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TOPOLOGY OPTIMIZATION OF GEOMETRICALLY NONLINEAR
STRUCTURES TRACING GIVEN LOAD-DISPLACEMENT CURVES

GIL HO YOON, JIN YEE NOH AND YOON YOUNG KIM

To design structures involving nonlinear structural responses by the topology optimization method is still
a challenging problem. Here, the structural topology optimization tracing nonlinear load-displacement
curves is investigated by employing the element connectivity parametrization formulation as it is ex-
pected to deal with low-density element related numerical instability more effectively than the element
density based formulation. After the formulation is given in the setting of the element connectivity
parametrization, the sensitivity analysis for load-displacement curve tracing problems implemented with
a discretized finite element model is presented. Several numerical problems are considered to address
issues occurring in the topology optimization of nonlinear structures. Finally, the findings from this
investigation on the topology optimization tracing nonlinear load-displacement trajectories and future
work are summarized as concluding remarks.

1. Introduction

Along with size and shape optimization methods, the topology optimization method [Bendsøe and
Kikuchi 1988] has been used as an effective tool for optimizing structures and mechanical parts (see
[Bendsøe and Sigmund 2003], for example). Compared with abundant investigations on linear struc-
tural problems, the topology optimization of nonlinear structural problems is relatively rare [Buhl et al.
2000; Bruns et al. 2002; Cho and Jung 2003; Yoon and Kim 2005b; Yoon et al. 2008]. In this study,
we investigate the topology optimization of a continuum structure tracing a prescribed nonlinear load-
displacement trajectory. Specifically, hardening or softening nonlinear responses without and without
snap-through will be considered.

Structures exhibiting geometric hardening or softening behavior (see Figure 1) can be utilized for
crash worthiness or energy absorption mechanism design. For example, one may wish to find a structure
which can absorb a specific amount of impact energy in case of crash worthiness. There have been
some interests in designing truss or beam structures to exhibit geometrical and/or material nonlinearities
[Kamat and Ruangsilasingha 1985; Saxena 2005; Lu and Kota 2003; Ohsaki 2005; Huang and Xie 2008;
Santer and Pellegrino 2008; Thai and Kim 2009] where the buckling loads of structures are maximized.

.
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Figure 1. Geometric hardening or weakening model depicted with a displacement con-
trolled Newton–Raphson scheme. (The prescribed displacement and the reaction force
of the i-th load step are denoted by t+1tU i and t+1tRi , respectively. The number of load
steps is nl).

However, research on two- or three-dimensional continuum structures is relatively less active due to
heavy computational cost and numerical instability [Buhl et al. 2000; Bruns et al. 2002; Yoon et al.
2007].

Perhaps, the first investigation on trajectory-following continuum topology optimization was done in
[Sekimoto and Noguchi 2001] using the homogenization method. Trajectory problems were also solved
in [Bruns et al. 2002] and [Bruns and Sigmund 2004] using the density based method. In these studies,
an automated solution controlling method was employed to consider a snap-through phenomenon. To
design compliant mechanisms generating given paths was also considered using the structural topology
optimization algorithms [Lu and Kota 2003; Saxena 2005; Prasad and Diaz 2006]. In spite of these
studies, some issues, such as low-density elements, still remain. Among others, this study is focused on
the numerical instability of low-density elements and the adverse effects of postprocessing intermediate
density elements to solid or void elements.

An optimized layout even at the converged state typically involves some low-density (and intermediate-
density) elements. In this case, low-density continuum elements under a big load can inevitably lose the
positive-definiteness of the system tangent stiffness matrix when nonlinear analysis is performed. Among
others, Yoon and Kim [2005b] developed a method, called the element connectivity parametrization
method (ECP) to avoid the loss of the positive definiteness of the system matrix. The concept of the
ECP method may be briefly illustrated with Figure 2; see [Yoon and Kim 2005a; [2005b]; Langelaar
et al. 2005; Yoon et al. 2007; 2008; Yoon 2010] for more details. In the ECP method, elements are
connected through one-dimensional zero-length links having variable stiffness. Because the ECP method
represents an element of low density by a solid element connected through one-dimensional low-stiffness
links, the loss of the tangent stiffness of low-density continuum elements can be avoided. To avoid the
aforementioned numerical instability, therefore, we will employ the ECP method for the present problem
tracing a geometrically nonlinear load-displacement curve.
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Figure 2. A structure (left) modeled with the SIMP (solid isotropic with penalization)
method (middle) and the ECP-based method (right). All links have zero length.

Another important issue, especially in problems involving nonlinear structural responses, is related to
intermediate-density elements appearing at the converged state because the postprocessing of intermedi-
ate elements to either solid or void elements can produce considerably different load-displacement curves.
Although an implicit (and/or explicit) penalization technique to push discretizing elements to either void
or solid states can be used, any topology optimization formulation using the notion of the density con-
cept cannot completely suppress intermediate density-elements at the convergence state. (Integer-type
topology optimization is not considered here because of impractically high computation cost.) For this
reason, a special attention will be paid to the issue related to intermediate densities.

