland

mathematical sciences publishers msp