For the numerical analysis of geometrically nonlinear structures here, the displacement-controlled
Newton–Raphson method will be used [Bathe 1996; Cho and Jung 2003; Huang and Xie 2008]. If a force
control procedure is implemented, it is difficult to simulate complicated load-displacement trajectories
such as snap-through or snap-back phenomena [Bathe 1996; Sekimoto and Noguchi 2001; Huang and Xie
2008]. Alternatively, one can use algorithms such as the arc-length method or the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method (see [Bathe 1996], for example) when snap-back or snap-through
phenomena need to be simulated. Since a monotonic softening or hardening load-displacement trajectory
and a simple snap-through example are of the main interests in this study, the displacement-controlled
Newton–Raphson method would be satisfactory here.

This paper is organized as follows. Section 2 explains the underlying governing equations for non-
linear analysis and the concept of the ECP modeling and Section 3 presents the topology optimization
formulation and sensitivities analyses needed to solve load-displacement tracing problems. In Section 4,
several numerical case studies are presented. Finally, the findings of this research are summarized and
future research work is discussed.

2. Underlying equations and the ECP method

Before presenting an optimization formulation, this section describes underlying equations and notations
needed for the finite element analysis and the ECP formulation.
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2.1. Geometrical nonlinear analysis. For the analysis of geometrical nonlinear structures, the following
Green–Lagrangian strain ( t+1t

0εi j ) and the associated second PK (Piola–Kirchhoff) stress are used:

t+1t
0εi j =

1
2

( t+1t
0 ui, j +

t+1t
0 u j,i +

t+1t
0 ul,i

t+1t
0 ul, j

)
(i = 1, 2), (1)

where t+1t
0 ui is the displacement component in the xi coordinate at time t+1t where the left subscript 0

indicates that the displacement is measured in the undeformed configuration. The comma denotes partial
differentiation with respect to coordinate xi . The repeated index implies summation. By denoting the
displacement increment nodal vector and the displacement nodal vector at time t +1t of a generic point
of a body occupying a domain V in equilibrium by 1U and t+1tU , respectively, the following update
rules for the Newton–Raphson method can be used (see [Bathe 1996; Cook et al. 2001], for instance):

<<<=
t+1tFExt−

t+1tFInt =
t+1tFExt−

∫
V

BT S dV = 0 (S= C E), (2)

tKT =
∂<<<

∂ t+1tU
, (3)

t+1tU (k)
=

t+1tU (k−1)
+1U (k), t+1tU (0)

=
tU, (4)

tK (k−1)
T 1U (k)

=<<<(t+1tU (k−1)), (5)

where superscript k denotes the iteration step in the implemented Newton–Raphson method. The residual
vector and the tangent stiffness matrix are denoted by <<< and tKT, respectively. The symbols t+1tFExt and
t+1tFInt denote the external load and internal load, respectively. The vector expressions of the second
PK stress and the Green-strain are given by S and E and they are assumed to be related through a linear
constitutive matrix C . The strain-displacement matrix is denoted by B.

2.2. Geometrical nonlinear analysis for the ECP method. In representing a layout in the framework
of the ECP method, elements are not directly connected but through one-dimensional zero-length links
with varying stiffness values. Therefore, the total number of nodes by ECP for two- or three-dimensional
problems can be increased approximately by 5 or 9 times compared to those by the standard density
approach [Yoon et al. 2007]. However, one can reduce the computation time and the size of the assembled
system matrix by employing the patch model of [Yoon 2010; Yoon et al. 2007] (Figure 3) and using static
condensation. Referring to Figure 3, the degrees of freedom of the inner nodes of the ECP patch can be
statically condensed out so that only the degrees of freedom of the outer nodes can be kept in the system
matrix. (For sample code in Matlab of the patch-model based ECP method, see [Yoon et al. 2008]).

Although only the degrees of freedom of the outer nodes will appear in the final system matrix, the
displacement u(k)e,in of the inner nodes and the displacement u(k)e,out of the outer nodes should be simulta-
neously updated as [

t+1t u(k)e,out
t+1t u(k)e,in

]
=

[
t+1t u(k−1)

e,out
t+1t u(k−1)

e,in

]
+

[
1u(k)e,out

1u(k)e,in

]
(6)
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The updated displacement increments for the outer nodes and the inner nodes are denoted by 1u(k)e,out

and 1u(k)e,in, respectively. The equation to find the increments is{[
kI,e −kI,e

−kI,e kI,e

]
+

[
0 0
0 t kstruct,(k−1)

T,e

]}[
1u(k)e,out

1u(k)e,in

]
=

[
<
(k−1)
e,out

<
(k−1)
e,in

]
, (7)

with

kI,e = le(γe)I8×8, (8)

where 0 and I8×8 are the 8× 8 zero matrix and identity matrix (in the two-dimensional case).
The link stiffness of the e-th patch, le, is a function of the design variable. The stiffness matrix, the

residual force terms of the outer and the inner nodes of the e-th patch are denoted by tkstruct,(k−1)
T,e , <(k−1)

e,out

and <(k−1)
e,in , respectively. The force terms <(k−1)

e,out and <(k−1)
e,in are calculated as[

<
(k−1)
e,out

<
(k−1)
e,in

]
=

[ t+1tRe

0

]
−

[
0

t+1t
0 f struct,(k−1)

e

]
−

[
t+1t

0 f link,(k−1)
e,out

t+1t
0 f link,(k−1)

e,in

]
, (9)

[
t+1t

0 f link,(k−1)
e,out

t+1t
0 f link,(k−1)

e,in

]
=

[
kI,e −kI,e

−kI,e kI,e

][
t+1t u(k−1)

e,out
t+1t u(k−1)

e,in

]
. (10)

In (9), the externally applied force on the outer nodes is denoted by t+1tRe and the internal force acting
on the inner nodes by t+1t

0 f struct,(k−1)
e . By applying the static condensation strategy, the degrees related

to the inner nodes are condensed out, leading to

tk(k−1)
Con,e1u(k)e,out =<

(k−1)
e,out + kI,e(kI,e+

tkstruct,(k−1)
T,e )−1

<
(k−1)
e,in , (11)

where
tk(k−1)

Con,e =
(
kI,e− kI,e(kI,e+

t+1tkstruct,(k−1)
T,e )−1kI,e

)
. (12)
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Figure 3. The e-th patch surrounding the e-th element for the ECP method. The inner
nodes are the nodes defining the element while the outer nodes defining the e-th patch
are used to connect patches sharing the same outer nodes. The solid lines connecting
the inner and outer nodes denote zero-length one-dimensional elastic links.
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Then the global tangent matrix is assembled as

tK (k−1)
Con =

Np∑
e=1

tk(k−1)
Con,e , (13)

where Np is the total number of patches. Finally, the following system of equations is solved iteratively
by a standard nonlinear solver such as the Newton–Raphson method or the arc-length method:

tK (k−1)
Con 1U (k)

out =<
(k−1)
Con (14)

where

<<<
(k−1)
Con =

Np∑
e=1

(
<
(k−1)
e,out + kI,e(kI,e+

tkstruct,(k−1)
T,e )−1

<
(k−1)
e,in

)
(15)

For efficient topology optimization procedures, it is crucial to use an appropriate interpolation function
for the ECP method. In this paper, the following interpolation function is adopted for the link stiffness
in (8):

Solid: le = lmax, γe = 1, (16)

Void: le = lmin, γe = 0.001, (17)

le = α
γ n

e

1+ (1− γ n
e )τ
+β

(
τ =

α× s
kstruct

diagonal× k

)
, (18)

α = lmax− lmin, β = lmin, (19)

γmin ≤ γe ≤ 1, γmin = 0.001, (20)

where k is the number of degrees of freedom per node and s and n are penalty parameters. A diagonal
term of the linear stiffness matrix is denoted by kstruct

diagonal. The upper and lower bounds of the stiffness
of links are denoted by lmax and lmin, respectively. Here, lmax and lmin are set to 106

× kstruct
diagonal and

10−6
× kstruct

diagonal, respectively. (See [Yoon et al. 2007; Yoon et al. 2008; Yoon 2010] for more details on
the interpolation function adopted above and actual implementation on Matlab.)

3. Topology optimization formulation

3.1. Optimization formulation. To find a structural layout tracing a given load-displacement trajectory,
the following optimization formulation is considered, where nl is the number of loadsteps and Np is the
number of discretizing patches:

Min
γ
8=

nl∑
i=1

∥∥LT
d

t+1tU i
−

t+1tU i,ref∥∥ (21)

s. t.
Np∑

e=1

ρe(γe)ve ≤ V ∗, (22)
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with γ = {γ1, γ2, . . . , γNp}
T . Here 8 is a scalar objective function measuring the sum of the differences

between the actual displacements t+1tU i and the target displacement t+1tU i,ref for nl steps for a given
load. The symbol Ld denotes a vector which has unity at the node of the displacement measurement
point and all zeros for the rest. The density and element volume of the e-th patch are denoted by ρe and
ve, respectively. The prescribed volume limit is V ∗. Instead of the objective function in (21), one may
prescribe a displacement path and calculate the reaction force as the response. In this case, the objective
function 8 is defined as

8=

nl∑
i=1

∥∥LT
r

t+1tFi
Int−

t+1tRi,ref∥∥ , (23)

where t+1tRi,ref and t+1tFi
Int are the target reaction force and the internal force vector at the i-th load

step of the Newton–Raphson iteration. The symbol Lr is a vector which has unity at the node of the
reaction force measurement point and all zeros for the rest.

The objective function in (23) was used by [Sekimoto and Noguchi 2001] to find optimal layouts
satisfying a prescribed load-displacement trajectory. Theoretically, the use of either (21) or (23) would
yield the same result (layout) if the same load-displacement trajectory is pursued. However, when the
load-displacement trajectory becomes complex, the displacement control procedure is known to perform
better in convergence. Although it can fail for a complex trajectory such as those involving snap-backs
and/or snap-through phenomena, the displacement control procedure usually works better than the load
control procedure using the objective function of (23) [Bathe 1996; Hellweg and Crisfield 1998; Liu
and Nocedal 1989; Vila et al. 1997; Cook et al. 2001]. So it is implemented in the Newton–Raphson
nonlinear solver for this investigation.

Although the functional form of (23) is used, there might be alternatives in selecting the specific norm.
For instance, one can consider the Euclidean norm (2-norm)

8=

nl∑
i=1

(LT
r

t+1tFi
Int−

t+1tRi,ref)2, (24)

the p-norm

8=

( nl∑
i=1

(LT
r

t+1tFi
Int−

t+1tRi,ref)p
)1/p

(p = 2, 4, 6, . . . ), (25)

or the maximum norm

8=max
(∣∣LT

r
t+1tFi

Int−
t+1tRi,ref∣∣). (26)

Obviously, the optimization convergence can be affected by the choice of the norm. The use of the
Euclidean norm is to minimize the sum of every distance between the response reaction force and the
reference (target) force for all incremental steps. On the other hand, the maximum norm minimizes the
maximum distance. For example, let us consider an intermediate design for which the reaction follows
the trajectory depicted in Figure 4. With the Euclidean norm, the average square of distances (the area
marked by A) is to be minimized. With the p-norm with a sufficient large p or the maximum norm, the
distance at load step 3 is minimized because the distance of the load step 3 (the vertical distance marked
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Figure 4. A typical load-displacement trajectory at an intermediate design step.
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by B) is the largest. It is often useful to normalize the aforementioned norms as

8=

nl∑
i=1

(
LT

r
t+1tFi

Int
t+1tRi,ref −1

)2

, 8=

( nl∑
i=1

(LT
r

t+1tFi
Int

t+1tRi,ref −1
)p
)1/p

, 8=max
(∣∣∣∣LT

r
t+1tFi

Int
t+1tRi,ref −1

∣∣∣∣). (27)

In general, it is difficult to judge in advance which norm would perform better for a given prob-
lem. Therefore, one may test various norms as given by (24)–(27) before finding optimal solutions.
Figure 5 depicts an implemented topology optimization procedure to find a structure tracing a specific
load-displacement trajectory.
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3.2. Sensitivity analysis. To update the design variables (γ = {γ1, γ2, . . . , γN p−1, γN p}
T ), the optimiza-

tion procedure as described in Figure 5 will be employed. To obtain the sensitivity of the objective
function 8 with respect to the design variable, γ , it is necessary to derive the sensitivities of the dis-
placement or the reaction force depending on the form of the selected objective function. Although the
procedure to calculate the sensitivity for the present ECP method may be similar to that based on the
element density method, it is worth giving it in some detail. For analysis, we assume that the size of
the degrees of freedom of displacement is nG and the displacement conditions (condensed degrees of
freedom) are applied at t+1tUkn where t+1tUun denotes the unknown displacements (to be determined
by a nonlinear solver). So the following definitions are introduced for the sensitivity analysis:

9d = LT
d

t+1tU, 9r = LT
r

t+1tFint,kn,

where Ld and Lr are nG × 1 and nkn × 1 vectors for the temporarily objective functions 9d and 9r

of the displacement and the reaction force, respectively. By separating the known displacements from
unknown displacements, one can express the governing equation by using the residual vector:

<<<=
t+1tFExt−

t+1tFInt =

[ t+1tFExt,un −
t+1tFInt,un

t+1tFExt,kn −
t+1tFInt,kn

]
=

[
0un×1

0kn×1

]
(28)

Because the boundary conditions are specified on t+1tUkn , the second row of the above equation can be
removed. Without the loss of generality, the load step index appearing as a right superscript is omitted.

3.3. Sensitivity of the displacement. The sensitivity of 9d with respect to the design variable γ requires
the sensitivity of the displacement t+1tU :

9 ′d = LT
d

t+1tU ′ (29)

where differentiation is with respect to γ . To calculate t+1tU ′, the equilibrium equation, <<<= 0nG×1, is
differentiated:

∂<<<

∂ t+1tU
∂ t+1tU
∂γ

+<<<
′
= 0nG×N p. (30)

If an adjoint variable λ is solved from
∂<<<

∂ t+1tU
λ= Ld , (31)

the sensitivity 9 ′d can be easily found from

9 ′d =−λT
<<<
′. (32)

3.4. Sensitivity of the reaction force. The sensitivity of 9r with respect to the design variable γ can be
obtained by a technique similar to that used to calculate 9 ′d . For the displacement-controlled case, it is
convenient to put t+1tU as

t+1tU = [t+1tUun,
t+1tUkn]

T (33)
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In this case, the residual vector <<< can be also put as

<<<=

[ t+1tFExt,un

0kn×1

]
−

[ t+1tFInt,un
t+1tFInt,kn

]
=

[
0un×1

0kn×1

]
,

∂ t+1tFInt

∂ t+1tU
=


∂ t+1tFInt,un
∂ t+1tUun

∂ t+1tFInt,un
∂ t+1tUkn

∂ t+1tFInt,kn
∂ t+1tUun

∂ t+1tFInt,kn
∂ t+1tUkn

 . (34)

First, we differentiate 9r :

d9r

dγ
= LT

r

(
∂ t+1tFInt,kn

∂ t+1tUun

∂ t+1tUun

∂γ
+
∂ t+1tFInt,kn

∂ t+1tUkn

∂ t+1tUkn

∂γ
+
∂ t+1tFInt,kn

∂γ

)
. (35)

Because t+1tUun =
t+1tU∗ (condensed degrees of freedom), the second term in parenthesis in (35) van-

ishes: ∂ t+1tUkn/∂γ = 0kn×N p. To calculate the first term, the equilibrium equation (34) is differentiated:

∂ t+1tFExt,un

∂γ
−
∂ t+1tFInt,un

∂ t+1tUun

∂ t+1tUun

∂γ
−
∂ t+1tFInt,un

∂γ
= 0un×N p. (36)

By inserting (36) into (35), we obtain

∂9r

∂γ
= LT

r

(
∂ t+1tFInt,kn

∂ t+1tUun

((
∂ t+1tFInt,un

∂ t+1tUun

)−1(∂ t+1tFExt,un

∂γ
−
∂ t+1tFInt,un

∂γ

))
+
∂ t+1tFInt,kn

∂γ

)

= LT
r

[
−
∂ t+1tFInt,kn
∂ t+1tUun

(
∂ t+1tFInt,un
∂ t+1tUun

)−1

Ikn×N p

] −
∂ t+1tFExt,un

∂γ
+
∂ t+1tFInt,un

∂γ

∂ t+1tFInt,kn
∂γ

 . (37)

We now introduce the adjoint variable λ, with λT
≡ [λun λkn]T, where λkn = Lr , and simplify (37) to

∂9r

∂γ
= λT

 −
∂ t+1tFExt,un

∂γ
+
∂ t+1tFInt,un

∂γ

∂ t+1tFInt,kn
∂γ

 , (38)


∂ t+1tFInt,un
∂ t+1tUun

∂ t+1tFInt,un
∂ t+1tUkn

∂ t+1tFInt,kn
∂ t+1tUun

∂ t+1tFInt,kn
∂ t+1tUkn

[ λun

λkn

]
=

[
0un×1

0kn×1

]
. (39)

Since λkn = Lr , this leads to

λ=

 −
(
∂ t+1tFInt,un
∂ t+1tUun

)−1
∂ t+1tFInt,kn
∂ t+1tUkn

Lr

Lr

 . (40)

The validity of the sensitivity analysis was checked against the direct numerical result by finite difference.
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4. Examples of topology optimization

This paper considers problems defined only in two-dimensional domains, but the validity and efficiency
of the ECP-based solution approach can be clearly demonstrated in the topology optimization tracing
given load-displacement curves. It is noted that the developed ECP-based approach does not entail any
special treatment or tuning for stabilizing possible instability in the Newton–Raphson iterations or in
optimization processes. Because the ECP method is used here, all the remarks and findings are mainly
applicable to an approach based on the ECP method, not on the element density method. One may see
more detailed explanations of the advantages and drawbacks of the element density method for some
nonlinear problems may be found in [Buhl et al. 2000; Bruns and Tortorelli 2003; Cho and Jung 2003;
Yoon and Kim 2005b; Yoon et al. 2008]. Unless stated otherwise, uniform initial guesses of γ satisfying
given mass constraints are used. The dimension, material properties and magnitude of the loads are so
chosen as to demonstrate the potential of the present ECP based formulation. In this study, the method of
moving asymptotes is used as an optimization algorithm [Svanberg 1987]; however other optimization
algorithms can also be used.

Example 1: Controlling the load-displacement curve. As the first numerical example, we consider the
problem depicted in Figure 6a. The design domain is discretized by 60× 40 four-node quad elements.
The displacement is prescribed at the top-right node while other boundary conditions are depicted in the
figure. Young’s modulus and Poisson’s ratio are set to be 1 N/m2 and 0.4, respectively.

Before solving the optimization problem set up as (21) and (22), a nominal structure maximizing the
reaction force for a specified displacement value where the structural response is found by using linear
strains. The result is shown in Figure 6b, which should be the same as the result obtained by a standard
compliance minimization using linear strains. To obtain the result in Figure 6b, the sensitivity filer of
radius equal to 1.2 times the element size was used [Bendsøe and Sigmund 2003].

It will be interesting to investigate the load-displacement trajectory when the geometric nonlinearity
using the Green–Lagrangian strain is used for the optimized layout of Figure 6b. The result is given in
Figure 6c for which the maximum tip displacement δmax is set to be 0.12 m. When the nonlinearity is
considered, the drop in the reaction force is expected as the tip displacement ( δ) reaches δmax. This is
due to a buckling phenomenon caused by the local bending indicated in Figure 6d.

Now let us try to find a structural layout following a prescribed load-displacement trajectory based on
geometric nonlinear analysis. By using the trajectory in Figure 6c as a nominal trajectory, we set up a
problem to find a structure that passes the following two points in the load-displacement trajectory:

Target:

{
t+1tR1,ref

= 1.0× 10−3 N at δ= 0.06 m,
t+1tR2,ref

= 2.0× 10−3 N at δ= 0.12 m.
(41)

The load-displacement relation required by (41) states that the target structure should not exhibit apparent
weakening effects near 0.12 m for the input displacement because t+1tR2,ref by (41) is larger than the
corresponding value predicted in Figure 6c. In other words, the overall stiffness before 0.6 m of the input
displacement should be smaller than that of the linear design but a sudden drop due to the geometric
weakening in the reaction force observed at the linear design can be avoided at δ = 0.12 m if a structure
satisfying (41) is indeed found.
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By using the optimization formulation of (22) and (23) (with V ∗ = 20% as before), the optimized
layouts tracing the target response of (41) are shown in Figure 7, left and middle. In defining (23), the
Euclidean norm defined in (24) was used. The fixed filter implies the sensitivity filter using the fixed
radius (rfilter) of 1.2 times the element size while the varying filter implies the sensitivity filter using the
following filter radius (this can be viewed as a special case of the continuation method):

rfilter =

{
1.2× element size for loop≤ 150 iterations,

1.0× element size for loop> 150 iterations.
(42)

The main motivation to use the varying filter is to minimize the appearance of intermediate density
elements because the existence of these elements can significantly affect structural response especially
when nonlinear analysis is considered.
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Figure 6. A test problem. (a) Problem definition (E=1 N/m2, ν = 0.4). (b) Optimized
layout for V ∗ = 20% when linear analysis is used. (c) Load-displacement trajectory of
the layout in (b) by geometrically nonlinear analysis; Cr is the threshold design variable
value for hard-kill postprocessing. (d) Deformed shape by nonlinear analysis when the
top displacement reaches 0.12 m.
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To check the effects of postprocessing, for instance, Figure 6c compares the load-displacement curves
before and after the hard-kill postprocessing by which the elements having design variables above or
equal a threshold Cr are replaced by solid elements, and elements having the design variables lower than
Cr by void elements. Two values of Cr were used: 0.3 and 0.7. As seen from Figure 6c, the differences
among the responses can be neglected in the linear range but become significant in the nonlinear range.
As a result, more effort should be made to avoid intermediate design values but the optimized layouts
in existing works dealing with nonlinear load-displacement curve tracing seem to contain quite a large
portion of intermediate variables. As shall be seen later with numerical results, the optimized layouts by
the element connectivity method appear to have a smaller portion of intermediate variables.

Although the filter-size varying technique helped to reduce the occurrence of intermediate density el-
ements, they were not completely removed. The load-displacement trajectories by the optimized layouts
are plotted in Figure 7, right. Note that an additional member has appeared in the optimized layouts when
the target trajectory is required to pass two reference points in (41). When δ exceeds δmax = 0.12m, the
reaction forces suddenly drop and the response pattern is significantly affected even by small differences
in the layout configuration, which may be viewed as an imperfection.

Now let us find a structural layout to follow the load-displacement trajectories having slightly different
reference points from those used to obtain the layouts in Figure 7. Among others, the value of the reaction
force at δ = 0.06 m is varied. The comparison of the obtained layouts in Figure 8a,b and that shown in
Figure 8c indicates that the member staring at A should be more straight as a larger reaction force at
δ = 0.06 m is required. As a larger reaction force is required at δ = 0.06 m, the reduction in the tangent
stiffness of the obtained layout at δ = 0.12 m is more significant. Another observation is that it may
be not always possible to obtain a layout yielding a given load-displacement trajectory passing through
arbitrarily specified load-displacement points because there may not exist such a layout. For instance,
the trajectory marked by (a) in the graph of Figure 8 does not exactly pass through (t+1tR2,ref, δ) =

(2.0× 10−3 N, 0.12 m).
Furthermore, to prevent the sudden drop of the reaction force of the design in Figure 8c near δ =

0.144 m, the one reference point at δ = 0.144 m in Figure 9 is additionally inserted and the effect of
this inclusion is tested. The changes of the details of the design of Figure 8c are observed in Figure 9.
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(middle); load-displacement trajectories for the optimized layouts (right).
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Figure 8. Top: optimized layouts following different target reference points in the load-
displacement trajectory. Bottom: corresponding load-displacement trajectories.

The straight line near the point A becomes thicker and the straight line near the point C becomes narrow
compared with the design in Figure 8c. This reveals that the ECP based topology optimization can
change the details of the design to satisfy the given load and displacement curve. Furthermore, it proves
that after the post processing of obtained layouts, the size or shape optimization process may be required
to compensate the adverse effect of the postprocessing.
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design (left) and load-displacement curve (right).
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Figure 10. Left: reference layout. Right: load-displacement trajectory.

The normalized norm was also considered in the definition of the objective function. Although the
optimized results are not shown, the layout configurations with and without the normalization were not
much different. For this reason, the unnormalized Euclidean norm defined in (24) will be used in the
subsequent examples.

Example 2: Design of a stiffening structure. To test if the proposed formulation can find a structural
layout exhibiting geometrically stiffening behavior, a structure shown in Figure 10 is devised. When
the structure is loaded at the tip marked by a vertical arrow, it exhibits geometrical stiffening. Note that
the stiffening effect results from the constraint of the horizontal displacement along the roller support.
The optimization problem considered is to recover the layout shown in Figure 10, left, when the curve
in Figure 10, right, is given as the target trajectory. To solve this problem, the formulation given by
(22) and (23) is adopted. Eleven points in the load-displacement curves marked by dots in Figure 10,
right, are used. The intermediate and final layouts appearing during optimization iterations and the
corresponding load-displacement trajectories are shown in Figure 11, which indicates that the proposed
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Figure 11. Optimized results by the developed method in recovering the reference lay-
out exhibiting the nonlinear load-displacement curve in Figure 10. Left: the optimized
layout. Right: load-displacement curves of the intermediate and final layouts.



620 GIL HO YOON, JIN YEE NOH AND YOON YOUNG KIM

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Displacement (m)

R
e
a
c
ti
o
n
 F
o
rc
e
 (
N
)

 

 

Nonlinear load-displacement
curve for the layout in (c)

Nonlinear load-displacement
curve for the layout in (b)

Target trajectory

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Displacement (m)

R
e
a
c
ti
o
n
 F
o
rc
e
 (
N
)

 

 

Nonlinear load-displacement
curve for the layout in (c)

Nonlinear load-displacement
curve for the layout in (b)

Target trajectory

(b) (c)

5 m

3 m

max 0.4 mδ =

30 50 4-node

quad elements

×

5 m

3 m

max 0.4 mδ =

30 50 4-node

quad elements

×

(a) (d)

Figure 12. A problem to find a target nonlinear load-displacement trajectory. Left:
target and limiting trajectories. Middle: reference layouts yielding linear and nonlinear
limiting trajectories. Right: a compliance minimization problem used to obtain the given
layouts with E = 1 N/m2, ν = 0.4, volume= 20%.

ECP-based formulation is capable of finding a layout very close to the one given in Figure 10, left, while
the specified load-displacement curve is fairly accurately traced.

Example 3: Center-loaded structure with a specified structural response. Here, we look for a struc-
tural layout following a target load-displacement trajectory in Figure 12a, lying between two limiting
trajectories. The limiting trajectories shown in the graph are the trajectories of the layouts (b) and (c)
in Figure 12, optimized through compliance minimization (defined in Figure 12d) by using linear and
geometrically nonlinear analyses. In obtaining the layouts, the center of the design domain was pulled
down by δmax = 0.4 m and a checkerboard filter of radius equal to 1.2 times the element size was used.

To solve this problem, nl = 2 was used and the specific reference points were (t+1tR1,ref, δ) =

(0.0363 N, 0.16 m) and (t+1tR2,ref, δ) = (0.065 N, 0.32 m). Figure 13 shows the optimized result for
this problem. The optimized layout (left) and the variation of the load-displacement trajectories are
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Figure 13. Iteration history of the load-displacement trajectories. The design objective
is to find the target layout in Figure 12d.
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°

Figure 14. A problem to find a target snap-through trajectory (E = 1 N/m2, ν = 0.4,
volume = 30%, input displacement = 0.001).

illustrated as the iteration proceeds. The target trajectory in Figure 12a is shown to be accurately traced
by the trajectory of the optimized layout in Figure 13. Interestingly, the optimized layout in this case
looks like a combination of the two layouts in parts (b) and (c) of Figure 12, with the size of every
member roughly reduced by a factor of two. As remarked in earlier examples, it is difficult to obtain a
completely distinct solid-void distribution without intermediate design variables.

Example 4: A design exhibiting snap-through. A problem involving snap-through is now considered.
Since a relatively simple solver is employed, a structure without any snap-back is considered in Figure 14.
The design domain is bounded by elliptical curves. If a slender symmetric structure is center-loaded, the
design domain in Figure 14 can be viewed as its half. Then one can consider a roller-supported side
which is loaded by a vertical displacement. The left side may be assumed to be fixed at its middle point.
The radius and thickness of the ellipse are assumed to be 0.1 and 0.001, respectively. The domain is
discretized by 120 by 20 elements and the allowed material usage is set to 30% of the total area. The input
displacement is set to be 0.001 which is the same as the height of the design domain. This value would
be sufficiently large to induce a snap-through phenomenon. The target points in the load-displacement
curve for the topology optimization are marked in Figure 15, right. This curve is so selected as to be
able to obtain a layout exhibiting snap-through. To obtain the optimized layout in Figure 15, left, the
same ECP formulation as used in the previous examples is used. Solution convergence was stable. The
trajectory by the optimized layout is marked by a solid line in Figure 15, right. This example demonstrates
that the developed method can be used to solve problems involving snap-through phenomena. However,
the present approach in its current form may not handle complex force-displacement curves without an
advanced nonlinear solver.

Example 5: A column design exhibiting geometrically weakening. As the last case study, we consider
an optimization problem to find a structure tracing the nonlinear load-displacement trajectory given in
Figure 16, left. As shown by that figure, the target trajectory corresponds to the load-displacement curve
of a slender column vertically loaded at the top left corner. Obviously, the solid straight column will be
an optimized layout obtained as a solution to (22) and (23). To set up a nontrivial optimization problem,
we take the design problem depicted in Figure 16, right; only the middle part of the column is assumed
to be a design domain, but it is enlarged by 5 times. If the mass constraint of 20% is used, then the
original straight column (middle diagram) is expected to be recovered. However, the actual optimized
result is a rectangular box, quite different from the expected nominal rectangular solid. Seven points in
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Target trajectory

Figure 15. Example 4: a problem involving snap-through. Top left: optimized layout
(undeformed). Bottom left: deformed shape (input displacement = 0.001). Right: load-
displacement trajectory by the optimized layout; circles represent the target points.
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Figure 16. Example 5: a column design exhibiting geometrically weakening. Left:
target trajectory. Middle: reference solid column structure (E = 1 N/m2, ν = 0.3). Right:
an optimized layout in the expanded middle design domain.

the trajectory were used as the reference points to obtain the results in Figure 16, right, by the proposed
topology optimization method. When a uniformly distributed density value of 0.2 (corresponding to
20%) was used, the solid column in the middle diagram was not recovered; one of local optima as given
by the rightmost diagram was obtained. As Figure 17 shows, however, the optimized layout in Figure 16,
right, obtained with 7 reference points, traces fairly closely the target trajectory. Figure 17 also shows
the importance of using more reference points in order to trace the target trajectory accurately.

5. Conclusions

The structural topology problem to find optimal structural layouts exhibiting either geometrically hard-
ening or weakening load-displacement trajectories was investigated by using the element connectivity
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Figure 17. Comparison of the target load-displacement trajectory and the trajectories
of the optimized structures obtained with varying numbers of reference points in the
load-displacement trajectory. The layouts on the right correspond to, respectively, 1, 3,
4, and 7 points.

parametrization formulation. The following findings are made through this study. First, the ECP method
effectively avoided the numerical instability or the erratic convergence related to low-density elements
during the topology optimization tracing geometrically nonlinear load-displacement trajectories without
any additional stabilization treatment in the Newton–Raphson scheme or prior tuning in optimization.
Second, the issues of local optima and gray elements due to the design variable relaxation from the
binary variables to the continuous variables appeared in the ECP based method, but the gray element
problems appeared to be less severe than those with the element based approach. A load-displacement
trajectory sufficiently close to the target one was found while the optimized layout was completely dif-
ferent from the nominal layout used to produce the target trajectory. Therefore, much attention should
be paid in interpreting optimized results. In several cases, the postprocessed layouts yielded different
load-displacement trajectories from those of the unprocessed layouts. Although a gray-element-free
topology optimization formulation that can handle arbitrarily shaped load-displacement curve requires
further research, the findings and numerical results obtained with the ECP formulation suggest that it
can be very useful to advance the research in complete handling of general nonlinear problems.

Personal notes in memory of MarieLu Steele, by Yoon Young Kim

MarieLu was one of the most cheerful and lively persons I have met. She was always positive, and, I
was revitalized every time I was in her company. I strongly believe that her positive energy enabled
the dramatic success of the International Journal of Solids and Structures for which she was a dedicated
Associate Editor for many years. Recently, her enthusiasm and devotion ensured the successful launching
of the Journal of Mechanics of Materials and Structures, a new high-quality journal in the field of
mechanics. I will dearly miss her energizing power and dedication to the mechanics community.
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